The Android Open Source Project | 8b23a6c | 2009-03-03 19:30:32 -0800 | [diff] [blame] | 1 | /* |
| 2 | * ARM Nested Vectored Interrupt Controller |
| 3 | * |
| 4 | * Copyright (c) 2006-2007 CodeSourcery. |
| 5 | * Written by Paul Brook |
| 6 | * |
| 7 | * This code is licenced under the GPL. |
| 8 | * |
| 9 | * The ARMv7M System controller is fairly tightly tied in with the |
| 10 | * NVIC. Much of that is also implemented here. |
| 11 | */ |
| 12 | |
| 13 | #include "hw.h" |
| 14 | #include "qemu-timer.h" |
| 15 | #include "arm-misc.h" |
| 16 | |
| 17 | /* 32 internal lines (16 used for system exceptions) plus 64 external |
| 18 | interrupt lines. */ |
| 19 | #define GIC_NIRQ 96 |
| 20 | #define NCPU 1 |
| 21 | #define NVIC 1 |
| 22 | |
| 23 | /* Only a single "CPU" interface is present. */ |
| 24 | static inline int |
| 25 | gic_get_current_cpu(void) |
| 26 | { |
| 27 | return 0; |
| 28 | } |
| 29 | |
| 30 | static uint32_t nvic_readl(void *opaque, uint32_t offset); |
| 31 | static void nvic_writel(void *opaque, uint32_t offset, uint32_t value); |
| 32 | |
| 33 | #include "arm_gic.c" |
| 34 | |
| 35 | typedef struct { |
| 36 | struct { |
| 37 | uint32_t control; |
| 38 | uint32_t reload; |
| 39 | int64_t tick; |
| 40 | QEMUTimer *timer; |
| 41 | } systick; |
| 42 | gic_state *gic; |
| 43 | } nvic_state; |
| 44 | |
| 45 | /* qemu timers run at 1GHz. We want something closer to 1MHz. */ |
| 46 | #define SYSTICK_SCALE 1000ULL |
| 47 | |
| 48 | #define SYSTICK_ENABLE (1 << 0) |
| 49 | #define SYSTICK_TICKINT (1 << 1) |
| 50 | #define SYSTICK_CLKSOURCE (1 << 2) |
| 51 | #define SYSTICK_COUNTFLAG (1 << 16) |
| 52 | |
| 53 | /* Conversion factor from qemu timer to SysTick frequencies. */ |
| 54 | static inline int64_t systick_scale(nvic_state *s) |
| 55 | { |
| 56 | if (s->systick.control & SYSTICK_CLKSOURCE) |
| 57 | return system_clock_scale; |
| 58 | else |
| 59 | return 1000; |
| 60 | } |
| 61 | |
| 62 | static void systick_reload(nvic_state *s, int reset) |
| 63 | { |
| 64 | if (reset) |
| 65 | s->systick.tick = qemu_get_clock(vm_clock); |
| 66 | s->systick.tick += (s->systick.reload + 1) * systick_scale(s); |
| 67 | qemu_mod_timer(s->systick.timer, s->systick.tick); |
| 68 | } |
| 69 | |
| 70 | static void systick_timer_tick(void * opaque) |
| 71 | { |
| 72 | nvic_state *s = (nvic_state *)opaque; |
| 73 | s->systick.control |= SYSTICK_COUNTFLAG; |
| 74 | if (s->systick.control & SYSTICK_TICKINT) { |
| 75 | /* Trigger the interrupt. */ |
| 76 | armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| 77 | } |
| 78 | if (s->systick.reload == 0) { |
| 79 | s->systick.control &= ~SYSTICK_ENABLE; |
| 80 | } else { |
| 81 | systick_reload(s, 0); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /* The external routines use the hardware vector numbering, ie. the first |
| 86 | IRQ is #16. The internal GIC routines use #32 as the first IRQ. */ |
| 87 | void armv7m_nvic_set_pending(void *opaque, int irq) |
| 88 | { |
| 89 | nvic_state *s = (nvic_state *)opaque; |
| 90 | if (irq >= 16) |
| 91 | irq += 16; |
| 92 | gic_set_pending_private(s->gic, 0, irq); |
| 93 | } |
| 94 | |
| 95 | /* Make pending IRQ active. */ |
| 96 | int armv7m_nvic_acknowledge_irq(void *opaque) |
| 97 | { |
| 98 | nvic_state *s = (nvic_state *)opaque; |
| 99 | uint32_t irq; |
| 100 | |
| 101 | irq = gic_acknowledge_irq(s->gic, 0); |
| 102 | if (irq == 1023) |
| 103 | cpu_abort(cpu_single_env, "Interrupt but no vector\n"); |
| 104 | if (irq >= 32) |
| 105 | irq -= 16; |
| 106 | return irq; |
| 107 | } |
| 108 | |
| 109 | void armv7m_nvic_complete_irq(void *opaque, int irq) |
| 110 | { |
| 111 | nvic_state *s = (nvic_state *)opaque; |
| 112 | if (irq >= 16) |
| 113 | irq += 16; |
| 114 | gic_complete_irq(s->gic, 0, irq); |
| 115 | } |
| 116 | |
| 117 | static uint32_t nvic_readl(void *opaque, uint32_t offset) |
