blob: d0e5e372e7f82618bf3d6dea41608200833a5f3a [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohmanef071582010-06-07 19:12:54 +0000508 unsigned LST = LHS->getSCEVType();
509 unsigned RST = RHS->getSCEVType();
510 if (LST != RST)
511 return LST < RST;
Dan Gohman72861302009-05-07 14:39:04 +0000512
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000513 // Then, pick an arbitrary sort. Use the profiling data for speed.
514 const FoldingSetNodeIDRef &L = LHS->getProfile();
515 const FoldingSetNodeIDRef &R = RHS->getProfile();
516 size_t LSize = L.getSize();
517 size_t RSize = R.getSize();
518 if (LSize != RSize)
519 return LSize < RSize;
520 return memcmp(L.getData(), R.getData(),
521 LSize * sizeof(*L.getData())) < 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000522 }
523 };
524}
525
526/// GroupByComplexity - Given a list of SCEV objects, order them by their
527/// complexity, and group objects of the same complexity together by value.
528/// When this routine is finished, we know that any duplicates in the vector are
529/// consecutive and that complexity is monotonically increasing.
530///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000531/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000532/// results from this routine. In other words, we don't want the results of
533/// this to depend on where the addresses of various SCEV objects happened to
534/// land in memory.
535///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000536static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000537 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000538 if (Ops.size() < 2) return; // Noop
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000539
540 SCEVComplexityCompare Comp(LI);
541
Chris Lattner8d741b82004-06-20 06:23:15 +0000542 if (Ops.size() == 2) {
543 // This is the common case, which also happens to be trivially simple.
544 // Special case it.
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000545 if (Comp(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000546 std::swap(Ops[0], Ops[1]);
547 return;
548 }
549
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000550 std::stable_sort(Ops.begin(), Ops.end(), Comp);
Chris Lattner8d741b82004-06-20 06:23:15 +0000551}
552
Chris Lattner53e677a2004-04-02 20:23:17 +0000553
Chris Lattner53e677a2004-04-02 20:23:17 +0000554
555//===----------------------------------------------------------------------===//
556// Simple SCEV method implementations
557//===----------------------------------------------------------------------===//
558
Eli Friedmanb42a6262008-08-04 23:49:06 +0000559/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000560/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000561static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000562 ScalarEvolution &SE,
563 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000564 // Handle the simplest case efficiently.
565 if (K == 1)
566 return SE.getTruncateOrZeroExtend(It, ResultTy);
567
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000568 // We are using the following formula for BC(It, K):
569 //
570 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
571 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000572 // Suppose, W is the bitwidth of the return value. We must be prepared for
573 // overflow. Hence, we must assure that the result of our computation is
574 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
575 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000576 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000577 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000578 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000579 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
580 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000581 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000582 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000583 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000584 // This formula is trivially equivalent to the previous formula. However,
585 // this formula can be implemented much more efficiently. The trick is that
586 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
587 // arithmetic. To do exact division in modular arithmetic, all we have
588 // to do is multiply by the inverse. Therefore, this step can be done at
589 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000590 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000591 // The next issue is how to safely do the division by 2^T. The way this
592 // is done is by doing the multiplication step at a width of at least W + T
593 // bits. This way, the bottom W+T bits of the product are accurate. Then,
594 // when we perform the division by 2^T (which is equivalent to a right shift
595 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
596 // truncated out after the division by 2^T.
597 //
598 // In comparison to just directly using the first formula, this technique
599 // is much more efficient; using the first formula requires W * K bits,
600 // but this formula less than W + K bits. Also, the first formula requires
601 // a division step, whereas this formula only requires multiplies and shifts.
602 //
603 // It doesn't matter whether the subtraction step is done in the calculation
604 // width or the input iteration count's width; if the subtraction overflows,
605 // the result must be zero anyway. We prefer here to do it in the width of
606 // the induction variable because it helps a lot for certain cases; CodeGen
607 // isn't smart enough to ignore the overflow, which leads to much less
608 // efficient code if the width of the subtraction is wider than the native
609 // register width.
610 //
611 // (It's possible to not widen at all by pulling out factors of 2 before
612 // the multiplication; for example, K=2 can be calculated as
613 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
614 // extra arithmetic, so it's not an obvious win, and it gets
615 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000616
Eli Friedmanb42a6262008-08-04 23:49:06 +0000617 // Protection from insane SCEVs; this bound is conservative,
618 // but it probably doesn't matter.
619 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000620 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000621
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000622 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000623
Eli Friedmanb42a6262008-08-04 23:49:06 +0000624 // Calculate K! / 2^T and T; we divide out the factors of two before
625 // multiplying for calculating K! / 2^T to avoid overflow.
626 // Other overflow doesn't matter because we only care about the bottom
627 // W bits of the result.
628 APInt OddFactorial(W, 1);
629 unsigned T = 1;
630 for (unsigned i = 3; i <= K; ++i) {
631 APInt Mult(W, i);
632 unsigned TwoFactors = Mult.countTrailingZeros();
633 T += TwoFactors;
634 Mult = Mult.lshr(TwoFactors);
635 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000636 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000637
Eli Friedmanb42a6262008-08-04 23:49:06 +0000638 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000639 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000640
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000641 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000642 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
643
644 // Calculate the multiplicative inverse of K! / 2^T;
645 // this multiplication factor will perform the exact division by
646 // K! / 2^T.
647 APInt Mod = APInt::getSignedMinValue(W+1);
648 APInt MultiplyFactor = OddFactorial.zext(W+1);
649 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
650 MultiplyFactor = MultiplyFactor.trunc(W);
651
652 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000653 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
654 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000655 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000657 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000658 Dividend = SE.getMulExpr(Dividend,
659 SE.getTruncateOrZeroExtend(S, CalculationTy));
660 }
661
662 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000663 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664
665 // Truncate the result, and divide by K! / 2^T.
666
667 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
668 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000669}
670
Chris Lattner53e677a2004-04-02 20:23:17 +0000671/// evaluateAtIteration - Return the value of this chain of recurrences at
672/// the specified iteration number. We can evaluate this recurrence by
673/// multiplying each element in the chain by the binomial coefficient
674/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
675///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000676/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000677///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000678/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000679///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000680const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000681 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000682 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000683 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000684 // The computation is correct in the face of overflow provided that the
685 // multiplication is performed _after_ the evaluation of the binomial
686 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000687 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000688 if (isa<SCEVCouldNotCompute>(Coeff))
689 return Coeff;
690
691 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000692 }
693 return Result;
694}
695
Chris Lattner53e677a2004-04-02 20:23:17 +0000696//===----------------------------------------------------------------------===//
697// SCEV Expression folder implementations
698//===----------------------------------------------------------------------===//
699
Dan Gohman0bba49c2009-07-07 17:06:11 +0000700const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000701 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000702 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000703 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000704 assert(isSCEVable(Ty) &&
705 "This is not a conversion to a SCEVable type!");
706 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000707
Dan Gohmanc050fd92009-07-13 20:50:19 +0000708 FoldingSetNodeID ID;
709 ID.AddInteger(scTruncate);
710 ID.AddPointer(Op);
711 ID.AddPointer(Ty);
712 void *IP = 0;
713 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
714
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000715 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000716 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000717 return getConstant(
718 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000719
Dan Gohman20900ca2009-04-22 16:20:48 +0000720 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000721 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000722 return getTruncateExpr(ST->getOperand(), Ty);
723
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000724 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000725 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000726 return getTruncateOrSignExtend(SS->getOperand(), Ty);
727
728 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000729 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000730 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
731
Dan Gohman6864db62009-06-18 16:24:47 +0000732 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000733 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000734 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000735 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000736 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
737 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000738 }
739
Dan Gohmanc050fd92009-07-13 20:50:19 +0000740 // The cast wasn't folded; create an explicit cast node.
741 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000742 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000743 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
744 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000745 UniqueSCEVs.InsertNode(S, IP);
746 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747}
748
Dan Gohman0bba49c2009-07-07 17:06:11 +0000749const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000750 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000751 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000752 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000753 assert(isSCEVable(Ty) &&
754 "This is not a conversion to a SCEVable type!");
755 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000756
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000757 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000758 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000759 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000760 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000762 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000763 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000764
Dan Gohman20900ca2009-04-22 16:20:48 +0000765 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000766 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000767 return getZeroExtendExpr(SZ->getOperand(), Ty);
768
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000769 // Before doing any expensive analysis, check to see if we've already
770 // computed a SCEV for this Op and Ty.
771 FoldingSetNodeID ID;
772 ID.AddInteger(scZeroExtend);
773 ID.AddPointer(Op);
774 ID.AddPointer(Ty);
775 void *IP = 0;
776 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
777
Dan Gohman01ecca22009-04-27 20:16:15 +0000778 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000779 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000780 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000782 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000783 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000784 const SCEV *Start = AR->getStart();
785 const SCEV *Step = AR->getStepRecurrence(*this);
786 unsigned BitWidth = getTypeSizeInBits(AR->getType());
787 const Loop *L = AR->getLoop();
788
Dan Gohmaneb490a72009-07-25 01:22:26 +0000789 // If we have special knowledge that this addrec won't overflow,
790 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000791 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000792 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
793 getZeroExtendExpr(Step, Ty),
794 L);
795
Dan Gohman01ecca22009-04-27 20:16:15 +0000796 // Check whether the backedge-taken count is SCEVCouldNotCompute.
797 // Note that this serves two purposes: It filters out loops that are
798 // simply not analyzable, and it covers the case where this code is
799 // being called from within backedge-taken count analysis, such that
800 // attempting to ask for the backedge-taken count would likely result
801 // in infinite recursion. In the later case, the analysis code will
802 // cope with a conservative value, and it will take care to purge
803 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000804 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000805 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000806 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000807 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000808
809 // Check whether the backedge-taken count can be losslessly casted to
810 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000812 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000813 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000814 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
815 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000816 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000817 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000818 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000819 const SCEV *Add = getAddExpr(Start, ZMul);
820 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000821 getAddExpr(getZeroExtendExpr(Start, WideTy),
822 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823 getZeroExtendExpr(Step, WideTy)));
824 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000825 // Return the expression with the addrec on the outside.
826 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000828 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000829
830 // Similar to above, only this time treat the step value as signed.
831 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000832 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000833 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000834 OperandExtendedAdd =
835 getAddExpr(getZeroExtendExpr(Start, WideTy),
836 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837 getSignExtendExpr(Step, WideTy)));
838 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000839 // Return the expression with the addrec on the outside.
840 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000842 L);
843 }
844
845 // If the backedge is guarded by a comparison with the pre-inc value
846 // the addrec is safe. Also, if the entry is guarded by a comparison
847 // with the start value and the backedge is guarded by a comparison
848 // with the post-inc value, the addrec is safe.
849 if (isKnownPositive(Step)) {
850 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
851 getUnsignedRange(Step).getUnsignedMax());
852 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000853 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000854 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
855 AR->getPostIncExpr(*this), N)))
856 // Return the expression with the addrec on the outside.
857 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858 getZeroExtendExpr(Step, Ty),
859 L);
860 } else if (isKnownNegative(Step)) {
861 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
862 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000863 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
864 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000865 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
866 AR->getPostIncExpr(*this), N)))
867 // Return the expression with the addrec on the outside.
868 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
869 getSignExtendExpr(Step, Ty),
870 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000871 }
872 }
873 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000874
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000875 // The cast wasn't folded; create an explicit cast node.
876 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000877 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000878 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
879 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000880 UniqueSCEVs.InsertNode(S, IP);
881 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000882}
883
Dan Gohman0bba49c2009-07-07 17:06:11 +0000884const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000885 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000886 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000887 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000888 assert(isSCEVable(Ty) &&
889 "This is not a conversion to a SCEVable type!");
890 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000891
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000892 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000893 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000894 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000895 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
896 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000897 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000898 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000899
Dan Gohman20900ca2009-04-22 16:20:48 +0000900 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000901 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000902 return getSignExtendExpr(SS->getOperand(), Ty);
903
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000904 // Before doing any expensive analysis, check to see if we've already
905 // computed a SCEV for this Op and Ty.
906 FoldingSetNodeID ID;
907 ID.AddInteger(scSignExtend);
908 ID.AddPointer(Op);
909 ID.AddPointer(Ty);
910 void *IP = 0;
911 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
912
Dan Gohman01ecca22009-04-27 20:16:15 +0000913 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000914 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000915 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000916 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000917 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000918 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000919 const SCEV *Start = AR->getStart();
920 const SCEV *Step = AR->getStepRecurrence(*this);
921 unsigned BitWidth = getTypeSizeInBits(AR->getType());
922 const Loop *L = AR->getLoop();
923
Dan Gohmaneb490a72009-07-25 01:22:26 +0000924 // If we have special knowledge that this addrec won't overflow,
925 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000926 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000927 return getAddRecExpr(getSignExtendExpr(Start, Ty),
928 getSignExtendExpr(Step, Ty),
929 L);
930
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // Check whether the backedge-taken count is SCEVCouldNotCompute.
932 // Note that this serves two purposes: It filters out loops that are
933 // simply not analyzable, and it covers the case where this code is
934 // being called from within backedge-taken count analysis, such that
935 // attempting to ask for the backedge-taken count would likely result
936 // in infinite recursion. In the later case, the analysis code will
937 // cope with a conservative value, and it will take care to purge
938 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000939 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000940 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000941 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000942 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000943
944 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000945 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000946 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000947 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000948 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000949 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
950 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000951 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000952 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000953 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *Add = getAddExpr(Start, SMul);
955 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000956 getAddExpr(getSignExtendExpr(Start, WideTy),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958 getSignExtendExpr(Step, WideTy)));
959 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start, Ty),
962 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000963 L);
Dan Gohman850f7912009-07-16 17:34:36 +0000964
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +0000967 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +0000968 Add = getAddExpr(Start, UMul);
969 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +0000970 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +0000971 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
972 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +0000973 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +0000974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getSignExtendExpr(Start, Ty),
976 getZeroExtendExpr(Step, Ty),
977 L);
Dan Gohman85b05a22009-07-13 21:35:55 +0000978 }
979
980 // If the backedge is guarded by a comparison with the pre-inc value
981 // the addrec is safe. Also, if the entry is guarded by a comparison
982 // with the start value and the backedge is guarded by a comparison
983 // with the post-inc value, the addrec is safe.
984 if (isKnownPositive(Step)) {
985 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
986 getSignedRange(Step).getSignedMax());
987 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000988 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000989 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
990 AR->getPostIncExpr(*this), N)))
991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getSignExtendExpr(Start, Ty),
993 getSignExtendExpr(Step, Ty),
994 L);
995 } else if (isKnownNegative(Step)) {
996 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
997 getSignedRange(Step).getSignedMin());
998 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000999 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001000 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1001 AR->getPostIncExpr(*this), N)))
1002 // Return the expression with the addrec on the outside.
1003 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1004 getSignExtendExpr(Step, Ty),
1005 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001006 }
1007 }
1008 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001009
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001010 // The cast wasn't folded; create an explicit cast node.
1011 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001012 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001013 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1014 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001015 UniqueSCEVs.InsertNode(S, IP);
1016 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001017}
1018
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001019/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1020/// unspecified bits out to the given type.
1021///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001022const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001023 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001024 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1025 "This is not an extending conversion!");
1026 assert(isSCEVable(Ty) &&
1027 "This is not a conversion to a SCEVable type!");
1028 Ty = getEffectiveSCEVType(Ty);
1029
1030 // Sign-extend negative constants.
1031 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1032 if (SC->getValue()->getValue().isNegative())
1033 return getSignExtendExpr(Op, Ty);
1034
1035 // Peel off a truncate cast.
1036 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001037 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001038 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1039 return getAnyExtendExpr(NewOp, Ty);
1040 return getTruncateOrNoop(NewOp, Ty);
1041 }
1042
1043 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001044 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001045 if (!isa<SCEVZeroExtendExpr>(ZExt))
1046 return ZExt;
1047
1048 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001049 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001050 if (!isa<SCEVSignExtendExpr>(SExt))
1051 return SExt;
1052
Dan Gohmana10756e2010-01-21 02:09:26 +00001053 // Force the cast to be folded into the operands of an addrec.
1054 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1055 SmallVector<const SCEV *, 4> Ops;
1056 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1057 I != E; ++I)
1058 Ops.push_back(getAnyExtendExpr(*I, Ty));
1059 return getAddRecExpr(Ops, AR->getLoop());
1060 }
1061
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001062 // If the expression is obviously signed, use the sext cast value.
1063 if (isa<SCEVSMaxExpr>(Op))
1064 return SExt;
1065
1066 // Absent any other information, use the zext cast value.
1067 return ZExt;
1068}
1069
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001070/// CollectAddOperandsWithScales - Process the given Ops list, which is
1071/// a list of operands to be added under the given scale, update the given
1072/// map. This is a helper function for getAddRecExpr. As an example of
1073/// what it does, given a sequence of operands that would form an add
1074/// expression like this:
1075///
1076/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1077///
1078/// where A and B are constants, update the map with these values:
1079///
1080/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1081///
1082/// and add 13 + A*B*29 to AccumulatedConstant.
1083/// This will allow getAddRecExpr to produce this:
1084///
1085/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1086///
1087/// This form often exposes folding opportunities that are hidden in
1088/// the original operand list.
1089///
1090/// Return true iff it appears that any interesting folding opportunities
1091/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1092/// the common case where no interesting opportunities are present, and
1093/// is also used as a check to avoid infinite recursion.
1094///
1095static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001096CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1097 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001098 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001099 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001100 const APInt &Scale,
1101 ScalarEvolution &SE) {
1102 bool Interesting = false;
1103
Dan Gohman5e5dd682010-06-07 19:20:57 +00001104 // Iterate over the add operands. They are sorted, with constants first.
1105 unsigned i = 0;
1106 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1107 ++i;
1108 // Pull a buried constant out to the outside.
