Chris Lattner | 20b1ea0 | 2001-09-14 03:47:57 +0000 | [diff] [blame] | 1 | //*************************************************************************** |
| 2 | // File: |
| 3 | // SparcInstrSelection.cpp |
| 4 | // |
| 5 | // Purpose: |
| 6 | // |
| 7 | // History: |
| 8 | // 7/02/01 - Vikram Adve - Created |
| 9 | //**************************************************************************/ |
| 10 | |
| 11 | #include "SparcInternals.h" |
| 12 | #include "llvm/CodeGen/MachineInstr.h" |
| 13 | #include "llvm/CodeGen/InstrForest.h" |
| 14 | #include "llvm/CodeGen/InstrSelection.h" |
| 15 | #include "llvm/Support/MathExtras.h" |
| 16 | #include "llvm/DerivedTypes.h" |
| 17 | #include "llvm/iTerminators.h" |
| 18 | #include "llvm/iMemory.h" |
| 19 | #include "llvm/iOther.h" |
| 20 | #include "llvm/BasicBlock.h" |
| 21 | #include "llvm/Method.h" |
| 22 | #include "llvm/ConstPoolVals.h" |
| 23 | |
| 24 | |
| 25 | //******************** Internal Data Declarations ************************/ |
| 26 | |
| 27 | // to be used later |
| 28 | struct BranchPattern { |
| 29 | bool flipCondition; // should the sense of the test be reversed |
| 30 | BasicBlock* targetBB; // which basic block to branch to |
| 31 | MachineInstr* extraBranch; // if neither branch is fall-through, then this |
| 32 | // BA must be inserted after the cond'l one |
| 33 | }; |
| 34 | |
| 35 | //************************* Forward Declarations ***************************/ |
| 36 | |
| 37 | |
| 38 | static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode); |
| 39 | |
| 40 | static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode, |
| 41 | bool& isFPBranch); |
| 42 | |
| 43 | static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode, |
| 44 | const BinaryOperator* setCCInst); |
| 45 | |
| 46 | static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode, |
| 47 | const BinaryOperator* setCCInst); |
| 48 | |
| 49 | static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*); |
| 50 | |
| 51 | static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode, |
| 52 | bool& mustClearReg, |
| 53 | int& valueToMove); |
| 54 | |
| 55 | static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*, |
| 56 | const Type* opType); |
| 57 | |
| 58 | static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, |
| 59 | const Type* opType); |
| 60 | |
| 61 | static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode); |
| 62 | |
| 63 | static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode); |
| 64 | |
| 65 | static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode); |
| 66 | |
| 67 | static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode, |
| 68 | bool checkCasts); |
| 69 | |
| 70 | static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode); |
| 71 | |
| 72 | static MachineOpCode ChooseLoadInstruction (const Type* resultType); |
| 73 | |
| 74 | static MachineOpCode ChooseStoreInstruction (const Type* valueType); |
| 75 | |
| 76 | static void SetOperandsForMemInstr(MachineInstr* minstr, |
| 77 | const InstructionNode* vmInstrNode, |
| 78 | const TargetMachine& target); |
| 79 | |
| 80 | static void SetMemOperands_Internal (MachineInstr* minstr, |
| 81 | const InstructionNode* vmInstrNode, |
| 82 | Value* ptrVal, |
| 83 | Value* arrayOffsetVal, |
| 84 | const vector<ConstPoolVal*>& idxVec, |
| 85 | const TargetMachine& target); |
| 86 | |
| 87 | static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, |
| 88 | MachineInstr** mvec, |
| 89 | unsigned numInstr, |
| 90 | TargetMachine& target); |
| 91 | |
| 92 | static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr, |
| 93 | Value* val, |
| 94 | TmpInstruction*& tmpReg, |
| 95 | MachineInstr*& getMinstr2); |
| 96 | |
| 97 | static void ForwardOperand (InstructionNode* treeNode, |
| 98 | InstructionNode* parent, |
| 99 | int operandNum); |
| 100 | |
| 101 | |
| 102 | //************************ Internal Functions ******************************/ |
| 103 | |
| 104 | // Convenience function to get the value of an integer constant, for an |
| 105 | // appropriate integer or non-integer type that can be held in an integer. |
| 106 | // The type of the argument must be the following: |
| 107 | // GetConstantValueAsSignedInt: any of the above, but the value |
| 108 | // must fit into a int64_t. |
| 109 | // |
| 110 | // isValidConstant is set to true if a valid constant was found. |
| 111 | // |
| 112 | |
| 113 | static int64_t GetConstantValueAsSignedInt(const Value *V, |
| 114 | bool &isValidConstant) { |
| 115 | if (!V->isConstant()) { isValidConstant = false; return 0; } |
| 116 | isValidConstant = true; |
| 117 | |
| 118 | if (V->getType() == Type::BoolTy) |
| 119 | return ((ConstPoolBool*)V)->getValue(); |
| 120 | if (V->getType()->isIntegral()) { |
| 121 | if (V->getType()->isSigned()) |
| 122 | return ((ConstPoolSInt*)V)->getValue(); |
| 123 | |
| 124 | assert(V->getType()->isUnsigned()); |
| 125 | uint64_t Val = ((ConstPoolUInt*)V)->getValue(); |
| 126 | |
| 127 | if (Val < INT64_MAX) // then safe to cast to signed |
| 128 | return (int64_t)Val; |
| 129 | } |
| 130 | |
| 131 | isValidConstant = false; |
| 132 | return 0; |
| 133 | } |
| 134 | |
| 135 | |
| 136 | |
| 137 | //------------------------------------------------------------------------ |
| 138 | // External Function: ThisIsAChainRule |
| 139 | // |
| 140 | // Purpose: |
| 141 | // Check if a given BURG rule is a chain rule. |
| 142 | //------------------------------------------------------------------------ |
| 143 | |
| 144 | extern bool |
| 145 | ThisIsAChainRule(int eruleno) |
| 146 | { |
| 147 | switch(eruleno) |
| 148 | { |
| 149 | case 111: // stmt: reg |
| 150 | case 112: // stmt: boolconst |
| 151 | case 113: // stmt: bool |
| 152 | case 121: |
| 153 | case 122: |
| 154 | case 123: |
| 155 | case 124: |
| 156 | case 125: |
| 157 | case 126: |
| 158 | case 127: |
| 159 | case 128: |
| 160 | case 129: |
| 161 | case 130: |
| 162 | case 131: |
| 163 | case 132: |
| 164 | case 153: |
| 165 | case 155: return true; break; |
| 166 | |
| 167 | default: return false; break; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | |
| 172 | static inline MachineOpCode |
| 173 | ChooseBprInstruction(const InstructionNode* instrNode) |
| 174 | { |
| 175 | MachineOpCode opCode; |
| 176 | |
| 177 | Instruction* setCCInstr = |
| 178 | ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| 179 | |
| 180 | switch(setCCInstr->getOpcode()) |
| 181 | { |
| 182 | case Instruction::SetEQ: opCode = BRZ; break; |
| 183 | case Instruction::SetNE: opCode = BRNZ; break; |
| 184 | case Instruction::SetLE: opCode = BRLEZ; break; |
| 185 | case Instruction::SetGE: opCode = BRGEZ; break; |
| 186 | case Instruction::SetLT: opCode = BRLZ; break; |
| 187 | case Instruction::SetGT: opCode = BRGZ; break; |
| 188 | default: |
| 189 | assert(0 && "Unrecognized VM instruction!"); |
| 190 | opCode = INVALID_OPCODE; |
| 191 | break; |
| 192 | } |
| 193 | |
| 194 | return opCode; |
| 195 | } |
| 196 | |
| 197 | |
| 198 | static inline MachineOpCode |
| 199 | ChooseBccInstruction(const InstructionNode* instrNode, |
| 200 | bool& isFPBranch) |
| 201 | { |
| 202 | InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| 203 | BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); |
| 204 | const Type* setCCType = setCCInstr->getOperand(0)->getType(); |
| 205 | |
| 206 | isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); |
| 207 | |
| 208 | if (isFPBranch) |
| 209 | return ChooseBFpccInstruction(instrNode, setCCInstr); |
| 210 | else |
| 211 | return ChooseBpccInstruction(instrNode, setCCInstr); |
| 212 | } |
| 213 | |
| 214 | |
| 215 | static inline MachineOpCode |
| 216 | ChooseBpccInstruction(const InstructionNode* instrNode, |
| 217 | const BinaryOperator* setCCInstr) |
| 218 | { |
| 219 | MachineOpCode opCode = INVALID_OPCODE; |
| 220 | |
| 221 | bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| 222 | |
| 223 | if (isSigned) |
| 224 | { |
| 225 | switch(setCCInstr->getOpcode()) |
| 226 | { |
| 227 | case Instruction::SetEQ: opCode = BE; break; |
| 228 | case Instruction::SetNE: opCode = BNE; break; |
| 229 | case Instruction::SetLE: opCode = BLE; break; |
| 230 | case Instruction::SetGE: opCode = BGE; break; |
| 231 | case Instruction::SetLT: opCode = BL; break; |
| 232 | case Instruction::SetGT: opCode = BG; break; |
| 233 | default: |
| 234 | assert(0 && "Unrecognized VM instruction!"); |
| 235 | break; |
| 236 | } |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | switch(setCCInstr->getOpcode()) |
| 241 | { |
| 242 | case Instruction::SetEQ: opCode = BE; break; |
| 243 | case Instruction::SetNE: opCode = BNE; break; |
| 244 | case Instruction::SetLE: opCode = BLEU; break; |
| 245 | case Instruction::SetGE: opCode = BCC; break; |
| 246 | case Instruction::SetLT: opCode = BCS; break; |
| 247 | case Instruction::SetGT: opCode = BGU; break; |
| 248 | default: |
| 249 | assert(0 && "Unrecognized VM instruction!"); |
| 250 | break; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | return opCode; |
| 255 | } |
| 256 | |
| 257 | static inline MachineOpCode |
| 258 | ChooseBFpccInstruction(const InstructionNode* instrNode, |
| 259 | const BinaryOperator* setCCInstr) |
| 260 | { |
| 261 | MachineOpCode opCode = INVALID_OPCODE; |
| 262 | |
| 263 | switch(setCCInstr->getOpcode()) |
| 264 | { |
| 265 | case Instruction::SetEQ: opCode = FBE; break; |
| 266 | case Instruction::SetNE: opCode = FBNE; break; |
