| Juan Cespedes | d914a20 | 2004-11-10 00:15:33 +0100 | [diff] [blame] | 1 | #include <gelf.h> |
| Juan Cespedes | a7af00d | 2009-07-26 13:23:18 +0200 | [diff] [blame] | 2 | #include <sys/ptrace.h> |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 3 | #include <errno.h> |
| 4 | #include <error.h> |
| 5 | #include <inttypes.h> |
| 6 | #include <assert.h> |
| Petr Machata | 37d368e | 2012-03-24 04:58:08 +0100 | [diff] [blame^] | 7 | #include <string.h> |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 8 | |
| Petr Machata | 366c2f4 | 2012-02-09 19:34:36 +0100 | [diff] [blame] | 9 | #include "proc.h" |
| Juan Cespedes | f728123 | 2009-06-25 16:11:21 +0200 | [diff] [blame] | 10 | #include "common.h" |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 11 | #include "library.h" |
| 12 | |
| Petr Machata | 37d368e | 2012-03-24 04:58:08 +0100 | [diff] [blame^] | 13 | /* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and |
| 14 | * new-style "secure" PLT. We can tell one from the other by the |
| 15 | * flags on the .plt section. If it's +X (executable), it's BSS PLT, |
| 16 | * otherwise it's secure. |
| 17 | * |
| 18 | * BSS PLT works the same way as most architectures: the .plt section |
| 19 | * contains trampolines and we put breakpoints to those. With secure |
| 20 | * PLT, the .plt section doesn't contain instructions but addresses. |
| 21 | * The real PLT table is stored in .text. Addresses of those PLT |
| 22 | * entries can be computed, and it fact that's what the glink deal |
| 23 | * below does. |
| 24 | * |
| 25 | * If not prelinked, BSS PLT entries in the .plt section contain |
| 26 | * zeroes that are overwritten by the dynamic linker during start-up. |
| 27 | * For that reason, ltrace realizes those breakpoints only after |
| 28 | * .start is hit. |
| 29 | * |
| 30 | * 64-bit PPC is more involved. Program linker creates for each |
| 31 | * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee> |
| 32 | * (where xxxxxxxx is a hexadecimal number). That stub does the call |
| 33 | * dispatch: it loads an address of a function to call from the |
| 34 | * section .plt, and branches. PLT entries themselves are essentially |
| 35 | * a curried call to the resolver. When the symbol is resolved, the |
| 36 | * resolver updates the value stored in .plt, and the next time |
| 37 | * around, the stub calls the library function directly. So we make |
| 38 | * at most one trip (none if the binary is prelinked) through each PLT |
| 39 | * entry, and correspondingly that is useless as a breakpoint site. |
| 40 | * |
| 41 | * Note the three confusing terms: stubs (that play the role of PLT |
| 42 | * entries), PLT entries, .plt section. |
| 43 | * |
| 44 | * We first check symbol tables and see if we happen to have stub |
| 45 | * symbols available. If yes we just put breakpoints to those, and |
| 46 | * treat them as usual breakpoints. The only tricky part is realizing |
| 47 | * that there can be more than one breakpoint per symbol. |
| 48 | * |
| 49 | * The case that we don't have the stub symbols available is harder. |
| 50 | * The following scheme uses two kinds of PLT breakpoints: unresolved |
| 51 | * and resolved (to some address). When the process starts (or when |
| 52 | * we attach), we distribute unresolved PLT breakpoints to the PLT |
| 53 | * entries (not stubs). Then we look in .plt, and for each entry |
| 54 | * whose value is different than the corresponding PLT entry address, |
| 55 | * we assume it was already resolved, and convert the breakpoint to |
| 56 | * resolved. We also rewrite the resolved value in .plt back to the |
| 57 | * PLT address. |
| 58 | * |
| 59 | * When a PLT entry hits a resolved breakpoint (which happens because |
| 60 | * we put back the unresolved addresses to .plt), we move the |
| 61 | * instruction pointer to the corresponding address and continue the |
