Initial revision
diff --git a/src/mesa/main/eval.c b/src/mesa/main/eval.c
new file mode 100644
index 0000000..74604a2
--- /dev/null
+++ b/src/mesa/main/eval.c
@@ -0,0 +1,2725 @@
+/* $Id: eval.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version:  3.1
+ * 
+ * Copyright (C) 1999  Brian Paul   All Rights Reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+
+
+
+/*
+ * eval.c was written by
+ * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
+ * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
+ *
+ * My original implementation of evaluators was simplistic and didn't
+ * compute surface normal vectors properly.  Bernd and Volker applied
+ * used more sophisticated methods to get better results.
+ *
+ * Thanks guys!
+ */
+
+
+#ifdef PC_HEADER
+#include "all.h"
+#else
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include "context.h"
+#include "eval.h"
+#include "macros.h"
+#include "mmath.h"
+#include "types.h"
+#include "vbcull.h"
+#include "vbfill.h"
+#include "vbxform.h"
+#ifdef XFree86Server
+#include "GL/xf86glx.h"
+#endif
+#endif
+
+
+static GLfloat inv_tab[MAX_EVAL_ORDER];
+
+/*
+ * Do one-time initialization for evaluators.
+ */
+void gl_init_eval( void )
+{
+  static int init_flag = 0;
+  GLuint i;
+
+  /* Compute a table of nCr (combination) values used by the
+   * Bernstein polynomial generator.
+   */
+
+  /* KW: precompute 1/x for useful x.
+   */
+  if (init_flag==0) 
+  { 
+     for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
+	inv_tab[i] = 1.0 / i;
+  }
+
+  init_flag = 1;
+}
+
+
+
+/*
+ * Horner scheme for Bezier curves
+ * 
+ * Bezier curves can be computed via a Horner scheme.
+ * Horner is numerically less stable than the de Casteljau
+ * algorithm, but it is faster. For curves of degree n 
+ * the complexity of Horner is O(n) and de Casteljau is O(n^2).
+ * Since stability is not important for displaying curve 
+ * points I decided to use the Horner scheme.
+ *
+ * A cubic Bezier curve with control points b0, b1, b2, b3 can be 
+ * written as
+ *
+ *        (([3]        [3]     )     [3]       )     [3]
+ * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
+ *
+ *                                           [n]
+ * where s=1-t and the binomial coefficients [i]. These can 
+ * be computed iteratively using the identity:
+ *
+ * [n]               [n  ]             [n]
+ * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
+ */
+
+
+static void
+horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
+                    GLuint dim, GLuint order)
+{
+  GLfloat s, powert;
+  GLuint i, k, bincoeff;
+
+  if(order >= 2)
+  { 
+    bincoeff = order-1;
+    s = 1.0-t;
+
+    for(k=0; k<dim; k++)
+      out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
+
+    for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
+    {
+      bincoeff *= order-i;
+      bincoeff *= inv_tab[i];
+
+      for(k=0; k<dim; k++)
+        out[k] = s*out[k] + bincoeff*powert*cp[k];
+    }
+  }
+  else /* order=1 -> constant curve */
+  { 
+    for(k=0; k<dim; k++)
+      out[k] = cp[k];
+  } 
+}
+
+/*
+ * Tensor product Bezier surfaces
+ *
+ * Again the Horner scheme is used to compute a point on a 
+ * TP Bezier surface. First a control polygon for a curve
+ * on the surface in one parameter direction is computed,
+ * then the point on the curve for the other parameter 
+ * direction is evaluated.
+ *
+ * To store the curve control polygon additional storage
+ * for max(uorder,vorder) points is needed in the 
+ * control net cn.
+ */
+
+static void
+horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
+                   GLuint dim, GLuint uorder, GLuint vorder)
+{
+  GLfloat *cp = cn + uorder*vorder*dim;
+  GLuint i, uinc = vorder*dim;
+
+  if(vorder > uorder)
+  {
+    if(uorder >= 2)
+    { 
+      GLfloat s, poweru;
+      GLuint j, k, bincoeff;
+
+      /* Compute the control polygon for the surface-curve in u-direction */
+      for(j=0; j<vorder; j++)
+      {
+        GLfloat *ucp = &cn[j*dim];
+
+        /* Each control point is the point for parameter u on a */ 
+        /* curve defined by the control polygons in u-direction */
+	bincoeff = uorder-1;
+	s = 1.0-u;
+
+	for(k=0; k<dim; k++)
+	  cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
+
+	for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; 
+            i++, poweru*=u, ucp +=uinc)
+	{
+	  bincoeff *= uorder-i;
+          bincoeff *= inv_tab[i];
+
+	  for(k=0; k<dim; k++)
+	    cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
+	}
+      }
+        
+      /* Evaluate curve point in v */
+      horner_bezier_curve(cp, out, v, dim, vorder);
+    }
+    else /* uorder=1 -> cn defines a curve in v */
+      horner_bezier_curve(cn, out, v, dim, vorder);
+  }
+  else /* vorder <= uorder */
+  {
+    if(vorder > 1)
+    {
+      GLuint i;
+
+      /* Compute the control polygon for the surface-curve in u-direction */
+      for(i=0; i<uorder; i++, cn += uinc)
+      {
+	/* For constant i all cn[i][j] (j=0..vorder) are located */
+	/* on consecutive memory locations, so we can use        */
+	/* horner_bezier_curve to compute the control points     */
+
+	horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
+      }
+
+      /* Evaluate curve point in u */
+      horner_bezier_curve(cp, out, u, dim, uorder);
+    }
+    else  /* vorder=1 -> cn defines a curve in u */
+      horner_bezier_curve(cn, out, u, dim, uorder);
+  }
+}
+
+/*
+ * The direct de Casteljau algorithm is used when a point on the
+ * surface and the tangent directions spanning the tangent plane
+ * should be computed (this is needed to compute normals to the
+ * surface). In this case the de Casteljau algorithm approach is
+ * nicer because a point and the partial derivatives can be computed 
+ * at the same time. To get the correct tangent length du and dv
+ * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. 
+ * Since only the directions are needed, this scaling step is omitted.
+ *
+ * De Casteljau needs additional storage for uorder*vorder
+ * values in the control net cn.
+ */
+
+static void
+de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
+                  GLfloat u, GLfloat v, GLuint dim, 
+                  GLuint uorder, GLuint vorder)
+{
+  GLfloat *dcn = cn + uorder*vorder*dim;
+  GLfloat us = 1.0-u, vs = 1.0-v;
+  GLuint h, i, j, k;
+  GLuint minorder = uorder < vorder ? uorder : vorder;
+  GLuint uinc = vorder*dim;
+  GLuint dcuinc = vorder;
+ 
+  /* Each component is evaluated separately to save buffer space  */
+  /* This does not drasticaly decrease the performance of the     */
+  /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
+  /* points would be available, the components could be accessed  */
+  /* in the innermost loop which could lead to less cache misses. */
+
+#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] 
+#define DCN(I, J) dcn[(I)*dcuinc+(J)]
+  if(minorder < 3)
+  {
+    if(uorder==vorder)
+    {
+      for(k=0; k<dim; k++)
+      {
+	/* Derivative direction in u */
+	du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
+	         v*(CN(1,1,k) - CN(0,1,k));
+
+	/* Derivative direction in v */
+	dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + 
+	         u*(CN(1,1,k) - CN(1,0,k));
+
+	/* bilinear de Casteljau step */
+        out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
+	           u*(vs*CN(1,0,k) + v*CN(1,1,k));
+      }
+    }
+    else if(minorder == uorder)
+    {
+      for(k=0; k<dim; k++)
+      {
+	/* bilinear de Casteljau step */
+	DCN(1,0) =    CN(1,0,k) -   CN(0,0,k);
+	DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
+
+	for(j=0; j<vorder-1; j++)
+	{
+	  /* for the derivative in u */
+	  DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k);
+	  DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1);
+
+	  /* for the `point' */
+	  DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
+	  DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
+	}
+        
+	/* remaining linear de Casteljau steps until the second last step */
+	for(h=minorder; h<vorder-1; h++)
+	  for(j=0; j<vorder-h; j++)
+	  {
+	    /* for the derivative in u */
+	    DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
+
+	    /* for the `point' */
+	    DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+	  }
+
+	/* derivative direction in v */
+	dv[k] = DCN(0,1) - DCN(0,0);
+
+	/* derivative direction in u */
+	du[k] =   vs*DCN(1,0) + v*DCN(1,1);
+
+	/* last linear de Casteljau step */
+	out[k] =  vs*DCN(0,0) + v*DCN(0,1);
+      }
+    }
+    else /* minorder == vorder */
+    {
+      for(k=0; k<dim; k++)
+      {
+	/* bilinear de Casteljau step */
+	DCN(0,1) =    CN(0,1,k) -   CN(0,0,k);
+	DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
+	for(i=0; i<uorder-1; i++)
+	{
+	  /* for the derivative in v */
+	  DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k);
+	  DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1);
+
+	  /* for the `point' */
+	  DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
+	  DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
+	}
+        