| 118 | { |
| 119 | nvic_state *s = (nvic_state *)opaque; |
| 120 | uint32_t val; |
| 121 | int irq; |
| 122 | |
| 123 | switch (offset) { |
| 124 | case 4: /* Interrupt Control Type. */ |
| 125 | return (GIC_NIRQ / 32) - 1; |
| 126 | case 0x10: /* SysTick Control and Status. */ |
| 127 | val = s->systick.control; |
| 128 | s->systick.control &= ~SYSTICK_COUNTFLAG; |
| 129 | return val; |
| 130 | case 0x14: /* SysTick Reload Value. */ |
| 131 | return s->systick.reload; |
| 132 | case 0x18: /* SysTick Current Value. */ |
| 133 | { |
| 134 | int64_t t; |
| 135 | if ((s->systick.control & SYSTICK_ENABLE) == 0) |
| 136 | return 0; |
| 137 | t = qemu_get_clock(vm_clock); |
| 138 | if (t >= s->systick.tick) |
| 139 | return 0; |
| 140 | val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1; |
| 141 | /* The interrupt in triggered when the timer reaches zero. |
| 142 | However the counter is not reloaded until the next clock |
| 143 | tick. This is a hack to return zero during the first tick. */ |
| 144 | if (val > s->systick.reload) |
| 145 | val = 0; |
| 146 | return val; |
| 147 | } |
| 148 | case 0x1c: /* SysTick Calibration Value. */ |
| 149 | return 10000; |
| 150 | case 0xd00: /* CPUID Base. */ |
| 151 | return cpu_single_env->cp15.c0_cpuid; |
| 152 | case 0xd04: /* Interrypt Control State. */ |
| 153 | /* VECTACTIVE */ |
| 154 | val = s->gic->running_irq[0]; |
| 155 | if (val == 1023) { |
| 156 | val = 0; |
| 157 | } else if (val >= 32) { |
| 158 | val -= 16; |
| 159 | } |
| 160 | /* RETTOBASE */ |
| 161 | if (s->gic->running_irq[0] == 1023 |
| 162 | || s->gic->last_active[s->gic->running_irq[0]][0] == 1023) { |
| 163 | val |= (1 << 11); |
| 164 | } |
| 165 | /* VECTPENDING */ |
| 166 | if (s->gic->current_pending[0] != 1023) |
| 167 | val |= (s->gic->current_pending[0] << 12); |
| 168 | /* ISRPENDING */ |
| 169 | for (irq = 32; irq < GIC_NIRQ; irq++) { |
| 170 | if (s->gic->irq_state[irq].pending) { |
| 171 | val |= (1 << 22); |
| 172 | break; |
| 173 | } |
| 174 | } |
| 175 | /* PENDSTSET */ |
| 176 | if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending) |
| 177 | val |= (1 << 26); |
| 178 | /* PENDSVSET */ |
| 179 | if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending) |
| 180 | val |= (1 << 28); |
| 181 | /* NMIPENDSET */ |
| 182 | if (s->gic->irq_state[ARMV7M_EXCP_NMI].pending) |
| 183 | val |= (1 << 31); |
| 184 | return val; |
| 185 | case 0xd08: /* Vector Table Offset. */ |
| 186 | return cpu_single_env->v7m.vecbase; |
| 187 | case 0xd0c: /* Application Interrupt/Reset Control. */ |
| 188 | return 0xfa05000; |
| 189 | case 0xd10: /* System Control. */ |
| 190 | /* TODO: Implement SLEEPONEXIT. */ |
| 191 | return 0; |
| 192 | case 0xd14: /* Configuration Control. */ |
| 193 | /* TODO: Implement Configuration Control bits. */ |
| 194 | return 0; |
| 195 | case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ |
| 196 | irq = offset - 0xd14; |
| 197 | val = 0; |
| 198 | val = s->gic->priority1[irq++][0]; |
| 199 | val = s->gic->priority1[irq++][0] << 8; |
| 200 | val = s->gic->priority1[irq++][0] << 16; |
| 201 | val = s->gic->priority1[irq][0] << 24; |
| 202 | return val; |
| 203 | case 0xd24: /* System Handler Status. */ |
| 204 | val = 0; |
| 205 | if (s->gic->irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0); |
| 206 | if (s->gic->irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1); |
| 207 | if (s->gic->irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3); |
| 208 | if (s->gic->irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7); |
| 209 | if (s->gic->irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8); |
| 210 | if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10); |
| 211 | if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11); |