| 267 | case Instruction::SetLE: opCode = FBLE; break; |
| 268 | case Instruction::SetGE: opCode = FBGE; break; |
| 269 | case Instruction::SetLT: opCode = FBL; break; |
| 270 | case Instruction::SetGT: opCode = FBG; break; |
| 271 | default: |
| 272 | assert(0 && "Unrecognized VM instruction!"); |
| 273 | break; |
| 274 | } |
| 275 | |
| 276 | return opCode; |
| 277 | } |
| 278 | |
| 279 | |
| 280 | static inline MachineOpCode |
| 281 | ChooseMovFpccInstruction(const InstructionNode* instrNode) |
| 282 | { |
| 283 | MachineOpCode opCode = INVALID_OPCODE; |
| 284 | |
| 285 | switch(instrNode->getInstruction()->getOpcode()) |
| 286 | { |
| 287 | case Instruction::SetEQ: opCode = MOVFE; break; |
| 288 | case Instruction::SetNE: opCode = MOVFNE; break; |
| 289 | case Instruction::SetLE: opCode = MOVFLE; break; |
| 290 | case Instruction::SetGE: opCode = MOVFGE; break; |
| 291 | case Instruction::SetLT: opCode = MOVFL; break; |
| 292 | case Instruction::SetGT: opCode = MOVFG; break; |
| 293 | default: |
| 294 | assert(0 && "Unrecognized VM instruction!"); |
| 295 | break; |
| 296 | } |
| 297 | |
| 298 | return opCode; |
| 299 | } |
| 300 | |
| 301 | |
| 302 | // Assumes that SUBcc v1, v2 -> v3 has been executed. |
| 303 | // In most cases, we want to clear v3 and then follow it by instruction |
| 304 | // MOVcc 1 -> v3. |
| 305 | // Set mustClearReg=false if v3 need not be cleared before conditional move. |
| 306 | // Set valueToMove=0 if we want to conditionally move 0 instead of 1 |
| 307 | // (i.e., we want to test inverse of a condition) |
| 308 | // |
| 309 | // |
| 310 | static MachineOpCode |
| 311 | ChooseMovpccAfterSub(const InstructionNode* instrNode, |
| 312 | bool& mustClearReg, |
| 313 | int& valueToMove) |
| 314 | { |
| 315 | MachineOpCode opCode = INVALID_OPCODE; |
| 316 | mustClearReg = true; |
| 317 | valueToMove = 1; |
| 318 | |
| 319 | switch(instrNode->getInstruction()->getOpcode()) |
| 320 | { |
| 321 | case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false; |
| 322 | valueToMove = 0; break; |
| 323 | case Instruction::SetLE: opCode = MOVLE; break; |
| 324 | case Instruction::SetGE: opCode = MOVGE; break; |
| 325 | case Instruction::SetLT: opCode = MOVL; break; |
| 326 | case Instruction::SetGT: opCode = MOVG; break; |
| 327 | |
| 328 | case Instruction::SetNE: assert(0 && "No move required!"); |
| 329 | |
| 330 | default: |
| 331 | assert(0 && "Unrecognized VM instruction!"); |
| 332 | break; |
| 333 | } |
| 334 | |
| 335 | return opCode; |
| 336 | } |
| 337 | |
| 338 | |
| 339 | static inline MachineOpCode |
| 340 | ChooseConvertToFloatInstr(const InstructionNode* instrNode, |
| 341 | const Type* opType) |
| 342 | { |
| 343 | MachineOpCode opCode = INVALID_OPCODE; |
| 344 | |
| 345 | switch(instrNode->getOpLabel()) |
| 346 | { |
| 347 | case ToFloatTy: |
| 348 | if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| 349 | opCode = FITOS; |
| 350 | else if (opType == Type::LongTy) |
| 351 | opCode = FXTOS; |
| 352 | else if (opType == Type::DoubleTy) |
| 353 | opCode = FDTOS; |
| 354 | else if (opType == Type::FloatTy) |
| 355 | ; |
| 356 | else |
| 357 | assert(0 && "Cannot convert this type to FLOAT on SPARC"); |
| 358 | break; |
| 359 | |
| 360 | case ToDoubleTy: |
| 361 | if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| 362 | opCode = FITOD; |
| 363 | else if (opType == Type::LongTy) |
| 364 | opCode = FXTOD; |
| 365 | else if (opType == Type::FloatTy) |
| 366 | opCode = FSTOD; |
| 367 | else if (opType == Type::DoubleTy) |
| 368 | ; |
| 369 | else |
| 370 | assert(0 && "Cannot convert this type to DOUBLE on SPARC"); |
| 371 | break; |
| 372 | |
| 373 | default: |
| 374 | break; |
| 375 | } |
| 376 | |
| 377 | return opCode; |
| 378 | } |
| 379 | |
| 380 | static inline MachineOpCode |
| 381 | ChooseConvertToIntInstr(const InstructionNode* instrNode, |
| 382 | const Type* opType) |
| 383 | { |
| 384 | MachineOpCode opCode = INVALID_OPCODE;; |
| 385 | |
| 386 | int instrType = (int) instrNode->getOpLabel(); |
| 387 | |
| 388 | if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) |
| 389 | { |
| 390 | switch (opType->getPrimitiveID()) |
| 391 | { |
| 392 | case Type::FloatTyID: opCode = FSTOI; break; |
| 393 | case Type::DoubleTyID: opCode = FDTOI; break; |
| 394 | default: |
| 395 | assert(0 && "Non-numeric non-bool type cannot be converted to Int"); |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | else if (instrType == ToLongTy) |
| 400 | { |
| 401 | switch (opType->getPrimitiveID()) |
| 402 | { |
| 403 | case Type::FloatTyID: opCode = FSTOX; break; |
| 404 | case Type::DoubleTyID: opCode = FDTOX; break; |
| 405 | default: |
| 406 | assert(0 && "Non-numeric non-bool type cannot be converted to Long"); |
| 407 | break; |
| 408 | } |
| 409 | } |
| 410 | else |
| 411 | assert(0 && "Should not get here, Mo!"); |
| 412 | |
| 413 | return opCode; |
| 414 | } |
| 415 | |
| 416 | |
| 417 | static inline MachineOpCode |
| 418 | ChooseAddInstruction(const InstructionNode* instrNode) |
| 419 | { |
| 420 | MachineOpCode opCode = INVALID_OPCODE; |
| 421 | |
| 422 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 423 | |
| 424 | if (resultType->isIntegral() || |
| 425 | resultType->isPointerType() || |
| 426 | resultType->isMethodType() || |
| 427 | resultType->isLabelType()) |
| 428 | { |
| 429 | opCode = ADD; |
| 430 | } |
| 431 | else |
| 432 | { |
| 433 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 434 | switch(operand->getType()->getPrimitiveID()) |
| 435 | { |
| 436 | case Type::FloatTyID: opCode = FADDS; break; |
| 437 | case Type::DoubleTyID: opCode = FADDD; break; |
| 438 | default: assert(0 && "Invalid type for ADD instruction"); break; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | return opCode; |
| 443 | } |
| 444 | |
| 445 | |
| 446 | static inline MachineInstr* |
| 447 | CreateMovFloatInstruction(const InstructionNode* instrNode, |
| 448 | const Type* resultType) |
| 449 | { |
| 450 | MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) |
| 451 | ? FMOVS : FMOVD); |
| 452 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 453 | instrNode->leftChild()->getValue()); |
| 454 | minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, |
| 455 | instrNode->getValue()); |
| 456 | return minstr; |
| 457 | } |
| 458 | |
| 459 | static inline MachineInstr* |
| 460 | CreateAddConstInstruction(const InstructionNode* instrNode) |
| 461 | { |
| 462 | MachineInstr* minstr = NULL; |
| 463 | |
| 464 | Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| 465 | assert(constOp->isConstant()); |
| 466 | |
| 467 | // Cases worth optimizing are: |
| 468 | // (1) Add with 0 for float or double: use an FMOV of appropriate type, |
| 469 | // instead of an FADD (1 vs 3 cycles). There is no integer MOV. |
| 470 | // |
| 471 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 472 | |
| 473 | if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { |
| 474 | double dval = ((ConstPoolFP*) constOp)->getValue(); |
| 475 | if (dval == 0.0) |
| 476 | minstr = CreateMovFloatInstruction(instrNode, resultType); |
| 477 | } |
| 478 | |
| 479 | return minstr; |
| 480 | } |
| 481 | |
| 482 | |
| 483 | static inline MachineOpCode |
| 484 | ChooseSubInstruction(const InstructionNode* instrNode) |
| 485 | { |
| 486 | MachineOpCode opCode = INVALID_OPCODE; |
| 487 | |
| 488 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 489 | |
| 490 | if (resultType->isIntegral() || |
| 491 | resultType->isPointerType()) |
| 492 | { |
| 493 | opCode = SUB; |
| 494 | } |
| 495 | else |
| 496 | { |
| 497 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 498 | switch(operand->getType()->getPrimitiveID()) |
| 499 | { |
| 500 | case Type::FloatTyID: opCode = FSUBS; break; |
| 501 | case Type::DoubleTyID: opCode = FSUBD; break; |
| 502 | default: assert(0 && "Invalid type for SUB instruction"); break; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | return opCode; |
| 507 | } |
| 508 | |
| 509 | |
| 510 | static inline MachineInstr* |
| 511 | CreateSubConstInstruction(const InstructionNode* instrNode) |
| 512 | { |
| 513 | MachineInstr* minstr = NULL; |
| 514 | |
| 515 | Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| 516 | assert(constOp->isConstant()); |
| 517 | |
| 518 | // Cases worth optimizing are: |
| 519 | // (1) Sub with 0 for float or double: use an FMOV of appropriate type, |
| 520 | // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. |
| 521 | // |
| 522 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 523 | |
| 524 | if (resultType == Type::FloatTy || |
| 525 | resultType == Type::DoubleTy) |
| 526 | { |
| 527 | double dval = ((ConstPoolFP*) constOp)->getValue(); |
| 528 | if (dval == 0.0) |
| 529 | minstr = CreateMovFloatInstruction(instrNode, resultType); |
| 530 | } |
| 531 | |
| 532 | return minstr; |
| 533 | } |
| 534 | |
| 535 | |
| 536 | static inline MachineOpCode |
| 537 | ChooseFcmpInstruction(const InstructionNode* instrNode) |
| 538 | { |
| 539 | MachineOpCode opCode = INVALID_OPCODE; |
| 540 | |
| 541 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 542 | switch(operand->getType()->getPrimitiveID()) { |
| 543 | case Type::FloatTyID: opCode = FCMPS; break; |
| 544 | case Type::DoubleTyID: opCode = FCMPD; break; |
| 545 | default: assert(0 && "Invalid type for FCMP instruction"); break; |
| 546 | } |
| 547 | |
| 548 | return opCode; |
| 549 | } |
| 550 | |
| 551 | |