+	/* remaining linear de Casteljau steps until the second last step */
+	for(h=minorder; h<uorder-1; h++)
+	  for(i=0; i<uorder-h; i++)
+	  {
+	    /* for the derivative in v */
+	    DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
+
+	    /* for the `point' */
+	    DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	  }
+
+	/* derivative direction in u */
+	du[k] = DCN(1,0) - DCN(0,0);
+
+	/* derivative direction in v */
+	dv[k] =   us*DCN(0,1) + u*DCN(1,1);
+
+	/* last linear de Casteljau step */
+	out[k] =  us*DCN(0,0) + u*DCN(1,0);
+      }
+    }
+  }
+  else if(uorder == vorder)
+  {
+    for(k=0; k<dim; k++)
+    {
+      /* first bilinear de Casteljau step */
+      for(i=0; i<uorder-1; i++)
+      {
+	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+	for(j=0; j<vorder-1; j++)
+	{
+	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	}
+      }
+
+      /* remaining bilinear de Casteljau steps until the second last step */
+      for(h=2; h<minorder-1; h++)
+	for(i=0; i<uorder-h; i++)
+	{
+	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	  for(j=0; j<vorder-h; j++)
+	  {
+	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	  }
+	}
+
+      /* derivative direction in u */
+      du[k] = vs*(DCN(1,0) - DCN(0,0)) +
+	       v*(DCN(1,1) - DCN(0,1));
+
+      /* derivative direction in v */
+      dv[k] = us*(DCN(0,1) - DCN(0,0)) + 
+	       u*(DCN(1,1) - DCN(1,0));
+
+      /* last bilinear de Casteljau step */
+      out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) +
+	         u*(vs*DCN(1,0) + v*DCN(1,1));
+    }
+  }
+  else if(minorder == uorder)
+  {
+    for(k=0; k<dim; k++)
+    {
+      /* first bilinear de Casteljau step */
+      for(i=0; i<uorder-1; i++)
+      {
+	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+	for(j=0; j<vorder-1; j++)
+	{
+	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	}
+      }
+
+      /* remaining bilinear de Casteljau steps until the second last step */
+      for(h=2; h<minorder-1; h++)
+	for(i=0; i<uorder-h; i++)
+	{
+	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	  for(j=0; j<vorder-h; j++)
+	  {
+	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	  }
+	}
+
+      /* last bilinear de Casteljau step */
+      DCN(2,0) =    DCN(1,0) -   DCN(0,0);
+      DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
+      for(j=0; j<vorder-1; j++)
+      {
+	/* for the derivative in u */
+	DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1);
+	DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1);
+	
+	/* for the `point' */
+	DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
+	DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
+      }
+        
+      /* remaining linear de Casteljau steps until the second last step */
+      for(h=minorder; h<vorder-1; h++)
+	for(j=0; j<vorder-h; j++)
+	{
+	  /* for the derivative in u */
+	  DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
+	  
+	  /* for the `point' */
+	  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+	}
+      
+      /* derivative direction in v */
+      dv[k] = DCN(0,1) - DCN(0,0);
+      
+      /* derivative direction in u */
+      du[k] =   vs*DCN(2,0) + v*DCN(2,1);
+      
+      /* last linear de Casteljau step */
+      out[k] =  vs*DCN(0,0) + v*DCN(0,1);
+    }
+  }
+  else /* minorder == vorder */
+  {
+    for(k=0; k<dim; k++)
+    {
+      /* first bilinear de Casteljau step */
+      for(i=0; i<uorder-1; i++)
+      {
+	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+	for(j=0; j<vorder-1; j++)
+	{
+	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	}
+      }
+
+      /* remaining bilinear de Casteljau steps until the second last step */
+      for(h=2; h<minorder-1; h++)
+	for(i=0; i<uorder-h; i++)
+	{
+	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	  for(j=0; j<vorder-h; j++)
+	  {
+	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	  }
+	}
+
+      /* last bilinear de Casteljau step */
+      DCN(0,2) =    DCN(0,1) -   DCN(0,0);
+      DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
+      for(i=0; i<uorder-1; i++)
+      {
+	/* for the derivative in v */
+	DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0);
+	DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2);
+	
+	/* for the `point' */
+	DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1);
+	DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
+      }
+      
+      /* remaining linear de Casteljau steps until the second last step */
+      for(h=minorder; h<uorder-1; h++)
+	for(i=0; i<uorder-h; i++)
+	{
+	  /* for the derivative in v */
+	  DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
+	  
+	  /* for the `point' */
+	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	}
+      
+      /* derivative direction in u */
+      du[k] = DCN(1,0) - DCN(0,0);
+      
+      /* derivative direction in v */
+      dv[k] =   us*DCN(0,2) + u*DCN(1,2);
+      
+      /* last linear de Casteljau step */
+      out[k] =  us*DCN(0,0) + u*DCN(1,0);
+    }
+  }
+#undef DCN
+#undef CN
+}
+
+/*
+ * Return the number of components per control point for any type of
+ * evaluator.  Return 0 if bad target.
+ */
+
+static GLint components( GLenum target )
+{
+   switch (target) {
+      case GL_MAP1_VERTEX_3:		return 3;
+      case GL_MAP1_VERTEX_4:		return 4;
+      case GL_MAP1_INDEX:		return 1;
+      case GL_MAP1_COLOR_4:		return 4;
+      case GL_MAP1_NORMAL:		return 3;
+      case GL_MAP1_TEXTURE_COORD_1:	return 1;
+      case GL_MAP1_TEXTURE_COORD_2:	return 2;
+      case GL_MAP1_TEXTURE_COORD_3:	return 3;
+      case GL_MAP1_TEXTURE_COORD_4:	return 4;
+      case GL_MAP2_VERTEX_3:		return 3;
+      case GL_MAP2_VERTEX_4:		return 4;
+      case GL_MAP2_INDEX:		return 1;
+      case GL_MAP2_COLOR_4:		return 4;
+      case GL_MAP2_NORMAL:		return 3;
+      case GL_MAP2_TEXTURE_COORD_1:	return 1;
+      case GL_MAP2_TEXTURE_COORD_2:	return 2;
+      case GL_MAP2_TEXTURE_COORD_3:	return 3;
+      case GL_MAP2_TEXTURE_COORD_4:	return 4;
+      default:				return 0;
+   }
+}
+
+
+/**********************************************************************/
+/***            Copy and deallocate control points                  ***/
+/**********************************************************************/
+
+
+/*
+ * Copy 1-parametric evaluator control points from user-specified 
+ * memory space to a buffer of contiguous control points.
+ * Input:  see glMap1f for details
+ * Return:  pointer to buffer of contiguous control points or NULL if out
+ *          of memory.
+ */
+GLfloat *gl_copy_map_points1f( GLenum target,
+                               GLint ustride, GLint uorder,
+                               const GLfloat *points )
+{
+   GLfloat *buffer, *p;
+   GLint i, k, size = components(target);
+
+   if (!points || size==0) {
+      return NULL;
+   }
+
+   buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
+
+   if(buffer) 
+      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
+	for(k=0; k<size; k++)
+	  *p++ = points[k];
+
+   return buffer;
+}
+
+
+
+/*
+ * Same as above but convert doubles to floats.
+ */
+GLfloat *gl_copy_map_points1d( GLenum target,
+			        GLint ustride, GLint uorder,
+			        const GLdouble *points )
+{
+   GLfloat *buffer, *p;
+   GLint i, k, size = components(target);
+
+   if (!points || size==0) {
+      return NULL;
+   }
+
+   buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
+
+   if(buffer)
+      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
+	for(k=0; k<size; k++)
+	  *p++ = (GLfloat) points[k];
+
+   return buffer;
+}
+
+
+
+/*
+ * Copy 2-parametric evaluator control points from user-specified 
+ * memory space to a buffer of contiguous control points.
+ * Additional memory is allocated to be used by the horner and
+ * de Casteljau evaluation schemes.
+ *
+ * Input:  see glMap2f for details
+ * Return:  pointer to buffer of contiguous control points or NULL if out
+ *          of memory.
+ */
+GLfloat *gl_copy_map_points2f( GLenum target,
+			        GLint ustride, GLint uorder,
+			        GLint vstride, GLint vorder,
+			        const GLfloat *points )
+{
+   GLfloat *buffer, *p;
+   GLint i, j, k, size, dsize, hsize;
+   GLint uinc;
+
+   size = components(target);
+
+   if (!points || size==0) {
+      return NULL;
+   }
+
+   /* max(uorder, vorder) additional points are used in      */
+   /* horner evaluation and uorder*vorder additional */
+   /* values are needed for de Casteljau                     */
+   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
+   hsize = (uorder > vorder ? uorder : vorder)*size;
+
+   if(hsize>dsize)
+     buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
+   else
+     buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
+
+   /* compute the increment value for the u-loop */
+   uinc = ustride - vorder*vstride;
+
+   if (buffer) 
+      for (i=0, p=buffer; i<uorder; i++, points += uinc)
+	 for (j=0; j<vorder; j++, points += vstride)
+	    for (k=0; k<size; k++)
+	       *p++ = points[k];
+
+   return buffer;
+}
+
+
+
+/*
+ * Same as above but convert doubles to floats.
