Add basic SVD support to SkMatrix. Allows you to pull out the x- and y-scale factors, sandwiched by two rotations.

R=reed@google.com

Author: jvanverth@google.com

Review URL: https://chromiumcodereview.appspot.com/19569007

git-svn-id: http://skia.googlecode.com/svn/trunk@10322 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
index 13ec7ae..488bff7 100644
--- a/src/core/SkMatrix.cpp
+++ b/src/core/SkMatrix.cpp
@@ -1966,3 +1966,86 @@
     dst.round(&idst);
     return isrc == idst;
 }
+
+bool SkDecomposeUpper2x2(const SkMatrix& matrix,
+                         SkScalar* rotation0, 
+                         SkScalar* xScale, SkScalar* yScale,
+                         SkScalar* rotation1) {
+
+    // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
+    // Note: he uses row vectors, so we have to do some swapping of terms
+    SkScalar A = matrix[SkMatrix::kMScaleX];
+    SkScalar B = matrix[SkMatrix::kMSkewX];
+    SkScalar C = matrix[SkMatrix::kMSkewY];
+    SkScalar D = matrix[SkMatrix::kMScaleY];
+
+    SkScalar E = SK_ScalarHalf*(A + D);
+    SkScalar F = SK_ScalarHalf*(A - D);
+    SkScalar G = SK_ScalarHalf*(C + B);
+    SkScalar H = SK_ScalarHalf*(C - B);
+
+    SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
+    SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
+
+    SkScalar xs, ys, r0, r1;
+
+    // can't have zero yScale, must be degenerate
+    if (SkScalarNearlyEqual(sqrt0, sqrt1)) {
+        return false;
+    }
+    xs = sqrt0 + sqrt1;
+    ys = sqrt0 - sqrt1;
+
+    // uniformly scaled rotation
+    if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
+        SkASSERT(!SkScalarNearlyZero(E));
+        r0 = SkScalarATan2(H, E);
+        r1 = 0;
+    // uniformly scaled reflection
+    } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
+        SkASSERT(!SkScalarNearlyZero(F));
+        r0 = -SkScalarATan2(G, F);
+        r1 = 0;
+    } else {
+        SkASSERT(!SkScalarNearlyZero(E));
+        SkASSERT(!SkScalarNearlyZero(F));
+
+        SkScalar arctan0 = SkScalarATan2(H, E);
+        SkScalar arctan1 = SkScalarATan2(G, F);
+        r0 = SK_ScalarHalf*(arctan0 - arctan1);
+        r1 = SK_ScalarHalf*(arctan0 + arctan1);
+        
+        // simplify the results
+        const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
+        if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
+            SkScalar tmp = xs;
+            xs = ys;
+            ys = tmp;
+
+            r1 += r0;
+            r0 = 0;
+        } else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
+            SkScalar tmp = xs;
+            xs = ys;
+            ys = tmp;
+
+            r0 += r1;
+            r1 = 0;
+        }
+    }
+
+    if (NULL != xScale) {
+        *xScale = xs;
+    }
+    if (NULL != yScale) {
+        *yScale = ys;
+    }
+    if (NULL != rotation0) {
+        *rotation0 = r0;
+    }
+    if (NULL != rotation1) {
+        *rotation1 = r1;
+    }
+
+    return true;
+}
diff --git a/src/core/SkMatrixUtils.h b/src/core/SkMatrixUtils.h
index 2074267..ee952b6 100644
--- a/src/core/SkMatrixUtils.h
+++ b/src/core/SkMatrixUtils.h
@@ -40,4 +40,15 @@
     return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp);
 }
 
+/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale, 
+    followed by another rotation. Returns true if successful.
+    If the scale factors are uniform, then rotation1 will be 0.
+    If there is a reflection, yScale will be negative.
+    Returns false if the matrix is degenerate.
+    */
+bool SkDecomposeUpper2x2(const SkMatrix& matrix,
+                         SkScalar* rotation0, 
+                         SkScalar* xScale, SkScalar* yScale, 
+                         SkScalar* rotation1);
+
 #endif
diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
index 5dface7..f57a964 100644
--- a/tests/MatrixTest.cpp
+++ b/tests/MatrixTest.cpp
@@ -8,6 +8,7 @@
 #include "Test.h"
 #include "SkMath.h"
 #include "SkMatrix.h"
+#include "SkMatrixUtils.h"
 #include "SkRandom.h"
 
 static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
@@ -345,6 +346,252 @@
     REPORTER_ASSERT(reporter, mat.isSimilarity());
 }
 