1109 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1110 Interesting = true;
1111 AccumulatedConstant += Scale * C->getValue()->getValue();
1112 }
1113
1114 // Next comes everything else. We're especially interested in multiplies
1115 // here, but they're in the middle, so just visit the rest with one loop.
1116 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001117 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1118 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1119 APInt NewScale =
1120 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1121 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1122 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001123 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001124 Interesting |=
1125 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001126 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001127 NewScale, SE);
1128 } else {
1129 // A multiplication of a constant with some other value. Update
1130 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001131 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1132 const SCEV *Key = SE.getMulExpr(MulOps);
1133 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001134 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001135 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001136 NewOps.push_back(Pair.first->first);
1137 } else {
1138 Pair.first->second += NewScale;
1139 // The map already had an entry for this value, which may indicate
1140 // a folding opportunity.
1141 Interesting = true;
1142 }
1143 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001144 } else {
1145 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001146 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001147 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001148 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001149 NewOps.push_back(Pair.first->first);
1150 } else {
1151 Pair.first->second += Scale;
1152 // The map already had an entry for this value, which may indicate
1153 // a folding opportunity.
1154 Interesting = true;
1155 }
1156 }
1157 }
1158
1159 return Interesting;
1160}
1161
1162namespace {
1163 struct APIntCompare {
1164 bool operator()(const APInt &LHS, const APInt &RHS) const {
1165 return LHS.ult(RHS);
1166 }
1167 };
1168}
1169
Dan Gohman6c0866c2009-05-24 23:45:28 +00001170/// getAddExpr - Get a canonical add expression, or something simpler if
1171/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001172const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1173 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001174 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001175 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001176#ifndef NDEBUG
Dan Gohman1f23d632010-06-07 19:16:37 +00001177 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001178 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman1f23d632010-06-07 19:16:37 +00001179 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001180 "SCEVAddExpr operand types don't match!");
1181#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001182
Dan Gohmana10756e2010-01-21 02:09:26 +00001183 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1184 if (!HasNUW && HasNSW) {
1185 bool All = true;
1186 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1187 if (!isKnownNonNegative(Ops[i])) {
1188 All = false;
1189 break;
1190 }
1191 if (All) HasNUW = true;
1192 }
1193
Chris Lattner53e677a2004-04-02 20:23:17 +00001194 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001195 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001196
1197 // If there are any constants, fold them together.
1198 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001199 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001200 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001201 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001202 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001203 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001204 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1205 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001206 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001207 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001208 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001209 }
1210
1211 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001212 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001213 Ops.erase(Ops.begin());
1214 --Idx;
1215 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001216
Dan Gohmanbca091d2010-04-12 23:08:18 +00001217 if (Ops.size() == 1) return Ops[0];
1218 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001219
Chris Lattner53e677a2004-04-02 20:23:17 +00001220 // Okay, check to see if the same value occurs in the operand list twice. If
1221 // so, merge them together into an multiply expression. Since we sorted the
1222 // list, these values are required to be adjacent.
1223 const Type *Ty = Ops[0]->getType();
1224 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1225 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1226 // Found a match, merge the two values into a multiply, and add any
1227 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001228 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001229 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001230 if (Ops.size() == 2)
1231 return Mul;
1232 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1233 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001234 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001235 }
1236
Dan Gohman728c7f32009-05-08 21:03:19 +00001237 // Check for truncates. If all the operands are truncated from the same
1238 // type, see if factoring out the truncate would permit the result to be
1239 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1240 // if the contents of the resulting outer trunc fold to something simple.
1241 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1242 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1243 const Type *DstType = Trunc->getType();
1244 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001246 bool Ok = true;
1247 // Check all the operands to see if they can be represented in the
1248 // source type of the truncate.
1249 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1250 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1251 if (T->getOperand()->getType() != SrcType) {
1252 Ok = false;
1253 break;
1254 }
1255 LargeOps.push_back(T->getOperand());
1256 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001257 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001258 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001259 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001260 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1261 if (const SCEVTruncateExpr *T =
1262 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1263 if (T->getOperand()->getType() != SrcType) {
1264 Ok = false;
1265 break;
1266 }
1267 LargeMulOps.push_back(T->getOperand());
1268 } else if (const SCEVConstant *C =
1269 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001270 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001271 } else {
1272 Ok = false;
1273 break;
1274 }
1275 }
1276 if (Ok)
1277 LargeOps.push_back(getMulExpr(LargeMulOps));
1278 } else {
1279 Ok = false;
1280 break;
1281 }
1282 }
1283 if (Ok) {
1284 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001285 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001286 // If it folds to something simple, use it. Otherwise, don't.
1287 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1288 return getTruncateExpr(Fold, DstType);
1289 }
1290 }
1291
1292 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001293 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1294 ++Idx;
1295
1296 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001297 if (Idx < Ops.size()) {
1298 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001299 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001300 // If we have an add, expand the add operands onto the end of the operands
1301 // list.
1302 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1303 Ops.erase(Ops.begin()+Idx);
1304 DeletedAdd = true;
1305 }
1306
1307 // If we deleted at least one add, we added operands to the end of the list,
1308 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001309 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001311 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 }
1313
1314 // Skip over the add expression until we get to a multiply.
1315 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1316 ++Idx;
1317
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001318 // Check to see if there are any folding opportunities present with
1319 // operands multiplied by constant values.
1320 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1321 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001322 DenseMap<const SCEV *, APInt> M;
1323 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001324 APInt AccumulatedConstant(BitWidth, 0);
1325 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001326 Ops.data(), Ops.size(),
1327 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001328 // Some interesting folding opportunity is present, so its worthwhile to
1329 // re-generate the operands list. Group the operands by constant scale,
1330 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001331 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1332 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001333 E = NewOps.end(); I != E; ++I)
1334 MulOpLists[M.find(*I)->second].push_back(*I);
1335 // Re-generate the operands list.
1336 Ops.clear();
1337 if (AccumulatedConstant != 0)
1338 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001339 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1340 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001341 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001342 Ops.push_back(getMulExpr(getConstant(I->first),
1343 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001344 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001345 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001346 if (Ops.size() == 1)
1347 return Ops[0];
1348 return getAddExpr(Ops);
1349 }
1350 }
1351
Chris Lattner53e677a2004-04-02 20:23:17 +00001352 // If we are adding something to a multiply expression, make sure the
1353 // something is not already an operand of the multiply. If so, merge it into
1354 // the multiply.
1355 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001356 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001357 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001358 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001359 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001360 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001361 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001362 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 if (Mul->getNumOperands() != 2) {
1364 // If the multiply has more than two operands, we must get the
1365 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001366 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001367 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001368 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001369 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001370 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001371 const SCEV *AddOne = getAddExpr(InnerMul, One);
1372 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001373 if (Ops.size() == 2) return OuterMul;
1374 if (AddOp < Idx) {
1375 Ops.erase(Ops.begin()+AddOp);
1376 Ops.erase(Ops.begin()+Idx-1);
1377 } else {
1378 Ops.erase(Ops.begin()+Idx);
1379 Ops.erase(Ops.begin()+AddOp-1);
1380 }
1381 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001382 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001383 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001384
Chris Lattner53e677a2004-04-02 20:23:17 +00001385 // Check this multiply against other multiplies being added together.
1386 for (unsigned OtherMulIdx = Idx+1;
1387 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1388 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001389 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001390 // If MulOp occurs in OtherMul, we can fold the two multiplies
1391 // together.
1392 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1393 OMulOp != e; ++OMulOp)
1394 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1395 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001396 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001397 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001398 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1399 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001401 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001402 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001403 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001405 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1406 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001407 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001408 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001409 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001410 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1411 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001412 if (Ops.size() == 2) return OuterMul;
1413 Ops.erase(Ops.begin()+Idx);
1414 Ops.erase(Ops.begin()+OtherMulIdx-1);
1415 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001416 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001417 }
1418 }
1419 }
1420 }
1421
1422 // If there are any add recurrences in the operands list, see if any other
1423 // added values are loop invariant. If so, we can fold them into the
1424 // recurrence.
1425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1426 ++Idx;
1427
1428 // Scan over all recurrences, trying to fold loop invariants into them.
1429 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1430 // Scan all of the other operands to this add and add them to the vector if
1431 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001433 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001434 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001435 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001436 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001437 LIOps.push_back(Ops[i]);
1438 Ops.erase(Ops.begin()+i);
1439 --i; --e;
1440 }
1441
1442 // If we found some loop invariants, fold them into the recurrence.
1443 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001444 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001445 LIOps.push_back(AddRec->getStart());
1446
Dan Gohman0bba49c2009-07-07 17:06:11 +00001447 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001448 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001449 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001450
Dan Gohman355b4f32009-12-19 01:46:34 +00001451 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001452 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001453 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001454
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 // If all of the other operands were loop invariant, we are done.
1456 if (Ops.size() == 1) return NewRec;
1457
1458 // Otherwise, add the folded AddRec by the non-liv parts.
1459 for (unsigned i = 0;; ++i)
1460 if (Ops[i] == AddRec) {
1461 Ops[i] = NewRec;
1462 break;
1463 }
Dan Gohman246b2562007-10-22 18:31:58 +00001464 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 }
1466
1467 // Okay, if there weren't any loop invariants to be folded, check to see if
1468 // there are multiple AddRec's with the same loop induction variable being
1469 // added together. If so, we can fold them.
1470 for (unsigned OtherIdx = Idx+1;
1471 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1472 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001473 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001474 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001475 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001476 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1477 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001478 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1479 if (i >= NewOps.size()) {
1480 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1481 OtherAddRec->op_end());
1482 break;
1483 }
Dan Gohman246b2562007-10-22 18:31:58 +00001484 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001485 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001486 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487
1488 if (Ops.size() == 2) return NewAddRec;
1489
1490 Ops.erase(Ops.begin()+Idx);
1491 Ops.erase(Ops.begin()+OtherIdx-1);
1492 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001493 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
1495 }
1496
1497 // Otherwise couldn't fold anything into this recurrence. Move onto the
1498 // next one.
1499 }
1500
1501 // Okay, it looks like we really DO need an add expr. Check to see if we
1502 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001503 FoldingSetNodeID ID;
1504 ID.AddInteger(scAddExpr);
1505 ID.AddInteger(Ops.size());
1506 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1507 ID.AddPointer(Ops[i]);
1508 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001509 SCEVAddExpr *S =
1510 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1511 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001512 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1513 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001514 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1515 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001516 UniqueSCEVs.InsertNode(S, IP);
1517 }
Dan Gohman3645b012009-10-09 00:10:36 +00001518 if (HasNUW) S->setHasNoUnsignedWrap(true);
1519 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001520 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001521}
1522
Dan Gohman6c0866c2009-05-24 23:45:28 +00001523/// getMulExpr - Get a canonical multiply expression, or something simpler if
1524/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001525const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1526 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001527 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001528 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001529#ifndef NDEBUG
1530 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1531 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1532 getEffectiveSCEVType(Ops[0]->getType()) &&
1533 "SCEVMulExpr operand types don't match!");
1534#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001535
Dan Gohmana10756e2010-01-21 02:09:26 +00001536 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1537 if (!HasNUW && HasNSW) {
1538 bool All = true;
1539 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1540 if (!isKnownNonNegative(Ops[i])) {
1541 All = false;
1542 break;
1543 }
1544 if (All) HasNUW = true;
1545 }
1546
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001548 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001549
1550 // If there are any constants, fold them together.
1551 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001552 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001553
1554 // C1*(C2+V) -> C1*C2 + C1*V
1555 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001556 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001557 if (Add->getNumOperands() == 2 &&
1558 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001559 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1560 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001561
Chris Lattner53e677a2004-04-02 20:23:17 +00001562 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001563 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001565 ConstantInt *Fold = ConstantInt::get(getContext(),
1566 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001567 RHSC->getValue()->getValue());
1568 Ops[0] = getConstant(Fold);
1569 Ops.erase(Ops.begin()+1); // Erase the folded element
1570 if (Ops.size() == 1) return Ops[0];
1571 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 }
1573
1574 // If we are left with a constant one being multiplied, strip it off.
1575 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1576 Ops.erase(Ops.begin());
1577 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001578 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 // If we have a multiply of zero, it will always be zero.
1580 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001581 } else if (Ops[0]->isAllOnesValue()) {
1582 // If we have a mul by -1 of an add, try distributing the -1 among the
1583 // add operands.
1584 if (Ops.size() == 2)
1585 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1586 SmallVector<const SCEV *, 4> NewOps;
1587 bool AnyFolded = false;
1588 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1589 I != E; ++I) {
1590 const SCEV *Mul = getMulExpr(Ops[0], *I);
1591 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1592 NewOps.push_back(Mul);
1593 }
1594 if (AnyFolded)
1595 return getAddExpr(NewOps);
1596 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001598
1599 if (Ops.size() == 1)
1600 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 }
1602
1603 // Skip over the add expression until we get to a multiply.
1604 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1605 ++Idx;
1606
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 // If there are mul operands inline them all into this expression.
1608 if (Idx < Ops.size()) {
1609 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001610 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 // If we have an mul, expand the mul operands onto the end of the operands
1612 // list.
1613 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1614 Ops.erase(Ops.begin()+Idx);
1615 DeletedMul = true;
1616 }
1617
1618 // If we deleted at least one mul, we added operands to the end of the list,
1619 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001620 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001621 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001622 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624
1625 // If there are any add recurrences in the operands list, see if any other
1626 // added values are loop invariant. If so, we can fold them into the
1627 // recurrence.
1628 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1629 ++Idx;
1630
1631 // Scan over all recurrences, trying to fold loop invariants into them.
1632 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1633 // Scan all of the other operands to this mul and add them to the vector if
1634 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001635 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001636 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001637 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1638 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1639 LIOps.push_back(Ops[i]);
1640 Ops.erase(Ops.begin()+i);
1641 --i; --e;
1642 }
1643
1644 // If we found some loop invariants, fold them into the recurrence.
1645 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001646 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001647 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 NewOps.reserve(AddRec->getNumOperands());
1649 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001650 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001652 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001653 } else {
1654 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001655 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001657 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 }
1659 }
1660
Dan Gohman355b4f32009-12-19 01:46:34 +00001661 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001662 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001663 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1664 HasNUW && AddRec->hasNoUnsignedWrap(),
1665 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001666
1667 // If all of the other operands were loop invariant, we are done.
1668 if (Ops.size() == 1) return NewRec;
1669
1670 // Otherwise, multiply the folded AddRec by the non-liv parts.
1671 for (unsigned i = 0;; ++i)
1672 if (Ops[i] == AddRec) {
1673 Ops[i] = NewRec;
1674 break;
1675 }
Dan Gohman246b2562007-10-22 18:31:58 +00001676 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 }
1678
1679 // Okay, if there weren't any loop invariants to be folded, check to see if
1680 // there are multiple AddRec's with the same loop induction variable being
1681 // multiplied together. If so, we can fold them.
1682 for (unsigned OtherIdx = Idx+1;
1683 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1684 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001685 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1687 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001688 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001689 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001691 const SCEV *B = F->getStepRecurrence(*this);
1692 const SCEV *D = G->getStepRecurrence(*this);
1693 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001694 getMulExpr(G, B),
1695 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001696 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001697 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 if (Ops.size() == 2) return NewAddRec;
1699
1700 Ops.erase(Ops.begin()+Idx);
1701 Ops.erase(Ops.begin()+OtherIdx-1);
1702 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001703 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
1705 }
1706
1707 // Otherwise couldn't fold anything into this recurrence. Move onto the
1708 // next one.
1709 }
1710
1711 // Okay, it looks like we really DO need an mul expr. Check to see if we
1712 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001713 FoldingSetNodeID ID;
1714 ID.AddInteger(scMulExpr);
1715 ID.AddInteger(Ops.size());
1716 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1717 ID.AddPointer(Ops[i]);
1718 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001719 SCEVMulExpr *S =
1720 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1721 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001722 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1723 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001724 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1725 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001726 UniqueSCEVs.InsertNode(S, IP);
1727 }
Dan Gohman3645b012009-10-09 00:10:36 +00001728 if (HasNUW) S->setHasNoUnsignedWrap(true);
1729 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001730 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001731}
1732
Andreas Bolka8a11c982009-08-07 22:55:26 +00001733/// getUDivExpr - Get a canonical unsigned division expression, or something
1734/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001735const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1736 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001737 assert(getEffectiveSCEVType(LHS->getType()) ==
1738 getEffectiveSCEVType(RHS->getType()) &&
1739 "SCEVUDivExpr operand types don't match!");
1740
Dan Gohman622ed672009-05-04 22:02:23 +00001741 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001742 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001743 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001744 // If the denominator is zero, the result of the udiv is undefined. Don't
1745 // try to analyze it, because the resolution chosen here may differ from
1746 // the resolution chosen in other parts of the compiler.
1747 if (!RHSC->getValue()->isZero()) {
1748 // Determine if the division can be folded into the operands of
1749 // its operands.
1750 // TODO: Generalize this to non-constants by using known-bits information.
1751 const Type *Ty = LHS->getType();
1752 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1753 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1754 // For non-power-of-two values, effectively round the value up to the
1755 // nearest power of two.
1756 if (!RHSC->getValue()->getValue().isPowerOf2())
1757 ++MaxShiftAmt;
1758 const IntegerType *ExtTy =
1759 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1760 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1761 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1762 if (const SCEVConstant *Step =
1763 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1764 if (!Step->getValue()->getValue()
1765 .urem(RHSC->getValue()->getValue()) &&
1766 getZeroExtendExpr(AR, ExtTy) ==
1767 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1768 getZeroExtendExpr(Step, ExtTy),
1769 AR->getLoop())) {
1770 SmallVector<const SCEV *, 4> Operands;
1771 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1772 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1773 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001774 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001775 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1776 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1777 SmallVector<const SCEV *, 4> Operands;
1778 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1779 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1780 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1781 // Find an operand that's safely divisible.