+ */
+GLfloat *gl_copy_map_points2d(GLenum target,
+                              GLint ustride, GLint uorder,
+                              GLint vstride, GLint vorder,
+                              const GLdouble *points )
+{
+   GLfloat *buffer, *p;
+   GLint i, j, k, size, hsize, dsize;
+   GLint uinc;
+
+   size = components(target);
+
+   if (!points || size==0) {
+      return NULL;
+   }
+
+   /* max(uorder, vorder) additional points are used in      */
+   /* horner evaluation and uorder*vorder additional */
+   /* values are needed for de Casteljau                     */
+   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
+   hsize = (uorder > vorder ? uorder : vorder)*size;
+
+   if(hsize>dsize)
+     buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
+   else
+     buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
+
+   /* compute the increment value for the u-loop */
+   uinc = ustride - vorder*vstride;
+
+   if (buffer) 
+      for (i=0, p=buffer; i<uorder; i++, points += uinc)
+	 for (j=0; j<vorder; j++, points += vstride)
+	    for (k=0; k<size; k++)
+	       *p++ = (GLfloat) points[k];
+
+   return buffer;
+}
+
+
+/*
+ * This function is called by the display list deallocator function to
+ * specify that a given set of control points are no longer needed.
+ */
+void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
+{
+   struct gl_1d_map *map1 = NULL;
+   struct gl_2d_map *map2 = NULL;
+
+   switch (target) {
+      case GL_MAP1_VERTEX_3:
+         map1 = &ctx->EvalMap.Map1Vertex3;
+         break;
+      case GL_MAP1_VERTEX_4:
+         map1 = &ctx->EvalMap.Map1Vertex4;
+	 break;
+      case GL_MAP1_INDEX:
+         map1 = &ctx->EvalMap.Map1Index;
+         break;
+      case GL_MAP1_COLOR_4:
+         map1 = &ctx->EvalMap.Map1Color4;
+         break;
+      case GL_MAP1_NORMAL:
+         map1 = &ctx->EvalMap.Map1Normal;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_1:
+         map1 = &ctx->EvalMap.Map1Texture1;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_2:
+         map1 = &ctx->EvalMap.Map1Texture2;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_3:
+         map1 = &ctx->EvalMap.Map1Texture3;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_4:
+         map1 = &ctx->EvalMap.Map1Texture4;
+	 break;
+      case GL_MAP2_VERTEX_3:
+         map2 = &ctx->EvalMap.Map2Vertex3;
+	 break;
+      case GL_MAP2_VERTEX_4:
+         map2 = &ctx->EvalMap.Map2Vertex4;
+	 break;
+      case GL_MAP2_INDEX:
+         map2 = &ctx->EvalMap.Map2Index;
+	 break;
+      case GL_MAP2_COLOR_4:
+         map2 = &ctx->EvalMap.Map2Color4;
+         break;
+      case GL_MAP2_NORMAL:
+         map2 = &ctx->EvalMap.Map2Normal;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_1:
+         map2 = &ctx->EvalMap.Map2Texture1;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_2:
+         map2 = &ctx->EvalMap.Map2Texture2;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_3:
+         map2 = &ctx->EvalMap.Map2Texture3;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_4:
+         map2 = &ctx->EvalMap.Map2Texture4;
+	 break;
+      default:
+	 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
+         return;
+   }
+
+   if (map1) {
+      if (data==map1->Points) {
+         /* The control points in the display list are currently */
+         /* being used so we can mark them as discard-able. */
+         map1->Retain = GL_FALSE;
+      }
+      else {
+         /* The control points in the display list are not currently */
+         /* being used. */
+         free( data );
+      }
+   }
+   if (map2) {
+      if (data==map2->Points) {
+         /* The control points in the display list are currently */
+         /* being used so we can mark them as discard-able. */
+         map2->Retain = GL_FALSE;
+      }
+      else {
+         /* The control points in the display list are not currently */
+         /* being used. */
+         free( data );
+      }
+   }
+
+}
+
+
+
+/**********************************************************************/
+/***                      API entry points                          ***/
+/**********************************************************************/
+
+
+/*
+ * Note that the array of control points must be 'unpacked' at this time.
+ * Input:  retain - if TRUE, this control point data is also in a display
+ *                  list and can't be freed until the list is freed.
+ */
+void gl_Map1f( GLcontext* ctx, GLenum target,
+               GLfloat u1, GLfloat u2, GLint stride,
+               GLint order, const GLfloat *points, GLboolean retain )
+{
+   GLint k;
+
+   if (!points) {
+      gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
+      return;
+   }
+
+   /* may be a new stride after copying control points */
+   stride = components( target );
+
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
+
+   if (u1==u2) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
+      return;
+   }
+
+   if (order<1 || order>MAX_EVAL_ORDER) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
+      return;
+   }
+
+   k = components( target );
+   if (k==0) {
+      gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
+   }
+
+   if (stride < k) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
+      return;
+   }
+
+   switch (target) {
+      case GL_MAP1_VERTEX_3:
+         ctx->EvalMap.Map1Vertex3.Order = order;
+	 ctx->EvalMap.Map1Vertex3.u1 = u1;
+	 ctx->EvalMap.Map1Vertex3.u2 = u2;
+	 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Vertex3.Points
+             && !ctx->EvalMap.Map1Vertex3.Retain) {
+	    free( ctx->EvalMap.Map1Vertex3.Points );
+	 }
+	 ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
+         ctx->EvalMap.Map1Vertex3.Retain = retain;
+	 break;
+      case GL_MAP1_VERTEX_4:
+         ctx->EvalMap.Map1Vertex4.Order = order;
+	 ctx->EvalMap.Map1Vertex4.u1 = u1;
+	 ctx->EvalMap.Map1Vertex4.u2 = u2;
+	 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Vertex4.Points
+             && !ctx->EvalMap.Map1Vertex4.Retain) {
+	    free( ctx->EvalMap.Map1Vertex4.Points );
+	 }
+	 ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Vertex4.Retain = retain;
+	 break;
+      case GL_MAP1_INDEX:
+         ctx->EvalMap.Map1Index.Order = order;
+	 ctx->EvalMap.Map1Index.u1 = u1;
+	 ctx->EvalMap.Map1Index.u2 = u2;
+	 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Index.Points
+             && !ctx->EvalMap.Map1Index.Retain) {
+	    free( ctx->EvalMap.Map1Index.Points );
+	 }
+	 ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Index.Retain = retain;
+	 break;
+      case GL_MAP1_COLOR_4:
+         ctx->EvalMap.Map1Color4.Order = order;
+	 ctx->EvalMap.Map1Color4.u1 = u1;
+	 ctx->EvalMap.Map1Color4.u2 = u2;
+	 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Color4.Points
+             && !ctx->EvalMap.Map1Color4.Retain) {
+	    free( ctx->EvalMap.Map1Color4.Points );
+	 }
+	 ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Color4.Retain = retain;
+	 break;
+      case GL_MAP1_NORMAL:
+         ctx->EvalMap.Map1Normal.Order = order;
+	 ctx->EvalMap.Map1Normal.u1 = u1;
+	 ctx->EvalMap.Map1Normal.u2 = u2;
+	 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Normal.Points
+             && !ctx->EvalMap.Map1Normal.Retain) {
+	    free( ctx->EvalMap.Map1Normal.Points );
+	 }
+	 ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Normal.Retain = retain;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_1:
+         ctx->EvalMap.Map1Texture1.Order = order;
+	 ctx->EvalMap.Map1Texture1.u1 = u1;
+	 ctx->EvalMap.Map1Texture1.u2 = u2;
+	 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Texture1.Points
+             && !ctx->EvalMap.Map1Texture1.Retain) {
+	    free( ctx->EvalMap.Map1Texture1.Points );
+	 }
+	 ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Texture1.Retain = retain;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_2:
+         ctx->EvalMap.Map1Texture2.Order = order;
+	 ctx->EvalMap.Map1Texture2.u1 = u1;
+	 ctx->EvalMap.Map1Texture2.u2 = u2;
+	 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Texture2.Points
+             && !ctx->EvalMap.Map1Texture2.Retain) {
+	    free( ctx->EvalMap.Map1Texture2.Points );
+	 }
+	 ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Texture2.Retain = retain;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_3:
+         ctx->EvalMap.Map1Texture3.Order = order;
+	 ctx->EvalMap.Map1Texture3.u1 = u1;
+	 ctx->EvalMap.Map1Texture3.u2 = u2;
+	 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Texture3.Points
+             && !ctx->EvalMap.Map1Texture3.Retain) {
+	    free( ctx->EvalMap.Map1Texture3.Points );
+	 }
+	 ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Texture3.Retain = retain;
+	 break;
+      case GL_MAP1_TEXTURE_COORD_4:
+         ctx->EvalMap.Map1Texture4.Order = order;
+	 ctx->EvalMap.Map1Texture4.u1 = u1;
+	 ctx->EvalMap.Map1Texture4.u2 = u2;
+	 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
+	 if (ctx->EvalMap.Map1Texture4.Points
+             && !ctx->EvalMap.Map1Texture4.Retain) {
+	    free( ctx->EvalMap.Map1Texture4.Points );
+	 }
+	 ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map1Texture4.Retain = retain;
+	 break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
+   }
+}
+
+
+
+
+/*
+ * Note that the array of control points must be 'unpacked' at this time.
