blob: 389dc573700a7df323286f9b9453eb5a92859428 [file] [log] [blame]
Chris Lattnerd6b65252001-10-24 01:15:12 +00001//===- Reader.cpp - Code to read bytecode files ---------------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +00009//
10// This library implements the functionality defined in llvm/Bytecode/Reader.h
11//
12// Note that this library should be as fast as possible, reentrant, and
13// threadsafe!!
14//
Chris Lattner00950542001-06-06 20:29:01 +000015// TODO: Allow passing in an option to ignore the symbol table
16//
Chris Lattnerd6b65252001-10-24 01:15:12 +000017//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +000018
Reid Spencer060d25d2004-06-29 23:29:38 +000019#include "Reader.h"
20#include "llvm/Bytecode/BytecodeHandler.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/Constants.h"
Reid Spencer04cde2c2004-07-04 11:33:49 +000023#include "llvm/Instructions.h"
24#include "llvm/SymbolTable.h"
Chris Lattner00950542001-06-06 20:29:01 +000025#include "llvm/Bytecode/Format.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000026#include "llvm/Support/GetElementPtrTypeIterator.h"
Misha Brukman12c29d12003-09-22 23:38:23 +000027#include "Support/StringExtras.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000028#include <sstream>
29
Chris Lattner29b789b2003-11-19 17:27:18 +000030using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000031
Reid Spencer46b002c2004-07-11 17:28:43 +000032namespace {
33
Reid Spencer060d25d2004-06-29 23:29:38 +000034/// @brief A class for maintaining the slot number definition
Reid Spencer46b002c2004-07-11 17:28:43 +000035/// as a placeholder for the actual definition for forward constants defs.
36class ConstantPlaceHolder : public ConstantExpr {
Reid Spencer060d25d2004-06-29 23:29:38 +000037 unsigned ID;
Reid Spencer46b002c2004-07-11 17:28:43 +000038 ConstantPlaceHolder(); // DO NOT IMPLEMENT
39 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
Reid Spencer060d25d2004-06-29 23:29:38 +000040public:
Reid Spencer46b002c2004-07-11 17:28:43 +000041 ConstantPlaceHolder(const Type *Ty, unsigned id)
42 : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty),
43 ID(id) {}
Reid Spencer060d25d2004-06-29 23:29:38 +000044 unsigned getID() { return ID; }
45};
Chris Lattner9e460f22003-10-04 20:00:03 +000046
Reid Spencer46b002c2004-07-11 17:28:43 +000047}
Reid Spencer060d25d2004-06-29 23:29:38 +000048
Reid Spencer24399722004-07-09 22:21:33 +000049// Provide some details on error
50inline void BytecodeReader::error(std::string err) {
51 err += " (Vers=" ;
52 err += itostr(RevisionNum) ;
53 err += ", Pos=" ;
54 err += itostr(At-MemStart);
55 err += ")";
56 throw err;
57}
58
Reid Spencer060d25d2004-06-29 23:29:38 +000059//===----------------------------------------------------------------------===//
60// Bytecode Reading Methods
61//===----------------------------------------------------------------------===//
62
Reid Spencer04cde2c2004-07-04 11:33:49 +000063/// Determine if the current block being read contains any more data.
Reid Spencer060d25d2004-06-29 23:29:38 +000064inline bool BytecodeReader::moreInBlock() {
65 return At < BlockEnd;
Chris Lattner00950542001-06-06 20:29:01 +000066}
67
Reid Spencer04cde2c2004-07-04 11:33:49 +000068/// Throw an error if we've read past the end of the current block
Reid Spencer060d25d2004-06-29 23:29:38 +000069inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
Reid Spencer46b002c2004-07-11 17:28:43 +000070 if (At > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000071 error(std::string("Attempt to read past the end of ") + block_name + " block.");
Reid Spencer060d25d2004-06-29 23:29:38 +000072}
Chris Lattner36392bc2003-10-08 21:18:57 +000073
Reid Spencer04cde2c2004-07-04 11:33:49 +000074/// Align the buffer position to a 32 bit boundary
Reid Spencer060d25d2004-06-29 23:29:38 +000075inline void BytecodeReader::align32() {
76 BufPtr Save = At;
77 At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
Reid Spencer46b002c2004-07-11 17:28:43 +000078 if (At > Save)
79 if (Handler) Handler->handleAlignment(At - Save);
Reid Spencer060d25d2004-06-29 23:29:38 +000080 if (At > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000081 error("Ran out of data while aligning!");
Reid Spencer060d25d2004-06-29 23:29:38 +000082}
83
Reid Spencer04cde2c2004-07-04 11:33:49 +000084/// Read a whole unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000085inline unsigned BytecodeReader::read_uint() {
86 if (At+4 > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000087 error("Ran out of data reading uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +000088 At += 4;
89 return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
90}
91
Reid Spencer04cde2c2004-07-04 11:33:49 +000092/// Read a variable-bit-rate encoded unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000093inline unsigned BytecodeReader::read_vbr_uint() {
94 unsigned Shift = 0;
95 unsigned Result = 0;
96 BufPtr Save = At;
97
98 do {
99 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000100 error("Ran out of data reading vbr_uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000101 Result |= (unsigned)((*At++) & 0x7F) << Shift;
102 Shift += 7;
103 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000104 if (Handler) Handler->handleVBR32(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000105 return Result;
106}
107
Reid Spencer04cde2c2004-07-04 11:33:49 +0000108/// Read a variable-bit-rate encoded unsigned 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000109inline uint64_t BytecodeReader::read_vbr_uint64() {
110 unsigned Shift = 0;
111 uint64_t Result = 0;
112 BufPtr Save = At;
113
114 do {
115 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000116 error("Ran out of data reading vbr_uint64!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000117 Result |= (uint64_t)((*At++) & 0x7F) << Shift;
118 Shift += 7;
119 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000120 if (Handler) Handler->handleVBR64(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000121 return Result;
122}
123
Reid Spencer04cde2c2004-07-04 11:33:49 +0000124/// Read a variable-bit-rate encoded signed 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000125inline int64_t BytecodeReader::read_vbr_int64() {
126 uint64_t R = read_vbr_uint64();
127 if (R & 1) {
128 if (R != 1)
129 return -(int64_t)(R >> 1);
130 else // There is no such thing as -0 with integers. "-0" really means
131 // 0x8000000000000000.
132 return 1LL << 63;
133 } else
134 return (int64_t)(R >> 1);
135}
136
Reid Spencer04cde2c2004-07-04 11:33:49 +0000137/// Read a pascal-style string (length followed by text)
Reid Spencer060d25d2004-06-29 23:29:38 +0000138inline std::string BytecodeReader::read_str() {
139 unsigned Size = read_vbr_uint();
140 const unsigned char *OldAt = At;
141 At += Size;
142 if (At > BlockEnd) // Size invalid?
Reid Spencer24399722004-07-09 22:21:33 +0000143 error("Ran out of data reading a string!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000144 return std::string((char*)OldAt, Size);
145}
146
Reid Spencer04cde2c2004-07-04 11:33:49 +0000147/// Read an arbitrary block of data
Reid Spencer060d25d2004-06-29 23:29:38 +0000148inline void BytecodeReader::read_data(void *Ptr, void *End) {
149 unsigned char *Start = (unsigned char *)Ptr;
150 unsigned Amount = (unsigned char *)End - Start;
151 if (At+Amount > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000152 error("Ran out of data!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000153 std::copy(At, At+Amount, Start);
154 At += Amount;
155}
156
Reid Spencer46b002c2004-07-11 17:28:43 +0000157/// Read a float value in little-endian order
158inline void BytecodeReader::read_float(float& FloatVal) {
159 /// FIXME: This is a broken implementation! It reads
160 /// it in a platform-specific endianess. Need to make
161 /// it little endian always.
162 read_data(&FloatVal, &FloatVal+1);
163}
164
165/// Read a double value in little-endian order
166inline void BytecodeReader::read_double(double& DoubleVal) {
167 /// FIXME: This is a broken implementation! It reads
168 /// it in a platform-specific endianess. Need to make
169 /// it little endian always.
170 read_data(&DoubleVal, &DoubleVal+1);
171}
172
Reid Spencer04cde2c2004-07-04 11:33:49 +0000173/// Read a block header and obtain its type and size
Reid Spencer060d25d2004-06-29 23:29:38 +0000174inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
175 Type = read_uint();
176 Size = read_uint();
177 BlockStart = At;
Reid Spencer46b002c2004-07-11 17:28:43 +0000178 if (At + Size > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000179 error("Attempt to size a block past end of memory");
Reid Spencer060d25d2004-06-29 23:29:38 +0000180 BlockEnd = At + Size;
Reid Spencer46b002c2004-07-11 17:28:43 +0000181 if (Handler) Handler->handleBlock(Type, BlockStart, Size);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000182}
183
184
185/// In LLVM 1.2 and before, Types were derived from Value and so they were
186/// written as part of the type planes along with any other Value. In LLVM
187/// 1.3 this changed so that Type does not derive from Value. Consequently,
188/// the BytecodeReader's containers for Values can't contain Types because
189/// there's no inheritance relationship. This means that the "Type Type"
190/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
191/// whenever a bytecode construct must have both types and values together,
192/// the types are always read/written first and then the Values. Furthermore
193/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
194/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
195/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
196/// For LLVM 1.2 and before, this function will decrement the type id by
197/// one to account for the missing Type::TypeTyID enumerator if the value is
198/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
199/// function returns true, otherwise false. This helps detect situations
200/// where the pre 1.3 bytecode is indicating that what follows is a type.
201/// @returns true iff type id corresponds to pre 1.3 "type type"
Reid Spencer46b002c2004-07-11 17:28:43 +0000202inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
203 if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
204 if (TypeId == Type::LabelTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000205 TypeId = Type::VoidTyID; // sanitize it
206 return true; // indicate we got TypeTyID in pre 1.3 bytecode
Reid Spencer46b002c2004-07-11 17:28:43 +0000207 } else if (TypeId > Type::LabelTyID)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000208 --TypeId; // shift all planes down because type type plane is missing
209 }
210 return false;
211}
212
213/// Reads a vbr uint to read in a type id and does the necessary
214/// conversion on it by calling sanitizeTypeId.
215/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
216/// @see sanitizeTypeId
217inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
218 TypeId = read_vbr_uint();
219 return sanitizeTypeId(TypeId);
Reid Spencer060d25d2004-06-29 23:29:38 +0000220}
221
222//===----------------------------------------------------------------------===//
223// IR Lookup Methods
224//===----------------------------------------------------------------------===//
225
Reid Spencer04cde2c2004-07-04 11:33:49 +0000226/// Determine if a type id has an implicit null value
Reid Spencer46b002c2004-07-11 17:28:43 +0000227inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000228 if (!hasExplicitPrimitiveZeros)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000229 return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
Reid Spencer060d25d2004-06-29 23:29:38 +0000230 return TyID >= Type::FirstDerivedTyID;
231}
232
Reid Spencer04cde2c2004-07-04 11:33:49 +0000233/// Obtain a type given a typeid and account for things like compaction tables,
234/// function level vs module level, and the offsetting for the primitive types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000235const Type *BytecodeReader::getType(unsigned ID) {
Chris Lattner89e02532004-01-18 21:08:15 +0000236 if (ID < Type::FirstDerivedTyID)
Chris Lattnerf70c22b2004-06-17 18:19:28 +0000237 if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
Chris Lattner927b1852003-10-09 20:22:47 +0000238 return T; // Asked for a primitive type...
Chris Lattner36392bc2003-10-08 21:18:57 +0000239
240 // Otherwise, derived types need offset...
Chris Lattner89e02532004-01-18 21:08:15 +0000241 ID -= Type::FirstDerivedTyID;
242
Reid Spencer060d25d2004-06-29 23:29:38 +0000243 if (!CompactionTypes.empty()) {
244 if (ID >= CompactionTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000245 error("Type ID out of range for compaction table!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000246 return CompactionTypes[ID];
Chris Lattner89e02532004-01-18 21:08:15 +0000247 }
Chris Lattner36392bc2003-10-08 21:18:57 +0000248
249 // Is it a module-level type?
Reid Spencer46b002c2004-07-11 17:28:43 +0000250 if (ID < ModuleTypes.size())
251 return ModuleTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000252
Reid Spencer46b002c2004-07-11 17:28:43 +0000253 // Nope, is it a function-level type?