| 552 | // Assumes that leftArg and rightArg are both cast instructions. |
| 553 | // |
| 554 | static inline bool |
| 555 | BothFloatToDouble(const InstructionNode* instrNode) |
| 556 | { |
| 557 | InstrTreeNode* leftArg = instrNode->leftChild(); |
| 558 | InstrTreeNode* rightArg = instrNode->rightChild(); |
| 559 | InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| 560 | InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| 561 | assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); |
| 562 | |
| 563 | // Check if both arguments are floats cast to double |
| 564 | return (leftArg->getValue()->getType() == Type::DoubleTy && |
| 565 | leftArgArg->getValue()->getType() == Type::FloatTy && |
| 566 | rightArgArg->getValue()->getType() == Type::FloatTy); |
| 567 | } |
| 568 | |
| 569 | |
| 570 | static inline MachineOpCode |
| 571 | ChooseMulInstruction(const InstructionNode* instrNode, |
| 572 | bool checkCasts) |
| 573 | { |
| 574 | MachineOpCode opCode = INVALID_OPCODE; |
| 575 | |
| 576 | if (checkCasts && BothFloatToDouble(instrNode)) |
| 577 | { |
| 578 | return opCode = FSMULD; |
| 579 | } |
| 580 | // else fall through and use the regular multiply instructions |
| 581 | |
| 582 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 583 | |
| 584 | if (resultType->isIntegral()) |
| 585 | { |
| 586 | opCode = MULX; |
| 587 | } |
| 588 | else |
| 589 | { |
| 590 | switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) |
| 591 | { |
| 592 | case Type::FloatTyID: opCode = FMULS; break; |
| 593 | case Type::DoubleTyID: opCode = FMULD; break; |
| 594 | default: assert(0 && "Invalid type for MUL instruction"); break; |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | return opCode; |
| 599 | } |
| 600 | |
| 601 | |
| 602 | static inline MachineInstr* |
| 603 | CreateIntNegInstruction(Value* vreg) |
| 604 | { |
| 605 | MachineInstr* minstr = new MachineInstr(SUB); |
| 606 | minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); |
| 607 | minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg); |
| 608 | minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg); |
| 609 | return minstr; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | static inline MachineInstr* |
| 614 | CreateMulConstInstruction(const InstructionNode* instrNode, |
| 615 | MachineInstr*& getMinstr2) |
| 616 | { |
| 617 | MachineInstr* minstr = NULL; |
| 618 | getMinstr2 = NULL; |
| 619 | bool needNeg = false; |
| 620 | |
| 621 | Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| 622 | assert(constOp->isConstant()); |
| 623 | |
| 624 | // Cases worth optimizing are: |
| 625 | // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) |
| 626 | // (2) Multiply by 2^x for integer types: replace with Shift |
| 627 | // |
| 628 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 629 | |
| 630 | if (resultType->isIntegral()) |
| 631 | { |
| 632 | unsigned pow; |
| 633 | bool isValidConst; |
| 634 | int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| 635 | if (isValidConst) |
| 636 | { |
| 637 | bool needNeg = false; |
| 638 | if (C < 0) |
| 639 | { |
| 640 | needNeg = true; |
| 641 | C = -C; |
| 642 | } |
| 643 | |
| 644 | if (C == 0 || C == 1) |
| 645 | { |
| 646 | minstr = new MachineInstr(ADD); |
| 647 | |
| 648 | if (C == 0) |
| 649 | minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); |
| 650 | else |
| 651 | minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, |
| 652 | instrNode->leftChild()->getValue()); |
| 653 | minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 654 | } |
| 655 | else if (IsPowerOf2(C, pow)) |
| 656 | { |
| 657 | minstr = new MachineInstr((resultType == Type::LongTy) |
| 658 | ? SLLX : SLL); |
| 659 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 660 | instrNode->leftChild()->getValue()); |
| 661 | minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, |
| 662 | pow); |
| 663 | } |
| 664 | |
| 665 | if (minstr && needNeg) |
| 666 | { // insert <reg = SUB 0, reg> after the instr to flip the sign |
| 667 | getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); |
| 668 | } |
| 669 | } |
| 670 | } |
| 671 | else |
| 672 | { |
| 673 | if (resultType == Type::FloatTy || |
| 674 | resultType == Type::DoubleTy) |
| 675 | { |
| 676 | bool isValidConst; |
| 677 | double dval = ((ConstPoolFP*) constOp)->getValue(); |
| 678 | |
| 679 | if (isValidConst) |
| 680 | { |
| 681 | if (dval == 0) |
| 682 | { |
| 683 | minstr = new MachineInstr((resultType == Type::FloatTy) |
| 684 | ? FITOS : FITOD); |
| 685 | minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); |
| 686 | } |
| 687 | else if (fabs(dval) == 1) |
| 688 | { |
| 689 | bool needNeg = (dval < 0); |
| 690 | |
| 691 | MachineOpCode opCode = needNeg |
| 692 | ? (resultType == Type::FloatTy? FNEGS : FNEGD) |
| 693 | : (resultType == Type::FloatTy? FMOVS : FMOVD); |
| 694 | |
| 695 | minstr = new MachineInstr(opCode); |
| 696 | minstr->SetMachineOperand(0, |
| 697 | MachineOperand::MO_VirtualRegister, |
| 698 | instrNode->leftChild()->getValue()); |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | if (minstr != NULL) |
| 705 | minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 706 | instrNode->getValue()); |
| 707 | |
| 708 | return minstr; |
| 709 | } |
| 710 | |
| 711 | |
| 712 | static inline MachineOpCode |
| 713 | ChooseDivInstruction(const InstructionNode* instrNode) |
| 714 | { |
| 715 | MachineOpCode opCode = INVALID_OPCODE; |
| 716 | |
| 717 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 718 | |
| 719 | if (resultType->isIntegral()) |
| 720 | { |
| 721 | opCode = resultType->isSigned()? SDIVX : UDIVX; |
| 722 | } |
| 723 | else |
| 724 | { |
| 725 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 726 | switch(operand->getType()->getPrimitiveID()) |
| 727 | { |
| 728 | case Type::FloatTyID: opCode = FDIVS; break; |
| 729 | case Type::DoubleTyID: opCode = FDIVD; break; |
| 730 | default: assert(0 && "Invalid type for DIV instruction"); break; |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | return opCode; |
| 735 | } |
| 736 | |
| 737 | |
| 738 | static inline MachineInstr* |
| 739 | CreateDivConstInstruction(const InstructionNode* instrNode, |
| 740 | MachineInstr*& getMinstr2) |
| 741 | { |
| 742 | MachineInstr* minstr = NULL; |
| 743 | getMinstr2 = NULL; |
| 744 | |
| 745 | Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| 746 | assert(constOp->isConstant()); |
| 747 | |
| 748 | // Cases worth optimizing are: |
| 749 | // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) |
| 750 | // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} |
| 751 | // |
| 752 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 753 | |
| 754 | if (resultType->isIntegral()) |
| 755 | { |
| 756 | unsigned pow; |
| 757 | bool isValidConst; |
| 758 | int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| 759 | if (isValidConst) |
| 760 | { |
| 761 | bool needNeg = false; |
| 762 | if (C < 0) |
| 763 | { |
| 764 | needNeg = true; |
| 765 | C = -C; |
| 766 | } |
| 767 | |
| 768 | if (C == 1) |
| 769 | { |
| 770 | minstr = new MachineInstr(ADD); |
| 771 | minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, |
| 772 | instrNode->leftChild()->getValue()); |
| 773 | minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 774 | } |
| 775 | else if (IsPowerOf2(C, pow)) |
| 776 | { |
| 777 | MachineOpCode opCode= ((resultType->isSigned()) |
| 778 | ? (resultType==Type::LongTy)? SRAX : SRA |
| 779 | : (resultType==Type::LongTy)? SRLX : SRL); |
| 780 | minstr = new MachineInstr(opCode); |
| 781 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 782 | instrNode->leftChild()->getValue()); |
| 783 | minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, |
| 784 | pow); |
| 785 | } |
| 786 | |
| 787 | if (minstr && needNeg) |
| 788 | { // insert <reg = SUB 0, reg> after the instr to flip the sign |
| 789 | getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); |
| 790 | } |
| 791 | } |
| 792 | } |
| 793 | else |
| 794 | { |
| 795 | if (resultType == Type::FloatTy || |
| 796 | resultType == Type::DoubleTy) |
| 797 | { |
| 798 | bool isValidConst; |
| 799 | double dval = ((ConstPoolFP*) constOp)->getValue(); |
| 800 | |
| 801 | if (isValidConst && fabs(dval) == 1) |
| 802 | { |
| 803 | bool needNeg = (dval < 0); |
| 804 | |
| 805 | MachineOpCode opCode = needNeg |
| 806 | ? (resultType == Type::FloatTy? FNEGS : FNEGD) |
| 807 | : (resultType == Type::FloatTy? FMOVS : FMOVD); |
| 808 | |
| 809 | minstr = new MachineInstr(opCode); |
| 810 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 811 | instrNode->leftChild()->getValue()); |
| 812 | } |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | if (minstr != NULL) |
| 817 | minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 818 | instrNode->getValue()); |
| 819 | |
| 820 | return minstr; |
| 821 | } |
| 822 | |
| 823 | |
| 824 | static inline MachineOpCode |
| 825 | ChooseLoadInstruction(const Type* resultType) |
| 826 | { |
| 827 | MachineOpCode opCode = INVALID_OPCODE; |
| 828 | |
| 829 | switch (resultType->getPrimitiveID()) |
| 830 | { |
| 831 | case Type::BoolTyID: opCode = LDUB; break; |
| 832 | case Type::UByteTyID: opCode = LDUB; break; |
| 833 | case Type::SByteTyID: opCode = LDSB; break; |
| 834 | case Type::UShortTyID: opCode = LDUH; break; |
| 835 | case Type::ShortTyID: opCode = LDSH; break; |
| 836 | case Type::UIntTyID: opCode = LDUW; break; |
| 837 | case Type::IntTyID: opCode = LDSW; break; |