+ * Input:  retain - if TRUE, this control point data is also in a display
+ *                  list and can't be freed until the list is freed.
+ */
+void gl_Map2f( GLcontext* ctx, GLenum target,
+	      GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
+	      GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
+	      const GLfloat *points, GLboolean retain )
+{
+   GLint k;
+
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
+
+   if (u1==u2) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
+      return;
+   }
+
+   if (v1==v2) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
+      return;
+   }
+
+   if (uorder<1 || uorder>MAX_EVAL_ORDER) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
+      return;
+   }
+
+   if (vorder<1 || vorder>MAX_EVAL_ORDER) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
+      return;
+   }
+
+   k = components( target );
+   if (k==0) {
+      gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
+   }
+
+   if (ustride < k) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
+      return;
+   }
+   if (vstride < k) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
+      return;
+   }
+
+   switch (target) {
+      case GL_MAP2_VERTEX_3:
+         ctx->EvalMap.Map2Vertex3.Uorder = uorder;
+	 ctx->EvalMap.Map2Vertex3.u1 = u1;
+	 ctx->EvalMap.Map2Vertex3.u2 = u2;
+	 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Vertex3.Vorder = vorder;
+	 ctx->EvalMap.Map2Vertex3.v1 = v1;
+	 ctx->EvalMap.Map2Vertex3.v2 = v2;
+	 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Vertex3.Points
+             && !ctx->EvalMap.Map2Vertex3.Retain) {
+	    free( ctx->EvalMap.Map2Vertex3.Points );
+	 }
+	 ctx->EvalMap.Map2Vertex3.Retain = retain;
+	 ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_VERTEX_4:
+         ctx->EvalMap.Map2Vertex4.Uorder = uorder;
+	 ctx->EvalMap.Map2Vertex4.u1 = u1;
+	 ctx->EvalMap.Map2Vertex4.u2 = u2;
+	 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Vertex4.Vorder = vorder;
+	 ctx->EvalMap.Map2Vertex4.v1 = v1;
+	 ctx->EvalMap.Map2Vertex4.v2 = v2;
+	 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Vertex4.Points
+             && !ctx->EvalMap.Map2Vertex4.Retain) {
+	    free( ctx->EvalMap.Map2Vertex4.Points );
+	 }
+	 ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
+	 ctx->EvalMap.Map2Vertex4.Retain = retain;
+	 break;
+      case GL_MAP2_INDEX:
+         ctx->EvalMap.Map2Index.Uorder = uorder;
+	 ctx->EvalMap.Map2Index.u1 = u1;
+	 ctx->EvalMap.Map2Index.u2 = u2;
+	 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Index.Vorder = vorder;
+	 ctx->EvalMap.Map2Index.v1 = v1;
+	 ctx->EvalMap.Map2Index.v2 = v2;
+	 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Index.Points
+             && !ctx->EvalMap.Map2Index.Retain) {
+	    free( ctx->EvalMap.Map2Index.Points );
+	 }
+	 ctx->EvalMap.Map2Index.Retain = retain;
+	 ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_COLOR_4:
+         ctx->EvalMap.Map2Color4.Uorder = uorder;
+	 ctx->EvalMap.Map2Color4.u1 = u1;
+	 ctx->EvalMap.Map2Color4.u2 = u2;
+	 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Color4.Vorder = vorder;
+	 ctx->EvalMap.Map2Color4.v1 = v1;
+	 ctx->EvalMap.Map2Color4.v2 = v2;
+	 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Color4.Points
+             && !ctx->EvalMap.Map2Color4.Retain) {
+	    free( ctx->EvalMap.Map2Color4.Points );
+	 }
+	 ctx->EvalMap.Map2Color4.Retain = retain;
+	 ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_NORMAL:
+         ctx->EvalMap.Map2Normal.Uorder = uorder;
+	 ctx->EvalMap.Map2Normal.u1 = u1;
+	 ctx->EvalMap.Map2Normal.u2 = u2;
+	 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Normal.Vorder = vorder;
+	 ctx->EvalMap.Map2Normal.v1 = v1;
+	 ctx->EvalMap.Map2Normal.v2 = v2;
+	 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Normal.Points
+             && !ctx->EvalMap.Map2Normal.Retain) {
+	    free( ctx->EvalMap.Map2Normal.Points );
+	 }
+	 ctx->EvalMap.Map2Normal.Retain = retain;
+	 ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_1:
+         ctx->EvalMap.Map2Texture1.Uorder = uorder;
+	 ctx->EvalMap.Map2Texture1.u1 = u1;
+	 ctx->EvalMap.Map2Texture1.u2 = u2;
+	 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Texture1.Vorder = vorder;
+	 ctx->EvalMap.Map2Texture1.v1 = v1;
+	 ctx->EvalMap.Map2Texture1.v2 = v2;
+	 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Texture1.Points
+             && !ctx->EvalMap.Map2Texture1.Retain) {
+	    free( ctx->EvalMap.Map2Texture1.Points );
+	 }
+	 ctx->EvalMap.Map2Texture1.Retain = retain;
+	 ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_2:
+         ctx->EvalMap.Map2Texture2.Uorder = uorder;
+	 ctx->EvalMap.Map2Texture2.u1 = u1;
+	 ctx->EvalMap.Map2Texture2.u2 = u2;
+	 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Texture2.Vorder = vorder;
+	 ctx->EvalMap.Map2Texture2.v1 = v1;
+	 ctx->EvalMap.Map2Texture2.v2 = v2;
+	 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Texture2.Points
+             && !ctx->EvalMap.Map2Texture2.Retain) {
+	    free( ctx->EvalMap.Map2Texture2.Points );
+	 }
+	 ctx->EvalMap.Map2Texture2.Retain = retain;
+	 ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_3:
+         ctx->EvalMap.Map2Texture3.Uorder = uorder;
+	 ctx->EvalMap.Map2Texture3.u1 = u1;
+	 ctx->EvalMap.Map2Texture3.u2 = u2;
+	 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Texture3.Vorder = vorder;
+	 ctx->EvalMap.Map2Texture3.v1 = v1;
+	 ctx->EvalMap.Map2Texture3.v2 = v2;
+	 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Texture3.Points
+             && !ctx->EvalMap.Map2Texture3.Retain) {
+	    free( ctx->EvalMap.Map2Texture3.Points );
+	 }
+	 ctx->EvalMap.Map2Texture3.Retain = retain;
+	 ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
+	 break;
+      case GL_MAP2_TEXTURE_COORD_4:
+         ctx->EvalMap.Map2Texture4.Uorder = uorder;
+	 ctx->EvalMap.Map2Texture4.u1 = u1;
+	 ctx->EvalMap.Map2Texture4.u2 = u2;
+	 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
+         ctx->EvalMap.Map2Texture4.Vorder = vorder;
+	 ctx->EvalMap.Map2Texture4.v1 = v1;
+	 ctx->EvalMap.Map2Texture4.v2 = v2;
+	 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
+	 if (ctx->EvalMap.Map2Texture4.Points
+             && !ctx->EvalMap.Map2Texture4.Retain) {
+	    free( ctx->EvalMap.Map2Texture4.Points );
+	 }
+	 ctx->EvalMap.Map2Texture4.Retain = retain;
+	 ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
+	 break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
+   }
+}
+
+
+   
+
+
+void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
+{
+   GLint i, n;
+   GLfloat *data;
+
+   switch (query) {
+      case GL_COEFF:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       data = ctx->EvalMap.Map1Color4.Points;
+	       n = ctx->EvalMap.Map1Color4.Order * 4;
+	       break;
+	    case GL_MAP1_INDEX:
+	       data = ctx->EvalMap.Map1Index.Points;
+	       n = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       data = ctx->EvalMap.Map1Normal.Points;
+	       n = ctx->EvalMap.Map1Normal.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map1Texture1.Points;
+	       n = ctx->EvalMap.Map1Texture1.Order * 1;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map1Texture2.Points;
+	       n = ctx->EvalMap.Map1Texture2.Order * 2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map1Texture3.Points;
+	       n = ctx->EvalMap.Map1Texture3.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map1Texture4.Points;
+	       n = ctx->EvalMap.Map1Texture4.Order * 4;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       data = ctx->EvalMap.Map1Vertex3.Points;
+	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       data = ctx->EvalMap.Map1Vertex4.Points;
+	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       data = ctx->EvalMap.Map2Color4.Points;
+	       n = ctx->EvalMap.Map2Color4.Uorder
+                 * ctx->EvalMap.Map2Color4.Vorder * 4;
+	       break;
+	    case GL_MAP2_INDEX:
+	       data = ctx->EvalMap.Map2Index.Points;
+	       n = ctx->EvalMap.Map2Index.Uorder
+                 * ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       data = ctx->EvalMap.Map2Normal.Points;
+	       n = ctx->EvalMap.Map2Normal.Uorder
+                 * ctx->EvalMap.Map2Normal.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map2Texture1.Points;
+	       n = ctx->EvalMap.Map2Texture1.Uorder
+                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map2Texture2.Points;
+	       n = ctx->EvalMap.Map2Texture2.Uorder
+                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map2Texture3.Points;
+	       n = ctx->EvalMap.Map2Texture3.Uorder
+                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map2Texture4.Points;
+	       n = ctx->EvalMap.Map2Texture4.Uorder
+                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       data = ctx->EvalMap.Map2Vertex3.Points;
+	       n = ctx->EvalMap.Map2Vertex3.Uorder
+                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       data = ctx->EvalMap.Map2Vertex4.Points;