| 212 | if (s->gic->irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12); |
| 213 | if (s->gic->irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13); |
| 214 | if (s->gic->irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14); |
| 215 | if (s->gic->irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15); |
| 216 | if (s->gic->irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16); |
| 217 | if (s->gic->irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17); |
| 218 | if (s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18); |
| 219 | return val; |
| 220 | case 0xd28: /* Configurable Fault Status. */ |
| 221 | /* TODO: Implement Fault Status. */ |
| 222 | cpu_abort(cpu_single_env, |
| 223 | "Not implemented: Configurable Fault Status."); |
| 224 | return 0; |
| 225 | case 0xd2c: /* Hard Fault Status. */ |
| 226 | case 0xd30: /* Debug Fault Status. */ |
| 227 | case 0xd34: /* Mem Manage Address. */ |
| 228 | case 0xd38: /* Bus Fault Address. */ |
| 229 | case 0xd3c: /* Aux Fault Status. */ |
| 230 | /* TODO: Implement fault status registers. */ |
| 231 | goto bad_reg; |
| 232 | case 0xd40: /* PFR0. */ |
| 233 | return 0x00000030; |
| 234 | case 0xd44: /* PRF1. */ |
| 235 | return 0x00000200; |
| 236 | case 0xd48: /* DFR0. */ |
| 237 | return 0x00100000; |
| 238 | case 0xd4c: /* AFR0. */ |
| 239 | return 0x00000000; |
| 240 | case 0xd50: /* MMFR0. */ |
| 241 | return 0x00000030; |
| 242 | case 0xd54: /* MMFR1. */ |
| 243 | return 0x00000000; |
| 244 | case 0xd58: /* MMFR2. */ |
| 245 | return 0x00000000; |
| 246 | case 0xd5c: /* MMFR3. */ |
| 247 | return 0x00000000; |
| 248 | case 0xd60: /* ISAR0. */ |
| 249 | return 0x01141110; |
| 250 | case 0xd64: /* ISAR1. */ |
| 251 | return 0x02111000; |
| 252 | case 0xd68: /* ISAR2. */ |
| 253 | return 0x21112231; |
| 254 | case 0xd6c: /* ISAR3. */ |
| 255 | return 0x01111110; |
| 256 | case 0xd70: /* ISAR4. */ |
| 257 | return 0x01310102; |
| 258 | /* TODO: Implement debug registers. */ |
| 259 | default: |
| 260 | bad_reg: |
| 261 | cpu_abort(cpu_single_env, "NVIC: Bad read offset 0x%x\n", offset); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | static void nvic_writel(void *opaque, uint32_t offset, uint32_t value) |
| 266 | { |
| 267 | nvic_state *s = (nvic_state *)opaque; |
| 268 | uint32_t oldval; |
| 269 | switch (offset) { |
| 270 | case 0x10: /* SysTick Control and Status. */ |
| 271 | oldval = s->systick.control; |
| 272 | s->systick.control &= 0xfffffff8; |
| 273 | s->systick.control |= value & 7; |
| 274 | if ((oldval ^ value) & SYSTICK_ENABLE) { |
| 275 | int64_t now = qemu_get_clock(vm_clock); |
| 276 | if (value & SYSTICK_ENABLE) { |
| 277 | if (s->systick.tick) { |
| 278 | s->systick.tick += now; |
| 279 | qemu_mod_timer(s->systick.timer, s->systick.tick); |
| 280 | } else { |
| 281 | systick_reload(s, 1); |
| 282 | } |
| 283 | } else { |
| 284 | qemu_del_timer(s->systick.timer); |
| 285 | s->systick.tick -= now; |
| 286 | if (s->systick.tick < 0) |
| 287 | s->systick.tick = 0; |
| 288 | } |
| 289 | } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) { |
| 290 | /* This is a hack. Force the timer to be reloaded |
| 291 | when the reference clock is changed. */ |
| 292 | systick_reload(s, 1); |
| 293 | } |
| 294 | break; |
| 295 | case 0x14: /* SysTick Reload Value. */ |
| 296 | s->systick.reload = value; |
| 297 | break; |
| 298 | case 0x18: /* SysTick Current Value. Writes reload the timer. */ |
| 299 | systick_reload(s, 1); |
| 300 | s->systick.control &= ~SYSTICK_COUNTFLAG; |
| 301 | break; |
| 302 | case 0xd04: /* Interrupt Control State. */ |
| 303 | if (value & (1 << 31)) { |
| 304 | armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); |
| 305 | } |
| 306 | if (value & (1 << 28)) { |
| 307 | armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); |