1782 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1783 const SCEV *Op = M->getOperand(i);
1784 const SCEV *Div = getUDivExpr(Op, RHSC);
1785 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1786 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1787 M->op_end());
1788 Operands[i] = Div;
1789 return getMulExpr(Operands);
1790 }
1791 }
Dan Gohman185cf032009-05-08 20:18:49 +00001792 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001793 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1794 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1795 SmallVector<const SCEV *, 4> Operands;
1796 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1797 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1798 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1799 Operands.clear();
1800 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1801 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1802 if (isa<SCEVUDivExpr>(Op) ||
1803 getMulExpr(Op, RHS) != A->getOperand(i))
1804 break;
1805 Operands.push_back(Op);
1806 }
1807 if (Operands.size() == A->getNumOperands())
1808 return getAddExpr(Operands);
1809 }
1810 }
Dan Gohman185cf032009-05-08 20:18:49 +00001811
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001812 // Fold if both operands are constant.
1813 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1814 Constant *LHSCV = LHSC->getValue();
1815 Constant *RHSCV = RHSC->getValue();
1816 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1817 RHSCV)));
1818 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 }
1820 }
1821
Dan Gohman1c343752009-06-27 21:21:31 +00001822 FoldingSetNodeID ID;
1823 ID.AddInteger(scUDivExpr);
1824 ID.AddPointer(LHS);
1825 ID.AddPointer(RHS);
1826 void *IP = 0;
1827 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001828 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1829 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001830 UniqueSCEVs.InsertNode(S, IP);
1831 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001832}
1833
1834
Dan Gohman6c0866c2009-05-24 23:45:28 +00001835/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1836/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001837const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001838 const SCEV *Step, const Loop *L,
1839 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001840 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001841 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (StepChrec->getLoop() == L) {
1844 Operands.insert(Operands.end(), StepChrec->op_begin(),
1845 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001846 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001847 }
1848
1849 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001850 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001851}
1852
Dan Gohman6c0866c2009-05-24 23:45:28 +00001853/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1854/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001855const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001856ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001857 const Loop *L,
1858 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001859 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001860#ifndef NDEBUG
1861 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1862 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1863 getEffectiveSCEVType(Operands[0]->getType()) &&
1864 "SCEVAddRecExpr operand types don't match!");
1865#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001866
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001867 if (Operands.back()->isZero()) {
1868 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001869 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001870 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001871
Dan Gohmanbc028532010-02-19 18:49:22 +00001872 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1873 // use that information to infer NUW and NSW flags. However, computing a
1874 // BE count requires calling getAddRecExpr, so we may not yet have a
1875 // meaningful BE count at this point (and if we don't, we'd be stuck
1876 // with a SCEVCouldNotCompute as the cached BE count).
1877
Dan Gohmana10756e2010-01-21 02:09:26 +00001878 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1879 if (!HasNUW && HasNSW) {
1880 bool All = true;
1881 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1882 if (!isKnownNonNegative(Operands[i])) {
1883 All = false;
1884 break;
1885 }
1886 if (All) HasNUW = true;
1887 }
1888
Dan Gohmand9cc7492008-08-08 18:33:12 +00001889 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001890 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001891 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001892 if (L->contains(NestedLoop->getHeader()) ?
1893 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1894 (!NestedLoop->contains(L->getHeader()) &&
1895 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001896 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001897 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001898 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001899 // AddRecs require their operands be loop-invariant with respect to their
1900 // loops. Don't perform this transformation if it would break this
1901 // requirement.
1902 bool AllInvariant = true;
1903 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1904 if (!Operands[i]->isLoopInvariant(L)) {
1905 AllInvariant = false;
1906 break;
1907 }
1908 if (AllInvariant) {
1909 NestedOperands[0] = getAddRecExpr(Operands, L);
1910 AllInvariant = true;
1911 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1912 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1913 AllInvariant = false;
1914 break;
1915 }
1916 if (AllInvariant)
1917 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00001918 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00001919 }
1920 // Reset Operands to its original state.
1921 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00001922 }
1923 }
1924
Dan Gohman67847532010-01-19 22:27:22 +00001925 // Okay, it looks like we really DO need an addrec expr. Check to see if we
1926 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001927 FoldingSetNodeID ID;
1928 ID.AddInteger(scAddRecExpr);
1929 ID.AddInteger(Operands.size());
1930 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1931 ID.AddPointer(Operands[i]);
1932 ID.AddPointer(L);
1933 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001934 SCEVAddRecExpr *S =
1935 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1936 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001937 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
1938 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001939 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
1940 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00001941 UniqueSCEVs.InsertNode(S, IP);
1942 }
Dan Gohman3645b012009-10-09 00:10:36 +00001943 if (HasNUW) S->setHasNoUnsignedWrap(true);
1944 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001945 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001946}
1947
Dan Gohman9311ef62009-06-24 14:49:00 +00001948const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1949 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001950 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001951 Ops.push_back(LHS);
1952 Ops.push_back(RHS);
1953 return getSMaxExpr(Ops);
1954}
1955
Dan Gohman0bba49c2009-07-07 17:06:11 +00001956const SCEV *
1957ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001958 assert(!Ops.empty() && "Cannot get empty smax!");
1959 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001960#ifndef NDEBUG
1961 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1962 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1963 getEffectiveSCEVType(Ops[0]->getType()) &&
1964 "SCEVSMaxExpr operand types don't match!");
1965#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001966
1967 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001968 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001969
1970 // If there are any constants, fold them together.
1971 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001972 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001973 ++Idx;
1974 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001975 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001976 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001977 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001978 APIntOps::smax(LHSC->getValue()->getValue(),
1979 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001980 Ops[0] = getConstant(Fold);
1981 Ops.erase(Ops.begin()+1); // Erase the folded element
1982 if (Ops.size() == 1) return Ops[0];
1983 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001984 }
1985
Dan Gohmane5aceed2009-06-24 14:46:22 +00001986 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001987 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1988 Ops.erase(Ops.begin());
1989 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00001990 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1991 // If we have an smax with a constant maximum-int, it will always be
1992 // maximum-int.
1993 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001994 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001995
Dan Gohman3ab13122010-04-13 16:49:23 +00001996 if (Ops.size() == 1) return Ops[0];
1997 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001998
1999 // Find the first SMax
2000 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2001 ++Idx;
2002
2003 // Check to see if one of the operands is an SMax. If so, expand its operands
2004 // onto our operand list, and recurse to simplify.
2005 if (Idx < Ops.size()) {
2006 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002007 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002008 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2009 Ops.erase(Ops.begin()+Idx);
2010 DeletedSMax = true;
2011 }
2012
2013 if (DeletedSMax)
2014 return getSMaxExpr(Ops);
2015 }
2016
2017 // Okay, check to see if the same value occurs in the operand list twice. If
2018 // so, delete one. Since we sorted the list, these values are required to
2019 // be adjacent.
2020 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002021 // X smax Y smax Y --> X smax Y
2022 // X smax Y --> X, if X is always greater than Y
2023 if (Ops[i] == Ops[i+1] ||
2024 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2025 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2026 --i; --e;
2027 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002028 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2029 --i; --e;
2030 }
2031
2032 if (Ops.size() == 1) return Ops[0];
2033
2034 assert(!Ops.empty() && "Reduced smax down to nothing!");
2035
Nick Lewycky3e630762008-02-20 06:48:22 +00002036 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002037 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002038 FoldingSetNodeID ID;
2039 ID.AddInteger(scSMaxExpr);
2040 ID.AddInteger(Ops.size());
2041 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2042 ID.AddPointer(Ops[i]);
2043 void *IP = 0;
2044 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002045 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2046 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002047 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2048 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002049 UniqueSCEVs.InsertNode(S, IP);
2050 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002051}
2052
Dan Gohman9311ef62009-06-24 14:49:00 +00002053const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2054 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002055 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002056 Ops.push_back(LHS);
2057 Ops.push_back(RHS);
2058 return getUMaxExpr(Ops);
2059}
2060
Dan Gohman0bba49c2009-07-07 17:06:11 +00002061const SCEV *
2062ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002063 assert(!Ops.empty() && "Cannot get empty umax!");
2064 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002065#ifndef NDEBUG
2066 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2067 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2068 getEffectiveSCEVType(Ops[0]->getType()) &&
2069 "SCEVUMaxExpr operand types don't match!");
2070#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002071
2072 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002073 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002074
2075 // If there are any constants, fold them together.
2076 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002077 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002078 ++Idx;
2079 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002080 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002081 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002082 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002083 APIntOps::umax(LHSC->getValue()->getValue(),
2084 RHSC->getValue()->getValue()));
2085 Ops[0] = getConstant(Fold);
2086 Ops.erase(Ops.begin()+1); // Erase the folded element
2087 if (Ops.size() == 1) return Ops[0];
2088 LHSC = cast<SCEVConstant>(Ops[0]);
2089 }
2090
Dan Gohmane5aceed2009-06-24 14:46:22 +00002091 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002092 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2093 Ops.erase(Ops.begin());
2094 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002095 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2096 // If we have an umax with a constant maximum-int, it will always be
2097 // maximum-int.
2098 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002099 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002100
Dan Gohman3ab13122010-04-13 16:49:23 +00002101 if (Ops.size() == 1) return Ops[0];
2102 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002103
2104 // Find the first UMax
2105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2106 ++Idx;
2107
2108 // Check to see if one of the operands is a UMax. If so, expand its operands
2109 // onto our operand list, and recurse to simplify.
2110 if (Idx < Ops.size()) {
2111 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002112 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002113 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2114 Ops.erase(Ops.begin()+Idx);
2115 DeletedUMax = true;
2116 }
2117
2118 if (DeletedUMax)
2119 return getUMaxExpr(Ops);
2120 }
2121
2122 // Okay, check to see if the same value occurs in the operand list twice. If
2123 // so, delete one. Since we sorted the list, these values are required to
2124 // be adjacent.
2125 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002126 // X umax Y umax Y --> X umax Y
2127 // X umax Y --> X, if X is always greater than Y
2128 if (Ops[i] == Ops[i+1] ||
2129 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2130 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2131 --i; --e;
2132 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002133 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2134 --i; --e;
2135 }
2136
2137 if (Ops.size() == 1) return Ops[0];
2138
2139 assert(!Ops.empty() && "Reduced umax down to nothing!");
2140
2141 // Okay, it looks like we really DO need a umax expr. Check to see if we
2142 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002143 FoldingSetNodeID ID;
2144 ID.AddInteger(scUMaxExpr);
2145 ID.AddInteger(Ops.size());
2146 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2147 ID.AddPointer(Ops[i]);
2148 void *IP = 0;
2149 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002150 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2151 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002152 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2153 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002154 UniqueSCEVs.InsertNode(S, IP);
2155 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002156}
2157
Dan Gohman9311ef62009-06-24 14:49:00 +00002158const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2159 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002160 // ~smax(~x, ~y) == smin(x, y).
2161 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2162}
2163
Dan Gohman9311ef62009-06-24 14:49:00 +00002164const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2165 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002166 // ~umax(~x, ~y) == umin(x, y)
2167 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2168}
2169
Dan Gohman4f8eea82010-02-01 18:27:38 +00002170const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002171 // If we have TargetData, we can bypass creating a target-independent
2172 // constant expression and then folding it back into a ConstantInt.
2173 // This is just a compile-time optimization.
2174 if (TD)
2175 return getConstant(TD->getIntPtrType(getContext()),
2176 TD->getTypeAllocSize(AllocTy));
2177
Dan Gohman4f8eea82010-02-01 18:27:38 +00002178 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2179 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002180 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2181 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002182 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2183 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2184}
2185
2186const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2187 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2188 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002189 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2190 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002191 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2192 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2193}
2194
2195const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2196 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002197 // If we have TargetData, we can bypass creating a target-independent
2198 // constant expression and then folding it back into a ConstantInt.
2199 // This is just a compile-time optimization.
2200 if (TD)
2201 return getConstant(TD->getIntPtrType(getContext()),
2202 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2203
Dan Gohman0f5efe52010-01-28 02:15:55 +00002204 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2205 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002206 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2207 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002208 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002209 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002210}
2211
Dan Gohman4f8eea82010-02-01 18:27:38 +00002212const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2213 Constant *FieldNo) {
2214 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002215 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002216 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2217 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002218 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002219 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002220}
2221
Dan Gohman0bba49c2009-07-07 17:06:11 +00002222const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002223 // Don't attempt to do anything other than create a SCEVUnknown object
2224 // here. createSCEV only calls getUnknown after checking for all other
2225 // interesting possibilities, and any other code that calls getUnknown
2226 // is doing so in order to hide a value from SCEV canonicalization.
2227
Dan Gohman1c343752009-06-27 21:21:31 +00002228 FoldingSetNodeID ID;
2229 ID.AddInteger(scUnknown);
2230 ID.AddPointer(V);
2231 void *IP = 0;
2232 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002233 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002234 UniqueSCEVs.InsertNode(S, IP);
2235 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002236}
2237
Chris Lattner53e677a2004-04-02 20:23:17 +00002238//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002239// Basic SCEV Analysis and PHI Idiom Recognition Code
2240//
2241
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002242/// isSCEVable - Test if values of the given type are analyzable within
2243/// the SCEV framework. This primarily includes integer types, and it
2244/// can optionally include pointer types if the ScalarEvolution class
2245/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002246bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002247 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002248 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002249}
2250
2251/// getTypeSizeInBits - Return the size in bits of the specified type,
2252/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002253uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002254 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2255
2256 // If we have a TargetData, use it!
2257 if (TD)
2258 return TD->getTypeSizeInBits(Ty);
2259
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002260 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002261 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002262 return Ty->getPrimitiveSizeInBits();
2263
2264 // The only other support type is pointer. Without TargetData, conservatively
2265 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002266 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002267 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002268}
2269
2270/// getEffectiveSCEVType - Return a type with the same bitwidth as
2271/// the given type and which represents how SCEV will treat the given
2272/// type, for which isSCEVable must return true. For pointer types,
2273/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002274const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002275 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2276
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002277 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002278 return Ty;
2279
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002280 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002281 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002282 if (TD) return TD->getIntPtrType(getContext());
2283
2284 // Without TargetData, conservatively assume pointers are 64-bit.
2285 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002286}
Chris Lattner53e677a2004-04-02 20:23:17 +00002287
Dan Gohman0bba49c2009-07-07 17:06:11 +00002288const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002289 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002290}
2291
Chris Lattner53e677a2004-04-02 20:23:17 +00002292/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2293/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002294const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002295 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002296
Dan Gohman0bba49c2009-07-07 17:06:11 +00002297 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002298 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002299 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002300 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002301 return S;
2302}
2303
Dan Gohman6bbcba12009-06-24 00:54:57 +00002304/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002305/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002306const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002307 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002308 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002309}
2310
2311/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2312///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002313const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002314 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002315 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002316 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002317
2318 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002319 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002320 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002321 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002322}
2323
2324/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002325const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002326 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002327 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002328 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002329
2330 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002331 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002332 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002333 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002334 return getMinusSCEV(AllOnes, V);
2335}
2336
2337/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2338///
Dan Gohman9311ef62009-06-24 14:49:00 +00002339const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2340 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002341 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002342 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002343}
2344
2345/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2346/// input value to the specified type. If the type must be extended, it is zero
2347/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002348const SCEV *
2349ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002350 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002351 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002352 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002354 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002355 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002356 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002357 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002358 return getTruncateExpr(V, Ty);
2359 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002360}
2361
2362/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2363/// input value to the specified type. If the type must be extended, it is sign
2364/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002365const SCEV *
2366ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002367 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002368 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002369 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2370 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002371 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002372 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002373 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002374 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002375 return getTruncateExpr(V, Ty);
2376 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002377}
2378
Dan Gohman467c4302009-05-13 03:46:30 +00002379/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2380/// input value to the specified type. If the type must be extended, it is zero
2381/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002382const SCEV *
2383ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002384 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002385 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2386 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002387 "Cannot noop or zero extend with non-integer arguments!");
2388 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2389 "getNoopOrZeroExtend cannot truncate!");
2390 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2391 return V; // No conversion
2392 return getZeroExtendExpr(V, Ty);
2393}
2394
2395/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2396/// input value to the specified type. If the type must be extended, it is sign
2397/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002398const SCEV *
2399ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002400 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002401 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2402 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002403 "Cannot noop or sign extend with non-integer arguments!");
2404 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2405 "getNoopOrSignExtend cannot truncate!");
2406 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2407 return V; // No conversion
2408 return getSignExtendExpr(V, Ty);
2409}
2410
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002411/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2412/// the input value to the specified type. If the type must be extended,
2413/// it is extended with unspecified bits. The conversion must not be
2414/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002415const SCEV *
2416ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002417 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002418 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2419 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002420 "Cannot noop or any extend with non-integer arguments!");
2421 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2422 "getNoopOrAnyExtend cannot truncate!");
2423 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2424 return V; // No conversion
2425 return getAnyExtendExpr(V, Ty);
2426}
2427
Dan Gohman467c4302009-05-13 03:46:30 +00002428/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2429/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002430const SCEV *
2431ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002432 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002433 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2434 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002435 "Cannot truncate or noop with non-integer arguments!");
2436 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2437 "getTruncateOrNoop cannot extend!");
2438 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2439 return V; // No conversion
2440 return getTruncateExpr(V, Ty);
2441}
2442
Dan Gohmana334aa72009-06-22 00:31:57 +00002443/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2444/// the types using zero-extension, and then perform a umax operation
2445/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002446const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2447 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002448 const SCEV *PromotedLHS = LHS;
2449 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002450
2451 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2452 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2453 else
2454 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2455
2456 return getUMaxExpr(PromotedLHS, PromotedRHS);
2457}
2458
Dan Gohmanc9759e82009-06-22 15:03:27 +00002459/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2460/// the types using zero-extension, and then perform a umin operation
2461/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002462const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2463 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002464 const SCEV *PromotedLHS = LHS;
2465 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002466
2467 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2468 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2469 else
2470 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2471
2472 return getUMinExpr(PromotedLHS, PromotedRHS);
2473}
2474
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002475/// PushDefUseChildren - Push users of the given Instruction
2476/// onto the given Worklist.