+	       n = ctx->EvalMap.Map2Vertex4.Uorder
+                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+	       return;
+	 }
+	 if (data) {
+	    for (i=0;i<n;i++) {
+	       v[i] = data[i];
+	    }
+	 }
+         break;
+      case GL_ORDER:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       *v = ctx->EvalMap.Map1Color4.Order;
+	       break;
+	    case GL_MAP1_INDEX:
+	       *v = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       *v = ctx->EvalMap.Map1Normal.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       *v = ctx->EvalMap.Map1Texture1.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       *v = ctx->EvalMap.Map1Texture2.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       *v = ctx->EvalMap.Map1Texture3.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       *v = ctx->EvalMap.Map1Texture4.Order;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       *v = ctx->EvalMap.Map1Vertex3.Order;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       *v = ctx->EvalMap.Map1Vertex4.Order;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ctx->EvalMap.Map2Index.Uorder;
+	       v[1] = ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
+	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+	       return;
+	 }
+         break;
+      case GL_DOMAIN:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       v[0] = ctx->EvalMap.Map1Color4.u1;
+	       v[1] = ctx->EvalMap.Map1Color4.u2;
+	       break;
+	    case GL_MAP1_INDEX:
+	       v[0] = ctx->EvalMap.Map1Index.u1;
+	       v[1] = ctx->EvalMap.Map1Index.u2;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       v[0] = ctx->EvalMap.Map1Normal.u1;
+	       v[1] = ctx->EvalMap.Map1Normal.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map1Texture1.u1;
+	       v[1] = ctx->EvalMap.Map1Texture1.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map1Texture2.u1;
+	       v[1] = ctx->EvalMap.Map1Texture2.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map1Texture3.u1;
+	       v[1] = ctx->EvalMap.Map1Texture3.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map1Texture4.u1;
+	       v[1] = ctx->EvalMap.Map1Texture4.u2;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
+	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
+	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ctx->EvalMap.Map2Color4.u1;
+	       v[1] = ctx->EvalMap.Map2Color4.u2;
+	       v[2] = ctx->EvalMap.Map2Color4.v1;
+	       v[3] = ctx->EvalMap.Map2Color4.v2;
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ctx->EvalMap.Map2Index.u1;
+	       v[1] = ctx->EvalMap.Map2Index.u2;
+	       v[2] = ctx->EvalMap.Map2Index.v1;
+	       v[3] = ctx->EvalMap.Map2Index.v2;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ctx->EvalMap.Map2Normal.u1;
+	       v[1] = ctx->EvalMap.Map2Normal.u2;
+	       v[2] = ctx->EvalMap.Map2Normal.v1;
+	       v[3] = ctx->EvalMap.Map2Normal.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map2Texture1.u1;
+	       v[1] = ctx->EvalMap.Map2Texture1.u2;
+	       v[2] = ctx->EvalMap.Map2Texture1.v1;
+	       v[3] = ctx->EvalMap.Map2Texture1.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map2Texture2.u1;
+	       v[1] = ctx->EvalMap.Map2Texture2.u2;
+	       v[2] = ctx->EvalMap.Map2Texture2.v1;
+	       v[3] = ctx->EvalMap.Map2Texture2.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map2Texture3.u1;
+	       v[1] = ctx->EvalMap.Map2Texture3.u2;
+	       v[2] = ctx->EvalMap.Map2Texture3.v1;
+	       v[3] = ctx->EvalMap.Map2Texture3.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map2Texture4.u1;
+	       v[1] = ctx->EvalMap.Map2Texture4.u2;
+	       v[2] = ctx->EvalMap.Map2Texture4.v1;
+	       v[3] = ctx->EvalMap.Map2Texture4.v2;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
+	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
+	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
+	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
+	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
+	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
+	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+	 }
+         break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
+   }
+}
+
+
+void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
+{
+   GLint i, n;
+   GLfloat *data;
+
+   switch (query) {
+      case GL_COEFF:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       data = ctx->EvalMap.Map1Color4.Points;
+	       n = ctx->EvalMap.Map1Color4.Order * 4;
+	       break;
+	    case GL_MAP1_INDEX:
+	       data = ctx->EvalMap.Map1Index.Points;
+	       n = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       data = ctx->EvalMap.Map1Normal.Points;
+	       n = ctx->EvalMap.Map1Normal.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map1Texture1.Points;
+	       n = ctx->EvalMap.Map1Texture1.Order * 1;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map1Texture2.Points;
+	       n = ctx->EvalMap.Map1Texture2.Order * 2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map1Texture3.Points;
+	       n = ctx->EvalMap.Map1Texture3.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map1Texture4.Points;
+	       n = ctx->EvalMap.Map1Texture4.Order * 4;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       data = ctx->EvalMap.Map1Vertex3.Points;
+	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       data = ctx->EvalMap.Map1Vertex4.Points;
+	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       data = ctx->EvalMap.Map2Color4.Points;
+	       n = ctx->EvalMap.Map2Color4.Uorder
+                 * ctx->EvalMap.Map2Color4.Vorder * 4;
+	       break;
+	    case GL_MAP2_INDEX:
+	       data = ctx->EvalMap.Map2Index.Points;
+	       n = ctx->EvalMap.Map2Index.Uorder
+                 * ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       data = ctx->EvalMap.Map2Normal.Points;
+	       n = ctx->EvalMap.Map2Normal.Uorder
+                 * ctx->EvalMap.Map2Normal.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map2Texture1.Points;
+	       n = ctx->EvalMap.Map2Texture1.Uorder
+                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map2Texture2.Points;
+	       n = ctx->EvalMap.Map2Texture2.Uorder
+                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map2Texture3.Points;
+	       n = ctx->EvalMap.Map2Texture3.Uorder
+                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map2Texture4.Points;
+	       n = ctx->EvalMap.Map2Texture4.Uorder
+                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       data = ctx->EvalMap.Map2Vertex3.Points;
+	       n = ctx->EvalMap.Map2Vertex3.Uorder
+                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       data = ctx->EvalMap.Map2Vertex4.Points;
+	       n = ctx->EvalMap.Map2Vertex4.Uorder
+                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+	       return;
+	 }
+	 if (data) {
+	    for (i=0;i<n;i++) {
+	       v[i] = data[i];
+	    }
+	 }
+         break;
+      case GL_ORDER:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       *v = ctx->EvalMap.Map1Color4.Order;
+	       break;
+	    case GL_MAP1_INDEX:
+	       *v = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       *v = ctx->EvalMap.Map1Normal.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       *v = ctx->EvalMap.Map1Texture1.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       *v = ctx->EvalMap.Map1Texture2.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       *v = ctx->EvalMap.Map1Texture3.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       *v = ctx->EvalMap.Map1Texture4.Order;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       *v = ctx->EvalMap.Map1Vertex3.Order;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       *v = ctx->EvalMap.Map1Vertex4.Order;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ctx->EvalMap.Map2Index.Uorder;
+	       v[1] = ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
+	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+	       return;
+	 }
+         break;
+      case GL_DOMAIN:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       v[0] = ctx->EvalMap.Map1Color4.u1;
+	       v[1] = ctx->EvalMap.Map1Color4.u2;
+	       break;
+	    case GL_MAP1_INDEX:
+	       v[0] = ctx->EvalMap.Map1Index.u1;
+	       v[1] = ctx->EvalMap.Map1Index.u2;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       v[0] = ctx->EvalMap.Map1Normal.u1;
+	       v[1] = ctx->EvalMap.Map1Normal.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map1Texture1.u1;
+	       v[1] = ctx->EvalMap.Map1Texture1.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map1Texture2.u1;
+	       v[1] = ctx->EvalMap.Map1Texture2.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map1Texture3.u1;
+	       v[1] = ctx->EvalMap.Map1Texture3.u2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map1Texture4.u1;
+	       v[1] = ctx->EvalMap.Map1Texture4.u2;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