| 62 | * process as if nothing happened. |
| 63 | * |
| 64 | * When unresolved PLT entry is called for the first time, we need to |
| 65 | * catch the new value that the resolver will write to a .plt slot. |
| 66 | * We also need to prevent another thread from racing through and |
| 67 | * taking the branch without ltrace noticing. So when unresolved PLT |
| 68 | * entry hits, we have to stop all threads. We then single-step |
| 69 | * through the resolver, until the .plt slot changes. When it does, |
| 70 | * we treat it the same way as above: convert the PLT breakpoint to |
| 71 | * resolved, and rewrite the .plt value back to PLT address. We then |
| 72 | * start all threads again. |
| 73 | * |
| 74 | * In theory we might find the exact instruction that will update the |
| 75 | * .plt slot, and emulate it, updating the PLT breakpoint immediately, |
| 76 | * and then just skip it. But that's even messier than the thread |
| 77 | * stopping business and single stepping that needs to be done. |
| 78 | */ |
| 79 | |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 80 | #define PPC_PLT_STUB_SIZE 16 |
| 81 | |
| 82 | static inline int |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 83 | host_powerpc64() |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 84 | { |
| 85 | #ifdef __powerpc64__ |
| 86 | return 1; |
| 87 | #else |
| 88 | return 0; |
| 89 | #endif |
| 90 | } |
| 91 | |
| Juan Cespedes | f135052 | 2008-12-16 18:19:58 +0100 | [diff] [blame] | 92 | GElf_Addr |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 93 | arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela) |
| 94 | { |
| 95 | if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) { |
| 96 | assert(lte->arch.plt_stub_vma != 0); |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 97 | return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx; |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 98 | |
| 99 | } else if (lte->ehdr.e_machine == EM_PPC) { |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 100 | return rela->r_offset; |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 101 | |
| 102 | } else { |
| 103 | assert(lte->ehdr.e_machine == EM_PPC64); |
| 104 | fprintf(stderr, "PPC64\n"); |
| 105 | abort(); |
| 106 | return rela->r_offset; |
| 107 | } |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 108 | } |
| 109 | |
| 110 | int |
| 111 | arch_translate_address(struct Process *proc, |
| 112 | target_address_t addr, target_address_t *ret) |
| 113 | { |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 114 | if (host_powerpc64() && proc->e_machine == EM_PPC64) { |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 115 | long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0); |
| 116 | fprintf(stderr, "arch_translate_address %p->%#lx\n", |
| 117 | addr, l); |
| 118 | if (l == -1 && errno) { |
| 119 | error(0, errno, ".opd translation of %p", addr); |
| 120 | return -1; |
| 121 | } |
| 122 | *ret = (target_address_t)l; |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | *ret = addr; |
| 127 | return 0; |
| Juan Cespedes | d914a20 | 2004-11-10 00:15:33 +0100 | [diff] [blame] | 128 | } |
| Ian Wienand | 9a2ad35 | 2006-02-20 22:44:45 +0100 | [diff] [blame] | 129 | |
| Petr Machata | 2b46cfc | 2012-02-18 11:17:29 +0100 | [diff] [blame] | 130 | /* XXX Apparently PPC64 doesn't support PLT breakpoints. */ |
| Juan Cespedes | f135052 | 2008-12-16 18:19:58 +0100 | [diff] [blame] | 131 | void * |
| Juan Cespedes | a8909f7 | 2009-04-28 20:02:41 +0200 | [diff] [blame] | 132 | sym2addr(Process *proc, struct library_symbol *sym) { |
| Olaf Hering | a841f65 | 2006-09-15 01:57:49 +0200 | [diff] [blame] | 133 | void *addr = sym->enter_addr; |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 134 | long pt_ret; |
| Ian Wienand | 9a2ad35 | 2006-02-20 22:44:45 +0100 | [diff] [blame] | 135 | |