2477static void
2478PushDefUseChildren(Instruction *I,
2479 SmallVectorImpl<Instruction *> &Worklist) {
2480 // Push the def-use children onto the Worklist stack.
2481 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2482 UI != UE; ++UI)
2483 Worklist.push_back(cast<Instruction>(UI));
2484}
2485
2486/// ForgetSymbolicValue - This looks up computed SCEV values for all
2487/// instructions that depend on the given instruction and removes them from
2488/// the Scalars map if they reference SymName. This is used during PHI
2489/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002490void
Dan Gohman85669632010-02-25 06:57:05 +00002491ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002492 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002493 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002494
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002495 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002496 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002497 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002498 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002499 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002500
Dan Gohman5d984912009-12-18 01:14:11 +00002501 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002502 Scalars.find(static_cast<Value *>(I));
2503 if (It != Scalars.end()) {
2504 // Short-circuit the def-use traversal if the symbolic name
2505 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002506 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002507 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002508
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002509 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002510 // structure, it's a PHI that's in the progress of being computed
2511 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2512 // additional loop trip count information isn't going to change anything.
2513 // In the second case, createNodeForPHI will perform the necessary
2514 // updates on its own when it gets to that point. In the third, we do
2515 // want to forget the SCEVUnknown.
2516 if (!isa<PHINode>(I) ||
2517 !isa<SCEVUnknown>(It->second) ||
2518 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002519 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002520 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002521 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002522 }
2523
2524 PushDefUseChildren(I, Worklist);
2525 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002526}
Chris Lattner53e677a2004-04-02 20:23:17 +00002527
2528/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2529/// a loop header, making it a potential recurrence, or it doesn't.
2530///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002531const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002532 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2533 if (L->getHeader() == PN->getParent()) {
2534 // The loop may have multiple entrances or multiple exits; we can analyze
2535 // this phi as an addrec if it has a unique entry value and a unique
2536 // backedge value.
2537 Value *BEValueV = 0, *StartValueV = 0;
2538 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2539 Value *V = PN->getIncomingValue(i);
2540 if (L->contains(PN->getIncomingBlock(i))) {
2541 if (!BEValueV) {
2542 BEValueV = V;
2543 } else if (BEValueV != V) {
2544 BEValueV = 0;
2545 break;
2546 }
2547 } else if (!StartValueV) {
2548 StartValueV = V;
2549 } else if (StartValueV != V) {
2550 StartValueV = 0;
2551 break;
2552 }
2553 }
2554 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002555 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002556 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002557 assert(Scalars.find(PN) == Scalars.end() &&
2558 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002559 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002560
2561 // Using this symbolic name for the PHI, analyze the value coming around
2562 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002563 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002564
2565 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2566 // has a special value for the first iteration of the loop.
2567
2568 // If the value coming around the backedge is an add with the symbolic
2569 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002570 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002571 // If there is a single occurrence of the symbolic value, replace it
2572 // with a recurrence.
2573 unsigned FoundIndex = Add->getNumOperands();
2574 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2575 if (Add->getOperand(i) == SymbolicName)
2576 if (FoundIndex == e) {
2577 FoundIndex = i;
2578 break;
2579 }
2580
2581 if (FoundIndex != Add->getNumOperands()) {
2582 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002583 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002584 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2585 if (i != FoundIndex)
2586 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002587 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002588
2589 // This is not a valid addrec if the step amount is varying each
2590 // loop iteration, but is not itself an addrec in this loop.
2591 if (Accum->isLoopInvariant(L) ||
2592 (isa<SCEVAddRecExpr>(Accum) &&
2593 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002594 bool HasNUW = false;
2595 bool HasNSW = false;
2596
2597 // If the increment doesn't overflow, then neither the addrec nor
2598 // the post-increment will overflow.
2599 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2600 if (OBO->hasNoUnsignedWrap())
2601 HasNUW = true;
2602 if (OBO->hasNoSignedWrap())
2603 HasNSW = true;
2604 }
2605
Dan Gohman27dead42010-04-12 07:49:36 +00002606 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002607 const SCEV *PHISCEV =
2608 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002609
Dan Gohmana10756e2010-01-21 02:09:26 +00002610 // Since the no-wrap flags are on the increment, they apply to the
2611 // post-incremented value as well.
2612 if (Accum->isLoopInvariant(L))
2613 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2614 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002615
2616 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002617 // to be symbolic. We now need to go back and purge all of the
2618 // entries for the scalars that use the symbolic expression.
2619 ForgetSymbolicName(PN, SymbolicName);
2620 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002621 return PHISCEV;
2622 }
2623 }
Dan Gohman622ed672009-05-04 22:02:23 +00002624 } else if (const SCEVAddRecExpr *AddRec =
2625 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002626 // Otherwise, this could be a loop like this:
2627 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2628 // In this case, j = {1,+,1} and BEValue is j.
2629 // Because the other in-value of i (0) fits the evolution of BEValue
2630 // i really is an addrec evolution.
2631 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002632 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002633
2634 // If StartVal = j.start - j.stride, we can use StartVal as the
2635 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002636 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002637 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002638 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002639 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002640
2641 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002642 // to be symbolic. We now need to go back and purge all of the
2643 // entries for the scalars that use the symbolic expression.
2644 ForgetSymbolicName(PN, SymbolicName);
2645 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002646 return PHISCEV;
2647 }
2648 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002649 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002650 }
Dan Gohman27dead42010-04-12 07:49:36 +00002651 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002652
Dan Gohman85669632010-02-25 06:57:05 +00002653 // If the PHI has a single incoming value, follow that value, unless the
2654 // PHI's incoming blocks are in a different loop, in which case doing so
2655 // risks breaking LCSSA form. Instcombine would normally zap these, but
2656 // it doesn't have DominatorTree information, so it may miss cases.
2657 if (Value *V = PN->hasConstantValue(DT)) {
2658 bool AllSameLoop = true;
2659 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2660 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2661 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2662 AllSameLoop = false;
2663 break;
2664 }
2665 if (AllSameLoop)
2666 return getSCEV(V);
2667 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002668
Chris Lattner53e677a2004-04-02 20:23:17 +00002669 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002670 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002671}
2672
Dan Gohman26466c02009-05-08 20:26:55 +00002673/// createNodeForGEP - Expand GEP instructions into add and multiply
2674/// operations. This allows them to be analyzed by regular SCEV code.
2675///
Dan Gohmand281ed22009-12-18 02:09:29 +00002676const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002677
Dan Gohmand281ed22009-12-18 02:09:29 +00002678 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002679 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002680 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002681 // Don't attempt to analyze GEPs over unsized objects.
2682 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2683 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002684 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002685 gep_type_iterator GTI = gep_type_begin(GEP);
2686 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2687 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002688 I != E; ++I) {
2689 Value *Index = *I;
2690 // Compute the (potentially symbolic) offset in bytes for this index.
2691 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2692 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002693 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002695 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002696 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002697 } else {
2698 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002699 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002700 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002701 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002702 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002703 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002704 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2705 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2706 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002707 }
2708 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002709 return getAddExpr(getSCEV(Base), TotalOffset,
2710 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002711}
2712
Nick Lewycky83bb0052007-11-22 07:59:40 +00002713/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2714/// guaranteed to end in (at every loop iteration). It is, at the same time,
2715/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2716/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002717uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002718ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002719 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002720 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002721
Dan Gohman622ed672009-05-04 22:02:23 +00002722 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002723 return std::min(GetMinTrailingZeros(T->getOperand()),
2724 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002725
Dan Gohman622ed672009-05-04 22:02:23 +00002726 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002727 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2728 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2729 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002730 }
2731
Dan Gohman622ed672009-05-04 22:02:23 +00002732 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002733 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2734 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2735 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002736 }
2737
Dan Gohman622ed672009-05-04 22:02:23 +00002738 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002739 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002740 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002741 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002742 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002743 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002744 }
2745
Dan Gohman622ed672009-05-04 22:02:23 +00002746 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002747 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002748 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2749 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002750 for (unsigned i = 1, e = M->getNumOperands();
2751 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002752 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002753 BitWidth);
2754 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002755 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002756
Dan Gohman622ed672009-05-04 22:02:23 +00002757 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002758 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002759 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002760 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002761 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002762 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002763 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002764
Dan Gohman622ed672009-05-04 22:02:23 +00002765 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002766 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002767 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002768 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002769 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002770 return MinOpRes;
2771 }
2772
Dan Gohman622ed672009-05-04 22:02:23 +00002773 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002774 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002775 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002776 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002777 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002778 return MinOpRes;
2779 }
2780
Dan Gohman2c364ad2009-06-19 23:29:04 +00002781 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2782 // For a SCEVUnknown, ask ValueTracking.
2783 unsigned BitWidth = getTypeSizeInBits(U->getType());
2784 APInt Mask = APInt::getAllOnesValue(BitWidth);
2785 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2786 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2787 return Zeros.countTrailingOnes();
2788 }
2789
2790 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002791 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002792}
Chris Lattner53e677a2004-04-02 20:23:17 +00002793
Dan Gohman85b05a22009-07-13 21:35:55 +00002794/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2795///
2796ConstantRange
2797ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002798
2799 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002800 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002801
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002802 unsigned BitWidth = getTypeSizeInBits(S->getType());
2803 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2804
2805 // If the value has known zeros, the maximum unsigned value will have those
2806 // known zeros as well.
2807 uint32_t TZ = GetMinTrailingZeros(S);
2808 if (TZ != 0)
2809 ConservativeResult =
2810 ConstantRange(APInt::getMinValue(BitWidth),
2811 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2812
Dan Gohman85b05a22009-07-13 21:35:55 +00002813 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2814 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2815 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2816 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002817 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002818 }
2819
2820 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2821 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2822 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2823 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002824 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002825 }
2826
2827 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2828 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2829 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2830 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002831 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002832 }
2833
2834 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2835 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2836 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2837 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002838 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002839 }
2840
2841 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2842 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2843 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002844 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002845 }
2846
2847 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2848 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002849 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002850 }
2851
2852 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2853 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002854 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002855 }
2856
2857 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2858 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002859 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002860 }
2861
Dan Gohman85b05a22009-07-13 21:35:55 +00002862 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002863 // If there's no unsigned wrap, the value will never be less than its
2864 // initial value.
2865 if (AddRec->hasNoUnsignedWrap())
2866 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002867 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002868 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002869 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002870
2871 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002872 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002873 const Type *Ty = AddRec->getType();
2874 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002875 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2876 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002877 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2878
2879 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002880 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002881
2882 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002883 ConstantRange StepRange = getSignedRange(Step);
2884 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2885 ConstantRange EndRange =
2886 StartRange.add(MaxBECountRange.multiply(StepRange));
2887
2888 // Check for overflow. This must be done with ConstantRange arithmetic
2889 // because we could be called from within the ScalarEvolution overflow
2890 // checking code.
2891 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2892 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2893 ConstantRange ExtMaxBECountRange =
2894 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2895 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2896 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2897 ExtEndRange)
2898 return ConservativeResult;
2899
Dan Gohman85b05a22009-07-13 21:35:55 +00002900 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2901 EndRange.getUnsignedMin());
2902 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2903 EndRange.getUnsignedMax());
2904 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002905 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002906 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002907 }
2908 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002909
2910 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002911 }
2912
2913 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2914 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 APInt Mask = APInt::getAllOnesValue(BitWidth);
2916 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2917 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002918 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002919 return ConservativeResult;
2920 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002921 }
2922
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002923 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924}
2925
Dan Gohman85b05a22009-07-13 21:35:55 +00002926/// getSignedRange - Determine the signed range for a particular SCEV.
2927///
2928ConstantRange
2929ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930
Dan Gohman85b05a22009-07-13 21:35:55 +00002931 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2932 return ConstantRange(C->getValue()->getValue());
2933
Dan Gohman52fddd32010-01-26 04:40:18 +00002934 unsigned BitWidth = getTypeSizeInBits(S->getType());
2935 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2936
2937 // If the value has known zeros, the maximum signed value will have those
2938 // known zeros as well.
2939 uint32_t TZ = GetMinTrailingZeros(S);
2940 if (TZ != 0)
2941 ConservativeResult =
2942 ConstantRange(APInt::getSignedMinValue(BitWidth),
2943 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2944
Dan Gohman85b05a22009-07-13 21:35:55 +00002945 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2946 ConstantRange X = getSignedRange(Add->getOperand(0));
2947 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2948 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002949 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 }
2951
Dan Gohman85b05a22009-07-13 21:35:55 +00002952 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2953 ConstantRange X = getSignedRange(Mul->getOperand(0));
2954 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2955 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002956 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002957 }
2958
Dan Gohman85b05a22009-07-13 21:35:55 +00002959 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2960 ConstantRange X = getSignedRange(SMax->getOperand(0));
2961 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2962 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002963 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002964 }
Dan Gohman62849c02009-06-24 01:05:09 +00002965
Dan Gohman85b05a22009-07-13 21:35:55 +00002966 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2967 ConstantRange X = getSignedRange(UMax->getOperand(0));
2968 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2969 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002970 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002971 }
Dan Gohman62849c02009-06-24 01:05:09 +00002972
Dan Gohman85b05a22009-07-13 21:35:55 +00002973 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2974 ConstantRange X = getSignedRange(UDiv->getLHS());
2975 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00002976 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002977 }
Dan Gohman62849c02009-06-24 01:05:09 +00002978
Dan Gohman85b05a22009-07-13 21:35:55 +00002979 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2980 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002981 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002982 }
2983
2984 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2985 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002986 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002987 }
2988
2989 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2990 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002991 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002992 }
2993
Dan Gohman85b05a22009-07-13 21:35:55 +00002994 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002995 // If there's no signed wrap, and all the operands have the same sign or
2996 // zero, the value won't ever change sign.
2997 if (AddRec->hasNoSignedWrap()) {
2998 bool AllNonNeg = true;
2999 bool AllNonPos = true;
3000 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3001 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3002 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3003 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003004 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003005 ConservativeResult = ConservativeResult.intersectWith(
3006 ConstantRange(APInt(BitWidth, 0),
3007 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003008 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003009 ConservativeResult = ConservativeResult.intersectWith(
3010 ConstantRange(APInt::getSignedMinValue(BitWidth),
3011 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003012 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003013
3014 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003015 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003016 const Type *Ty = AddRec->getType();
3017 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003018 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3019 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003020 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3021
3022 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003023 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003024
3025 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003026 ConstantRange StepRange = getSignedRange(Step);
3027 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3028 ConstantRange EndRange =
3029 StartRange.add(MaxBECountRange.multiply(StepRange));
3030
3031 // Check for overflow. This must be done with ConstantRange arithmetic
3032 // because we could be called from within the ScalarEvolution overflow
3033 // checking code.
3034 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3035 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3036 ConstantRange ExtMaxBECountRange =
3037 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3038 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3039 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3040 ExtEndRange)
3041 return ConservativeResult;
3042
Dan Gohman85b05a22009-07-13 21:35:55 +00003043 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3044 EndRange.getSignedMin());
3045 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3046 EndRange.getSignedMax());
3047 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003048 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003049 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003050 }
Dan Gohman62849c02009-06-24 01:05:09 +00003051 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003052
3053 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003054 }
3055
Dan Gohman2c364ad2009-06-19 23:29:04 +00003056 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3057 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003058 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003059 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3061 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003062 return ConservativeResult;
3063 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003065 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003066 }
3067
Dan Gohman52fddd32010-01-26 04:40:18 +00003068 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003069}
3070
Chris Lattner53e677a2004-04-02 20:23:17 +00003071/// createSCEV - We know that there is no SCEV for the specified value.
3072/// Analyze the expression.
3073///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003074const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003075 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003076 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003077
Dan Gohman6c459a22008-06-22 19:56:46 +00003078 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003079 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003080 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003081
3082 // Don't attempt to analyze instructions in blocks that aren't
3083 // reachable. Such instructions don't matter, and they aren't required
3084 // to obey basic rules for definitions dominating uses which this
3085 // analysis depends on.
3086 if (!DT->isReachableFromEntry(I->getParent()))
3087 return getUnknown(V);
3088 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003089 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003090 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3091 return getConstant(CI);
3092 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003093 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003094 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3095 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003096 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003097 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003098
Dan Gohmanca178902009-07-17 20:47:02 +00003099 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003100 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003101 case Instruction::Add:
3102 // Don't transfer the NSW and NUW bits from the Add instruction to the
3103 // Add expression, because the Instruction may be guarded by control
3104 // flow and the no-overflow bits may not be valid for the expression in
3105 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003106 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003107 getSCEV(U->getOperand(1)));
3108 case Instruction::Mul:
3109 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3110 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003111 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003112 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003113 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003114 return getUDivExpr(getSCEV(U->getOperand(0)),
3115 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003116 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003117 return getMinusSCEV(getSCEV(U->getOperand(0)),
3118 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003119 case Instruction::And:
3120 // For an expression like x&255 that merely masks off the high bits,
3121 // use zext(trunc(x)) as the SCEV expression.
3122 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003123 if (CI->isNullValue())
3124 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003125 if (CI->isAllOnesValue())
3126 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003127 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003128
3129 // Instcombine's ShrinkDemandedConstant may strip bits out of
3130 // constants, obscuring what would otherwise be a low-bits mask.
3131 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3132 // knew about to reconstruct a low-bits mask value.