+	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
+	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ctx->EvalMap.Map2Color4.u1;
+	       v[1] = ctx->EvalMap.Map2Color4.u2;
+	       v[2] = ctx->EvalMap.Map2Color4.v1;
+	       v[3] = ctx->EvalMap.Map2Color4.v2;
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ctx->EvalMap.Map2Index.u1;
+	       v[1] = ctx->EvalMap.Map2Index.u2;
+	       v[2] = ctx->EvalMap.Map2Index.v1;
+	       v[3] = ctx->EvalMap.Map2Index.v2;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ctx->EvalMap.Map2Normal.u1;
+	       v[1] = ctx->EvalMap.Map2Normal.u2;
+	       v[2] = ctx->EvalMap.Map2Normal.v1;
+	       v[3] = ctx->EvalMap.Map2Normal.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map2Texture1.u1;
+	       v[1] = ctx->EvalMap.Map2Texture1.u2;
+	       v[2] = ctx->EvalMap.Map2Texture1.v1;
+	       v[3] = ctx->EvalMap.Map2Texture1.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map2Texture2.u1;
+	       v[1] = ctx->EvalMap.Map2Texture2.u2;
+	       v[2] = ctx->EvalMap.Map2Texture2.v1;
+	       v[3] = ctx->EvalMap.Map2Texture2.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map2Texture3.u1;
+	       v[1] = ctx->EvalMap.Map2Texture3.u2;
+	       v[2] = ctx->EvalMap.Map2Texture3.v1;
+	       v[3] = ctx->EvalMap.Map2Texture3.v2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map2Texture4.u1;
+	       v[1] = ctx->EvalMap.Map2Texture4.u2;
+	       v[2] = ctx->EvalMap.Map2Texture4.v1;
+	       v[3] = ctx->EvalMap.Map2Texture4.v2;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
+	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
+	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
+	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
+	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
+	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
+	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+	 }
+         break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
+   }
+}
+
+
+void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
+{
+   GLuint i, n;
+   GLfloat *data;
+
+   switch (query) {
+      case GL_COEFF:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       data = ctx->EvalMap.Map1Color4.Points;
+	       n = ctx->EvalMap.Map1Color4.Order * 4;
+	       break;
+	    case GL_MAP1_INDEX:
+	       data = ctx->EvalMap.Map1Index.Points;
+	       n = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       data = ctx->EvalMap.Map1Normal.Points;
+	       n = ctx->EvalMap.Map1Normal.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map1Texture1.Points;
+	       n = ctx->EvalMap.Map1Texture1.Order * 1;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map1Texture2.Points;
+	       n = ctx->EvalMap.Map1Texture2.Order * 2;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map1Texture3.Points;
+	       n = ctx->EvalMap.Map1Texture3.Order * 3;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map1Texture4.Points;
+	       n = ctx->EvalMap.Map1Texture4.Order * 4;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       data = ctx->EvalMap.Map1Vertex3.Points;
+	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       data = ctx->EvalMap.Map1Vertex4.Points;
+	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       data = ctx->EvalMap.Map2Color4.Points;
+	       n = ctx->EvalMap.Map2Color4.Uorder
+                 * ctx->EvalMap.Map2Color4.Vorder * 4;
+	       break;
+	    case GL_MAP2_INDEX:
+	       data = ctx->EvalMap.Map2Index.Points;
+	       n = ctx->EvalMap.Map2Index.Uorder
+                 * ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       data = ctx->EvalMap.Map2Normal.Points;
+	       n = ctx->EvalMap.Map2Normal.Uorder
+                 * ctx->EvalMap.Map2Normal.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       data = ctx->EvalMap.Map2Texture1.Points;
+	       n = ctx->EvalMap.Map2Texture1.Uorder
+                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       data = ctx->EvalMap.Map2Texture2.Points;
+	       n = ctx->EvalMap.Map2Texture2.Uorder
+                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       data = ctx->EvalMap.Map2Texture3.Points;
+	       n = ctx->EvalMap.Map2Texture3.Uorder
+                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       data = ctx->EvalMap.Map2Texture4.Points;
+	       n = ctx->EvalMap.Map2Texture4.Uorder
+                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       data = ctx->EvalMap.Map2Vertex3.Points;
+	       n = ctx->EvalMap.Map2Vertex3.Uorder
+                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       data = ctx->EvalMap.Map2Vertex4.Points;
+	       n = ctx->EvalMap.Map2Vertex4.Uorder
+                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+	       return;
+	 }
+	 if (data) {
+	    for (i=0;i<n;i++) {
+	       v[i] = ROUNDF(data[i]);
+	    }
+	 }
+         break;
+      case GL_ORDER:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       *v = ctx->EvalMap.Map1Color4.Order;
+	       break;
+	    case GL_MAP1_INDEX:
+	       *v = ctx->EvalMap.Map1Index.Order;
+	       break;
+	    case GL_MAP1_NORMAL:
+	       *v = ctx->EvalMap.Map1Normal.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       *v = ctx->EvalMap.Map1Texture1.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       *v = ctx->EvalMap.Map1Texture2.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       *v = ctx->EvalMap.Map1Texture3.Order;
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       *v = ctx->EvalMap.Map1Texture4.Order;
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       *v = ctx->EvalMap.Map1Vertex3.Order;
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       *v = ctx->EvalMap.Map1Vertex4.Order;
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ctx->EvalMap.Map2Index.Uorder;
+	       v[1] = ctx->EvalMap.Map2Index.Vorder;
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
+	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+	       return;
+	 }
+         break;
+      case GL_DOMAIN:
+	 switch (target) {
+	    case GL_MAP1_COLOR_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
+	       break;
+	    case GL_MAP1_INDEX:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
+	       break;
+	    case GL_MAP1_NORMAL:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_1:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_2:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_3:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
+	       break;
+	    case GL_MAP1_TEXTURE_COORD_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
+	       break;
+	    case GL_MAP1_VERTEX_3:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
+	       break;
+	    case GL_MAP1_VERTEX_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
+	       break;
+	    case GL_MAP2_COLOR_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
+	       break;
+	    case GL_MAP2_INDEX:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
+	       break;
+	    case GL_MAP2_NORMAL:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_1:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_2:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_3:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
+	       break;
+	    case GL_MAP2_TEXTURE_COORD_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
+	       break;
+	    case GL_MAP2_VERTEX_3:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
+	       break;
+	    case GL_MAP2_VERTEX_4:
+	       v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
+	       v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
+	       v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
+	       v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
+	       break;
+	    default:
+	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+	 }
+         break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
+   }
+}
+
+
+
+void eval_points1( GLfloat outcoord[][4], 
+		   GLfloat coord[][4],
+		   const GLuint *flags,
+		   GLfloat du, GLfloat u1 )
+{
+   GLuint i;
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & VERT_EVAL_P1) 
+	 outcoord[i][0] = coord[i][0] * du + u1;
+      else if (flags[i] & VERT_EVAL_ANY) {
+	 outcoord[i][0] = coord[i][0];
+	 outcoord[i][1] = coord[i][1];
+      }
+}
+
+void eval_points2( GLfloat outcoord[][4], 
+		   GLfloat coord[][4],
+		   const GLuint *flags,
+		   GLfloat du, GLfloat u1,
+		   GLfloat dv, GLfloat v1 )
+{
+   GLuint i;
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & VERT_EVAL_P2) {
+	 outcoord[i][0] = coord[i][0] * du + u1;
+	 outcoord[i][1] = coord[i][1] * dv + v1;
+      } else if (flags[i] & VERT_EVAL_ANY) {
+	 outcoord[i][0] = coord[i][0];
+	 outcoord[i][1] = coord[i][1];
+      }
+}
+
+
+static const GLubyte dirty_flags[5] = {
+   0,				/* not possible */
+   VEC_DIRTY_0,
+   VEC_DIRTY_1, 
+   VEC_DIRTY_2, 
+   VEC_DIRTY_3
+};
+
+
+GLvector4f *eval1_4f( GLvector4f *dest, 