254 ID -= ModuleTypes.size();
255 if (ID < FunctionTypes.size())
256 return FunctionTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000257
Reid Spencer46b002c2004-07-11 17:28:43 +0000258 error("Illegal type reference!");
259 return Type::VoidTy;
Chris Lattner00950542001-06-06 20:29:01 +0000260}
261
Reid Spencer04cde2c2004-07-04 11:33:49 +0000262/// Get a sanitized type id. This just makes sure that the \p ID
263/// is both sanitized and not the "type type" of pre-1.3 bytecode.
264/// @see sanitizeTypeId
265inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
Reid Spencer46b002c2004-07-11 17:28:43 +0000266 if (sanitizeTypeId(ID))
Reid Spencer24399722004-07-09 22:21:33 +0000267 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000268 return getType(ID);
269}
270
271/// This method just saves some coding. It uses read_typeid to read
Reid Spencer24399722004-07-09 22:21:33 +0000272/// in a sanitized type id, errors that its not the type type, and
Reid Spencer04cde2c2004-07-04 11:33:49 +0000273/// then calls getType to return the type value.
274inline const Type* BytecodeReader::readSanitizedType() {
275 unsigned ID;
Reid Spencer46b002c2004-07-11 17:28:43 +0000276 if (read_typeid(ID))
277 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000278 return getType(ID);
279}
280
281/// Get the slot number associated with a type accounting for primitive
282/// types, compaction tables, and function level vs module level.
Reid Spencer060d25d2004-06-29 23:29:38 +0000283unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
284 if (Ty->isPrimitiveType())
285 return Ty->getTypeID();
286
287 // Scan the compaction table for the type if needed.
288 if (!CompactionTypes.empty()) {
Reid Spencer46b002c2004-07-11 17:28:43 +0000289 std::vector<const Type*>::const_iterator I =
290 find(CompactionTypes.begin(), CompactionTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000291
Reid Spencer46b002c2004-07-11 17:28:43 +0000292 if (I == CompactionTypes.end())
293 error("Couldn't find type specified in compaction table!");
294 return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +0000295 }
296
297 // Check the function level types first...
298 TypeListTy::iterator I = find(FunctionTypes.begin(), FunctionTypes.end(), Ty);
299
300 if (I != FunctionTypes.end())
Reid Spencer46b002c2004-07-11 17:28:43 +0000301 return Type::FirstDerivedTyID + ModuleTypes.size() +
302 (&*I - &FunctionTypes[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +0000303
304 // Check the module level types now...
305 I = find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
306 if (I == ModuleTypes.end())
Reid Spencer24399722004-07-09 22:21:33 +0000307 error("Didn't find type in ModuleTypes.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000308 return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
Chris Lattner80b97342004-01-17 23:25:43 +0000309}
310
Reid Spencer04cde2c2004-07-04 11:33:49 +0000311/// This is just like getType, but when a compaction table is in use, it is
312/// ignored. It also ignores function level types.
313/// @see getType
Reid Spencer060d25d2004-06-29 23:29:38 +0000314const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
315 if (Slot < Type::FirstDerivedTyID) {
316 const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
Reid Spencer46b002c2004-07-11 17:28:43 +0000317 if (!Ty)
Reid Spencer24399722004-07-09 22:21:33 +0000318 error("Not a primitive type ID?");
Reid Spencer060d25d2004-06-29 23:29:38 +0000319 return Ty;
320 }
321 Slot -= Type::FirstDerivedTyID;
322 if (Slot >= ModuleTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000323 error("Illegal compaction table type reference!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000324 return ModuleTypes[Slot];
Chris Lattner52e20b02003-03-19 20:54:26 +0000325}
326
Reid Spencer04cde2c2004-07-04 11:33:49 +0000327/// This is just like getTypeSlot, but when a compaction table is in use, it
328/// is ignored. It also ignores function level types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000329unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
330 if (Ty->isPrimitiveType())
331 return Ty->getTypeID();
332 TypeListTy::iterator I = find(ModuleTypes.begin(),
Reid Spencer04cde2c2004-07-04 11:33:49 +0000333 ModuleTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000334 if (I == ModuleTypes.end())
Reid Spencer24399722004-07-09 22:21:33 +0000335 error("Didn't find type in ModuleTypes.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000336 return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
337}
338
Reid Spencer04cde2c2004-07-04 11:33:49 +0000339/// Retrieve a value of a given type and slot number, possibly creating
340/// it if it doesn't already exist.
Reid Spencer060d25d2004-06-29 23:29:38 +0000341Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000342 assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
Chris Lattner00950542001-06-06 20:29:01 +0000343 unsigned Num = oNum;
Chris Lattner00950542001-06-06 20:29:01 +0000344
Chris Lattner89e02532004-01-18 21:08:15 +0000345 // If there is a compaction table active, it defines the low-level numbers.
346 // If not, the module values define the low-level numbers.
Reid Spencer060d25d2004-06-29 23:29:38 +0000347 if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
348 if (Num < CompactionValues[type].size())
349 return CompactionValues[type][Num];
350 Num -= CompactionValues[type].size();
Chris Lattner89e02532004-01-18 21:08:15 +0000351 } else {
Reid Spencer060d25d2004-06-29 23:29:38 +0000352 // By default, the global type id is the type id passed in
Chris Lattner52f86d62004-01-20 00:54:06 +0000353 unsigned GlobalTyID = type;
Reid Spencer060d25d2004-06-29 23:29:38 +0000354
355 // If the type plane was compactified, figure out the global type ID
356 // by adding the derived type ids and the distance.
Reid Spencer04cde2c2004-07-04 11:33:49 +0000357 if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000358 const Type *Ty = CompactionTypes[type-Type::FirstDerivedTyID];
359 TypeListTy::iterator I =
Reid Spencer04cde2c2004-07-04 11:33:49 +0000360 find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000361 assert(I != ModuleTypes.end());
362 GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
Chris Lattner52f86d62004-01-20 00:54:06 +0000363 }
Chris Lattner00950542001-06-06 20:29:01 +0000364
Reid Spencer060d25d2004-06-29 23:29:38 +0000365 if (hasImplicitNull(GlobalTyID)) {
Chris Lattner89e02532004-01-18 21:08:15 +0000366 if (Num == 0)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000367 return Constant::getNullValue(getType(type));
Chris Lattner89e02532004-01-18 21:08:15 +0000368 --Num;
369 }
370
Chris Lattner52f86d62004-01-20 00:54:06 +0000371 if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
372 if (Num < ModuleValues[GlobalTyID]->size())
Reid Spencer04cde2c2004-07-04 11:33:49 +0000373 return ModuleValues[GlobalTyID]->getOperand(Num);
Chris Lattner52f86d62004-01-20 00:54:06 +0000374 Num -= ModuleValues[GlobalTyID]->size();
Chris Lattner89e02532004-01-18 21:08:15 +0000375 }
Chris Lattner52e20b02003-03-19 20:54:26 +0000376 }
377
Reid Spencer060d25d2004-06-29 23:29:38 +0000378 if (FunctionValues.size() > type &&
379 FunctionValues[type] &&
380 Num < FunctionValues[type]->size())
381 return FunctionValues[type]->getOperand(Num);
Chris Lattner00950542001-06-06 20:29:01 +0000382
Chris Lattner74734132002-08-17 22:01:27 +0000383 if (!Create) return 0; // Do not create a placeholder?
Chris Lattner00950542001-06-06 20:29:01 +0000384
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000385 std::pair<unsigned,unsigned> KeyValue(type, oNum);
Reid Spencer060d25d2004-06-29 23:29:38 +0000386 ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000387 if (I != ForwardReferences.end() && I->first == KeyValue)
388 return I->second; // We have already created this placeholder
389
Chris Lattnerbf43ac62003-10-09 06:14:26 +0000390 Value *Val = new Argument(getType(type));
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000391 ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
Chris Lattner36392bc2003-10-08 21:18:57 +0000392 return Val;
Chris Lattner00950542001-06-06 20:29:01 +0000393}
394
Reid Spencer04cde2c2004-07-04 11:33:49 +0000395/// This is just like getValue, but when a compaction table is in use, it
396/// is ignored. Also, no forward references or other fancy features are
397/// supported.
Reid Spencer060d25d2004-06-29 23:29:38 +0000398Value* BytecodeReader::getGlobalTableValue(const Type *Ty, unsigned SlotNo) {
399 // FIXME: getTypeSlot is inefficient!
400 unsigned TyID = getGlobalTableTypeSlot(Ty);
401
402 if (TyID != Type::LabelTyID) {
403 if (SlotNo == 0)
404 return Constant::getNullValue(Ty);
405 --SlotNo;
406 }
407
408 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
409 SlotNo >= ModuleValues[TyID]->size()) {
Reid Spencer24399722004-07-09 22:21:33 +0000410 error("Corrupt compaction table entry!"
411 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
Reid Spencer46b002c2004-07-11 17:28:43 +0000412 + utostr(ModuleValues.size()) + ", "
Brian Gaeke0859e522004-07-13 07:37:43 +0000413 + utohexstr(intptr_t((void*)ModuleValues[TyID])) + ", "
Reid Spencer46b002c2004-07-11 17:28:43 +0000414 + utostr(ModuleValues[TyID]->size()));
Reid Spencer060d25d2004-06-29 23:29:38 +0000415 }
416 return ModuleValues[TyID]->getOperand(SlotNo);
417}
418
Reid Spencer04cde2c2004-07-04 11:33:49 +0000419/// Just like getValue, except that it returns a null pointer
420/// only on error. It always returns a constant (meaning that if the value is
421/// defined, but is not a constant, that is an error). If the specified
422/// constant hasn't been parsed yet, a placeholder is defined and used.
423/// Later, after the real value is parsed, the placeholder is eliminated.
Reid Spencer060d25d2004-06-29 23:29:38 +0000424Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
425 if (Value *V = getValue(TypeSlot, Slot, false))
426 if (Constant *C = dyn_cast<Constant>(V))
427 return C; // If we already have the value parsed, just return it
428 else if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
429 // ConstantPointerRef's are an abomination, but at least they don't have
430 // to infest bytecode files.
431 return ConstantPointerRef::get(GV);
432 else
Reid Spencer24399722004-07-09 22:21:33 +0000433 error("Reference of a value is expected to be a constant!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000434
435 const Type *Ty = getType(TypeSlot);
436 std::pair<const Type*, unsigned> Key(Ty, Slot);
437 ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
438
439 if (I != ConstantFwdRefs.end() && I->first == Key) {
440 return I->second;
441 } else {
442 // Create a placeholder for the constant reference and
443 // keep track of the fact that we have a forward ref to recycle it
Reid Spencer46b002c2004-07-11 17:28:43 +0000444 Constant *C = new ConstantPlaceHolder(Ty, Slot);
Reid Spencer060d25d2004-06-29 23:29:38 +0000445
446 // Keep track of the fact that we have a forward ref to recycle it
447 ConstantFwdRefs.insert(I, std::make_pair(Key, C));
448 return C;
449 }
450}
451
452//===----------------------------------------------------------------------===//
453// IR Construction Methods
454//===----------------------------------------------------------------------===//
455
Reid Spencer04cde2c2004-07-04 11:33:49 +0000456/// As values are created, they are inserted into the appropriate place
457/// with this method. The ValueTable argument must be one of ModuleValues
458/// or FunctionValues data members of this class.
Reid Spencer46b002c2004-07-11 17:28:43 +0000459unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
460 ValueTable &ValueTab) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000461 assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
Reid Spencer04cde2c2004-07-04 11:33:49 +0000462 !hasImplicitNull(type) &&
463 "Cannot read null values from bytecode!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000464
465 if (ValueTab.size() <= type)
466 ValueTab.resize(type+1);
467
468 if (!ValueTab[type]) ValueTab[type] = new ValueList();
469
470 ValueTab[type]->push_back(Val);
471
472 bool HasOffset = hasImplicitNull(type);
473 return ValueTab[type]->size()-1 + HasOffset;
474}
475
Reid Spencer04cde2c2004-07-04 11:33:49 +0000476/// Insert the arguments of a function as new values in the reader.
Reid Spencer46b002c2004-07-11 17:28:43 +0000477void BytecodeReader::insertArguments(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000478 const FunctionType *FT = F->getFunctionType();
479 Function::aiterator AI = F->abegin();
480 for (FunctionType::param_iterator It = FT->param_begin();
481 It != FT->param_end(); ++It, ++AI)
482 insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
483}
484
485//===----------------------------------------------------------------------===//
486// Bytecode Parsing Methods
487//===----------------------------------------------------------------------===//
488
Reid Spencer04cde2c2004-07-04 11:33:49 +0000489/// This method parses a single instruction. The instruction is
490/// inserted at the end of the \p BB provided. The arguments of
491/// the instruction are provided in the \p Args vector.