3133 unsigned LZ = A.countLeadingZeros();
3134 unsigned BitWidth = A.getBitWidth();
3135 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3136 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3137 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3138
3139 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3140
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003141 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003142 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003143 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003144 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003145 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003146 }
3147 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003148
Dan Gohman6c459a22008-06-22 19:56:46 +00003149 case Instruction::Or:
3150 // If the RHS of the Or is a constant, we may have something like:
3151 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3152 // optimizations will transparently handle this case.
3153 //
3154 // In order for this transformation to be safe, the LHS must be of the
3155 // form X*(2^n) and the Or constant must be less than 2^n.
3156 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003157 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003158 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003159 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003160 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3161 // Build a plain add SCEV.
3162 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3163 // If the LHS of the add was an addrec and it has no-wrap flags,
3164 // transfer the no-wrap flags, since an or won't introduce a wrap.
3165 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3166 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3167 if (OldAR->hasNoUnsignedWrap())
3168 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3169 if (OldAR->hasNoSignedWrap())
3170 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3171 }
3172 return S;
3173 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003174 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003175 break;
3176 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003177 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003178 // If the RHS of the xor is a signbit, then this is just an add.
3179 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003180 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003181 return getAddExpr(getSCEV(U->getOperand(0)),
3182 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003183
3184 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003185 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003186 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003187
3188 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3189 // This is a variant of the check for xor with -1, and it handles
3190 // the case where instcombine has trimmed non-demanded bits out
3191 // of an xor with -1.
3192 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3193 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3194 if (BO->getOpcode() == Instruction::And &&
3195 LCI->getValue() == CI->getValue())
3196 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003197 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003198 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003199 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003200 const Type *Z0Ty = Z0->getType();
3201 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3202
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003203 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003204 // mask off the high bits. Complement the operand and
3205 // re-apply the zext.
3206 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3207 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3208
3209 // If C is a single bit, it may be in the sign-bit position
3210 // before the zero-extend. In this case, represent the xor
3211 // using an add, which is equivalent, and re-apply the zext.
3212 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3213 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3214 Trunc.isSignBit())
3215 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3216 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003217 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003218 }
3219 break;
3220
3221 case Instruction::Shl:
3222 // Turn shift left of a constant amount into a multiply.
3223 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003224 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003225
3226 // If the shift count is not less than the bitwidth, the result of
3227 // the shift is undefined. Don't try to analyze it, because the
3228 // resolution chosen here may differ from the resolution chosen in
3229 // other parts of the compiler.
3230 if (SA->getValue().uge(BitWidth))
3231 break;
3232
Owen Andersoneed707b2009-07-24 23:12:02 +00003233 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003234 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003235 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003236 }
3237 break;
3238
Nick Lewycky01eaf802008-07-07 06:15:49 +00003239 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003240 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003241 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003242 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003243
3244 // If the shift count is not less than the bitwidth, the result of
3245 // the shift is undefined. Don't try to analyze it, because the
3246 // resolution chosen here may differ from the resolution chosen in
3247 // other parts of the compiler.
3248 if (SA->getValue().uge(BitWidth))
3249 break;
3250
Owen Andersoneed707b2009-07-24 23:12:02 +00003251 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003252 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003253 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003254 }
3255 break;
3256
Dan Gohman4ee29af2009-04-21 02:26:00 +00003257 case Instruction::AShr:
3258 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3259 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003260 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003261 if (L->getOpcode() == Instruction::Shl &&
3262 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003263 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3264
3265 // If the shift count is not less than the bitwidth, the result of
3266 // the shift is undefined. Don't try to analyze it, because the
3267 // resolution chosen here may differ from the resolution chosen in
3268 // other parts of the compiler.
3269 if (CI->getValue().uge(BitWidth))
3270 break;
3271
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003272 uint64_t Amt = BitWidth - CI->getZExtValue();
3273 if (Amt == BitWidth)
3274 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003275 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003276 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003277 IntegerType::get(getContext(),
3278 Amt)),
3279 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003280 }
3281 break;
3282
Dan Gohman6c459a22008-06-22 19:56:46 +00003283 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003284 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003285
3286 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003287 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003288
3289 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003290 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003291
3292 case Instruction::BitCast:
3293 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003294 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003295 return getSCEV(U->getOperand(0));
3296 break;
3297
Dan Gohman4f8eea82010-02-01 18:27:38 +00003298 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3299 // lead to pointer expressions which cannot safely be expanded to GEPs,
3300 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3301 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003302
Dan Gohman26466c02009-05-08 20:26:55 +00003303 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003304 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003305
Dan Gohman6c459a22008-06-22 19:56:46 +00003306 case Instruction::PHI:
3307 return createNodeForPHI(cast<PHINode>(U));
3308
3309 case Instruction::Select:
3310 // This could be a smax or umax that was lowered earlier.
3311 // Try to recover it.
3312 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3313 Value *LHS = ICI->getOperand(0);
3314 Value *RHS = ICI->getOperand(1);
3315 switch (ICI->getPredicate()) {
3316 case ICmpInst::ICMP_SLT:
3317 case ICmpInst::ICMP_SLE:
3318 std::swap(LHS, RHS);
3319 // fall through
3320 case ICmpInst::ICMP_SGT:
3321 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003322 // a >s b ? a+x : b+x -> smax(a, b)+x
3323 // a >s b ? b+x : a+x -> smin(a, b)+x
3324 if (LHS->getType() == U->getType()) {
3325 const SCEV *LS = getSCEV(LHS);
3326 const SCEV *RS = getSCEV(RHS);
3327 const SCEV *LA = getSCEV(U->getOperand(1));
3328 const SCEV *RA = getSCEV(U->getOperand(2));
3329 const SCEV *LDiff = getMinusSCEV(LA, LS);
3330 const SCEV *RDiff = getMinusSCEV(RA, RS);
3331 if (LDiff == RDiff)
3332 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3333 LDiff = getMinusSCEV(LA, RS);
3334 RDiff = getMinusSCEV(RA, LS);
3335 if (LDiff == RDiff)
3336 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3337 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003338 break;
3339 case ICmpInst::ICMP_ULT:
3340 case ICmpInst::ICMP_ULE:
3341 std::swap(LHS, RHS);
3342 // fall through
3343 case ICmpInst::ICMP_UGT:
3344 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003345 // a >u b ? a+x : b+x -> umax(a, b)+x
3346 // a >u b ? b+x : a+x -> umin(a, b)+x
3347 if (LHS->getType() == U->getType()) {
3348 const SCEV *LS = getSCEV(LHS);
3349 const SCEV *RS = getSCEV(RHS);
3350 const SCEV *LA = getSCEV(U->getOperand(1));
3351 const SCEV *RA = getSCEV(U->getOperand(2));
3352 const SCEV *LDiff = getMinusSCEV(LA, LS);
3353 const SCEV *RDiff = getMinusSCEV(RA, RS);
3354 if (LDiff == RDiff)
3355 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3356 LDiff = getMinusSCEV(LA, RS);
3357 RDiff = getMinusSCEV(RA, LS);
3358 if (LDiff == RDiff)
3359 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3360 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003361 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003362 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003363 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3364 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003365 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003366 cast<ConstantInt>(RHS)->isZero()) {
3367 const SCEV *One = getConstant(LHS->getType(), 1);
3368 const SCEV *LS = getSCEV(LHS);
3369 const SCEV *LA = getSCEV(U->getOperand(1));
3370 const SCEV *RA = getSCEV(U->getOperand(2));
3371 const SCEV *LDiff = getMinusSCEV(LA, LS);
3372 const SCEV *RDiff = getMinusSCEV(RA, One);
3373 if (LDiff == RDiff)
3374 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3375 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003376 break;
3377 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003378 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3379 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003380 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003381 cast<ConstantInt>(RHS)->isZero()) {
3382 const SCEV *One = getConstant(LHS->getType(), 1);
3383 const SCEV *LS = getSCEV(LHS);
3384 const SCEV *LA = getSCEV(U->getOperand(1));
3385 const SCEV *RA = getSCEV(U->getOperand(2));
3386 const SCEV *LDiff = getMinusSCEV(LA, One);
3387 const SCEV *RDiff = getMinusSCEV(RA, LS);
3388 if (LDiff == RDiff)
3389 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3390 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003391 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003392 default:
3393 break;
3394 }
3395 }
3396
3397 default: // We cannot analyze this expression.
3398 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003399 }
3400
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003401 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003402}
3403
3404
3405
3406//===----------------------------------------------------------------------===//
3407// Iteration Count Computation Code
3408//
3409
Dan Gohman46bdfb02009-02-24 18:55:53 +00003410/// getBackedgeTakenCount - If the specified loop has a predictable
3411/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3412/// object. The backedge-taken count is the number of times the loop header
3413/// will be branched to from within the loop. This is one less than the
3414/// trip count of the loop, since it doesn't count the first iteration,
3415/// when the header is branched to from outside the loop.
3416///
3417/// Note that it is not valid to call this method on a loop without a
3418/// loop-invariant backedge-taken count (see
3419/// hasLoopInvariantBackedgeTakenCount).
3420///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003421const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003422 return getBackedgeTakenInfo(L).Exact;
3423}
3424
3425/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3426/// return the least SCEV value that is known never to be less than the
3427/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003428const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003429 return getBackedgeTakenInfo(L).Max;
3430}
3431
Dan Gohman59ae6b92009-07-08 19:23:34 +00003432/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3433/// onto the given Worklist.
3434static void
3435PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3436 BasicBlock *Header = L->getHeader();
3437
3438 // Push all Loop-header PHIs onto the Worklist stack.
3439 for (BasicBlock::iterator I = Header->begin();
3440 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3441 Worklist.push_back(PN);
3442}
3443
Dan Gohmana1af7572009-04-30 20:47:05 +00003444const ScalarEvolution::BackedgeTakenInfo &
3445ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003446 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003447 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003448 // update the value. The temporary CouldNotCompute value tells SCEV
3449 // code elsewhere that it shouldn't attempt to request a new
3450 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003451 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003452 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3453 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003454 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3455 if (BECount.Exact != getCouldNotCompute()) {
3456 assert(BECount.Exact->isLoopInvariant(L) &&
3457 BECount.Max->isLoopInvariant(L) &&
3458 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003459 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003460
Dan Gohman01ecca22009-04-27 20:16:15 +00003461 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003462 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003463 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003464 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003465 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003466 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003467 if (isa<PHINode>(L->getHeader()->begin()))
3468 // Only count loops that have phi nodes as not being computable.
3469 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003470 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003471
3472 // Now that we know more about the trip count for this loop, forget any
3473 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003474 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003475 // information. This is similar to the code in forgetLoop, except that
3476 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003477 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003478 SmallVector<Instruction *, 16> Worklist;
3479 PushLoopPHIs(L, Worklist);
3480
3481 SmallPtrSet<Instruction *, 8> Visited;
3482 while (!Worklist.empty()) {
3483 Instruction *I = Worklist.pop_back_val();
3484 if (!Visited.insert(I)) continue;
3485
Dan Gohman5d984912009-12-18 01:14:11 +00003486 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003487 Scalars.find(static_cast<Value *>(I));
3488 if (It != Scalars.end()) {
3489 // SCEVUnknown for a PHI either means that it has an unrecognized
3490 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003491 // by createNodeForPHI. In the former case, additional loop trip
3492 // count information isn't going to change anything. In the later
3493 // case, createNodeForPHI will perform the necessary updates on its
3494 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003495 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3496 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003497 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003498 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003499 if (PHINode *PN = dyn_cast<PHINode>(I))
3500 ConstantEvolutionLoopExitValue.erase(PN);
3501 }
3502
3503 PushDefUseChildren(I, Worklist);
3504 }
3505 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003506 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003507 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003508}
3509
Dan Gohman4c7279a2009-10-31 15:04:55 +00003510/// forgetLoop - This method should be called by the client when it has
3511/// changed a loop in a way that may effect ScalarEvolution's ability to
3512/// compute a trip count, or if the loop is deleted.
3513void ScalarEvolution::forgetLoop(const Loop *L) {
3514 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003515 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003516
Dan Gohman4c7279a2009-10-31 15:04:55 +00003517 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003518 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003519 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003520
Dan Gohman59ae6b92009-07-08 19:23:34 +00003521 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003522 while (!Worklist.empty()) {
3523 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003524 if (!Visited.insert(I)) continue;
3525
Dan Gohman5d984912009-12-18 01:14:11 +00003526 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003527 Scalars.find(static_cast<Value *>(I));
3528 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003529 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003530 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003531 if (PHINode *PN = dyn_cast<PHINode>(I))
3532 ConstantEvolutionLoopExitValue.erase(PN);
3533 }
3534
3535 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003536 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003537}
3538
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003539/// forgetValue - This method should be called by the client when it has
3540/// changed a value in a way that may effect its value, or which may
3541/// disconnect it from a def-use chain linking it to a loop.
3542void ScalarEvolution::forgetValue(Value *V) {
3543 Instruction *I = dyn_cast<Instruction>(V);
3544 if (!I) return;
3545
3546 // Drop information about expressions based on loop-header PHIs.
3547 SmallVector<Instruction *, 16> Worklist;
3548 Worklist.push_back(I);
3549
3550 SmallPtrSet<Instruction *, 8> Visited;
3551 while (!Worklist.empty()) {
3552 I = Worklist.pop_back_val();
3553 if (!Visited.insert(I)) continue;
3554
3555 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3556 Scalars.find(static_cast<Value *>(I));
3557 if (It != Scalars.end()) {
3558 ValuesAtScopes.erase(It->second);
3559 Scalars.erase(It);
3560 if (PHINode *PN = dyn_cast<PHINode>(I))
3561 ConstantEvolutionLoopExitValue.erase(PN);
3562 }
3563
3564 PushDefUseChildren(I, Worklist);
3565 }
3566}
3567
Dan Gohman46bdfb02009-02-24 18:55:53 +00003568/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3569/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003570ScalarEvolution::BackedgeTakenInfo
3571ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003572 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003573 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003574
Dan Gohmana334aa72009-06-22 00:31:57 +00003575 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003576 const SCEV *BECount = getCouldNotCompute();
3577 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003578 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003579 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3580 BackedgeTakenInfo NewBTI =
3581 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003582
Dan Gohman1c343752009-06-27 21:21:31 +00003583 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003584 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003585 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003586 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003587 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003588 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003589 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003590 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003591 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003592 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003593 }
Dan Gohman1c343752009-06-27 21:21:31 +00003594 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003595 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003596 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003597 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003598 }
3599
3600 return BackedgeTakenInfo(BECount, MaxBECount);
3601}
3602
3603/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3604/// of the specified loop will execute if it exits via the specified block.
3605ScalarEvolution::BackedgeTakenInfo
3606ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3607 BasicBlock *ExitingBlock) {
3608
3609 // Okay, we've chosen an exiting block. See what condition causes us to
3610 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003611 //
3612 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003613 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003614 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003615 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003616
Chris Lattner8b0e3602007-01-07 02:24:26 +00003617 // At this point, we know we have a conditional branch that determines whether
3618 // the loop is exited. However, we don't know if the branch is executed each
3619 // time through the loop. If not, then the execution count of the branch will
3620 // not be equal to the trip count of the loop.
3621 //
3622 // Currently we check for this by checking to see if the Exit branch goes to
3623 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003624 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003625 // loop header. This is common for un-rotated loops.
3626 //
3627 // If both of those tests fail, walk up the unique predecessor chain to the
3628 // header, stopping if there is an edge that doesn't exit the loop. If the
3629 // header is reached, the execution count of the branch will be equal to the
3630 // trip count of the loop.
3631 //
3632 // More extensive analysis could be done to handle more cases here.
3633 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003634 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003635 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003636 ExitBr->getParent() != L->getHeader()) {
3637 // The simple checks failed, try climbing the unique predecessor chain
3638 // up to the header.
3639 bool Ok = false;
3640 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3641 BasicBlock *Pred = BB->getUniquePredecessor();
3642 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003643 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003644 TerminatorInst *PredTerm = Pred->getTerminator();
3645 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3646 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3647 if (PredSucc == BB)
3648 continue;
3649 // If the predecessor has a successor that isn't BB and isn't
3650 // outside the loop, assume the worst.
3651 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003652 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003653 }
3654 if (Pred == L->getHeader()) {
3655 Ok = true;
3656 break;
3657 }
3658 BB = Pred;
3659 }
3660 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003661 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003662 }
3663
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003664 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003665 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3666 ExitBr->getSuccessor(0),
3667 ExitBr->getSuccessor(1));
3668}
3669
3670/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3671/// backedge of the specified loop will execute if its exit condition
3672/// were a conditional branch of ExitCond, TBB, and FBB.
3673ScalarEvolution::BackedgeTakenInfo
3674ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3675 Value *ExitCond,
3676 BasicBlock *TBB,
3677 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003678 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003679 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3680 if (BO->getOpcode() == Instruction::And) {
3681 // Recurse on the operands of the and.
3682 BackedgeTakenInfo BTI0 =
3683 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3684 BackedgeTakenInfo BTI1 =
3685 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003686 const SCEV *BECount = getCouldNotCompute();
3687 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003688 if (L->contains(TBB)) {
3689 // Both conditions must be true for the loop to continue executing.
3690 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003691 if (BTI0.Exact == getCouldNotCompute() ||
3692 BTI1.Exact == getCouldNotCompute())
3693 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003694 else
3695 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003696 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003697 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003698 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003699 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003700 else
3701 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003702 } else {
3703 // Both conditions must be true for the loop to exit.
3704 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003705 if (BTI0.Exact != getCouldNotCompute() &&
3706 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003707 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003708 if (BTI0.Max != getCouldNotCompute() &&
3709 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003710 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3711 }
3712
3713 return BackedgeTakenInfo(BECount, MaxBECount);
3714 }
3715 if (BO->getOpcode() == Instruction::Or) {
3716 // Recurse on the operands of the or.