+		      GLfloat coord[][4], 
+		      const GLuint *flags, 
+		      GLuint dimension,
+		      struct gl_1d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   GLfloat (*to)[4] = dest->data;
+   GLuint i;
+   
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 ASSIGN_4V(to[i], 0,0,0,1);
+	 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
+      }
+
+   dest->count = i;
+   dest->size = MAX2(dest->size, dimension);
+   dest->flags |= dirty_flags[dimension];
+   return dest;
+}
+
+
+GLvector1ui *eval1_1ui( GLvector1ui *dest, 
+		       GLfloat coord[][4], 
+		       const GLuint *flags, 
+		       struct gl_1d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   GLuint *to = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat tmp;
+	 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
+	 to[i] = (GLuint) (GLint) tmp;
+      }
+
+   dest->count = i;
+   return dest;
+}
+
+GLvector3f *eval1_norm( GLvector3f *dest, 
+			GLfloat coord[][4],
+			GLuint *flags, /* not const */
+			struct gl_1d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   GLfloat (*to)[3] = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
+	 flags[i+1] |= VERT_NORM; /* reset */
+      }
+
+   dest->count = i;
+   return dest;
+}
+
+GLvector4ub *eval1_color( GLvector4ub *dest, 
+			  GLfloat coord[][4],
+			  GLuint *flags, /* not const */
+			  struct gl_1d_map *map )
+{   
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   GLubyte (*to)[4] = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat fcolor[4];
+	 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
+	 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
+	 flags[i+1] |= VERT_RGBA; /* reset */
+      }
+
+   dest->count = i;
+   return dest;
+}
+
+
+
+
+GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr, 
+			    GLvector3f *norm_ptr,
+			    GLfloat coord[][4], 
+			    GLuint *flags, 
+			    GLuint dimension,
+			    struct gl_2d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   const GLfloat v1 = map->v1;
+   const GLfloat dv = map->dv;
+   GLfloat (*obj)[4] = obj_ptr->data;
+   GLfloat (*normal)[3] = norm_ptr->data;
+   GLuint i;
+   
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat v = (coord[i][1] - v1) * dv;
+	 GLfloat du[4], dv[4];
+
+	 ASSIGN_4V(obj[i], 0,0,0,1);
+	 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
+			   map->Uorder, map->Vorder);
+	       
+	 CROSS3(normal[i], du, dv);
+	 NORMALIZE_3FV(normal[i]);
+	 flags[i+1] |= VERT_NORM;
+      }
+ 
+   obj_ptr->count = i;
+   obj_ptr->size = MAX2(obj_ptr->size, dimension);
+   obj_ptr->flags |= dirty_flags[dimension];
+   return obj_ptr;
+}
+
+
+GLvector4f *eval2_4f( GLvector4f *dest, 
+		      GLfloat coord[][4], 
+		      const GLuint *flags, 
+		      GLuint dimension,
+		      struct gl_2d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   const GLfloat v1 = map->v1;
+   const GLfloat dv = map->dv;
+   GLfloat (*to)[4] = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat v = (coord[i][1] - v1) * dv;
+	 horner_bezier_surf(map->Points, to[i], u, v, dimension,
+			    map->Uorder, map->Vorder);
+      }
+
+   dest->count = i;
+   dest->size = MAX2(dest->size, dimension);
+   dest->flags |= dirty_flags[dimension];
+   return dest;
+}
+
+
+GLvector3f *eval2_norm( GLvector3f *dest, 
+			GLfloat coord[][4], 
+			GLuint *flags, 
+			struct gl_2d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   const GLfloat v1 = map->v1;
+   const GLfloat dv = map->dv;
+   GLfloat (*to)[3] = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat v = (coord[i][1] - v1) * dv;
+	 horner_bezier_surf(map->Points, to[i], u, v, 3,
+			    map->Uorder, map->Vorder);
+ 	 flags[i+1] |= VERT_NORM; /* reset */
+     }
+
+   dest->count = i;
+   return dest;
+}
+
+
+GLvector1ui *eval2_1ui( GLvector1ui *dest, 
+		       GLfloat coord[][4], 
+		       const GLuint *flags, 
+		       struct gl_2d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   const GLfloat v1 = map->v1;
+   const GLfloat dv = map->dv;
+   GLuint *to = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat v = (coord[i][1] - v1) * dv;
+	 GLfloat tmp;
+	 horner_bezier_surf(map->Points, &tmp, u, v, 1,
+			    map->Uorder, map->Vorder);
+
+	 to[i] = (GLuint) (GLint) tmp;
+      }
+
+   dest->count = i;
+   return dest;
+}
+
+
+
+GLvector4ub *eval2_color( GLvector4ub *dest,
+			  GLfloat coord[][4], 
+			  GLuint *flags,
+			  struct gl_2d_map *map )
+{
+   const GLfloat u1 = map->u1;
+   const GLfloat du = map->du;
+   const GLfloat v1 = map->v1;
+   const GLfloat dv = map->dv;
+   GLubyte (*to)[4] = dest->data;
+   GLuint i;
+
+   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+	 GLfloat u = (coord[i][0] - u1) * du;
+	 GLfloat v = (coord[i][1] - v1) * dv;
+	 GLfloat fcolor[4];
+	 horner_bezier_surf(map->Points, fcolor, u, v, 4,
+			    map->Uorder, map->Vorder);
+	 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
+	 flags[i+1] |= VERT_RGBA; /* reset */
+      }
+
+   dest->count = i;
+   return dest;
+}
+
+
+GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in, 
+		     const GLuint *flags)
+{
+   GLfloat (*to)[4] = out->data;
+   GLfloat (*from)[4] = in->data;
+   GLuint i;
+   
+   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++) 
+      if (!(flags[i] & VERT_EVAL_ANY)) 
+	 COPY_4FV( to[i], from[i] );
+   
+   return out;
+}
+
+GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in, 
+		     const GLuint *flags)
+{
+   GLfloat (*to)[3] = out->data;
+   GLfloat (*from)[3] = in->data;
+   GLuint i;
+   
+   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++) 
+      if (!(flags[i] & VERT_EVAL_ANY)) 
+	 COPY_3V( to[i], from[i] );
+   
+   return out;
+}
+
+GLvector4ub *copy_4ub( GLvector4ub *out, CONST GLvector4ub *in, 
+		       const GLuint *flags )
+{
+   GLubyte (*to)[4] = out->data;
+   GLubyte (*from)[4] = in->data;
+   GLuint i;
+   
+   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++) 
+      if (!(flags[i] & VERT_EVAL_ANY)) 
+	 COPY_4UBV( to[i], from[i] );
+
+   return out;
+}
+
+GLvector1ui *copy_1ui( GLvector1ui *out, CONST GLvector1ui *in, 
+		       const GLuint *flags )
+{
+   GLuint *to = out->data;
+   CONST GLuint *from = in->data;
+   GLuint i;
+   
+   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++) 
+      if (!(flags[i] & VERT_EVAL_ANY)) 
+	 to[i] = from[i];
+
+   return out;
+}
+
+
+/* KW: Rewrote this to perform eval on a whole buffer at once.
+ *     Only evaluates active data items, and avoids scribbling
+ *     the source buffer if we are running from a display list.
+ *
+ *     If the user (in this case looser) sends eval coordinates
+ *     or runs a display list containing eval coords with no
+ *     vertex maps enabled, we have to either copy all non-eval
+ *     data to a new buffer, or find a way of working around
+ *     the eval data.  I choose the second option.
+ *
+ * KW: This code not reached by cva - use IM to access storage.
+ */
+void gl_eval_vb( struct vertex_buffer *VB )
+{
+   struct immediate *IM = VB->IM;
+   GLcontext *ctx = VB->ctx;
+   GLuint req = ctx->CVA.elt.inputs;
+   GLfloat (*coord)[4] = VB->ObjPtr->data;
+   GLuint *flags = VB->Flag;
+   GLuint new_flags = 0;
+   
+
+   GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
+   GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
+   GLuint all_eval = VB->AndFlag & VERT_EVAL_ANY;
+
+   /* Handle the degenerate cases.
+    */
+   if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
+      VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
+      VB->EarlyCull = 0;
+      any_eval1 = GL_FALSE;
+   }
+  
+   if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
+      VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
+      VB->EarlyCull = 0;
+      any_eval2 = GL_FALSE;
+   }
+
+   /* KW: This really is a degenerate case - doing this disables
+    * culling, and causes dummy values for the missing vertices to be
+    * transformed and clip tested.  It also forces the individual
+    * cliptesting of each primitive in vb_render.  I wish there was a
+    * nice alternative, but I can't say I want to put effort into
+    * optimizing such a bad usage of the library - I'd much rather
+    * work on useful changes.
+    */
+   if (VB->PurgeFlags) {
+      if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB_START;
+      gl_purge_vertices( VB );
+      if (!any_eval1 && !any_eval2) return;
+   } else
+      VB->IndirectCount = VB->Count;
+
+   /* Translate points into coords.
+    */
+   if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1)) 
+   {
+      eval_points1( IM->Obj, coord, flags, 
+		    ctx->Eval.MapGrid1du,
+		    ctx->Eval.MapGrid1u1);
+
+      coord = IM->Obj;
+   }
+
+   if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2)) 
+   {
+      eval_points2( IM->Obj, coord, flags, 
+		    ctx->Eval.MapGrid2du,
+		    ctx->Eval.MapGrid2u1,
+		    ctx->Eval.MapGrid2dv,
+		    ctx->Eval.MapGrid2v1 );
+
+      coord = IM->Obj;
+   }
+
+   /* Perform the evaluations on active data elements.