Reid Spencer060d25d2004-06-29 23:29:38 +0000492void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Reid Spencer46b002c2004-07-11 17:28:43 +0000493 BasicBlock* BB) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000494 BufPtr SaveAt = At;
495
496 // Clear instruction data
497 Oprnds.clear();
498 unsigned iType = 0;
499 unsigned Opcode = 0;
500 unsigned Op = read_uint();
501
502 // bits Instruction format: Common to all formats
503 // --------------------------
504 // 01-00: Opcode type, fixed to 1.
505 // 07-02: Opcode
506 Opcode = (Op >> 2) & 63;
507 Oprnds.resize((Op >> 0) & 03);
508
509 // Extract the operands
510 switch (Oprnds.size()) {
511 case 1:
512 // bits Instruction format:
513 // --------------------------
514 // 19-08: Resulting type plane
515 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
516 //
517 iType = (Op >> 8) & 4095;
518 Oprnds[0] = (Op >> 20) & 4095;
519 if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
520 Oprnds.resize(0);
521 break;
522 case 2:
523 // bits Instruction format:
524 // --------------------------
525 // 15-08: Resulting type plane
526 // 23-16: Operand #1
527 // 31-24: Operand #2
528 //
529 iType = (Op >> 8) & 255;
530 Oprnds[0] = (Op >> 16) & 255;
531 Oprnds[1] = (Op >> 24) & 255;
532 break;
533 case 3:
534 // bits Instruction format:
535 // --------------------------
536 // 13-08: Resulting type plane
537 // 19-14: Operand #1
538 // 25-20: Operand #2
539 // 31-26: Operand #3
540 //
541 iType = (Op >> 8) & 63;
542 Oprnds[0] = (Op >> 14) & 63;
543 Oprnds[1] = (Op >> 20) & 63;
544 Oprnds[2] = (Op >> 26) & 63;
545 break;
546 case 0:
547 At -= 4; // Hrm, try this again...
548 Opcode = read_vbr_uint();
549 Opcode >>= 2;
550 iType = read_vbr_uint();
551
552 unsigned NumOprnds = read_vbr_uint();
553 Oprnds.resize(NumOprnds);
554
555 if (NumOprnds == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000556 error("Zero-argument instruction found; this is invalid.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000557
558 for (unsigned i = 0; i != NumOprnds; ++i)
559 Oprnds[i] = read_vbr_uint();
560 align32();
561 break;
562 }
563
Reid Spencer04cde2c2004-07-04 11:33:49 +0000564 const Type *InstTy = getSanitizedType(iType);
Reid Spencer060d25d2004-06-29 23:29:38 +0000565
Reid Spencer46b002c2004-07-11 17:28:43 +0000566 // We have enough info to inform the handler now.
Reid Spencer04cde2c2004-07-04 11:33:49 +0000567 if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
Reid Spencer060d25d2004-06-29 23:29:38 +0000568
569 // Declare the resulting instruction we'll build.
570 Instruction *Result = 0;
571
572 // Handle binary operators
573 if (Opcode >= Instruction::BinaryOpsBegin &&
574 Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
575 Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
576 getValue(iType, Oprnds[0]),
577 getValue(iType, Oprnds[1]));
578
579 switch (Opcode) {
580 default:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000581 if (Result == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000582 error("Illegal instruction read!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000583 break;
584 case Instruction::VAArg:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000585 Result = new VAArgInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000586 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000587 break;
588 case Instruction::VANext:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000589 Result = new VANextInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000590 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000591 break;
592 case Instruction::Cast:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000593 Result = new CastInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000594 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000595 break;
596 case Instruction::Select:
597 Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
598 getValue(iType, Oprnds[1]),
599 getValue(iType, Oprnds[2]));
600 break;
601 case Instruction::PHI: {
602 if (Oprnds.size() == 0 || (Oprnds.size() & 1))
Reid Spencer24399722004-07-09 22:21:33 +0000603 error("Invalid phi node encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000604
605 PHINode *PN = new PHINode(InstTy);
606 PN->op_reserve(Oprnds.size());
607 for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
608 PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
609 Result = PN;
610 break;
611 }
612
613 case Instruction::Shl:
614 case Instruction::Shr:
615 Result = new ShiftInst((Instruction::OtherOps)Opcode,
616 getValue(iType, Oprnds[0]),
617 getValue(Type::UByteTyID, Oprnds[1]));
618 break;
619 case Instruction::Ret:
620 if (Oprnds.size() == 0)
621 Result = new ReturnInst();
622 else if (Oprnds.size() == 1)
623 Result = new ReturnInst(getValue(iType, Oprnds[0]));
624 else
Reid Spencer24399722004-07-09 22:21:33 +0000625 error("Unrecognized instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000626 break;
627
628 case Instruction::Br:
629 if (Oprnds.size() == 1)
630 Result = new BranchInst(getBasicBlock(Oprnds[0]));
631 else if (Oprnds.size() == 3)
632 Result = new BranchInst(getBasicBlock(Oprnds[0]),
Reid Spencer04cde2c2004-07-04 11:33:49 +0000633 getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000634 else
Reid Spencer24399722004-07-09 22:21:33 +0000635 error("Invalid number of operands for a 'br' instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000636 break;
637 case Instruction::Switch: {
638 if (Oprnds.size() & 1)
Reid Spencer24399722004-07-09 22:21:33 +0000639 error("Switch statement with odd number of arguments!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000640
641 SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
642 getBasicBlock(Oprnds[1]));
643 for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
644 I->addCase(cast<Constant>(getValue(iType, Oprnds[i])),
645 getBasicBlock(Oprnds[i+1]));
646 Result = I;
647 break;
648 }
649
650 case Instruction::Call: {
651 if (Oprnds.size() == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000652 error("Invalid call instruction encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000653
654 Value *F = getValue(iType, Oprnds[0]);
655
656 // Check to make sure we have a pointer to function type
657 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
Reid Spencer24399722004-07-09 22:21:33 +0000658 if (PTy == 0) error("Call to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000659 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
Reid Spencer24399722004-07-09 22:21:33 +0000660 if (FTy == 0) error("Call to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000661
662 std::vector<Value *> Params;
663 if (!FTy->isVarArg()) {
664 FunctionType::param_iterator It = FTy->param_begin();
665
666 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
667 if (It == FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000668 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000669 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
670 }
671 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000672 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000673 } else {
674 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
675
676 unsigned FirstVariableOperand;
677 if (Oprnds.size() < FTy->getNumParams())
Reid Spencer24399722004-07-09 22:21:33 +0000678 error("Call instruction missing operands!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000679
680 // Read all of the fixed arguments
681 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
682 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
683
684 FirstVariableOperand = FTy->getNumParams();
685
686 if ((Oprnds.size()-FirstVariableOperand) & 1) // Must be pairs of type/value
Reid Spencer24399722004-07-09 22:21:33 +0000687 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000688
689 for (unsigned i = FirstVariableOperand, e = Oprnds.size();
Reid Spencer04cde2c2004-07-04 11:33:49 +0000690 i != e; i += 2)
Reid Spencer060d25d2004-06-29 23:29:38 +0000691 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
692 }
693
694 Result = new CallInst(F, Params);
695 break;
696 }
697 case Instruction::Invoke: {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000698 if (Oprnds.size() < 3)
Reid Spencer24399722004-07-09 22:21:33 +0000699 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000700 Value *F = getValue(iType, Oprnds[0]);
701
702 // Check to make sure we have a pointer to function type
703 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
Reid Spencer04cde2c2004-07-04 11:33:49 +0000704 if (PTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000705 error("Invoke to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000706 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
Reid Spencer04cde2c2004-07-04 11:33:49 +0000707 if (FTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000708 error("Invoke to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000709
710 std::vector<Value *> Params;
711 BasicBlock *Normal, *Except;
712
713 if (!FTy->isVarArg()) {
714 Normal = getBasicBlock(Oprnds[1]);
715 Except = getBasicBlock(Oprnds[2]);
716
717 FunctionType::param_iterator It = FTy->param_begin();
718 for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
719 if (It == FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000720 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000721 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
722 }
723 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000724 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000725 } else {
726 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
727
728 Normal = getBasicBlock(Oprnds[0]);
729 Except = getBasicBlock(Oprnds[1]);
730
731 unsigned FirstVariableArgument = FTy->getNumParams()+2;
732 for (unsigned i = 2; i != FirstVariableArgument; ++i)
733 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
734 Oprnds[i]));
735
736 if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
Reid Spencer24399722004-07-09 22:21:33 +0000737 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000738
739 for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
740 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
741 }
742
743 Result = new InvokeInst(F, Normal, Except, Params);
744 break;
745 }
746 case Instruction::Malloc:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000747 if (Oprnds.size() > 2)
Reid Spencer24399722004-07-09 22:21:33 +0000748 error("Invalid malloc instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000749 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000750 error("Invalid malloc instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000751
752 Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
753 Oprnds.size() ? getValue(Type::UIntTyID,
754 Oprnds[0]) : 0);
755 break;
756
757 case Instruction::Alloca:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000758 if (Oprnds.size() > 2)
Reid Spencer24399722004-07-09 22:21:33 +0000759 error("Invalid alloca instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000760 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000761 error("Invalid alloca instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000762
763 Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
764 Oprnds.size() ? getValue(Type::UIntTyID,
Reid Spencer04cde2c2004-07-04 11:33:49 +0000765 Oprnds[0]) :0);
Reid Spencer060d25d2004-06-29 23:29:38 +0000766 break;
767 case Instruction::Free:
768 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000769 error("Invalid free instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000770 Result = new FreeInst(getValue(iType, Oprnds[0]));
771 break;
772 case Instruction::GetElementPtr: {
773 if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000774 error("Invalid getelementptr instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000775
776 std::vector<Value*> Idx;
777
778 const Type *NextTy = InstTy;
779 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
780 const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000781 if (!TopTy)
Reid Spencer46b002c2004-07-11 17:28:43 +0000782 error("Invalid getelementptr instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000783
784 unsigned ValIdx = Oprnds[i];
785 unsigned IdxTy = 0;
786 if (!hasRestrictedGEPTypes) {
787 // Struct indices are always uints, sequential type indices can be any
788 // of the 32 or 64-bit integer types. The actual choice of type is
789 // encoded in the low two bits of the slot number.
790 if (isa<StructType>(TopTy))
791 IdxTy = Type::UIntTyID;
792 else {
793 switch (ValIdx & 3) {
794 default:
795 case 0: IdxTy = Type::UIntTyID; break;
796 case 1: IdxTy = Type::IntTyID; break;
797 case 2: IdxTy = Type::ULongTyID; break;
798 case 3: IdxTy = Type::LongTyID; break;
799 }
800 ValIdx >>= 2;
801 }
802 } else {
803 IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
804 }
805
806 Idx.push_back(getValue(IdxTy, ValIdx));
807
808 // Convert ubyte struct indices into uint struct indices.
809 if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
810 if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
811 Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
812
813 NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
814 }
815
816 Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
817 break;
818 }
819
820 case 62: // volatile load
821 case Instruction::Load:
822 if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000823 error("Invalid load instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000824 Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
825 break;
826
827 case 63: // volatile store
828 case Instruction::Store: {
829 if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
Reid Spencer24399722004-07-09 22:21:33 +0000830 error("Invalid store instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000831
832 Value *Ptr = getValue(iType, Oprnds[1]);
833 const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
834 Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
835 Opcode == 63);
836 break;
837 }
838 case Instruction::Unwind:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000839 if (Oprnds.size() != 0)
Reid Spencer24399722004-07-09 22:21:33 +0000840 error("Invalid unwind instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000841 Result = new UnwindInst();
842 break;
843 } // end switch(Opcode)
844
845 unsigned TypeSlot;
846 if (Result->getType() == InstTy)
847 TypeSlot = iType;
848 else
849 TypeSlot = getTypeSlot(Result->getType());
850
851 insertValue(Result, TypeSlot, FunctionValues);
852 BB->getInstList().push_back(Result);
853}
854
Reid Spencer04cde2c2004-07-04 11:33:49 +0000855/// Get a particular numbered basic block, which might be a forward reference.
856/// This works together with ParseBasicBlock to handle these forward references
857/// in a clean manner. This function is used when constructing phi, br, switch,
858/// and other instructions that reference basic blocks. Blocks are numbered
859/// sequentially as they appear in the function.
Reid Spencer060d25d2004-06-29 23:29:38 +0000860BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000861 // Make sure there is room in the table...