| Ian Wienand | 2d45b1a | 2006-02-20 22:48:07 +0100 | [diff] [blame] | 136 | debug(3, 0); |
| Ian Wienand | 9a2ad35 | 2006-02-20 22:44:45 +0100 | [diff] [blame] | 137 | |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 138 | if (sym->plt_type != LS_TOPLT_POINT) { |
| 139 | return addr; |
| Ian Wienand | 2d45b1a | 2006-02-20 22:48:07 +0100 | [diff] [blame] | 140 | } |
| Ian Wienand | 9a2ad35 | 2006-02-20 22:44:45 +0100 | [diff] [blame] | 141 | |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 142 | if (proc->pid == 0) { |
| 143 | return 0; |
| 144 | } |
| 145 | |
| Juan Cespedes | da9b953 | 2009-04-07 15:33:50 +0200 | [diff] [blame] | 146 | if (options.debug >= 3) { |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 147 | xinfdump(proc->pid, (void *)(((long)addr-32)&0xfffffff0), |
| 148 | sizeof(void*)*8); |
| 149 | } |
| 150 | |
| 151 | // On a PowerPC-64 system, a plt is three 64-bit words: the first is the |
| 152 | // 64-bit address of the routine. Before the PLT has been initialized, |
| 153 | // this will be 0x0. In fact, the symbol table won't have the plt's |
| 154 | // address even. Ater the PLT has been initialized, but before it has |
| 155 | // been resolved, the first word will be the address of the function in |
| 156 | // the dynamic linker that will reslove the PLT. After the PLT is |
| 157 | // resolved, this will will be the address of the routine whose symbol |
| 158 | // is in the symbol table. |
| 159 | |
| 160 | // On a PowerPC-32 system, there are two types of PLTs: secure (new) and |
| 161 | // non-secure (old). For the secure case, the PLT is simply a pointer |
| 162 | // and we can treat it much as we do for the PowerPC-64 case. For the |
| 163 | // non-secure case, the PLT is executable code and we can put the |
| 164 | // break-point right in the PLT. |
| 165 | |
| 166 | pt_ret = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0); |
| 167 | |
| Michael K. Edwards | 9bc4a9b | 2011-03-06 17:20:11 +0000 | [diff] [blame] | 168 | #if SIZEOF_LONG == 8 |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 169 | if (proc->mask_32bit) { |
| 170 | // Assume big-endian. |
| 171 | addr = (void *)((pt_ret >> 32) & 0xffffffff); |
| 172 | } else { |
| 173 | addr = (void *)pt_ret; |
| 174 | } |
| Michael K. Edwards | 9bc4a9b | 2011-03-06 17:20:11 +0000 | [diff] [blame] | 175 | #else |
| Petr Machata | 2b46cfc | 2012-02-18 11:17:29 +0100 | [diff] [blame] | 176 | /* XXX Um, so where exactly are we dealing with the non-secure |
| 177 | PLT thing? */ |
| Michael K. Edwards | 9bc4a9b | 2011-03-06 17:20:11 +0000 | [diff] [blame] | 178 | addr = (void *)pt_ret; |
| 179 | #endif |
| Paul Gilliam | 76c61f1 | 2006-06-14 06:55:21 +0200 | [diff] [blame] | 180 | |
| 181 | return addr; |
| Ian Wienand | 9a2ad35 | 2006-02-20 22:44:45 +0100 | [diff] [blame] | 182 | } |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 183 | |
| 184 | static GElf_Addr |
| 185 | get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data) |
| 186 | { |
| 187 | Elf_Scn *ppcgot_sec = NULL; |
| 188 | GElf_Shdr ppcgot_shdr; |
| 189 | if (ppcgot != 0 |
| 190 | && elf_get_section_covering(lte, ppcgot, |
| 191 | &ppcgot_sec, &ppcgot_shdr) < 0) |
| 192 | // xxx should be the log out |
| 193 | fprintf(stderr, |
| 194 | "DT_PPC_GOT=%#" PRIx64 ", but no such section found.\n", |
| 195 | ppcgot); |
| 196 | |
| 197 | if (ppcgot_sec != NULL) { |
| 198 | Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr); |
| 199 | if (data == NULL || data->d_size < 8 ) { |
| 200 | fprintf(stderr, "Couldn't read GOT data.\n"); |
| 201 | } else { |
| 202 | // where PPCGOT begins in .got |
| 203 | size_t offset = ppcgot - ppcgot_shdr.sh_addr; |
| 204 | assert(offset % 4 == 0); |
| 205 | uint32_t glink_vma; |
| 206 | if (elf_read_u32(data, offset + 4, &glink_vma) < 0) { |
| 207 | fprintf(stderr, |
| 208 | "Couldn't read glink VMA address" |