| 308 | } else if (value & (1 << 27)) { |
| 309 | s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending = 0; |
| 310 | gic_update(s->gic); |
| 311 | } |
| 312 | if (value & (1 << 26)) { |
| 313 | armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| 314 | } else if (value & (1 << 25)) { |
| 315 | s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending = 0; |
| 316 | gic_update(s->gic); |
| 317 | } |
| 318 | break; |
| 319 | case 0xd08: /* Vector Table Offset. */ |
| 320 | cpu_single_env->v7m.vecbase = value & 0xffffff80; |
| 321 | break; |
| 322 | case 0xd0c: /* Application Interrupt/Reset Control. */ |
| 323 | if ((value >> 16) == 0x05fa) { |
| 324 | if (value & 2) { |
| 325 | cpu_abort(cpu_single_env, "VECTCLRACTIVE not implemented"); |
| 326 | } |
| 327 | if (value & 5) { |
| 328 | cpu_abort(cpu_single_env, "System reset"); |
| 329 | } |
| 330 | } |
| 331 | break; |
| 332 | case 0xd10: /* System Control. */ |
| 333 | case 0xd14: /* Configuration Control. */ |
| 334 | /* TODO: Implement control registers. */ |
| 335 | goto bad_reg; |
| 336 | case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ |
| 337 | { |
| 338 | int irq; |
| 339 | irq = offset - 0xd14; |
| 340 | s->gic->priority1[irq++][0] = value & 0xff; |
| 341 | s->gic->priority1[irq++][0] = (value >> 8) & 0xff; |
| 342 | s->gic->priority1[irq++][0] = (value >> 16) & 0xff; |
| 343 | s->gic->priority1[irq][0] = (value >> 24) & 0xff; |
| 344 | gic_update(s->gic); |
| 345 | } |
| 346 | break; |
| 347 | case 0xd24: /* System Handler Control. */ |
| 348 | /* TODO: Real hardware allows you to set/clear the active bits |
| 349 | under some circumstances. We don't implement this. */ |
| 350 | s->gic->irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
| 351 | s->gic->irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
| 352 | s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; |
| 353 | break; |
| 354 | case 0xd28: /* Configurable Fault Status. */ |
| 355 | case 0xd2c: /* Hard Fault Status. */ |
| 356 | case 0xd30: /* Debug Fault Status. */ |
| 357 | case 0xd34: /* Mem Manage Address. */ |
| 358 | case 0xd38: /* Bus Fault Address. */ |
| 359 | case 0xd3c: /* Aux Fault Status. */ |
| 360 | goto bad_reg; |
| 361 | default: |
| 362 | bad_reg: |
| 363 | cpu_abort(cpu_single_env, "NVIC: Bad write offset 0x%x\n", offset); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | static void nvic_save(QEMUFile *f, void *opaque) |
| 368 | { |
| 369 | nvic_state *s = (nvic_state *)opaque; |
| 370 | |
| 371 | qemu_put_be32(f, s->systick.control); |
| 372 | qemu_put_be32(f, s->systick.reload); |
| 373 | qemu_put_be64(f, s->systick.tick); |
| 374 | qemu_put_timer(f, s->systick.timer); |
| 375 | } |
| 376 | |
| 377 | static int nvic_load(QEMUFile *f, void *opaque, int version_id) |
| 378 | { |
| 379 | nvic_state *s = (nvic_state *)opaque; |
| 380 | |
| 381 | if (version_id != 1) |
| 382 | return -EINVAL; |
| 383 | |
| 384 | s->systick.control = qemu_get_be32(f); |
| 385 | s->systick.reload = qemu_get_be32(f); |
| 386 | s->systick.tick = qemu_get_be64(f); |
| 387 | qemu_get_timer(f, s->systick.timer); |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | qemu_irq *armv7m_nvic_init(CPUState *env) |
| 393 | { |
| 394 | nvic_state *s; |
| 395 | qemu_irq *parent; |
| 396 | |
| 397 | parent = arm_pic_init_cpu(env); |
| 398 | s = (nvic_state *)qemu_mallocz(sizeof(nvic_state)); |
| 399 | s->gic = gic_init(0xe000e000, &parent[ARM_PIC_CPU_IRQ]); |
| 400 | s->gic->nvic = s; |
| 401 | s->systick.timer = qemu_new_timer(vm_clock, systick_timer_tick, s); |
| 402 | if (env->v7m.nvic) |
| 403 | cpu_abort(env, "CPU can only have one NVIC\n"); |
| 404 | env->v7m.nvic = s; |
| 405 | register_savevm("armv7m_nvic", -1, 1, nvic_save, nvic_load, s); |
| 406 | return s->gic->in; |
| 407 | } |