+// For test_matrix_decomposition, below.
+static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, 
+                                         SkScalar tolerance = SK_ScalarNearlyZero) {
+    // from Bruce Dawson
+    SkScalar diff = SkScalarAbs(a - b);
+    if (diff < tolerance) {
+        return true;
+    }
+
+    a = SkScalarAbs(a);
+    b = SkScalarAbs(b);
+    SkScalar largest = (b > a) ? b : a;
+
+    if (diff <= largest*tolerance) {
+        return true;
+    }
+
+    return false;
+}
+
+static void test_matrix_decomposition(skiatest::Reporter* reporter) {
+    SkMatrix mat;
+    SkScalar rotation0, scaleX, scaleY, rotation1;
+
+    const float kRotation0 = 15.5f;
+    const float kRotation1 = -50.f;
+    const float kScale0 = 5000.f;
+    const float kScale1 = 0.001f;
+
+    // identity
+    mat.reset();
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+    // make sure it doesn't crash if we pass in NULLs
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
+
+    // rotation only
+    mat.setRotate(kRotation0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // uniform scale only
+    mat.setScale(kScale0, kScale0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // anisotropic scale only
+    mat.setScale(kScale1, kScale0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // rotation then uniform scale
+    mat.setRotate(kRotation1);
+    mat.postScale(kScale0, kScale0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // uniform scale then rotation
+    mat.setScale(kScale0, kScale0);
+    mat.postRotate(kRotation1);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // rotation then uniform scale+reflection
+    mat.setRotate(kRotation0);
+    mat.postScale(kScale1, -kScale1);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // uniform scale+reflection, then rotate
+    mat.setScale(kScale0, -kScale0);
+    mat.postRotate(kRotation1);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // rotation then anisotropic scale
+    mat.setRotate(kRotation1);
+    mat.postScale(kScale1, kScale0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // anisotropic scale then rotation
+    mat.setScale(kScale1, kScale0);
+    mat.postRotate(kRotation0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
+
+    // rotation, uniform scale, then different rotation
+    mat.setRotate(kRotation1);
+    mat.postScale(kScale0, kScale0);
+    mat.postRotate(kRotation0);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
+                                                  SkDegreesToRadians(kRotation0 + kRotation1)));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
+    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+
+    // rotation, anisotropic scale, then different rotation
+    mat.setRotate(kRotation0);
+    mat.postScale(kScale1, kScale0);
+    mat.postRotate(kRotation1);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    // Because of the shear/skew we won't get the same results, so we need to multiply it out.
+    // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
+    // calculation (in setRotate()), which adds error, so this just computes the matrix elements
+    // directly.
+    SkScalar c0;
+    SkScalar s0 = SkScalarSinCos(rotation0, &c0);
+    SkScalar c1;
+    SkScalar s1 = SkScalarSinCos(rotation1, &c1);
+    // We do a relative check here because large scale factors cause problems with an absolute check
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+                                                           scaleX*c0*c1 - scaleY*s0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+                                                           -scaleX*s0*c1 - scaleY*c0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+                                                           scaleX*c0*s1 + scaleY*s0*c1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+                                                           -scaleX*s0*s1 + scaleY*c0*c1));
+
+    // try some random matrices
+    SkMWCRandom rand;
+    for (int m = 0; m < 1000; ++m) {
+        SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+        SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
+        SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
+        SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+        mat.setRotate(rot0);
+        mat.postScale(sx, sy);
+        mat.postRotate(rot1);
+
+        if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
+            SkScalar c0;
+            SkScalar s0 = SkScalarSinCos(rotation0, &c0);
+            SkScalar c1;
+            SkScalar s1 = SkScalarSinCos(rotation1, &c1);
+            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+                                                                   scaleX*c0*c1 - scaleY*s0*s1));
+            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], 
+                                                                   -scaleX*s0*c1 - scaleY*c0*s1));
+            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], 
+                                                                   scaleX*c0*s1 + scaleY*s0*c1));
+            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], 
+                                                                   -scaleX*s0*s1 + scaleY*c0*c1));
+        } else {
+            // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
+            SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
+                               mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
+            REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
+        }
+    }
+
+    // translation shouldn't affect this
+    mat.postTranslate(-1000.f, 1000.f);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    s0 = SkScalarSinCos(rotation0, &c0);
+    s1 = SkScalarSinCos(rotation1, &c1);
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+                                                           scaleX*c0*c1 - scaleY*s0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+                                                           -scaleX*s0*c1 - scaleY*c0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+                                                           scaleX*c0*s1 + scaleY*s0*c1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+                                                           -scaleX*s0*s1 + scaleY*c0*c1));
+
+    // perspective shouldn't affect this
+    mat[SkMatrix::kMPersp0] = 12.0;
+    mat[SkMatrix::kMPersp1] = 4.0;
+    mat[SkMatrix::kMPersp2] = 1872.0;
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    s0 = SkScalarSinCos(rotation0, &c0);
+    s1 = SkScalarSinCos(rotation1, &c1);
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+                                                           scaleX*c0*c1 - scaleY*s0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+                                                           -scaleX*s0*c1 - scaleY*c0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+                                                           scaleX*c0*s1 + scaleY*s0*c1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+                                                           -scaleX*s0*s1 + scaleY*c0*c1));
+
+    // rotation, anisotropic scale + reflection, then different rotation
+    mat.setRotate(kRotation0);
+    mat.postScale(-kScale1, kScale0);
+    mat.postRotate(kRotation1);
+    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    s0 = SkScalarSinCos(rotation0, &c0);
+    s1 = SkScalarSinCos(rotation1, &c1);
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+                                                           scaleX*c0*c1 - scaleY*s0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+                                                           -scaleX*s0*c1 - scaleY*c0*s1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+                                                           scaleX*c0*s1 + scaleY*s0*c1));
+    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+                                                           -scaleX*s0*s1 + scaleY*c0*c1));
+
+    // degenerate matrices
+    // mostly zero entries
+    mat.reset();
+    mat[SkMatrix::kMScaleX] = 0.f;
+    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    mat.reset();
+    mat[SkMatrix::kMScaleY] = 0.f;
+    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+    mat.reset();
+    // linearly dependent entries
+    mat[SkMatrix::kMScaleX] = 1.f;
+    mat[SkMatrix::kMSkewX] = 2.f;
+    mat[SkMatrix::kMSkewY] = 4.f;
+    mat[SkMatrix::kMScaleY] = 8.f;
+    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+}
+
 static void TestMatrix(skiatest::Reporter* reporter) {
     SkMatrix    mat, inverse, iden1, iden2;
 
@@ -465,6 +712,7 @@
     test_matrix_max_stretch(reporter);
     test_matrix_is_similarity(reporter);
     test_matrix_recttorect(reporter);
+    test_matrix_decomposition(reporter);
 }
 
 #include "TestClassDef.h"