862 if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
863
864 // First check to see if this is a backwards reference, i.e., ParseBasicBlock
865 // has already created this block, or if the forward reference has already
866 // been created.
867 if (ParsedBasicBlocks[ID])
868 return ParsedBasicBlocks[ID];
869
870 // Otherwise, the basic block has not yet been created. Do so and add it to
871 // the ParsedBasicBlocks list.
872 return ParsedBasicBlocks[ID] = new BasicBlock();
873}
874
Reid Spencer04cde2c2004-07-04 11:33:49 +0000875/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
876/// This method reads in one of the basicblock packets. This method is not used
877/// for bytecode files after LLVM 1.0
878/// @returns The basic block constructed.
Reid Spencer46b002c2004-07-11 17:28:43 +0000879BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
880 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Reid Spencer060d25d2004-06-29 23:29:38 +0000881
882 BasicBlock *BB = 0;
883
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000884 if (ParsedBasicBlocks.size() == BlockNo)
885 ParsedBasicBlocks.push_back(BB = new BasicBlock());
886 else if (ParsedBasicBlocks[BlockNo] == 0)
887 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
888 else
889 BB = ParsedBasicBlocks[BlockNo];
Chris Lattner00950542001-06-06 20:29:01 +0000890
Reid Spencer060d25d2004-06-29 23:29:38 +0000891 std::vector<unsigned> Operands;
Reid Spencer46b002c2004-07-11 17:28:43 +0000892 while (moreInBlock())
Reid Spencer060d25d2004-06-29 23:29:38 +0000893 ParseInstruction(Operands, BB);
Chris Lattner00950542001-06-06 20:29:01 +0000894
Reid Spencer46b002c2004-07-11 17:28:43 +0000895 if (Handler) Handler->handleBasicBlockEnd(BlockNo);
Misha Brukman12c29d12003-09-22 23:38:23 +0000896 return BB;
Chris Lattner00950542001-06-06 20:29:01 +0000897}
898
Reid Spencer04cde2c2004-07-04 11:33:49 +0000899/// Parse all of the BasicBlock's & Instruction's in the body of a function.
900/// In post 1.0 bytecode files, we no longer emit basic block individually,
901/// in order to avoid per-basic-block overhead.
902/// @returns Rhe number of basic blocks encountered.
Reid Spencer060d25d2004-06-29 23:29:38 +0000903unsigned BytecodeReader::ParseInstructionList(Function* F) {
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000904 unsigned BlockNo = 0;
905 std::vector<unsigned> Args;
906
Reid Spencer46b002c2004-07-11 17:28:43 +0000907 while (moreInBlock()) {
908 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000909 BasicBlock *BB;
910 if (ParsedBasicBlocks.size() == BlockNo)
911 ParsedBasicBlocks.push_back(BB = new BasicBlock());
912 else if (ParsedBasicBlocks[BlockNo] == 0)
913 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
914 else
915 BB = ParsedBasicBlocks[BlockNo];
916 ++BlockNo;
917 F->getBasicBlockList().push_back(BB);
918
919 // Read instructions into this basic block until we get to a terminator
Reid Spencer46b002c2004-07-11 17:28:43 +0000920 while (moreInBlock() && !BB->getTerminator())
Reid Spencer060d25d2004-06-29 23:29:38 +0000921 ParseInstruction(Args, BB);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000922
923 if (!BB->getTerminator())
Reid Spencer24399722004-07-09 22:21:33 +0000924 error("Non-terminated basic block found!");
Reid Spencer5c15fe52004-07-05 00:57:50 +0000925
Reid Spencer46b002c2004-07-11 17:28:43 +0000926 if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000927 }
928
929 return BlockNo;
930}
931
Reid Spencer04cde2c2004-07-04 11:33:49 +0000932/// Parse a symbol table. This works for both module level and function
933/// level symbol tables. For function level symbol tables, the CurrentFunction
934/// parameter must be non-zero and the ST parameter must correspond to
935/// CurrentFunction's symbol table. For Module level symbol tables, the
936/// CurrentFunction argument must be zero.
Reid Spencer060d25d2004-06-29 23:29:38 +0000937void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
Reid Spencer04cde2c2004-07-04 11:33:49 +0000938 SymbolTable *ST) {
939 if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
Reid Spencer060d25d2004-06-29 23:29:38 +0000940
Chris Lattner39cacce2003-10-10 05:43:47 +0000941 // Allow efficient basic block lookup by number.
942 std::vector<BasicBlock*> BBMap;
943 if (CurrentFunction)
944 for (Function::iterator I = CurrentFunction->begin(),
945 E = CurrentFunction->end(); I != E; ++I)
946 BBMap.push_back(I);
947
Reid Spencer04cde2c2004-07-04 11:33:49 +0000948 /// In LLVM 1.3 we write types separately from values so
949 /// The types are always first in the symbol table. This is
950 /// because Type no longer derives from Value.
Reid Spencer46b002c2004-07-11 17:28:43 +0000951 if (!hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000952 // Symtab block header: [num entries]
953 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +0000954 for (unsigned i = 0; i < NumEntries; ++i) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000955 // Symtab entry: [def slot #][name]
956 unsigned slot = read_vbr_uint();
957 std::string Name = read_str();
958 const Type* T = getType(slot);
959 ST->insert(Name, T);
960 }
961 }
962
Reid Spencer46b002c2004-07-11 17:28:43 +0000963 while (moreInBlock()) {
Chris Lattner00950542001-06-06 20:29:01 +0000964 // Symtab block header: [num entries][type id number]
Reid Spencer060d25d2004-06-29 23:29:38 +0000965 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +0000966 unsigned Typ = 0;
967 bool isTypeType = read_typeid(Typ);
Chris Lattner00950542001-06-06 20:29:01 +0000968 const Type *Ty = getType(Typ);
Chris Lattner1d670cc2001-09-07 16:37:43 +0000969
Chris Lattner7dc3a2e2003-10-13 14:57:53 +0000970 for (unsigned i = 0; i != NumEntries; ++i) {
Chris Lattner00950542001-06-06 20:29:01 +0000971 // Symtab entry: [def slot #][name]
Reid Spencer060d25d2004-06-29 23:29:38 +0000972 unsigned slot = read_vbr_uint();
973 std::string Name = read_str();
Chris Lattner00950542001-06-06 20:29:01 +0000974
Reid Spencer04cde2c2004-07-04 11:33:49 +0000975 // if we're reading a pre 1.3 bytecode file and the type plane
976 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +0000977 if (isTypeType) {
978 const Type* T = getType(slot);
979 if (T == 0)
980 error("Failed type look-up for name '" + Name + "'");
981 ST->insert(Name, T);
982 continue; // code below must be short circuited
Chris Lattner39cacce2003-10-10 05:43:47 +0000983 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +0000984 Value *V = 0;
985 if (Typ == Type::LabelTyID) {
986 if (slot < BBMap.size())
987 V = BBMap[slot];
988 } else {
989 V = getValue(Typ, slot, false); // Find mapping...
990 }
991 if (V == 0)
992 error("Failed value look-up for name '" + Name + "'");
993 V->setName(Name, ST);
Chris Lattner39cacce2003-10-10 05:43:47 +0000994 }
Chris Lattner00950542001-06-06 20:29:01 +0000995 }
996 }
Reid Spencer060d25d2004-06-29 23:29:38 +0000997 checkPastBlockEnd("Symbol Table");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000998 if (Handler) Handler->handleSymbolTableEnd();
Chris Lattner00950542001-06-06 20:29:01 +0000999}
1000
Reid Spencer04cde2c2004-07-04 11:33:49 +00001001/// Read in the types portion of a compaction table.
Reid Spencer46b002c2004-07-11 17:28:43 +00001002void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001003 for (unsigned i = 0; i != NumEntries; ++i) {
1004 unsigned TypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001005 if (read_typeid(TypeSlot))
Reid Spencer24399722004-07-09 22:21:33 +00001006 error("Invalid type in compaction table: type type");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001007 const Type *Typ = getGlobalTableType(TypeSlot);
1008 CompactionTypes.push_back(Typ);
Reid Spencer46b002c2004-07-11 17:28:43 +00001009 if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001010 }
1011}
1012
1013/// Parse a compaction table.
Reid Spencer060d25d2004-06-29 23:29:38 +00001014void BytecodeReader::ParseCompactionTable() {
1015
Reid Spencer46b002c2004-07-11 17:28:43 +00001016 // Notify handler that we're beginning a compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001017 if (Handler) Handler->handleCompactionTableBegin();
1018
Reid Spencer46b002c2004-07-11 17:28:43 +00001019 // In LLVM 1.3 Type no longer derives from Value. So,
1020 // we always write them first in the compaction table
1021 // because they can't occupy a "type plane" where the
1022 // Values reside.
1023 if (! hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001024 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001025 ParseCompactionTypes(NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001026 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001027
Reid Spencer46b002c2004-07-11 17:28:43 +00001028 // Compaction tables live in separate blocks so we have to loop
1029 // until we've read the whole thing.
1030 while (moreInBlock()) {
1031 // Read the number of Value* entries in the compaction table
Reid Spencer060d25d2004-06-29 23:29:38 +00001032 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001033 unsigned Ty = 0;
1034 unsigned isTypeType = false;
Reid Spencer060d25d2004-06-29 23:29:38 +00001035
Reid Spencer46b002c2004-07-11 17:28:43 +00001036 // Decode the type from value read in. Most compaction table
1037 // planes will have one or two entries in them. If that's the
1038 // case then the length is encoded in the bottom two bits and
1039 // the higher bits encode the type. This saves another VBR value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001040 if ((NumEntries & 3) == 3) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001041 // In this case, both low-order bits are set (value 3). This
1042 // is a signal that the typeid follows.
Reid Spencer060d25d2004-06-29 23:29:38 +00001043 NumEntries >>= 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001044 isTypeType = read_typeid(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001045 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001046 // In this case, the low-order bits specify the number of entries
1047 // and the high order bits specify the type.
Reid Spencer060d25d2004-06-29 23:29:38 +00001048 Ty = NumEntries >> 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001049 isTypeType = sanitizeTypeId(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001050 NumEntries &= 3;
1051 }
1052
Reid Spencer04cde2c2004-07-04 11:33:49 +00001053 // if we're reading a pre 1.3 bytecode file and the type plane
1054 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +00001055 if (isTypeType) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001056 ParseCompactionTypes(NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001057 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001058 // Make sure we have enough room for the plane
Reid Spencer04cde2c2004-07-04 11:33:49 +00001059 if (Ty >= CompactionValues.size())
Reid Spencer46b002c2004-07-11 17:28:43 +00001060 CompactionValues.resize(Ty+1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001061
Reid Spencer46b002c2004-07-11 17:28:43 +00001062 // Make sure the plane is empty or we have some kind of error
Reid Spencer04cde2c2004-07-04 11:33:49 +00001063 if (!CompactionValues[Ty].empty())
Reid Spencer46b002c2004-07-11 17:28:43 +00001064 error("Compaction table plane contains multiple entries!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001065
Reid Spencer46b002c2004-07-11 17:28:43 +00001066 // Notify handler about the plane
1067 if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001068
Reid Spencer46b002c2004-07-11 17:28:43 +00001069 // Convert the type slot to a type
Reid Spencer060d25d2004-06-29 23:29:38 +00001070 const Type *Typ = getType(Ty);
Reid Spencer46b002c2004-07-11 17:28:43 +00001071
Reid Spencer060d25d2004-06-29 23:29:38 +00001072 // Push the implicit zero
1073 CompactionValues[Ty].push_back(Constant::getNullValue(Typ));
Reid Spencer46b002c2004-07-11 17:28:43 +00001074
1075 // Read in each of the entries, put them in the compaction table
1076 // and notify the handler that we have a new compaction table value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001077 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001078 unsigned ValSlot = read_vbr_uint();
1079 Value *V = getGlobalTableValue(Typ, ValSlot);
1080 CompactionValues[Ty].push_back(V);
1081 if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot, Typ);
Reid Spencer060d25d2004-06-29 23:29:38 +00001082 }
1083 }
1084 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001085 // Notify handler that the compaction table is done.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001086 if (Handler) Handler->handleCompactionTableEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00001087}
1088
Reid Spencer46b002c2004-07-11 17:28:43 +00001089// Parse a single type. The typeid is read in first. If its a primitive type
1090// then nothing else needs to be read, we know how to instantiate it. If its
1091// a derived type, then additional data is read to fill out the type
1092// definition.