| 838 | case Type::ULongTyID: |
| 839 | case Type::LongTyID: opCode = LDX; break; |
| 840 | case Type::FloatTyID: opCode = LD; break; |
| 841 | case Type::DoubleTyID: opCode = LDD; break; |
| 842 | default: assert(0 && "Invalid type for Load instruction"); break; |
| 843 | } |
| 844 | |
| 845 | return opCode; |
| 846 | } |
| 847 | |
| 848 | |
| 849 | static inline MachineOpCode |
| 850 | ChooseStoreInstruction(const Type* valueType) |
| 851 | { |
| 852 | MachineOpCode opCode = INVALID_OPCODE; |
| 853 | |
| 854 | switch (valueType->getPrimitiveID()) |
| 855 | { |
| 856 | case Type::BoolTyID: |
| 857 | case Type::UByteTyID: |
| 858 | case Type::SByteTyID: opCode = STB; break; |
| 859 | case Type::UShortTyID: |
| 860 | case Type::ShortTyID: opCode = STH; break; |
| 861 | case Type::UIntTyID: |
| 862 | case Type::IntTyID: opCode = STW; break; |
| 863 | case Type::ULongTyID: |
| 864 | case Type::LongTyID: opCode = STX; break; |
| 865 | case Type::FloatTyID: opCode = ST; break; |
| 866 | case Type::DoubleTyID: opCode = STD; break; |
| 867 | default: assert(0 && "Invalid type for Store instruction"); break; |
| 868 | } |
| 869 | |
| 870 | return opCode; |
| 871 | } |
| 872 | |
| 873 | |
| 874 | //------------------------------------------------------------------------ |
| 875 | // Function SetOperandsForMemInstr |
| 876 | // |
| 877 | // Choose addressing mode for the given load or store instruction. |
| 878 | // Use [reg+reg] if it is an indexed reference, and the index offset is |
| 879 | // not a constant or if it cannot fit in the offset field. |
| 880 | // Use [reg+offset] in all other cases. |
| 881 | // |
| 882 | // This assumes that all array refs are "lowered" to one of these forms: |
| 883 | // %x = load (subarray*) ptr, constant ; single constant offset |
| 884 | // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| 885 | // Generally, this should happen via strength reduction + LICM. |
| 886 | // Also, strength reduction should take care of using the same register for |
| 887 | // the loop index variable and an array index, when that is profitable. |
| 888 | //------------------------------------------------------------------------ |
| 889 | |
| 890 | static void |
| 891 | SetOperandsForMemInstr(MachineInstr* minstr, |
| 892 | const InstructionNode* vmInstrNode, |
| 893 | const TargetMachine& target) |
| 894 | { |
| 895 | MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| 896 | |
| 897 | // Variables to hold the index vector, ptr value, and offset value. |
| 898 | // The major work here is to extract these for all 3 instruction types |
| 899 | // and then call the common function SetMemOperands_Internal(). |
| 900 | // |
| 901 | const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec(); |
| 902 | vector<ConstPoolVal*>* newIdxVec = NULL; |
| 903 | Value* ptrVal; |
| 904 | Value* arrayOffsetVal = NULL; |
| 905 | |
| 906 | // Test if a GetElemPtr instruction is being folded into this mem instrn. |
| 907 | // If so, it will be in the left child for Load and GetElemPtr, |
| 908 | // and in the right child for Store instructions. |
| 909 | // |
| 910 | InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store |
| 911 | ? vmInstrNode->rightChild() |
| 912 | : vmInstrNode->leftChild()); |
| 913 | |
| 914 | if (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| 915 | ptrChild->getOpLabel() == GetElemPtrIdx) |
| 916 | { |
| 917 | // There is a GetElemPtr instruction and there may be a chain of |
| 918 | // more than one. Use the pointer value of the last one in the chain. |
| 919 | // Fold the index vectors from the entire chain and from the mem |
| 920 | // instruction into one single index vector. |
| 921 | // Finally, we never fold for an array instruction so make that NULL. |
| 922 | |
| 923 | newIdxVec = new vector<ConstPoolVal*>; |
| 924 | ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); |
| 925 | |
| 926 | newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); |
| 927 | idxVec = newIdxVec; |
| 928 | |
| 929 | assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() |
| 930 | && "GetElemPtr cannot be folded into array refs in selection"); |
| 931 | } |
| 932 | else |
| 933 | { |
| 934 | // There is no GetElemPtr instruction. |
| 935 | // Use the pointer value and the index vector from the Mem instruction. |
| 936 | // If it is an array reference, get the array offset value. |
| 937 | // |
| 938 | ptrVal = memInst->getPtrOperand(); |
| 939 | |
| 940 | const Type* opType = |
| 941 | ((const PointerType*) ptrVal->getType())->getValueType(); |
| 942 | if (opType->isArrayType()) |
| 943 | { |
| 944 | assert((memInst->getNumOperands() |
| 945 | == (unsigned) 1 + memInst->getFirstOffsetIdx()) |
| 946 | && "Array refs must be lowered before Instruction Selection"); |
| 947 | |
| 948 | arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, |
| 953 | *idxVec, target); |
| 954 | |
| 955 | if (newIdxVec != NULL) |
| 956 | delete newIdxVec; |
| 957 | } |
| 958 | |
| 959 | |
| 960 | static void |
| 961 | SetMemOperands_Internal(MachineInstr* minstr, |
| 962 | const InstructionNode* vmInstrNode, |
| 963 | Value* ptrVal, |
| 964 | Value* arrayOffsetVal, |
| 965 | const vector<ConstPoolVal*>& idxVec, |
| 966 | const TargetMachine& target) |
| 967 | { |
| 968 | MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| 969 | |
| 970 | // Initialize so we default to storing the offset in a register. |
| 971 | int64_t smallConstOffset; |
| 972 | Value* valueForRegOffset = NULL; |
| 973 | MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; |
| 974 | |
| 975 | // Check if there is an index vector and if so, if it translates to |
| 976 | // a small enough constant to fit in the immediate-offset field. |
| 977 | // |
| 978 | if (idxVec.size() > 0) |
| 979 | { |
| 980 | bool isConstantOffset = false; |
| 981 | unsigned offset; |
| 982 | |
| 983 | const PointerType* ptrType = (PointerType*) ptrVal->getType(); |
| 984 | |
| 985 | if (ptrType->getValueType()->isStructType()) |
| 986 | { |
| 987 | // the offset is always constant for structs |
| 988 | isConstantOffset = true; |
| 989 | |
| 990 | // Compute the offset value using the index vector |
| 991 | offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); |
| 992 | } |
| 993 | else |
| 994 | { |
| 995 | // It must be an array ref. Check if the offset is a constant, |
| 996 | // and that the indexing has been lowered to a single offset. |
| 997 | // |
| 998 | assert(ptrType->getValueType()->isArrayType()); |
| 999 | assert(arrayOffsetVal != NULL |
| 1000 | && "Expect to be given Value* for array offsets"); |
| 1001 | |
| 1002 | if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) |
| 1003 | { |
| 1004 | isConstantOffset = true; // always constant for structs |
| 1005 | assert(arrayOffsetVal->getType()->isIntegral()); |
| 1006 | offset = (CPV->getType()->isSigned() |
| 1007 | ? ((ConstPoolSInt*)CPV)->getValue() |
| 1008 | : (int64_t) ((ConstPoolUInt*)CPV)->getValue()); |
| 1009 | } |
| 1010 | else |
| 1011 | { |
| 1012 | valueForRegOffset = arrayOffsetVal; |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | if (isConstantOffset) |
| 1017 | { |
| 1018 | // create a virtual register for the constant |
| 1019 | valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset); |
| 1020 | } |
| 1021 | } |
| 1022 | else |
| 1023 | { |
| 1024 | offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| 1025 | smallConstOffset = 0; |
| 1026 | } |
| 1027 | |
| 1028 | // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR |
| 1029 | // It is the left child in the instruction tree in all cases. |
| 1030 | Value* leftVal = vmInstrNode->leftChild()->getValue(); |
| 1031 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); |
| 1032 | |
| 1033 | // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR |
| 1034 | // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR |
| 1035 | // |
| 1036 | unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; |
| 1037 | if (offsetOpType == MachineOperand::MO_VirtualRegister) |
| 1038 | { |
| 1039 | assert(valueForRegOffset != NULL); |
| 1040 | minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); |
| 1041 | } |
| 1042 | else |
| 1043 | minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); |
| 1044 | |
| 1045 | if (memInst->getOpcode() == Instruction::Store) |
| 1046 | minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); |
| 1047 | else |
| 1048 | minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 1049 | vmInstrNode->getValue()); |
| 1050 | } |
| 1051 | |
| 1052 | |
| 1053 | // Special handling for constant operands: |
| 1054 | // -- if the constant is 0, use the hardwired 0 register, if any; |
| 1055 | // -- if the constant is of float or double type but has an integer value, |
| 1056 | // use int-to-float conversion instruction instead of generating a load; |
| 1057 | // -- if the constant fits in the IMMEDIATE field, use that field; |
| 1058 | // -- else insert instructions to put the constant into a register, either |
| 1059 | // directly or by loading explicitly from the constant pool. |
| 1060 | // |
| 1061 | static unsigned |
| 1062 | FixConstantOperands(const InstructionNode* vmInstrNode, |
| 1063 | MachineInstr** mvec, |
| 1064 | unsigned numInstr, |
| 1065 | TargetMachine& target) |
| 1066 | { |
| 1067 | static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; |
| 1068 | |
| 1069 | unsigned numNew = 0; |
| 1070 | Instruction* vmInstr = vmInstrNode->getInstruction(); |