3717 BackedgeTakenInfo BTI0 =
3718 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3719 BackedgeTakenInfo BTI1 =
3720 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003721 const SCEV *BECount = getCouldNotCompute();
3722 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003723 if (L->contains(FBB)) {
3724 // Both conditions must be false for the loop to continue executing.
3725 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003726 if (BTI0.Exact == getCouldNotCompute() ||
3727 BTI1.Exact == getCouldNotCompute())
3728 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003729 else
3730 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003731 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003732 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003733 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003734 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003735 else
3736 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003737 } else {
3738 // Both conditions must be false for the loop to exit.
3739 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003740 if (BTI0.Exact != getCouldNotCompute() &&
3741 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003743 if (BTI0.Max != getCouldNotCompute() &&
3744 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3746 }
3747
3748 return BackedgeTakenInfo(BECount, MaxBECount);
3749 }
3750 }
3751
3752 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003753 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3755 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003756
Dan Gohman00cb5b72010-02-19 18:12:07 +00003757 // Check for a constant condition. These are normally stripped out by
3758 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3759 // preserve the CFG and is temporarily leaving constant conditions
3760 // in place.
3761 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3762 if (L->contains(FBB) == !CI->getZExtValue())
3763 // The backedge is always taken.
3764 return getCouldNotCompute();
3765 else
3766 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003767 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003768 }
3769
Eli Friedman361e54d2009-05-09 12:32:42 +00003770 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003771 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3772}
3773
3774/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3775/// backedge of the specified loop will execute if its exit condition
3776/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3777ScalarEvolution::BackedgeTakenInfo
3778ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3779 ICmpInst *ExitCond,
3780 BasicBlock *TBB,
3781 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003782
Reid Spencere4d87aa2006-12-23 06:05:41 +00003783 // If the condition was exit on true, convert the condition to exit on false
3784 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003786 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003787 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003788 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003789
3790 // Handle common loops like: for (X = "string"; *X; ++X)
3791 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3792 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003793 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003794 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003795 if (ItCnt.hasAnyInfo())
3796 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003797 }
3798
Dan Gohman0bba49c2009-07-07 17:06:11 +00003799 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3800 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003801
3802 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003803 LHS = getSCEVAtScope(LHS, L);
3804 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003805
Dan Gohman64a845e2009-06-24 04:48:43 +00003806 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003807 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003808 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3809 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003810 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003811 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003812 }
3813
Dan Gohman03557dc2010-05-03 16:35:17 +00003814 // Simplify the operands before analyzing them.
3815 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3816
Chris Lattner53e677a2004-04-02 20:23:17 +00003817 // If we have a comparison of a chrec against a constant, try to use value
3818 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003819 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3820 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003821 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003822 // Form the constant range.
3823 ConstantRange CompRange(
3824 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003825
Dan Gohman0bba49c2009-07-07 17:06:11 +00003826 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003827 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003828 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003829
Chris Lattner53e677a2004-04-02 20:23:17 +00003830 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003831 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003832 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003833 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3834 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003835 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003836 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003837 case ICmpInst::ICMP_EQ: { // while (X == Y)
3838 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003839 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3840 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003841 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003842 }
3843 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003844 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3845 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003846 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003847 }
3848 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003849 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3850 getNotSCEV(RHS), L, true);
3851 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003852 break;
3853 }
3854 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003855 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3856 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003857 break;
3858 }
3859 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003860 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3861 getNotSCEV(RHS), L, false);
3862 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003863 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003864 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003865 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003866#if 0
David Greene25e0e872009-12-23 22:18:14 +00003867 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003868 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003869 dbgs() << "[unsigned] ";
3870 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003871 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003872 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003873#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003874 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003875 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003876 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003878}
3879
Chris Lattner673e02b2004-10-12 01:49:27 +00003880static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003881EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3882 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003883 const SCEV *InVal = SE.getConstant(C);
3884 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003885 assert(isa<SCEVConstant>(Val) &&
3886 "Evaluation of SCEV at constant didn't fold correctly?");
3887 return cast<SCEVConstant>(Val)->getValue();
3888}
3889
3890/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3891/// and a GEP expression (missing the pointer index) indexing into it, return
3892/// the addressed element of the initializer or null if the index expression is
3893/// invalid.
3894static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003895GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003896 const std::vector<ConstantInt*> &Indices) {
3897 Constant *Init = GV->getInitializer();
3898 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003899 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003900 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3901 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3902 Init = cast<Constant>(CS->getOperand(Idx));
3903 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3904 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3905 Init = cast<Constant>(CA->getOperand(Idx));
3906 } else if (isa<ConstantAggregateZero>(Init)) {
3907 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3908 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003909 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003910 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3911 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003912 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003913 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003914 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003915 }
3916 return 0;
3917 } else {
3918 return 0; // Unknown initializer type
3919 }
3920 }
3921 return Init;
3922}
3923
Dan Gohman46bdfb02009-02-24 18:55:53 +00003924/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3925/// 'icmp op load X, cst', try to see if we can compute the backedge
3926/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003927ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00003928ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3929 LoadInst *LI,
3930 Constant *RHS,
3931 const Loop *L,
3932 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003933 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003934
3935 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003936 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00003937 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003938 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003939
3940 // Make sure that it is really a constant global we are gepping, with an
3941 // initializer, and make sure the first IDX is really 0.
3942 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003943 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003944 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3945 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003946 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003947
3948 // Okay, we allow one non-constant index into the GEP instruction.
3949 Value *VarIdx = 0;
3950 std::vector<ConstantInt*> Indexes;
3951 unsigned VarIdxNum = 0;
3952 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3953 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3954 Indexes.push_back(CI);
3955 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003956 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003957 VarIdx = GEP->getOperand(i);
3958 VarIdxNum = i-2;
3959 Indexes.push_back(0);
3960 }
3961
3962 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3963 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003964 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003965 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003966
3967 // We can only recognize very limited forms of loop index expressions, in
3968 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003969 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003970 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3971 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3972 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003973 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003974
3975 unsigned MaxSteps = MaxBruteForceIterations;
3976 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003977 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003978 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003979 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003980
3981 // Form the GEP offset.
3982 Indexes[VarIdxNum] = Val;
3983
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003984 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003985 if (Result == 0) break; // Cannot compute!
3986
3987 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003988 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003989 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003990 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003991#if 0
David Greene25e0e872009-12-23 22:18:14 +00003992 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003993 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3994 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003995#endif
3996 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003997 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003998 }
3999 }
Dan Gohman1c343752009-06-27 21:21:31 +00004000 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004001}
4002
4003
Chris Lattner3221ad02004-04-17 22:58:41 +00004004/// CanConstantFold - Return true if we can constant fold an instruction of the
4005/// specified type, assuming that all operands were constants.
4006static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004007 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004008 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4009 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004010
Chris Lattner3221ad02004-04-17 22:58:41 +00004011 if (const CallInst *CI = dyn_cast<CallInst>(I))
4012 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004013 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004014 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004015}
4016
Chris Lattner3221ad02004-04-17 22:58:41 +00004017/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4018/// in the loop that V is derived from. We allow arbitrary operations along the
4019/// way, but the operands of an operation must either be constants or a value
4020/// derived from a constant PHI. If this expression does not fit with these
4021/// constraints, return null.
4022static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4023 // If this is not an instruction, or if this is an instruction outside of the
4024 // loop, it can't be derived from a loop PHI.
4025 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004026 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004027
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004028 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004029 if (L->getHeader() == I->getParent())
4030 return PN;
4031 else
4032 // We don't currently keep track of the control flow needed to evaluate
4033 // PHIs, so we cannot handle PHIs inside of loops.
4034 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004035 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004036
4037 // If we won't be able to constant fold this expression even if the operands
4038 // are constants, return early.
4039 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004040
Chris Lattner3221ad02004-04-17 22:58:41 +00004041 // Otherwise, we can evaluate this instruction if all of its operands are
4042 // constant or derived from a PHI node themselves.
4043 PHINode *PHI = 0;
4044 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4045 if (!(isa<Constant>(I->getOperand(Op)) ||
4046 isa<GlobalValue>(I->getOperand(Op)))) {
4047 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4048 if (P == 0) return 0; // Not evolving from PHI
4049 if (PHI == 0)
4050 PHI = P;
4051 else if (PHI != P)
4052 return 0; // Evolving from multiple different PHIs.
4053 }
4054
4055 // This is a expression evolving from a constant PHI!
4056 return PHI;
4057}
4058
4059/// EvaluateExpression - Given an expression that passes the
4060/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4061/// in the loop has the value PHIVal. If we can't fold this expression for some
4062/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004063static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4064 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004065 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004066 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004067 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004068 Instruction *I = cast<Instruction>(V);
4069
4070 std::vector<Constant*> Operands;
4071 Operands.resize(I->getNumOperands());
4072
4073 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004074 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004075 if (Operands[i] == 0) return 0;
4076 }
4077
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004078 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004079 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004080 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004081 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004082 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004083}
4084
4085/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4086/// in the header of its containing loop, we know the loop executes a
4087/// constant number of times, and the PHI node is just a recurrence
4088/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004089Constant *
4090ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004091 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004092 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004093 std::map<PHINode*, Constant*>::iterator I =
4094 ConstantEvolutionLoopExitValue.find(PN);
4095 if (I != ConstantEvolutionLoopExitValue.end())
4096 return I->second;
4097
Dan Gohmane0567812010-04-08 23:03:40 +00004098 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004099 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4100
4101 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4102
4103 // Since the loop is canonicalized, the PHI node must have two entries. One
4104 // entry must be a constant (coming in from outside of the loop), and the
4105 // second must be derived from the same PHI.
4106 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4107 Constant *StartCST =
4108 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4109 if (StartCST == 0)
4110 return RetVal = 0; // Must be a constant.
4111
4112 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4113 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4114 if (PN2 != PN)
4115 return RetVal = 0; // Not derived from same PHI.
4116
4117 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004118 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004119 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004120
Dan Gohman46bdfb02009-02-24 18:55:53 +00004121 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004122 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004123 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4124 if (IterationNum == NumIterations)
4125 return RetVal = PHIVal; // Got exit value!
4126
4127 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004128 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004129 if (NextPHI == PHIVal)
4130 return RetVal = NextPHI; // Stopped evolving!
4131 if (NextPHI == 0)
4132 return 0; // Couldn't evaluate!
4133 PHIVal = NextPHI;
4134 }
4135}
4136
Dan Gohman07ad19b2009-07-27 16:09:48 +00004137/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004138/// constant number of times (the condition evolves only from constants),
4139/// try to evaluate a few iterations of the loop until we get the exit
4140/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004141/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004142const SCEV *
4143ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4144 Value *Cond,
4145 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004146 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004147 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004148
4149 // Since the loop is canonicalized, the PHI node must have two entries. One
4150 // entry must be a constant (coming in from outside of the loop), and the
4151 // second must be derived from the same PHI.
4152 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4153 Constant *StartCST =
4154 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004155 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004156
4157 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4158 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004159 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004160
4161 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4162 // the loop symbolically to determine when the condition gets a value of
4163 // "ExitWhen".
4164 unsigned IterationNum = 0;
4165 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4166 for (Constant *PHIVal = StartCST;
4167 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004168 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004169 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004170
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004171 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004172 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004173
Reid Spencere8019bb2007-03-01 07:25:48 +00004174 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004175 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004176 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004177 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004178
Chris Lattner3221ad02004-04-17 22:58:41 +00004179 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004180 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004181 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004182 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004183 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004184 }
4185
4186 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004187 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004188}
4189
Dan Gohmane7125f42009-09-03 15:00:26 +00004190/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004191/// at the specified scope in the program. The L value specifies a loop
4192/// nest to evaluate the expression at, where null is the top-level or a
4193/// specified loop is immediately inside of the loop.
4194///
4195/// This method can be used to compute the exit value for a variable defined
4196/// in a loop by querying what the value will hold in the parent loop.
4197///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004198/// In the case that a relevant loop exit value cannot be computed, the
4199/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004200const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004201 // Check to see if we've folded this expression at this loop before.
4202 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4203 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4204 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4205 if (!Pair.second)
4206 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004207
Dan Gohman42214892009-08-31 21:15:23 +00004208 // Otherwise compute it.
4209 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004210 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004211 return C;
4212}
4213
4214const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004215 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004216
Nick Lewycky3e630762008-02-20 06:48:22 +00004217 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004218 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004219 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004220 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004221 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004222 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4223 if (PHINode *PN = dyn_cast<PHINode>(I))
4224 if (PN->getParent() == LI->getHeader()) {
4225 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004226 // to see if the loop that contains it has a known backedge-taken
4227 // count. If so, we may be able to force computation of the exit
4228 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004229 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004230 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004231 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004232 // Okay, we know how many times the containing loop executes. If
4233 // this is a constant evolving PHI node, get the final value at
4234 // the specified iteration number.
4235 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004236 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004237 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004238 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004239 }
4240 }
4241
Reid Spencer09906f32006-12-04 21:33:23 +00004242 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004243 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004244 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004245 // result. This is particularly useful for computing loop exit values.
4246 if (CanConstantFold(I)) {
4247 std::vector<Constant*> Operands;
4248 Operands.reserve(I->getNumOperands());
4249 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4250 Value *Op = I->getOperand(i);
4251 if (Constant *C = dyn_cast<Constant>(Op)) {
4252 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004253 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004254 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004255 // non-integer and non-pointer, don't even try to analyze them
4256 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004257 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004258 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004259
Dan Gohman5d984912009-12-18 01:14:11 +00004260 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004261 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004262 Constant *C = SC->getValue();
4263 if (C->getType() != Op->getType())
4264 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4265 Op->getType(),
4266 false),
4267 C, Op->getType());
4268 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004269 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004270 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4271 if (C->getType() != Op->getType())
4272 C =
4273 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4274 Op->getType(),
4275 false),
4276 C, Op->getType());
4277 Operands.push_back(C);
4278 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004279 return V;
4280 } else {
4281 return V;
4282 }
4283 }
4284 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004285
Dan Gohmane177c9a2010-02-24 19:31:47 +00004286 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004287 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4288 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004289 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004290 else
4291 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004292 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004293 if (C)
4294 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004295 }
4296 }
4297
4298 // This is some other type of SCEVUnknown, just return it.
4299 return V;
4300 }
4301
Dan Gohman622ed672009-05-04 22:02:23 +00004302 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004303 // Avoid performing the look-up in the common case where the specified
4304 // expression has no loop-variant portions.
4305 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004306 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004308 // Okay, at least one of these operands is loop variant but might be
4309 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004310 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4311 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004312 NewOps.push_back(OpAtScope);
4313
4314 for (++i; i != e; ++i) {
4315 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004316 NewOps.push_back(OpAtScope);
4317 }
4318 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004319 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004320 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004321 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004322 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004323 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004324 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004325 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004326 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004327 }
4328 }
4329 // If we got here, all operands are loop invariant.
4330 return Comm;
4331 }
4332
Dan Gohman622ed672009-05-04 22:02:23 +00004333 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004334 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4335 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004336 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4337 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004338 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004339 }
4340
4341 // If this is a loop recurrence for a loop that does not contain L, then we
4342 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004343 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004344 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004345 // To evaluate this recurrence, we need to know how many times the AddRec
4346 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004347 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004348 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004349
Eli Friedmanb42a6262008-08-04 23:49:06 +00004350 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004351 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004352 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004353 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004354 }
4355
Dan Gohman622ed672009-05-04 22:02:23 +00004356 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004357 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004358 if (Op == Cast->getOperand())
4359 return Cast; // must be loop invariant
4360 return getZeroExtendExpr(Op, Cast->getType());
4361 }
4362
Dan Gohman622ed672009-05-04 22:02:23 +00004363 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004364 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004365 if (Op == Cast->getOperand())
4366 return Cast; // must be loop invariant
4367 return getSignExtendExpr(Op, Cast->getType());
4368 }
4369
Dan Gohman622ed672009-05-04 22:02:23 +00004370 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004371 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004372 if (Op == Cast->getOperand())
4373 return Cast; // must be loop invariant
4374 return getTruncateExpr(Op, Cast->getType());
4375 }
4376
Torok Edwinc23197a2009-07-14 16:55:14 +00004377 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004378 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004379}
4380
Dan Gohman66a7e852009-05-08 20:38:54 +00004381/// getSCEVAtScope - This is a convenience function which does
4382/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004383const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004384 return getSCEVAtScope(getSCEV(V), L);
4385}
4386
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004387/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4388/// following equation:
4389///
4390/// A * X = B (mod N)
4391///
4392/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4393/// A and B isn't important.
4394///
4395/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004396static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004397 ScalarEvolution &SE) {
4398 uint32_t BW = A.getBitWidth();
4399 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4400 assert(A != 0 && "A must be non-zero.");
4401
4402 // 1. D = gcd(A, N)
4403 //
4404 // The gcd of A and N may have only one prime factor: 2. The number of
4405 // trailing zeros in A is its multiplicity
4406 uint32_t Mult2 = A.countTrailingZeros();
4407 // D = 2^Mult2
4408
4409 // 2. Check if B is divisible by D.
4410 //
4411 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4412 // is not less than multiplicity of this prime factor for D.
4413 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004414 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004415
4416 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4417 // modulo (N / D).
4418 //
4419 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4420 // bit width during computations.
4421 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4422 APInt Mod(BW + 1, 0);
4423 Mod.set(BW - Mult2); // Mod = N / D
4424 APInt I = AD.multiplicativeInverse(Mod);
4425
4426 // 4. Compute the minimum unsigned root of the equation:
4427 // I * (B / D) mod (N / D)
4428 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4429
4430 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4431 // bits.
4432 return SE.getConstant(Result.trunc(BW));
4433}
Chris Lattner53e677a2004-04-02 20:23:17 +00004434
4435/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4436/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4437/// might be the same) or two SCEVCouldNotCompute objects.