| 209 | " at %zd@GOT\n", offset); |
| 210 | return 0; |
| 211 | } |
| 212 | if (glink_vma != 0) { |
| 213 | debug(1, "PPC GOT glink_vma address: %#" PRIx32, |
| 214 | glink_vma); |
| 215 | fprintf(stderr, "PPC GOT glink_vma " |
| 216 | "address: %#"PRIx32"\n", glink_vma); |
| 217 | return (GElf_Addr)glink_vma; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | if (plt_data != NULL) { |
| 223 | uint32_t glink_vma; |
| 224 | if (elf_read_u32(plt_data, 0, &glink_vma) < 0) { |
| 225 | fprintf(stderr, |
| 226 | "Couldn't read glink VMA address at 0@.plt\n"); |
| 227 | return 0; |
| 228 | } |
| 229 | debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma); |
| 230 | fprintf(stderr, ".plt glink_vma address: " |
| 231 | "%#"PRIx32"\n", glink_vma); |
| 232 | return (GElf_Addr)glink_vma; |
| 233 | } |
| 234 | |
| 235 | return 0; |
| 236 | } |
| 237 | |
| Petr Machata | 644d669 | 2012-03-24 02:06:48 +0100 | [diff] [blame] | 238 | static int |
| 239 | load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp) |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 240 | { |
| Petr Machata | 644d669 | 2012-03-24 02:06:48 +0100 | [diff] [blame] | 241 | Elf_Scn *scn; |
| 242 | GElf_Shdr shdr; |
| 243 | if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0 |
| 244 | || scn == NULL) { |
| 245 | fail: |
| 246 | error(0, 0, "Couldn't get SHT_DYNAMIC: %s", |
| 247 | elf_errmsg(-1)); |
| 248 | return -1; |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 249 | } |
| Petr Machata | 644d669 | 2012-03-24 02:06:48 +0100 | [diff] [blame] | 250 | |
| 251 | Elf_Data *data = elf_loaddata(scn, &shdr); |
| 252 | if (data == NULL) |
| 253 | goto fail; |
| 254 | |
| 255 | size_t j; |
| 256 | for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { |
| 257 | GElf_Dyn dyn; |
| 258 | if (gelf_getdyn(data, j, &dyn) == NULL) |
| 259 | goto fail; |
| 260 | |
| 261 | if(dyn.d_tag == DT_PPC_GOT) { |
| 262 | *ppcgotp = dyn.d_un.d_ptr; |
| 263 | return 0; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | return -1; |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 268 | } |
| 269 | |
| 270 | int |
| 271 | arch_elf_init(struct ltelf *lte) |
| 272 | { |
| Petr Machata | 4e2073f | 2012-03-21 05:15:44 +0100 | [diff] [blame] | 273 | lte->arch.secure_plt = !(lte->lte_flags & LTE_PLT_EXECUTABLE); |
| 274 | if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) { |
| Petr Machata | 644d669 | 2012-03-24 02:06:48 +0100 | [diff] [blame] | 275 | GElf_Addr ppcgot; |
| 276 | if (load_ppcgot(lte, &ppcgot) < 0) { |
| 277 | fprintf(stderr, "Couldn't find DT_PPC_GOT.\n"); |
| 278 | return -1; |
| 279 | } |
| 280 | GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data); |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 281 | |
| 282 | assert (lte->relplt_size % 12 == 0); |
| 283 | size_t count = lte->relplt_size / 12; // size of RELA entry |
| 284 | lte->arch.plt_stub_vma = glink_vma |
| 285 | - (GElf_Addr)count * PPC_PLT_STUB_SIZE; |
| 286 | debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma); |
| 287 | } |
| 288 | |
| 289 | /* Override the value that we gleaned from flags on the .plt |
| 290 | * section. The PLT entries are in fact executable, they are |
| 291 | * just not in .plt. */ |
| 292 | lte->lte_flags |= LTE_PLT_EXECUTABLE; |
| Petr Machata | 37d368e | 2012-03-24 04:58:08 +0100 | [diff] [blame^] | 293 | |
| 294 | /* On PPC64, look for stub symbols in symbol table. These are |
| 295 | * called: xxxxxxxx.plt_call.callee_name@version+addend. */ |
| 296 | if (lte->ehdr.e_machine == EM_PPC64 |
| 297 | && lte->symtab != NULL && lte->strtab != NULL) { |
| 298 | |
| 299 | /* N.B. We can't simply skip the symbols that we fail |
| 300 | * to read or malloc. There may be more than one stub |
| 301 | * per symbol name, and if we failed in one but |
| 302 | * succeeded in another, the PLT enabling code would |