| 1071 | |
| 1072 | for (unsigned i=0; i < numInstr; i++) |
| 1073 | { |
| 1074 | MachineInstr* minstr = mvec[i]; |
| 1075 | const MachineInstrDescriptor& instrDesc = |
| 1076 | target.getInstrInfo().getDescriptor(minstr->getOpCode()); |
| 1077 | |
| 1078 | for (unsigned op=0; op < minstr->getNumOperands(); op++) |
| 1079 | { |
| 1080 | const MachineOperand& mop = minstr->getOperand(op); |
| 1081 | |
| 1082 | // skip the result position (for efficiency below) and any other |
| 1083 | // positions already marked as not a virtual register |
| 1084 | if (instrDesc.resultPos == (int) op || |
| 1085 | mop.getOperandType() != MachineOperand::MO_VirtualRegister || |
| 1086 | mop.getVRegValue() == NULL) |
| 1087 | { |
| 1088 | break; |
| 1089 | } |
| 1090 | |
| 1091 | Value* opValue = mop.getVRegValue(); |
| 1092 | |
| 1093 | if (opValue->isConstant()) |
| 1094 | { |
| 1095 | unsigned int machineRegNum; |
| 1096 | int64_t immedValue; |
| 1097 | MachineOperand::MachineOperandType opType = |
| 1098 | ChooseRegOrImmed(opValue, minstr->getOpCode(), target, |
| 1099 | /*canUseImmed*/ (op == 1), |
| 1100 | machineRegNum, immedValue); |
| 1101 | |
| 1102 | if (opType == MachineOperand::MO_MachineRegister) |
| 1103 | minstr->SetMachineOperand(op, machineRegNum); |
| 1104 | else if (opType == MachineOperand::MO_VirtualRegister) |
| 1105 | { |
| 1106 | // value is constant and must be loaded into a register |
| 1107 | TmpInstruction* tmpReg; |
| 1108 | MachineInstr* minstr2; |
| 1109 | loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue, |
| 1110 | tmpReg, minstr2); |
| 1111 | minstr->SetMachineOperand(op, opType, tmpReg); |
| 1112 | if (minstr2 != NULL) |
| 1113 | loadConstVec[numNew++] = minstr2; |
| 1114 | } |
| 1115 | else |
| 1116 | minstr->SetMachineOperand(op, opType, immedValue); |
| 1117 | } |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | if (numNew > 0) |
| 1122 | { |
| 1123 | // Insert the new instructions *before* the old ones by moving |
| 1124 | // the old ones over `numNew' positions (last-to-first, of course!). |
| 1125 | // We do check *after* returning that we did not exceed the vector mvec. |
| 1126 | for (int i=numInstr-1; i >= 0; i--) |
| 1127 | mvec[i+numNew] = mvec[i]; |
| 1128 | |
| 1129 | for (unsigned i=0; i < numNew; i++) |
| 1130 | mvec[i] = loadConstVec[i]; |
| 1131 | } |
| 1132 | |
| 1133 | return (numInstr + numNew); |
| 1134 | } |
| 1135 | |
| 1136 | |
| 1137 | static inline MachineInstr* |
| 1138 | MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest) |
| 1139 | { |
| 1140 | MachineInstr* minstr; |
| 1141 | if (isSigned) |
| 1142 | { |
| 1143 | minstr = new MachineInstr(SETSW); |
| 1144 | minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C); |
| 1145 | } |
| 1146 | else |
| 1147 | { |
| 1148 | minstr = new MachineInstr(SETUW); |
| 1149 | minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C); |
| 1150 | } |
| 1151 | |
| 1152 | minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest); |
| 1153 | |
| 1154 | return minstr; |
| 1155 | } |
| 1156 | |
| 1157 | |
| 1158 | static MachineInstr* |
| 1159 | MakeLoadConstInstr(Instruction* vmInstr, |
| 1160 | Value* val, |
| 1161 | TmpInstruction*& tmpReg, |
| 1162 | MachineInstr*& getMinstr2) |
| 1163 | { |
| 1164 | assert(val->isConstant()); |
| 1165 | |
| 1166 | MachineInstr* minstr; |
| 1167 | |
| 1168 | getMinstr2 = NULL; |
| 1169 | |
| 1170 | // Create a TmpInstruction to mark the hidden register used for the constant |
| 1171 | tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL); |
| 1172 | vmInstr->getMachineInstrVec().addTempValue(tmpReg); |
| 1173 | |
| 1174 | // Use a "set" instruction for known constants that can go in an integer reg. |
| 1175 | // Use a "set" instruction followed by a int-to-float conversion for known |
| 1176 | // constants that must go in a floating point reg but have an integer value. |
| 1177 | // Use a "load" instruction for all other constants, in particular, |
| 1178 | // floating point constants. |
| 1179 | // |
| 1180 | const Type* valType = val->getType(); |
| 1181 | |
| 1182 | if (valType->isIntegral() || |
| 1183 | valType->isPointerType() || |
| 1184 | valType == Type::BoolTy) |
| 1185 | { |
| 1186 | bool isValidConstant; |
| 1187 | int64_t C = GetConstantValueAsSignedInt(val, isValidConstant); |
| 1188 | assert(isValidConstant && "Unrecognized constant"); |
| 1189 | |
| 1190 | minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg); |
| 1191 | } |
| 1192 | else |
| 1193 | { |
| 1194 | assert(valType == Type::FloatTy || valType == Type::DoubleTy); |
| 1195 | double dval = ((ConstPoolFP*) val)->getValue(); |
| 1196 | if (dval == (int64_t) dval) |
| 1197 | { |
| 1198 | // The constant actually has an integer value, so use a |
| 1199 | // [set; int-to-float] sequence instead of a load instruction. |
| 1200 | // |
| 1201 | TmpInstruction* tmpReg2 = NULL; |
| 1202 | if (dval != 0.0) |
| 1203 | { // First, create an integer constant of the same value as dval |
| 1204 | ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy, |
| 1205 | (int64_t) dval); |
| 1206 | // Create another TmpInstruction for the hidden integer register |
| 1207 | TmpInstruction* tmpReg2 = |
| 1208 | new TmpInstruction(Instruction::UserOp1, ival, NULL); |
| 1209 | vmInstr->getMachineInstrVec().addTempValue(tmpReg2); |
| 1210 | |
| 1211 | // Create the `SET' instruction |
| 1212 | minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2); |
| 1213 | } |
| 1214 | |
| 1215 | // In which variable do we put the second instruction? |
| 1216 | MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr; |
| 1217 | |
| 1218 | // Create the int-to-float instruction |
| 1219 | instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD); |
| 1220 | |
| 1221 | if (dval == 0.0) |
| 1222 | instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); |
| 1223 | else |
| 1224 | instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, |
| 1225 | tmpReg2); |
| 1226 | |
| 1227 | instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, |
| 1228 | tmpReg); |
| 1229 | } |
| 1230 | else |
| 1231 | { |
| 1232 | // Make a Load instruction, and make `val' both the ptr value *and* |
| 1233 | // the result value, and set the offset field to 0. Final code |
| 1234 | // generation will have to generate the base+offset for the constant. |
| 1235 | // |
| 1236 | int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 |
| 1237 | minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); |
| 1238 | minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val); |
| 1239 | minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| 1240 | zeroOffset); |
| 1241 | minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 1242 | tmpReg); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | tmpReg->addMachineInstruction(minstr); |
| 1247 | |
| 1248 | assert(minstr); |
| 1249 | return minstr; |
| 1250 | } |
| 1251 | |
| 1252 | // |
| 1253 | // Substitute operand `operandNum' of the instruction in node `treeNode' |
| 1254 | // in place the use(s) of that instruction in node `parent'. |
| 1255 | // |
| 1256 | static void |
| 1257 | ForwardOperand(InstructionNode* treeNode, |
| 1258 | InstructionNode* parent, |
| 1259 | int operandNum) |
| 1260 | { |
| 1261 | Instruction* unusedOp = treeNode->getInstruction(); |
| 1262 | Value* fwdOp = unusedOp->getOperand(operandNum); |
| 1263 | Instruction* userInstr = parent->getInstruction(); |
| 1264 | MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec(); |
| 1265 | for (unsigned i=0, N=mvec.size(); i < N; i++) |
| 1266 | { |
| 1267 | MachineInstr* minstr = mvec[i]; |
| 1268 | for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++) |
| 1269 | { |
| 1270 | const MachineOperand& mop = minstr->getOperand(i); |
| 1271 | if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && |
| 1272 | mop.getVRegValue() == unusedOp) |
| 1273 | { |
| 1274 | minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, |
| 1275 | fwdOp); |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | // This function is currently unused and incomplete but will be |
| 1283 | // used if we have a linear layout of basic blocks in LLVM code. |
| 1284 | // It decides which branch should fall-through, and whether an |
| 1285 | // extra unconditional branch is needed (when neither falls through). |
| 1286 | // |
| 1287 | void |
| 1288 | ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) |
| 1289 | { |
| 1290 | BranchInst* brInstr = (BranchInst*) vmInstr; |
| 1291 | |
| 1292 | brPattern.flipCondition = false; |
| 1293 | brPattern.targetBB = brInstr->getSuccessor(0); |
| 1294 | brPattern.extraBranch = NULL; |
| 1295 | |
| 1296 | assert(brInstr->getNumSuccessors() > 1 && |
| 1297 | "Unnecessary analysis for unconditional branch"); |
| 1298 | |
| 1299 | assert(0 && "Fold branches in peephole optimization"); |
| 1300 | } |
| 1301 | |
| 1302 | |
| 1303 | //******************* Externally Visible Functions *************************/ |
| 1304 | |
| 1305 | |
| 1306 | //------------------------------------------------------------------------ |
| 1307 | // External Function: GetInstructionsByRule |
| 1308 | // |
| 1309 | // Purpose: |
| 1310 | // Choose machine instructions for the SPARC according to the |
| 1311 | // patterns chosen by the BURG-generated parser. |
| 1312 | //------------------------------------------------------------------------ |
| 1313 | |
| 1314 | unsigned |
| 1315 | GetInstructionsByRule(InstructionNode* subtreeRoot, |