1093const Type *BytecodeReader::ParseType() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001094 unsigned PrimType = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001095 if (read_typeid(PrimType))
Reid Spencer24399722004-07-09 22:21:33 +00001096 error("Invalid type (type type) in type constants!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001097
1098 const Type *Result = 0;
1099 if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
1100 return Result;
1101
1102 switch (PrimType) {
1103 case Type::FunctionTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001104 const Type *RetType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001105
1106 unsigned NumParams = read_vbr_uint();
1107
1108 std::vector<const Type*> Params;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001109 while (NumParams--)
1110 Params.push_back(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001111
1112 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1113 if (isVarArg) Params.pop_back();
1114
1115 Result = FunctionType::get(RetType, Params, isVarArg);
1116 break;
1117 }
1118 case Type::ArrayTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001119 const Type *ElementType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001120 unsigned NumElements = read_vbr_uint();
Reid Spencer060d25d2004-06-29 23:29:38 +00001121 Result = ArrayType::get(ElementType, NumElements);
1122 break;
1123 }
1124 case Type::StructTyID: {
1125 std::vector<const Type*> Elements;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001126 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001127 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001128 error("Invalid element type (type type) for structure!");
1129
Reid Spencer060d25d2004-06-29 23:29:38 +00001130 while (Typ) { // List is terminated by void/0 typeid
1131 Elements.push_back(getType(Typ));
Reid Spencer46b002c2004-07-11 17:28:43 +00001132 if (read_typeid(Typ))
1133 error("Invalid element type (type type) for structure!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001134 }
1135
1136 Result = StructType::get(Elements);
1137 break;
1138 }
1139 case Type::PointerTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001140 Result = PointerType::get(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001141 break;
1142 }
1143
1144 case Type::OpaqueTyID: {
1145 Result = OpaqueType::get();
1146 break;
1147 }
1148
1149 default:
Reid Spencer24399722004-07-09 22:21:33 +00001150 error("Don't know how to deserialize primitive type " + utostr(PrimType));
Reid Spencer060d25d2004-06-29 23:29:38 +00001151 break;
1152 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001153 if (Handler) Handler->handleType(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001154 return Result;
1155}
1156
Reid Spencer46b002c2004-07-11 17:28:43 +00001157// ParseType - We have to use this weird code to handle recursive
Reid Spencer060d25d2004-06-29 23:29:38 +00001158// types. We know that recursive types will only reference the current slab of
1159// values in the type plane, but they can forward reference types before they
1160// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
1161// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
1162// this ugly problem, we pessimistically insert an opaque type for each type we
1163// are about to read. This means that forward references will resolve to
1164// something and when we reread the type later, we can replace the opaque type
1165// with a new resolved concrete type.
1166//
Reid Spencer46b002c2004-07-11 17:28:43 +00001167void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
Reid Spencer060d25d2004-06-29 23:29:38 +00001168 assert(Tab.size() == 0 && "should not have read type constants in before!");
1169
1170 // Insert a bunch of opaque types to be resolved later...
1171 Tab.reserve(NumEntries);
1172 for (unsigned i = 0; i != NumEntries; ++i)
1173 Tab.push_back(OpaqueType::get());
1174
1175 // Loop through reading all of the types. Forward types will make use of the
1176 // opaque types just inserted.
1177 //
1178 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001179 const Type* NewTy = ParseType();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001180 const Type* OldTy = Tab[i].get();
1181 if (NewTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +00001182 error("Couldn't parse type!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001183
1184 // Don't directly push the new type on the Tab. Instead we want to replace
1185 // the opaque type we previously inserted with the new concrete value. This
1186 // approach helps with forward references to types. The refinement from the
1187 // abstract (opaque) type to the new type causes all uses of the abstract
1188 // type to use the concrete type (NewTy). This will also cause the opaque
1189 // type to be deleted.
1190 cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
1191
1192 // This should have replaced the old opaque type with the new type in the
1193 // value table... or with a preexisting type that was already in the system.
1194 // Let's just make sure it did.
1195 assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
1196 }
1197}
1198
Reid Spencer04cde2c2004-07-04 11:33:49 +00001199/// Parse a single constant value
Reid Spencer46b002c2004-07-11 17:28:43 +00001200Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001201 // We must check for a ConstantExpr before switching by type because
1202 // a ConstantExpr can be of any type, and has no explicit value.
1203 //
1204 // 0 if not expr; numArgs if is expr
1205 unsigned isExprNumArgs = read_vbr_uint();
1206
1207 if (isExprNumArgs) {
1208 // FIXME: Encoding of constant exprs could be much more compact!
1209 std::vector<Constant*> ArgVec;
1210 ArgVec.reserve(isExprNumArgs);
1211 unsigned Opcode = read_vbr_uint();
1212
1213 // Read the slot number and types of each of the arguments
1214 for (unsigned i = 0; i != isExprNumArgs; ++i) {
1215 unsigned ArgValSlot = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001216 unsigned ArgTypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001217 if (read_typeid(ArgTypeSlot))
1218 error("Invalid argument type (type type) for constant value");
Reid Spencer060d25d2004-06-29 23:29:38 +00001219
1220 // Get the arg value from its slot if it exists, otherwise a placeholder
1221 ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
1222 }
1223
1224 // Construct a ConstantExpr of the appropriate kind
1225 if (isExprNumArgs == 1) { // All one-operand expressions
Reid Spencer46b002c2004-07-11 17:28:43 +00001226 if (Opcode != Instruction::Cast)
1227 error("Only Cast instruction has one argument for ConstantExpr");
1228
Reid Spencer060d25d2004-06-29 23:29:38 +00001229 Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
Reid Spencer04cde2c2004-07-04 11:33:49 +00001230 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001231 return Result;
1232 } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
1233 std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
1234
1235 if (hasRestrictedGEPTypes) {
1236 const Type *BaseTy = ArgVec[0]->getType();
1237 generic_gep_type_iterator<std::vector<Constant*>::iterator>
1238 GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
1239 E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
1240 for (unsigned i = 0; GTI != E; ++GTI, ++i)
1241 if (isa<StructType>(*GTI)) {
1242 if (IdxList[i]->getType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00001243 error("Invalid index for getelementptr!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001244 IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
1245 }
1246 }
1247
1248 Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001249 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001250 return Result;
1251 } else if (Opcode == Instruction::Select) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001252 if (ArgVec.size() != 3)
1253 error("Select instruction must have three arguments.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001254 Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
Reid Spencer04cde2c2004-07-04 11:33:49 +00001255 ArgVec[2]);
1256 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001257 return Result;
1258 } else { // All other 2-operand expressions
1259 Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001260 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001261 return Result;
1262 }
1263 }
1264
1265 // Ok, not an ConstantExpr. We now know how to read the given type...
1266 const Type *Ty = getType(TypeID);
1267 switch (Ty->getTypeID()) {
1268 case Type::BoolTyID: {
1269 unsigned Val = read_vbr_uint();
1270 if (Val != 0 && Val != 1)
Reid Spencer24399722004-07-09 22:21:33 +00001271 error("Invalid boolean value read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001272 Constant* Result = ConstantBool::get(Val == 1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001273 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001274 return Result;
1275 }
1276
1277 case Type::UByteTyID: // Unsigned integer types...
1278 case Type::UShortTyID:
1279 case Type::UIntTyID: {
1280 unsigned Val = read_vbr_uint();
1281 if (!ConstantUInt::isValueValidForType(Ty, Val))
Reid Spencer24399722004-07-09 22:21:33 +00001282 error("Invalid unsigned byte/short/int read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001283 Constant* Result = ConstantUInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001284 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001285 return Result;
1286 }
1287
1288 case Type::ULongTyID: {
1289 Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
Reid Spencer04cde2c2004-07-04 11:33:49 +00001290 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001291 return Result;
1292 }
1293
1294 case Type::SByteTyID: // Signed integer types...
1295 case Type::ShortTyID:
1296 case Type::IntTyID: {
1297 case Type::LongTyID:
1298 int64_t Val = read_vbr_int64();
1299 if (!ConstantSInt::isValueValidForType(Ty, Val))
Reid Spencer24399722004-07-09 22:21:33 +00001300 error("Invalid signed byte/short/int/long read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001301 Constant* Result = ConstantSInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001302 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001303 return Result;
1304 }
1305
1306 case Type::FloatTyID: {
Reid Spencer46b002c2004-07-11 17:28:43 +00001307 float Val;
1308 read_float(Val);
1309 Constant* Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001310 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001311 return Result;
1312 }
1313
1314 case Type::DoubleTyID: {
1315 double Val;
Reid Spencer46b002c2004-07-11 17:28:43 +00001316 read_double(Val);
Reid Spencer060d25d2004-06-29 23:29:38 +00001317 Constant* Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001318 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001319 return Result;
1320 }
1321
Reid Spencer060d25d2004-06-29 23:29:38 +00001322 case Type::ArrayTyID: {
1323 const ArrayType *AT = cast<ArrayType>(Ty);
1324 unsigned NumElements = AT->getNumElements();
1325 unsigned TypeSlot = getTypeSlot(AT->getElementType());
1326 std::vector<Constant*> Elements;
1327 Elements.reserve(NumElements);
1328 while (NumElements--) // Read all of the elements of the constant.
1329 Elements.push_back(getConstantValue(TypeSlot,
1330 read_vbr_uint()));
1331 Constant* Result = ConstantArray::get(AT, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001332 if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001333 return Result;
1334 }
1335
1336 case Type::StructTyID: {
1337 const StructType *ST = cast<StructType>(Ty);
1338
1339 std::vector<Constant *> Elements;
1340 Elements.reserve(ST->getNumElements());
1341 for (unsigned i = 0; i != ST->getNumElements(); ++i)
1342 Elements.push_back(getConstantValue(ST->getElementType(i),
1343 read_vbr_uint()));
1344
1345 Constant* Result = ConstantStruct::get(ST, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001346 if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001347 return Result;
1348 }
1349
1350 case Type::PointerTyID: { // ConstantPointerRef value...
1351 const PointerType *PT = cast<PointerType>(Ty);
1352 unsigned Slot = read_vbr_uint();
1353
1354 // Check to see if we have already read this global variable...
1355 Value *Val = getValue(TypeID, Slot, false);
1356 GlobalValue *GV;
1357 if (Val) {
1358 if (!(GV = dyn_cast<GlobalValue>(Val)))
Reid Spencer24399722004-07-09 22:21:33 +00001359 error("Value of ConstantPointerRef not in ValueTable!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001360 } else {
Reid Spencer24399722004-07-09 22:21:33 +00001361 error("Forward references are not allowed here.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001362 }
1363
1364 Constant* Result = ConstantPointerRef::get(GV);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001365 if (Handler) Handler->handleConstantPointer(PT, Slot, GV, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001366 return Result;
1367 }
1368
1369 default:
Reid Spencer24399722004-07-09 22:21:33 +00001370 error("Don't know how to deserialize constant value of type '" +
Reid Spencer060d25d2004-06-29 23:29:38 +00001371 Ty->getDescription());
1372 break;
1373 }
Reid Spencer24399722004-07-09 22:21:33 +00001374 return 0;
Reid Spencer060d25d2004-06-29 23:29:38 +00001375}
1376
Reid Spencer04cde2c2004-07-04 11:33:49 +00001377/// Resolve references for constants. This function resolves the forward
1378/// referenced constants in the ConstantFwdRefs map. It uses the
1379/// replaceAllUsesWith method of Value class to substitute the placeholder
1380/// instance with the actual instance.
Reid Spencer060d25d2004-06-29 23:29:38 +00001381void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){
Chris Lattner29b789b2003-11-19 17:27:18 +00001382 ConstantRefsType::iterator I =
1383 ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot));
1384 if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
Chris Lattner00950542001-06-06 20:29:01 +00001385
Chris Lattner29b789b2003-11-19 17:27:18 +00001386 Value *PH = I->second; // Get the placeholder...
1387 PH->replaceAllUsesWith(NewV);
1388 delete PH; // Delete the old placeholder
1389 ConstantFwdRefs.erase(I); // Remove the map entry for it
Vikram S. Advec1e4a812002-07-14 23:04:18 +00001390}
1391
Reid Spencer04cde2c2004-07-04 11:33:49 +00001392/// Parse the constant strings section.
Reid Spencer060d25d2004-06-29 23:29:38 +00001393void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
1394 for (; NumEntries; --NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001395 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001396 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001397 error("Invalid type (type type) for string constant");
Reid Spencer060d25d2004-06-29 23:29:38 +00001398 const Type *Ty = getType(Typ);
1399 if (!isa<ArrayType>(Ty))
Reid Spencer24399722004-07-09 22:21:33 +00001400 error("String constant data invalid!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001401
1402 const ArrayType *ATy = cast<ArrayType>(Ty);
1403 if (ATy->getElementType() != Type::SByteTy &&
1404 ATy->getElementType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00001405 error("String constant data invalid!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001406
1407 // Read character data. The type tells us how long the string is.