+    */
+   if (req & VERT_INDEX) 
+   {
+      GLvector1ui  *in_index = VB->IndexPtr;
+      GLvector1ui  *out_index = &IM->v.Index;
+
+      if (ctx->Eval.Map1Index && any_eval1) 
+	 VB->IndexPtr = eval1_1ui( out_index, coord, flags, 
+				   &ctx->EvalMap.Map1Index );
+      
+      if (ctx->Eval.Map2Index && any_eval2)
+	 VB->IndexPtr = eval2_1ui( out_index, coord, flags, 
+				   &ctx->EvalMap.Map2Index );
+	 
+      if (VB->IndexPtr != in_index) {
+	 new_flags |= VERT_INDEX;
+	 if (!all_eval)
+	    VB->IndexPtr = copy_1ui( out_index, in_index, flags );
+      }
+   }
+
+   if (req & VERT_RGBA) 
+   {   
+      GLvector4ub  *in_color = VB->ColorPtr;
+      GLvector4ub  *out_color = &IM->v.Color;
+
+      if (ctx->Eval.Map1Color4 && any_eval1) 
+	 VB->ColorPtr = eval1_color( out_color, coord, flags, 
+				   &ctx->EvalMap.Map1Color4 );
+      
+      if (ctx->Eval.Map2Color4 && any_eval2)
+	 VB->ColorPtr = eval2_color( out_color, coord, flags, 
+				     &ctx->EvalMap.Map2Color4 );
+	 
+      if (VB->ColorPtr != in_color) {
+	 new_flags |= VERT_RGBA;
+	 if (!all_eval)
+	    VB->ColorPtr = copy_4ub( out_color, in_color, flags );
+      }
+
+      VB->Color[0] = VB->Color[1] = VB->ColorPtr;
+   }
+
+
+   if (req & VERT_NORM) 
+   {   
+      GLvector3f  *in_normal = VB->NormalPtr;
+      GLvector3f  *out_normal = &IM->v.Normal;
+
+      if (ctx->Eval.Map1Normal && any_eval1) 
+	 VB->NormalPtr = eval1_norm( out_normal, coord, flags, 
+				     &ctx->EvalMap.Map1Normal );
+      
+      if (ctx->Eval.Map2Normal && any_eval2)
+	 VB->NormalPtr = eval2_norm( out_normal, coord, flags, 
+				     &ctx->EvalMap.Map2Normal );
+	 
+      if (VB->NormalPtr != in_normal) {
+	 new_flags |= VERT_NORM;
+	 if (!all_eval)
+	    VB->NormalPtr = copy_3f( out_normal, in_normal, flags );
+      }
+   }
+
+     
+   if (req & VERT_TEX_ANY(0)) 
+   {
+      GLvector4f *tc = VB->TexCoordPtr[0];
+      GLvector4f *in = tc;
+      GLvector4f *out = &IM->v.TexCoord[0];
+
+      if (any_eval1) {
+	 if (ctx->Eval.Map1TextureCoord4) 
+	    tc = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Texture4);
+	 else if (ctx->Eval.Map1TextureCoord3) 
+	    tc = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Texture3);
+	 else if (ctx->Eval.Map1TextureCoord2) 
+	    tc = eval1_4f( out, coord, flags, 2, &ctx->EvalMap.Map1Texture2);
+	 else if (ctx->Eval.Map1TextureCoord1) 
+	    tc = eval1_4f( out, coord, flags, 1, &ctx->EvalMap.Map1Texture1);
+      }
+
+      if (any_eval2) {
+	 if (ctx->Eval.Map2TextureCoord4) 
+	    tc = eval2_4f( out, coord, flags, 4, &ctx->EvalMap.Map2Texture4);
+	 else if (ctx->Eval.Map2TextureCoord3) 
+	    tc = eval2_4f( out, coord, flags, 3, &ctx->EvalMap.Map2Texture3);
+	 else if (ctx->Eval.Map2TextureCoord2) 
+	    tc = eval2_4f( out, coord, flags, 2, &ctx->EvalMap.Map2Texture2);
+	 else if (ctx->Eval.Map2TextureCoord1) 
+	    tc = eval2_4f( out, coord, flags, 1, &ctx->EvalMap.Map2Texture1);
+      }
+
+      if (tc != in) {
+	 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
+	 if (!all_eval)
+	    tc = copy_4f( out, in, flags );
+      }
+
+      VB->TexCoordPtr[0] = tc;
+   }
+
+
+   {
+      GLvector4f *in = VB->ObjPtr;
+      GLvector4f *out = &IM->v.Obj;
+      GLvector4f *obj = in;
+   
+      if (any_eval1) {
+	 if (ctx->Eval.Map1Vertex4) 
+	    obj = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Vertex4);
+	 else 
+	    obj = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Vertex3);
+      }
+
+      if (any_eval2) {
+	 if (ctx->Eval.Map2Vertex4) 
+	 {
+	    if (ctx->Eval.AutoNormal && (req & VERT_NORM)) 
+	       obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 4,
+				    &ctx->EvalMap.Map2Vertex4 );
+	    else
+	       obj = eval2_4f( out, coord, flags, 4, 
+			       &ctx->EvalMap.Map2Vertex4);
+	 }
+	 else if (ctx->Eval.Map2Vertex3) 
+	 {
+	    if (ctx->Eval.AutoNormal && (req & VERT_NORM)) 
+	       obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 3,
+				    &ctx->EvalMap.Map2Vertex3 );
+	    else
+	       obj = eval2_4f( out, coord, flags, 3, 
+			       &ctx->EvalMap.Map2Vertex3 );
+	 }
+      }
+
+      if (obj != in && !all_eval)
+	 obj = copy_4f( out, in, flags );
+
+      VB->ObjPtr = obj;
+   }
+
+   if (new_flags) {
+      GLuint *oldflags = VB->Flag;
+      GLuint *flags = VB->Flag = VB->EvaluatedFlags;
+      GLuint i;
+      GLuint count = VB->Count;
+
+      if (!flags) {
+	 VB->EvaluatedFlags = (GLuint *)malloc(VB->Size * sizeof(GLuint));
+	 flags = VB->Flag = VB->EvaluatedFlags;
+      }
+
+      if (all_eval) {
+	 for (i = 0 ; i < count ; i++) 
+	    flags[i] = oldflags[i] | new_flags;
+	 VB->AndFlag |= new_flags; 
+      } else {
+	 GLuint andflag = ~0;
+	 for (i = 0 ; i < count ; i++) {
+	    if (oldflags[i] & VERT_EVAL_ANY) 
+	       flags[i] = oldflags[i] | new_flags;
+	    andflag &= flags[i];
+	 }
+	 VB->AndFlag = andflag;
+      }
+   }
+}
+
+
+void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
+{
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
+
+   if (un<1) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
+      return;
+   }
+   ctx->Eval.MapGrid1un = un;
+   ctx->Eval.MapGrid1u1 = u1;
+   ctx->Eval.MapGrid1u2 = u2;
+   ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
+}
+
+
+void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
+		  GLint vn, GLfloat v1, GLfloat v2 )
+{
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
+   if (un<1) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
+      return;
+   }
+   if (vn<1) {
+      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
+      return;
+   }
+   ctx->Eval.MapGrid2un = un;
+   ctx->Eval.MapGrid2u1 = u1;
+   ctx->Eval.MapGrid2u2 = u2;
+   ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
+   ctx->Eval.MapGrid2vn = vn;
+   ctx->Eval.MapGrid2v1 = v1;
+   ctx->Eval.MapGrid2v2 = v2;
+   ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
+}
+
+
+
+void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
+{
+   GLint i;
+   GLfloat u, du;
+   GLenum prim;
+
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
+
+   switch (mode) {
+      case GL_POINT:
+         prim = GL_POINTS;
+         break;
+      case GL_LINE:
+         prim = GL_LINE_STRIP;
+         break;
+      default:
+         gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
+         return;
+   }
+
+   /* No effect if vertex maps disabled.
+    */
+   if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) 
+      return;
+
+   du = ctx->Eval.MapGrid1du;
+   u = ctx->Eval.MapGrid1u1 + i1 * du;
+
+   /* KW: Could short-circuit this to avoid the immediate mechanism.
+    */
+   RESET_IMMEDIATE(ctx);
+
+   gl_Begin( ctx, prim );
+   for (i=i1;i<=i2;i++,u+=du) {
+      gl_EvalCoord1f( ctx, u );
+   }
+   gl_End(ctx);
+}
+
+
+
+void gl_EvalMesh2( GLcontext* ctx, 
+		   GLenum mode, 
+		   GLint i1, GLint i2, 
+		   GLint j1, GLint j2 )
+{
+   GLint i, j;
+   GLfloat u, du, v, dv, v1, u1;
+
+   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
+
+   /* No effect if vertex maps disabled.
+    */
+   if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) 
+      return;
+
+   du = ctx->Eval.MapGrid2du;
+   dv = ctx->Eval.MapGrid2dv;
+   v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
+   u1 = ctx->Eval.MapGrid2u1 + i1 * du;
+
+   RESET_IMMEDIATE(ctx);
+
+   switch (mode) {
+   case GL_POINT:
+      gl_Begin( ctx, GL_POINTS );
+      for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
+	    gl_EvalCoord2f( ctx, u, v );
+	 }
+      }
+      gl_End(ctx);
+      break;
+   case GL_LINE:
+      for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+	 gl_Begin( ctx, GL_LINE_STRIP );
+	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
+	    gl_EvalCoord2f( ctx, u, v );
+	 }
+	 gl_End(ctx);
+      }
+      for (u=u1,i=i1;i<=i2;i++,u+=du) {
+	 gl_Begin( ctx, GL_LINE_STRIP );
+	 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+	    gl_EvalCoord2f( ctx, u, v );
+	 }
+	 gl_End(ctx);
+      }
+      break;
+   case GL_FILL:
+      for (v=v1,j=j1;j<j2;j++,v+=dv) {
+	 /* NOTE: a quad strip can't be used because the four */
+	 /* can't be guaranteed to be coplanar! */
+	 gl_Begin( ctx, GL_TRIANGLE_STRIP );
+	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
+	    gl_EvalCoord2f( ctx, u, v );
+	    gl_EvalCoord2f( ctx, u, v+dv );
+	 }
+	 gl_End(ctx);
+      }
+      break;
+   default:
+      gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
+      return;
+   }
+}
+