4438///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004439static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004440SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004441 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004442 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4443 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4444 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004445
Chris Lattner53e677a2004-04-02 20:23:17 +00004446 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004447 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004448 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004449 return std::make_pair(CNC, CNC);
4450 }
4451
Reid Spencere8019bb2007-03-01 07:25:48 +00004452 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004453 const APInt &L = LC->getValue()->getValue();
4454 const APInt &M = MC->getValue()->getValue();
4455 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004456 APInt Two(BitWidth, 2);
4457 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004458
Dan Gohman64a845e2009-06-24 04:48:43 +00004459 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004460 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004461 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004462 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4463 // The B coefficient is M-N/2
4464 APInt B(M);
4465 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004466
Reid Spencere8019bb2007-03-01 07:25:48 +00004467 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004468 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004469
Reid Spencere8019bb2007-03-01 07:25:48 +00004470 // Compute the B^2-4ac term.
4471 APInt SqrtTerm(B);
4472 SqrtTerm *= B;
4473 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004474
Reid Spencere8019bb2007-03-01 07:25:48 +00004475 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4476 // integer value or else APInt::sqrt() will assert.
4477 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004478
Dan Gohman64a845e2009-06-24 04:48:43 +00004479 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004480 // The divisions must be performed as signed divisions.
4481 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004482 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004483 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004484 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004485 return std::make_pair(CNC, CNC);
4486 }
4487
Owen Andersone922c022009-07-22 00:24:57 +00004488 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004489
4490 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004491 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004492 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004493 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004494
Dan Gohman64a845e2009-06-24 04:48:43 +00004495 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004496 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004497 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004498}
4499
4500/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004501/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004502ScalarEvolution::BackedgeTakenInfo
4503ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004507 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004508 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004509 }
4510
Dan Gohman35738ac2009-05-04 22:30:44 +00004511 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004512 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004513 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004514
4515 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004516 // If this is an affine expression, the execution count of this branch is
4517 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004519 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004520 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004521 // equivalent to:
4522 //
4523 // Step*N = -Start (mod 2^BW)
4524 //
4525 // where BW is the common bit width of Start and Step.
4526
Chris Lattner53e677a2004-04-02 20:23:17 +00004527 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004528 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4529 L->getParentLoop());
4530 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4531 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004532
Dan Gohman622ed672009-05-04 22:02:23 +00004533 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004534 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004535
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004536 // First, handle unitary steps.
4537 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004538 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004539 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4540 return Start; // N = Start (as unsigned)
4541
4542 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004543 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004544 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004545 -StartC->getValue()->getValue(),
4546 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004547 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004548 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4550 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004551 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004552 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004553 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4554 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004555 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004556#if 0
David Greene25e0e872009-12-23 22:18:14 +00004557 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004558 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004559#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004560 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004561 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004562 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004563 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004564 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004565 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004566
Chris Lattner53e677a2004-04-02 20:23:17 +00004567 // We can only use this value if the chrec ends up with an exact zero
4568 // value at this index. When solving for "X*X != 5", for example, we
4569 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004570 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004571 if (Val->isZero())
4572 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004573 }
4574 }
4575 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004576
Dan Gohman1c343752009-06-27 21:21:31 +00004577 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004578}
4579
4580/// HowFarToNonZero - Return the number of times a backedge checking the
4581/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004582/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004583ScalarEvolution::BackedgeTakenInfo
4584ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004585 // Loops that look like: while (X == 0) are very strange indeed. We don't
4586 // handle them yet except for the trivial case. This could be expanded in the
4587 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004588
Chris Lattner53e677a2004-04-02 20:23:17 +00004589 // If the value is a constant, check to see if it is known to be non-zero
4590 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004591 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004592 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004593 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004594 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004596
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 // We could implement others, but I really doubt anyone writes loops like
4598 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004599 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004600}
4601
Dan Gohman859b4822009-05-18 15:36:09 +00004602/// getLoopPredecessor - If the given loop's header has exactly one unique
4603/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004604/// This is less strict that the loop "preheader" concept, which requires
4605/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004606///
4607BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4608 BasicBlock *Header = L->getHeader();
4609 BasicBlock *Pred = 0;
4610 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4611 PI != E; ++PI)
4612 if (!L->contains(*PI)) {
4613 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4614 Pred = *PI;
4615 }
4616 return Pred;
4617}
4618
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004619/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4620/// (which may not be an immediate predecessor) which has exactly one
4621/// successor from which BB is reachable, or null if no such block is
4622/// found.
4623///
Dan Gohman005752b2010-04-15 16:19:08 +00004624std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004625ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004626 // If the block has a unique predecessor, then there is no path from the
4627 // predecessor to the block that does not go through the direct edge
4628 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004629 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004630 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004631
4632 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004633 // If the header has a unique predecessor outside the loop, it must be
4634 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004635 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004636 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004637
Dan Gohman005752b2010-04-15 16:19:08 +00004638 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004639}
4640
Dan Gohman763bad12009-06-20 00:35:32 +00004641/// HasSameValue - SCEV structural equivalence is usually sufficient for
4642/// testing whether two expressions are equal, however for the purposes of
4643/// looking for a condition guarding a loop, it can be useful to be a little
4644/// more general, since a front-end may have replicated the controlling
4645/// expression.
4646///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004647static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004648 // Quick check to see if they are the same SCEV.
4649 if (A == B) return true;
4650
4651 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4652 // two different instructions with the same value. Check for this case.
4653 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4654 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4655 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4656 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004657 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004658 return true;
4659
4660 // Otherwise assume they may have a different value.
4661 return false;
4662}
4663
Dan Gohmane9796502010-04-24 01:28:42 +00004664/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4665/// predicate Pred. Return true iff any changes were made.
4666///
4667bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4668 const SCEV *&LHS, const SCEV *&RHS) {
4669 bool Changed = false;
4670
4671 // Canonicalize a constant to the right side.
4672 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4673 // Check for both operands constant.
4674 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4675 if (ConstantExpr::getICmp(Pred,
4676 LHSC->getValue(),
4677 RHSC->getValue())->isNullValue())
4678 goto trivially_false;
4679 else
4680 goto trivially_true;
4681 }
4682 // Otherwise swap the operands to put the constant on the right.
4683 std::swap(LHS, RHS);
4684 Pred = ICmpInst::getSwappedPredicate(Pred);
4685 Changed = true;
4686 }
4687
4688 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004689 // addrec's loop, put the addrec on the left. Also make a dominance check,
4690 // as both operands could be addrecs loop-invariant in each other's loop.
4691 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4692 const Loop *L = AR->getLoop();
4693 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004694 std::swap(LHS, RHS);
4695 Pred = ICmpInst::getSwappedPredicate(Pred);
4696 Changed = true;
4697 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004698 }
Dan Gohmane9796502010-04-24 01:28:42 +00004699
4700 // If there's a constant operand, canonicalize comparisons with boundary
4701 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4702 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4703 const APInt &RA = RC->getValue()->getValue();
4704 switch (Pred) {
4705 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4706 case ICmpInst::ICMP_EQ:
4707 case ICmpInst::ICMP_NE:
4708 break;
4709 case ICmpInst::ICMP_UGE:
4710 if ((RA - 1).isMinValue()) {
4711 Pred = ICmpInst::ICMP_NE;
4712 RHS = getConstant(RA - 1);
4713 Changed = true;
4714 break;
4715 }
4716 if (RA.isMaxValue()) {
4717 Pred = ICmpInst::ICMP_EQ;
4718 Changed = true;
4719 break;
4720 }
4721 if (RA.isMinValue()) goto trivially_true;
4722
4723 Pred = ICmpInst::ICMP_UGT;
4724 RHS = getConstant(RA - 1);
4725 Changed = true;
4726 break;
4727 case ICmpInst::ICMP_ULE:
4728 if ((RA + 1).isMaxValue()) {
4729 Pred = ICmpInst::ICMP_NE;
4730 RHS = getConstant(RA + 1);
4731 Changed = true;
4732 break;
4733 }
4734 if (RA.isMinValue()) {
4735 Pred = ICmpInst::ICMP_EQ;
4736 Changed = true;
4737 break;
4738 }
4739 if (RA.isMaxValue()) goto trivially_true;
4740
4741 Pred = ICmpInst::ICMP_ULT;
4742 RHS = getConstant(RA + 1);
4743 Changed = true;
4744 break;
4745 case ICmpInst::ICMP_SGE:
4746 if ((RA - 1).isMinSignedValue()) {
4747 Pred = ICmpInst::ICMP_NE;
4748 RHS = getConstant(RA - 1);
4749 Changed = true;
4750 break;
4751 }
4752 if (RA.isMaxSignedValue()) {
4753 Pred = ICmpInst::ICMP_EQ;
4754 Changed = true;
4755 break;
4756 }
4757 if (RA.isMinSignedValue()) goto trivially_true;
4758
4759 Pred = ICmpInst::ICMP_SGT;
4760 RHS = getConstant(RA - 1);
4761 Changed = true;
4762 break;
4763 case ICmpInst::ICMP_SLE:
4764 if ((RA + 1).isMaxSignedValue()) {
4765 Pred = ICmpInst::ICMP_NE;
4766 RHS = getConstant(RA + 1);
4767 Changed = true;
4768 break;
4769 }
4770 if (RA.isMinSignedValue()) {
4771 Pred = ICmpInst::ICMP_EQ;
4772 Changed = true;
4773 break;
4774 }
4775 if (RA.isMaxSignedValue()) goto trivially_true;
4776
4777 Pred = ICmpInst::ICMP_SLT;
4778 RHS = getConstant(RA + 1);
4779 Changed = true;
4780 break;
4781 case ICmpInst::ICMP_UGT:
4782 if (RA.isMinValue()) {
4783 Pred = ICmpInst::ICMP_NE;
4784 Changed = true;
4785 break;
4786 }
4787 if ((RA + 1).isMaxValue()) {
4788 Pred = ICmpInst::ICMP_EQ;
4789 RHS = getConstant(RA + 1);
4790 Changed = true;
4791 break;
4792 }
4793 if (RA.isMaxValue()) goto trivially_false;
4794 break;
4795 case ICmpInst::ICMP_ULT:
4796 if (RA.isMaxValue()) {
4797 Pred = ICmpInst::ICMP_NE;
4798 Changed = true;
4799 break;
4800 }
4801 if ((RA - 1).isMinValue()) {
4802 Pred = ICmpInst::ICMP_EQ;
4803 RHS = getConstant(RA - 1);
4804 Changed = true;
4805 break;
4806 }
4807 if (RA.isMinValue()) goto trivially_false;
4808 break;
4809 case ICmpInst::ICMP_SGT:
4810 if (RA.isMinSignedValue()) {
4811 Pred = ICmpInst::ICMP_NE;
4812 Changed = true;
4813 break;
4814 }
4815 if ((RA + 1).isMaxSignedValue()) {
4816 Pred = ICmpInst::ICMP_EQ;
4817 RHS = getConstant(RA + 1);
4818 Changed = true;
4819 break;
4820 }
4821 if (RA.isMaxSignedValue()) goto trivially_false;
4822 break;
4823 case ICmpInst::ICMP_SLT:
4824 if (RA.isMaxSignedValue()) {
4825 Pred = ICmpInst::ICMP_NE;
4826 Changed = true;
4827 break;
4828 }
4829 if ((RA - 1).isMinSignedValue()) {
4830 Pred = ICmpInst::ICMP_EQ;
4831 RHS = getConstant(RA - 1);
4832 Changed = true;
4833 break;
4834 }
4835 if (RA.isMinSignedValue()) goto trivially_false;
4836 break;
4837 }
4838 }
4839
4840 // Check for obvious equality.
4841 if (HasSameValue(LHS, RHS)) {
4842 if (ICmpInst::isTrueWhenEqual(Pred))
4843 goto trivially_true;
4844 if (ICmpInst::isFalseWhenEqual(Pred))
4845 goto trivially_false;
4846 }
4847
Dan Gohman03557dc2010-05-03 16:35:17 +00004848 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4849 // adding or subtracting 1 from one of the operands.
4850 switch (Pred) {
4851 case ICmpInst::ICMP_SLE:
4852 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4853 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4854 /*HasNUW=*/false, /*HasNSW=*/true);
4855 Pred = ICmpInst::ICMP_SLT;
4856 Changed = true;
4857 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004858 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004859 /*HasNUW=*/false, /*HasNSW=*/true);
4860 Pred = ICmpInst::ICMP_SLT;
4861 Changed = true;
4862 }
4863 break;
4864 case ICmpInst::ICMP_SGE:
4865 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004866 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004867 /*HasNUW=*/false, /*HasNSW=*/true);
4868 Pred = ICmpInst::ICMP_SGT;
4869 Changed = true;
4870 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4871 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4872 /*HasNUW=*/false, /*HasNSW=*/true);
4873 Pred = ICmpInst::ICMP_SGT;
4874 Changed = true;
4875 }
4876 break;
4877 case ICmpInst::ICMP_ULE:
4878 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004879 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004880 /*HasNUW=*/true, /*HasNSW=*/false);
4881 Pred = ICmpInst::ICMP_ULT;
4882 Changed = true;
4883 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004884 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004885 /*HasNUW=*/true, /*HasNSW=*/false);
4886 Pred = ICmpInst::ICMP_ULT;
4887 Changed = true;
4888 }
4889 break;
4890 case ICmpInst::ICMP_UGE:
4891 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004892 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004893 /*HasNUW=*/true, /*HasNSW=*/false);
4894 Pred = ICmpInst::ICMP_UGT;
4895 Changed = true;
4896 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004897 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004898 /*HasNUW=*/true, /*HasNSW=*/false);
4899 Pred = ICmpInst::ICMP_UGT;
4900 Changed = true;
4901 }
4902 break;
4903 default:
4904 break;
4905 }
4906
Dan Gohmane9796502010-04-24 01:28:42 +00004907 // TODO: More simplifications are possible here.
4908
4909 return Changed;
4910
4911trivially_true:
4912 // Return 0 == 0.
4913 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4914 Pred = ICmpInst::ICMP_EQ;
4915 return true;
4916
4917trivially_false:
4918 // Return 0 != 0.
4919 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4920 Pred = ICmpInst::ICMP_NE;
4921 return true;
4922}
4923
Dan Gohman85b05a22009-07-13 21:35:55 +00004924bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4925 return getSignedRange(S).getSignedMax().isNegative();
4926}
4927
4928bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4929 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4930}
4931
4932bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4933 return !getSignedRange(S).getSignedMin().isNegative();
4934}
4935
4936bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4937 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4938}
4939
4940bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4941 return isKnownNegative(S) || isKnownPositive(S);
4942}
4943
4944bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4945 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00004946 // Canonicalize the inputs first.
4947 (void)SimplifyICmpOperands(Pred, LHS, RHS);
4948
Dan Gohman53c66ea2010-04-11 22:16:48 +00004949 // If LHS or RHS is an addrec, check to see if the condition is true in
4950 // every iteration of the loop.
4951 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
4952 if (isLoopEntryGuardedByCond(
4953 AR->getLoop(), Pred, AR->getStart(), RHS) &&
4954 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00004955 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00004956 return true;
4957 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
4958 if (isLoopEntryGuardedByCond(
4959 AR->getLoop(), Pred, LHS, AR->getStart()) &&
4960 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00004961 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00004962 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00004963
Dan Gohman53c66ea2010-04-11 22:16:48 +00004964 // Otherwise see what can be done with known constant ranges.
4965 return isKnownPredicateWithRanges(Pred, LHS, RHS);
4966}
4967
4968bool
4969ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
4970 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004971 if (HasSameValue(LHS, RHS))
4972 return ICmpInst::isTrueWhenEqual(Pred);
4973
Dan Gohman53c66ea2010-04-11 22:16:48 +00004974 // This code is split out from isKnownPredicate because it is called from
4975 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00004976 switch (Pred) {
4977 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004978 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004979 break;
4980 case ICmpInst::ICMP_SGT:
4981 Pred = ICmpInst::ICMP_SLT;
4982 std::swap(LHS, RHS);
4983 case ICmpInst::ICMP_SLT: {
4984 ConstantRange LHSRange = getSignedRange(LHS);
4985 ConstantRange RHSRange = getSignedRange(RHS);
4986 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4987 return true;
4988 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4989 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004990 break;
4991 }
4992 case ICmpInst::ICMP_SGE:
4993 Pred = ICmpInst::ICMP_SLE;
4994 std::swap(LHS, RHS);
4995 case ICmpInst::ICMP_SLE: {
4996 ConstantRange LHSRange = getSignedRange(LHS);
4997 ConstantRange RHSRange = getSignedRange(RHS);
4998 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4999 return true;
5000 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5001 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005002 break;
5003 }
5004 case ICmpInst::ICMP_UGT:
5005 Pred = ICmpInst::ICMP_ULT;
5006 std::swap(LHS, RHS);
5007 case ICmpInst::ICMP_ULT: {
5008 ConstantRange LHSRange = getUnsignedRange(LHS);
5009 ConstantRange RHSRange = getUnsignedRange(RHS);
5010 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5011 return true;
5012 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5013 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005014 break;
5015 }
5016 case ICmpInst::ICMP_UGE:
5017 Pred = ICmpInst::ICMP_ULE;
5018 std::swap(LHS, RHS);
5019 case ICmpInst::ICMP_ULE: {
5020 ConstantRange LHSRange = getUnsignedRange(LHS);
5021 ConstantRange RHSRange = getUnsignedRange(RHS);
5022 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5023 return true;
5024 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5025 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005026 break;
5027 }
5028 case ICmpInst::ICMP_NE: {
5029 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5030 return true;
5031 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5032 return true;
5033
5034 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5035 if (isKnownNonZero(Diff))
5036 return true;
5037 break;
5038 }
5039 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005040 // The check at the top of the function catches the case where
5041 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005042 break;
5043 }
5044 return false;
5045}
5046
5047/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5048/// protected by a conditional between LHS and RHS. This is used to
5049/// to eliminate casts.