1408 char Data[ATy->getNumElements()];
1409 read_data(Data, Data+ATy->getNumElements());
Chris Lattner52e20b02003-03-19 20:54:26 +00001410
Reid Spencer060d25d2004-06-29 23:29:38 +00001411 std::vector<Constant*> Elements(ATy->getNumElements());
1412 if (ATy->getElementType() == Type::SByteTy)
1413 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1414 Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
1415 else
1416 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1417 Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
Misha Brukman12c29d12003-09-22 23:38:23 +00001418
Reid Spencer060d25d2004-06-29 23:29:38 +00001419 // Create the constant, inserting it as needed.
1420 Constant *C = ConstantArray::get(ATy, Elements);
1421 unsigned Slot = insertValue(C, Typ, Tab);
1422 ResolveReferencesToConstant(C, Slot);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001423 if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
Reid Spencer060d25d2004-06-29 23:29:38 +00001424 }
Misha Brukman12c29d12003-09-22 23:38:23 +00001425}
1426
Reid Spencer04cde2c2004-07-04 11:33:49 +00001427/// Parse the constant pool.
Reid Spencer060d25d2004-06-29 23:29:38 +00001428void BytecodeReader::ParseConstantPool(ValueTable &Tab,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001429 TypeListTy &TypeTab,
Reid Spencer46b002c2004-07-11 17:28:43 +00001430 bool isFunction) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001431 if (Handler) Handler->handleGlobalConstantsBegin();
1432
1433 /// In LLVM 1.3 Type does not derive from Value so the types
1434 /// do not occupy a plane. Consequently, we read the types
1435 /// first in the constant pool.
Reid Spencer46b002c2004-07-11 17:28:43 +00001436 if (isFunction && !hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001437 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001438 ParseTypes(TypeTab, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001439 }
1440
Reid Spencer46b002c2004-07-11 17:28:43 +00001441 while (moreInBlock()) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001442 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001443 unsigned Typ = 0;
1444 bool isTypeType = read_typeid(Typ);
1445
1446 /// In LLVM 1.2 and before, Types were written to the
1447 /// bytecode file in the "Type Type" plane (#12).
1448 /// In 1.3 plane 12 is now the label plane. Handle this here.
Reid Spencer46b002c2004-07-11 17:28:43 +00001449 if (isTypeType) {
1450 ParseTypes(TypeTab, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001451 } else if (Typ == Type::VoidTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001452 /// Use of Type::VoidTyID is a misnomer. It actually means
1453 /// that the following plane is constant strings
Reid Spencer060d25d2004-06-29 23:29:38 +00001454 assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
1455 ParseStringConstants(NumEntries, Tab);
1456 } else {
1457 for (unsigned i = 0; i < NumEntries; ++i) {
1458 Constant *C = ParseConstantValue(Typ);
1459 assert(C && "ParseConstantValue returned NULL!");
1460 unsigned Slot = insertValue(C, Typ, Tab);
Chris Lattner29b789b2003-11-19 17:27:18 +00001461
Reid Spencer060d25d2004-06-29 23:29:38 +00001462 // If we are reading a function constant table, make sure that we adjust
1463 // the slot number to be the real global constant number.
1464 //
1465 if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
1466 ModuleValues[Typ])
1467 Slot += ModuleValues[Typ]->size();
1468 ResolveReferencesToConstant(C, Slot);
1469 }
1470 }
1471 }
1472 checkPastBlockEnd("Constant Pool");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001473 if (Handler) Handler->handleGlobalConstantsEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00001474}
Chris Lattner00950542001-06-06 20:29:01 +00001475
Reid Spencer04cde2c2004-07-04 11:33:49 +00001476/// Parse the contents of a function. Note that this function can be
1477/// called lazily by materializeFunction
1478/// @see materializeFunction
Reid Spencer46b002c2004-07-11 17:28:43 +00001479void BytecodeReader::ParseFunctionBody(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001480
1481 unsigned FuncSize = BlockEnd - At;
Chris Lattnere3869c82003-04-16 21:16:05 +00001482 GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
1483
Reid Spencer060d25d2004-06-29 23:29:38 +00001484 unsigned LinkageType = read_vbr_uint();
Chris Lattnerc08912f2004-01-14 16:44:44 +00001485 switch (LinkageType) {
1486 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1487 case 1: Linkage = GlobalValue::WeakLinkage; break;
1488 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1489 case 3: Linkage = GlobalValue::InternalLinkage; break;
1490 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001491 default:
Reid Spencer24399722004-07-09 22:21:33 +00001492 error("Invalid linkage type for Function.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001493 Linkage = GlobalValue::InternalLinkage;
1494 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00001495 }
Chris Lattnerd23b1d32001-11-26 18:56:10 +00001496
Reid Spencer46b002c2004-07-11 17:28:43 +00001497 F->setLinkage(Linkage);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001498 if (Handler) Handler->handleFunctionBegin(F,FuncSize);
Chris Lattner00950542001-06-06 20:29:01 +00001499
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001500 // Keep track of how many basic blocks we have read in...
1501 unsigned BlockNum = 0;
Chris Lattner89e02532004-01-18 21:08:15 +00001502 bool InsertedArguments = false;
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001503
Reid Spencer060d25d2004-06-29 23:29:38 +00001504 BufPtr MyEnd = BlockEnd;
Reid Spencer46b002c2004-07-11 17:28:43 +00001505 while (At < MyEnd) {
Chris Lattner00950542001-06-06 20:29:01 +00001506 unsigned Type, Size;
Reid Spencer060d25d2004-06-29 23:29:38 +00001507 BufPtr OldAt = At;
1508 read_block(Type, Size);
Chris Lattner00950542001-06-06 20:29:01 +00001509
1510 switch (Type) {
Chris Lattner29b789b2003-11-19 17:27:18 +00001511 case BytecodeFormat::ConstantPool:
Chris Lattner89e02532004-01-18 21:08:15 +00001512 if (!InsertedArguments) {
1513 // Insert arguments into the value table before we parse the first basic
1514 // block in the function, but after we potentially read in the
1515 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001516 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001517 InsertedArguments = true;
1518 }
1519
Reid Spencer04cde2c2004-07-04 11:33:49 +00001520 ParseConstantPool(FunctionValues, FunctionTypes, true);
Chris Lattner00950542001-06-06 20:29:01 +00001521 break;
1522
Chris Lattner89e02532004-01-18 21:08:15 +00001523 case BytecodeFormat::CompactionTable:
Reid Spencer060d25d2004-06-29 23:29:38 +00001524 ParseCompactionTable();
Chris Lattner89e02532004-01-18 21:08:15 +00001525 break;
1526
Chris Lattner00950542001-06-06 20:29:01 +00001527 case BytecodeFormat::BasicBlock: {
Chris Lattner89e02532004-01-18 21:08:15 +00001528 if (!InsertedArguments) {
1529 // Insert arguments into the value table before we parse the first basic
1530 // block in the function, but after we potentially read in the
1531 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001532 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001533 InsertedArguments = true;
1534 }
1535
Reid Spencer060d25d2004-06-29 23:29:38 +00001536 BasicBlock *BB = ParseBasicBlock(BlockNum++);
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001537 F->getBasicBlockList().push_back(BB);
Chris Lattner00950542001-06-06 20:29:01 +00001538 break;
1539 }
1540
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001541 case BytecodeFormat::InstructionList: {
Chris Lattner89e02532004-01-18 21:08:15 +00001542 // Insert arguments into the value table before we parse the instruction
1543 // list for the function, but after we potentially read in the compaction
1544 // table.
1545 if (!InsertedArguments) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001546 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001547 InsertedArguments = true;
1548 }
1549
Reid Spencer060d25d2004-06-29 23:29:38 +00001550 if (BlockNum)
Reid Spencer24399722004-07-09 22:21:33 +00001551 error("Already parsed basic blocks!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001552 BlockNum = ParseInstructionList(F);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001553 break;
1554 }
1555
Chris Lattner29b789b2003-11-19 17:27:18 +00001556 case BytecodeFormat::SymbolTable:
Reid Spencer060d25d2004-06-29 23:29:38 +00001557 ParseSymbolTable(F, &F->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00001558 break;
1559
1560 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00001561 At += Size;
1562 if (OldAt > At)
Reid Spencer24399722004-07-09 22:21:33 +00001563 error("Wrapped around reading bytecode.");
Chris Lattner00950542001-06-06 20:29:01 +00001564 break;
1565 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001566 BlockEnd = MyEnd;
Chris Lattner1d670cc2001-09-07 16:37:43 +00001567
Misha Brukman12c29d12003-09-22 23:38:23 +00001568 // Malformed bc file if read past end of block.
Reid Spencer060d25d2004-06-29 23:29:38 +00001569 align32();
Chris Lattner00950542001-06-06 20:29:01 +00001570 }
1571
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001572 // Make sure there were no references to non-existant basic blocks.
1573 if (BlockNum != ParsedBasicBlocks.size())
Reid Spencer24399722004-07-09 22:21:33 +00001574 error("Illegal basic block operand reference");
Reid Spencer060d25d2004-06-29 23:29:38 +00001575
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001576 ParsedBasicBlocks.clear();
1577
Chris Lattner97330cf2003-10-09 23:10:14 +00001578 // Resolve forward references. Replace any uses of a forward reference value
1579 // with the real value.
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001580
Chris Lattner97330cf2003-10-09 23:10:14 +00001581 // replaceAllUsesWith is very inefficient for instructions which have a LARGE
1582 // number of operands. PHI nodes often have forward references, and can also
1583 // often have a very large number of operands.
Chris Lattner89e02532004-01-18 21:08:15 +00001584 //
1585 // FIXME: REEVALUATE. replaceAllUsesWith is _much_ faster now, and this code
1586 // should be simplified back to using it!
1587 //
Chris Lattner97330cf2003-10-09 23:10:14 +00001588 std::map<Value*, Value*> ForwardRefMapping;
1589 for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator
1590 I = ForwardReferences.begin(), E = ForwardReferences.end();
1591 I != E; ++I)
1592 ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second,
1593 false);
1594
1595 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1596 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1597 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1598 if (Argument *A = dyn_cast<Argument>(I->getOperand(i))) {
1599 std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A);
1600 if (It != ForwardRefMapping.end()) I->setOperand(i, It->second);
1601 }
1602
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001603 while (!ForwardReferences.empty()) {
Chris Lattner35d2ca62003-10-09 22:39:30 +00001604 std::map<std::pair<unsigned,unsigned>, Value*>::iterator I =
1605 ForwardReferences.begin();
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001606 Value *PlaceHolder = I->second;
1607 ForwardReferences.erase(I);
Chris Lattner00950542001-06-06 20:29:01 +00001608
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001609 // Now that all the uses are gone, delete the placeholder...
1610 // If we couldn't find a def (error case), then leak a little
1611 // memory, because otherwise we can't remove all uses!
1612 delete PlaceHolder;
Chris Lattner6e448022003-10-08 21:51:46 +00001613 }
Chris Lattner00950542001-06-06 20:29:01 +00001614
Misha Brukman12c29d12003-09-22 23:38:23 +00001615 // Clear out function-level types...
Reid Spencer060d25d2004-06-29 23:29:38 +00001616 FunctionTypes.clear();
1617 CompactionTypes.clear();
1618 CompactionValues.clear();
1619 freeTable(FunctionValues);
1620
Reid Spencer04cde2c2004-07-04 11:33:49 +00001621 if (Handler) Handler->handleFunctionEnd(F);
Chris Lattner00950542001-06-06 20:29:01 +00001622}
1623
Reid Spencer04cde2c2004-07-04 11:33:49 +00001624/// This function parses LLVM functions lazily. It obtains the type of the
1625/// function and records where the body of the function is in the bytecode
1626/// buffer. The caller can then use the ParseNextFunction and
1627/// ParseAllFunctionBodies to get handler events for the functions.