| 1316 | int ruleForNode, |
| 1317 | short* nts, |
| 1318 | TargetMachine &target, |
| 1319 | MachineInstr** mvec) |
| 1320 | { |
| 1321 | int numInstr = 1; // initialize for common case |
| 1322 | bool checkCast = false; // initialize here to use fall-through |
| 1323 | Value *leftVal, *rightVal; |
| 1324 | const Type* opType; |
| 1325 | int nextRule; |
| 1326 | int forwardOperandNum = -1; |
| 1327 | BranchPattern brPattern; |
| 1328 | int64_t s0 = 0; // variables holding zero to avoid |
| 1329 | uint64_t u0 = 0; // overloading ambiguities below |
| 1330 | |
| 1331 | mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety |
| 1332 | |
| 1333 | switch(ruleForNode) { |
| 1334 | case 1: // stmt: Ret |
| 1335 | case 2: // stmt: RetValue(reg) |
| 1336 | // NOTE: Prepass of register allocation is responsible |
| 1337 | // for moving return value to appropriate register. |
| 1338 | // Mark the return-address register as a hidden virtual reg. |
| 1339 | { |
| 1340 | Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, |
| 1341 | subtreeRoot->getInstruction(), NULL); |
| 1342 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); |
| 1343 | |
| 1344 | mvec[0] = new MachineInstr(RETURN); |
| 1345 | mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg); |
| 1346 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); |
| 1347 | |
| 1348 | returnReg->addMachineInstruction(mvec[0]); |
| 1349 | |
| 1350 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 1351 | break; |
| 1352 | } |
| 1353 | |
| 1354 | case 3: // stmt: Store(reg,reg) |
| 1355 | case 4: // stmt: Store(reg,ptrreg) |
| 1356 | mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); |
| 1357 | SetOperandsForMemInstr(mvec[0], subtreeRoot, target); |
| 1358 | break; |
| 1359 | |
| 1360 | case 5: // stmt: BrUncond |
| 1361 | mvec[0] = new MachineInstr(BA); |
| 1362 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); |
| 1363 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 1364 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 1365 | |
| 1366 | // delay slot |
| 1367 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1368 | break; |
| 1369 | |
| 1370 | case 6: // stmt: BrCond(boolconst) |
| 1371 | // boolconst => boolean was computed with `%b = setCC type reg1 constant' |
| 1372 | // If the constant is ZERO, we can use the branch-on-integer-register |
| 1373 | // instructions and avoid the SUBcc instruction entirely. |
| 1374 | // Otherwise this is just the same as case 5, so just fall through. |
| 1375 | { |
| 1376 | InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| 1377 | assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| 1378 | ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); |
| 1379 | bool isValidConst; |
| 1380 | |
| 1381 | if (constVal->getType()->isIntegral() |
| 1382 | && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 |
| 1383 | && isValidConst) |
| 1384 | { |
| 1385 | // That constant ia a zero after all... |
| 1386 | // Use the left child of the setCC instruction as the first argument! |
| 1387 | mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); |
| 1388 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 1389 | subtreeRoot->leftChild()->leftChild()->getValue()); |
| 1390 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 1391 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 1392 | |
| 1393 | // delay slot |
| 1394 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1395 | |
| 1396 | // false branch |
| 1397 | mvec[numInstr++] = new MachineInstr(BA); |
| 1398 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1399 | (Value*) NULL); |
| 1400 | mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| 1401 | |
| 1402 | // delay slot |
| 1403 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1404 | |
| 1405 | break; |
| 1406 | } |
| 1407 | // ELSE FALL THROUGH |
| 1408 | } |
| 1409 | |
| 1410 | case 7: // stmt: BrCond(bool) |
| 1411 | // bool => boolean was computed with `%b = setcc type reg1 reg2' |
| 1412 | // Need to check whether the type was a FP, signed int or unsigned int, |
| 1413 | // and check the branching condition in order to choose the branch to use. |
| 1414 | // |
| 1415 | { |
| 1416 | bool isFPBranch; |
| 1417 | mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); |
| 1418 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1419 | subtreeRoot->leftChild()->getValue()); |
| 1420 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 1421 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 1422 | |
| 1423 | // delay slot |
| 1424 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1425 | |
| 1426 | // false branch |
| 1427 | mvec[numInstr++] = new MachineInstr(BA); |
| 1428 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1429 | (Value*) NULL); |
| 1430 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, |
| 1431 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| 1432 | |
| 1433 | // delay slot |
| 1434 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1435 | break; |
| 1436 | } |
| 1437 | |
| 1438 | case 8: // stmt: BrCond(boolreg) |
| 1439 | // bool => boolean is stored in an existing register. |
| 1440 | // Just use the branch-on-integer-register instruction! |
| 1441 | // |
| 1442 | mvec[0] = new MachineInstr(BRNZ); |
| 1443 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 1444 | subtreeRoot->leftChild()->getValue()); |
| 1445 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 1446 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 1447 | |
| 1448 | // delay slot |
| 1449 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 1450 | |
| 1451 | // false branch |
| 1452 | mvec[numInstr++] = new MachineInstr(BA); |
| 1453 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1454 | (Value*) NULL); |
| 1455 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, |
| 1456 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| 1457 | |
| 1458 | // delay slot |
| 1459 | mvec[numInstr++] = new MachineInstr(NOP); |
| 1460 | break; |
| 1461 | |
| 1462 | case 9: // stmt: Switch(reg) |
| 1463 | assert(0 && "*** SWITCH instruction is not implemented yet."); |
| 1464 | numInstr = 0; |
| 1465 | break; |
| 1466 | |
| 1467 | case 10: // reg: VRegList(reg, reg) |
| 1468 | assert(0 && "VRegList should never be the topmost non-chain rule"); |
| 1469 | break; |
| 1470 | |
| 1471 | case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 |
| 1472 | mvec[0] = new MachineInstr(XNOR); |
| 1473 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 1474 | subtreeRoot->leftChild()->getValue()); |
| 1475 | mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 1476 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 1477 | subtreeRoot->getValue()); |
| 1478 | break; |
| 1479 | |
| 1480 | case 22: // reg: ToBoolTy(reg): |
| 1481 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1482 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 1483 | numInstr = 0; |
| 1484 | forwardOperandNum = 0; |
| 1485 | break; |
| 1486 | |
| 1487 | case 23: // reg: ToUByteTy(reg) |
| 1488 | case 25: // reg: ToUShortTy(reg) |
| 1489 | case 27: // reg: ToUIntTy(reg) |
| 1490 | case 29: // reg: ToULongTy(reg) |
| 1491 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1492 | assert(opType->isIntegral() || |
| 1493 | opType->isPointerType() || |
| 1494 | opType == Type::BoolTy && "Ignoring cast: illegal for other types"); |
| 1495 | numInstr = 0; |
| 1496 | forwardOperandNum = 0; |
| 1497 | break; |
| 1498 | |
| 1499 | case 24: // reg: ToSByteTy(reg) |
| 1500 | case 26: // reg: ToShortTy(reg) |
| 1501 | case 28: // reg: ToIntTy(reg) |
| 1502 | case 30: // reg: ToLongTy(reg) |
| 1503 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1504 | if (opType->isIntegral() || opType == Type::BoolTy) |
| 1505 | { |
| 1506 | numInstr = 0; |
| 1507 | forwardOperandNum = 0; |
| 1508 | } |
| 1509 | else |
| 1510 | { |
| 1511 | mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); |
| 1512 | Set2OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1513 | } |
| 1514 | break; |
| 1515 | |
| 1516 | case 31: // reg: ToFloatTy(reg): |
| 1517 | case 32: // reg: ToDoubleTy(reg): |
| 1518 | |
| 1519 | // If this instruction has a parent (a user) in the tree |
| 1520 | // and the user is translated as an FsMULd instruction, |
| 1521 | // then the cast is unnecessary. So check that first. |
| 1522 | // In the future, we'll want to do the same for the FdMULq instruction, |
| 1523 | // so do the check here instead of only for ToFloatTy(reg). |
| 1524 | // |
| 1525 | if (subtreeRoot->parent() != NULL && |
| 1526 | ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) |
| 1527 | { |
| 1528 | numInstr = 0; |
| 1529 | forwardOperandNum = 0; |
| 1530 | } |
| 1531 | else |
| 1532 | { |
| 1533 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1534 | MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType); |
| 1535 | if (opCode == INVALID_OPCODE) // no conversion needed |
| 1536 | { |
| 1537 | numInstr = 0; |
| 1538 | forwardOperandNum = 0; |
| 1539 | } |
| 1540 | else |
| 1541 | { |
| 1542 | mvec[0] = new MachineInstr(opCode); |
| 1543 | Set2OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1544 | } |
| 1545 | } |
| 1546 | break; |
| 1547 | |
| 1548 | case 19: // reg: ToArrayTy(reg): |
| 1549 | case 20: // reg: ToPointerTy(reg): |
| 1550 | numInstr = 0; |
| 1551 | forwardOperandNum = 0; |
| 1552 | break; |
| 1553 | |