5050bool
5051ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5052 ICmpInst::Predicate Pred,
5053 const SCEV *LHS, const SCEV *RHS) {
5054 // Interpret a null as meaning no loop, where there is obviously no guard
5055 // (interprocedural conditions notwithstanding).
5056 if (!L) return true;
5057
5058 BasicBlock *Latch = L->getLoopLatch();
5059 if (!Latch)
5060 return false;
5061
5062 BranchInst *LoopContinuePredicate =
5063 dyn_cast<BranchInst>(Latch->getTerminator());
5064 if (!LoopContinuePredicate ||
5065 LoopContinuePredicate->isUnconditional())
5066 return false;
5067
Dan Gohman0f4b2852009-07-21 23:03:19 +00005068 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5069 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005070}
5071
Dan Gohman3948d0b2010-04-11 19:27:13 +00005072/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005073/// by a conditional between LHS and RHS. This is used to help avoid max
5074/// expressions in loop trip counts, and to eliminate casts.
5075bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005076ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5077 ICmpInst::Predicate Pred,
5078 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005079 // Interpret a null as meaning no loop, where there is obviously no guard
5080 // (interprocedural conditions notwithstanding).
5081 if (!L) return false;
5082
Dan Gohman859b4822009-05-18 15:36:09 +00005083 // Starting at the loop predecessor, climb up the predecessor chain, as long
5084 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005085 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005086 for (std::pair<BasicBlock *, BasicBlock *>
5087 Pair(getLoopPredecessor(L), L->getHeader());
5088 Pair.first;
5089 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005090
5091 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005092 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005093 if (!LoopEntryPredicate ||
5094 LoopEntryPredicate->isUnconditional())
5095 continue;
5096
Dan Gohman0f4b2852009-07-21 23:03:19 +00005097 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005098 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005099 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005100 }
5101
Dan Gohman38372182008-08-12 20:17:31 +00005102 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005103}
5104
Dan Gohman0f4b2852009-07-21 23:03:19 +00005105/// isImpliedCond - Test whether the condition described by Pred, LHS,
5106/// and RHS is true whenever the given Cond value evaluates to true.
5107bool ScalarEvolution::isImpliedCond(Value *CondValue,
5108 ICmpInst::Predicate Pred,
5109 const SCEV *LHS, const SCEV *RHS,
5110 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005111 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005112 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5113 if (BO->getOpcode() == Instruction::And) {
5114 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005115 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5116 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005117 } else if (BO->getOpcode() == Instruction::Or) {
5118 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005119 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5120 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005121 }
5122 }
5123
5124 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5125 if (!ICI) return false;
5126
Dan Gohman85b05a22009-07-13 21:35:55 +00005127 // Bail if the ICmp's operands' types are wider than the needed type
5128 // before attempting to call getSCEV on them. This avoids infinite
5129 // recursion, since the analysis of widening casts can require loop
5130 // exit condition information for overflow checking, which would
5131 // lead back here.
5132 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005133 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005134 return false;
5135
Dan Gohman0f4b2852009-07-21 23:03:19 +00005136 // Now that we found a conditional branch that dominates the loop, check to
5137 // see if it is the comparison we are looking for.
5138 ICmpInst::Predicate FoundPred;
5139 if (Inverse)
5140 FoundPred = ICI->getInversePredicate();
5141 else
5142 FoundPred = ICI->getPredicate();
5143
5144 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5145 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005146
5147 // Balance the types. The case where FoundLHS' type is wider than
5148 // LHS' type is checked for above.
5149 if (getTypeSizeInBits(LHS->getType()) >
5150 getTypeSizeInBits(FoundLHS->getType())) {
5151 if (CmpInst::isSigned(Pred)) {
5152 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5153 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5154 } else {
5155 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5156 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5157 }
5158 }
5159
Dan Gohman0f4b2852009-07-21 23:03:19 +00005160 // Canonicalize the query to match the way instcombine will have
5161 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005162 if (SimplifyICmpOperands(Pred, LHS, RHS))
5163 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005164 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005165 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5166 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005167 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005168
5169 // Check to see if we can make the LHS or RHS match.
5170 if (LHS == FoundRHS || RHS == FoundLHS) {
5171 if (isa<SCEVConstant>(RHS)) {
5172 std::swap(FoundLHS, FoundRHS);
5173 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5174 } else {
5175 std::swap(LHS, RHS);
5176 Pred = ICmpInst::getSwappedPredicate(Pred);
5177 }
5178 }
5179
5180 // Check whether the found predicate is the same as the desired predicate.
5181 if (FoundPred == Pred)
5182 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5183
5184 // Check whether swapping the found predicate makes it the same as the
5185 // desired predicate.
5186 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5187 if (isa<SCEVConstant>(RHS))
5188 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5189 else
5190 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5191 RHS, LHS, FoundLHS, FoundRHS);
5192 }
5193
5194 // Check whether the actual condition is beyond sufficient.
5195 if (FoundPred == ICmpInst::ICMP_EQ)
5196 if (ICmpInst::isTrueWhenEqual(Pred))
5197 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5198 return true;
5199 if (Pred == ICmpInst::ICMP_NE)
5200 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5201 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5202 return true;
5203
5204 // Otherwise assume the worst.
5205 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005206}
5207
Dan Gohman0f4b2852009-07-21 23:03:19 +00005208/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005209/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005210/// and FoundRHS is true.
5211bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5212 const SCEV *LHS, const SCEV *RHS,
5213 const SCEV *FoundLHS,
5214 const SCEV *FoundRHS) {
5215 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5216 FoundLHS, FoundRHS) ||
5217 // ~x < ~y --> x > y
5218 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5219 getNotSCEV(FoundRHS),
5220 getNotSCEV(FoundLHS));
5221}
5222
5223/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005224/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005225/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005226bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005227ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5228 const SCEV *LHS, const SCEV *RHS,
5229 const SCEV *FoundLHS,
5230 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005231 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005232 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5233 case ICmpInst::ICMP_EQ:
5234 case ICmpInst::ICMP_NE:
5235 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5236 return true;
5237 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005238 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005239 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005240 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5241 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005242 return true;
5243 break;
5244 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005245 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005246 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5247 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005248 return true;
5249 break;
5250 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005251 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005252 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5253 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005254 return true;
5255 break;
5256 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005257 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005258 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5259 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005260 return true;
5261 break;
5262 }
5263
5264 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005265}
5266
Dan Gohman51f53b72009-06-21 23:46:38 +00005267/// getBECount - Subtract the end and start values and divide by the step,
5268/// rounding up, to get the number of times the backedge is executed. Return
5269/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005270const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005271 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005272 const SCEV *Step,
5273 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005274 assert(!isKnownNegative(Step) &&
5275 "This code doesn't handle negative strides yet!");
5276
Dan Gohman51f53b72009-06-21 23:46:38 +00005277 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005278 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005279 const SCEV *Diff = getMinusSCEV(End, Start);
5280 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005281
5282 // Add an adjustment to the difference between End and Start so that
5283 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005284 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005285
Dan Gohman1f96e672009-09-17 18:05:20 +00005286 if (!NoWrap) {
5287 // Check Add for unsigned overflow.
5288 // TODO: More sophisticated things could be done here.
5289 const Type *WideTy = IntegerType::get(getContext(),
5290 getTypeSizeInBits(Ty) + 1);
5291 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5292 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5293 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5294 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5295 return getCouldNotCompute();
5296 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005297
5298 return getUDivExpr(Add, Step);
5299}
5300
Chris Lattnerdb25de42005-08-15 23:33:51 +00005301/// HowManyLessThans - Return the number of times a backedge containing the
5302/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005303/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005304ScalarEvolution::BackedgeTakenInfo
5305ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5306 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005307 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005308 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005309
Dan Gohman35738ac2009-05-04 22:30:44 +00005310 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005311 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005312 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005313
Dan Gohman1f96e672009-09-17 18:05:20 +00005314 // Check to see if we have a flag which makes analysis easy.
5315 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5316 AddRec->hasNoUnsignedWrap();
5317
Chris Lattnerdb25de42005-08-15 23:33:51 +00005318 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005319 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005320 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005321
Dan Gohman52fddd32010-01-26 04:40:18 +00005322 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005323 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005324 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005325 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005326 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005327 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005328 // value and past the maximum value for its type in a single step.
5329 // Note that it's not sufficient to check NoWrap here, because even
5330 // though the value after a wrap is undefined, it's not undefined
5331 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005332 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005333 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005334 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005335 if (isSigned) {
5336 APInt Max = APInt::getSignedMaxValue(BitWidth);
5337 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5338 .slt(getSignedRange(RHS).getSignedMax()))
5339 return getCouldNotCompute();
5340 } else {
5341 APInt Max = APInt::getMaxValue(BitWidth);
5342 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5343 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5344 return getCouldNotCompute();
5345 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005346 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005347 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005348 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005349
Dan Gohmana1af7572009-04-30 20:47:05 +00005350 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5351 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5352 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005353 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005354
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005355 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005356 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005357
Dan Gohmana1af7572009-04-30 20:47:05 +00005358 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005359 const SCEV *MinStart = getConstant(isSigned ?
5360 getSignedRange(Start).getSignedMin() :
5361 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005362
Dan Gohmana1af7572009-04-30 20:47:05 +00005363 // If we know that the condition is true in order to enter the loop,
5364 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005365 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5366 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005367 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005368 if (!isLoopEntryGuardedByCond(L,
5369 isSigned ? ICmpInst::ICMP_SLT :
5370 ICmpInst::ICMP_ULT,
5371 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005372 End = isSigned ? getSMaxExpr(RHS, Start)
5373 : getUMaxExpr(RHS, Start);
5374
5375 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005376 const SCEV *MaxEnd = getConstant(isSigned ?
5377 getSignedRange(End).getSignedMax() :
5378 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005379
Dan Gohman52fddd32010-01-26 04:40:18 +00005380 // If MaxEnd is within a step of the maximum integer value in its type,
5381 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005382 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005383 // compute the correct value.
5384 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005385 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005386 MaxEnd = isSigned ?
5387 getSMinExpr(MaxEnd,
5388 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5389 StepMinusOne)) :
5390 getUMinExpr(MaxEnd,
5391 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5392 StepMinusOne));
5393
Dan Gohmana1af7572009-04-30 20:47:05 +00005394 // Finally, we subtract these two values and divide, rounding up, to get
5395 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005396 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005397
5398 // The maximum backedge count is similar, except using the minimum start
5399 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005400 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005401
5402 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005403 }
5404
Dan Gohman1c343752009-06-27 21:21:31 +00005405 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005406}
5407
Chris Lattner53e677a2004-04-02 20:23:17 +00005408/// getNumIterationsInRange - Return the number of iterations of this loop that
5409/// produce values in the specified constant range. Another way of looking at
5410/// this is that it returns the first iteration number where the value is not in
5411/// the condition, thus computing the exit count. If the iteration count can't
5412/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005413const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005414 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005416 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005417
5418 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005419 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005420 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005421 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005422 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005423 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005424 if (const SCEVAddRecExpr *ShiftedAddRec =
5425 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005426 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005427 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005428 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005429 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005430 }
5431
5432 // The only time we can solve this is when we have all constant indices.
5433 // Otherwise, we cannot determine the overflow conditions.
5434 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5435 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005436 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005437
5438
5439 // Okay at this point we know that all elements of the chrec are constants and
5440 // that the start element is zero.
5441
5442 // First check to see if the range contains zero. If not, the first
5443 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005444 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005445 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005446 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005447
Chris Lattner53e677a2004-04-02 20:23:17 +00005448 if (isAffine()) {
5449 // If this is an affine expression then we have this situation:
5450 // Solve {0,+,A} in Range === Ax in Range
5451
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005452 // We know that zero is in the range. If A is positive then we know that
5453 // the upper value of the range must be the first possible exit value.
5454 // If A is negative then the lower of the range is the last possible loop
5455 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005456 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005457 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5458 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005459
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005460 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005461 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005462 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005463
5464 // Evaluate at the exit value. If we really did fall out of the valid
5465 // range, then we computed our trip count, otherwise wrap around or other
5466 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005467 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005468 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005469 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005470
5471 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005472 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005473 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005474 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005475 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005476 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005477 } else if (isQuadratic()) {
5478 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5479 // quadratic equation to solve it. To do this, we must frame our problem in
5480 // terms of figuring out when zero is crossed, instead of when
5481 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005482 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005483 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005484 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005485
5486 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005487 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005488 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005489 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5490 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005491 if (R1) {
5492 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005493 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005494 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005495 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005496 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005497 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005498
Chris Lattner53e677a2004-04-02 20:23:17 +00005499 // Make sure the root is not off by one. The returned iteration should
5500 // not be in the range, but the previous one should be. When solving
5501 // for "X*X < 5", for example, we should not return a root of 2.
5502 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005503 R1->getValue(),
5504 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005505 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005506 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005507 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005508 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005509
Dan Gohman246b2562007-10-22 18:31:58 +00005510 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005511 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005512 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005513 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005514 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005515
Chris Lattner53e677a2004-04-02 20:23:17 +00005516 // If R1 was not in the range, then it is a good return value. Make
5517 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005518 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005519 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005520 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005521 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005522 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005523 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005524 }
5525 }
5526 }
5527
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005528 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005529}
5530
5531
5532
5533//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005534// SCEVCallbackVH Class Implementation
5535//===----------------------------------------------------------------------===//
5536
Dan Gohman1959b752009-05-19 19:22:47 +00005537void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005538 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005539 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5540 SE->ConstantEvolutionLoopExitValue.erase(PN);
5541 SE->Scalars.erase(getValPtr());
5542 // this now dangles!
5543}
5544
Dan Gohman1959b752009-05-19 19:22:47 +00005545void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005546 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005547
5548 // Forget all the expressions associated with users of the old value,
5549 // so that future queries will recompute the expressions using the new
5550 // value.
5551 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005552 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005553 Value *Old = getValPtr();
5554 bool DeleteOld = false;
5555 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5556 UI != UE; ++UI)
5557 Worklist.push_back(*UI);
5558 while (!Worklist.empty()) {
5559 User *U = Worklist.pop_back_val();
5560 // Deleting the Old value will cause this to dangle. Postpone
5561 // that until everything else is done.
5562 if (U == Old) {
5563 DeleteOld = true;
5564 continue;
5565 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005566 if (!Visited.insert(U))
5567 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005568 if (PHINode *PN = dyn_cast<PHINode>(U))
5569 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005570 SE->Scalars.erase(U);
5571 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5572 UI != UE; ++UI)
5573 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005574 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005575 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005576 if (DeleteOld) {
5577 if (PHINode *PN = dyn_cast<PHINode>(Old))
5578 SE->ConstantEvolutionLoopExitValue.erase(PN);
5579 SE->Scalars.erase(Old);
5580 // this now dangles!
5581 }
5582 // this may dangle!
5583}
5584
Dan Gohman1959b752009-05-19 19:22:47 +00005585ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005586 : CallbackVH(V), SE(se) {}
5587
5588//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005589// ScalarEvolution Class Implementation
5590//===----------------------------------------------------------------------===//
5591
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005592ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005593 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005594}
5595
Chris Lattner53e677a2004-04-02 20:23:17 +00005596bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005597 this->F = &F;
5598 LI = &getAnalysis<LoopInfo>();
5599 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005600 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005601 return false;
5602}
5603
5604void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005605 Scalars.clear();
5606 BackedgeTakenCounts.clear();
5607 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005608 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005609 UniqueSCEVs.clear();
5610 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005611}
5612
5613void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5614 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005615 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005616 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005617}
5618
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005619bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005620 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005621}
5622
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005623static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005624 const Loop *L) {
5625 // Print all inner loops first
5626 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5627 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005628
Dan Gohman30733292010-01-09 18:17:45 +00005629 OS << "Loop ";
5630 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5631 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005632
Dan Gohman5d984912009-12-18 01:14:11 +00005633 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005634 L->getExitBlocks(ExitBlocks);
5635 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005636 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005637
Dan Gohman46bdfb02009-02-24 18:55:53 +00005638 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5639 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005640 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005641 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005642 }
5643
Dan Gohman30733292010-01-09 18:17:45 +00005644 OS << "\n"
5645 "Loop ";
5646 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5647 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005648
5649 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5650 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5651 } else {
5652 OS << "Unpredictable max backedge-taken count. ";
5653 }
5654
5655 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005656}
5657
Dan Gohman5d984912009-12-18 01:14:11 +00005658void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005659 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005660 // out SCEV values of all instructions that are interesting. Doing
5661 // this potentially causes it to create new SCEV objects though,
5662 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005663 // observable from outside the class though, so casting away the
5664 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005665 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005666
Dan Gohman30733292010-01-09 18:17:45 +00005667 OS << "Classifying expressions for: ";
5668 WriteAsOperand(OS, F, /*PrintType=*/false);
5669 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005671 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005672 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005673 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005674 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005675 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005676
Dan Gohman0c689c52009-06-19 17:49:54 +00005677 const Loop *L = LI->getLoopFor((*I).getParent());
5678
Dan Gohman0bba49c2009-07-07 17:06:11 +00005679 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005680 if (AtUse != SV) {
5681 OS << " --> ";
5682 AtUse->print(OS);
5683 }
5684
5685 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005686 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005687 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005688 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005689 OS << "<<Unknown>>";
5690 } else {
5691 OS << *ExitValue;
5692 }
5693 }
5694
Chris Lattner53e677a2004-04-02 20:23:17 +00005695 OS << "\n";
5696 }
5697
Dan Gohman30733292010-01-09 18:17:45 +00005698 OS << "Determining loop execution counts for: ";
5699 WriteAsOperand(OS, F, /*PrintType=*/false);
5700 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005701 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5702 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005703}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005704