Reid Spencer060d25d2004-06-29 23:29:38 +00001628void BytecodeReader::ParseFunctionLazily() {
1629 if (FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00001630 error("FunctionSignatureList empty!");
Chris Lattner89e02532004-01-18 21:08:15 +00001631
Reid Spencer060d25d2004-06-29 23:29:38 +00001632 Function *Func = FunctionSignatureList.back();
1633 FunctionSignatureList.pop_back();
Chris Lattner24102432004-01-18 22:35:34 +00001634
Reid Spencer060d25d2004-06-29 23:29:38 +00001635 // Save the information for future reading of the function
1636 LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
Chris Lattner89e02532004-01-18 21:08:15 +00001637
Reid Spencer060d25d2004-06-29 23:29:38 +00001638 // Pretend we've `parsed' this function
1639 At = BlockEnd;
1640}
Chris Lattner89e02532004-01-18 21:08:15 +00001641
Reid Spencer04cde2c2004-07-04 11:33:49 +00001642/// The ParserFunction method lazily parses one function. Use this method to
1643/// casue the parser to parse a specific function in the module. Note that
1644/// this will remove the function from what is to be included by
1645/// ParseAllFunctionBodies.
1646/// @see ParseAllFunctionBodies
1647/// @see ParseBytecode
Reid Spencer060d25d2004-06-29 23:29:38 +00001648void BytecodeReader::ParseFunction(Function* Func) {
1649 // Find {start, end} pointers and slot in the map. If not there, we're done.
1650 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
Chris Lattner89e02532004-01-18 21:08:15 +00001651
Reid Spencer060d25d2004-06-29 23:29:38 +00001652 // Make sure we found it
Reid Spencer46b002c2004-07-11 17:28:43 +00001653 if (Fi == LazyFunctionLoadMap.end()) {
Reid Spencer24399722004-07-09 22:21:33 +00001654 error("Unrecognized function of type " + Func->getType()->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001655 return;
Chris Lattner89e02532004-01-18 21:08:15 +00001656 }
1657
Reid Spencer060d25d2004-06-29 23:29:38 +00001658 BlockStart = At = Fi->second.Buf;
1659 BlockEnd = Fi->second.EndBuf;
Reid Spencer24399722004-07-09 22:21:33 +00001660 assert(Fi->first == Func && "Found wrong function?");
Reid Spencer060d25d2004-06-29 23:29:38 +00001661
1662 LazyFunctionLoadMap.erase(Fi);
1663
Reid Spencer46b002c2004-07-11 17:28:43 +00001664 this->ParseFunctionBody(Func);
Chris Lattner89e02532004-01-18 21:08:15 +00001665}
1666
Reid Spencer04cde2c2004-07-04 11:33:49 +00001667/// The ParseAllFunctionBodies method parses through all the previously
1668/// unparsed functions in the bytecode file. If you want to completely parse
1669/// a bytecode file, this method should be called after Parsebytecode because
1670/// Parsebytecode only records the locations in the bytecode file of where
1671/// the function definitions are located. This function uses that information
1672/// to materialize the functions.
1673/// @see ParseBytecode
Reid Spencer060d25d2004-06-29 23:29:38 +00001674void BytecodeReader::ParseAllFunctionBodies() {
1675 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
1676 LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
Chris Lattner89e02532004-01-18 21:08:15 +00001677
Reid Spencer46b002c2004-07-11 17:28:43 +00001678 while (Fi != Fe) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001679 Function* Func = Fi->first;
1680 BlockStart = At = Fi->second.Buf;
1681 BlockEnd = Fi->second.EndBuf;
1682 this->ParseFunctionBody(Func);
1683 ++Fi;
1684 }
1685}
Chris Lattner89e02532004-01-18 21:08:15 +00001686
Reid Spencer04cde2c2004-07-04 11:33:49 +00001687/// Parse the global type list
Reid Spencer060d25d2004-06-29 23:29:38 +00001688void BytecodeReader::ParseGlobalTypes() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001689 // Read the number of types
1690 unsigned NumEntries = read_vbr_uint();
Reid Spencer011bed52004-07-09 21:13:53 +00001691
1692 // Ignore the type plane identifier for types if the bc file is pre 1.3
1693 if (hasTypeDerivedFromValue)
1694 read_vbr_uint();
1695
Reid Spencer46b002c2004-07-11 17:28:43 +00001696 ParseTypes(ModuleTypes, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001697}
1698
Reid Spencer04cde2c2004-07-04 11:33:49 +00001699/// Parse the Global info (types, global vars, constants)
Reid Spencer060d25d2004-06-29 23:29:38 +00001700void BytecodeReader::ParseModuleGlobalInfo() {
1701
Reid Spencer04cde2c2004-07-04 11:33:49 +00001702 if (Handler) Handler->handleModuleGlobalsBegin();
Chris Lattner00950542001-06-06 20:29:01 +00001703
Chris Lattner70cc3392001-09-10 07:58:01 +00001704 // Read global variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00001705 unsigned VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00001706 while (VarType != Type::VoidTyID) { // List is terminated by Void
Chris Lattner9dd87702004-04-03 23:43:42 +00001707 // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
1708 // Linkage, bit4+ = slot#
1709 unsigned SlotNo = VarType >> 5;
Reid Spencer46b002c2004-07-11 17:28:43 +00001710 if (sanitizeTypeId(SlotNo))
Reid Spencer24399722004-07-09 22:21:33 +00001711 error("Invalid type (type type) for global var!");
Chris Lattner9dd87702004-04-03 23:43:42 +00001712 unsigned LinkageID = (VarType >> 2) & 7;
Reid Spencer060d25d2004-06-29 23:29:38 +00001713 bool isConstant = VarType & 1;
1714 bool hasInitializer = VarType & 2;
Chris Lattnere3869c82003-04-16 21:16:05 +00001715 GlobalValue::LinkageTypes Linkage;
1716
Chris Lattnerc08912f2004-01-14 16:44:44 +00001717 switch (LinkageID) {
Chris Lattnerc08912f2004-01-14 16:44:44 +00001718 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1719 case 1: Linkage = GlobalValue::WeakLinkage; break;
1720 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1721 case 3: Linkage = GlobalValue::InternalLinkage; break;
1722 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001723 default:
Reid Spencer24399722004-07-09 22:21:33 +00001724 error("Unknown linkage type: " + utostr(LinkageID));
Reid Spencer060d25d2004-06-29 23:29:38 +00001725 Linkage = GlobalValue::InternalLinkage;
1726 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00001727 }
1728
1729 const Type *Ty = getType(SlotNo);
Reid Spencer46b002c2004-07-11 17:28:43 +00001730 if (!Ty) {
Reid Spencer24399722004-07-09 22:21:33 +00001731 error("Global has no type! SlotNo=" + utostr(SlotNo));
Reid Spencer060d25d2004-06-29 23:29:38 +00001732 }
1733
Reid Spencer46b002c2004-07-11 17:28:43 +00001734 if (!isa<PointerType>(Ty)) {
Reid Spencer24399722004-07-09 22:21:33 +00001735 error("Global not a pointer type! Ty= " + Ty->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001736 }
Chris Lattner70cc3392001-09-10 07:58:01 +00001737
Chris Lattner52e20b02003-03-19 20:54:26 +00001738 const Type *ElTy = cast<PointerType>(Ty)->getElementType();
Chris Lattnerd70684f2001-09-18 04:01:05 +00001739
Chris Lattner70cc3392001-09-10 07:58:01 +00001740 // Create the global variable...
Reid Spencer060d25d2004-06-29 23:29:38 +00001741 GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
Chris Lattner52e20b02003-03-19 20:54:26 +00001742 0, "", TheModule);
Chris Lattner29b789b2003-11-19 17:27:18 +00001743 insertValue(GV, SlotNo, ModuleValues);
Chris Lattner05950c32001-10-13 06:47:01 +00001744
Reid Spencer060d25d2004-06-29 23:29:38 +00001745 unsigned initSlot = 0;
1746 if (hasInitializer) {
1747 initSlot = read_vbr_uint();
1748 GlobalInits.push_back(std::make_pair(GV, initSlot));
1749 }
1750
1751 // Notify handler about the global value.
Reid Spencer46b002c2004-07-11 17:28:43 +00001752 if (Handler) Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo, initSlot);
Reid Spencer060d25d2004-06-29 23:29:38 +00001753
1754 // Get next item
1755 VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00001756 }
1757
Chris Lattner52e20b02003-03-19 20:54:26 +00001758 // Read the function objects for all of the functions that are coming
Reid Spencer04cde2c2004-07-04 11:33:49 +00001759 unsigned FnSignature = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001760 if (read_typeid(FnSignature))
Reid Spencer24399722004-07-09 22:21:33 +00001761 error("Invalid function type (type type) found");
1762
Chris Lattner74734132002-08-17 22:01:27 +00001763 while (FnSignature != Type::VoidTyID) { // List is terminated by Void
1764 const Type *Ty = getType(FnSignature);
Chris Lattner927b1852003-10-09 20:22:47 +00001765 if (!isa<PointerType>(Ty) ||
Reid Spencer060d25d2004-06-29 23:29:38 +00001766 !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
Reid Spencer24399722004-07-09 22:21:33 +00001767 error("Function not a pointer to function type! Ty = " +
Reid Spencer46b002c2004-07-11 17:28:43 +00001768 Ty->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001769 // FIXME: what should Ty be if handler continues?
1770 }
Chris Lattner8cdc6b72002-10-23 00:51:54 +00001771
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00001772 // We create functions by passing the underlying FunctionType to create...
Reid Spencer060d25d2004-06-29 23:29:38 +00001773 const FunctionType* FTy =
1774 cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
Chris Lattner00950542001-06-06 20:29:01 +00001775
Reid Spencer060d25d2004-06-29 23:29:38 +00001776 // Insert the place hodler
1777 Function* Func = new Function(FTy, GlobalValue::InternalLinkage,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001778 "", TheModule);
Chris Lattner29b789b2003-11-19 17:27:18 +00001779 insertValue(Func, FnSignature, ModuleValues);
Chris Lattner00950542001-06-06 20:29:01 +00001780
Reid Spencer060d25d2004-06-29 23:29:38 +00001781 // Save this for later so we know type of lazily instantiated functions
Chris Lattner29b789b2003-11-19 17:27:18 +00001782 FunctionSignatureList.push_back(Func);
Chris Lattner52e20b02003-03-19 20:54:26 +00001783
Reid Spencer04cde2c2004-07-04 11:33:49 +00001784 if (Handler) Handler->handleFunctionDeclaration(Func);
Reid Spencer060d25d2004-06-29 23:29:38 +00001785
1786 // Get Next function signature
Reid Spencer46b002c2004-07-11 17:28:43 +00001787 if (read_typeid(FnSignature))
Reid Spencer24399722004-07-09 22:21:33 +00001788 error("Invalid function type (type type) found");
Chris Lattner00950542001-06-06 20:29:01 +00001789 }
1790
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001791 if (hasInconsistentModuleGlobalInfo)
Reid Spencer060d25d2004-06-29 23:29:38 +00001792 align32();
Chris Lattner74734132002-08-17 22:01:27 +00001793
1794 // Now that the function signature list is set up, reverse it so that we can
1795 // remove elements efficiently from the back of the vector.
1796 std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
Chris Lattner00950542001-06-06 20:29:01 +00001797
1798 // This is for future proofing... in the future extra fields may be added that
1799 // we don't understand, so we transparently ignore them.
1800 //
Reid Spencer060d25d2004-06-29 23:29:38 +00001801 At = BlockEnd;
1802
Reid Spencer04cde2c2004-07-04 11:33:49 +00001803 if (Handler) Handler->handleModuleGlobalsEnd();
Chris Lattner00950542001-06-06 20:29:01 +00001804}
1805
Reid Spencer04cde2c2004-07-04 11:33:49 +00001806/// Parse the version information and decode it by setting flags on the
1807/// Reader that enable backward compatibility of the reader.