| 303 | * have no way to tell that something is missing. We |
| 304 | * could work around that, of course, but it doesn't |
| 305 | * seem worth the trouble. We just fail right away in |
| 306 | * face of errors. */ |
| 307 | |
| 308 | size_t i; |
| 309 | for (i = 0; i < lte->symtab_count; ++i) { |
| 310 | GElf_Sym sym; |
| 311 | if (gelf_getsym(lte->symtab, i, &sym) == NULL) |
| 312 | break; |
| 313 | |
| 314 | const char *name = lte->strtab + sym.st_name; |
| 315 | |
| 316 | #define STUBN ".plt_call." |
| 317 | if ((name = strstr(name, STUBN)) == NULL) |
| 318 | continue; |
| 319 | name += sizeof(STUBN) - 1; |
| 320 | #undef STUBN |
| 321 | |
| 322 | size_t len; |
| 323 | const char *ver = strchr(name, '@'); |
| 324 | if (ver != NULL) { |
| 325 | len = ver - name; |
| 326 | |
| 327 | } else { |
| 328 | /* If there is "+" at all, check that |
| 329 | * the symbol name ends in "+0". */ |
| 330 | const char *add = strrchr(name, '+'); |
| 331 | if (add != NULL) { |
| 332 | assert(strcmp(add, "+0") == 0); |
| 333 | len = add - name; |
| 334 | } else { |
| 335 | len = strlen(name); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | char *sym_name = strndup(name, len); |
| 340 | if (sym_name == NULL) { |
| 341 | fail: |
| 342 | free(sym_name); |
| 343 | break; |
| 344 | } |
| 345 | |
| 346 | struct library_symbol *libsym = malloc(sizeof(*libsym)); |
| 347 | if (libsym == NULL) |
| 348 | goto fail; |
| 349 | target_address_t addr |
| 350 | = (target_address_t)sym.st_value + lte->bias; |
| 351 | library_symbol_init(libsym, addr, sym_name, 1, |
| 352 | LS_TOPLT_EXEC); |
| 353 | libsym->next = lte->arch.stubs; |
| 354 | lte->arch.stubs = libsym; |
| 355 | } |
| 356 | } |
| 357 | |
| Petr Machata | e67635d | 2012-03-21 03:37:39 +0100 | [diff] [blame] | 358 | return 0; |
| 359 | } |
| Petr Machata | 37d368e | 2012-03-24 04:58:08 +0100 | [diff] [blame^] | 360 | |
| 361 | enum plt_status |
| 362 | arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte, |
| 363 | const char *a_name, GElf_Rela *rela, size_t i, |
| 364 | struct library_symbol **ret) |
| 365 | { |
| 366 | if (lte->ehdr.e_machine == EM_PPC) |
| 367 | return plt_default; |
| 368 | |
| 369 | /* PPC64. If we have stubs, we return a chain of breakpoint |
| 370 | * sites, one for each stub that corresponds to this PLT |
| 371 | * entry. */ |
| 372 | struct library_symbol *chain = NULL; |
| 373 | struct library_symbol **symp; |
| 374 | for (symp = <e->arch.stubs; *symp != NULL; ) { |
| 375 | struct library_symbol *sym = *symp; |
| 376 | if (strcmp(sym->name, a_name) != 0) { |
| 377 | symp = &(*symp)->next; |
| 378 | continue; |
| 379 | } |
| 380 | |
| 381 | /* Re-chain the symbol from stubs to CHAIN. */ |
| 382 | *symp = sym->next; |
| 383 | sym->next = chain; |
| 384 | chain = sym; |
| 385 | } |
| 386 | |
| 387 | if (chain != NULL) { |
| 388 | struct library_symbol *sym; |
| 389 | for (sym = chain; sym != NULL; sym = sym->next) |
| 390 | fprintf(stderr, "match %s --> %p\n", |
| 391 | sym->name, sym->enter_addr); |
| 392 | for (sym = lte->arch.stubs; sym != NULL; sym = sym->next) |
| 393 | fprintf(stderr, "remains %s --> %p\n", |
| 394 | sym->name, sym->enter_addr); |
| 395 | |
| 396 | *ret = chain; |
| 397 | return plt_ok; |
| 398 | } |
| 399 | |
| 400 | fprintf(stderr, "NO STUBS!\n"); |
| 401 | abort(); |
| 402 | } |
| 403 | |
| Petr Machata | 4d9a91c | 2012-03-24 04:55:03 +0100 | [diff] [blame] | 404 | void |
| 405 | arch_elf_destroy(struct ltelf *lte) |
| 406 | { |
| Petr Machata | 37d368e | 2012-03-24 04:58:08 +0100 | [diff] [blame^] | 407 | struct library_symbol *sym; |
| 408 | for (sym = lte->arch.stubs; sym != NULL; ) { |
| 409 | struct library_symbol *next = sym->next; |
| 410 | library_symbol_destroy(sym); |
| 411 | free(sym); |
| 412 | sym = next; |
| 413 | } |
| Petr Machata | 4d9a91c | 2012-03-24 04:55:03 +0100 | [diff] [blame] | 414 | } |