| 1554 | case 233: // reg: Add(reg, Constant) |
| 1555 | mvec[0] = CreateAddConstInstruction(subtreeRoot); |
| 1556 | if (mvec[0] != NULL) |
| 1557 | break; |
| 1558 | // ELSE FALL THROUGH |
| 1559 | |
| 1560 | case 33: // reg: Add(reg, reg) |
| 1561 | mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); |
| 1562 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1563 | break; |
| 1564 | |
| 1565 | case 234: // reg: Sub(reg, Constant) |
| 1566 | mvec[0] = CreateSubConstInstruction(subtreeRoot); |
| 1567 | if (mvec[0] != NULL) |
| 1568 | break; |
| 1569 | // ELSE FALL THROUGH |
| 1570 | |
| 1571 | case 34: // reg: Sub(reg, reg) |
| 1572 | mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); |
| 1573 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1574 | break; |
| 1575 | |
| 1576 | case 135: // reg: Mul(todouble, todouble) |
| 1577 | checkCast = true; |
| 1578 | // FALL THROUGH |
| 1579 | |
| 1580 | case 35: // reg: Mul(reg, reg) |
| 1581 | mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); |
| 1582 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1583 | break; |
| 1584 | |
| 1585 | case 335: // reg: Mul(todouble, todoubleConst) |
| 1586 | checkCast = true; |
| 1587 | // FALL THROUGH |
| 1588 | |
| 1589 | case 235: // reg: Mul(reg, Constant) |
| 1590 | mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]); |
| 1591 | if (mvec[0] == NULL) |
| 1592 | { |
| 1593 | mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); |
| 1594 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1595 | } |
| 1596 | else |
| 1597 | if (mvec[1] != NULL) |
| 1598 | ++numInstr; |
| 1599 | break; |
| 1600 | |
| 1601 | case 236: // reg: Div(reg, Constant) |
| 1602 | mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]); |
| 1603 | if (mvec[0] != NULL) |
| 1604 | { |
| 1605 | if (mvec[1] != NULL) |
| 1606 | ++numInstr; |
| 1607 | } |
| 1608 | else |
| 1609 | // ELSE FALL THROUGH |
| 1610 | |
| 1611 | case 36: // reg: Div(reg, reg) |
| 1612 | mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); |
| 1613 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1614 | break; |
| 1615 | |
| 1616 | case 37: // reg: Rem(reg, reg) |
| 1617 | case 237: // reg: Rem(reg, Constant) |
| 1618 | assert(0 && "REM instruction unimplemented for the SPARC."); |
| 1619 | break; |
| 1620 | |
| 1621 | case 38: // reg: And(reg, reg) |
| 1622 | case 238: // reg: And(reg, Constant) |
| 1623 | mvec[0] = new MachineInstr(AND); |
| 1624 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1625 | break; |
| 1626 | |
| 1627 | case 138: // reg: And(reg, not) |
| 1628 | mvec[0] = new MachineInstr(ANDN); |
| 1629 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1630 | break; |
| 1631 | |
| 1632 | case 39: // reg: Or(reg, reg) |
| 1633 | case 239: // reg: Or(reg, Constant) |
| 1634 | mvec[0] = new MachineInstr(ORN); |
| 1635 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1636 | break; |
| 1637 | |
| 1638 | case 139: // reg: Or(reg, not) |
| 1639 | mvec[0] = new MachineInstr(ORN); |
| 1640 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1641 | break; |
| 1642 | |
| 1643 | case 40: // reg: Xor(reg, reg) |
| 1644 | case 240: // reg: Xor(reg, Constant) |
| 1645 | mvec[0] = new MachineInstr(XOR); |
| 1646 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1647 | break; |
| 1648 | |
| 1649 | case 140: // reg: Xor(reg, not) |
| 1650 | mvec[0] = new MachineInstr(XNOR); |
| 1651 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1652 | break; |
| 1653 | |
| 1654 | case 41: // boolconst: SetCC(reg, Constant) |
| 1655 | // Check if this is an integer comparison, and |
| 1656 | // there is a parent, and the parent decided to use |
| 1657 | // a branch-on-integer-register instead of branch-on-condition-code. |
| 1658 | // If so, the SUBcc instruction is not required. |
| 1659 | // (However, we must still check for constants to be loaded from |
| 1660 | // the constant pool so that such a load can be associated with |
| 1661 | // this instruction.) |
| 1662 | // |
| 1663 | // Otherwise this is just the same as case 42, so just fall through. |
| 1664 | // |
| 1665 | if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && |
| 1666 | subtreeRoot->parent() != NULL) |
| 1667 | { |
| 1668 | InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); |
| 1669 | assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); |
| 1670 | const vector<MachineInstr*>& |
| 1671 | minstrVec = parentNode->getInstruction()->getMachineInstrVec(); |
| 1672 | MachineOpCode parentOpCode; |
| 1673 | if (parentNode->getInstruction()->getOpcode() == Instruction::Br && |
| 1674 | (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && |
| 1675 | parentOpCode <= BRGEZ) |
| 1676 | { |
| 1677 | numInstr = 0; // don't forward the operand! |
| 1678 | break; |
| 1679 | } |
| 1680 | } |
| 1681 | // ELSE FALL THROUGH |
| 1682 | |
| 1683 | case 42: // bool: SetCC(reg, reg): |
| 1684 | { |
| 1685 | // If result of the SetCC is only used for a branch, we can |
| 1686 | // discard the result. otherwise, it must go into an integer register. |
| 1687 | // Note that the user may or may not be in the same tree, so we have |
| 1688 | // to follow SSA def-use edges here, not BURG tree edges. |
| 1689 | // |
| 1690 | Instruction* result = subtreeRoot->getInstruction(); |
| 1691 | Value* firstUse = (Value*) * result->use_begin(); |
| 1692 | bool discardResult = |
| 1693 | (result->use_size() == 1 |
| 1694 | && firstUse->isInstruction() |
| 1695 | && ((Instruction*) firstUse)->getOpcode() == Instruction::Br); |
| 1696 | |
| 1697 | bool mustClearReg; |
| 1698 | int valueToMove; |
| 1699 | MachineOpCode movOpCode; |
| 1700 | |
| 1701 | if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() || |
| 1702 | subtreeRoot->leftChild()->getValue()->getType()->isPointerType()) |
| 1703 | { |
| 1704 | // integer condition: destination should be %g0 or integer register |
| 1705 | // if result must be saved but condition is not SetEQ then we need |
| 1706 | // a separate instruction to compute the bool result, so discard |
| 1707 | // result of SUBcc instruction anyway. |
| 1708 | // |
| 1709 | mvec[0] = new MachineInstr(SUBcc); |
| 1710 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult); |
| 1711 | |
| 1712 | // mark the 4th operand as being a CC register, and a "result" |
| 1713 | mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, |
| 1714 | subtreeRoot->getValue(), /*def*/ true); |
| 1715 | |
| 1716 | if (!discardResult) |
| 1717 | { // recompute bool if needed, using the integer condition codes |
| 1718 | if (result->getOpcode() == Instruction::SetNE) |
| 1719 | discardResult = true; |
| 1720 | else |
| 1721 | movOpCode = |
| 1722 | ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove); |
| 1723 | } |
| 1724 | } |
| 1725 | else |
| 1726 | { |
| 1727 | // FP condition: dest of FCMP should be some FCCn register |
| 1728 | mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); |
| 1729 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1730 | subtreeRoot->getValue()); |
| 1731 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, |
| 1732 | subtreeRoot->leftChild()->getValue()); |
| 1733 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 1734 | subtreeRoot->rightChild()->getValue()); |
| 1735 | |
| 1736 | if (!discardResult) |
| 1737 | {// recompute bool using the FP condition codes |
| 1738 | mustClearReg = true; |
| 1739 | valueToMove = 1; |
| 1740 | movOpCode = ChooseMovFpccInstruction(subtreeRoot); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | if (!discardResult) |
| 1745 | { |
| 1746 | if (mustClearReg) |
| 1747 | {// Unconditionally set register to 0 |
| 1748 | int n = numInstr++; |
| 1749 | mvec[n] = new MachineInstr(SETHI); |
| 1750 | mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0); |
| 1751 | mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, |
| 1752 | subtreeRoot->getValue()); |
| 1753 | } |
| 1754 | |
| 1755 | // Now conditionally move `valueToMove' (0 or 1) into the register |
| 1756 | int n = numInstr++; |
| 1757 | mvec[n] = new MachineInstr(movOpCode); |
| 1758 | mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 1759 | subtreeRoot->getValue()); |
| 1760 | mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, |
| 1761 | valueToMove); |
| 1762 | mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 1763 | subtreeRoot->getValue()); |
| 1764 | } |
| 1765 | break; |
| 1766 | } |
| 1767 | |
| 1768 | case 43: // boolreg: VReg |
| 1769 | case 44: // boolreg: Constant |
| 1770 | numInstr = 0; |
| 1771 | break; |
| 1772 | |
| 1773 | case 51: // reg: Load(reg) |
| 1774 | case 52: // reg: Load(ptrreg) |
| 1775 | case 53: // reg: LoadIdx(reg,reg) |
| 1776 | case 54: // reg: LoadIdx(ptrreg,reg) |
| 1777 | mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); |
| 1778 | SetOperandsForMemInstr(mvec[0], subtreeRoot, target); |
| 1779 | break; |
| 1780 | |
| 1781 | case 55: // reg: GetElemPtr(reg) |
| 1782 | case 56: // reg: GetElemPtrIdx(reg,reg) |
| 1783 | if (subtreeRoot->parent() != NULL) |
| 1784 | { |
| 1785 | // Check if the parent was an array access. |
| 1786 | // If so, we still need to generate this instruction. |
| 1787 | MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); |
| 1788 | const PointerType* ptrType = |
| 1789 | (const PointerType*) memInst->getPtrOperand()->getType(); |
| 1790 | if (! ptrType->getValueType()->isArrayType()) |
| 1791 | {// we don't need a separate instr |
| 1792 | numInstr = 0; // don't forward operand! |