Reid Spencer060d25d2004-06-29 23:29:38 +00001808void BytecodeReader::ParseVersionInfo() {
1809 unsigned Version = read_vbr_uint();
Chris Lattner036b8aa2003-03-06 17:55:45 +00001810
1811 // Unpack version number: low four bits are for flags, top bits = version
Chris Lattnerd445c6b2003-08-24 13:47:36 +00001812 Module::Endianness Endianness;
1813 Module::PointerSize PointerSize;
1814 Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
1815 PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
1816
1817 bool hasNoEndianness = Version & 4;
1818 bool hasNoPointerSize = Version & 8;
1819
1820 RevisionNum = Version >> 4;
Chris Lattnere3869c82003-04-16 21:16:05 +00001821
1822 // Default values for the current bytecode version
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001823 hasInconsistentModuleGlobalInfo = false;
Chris Lattner80b97342004-01-17 23:25:43 +00001824 hasExplicitPrimitiveZeros = false;
Chris Lattner5fa428f2004-04-05 01:27:26 +00001825 hasRestrictedGEPTypes = false;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001826 hasTypeDerivedFromValue = false;
Chris Lattner036b8aa2003-03-06 17:55:45 +00001827
1828 switch (RevisionNum) {
Chris Lattnerc08912f2004-01-14 16:44:44 +00001829 case 0: // LLVM 1.0, 1.1 release version
Chris Lattner9e893e82004-01-14 23:35:21 +00001830 // Base LLVM 1.0 bytecode format.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001831 hasInconsistentModuleGlobalInfo = true;
Chris Lattner80b97342004-01-17 23:25:43 +00001832 hasExplicitPrimitiveZeros = true;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001833
Chris Lattner80b97342004-01-17 23:25:43 +00001834 // FALL THROUGH
Chris Lattnerc08912f2004-01-14 16:44:44 +00001835 case 1: // LLVM 1.2 release version
Chris Lattner9e893e82004-01-14 23:35:21 +00001836 // LLVM 1.2 added explicit support for emitting strings efficiently.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001837
1838 // Also, it fixed the problem where the size of the ModuleGlobalInfo block
1839 // included the size for the alignment at the end, where the rest of the
1840 // blocks did not.
Chris Lattner5fa428f2004-04-05 01:27:26 +00001841
1842 // LLVM 1.2 and before required that GEP indices be ubyte constants for
1843 // structures and longs for sequential types.
1844 hasRestrictedGEPTypes = true;
1845
Reid Spencer04cde2c2004-07-04 11:33:49 +00001846 // LLVM 1.2 and before had the Type class derive from Value class. This
1847 // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
1848 // written differently because Types can no longer be part of the
1849 // type planes for Values.
1850 hasTypeDerivedFromValue = true;
1851
Chris Lattner5fa428f2004-04-05 01:27:26 +00001852 // FALL THROUGH
1853 case 2: // LLVM 1.3 release version
Chris Lattnerc08912f2004-01-14 16:44:44 +00001854 break;
1855
Chris Lattner036b8aa2003-03-06 17:55:45 +00001856 default:
Reid Spencer24399722004-07-09 22:21:33 +00001857 error("Unknown bytecode version number: " + itostr(RevisionNum));
Chris Lattner036b8aa2003-03-06 17:55:45 +00001858 }
1859
Chris Lattnerd445c6b2003-08-24 13:47:36 +00001860 if (hasNoEndianness) Endianness = Module::AnyEndianness;
1861 if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
Chris Lattner76e38962003-04-22 18:15:10 +00001862
Brian Gaekefe2102b2004-07-14 20:33:13 +00001863 TheModule->setEndianness(Endianness);
1864 TheModule->setPointerSize(PointerSize);
1865
Reid Spencer46b002c2004-07-11 17:28:43 +00001866 if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
Chris Lattner036b8aa2003-03-06 17:55:45 +00001867}
1868
Reid Spencer04cde2c2004-07-04 11:33:49 +00001869/// Parse a whole module.
Reid Spencer060d25d2004-06-29 23:29:38 +00001870void BytecodeReader::ParseModule() {
Chris Lattner00950542001-06-06 20:29:01 +00001871 unsigned Type, Size;
Chris Lattner00950542001-06-06 20:29:01 +00001872
Reid Spencer060d25d2004-06-29 23:29:38 +00001873 FunctionSignatureList.clear(); // Just in case...
Chris Lattner00950542001-06-06 20:29:01 +00001874
1875 // Read into instance variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00001876 ParseVersionInfo();
1877 align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
Chris Lattner00950542001-06-06 20:29:01 +00001878
Reid Spencer060d25d2004-06-29 23:29:38 +00001879 bool SeenModuleGlobalInfo = false;
1880 bool SeenGlobalTypePlane = false;
1881 BufPtr MyEnd = BlockEnd;
1882 while (At < MyEnd) {
1883 BufPtr OldAt = At;
1884 read_block(Type, Size);
1885
Chris Lattner00950542001-06-06 20:29:01 +00001886 switch (Type) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001887
Chris Lattner52e20b02003-03-19 20:54:26 +00001888 case BytecodeFormat::GlobalTypePlane:
Reid Spencer46b002c2004-07-11 17:28:43 +00001889 if (SeenGlobalTypePlane)
Reid Spencer24399722004-07-09 22:21:33 +00001890 error("Two GlobalTypePlane Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001891
1892 ParseGlobalTypes();
1893 SeenGlobalTypePlane = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00001894 break;
1895
Reid Spencer060d25d2004-06-29 23:29:38 +00001896 case BytecodeFormat::ModuleGlobalInfo:
Reid Spencer46b002c2004-07-11 17:28:43 +00001897 if (SeenModuleGlobalInfo)
Reid Spencer24399722004-07-09 22:21:33 +00001898 error("Two ModuleGlobalInfo Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001899 ParseModuleGlobalInfo();
1900 SeenModuleGlobalInfo = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00001901 break;
1902
Chris Lattner1d670cc2001-09-07 16:37:43 +00001903 case BytecodeFormat::ConstantPool:
Reid Spencer04cde2c2004-07-04 11:33:49 +00001904 ParseConstantPool(ModuleValues, ModuleTypes,false);
Chris Lattner00950542001-06-06 20:29:01 +00001905 break;
1906
Reid Spencer060d25d2004-06-29 23:29:38 +00001907 case BytecodeFormat::Function:
1908 ParseFunctionLazily();
Chris Lattner00950542001-06-06 20:29:01 +00001909 break;
Chris Lattner00950542001-06-06 20:29:01 +00001910
1911 case BytecodeFormat::SymbolTable:
Reid Spencer060d25d2004-06-29 23:29:38 +00001912 ParseSymbolTable(0, &TheModule->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00001913 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001914
Chris Lattner00950542001-06-06 20:29:01 +00001915 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00001916 At += Size;
1917 if (OldAt > At) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001918 error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001919 }
Chris Lattner00950542001-06-06 20:29:01 +00001920 break;
1921 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001922 BlockEnd = MyEnd;
1923 align32();
Chris Lattner00950542001-06-06 20:29:01 +00001924 }
1925
Chris Lattner52e20b02003-03-19 20:54:26 +00001926 // After the module constant pool has been read, we can safely initialize
1927 // global variables...
1928 while (!GlobalInits.empty()) {
1929 GlobalVariable *GV = GlobalInits.back().first;
1930 unsigned Slot = GlobalInits.back().second;
1931 GlobalInits.pop_back();
1932
1933 // Look up the initializer value...
Chris Lattner29b789b2003-11-19 17:27:18 +00001934 // FIXME: Preserve this type ID!
Reid Spencer060d25d2004-06-29 23:29:38 +00001935
1936 const llvm::PointerType* GVType = GV->getType();
1937 unsigned TypeSlot = getTypeSlot(GVType->getElementType());
Chris Lattner93361992004-01-15 18:45:25 +00001938 if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
Misha Brukman12c29d12003-09-22 23:38:23 +00001939 if (GV->hasInitializer())
Reid Spencer24399722004-07-09 22:21:33 +00001940 error("Global *already* has an initializer?!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001941 if (Handler) Handler->handleGlobalInitializer(GV,CV);
Chris Lattner93361992004-01-15 18:45:25 +00001942 GV->setInitializer(CV);
Chris Lattner52e20b02003-03-19 20:54:26 +00001943 } else
Reid Spencer24399722004-07-09 22:21:33 +00001944 error("Cannot find initializer value.");
Chris Lattner52e20b02003-03-19 20:54:26 +00001945 }
1946
Reid Spencer060d25d2004-06-29 23:29:38 +00001947 /// Make sure we pulled them all out. If we didn't then there's a declaration
1948 /// but a missing body. That's not allowed.
Misha Brukman12c29d12003-09-22 23:38:23 +00001949 if (!FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00001950 error("Function declared, but bytecode stream ended before definition");
Chris Lattner00950542001-06-06 20:29:01 +00001951}
1952
Reid Spencer04cde2c2004-07-04 11:33:49 +00001953/// This function completely parses a bytecode buffer given by the \p Buf
1954/// and \p Length parameters.
Reid Spencer46b002c2004-07-11 17:28:43 +00001955void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
1956 const std::string &ModuleID,
1957 bool processFunctions) {
Misha Brukmane0dd0d42003-09-23 16:15:29 +00001958
Reid Spencer060d25d2004-06-29 23:29:38 +00001959 try {
1960 At = MemStart = BlockStart = Buf;
1961 MemEnd = BlockEnd = Buf + Length;
Misha Brukmane0dd0d42003-09-23 16:15:29 +00001962
Reid Spencer060d25d2004-06-29 23:29:38 +00001963 // Create the module
1964 TheModule = new Module(ModuleID);
Chris Lattner00950542001-06-06 20:29:01 +00001965
Reid Spencer04cde2c2004-07-04 11:33:49 +00001966 if (Handler) Handler->handleStart(TheModule, Length);
Reid Spencer060d25d2004-06-29 23:29:38 +00001967
1968 // Read and check signature...
1969 unsigned Sig = read_uint();
1970 if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
Reid Spencer24399722004-07-09 22:21:33 +00001971 error("Invalid bytecode signature: " + utostr(Sig));
Reid Spencer060d25d2004-06-29 23:29:38 +00001972 }
1973
1974
1975 // Tell the handler we're starting a module
Reid Spencer04cde2c2004-07-04 11:33:49 +00001976 if (Handler) Handler->handleModuleBegin(ModuleID);
Reid Spencer060d25d2004-06-29 23:29:38 +00001977
1978 // Get the module block and size and verify
1979 unsigned Type, Size;
1980 read_block(Type, Size);
Reid Spencer46b002c2004-07-11 17:28:43 +00001981 if (Type != BytecodeFormat::Module) {
Reid Spencer24399722004-07-09 22:21:33 +00001982 error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
Reid Spencer46b002c2004-07-11 17:28:43 +00001983 + utostr(Size));
Reid Spencer060d25d2004-06-29 23:29:38 +00001984 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001985 if (At + Size != MemEnd) {
Reid Spencer24399722004-07-09 22:21:33 +00001986 error("Invalid Top Level Block Length! Type:" + utostr(Type)
Reid Spencer46b002c2004-07-11 17:28:43 +00001987 + ", Size:" + utostr(Size));
Reid Spencer060d25d2004-06-29 23:29:38 +00001988 }
1989
1990 // Parse the module contents
1991 this->ParseModule();
1992
Reid Spencer060d25d2004-06-29 23:29:38 +00001993 // Check for missing functions
Reid Spencer46b002c2004-07-11 17:28:43 +00001994 if (hasFunctions())
Reid Spencer24399722004-07-09 22:21:33 +00001995 error("Function expected, but bytecode stream ended!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001996
Reid Spencer5c15fe52004-07-05 00:57:50 +00001997 // Process all the function bodies now, if requested
Reid Spencer46b002c2004-07-11 17:28:43 +00001998 if (processFunctions)
Reid Spencer5c15fe52004-07-05 00:57:50 +00001999 ParseAllFunctionBodies();
2000
2001 // Tell the handler we're done with the module
2002 if (Handler)
2003 Handler->handleModuleEnd(ModuleID);
2004
2005 // Tell the handler we're finished the parse
Reid Spencer04cde2c2004-07-04 11:33:49 +00002006 if (Handler) Handler->handleFinish();
Reid Spencer060d25d2004-06-29 23:29:38 +00002007
Reid Spencer46b002c2004-07-11 17:28:43 +00002008 } catch (std::string& errstr) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002009 if (Handler) Handler->handleError(errstr);
Reid Spencer060d25d2004-06-29 23:29:38 +00002010 freeState();
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002011 delete TheModule;
2012 TheModule = 0;
Chris Lattnerb0b7c0d2003-09-26 14:44:52 +00002013 throw;
Reid Spencer060d25d2004-06-29 23:29:38 +00002014 } catch (...) {
2015 std::string msg("Unknown Exception Occurred");
Reid Spencer04cde2c2004-07-04 11:33:49 +00002016 if (Handler) Handler->handleError(msg);
Reid Spencer060d25d2004-06-29 23:29:38 +00002017 freeState();
2018 delete TheModule;
2019 TheModule = 0;
2020 throw msg;
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002021 }
Chris Lattner00950542001-06-06 20:29:01 +00002022}
Reid Spencer060d25d2004-06-29 23:29:38 +00002023
2024//===----------------------------------------------------------------------===//
2025//=== Default Implementations of Handler Methods
2026//===----------------------------------------------------------------------===//
2027
2028BytecodeHandler::~BytecodeHandler() {}
Reid Spencer060d25d2004-06-29 23:29:38 +00002029
2030// vim: sw=2