| 1793 | break; |
| 1794 | } |
| 1795 | } |
| 1796 | // else in all other cases we need to a separate ADD instruction |
| 1797 | mvec[0] = new MachineInstr(ADD); |
| 1798 | SetOperandsForMemInstr(mvec[0], subtreeRoot, target); |
| 1799 | break; |
| 1800 | |
| 1801 | case 57: // reg: Alloca: Implement as 2 instructions: |
| 1802 | // sub %sp, tmp -> %sp |
| 1803 | { // add %sp, 0 -> result |
| 1804 | Instruction* instr = subtreeRoot->getInstruction(); |
| 1805 | const PointerType* instrType = (const PointerType*) instr->getType(); |
| 1806 | assert(instrType->isPointerType()); |
| 1807 | int tsize = (int) target.findOptimalStorageSize(instrType->getValueType()); |
| 1808 | assert(tsize != 0 && "Just to check when this can happen"); |
| 1809 | // if (tsize == 0) |
| 1810 | // { |
| 1811 | // numInstr = 0; |
| 1812 | // break; |
| 1813 | // } |
| 1814 | //else go on to create the instructions needed... |
| 1815 | |
| 1816 | // Create a temporary Value to hold the constant type-size |
| 1817 | ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); |
| 1818 | |
| 1819 | // Instruction 1: sub %sp, tsize -> %sp |
| 1820 | // tsize is always constant, but it may have to be put into a |
| 1821 | // register if it doesn't fit in the immediate field. |
| 1822 | // |
| 1823 | mvec[0] = new MachineInstr(SUB); |
| 1824 | mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1825 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); |
| 1826 | mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1827 | |
| 1828 | // Instruction 2: add %sp, 0 -> result |
| 1829 | numInstr++; |
| 1830 | mvec[1] = new MachineInstr(ADD); |
| 1831 | mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1832 | mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 1833 | mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); |
| 1834 | break; |
| 1835 | } |
| 1836 | |
| 1837 | case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| 1838 | // mul num, typeSz -> tmp |
| 1839 | // sub %sp, tmp -> %sp |
| 1840 | { // add %sp, 0 -> result |
| 1841 | Instruction* instr = subtreeRoot->getInstruction(); |
| 1842 | const PointerType* instrType = (const PointerType*) instr->getType(); |
| 1843 | assert(instrType->isPointerType() && |
| 1844 | instrType->getValueType()->isArrayType()); |
| 1845 | const Type* eltType = |
| 1846 | ((ArrayType*) instrType->getValueType())->getElementType(); |
| 1847 | int tsize = (int) target.findOptimalStorageSize(eltType); |
| 1848 | |
| 1849 | assert(tsize != 0 && "Just to check when this can happen"); |
| 1850 | // if (tsize == 0) |
| 1851 | // { |
| 1852 | // numInstr = 0; |
| 1853 | // break; |
| 1854 | // } |
| 1855 | //else go on to create the instructions needed... |
| 1856 | |
| 1857 | // Create a temporary Value to hold the constant type-size |
| 1858 | ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); |
| 1859 | |
| 1860 | // Create a temporary value to hold `tmp' |
| 1861 | Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, |
| 1862 | subtreeRoot->leftChild()->getValue(), |
| 1863 | NULL /*could insert tsize here*/); |
| 1864 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); |
| 1865 | |
| 1866 | // Instruction 1: mul numElements, typeSize -> tmp |
| 1867 | mvec[0] = new MachineInstr(MULX); |
| 1868 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 1869 | subtreeRoot->leftChild()->getValue()); |
| 1870 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); |
| 1871 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr); |
| 1872 | |
| 1873 | tmpInstr->addMachineInstruction(mvec[0]); |
| 1874 | |
| 1875 | // Instruction 2: sub %sp, tmp -> %sp |
| 1876 | numInstr++; |
| 1877 | mvec[1] = new MachineInstr(SUB); |
| 1878 | mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1879 | mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr); |
| 1880 | mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1881 | |
| 1882 | // Instruction 3: add %sp, 0 -> result |
| 1883 | numInstr++; |
| 1884 | mvec[2] = new MachineInstr(ADD); |
| 1885 | mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 1886 | mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 1887 | mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); |
| 1888 | break; |
| 1889 | } |
| 1890 | |
| 1891 | case 61: // reg: Call |
| 1892 | // Generate a call-indirect (i.e., JMPL) for now to expose |
| 1893 | // the potential need for registers. If an absolute address |
| 1894 | // is available, replace this with a CALL instruction. |
| 1895 | // Mark both the indirection register and the return-address |
| 1896 | { // register as hidden virtual registers. |
| 1897 | |
| 1898 | Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, |
| 1899 | ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); |
| 1900 | Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, |
| 1901 | subtreeRoot->getValue(), NULL); |
| 1902 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg); |
| 1903 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg); |
| 1904 | |
| 1905 | mvec[0] = new MachineInstr(JMPL); |
| 1906 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg); |
| 1907 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| 1908 | (int64_t) 0); |
| 1909 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); |
| 1910 | |
| 1911 | // NOTE: jmpAddrReg will be loaded by a different instruction generated |
| 1912 | // by the final code generator, so we just mark the CALL instruction |
| 1913 | // as computing that value. |
| 1914 | // The retAddrReg is actually computed by the CALL instruction. |
| 1915 | // |
| 1916 | jmpAddrReg->addMachineInstruction(mvec[0]); |
| 1917 | retAddrReg->addMachineInstruction(mvec[0]); |
| 1918 | |
| 1919 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 1920 | break; |
| 1921 | } |
| 1922 | |
| 1923 | case 62: // reg: Shl(reg, reg) |
| 1924 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1925 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 1926 | mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); |
| 1927 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1928 | break; |
| 1929 | |
| 1930 | case 63: // reg: Shr(reg, reg) |
| 1931 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 1932 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 1933 | mvec[0] = new MachineInstr((opType->isSigned() |
| 1934 | ? ((opType == Type::LongTy)? SRAX : SRA) |
| 1935 | : ((opType == Type::LongTy)? SRLX : SRL))); |
| 1936 | Set3OperandsFromInstr(mvec[0], subtreeRoot, target); |
| 1937 | break; |
| 1938 | |
| 1939 | case 64: // reg: Phi(reg,reg) |
| 1940 | { // This instruction has variable #operands, so resultPos is 0. |
| 1941 | Instruction* phi = subtreeRoot->getInstruction(); |
| 1942 | mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); |
| 1943 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 1944 | subtreeRoot->getValue()); |
| 1945 | for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) |
| 1946 | mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, |
| 1947 | phi->getOperand(i)); |
| 1948 | break; |
| 1949 | } |
| 1950 | case 71: // reg: VReg |
| 1951 | case 72: // reg: Constant |
| 1952 | numInstr = 0; // don't forward the value |
| 1953 | break; |
| 1954 | |
| 1955 | case 111: // stmt: reg |
| 1956 | case 112: // stmt: boolconst |
| 1957 | case 113: // stmt: bool |
| 1958 | case 121: |
| 1959 | case 122: |
| 1960 | case 123: |
| 1961 | case 124: |
| 1962 | case 125: |
| 1963 | case 126: |
| 1964 | case 127: |
| 1965 | case 128: |
| 1966 | case 129: |
| 1967 | case 130: |
| 1968 | case 131: |
| 1969 | case 132: |
| 1970 | case 153: |
| 1971 | case 155: |
| 1972 | // |
| 1973 | // These are all chain rules, which have a single nonterminal on the RHS. |
| 1974 | // Get the rule that matches the RHS non-terminal and use that instead. |
| 1975 | // |
| 1976 | assert(ThisIsAChainRule(ruleForNode)); |
| 1977 | assert(nts[0] && ! nts[1] |
| 1978 | && "A chain rule should have only one RHS non-terminal!"); |
| 1979 | nextRule = burm_rule(subtreeRoot->state, nts[0]); |
| 1980 | nts = burm_nts[nextRule]; |
| 1981 | numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); |
| 1982 | break; |
| 1983 | |
| 1984 | default: |
| 1985 | assert(0 && "Unrecognized BURG rule"); |
| 1986 | numInstr = 0; |
| 1987 | break; |
| 1988 | } |
| 1989 | |
| 1990 | if (forwardOperandNum >= 0) |
| 1991 | { // We did not generate a machine instruction but need to use operand. |
| 1992 | // If user is in the same tree, replace Value in its machine operand. |
| 1993 | // If not, insert a copy instruction which should get coalesced away |
| 1994 | // by register allocation. |
| 1995 | if (subtreeRoot->parent() != NULL) |
| 1996 | ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(), |
| 1997 | forwardOperandNum); |
| 1998 | else |
| 1999 | { |
| 2000 | int n = numInstr++; |
| 2001 | mvec[n] = new MachineInstr(ADD); |
| 2002 | mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, |
| 2003 | subtreeRoot->getInstruction()->getOperand(forwardOperandNum)); |
| 2004 | mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 2005 | mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, |
| 2006 | subtreeRoot->getInstruction()); |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | if (! ThisIsAChainRule(ruleForNode)) |
| 2011 | numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target); |
| 2012 | |
| 2013 | return numInstr; |
| 2014 | } |
| 2015 | |
| 2016 | |