shape ops work in progress
add quartic solution for intersecting quadratics

git-svn-id: http://skia.googlecode.com/svn/trunk@5541 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/QuarticRoot.cpp b/experimental/Intersection/QuarticRoot.cpp
new file mode 100644
index 0000000..509a4f0
--- /dev/null
+++ b/experimental/Intersection/QuarticRoot.cpp
@@ -0,0 +1,188 @@
+// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+/*
+ *  Roots3And4.c
+ *
+ *  Utility functions to find cubic and quartic roots,
+ *  coefficients are passed like this:
+ *
+ *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
+ *
+ *  The functions return the number of non-complex roots and
+ *  put the values into the s array.
+ *
+ *  Author:         Jochen Schwarze (schwarze@isa.de)
+ *
+ *  Jan 26, 1990    Version for Graphics Gems
+ *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
+ *  	    	    (reported by Mark Podlipec),
+ *  	    	    Old-style function definitions,
+ *  	    	    IsZero() as a macro
+ *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
+ *                  <math.h>, though the functions exist in the library.
+ *                  If large coefficients are used, EQN_EPS should be
+ *                  reduced considerably (e.g. to 1E-30), results will be
+ *                  correct but multiple roots might be reported more
+ *                  than once.
+ */
+
+#include    <math.h>
+#include "CubicUtilities.h"
+#include "QuarticRoot.h"
+
+const double PI = 4 * atan(1);
+
+// unlike quadraticRoots in QuadraticUtilities.cpp, this does not discard
+// real roots <= 0 or >= 1
+static int quadraticRootsX(const double A, const double B, const double C,
+        double s[2]) {
+    if (approximately_zero(A)) {
+        if (approximately_zero(B)) {
+            s[0] = 0;
+            return C == 0;
+        }
+        s[0] = -C / B;
+        return 1;
+    }
+    /* normal form: x^2 + px + q = 0 */
+    const double p = B / (2 * A);
+    const double q = C / A;
+    const double D = p * p - q;
+    if (approximately_zero(D)) {
+        s[0] = -p;
+        return 1;
+    } else if (D < 0) {
+        return 0;
+    } else {
+        assert(D > 0);
+        double sqrt_D = sqrt(D);
+        s[0] = sqrt_D - p;
+        s[1] = -sqrt_D - p;
+        return 2;
+    }
+}
+
+// unlike cubicRoots in CubicUtilities.cpp, this does not discard
+// real roots <= 0 or >= 1
+static int cubicRootsX(const double A, const double B, const double C,
+        const double D, double s[3]) {
+    int num;
+    /* normal form: x^3 + Ax^2 + Bx + C = 0 */
+    const double invA = 1 / A;
+    const double a = B * invA;
+    const double b = C * invA;
+    const double c = D * invA;
+    /*  substitute x = y - a/3 to eliminate quadric term:
+	x^3 +px + q = 0 */
+    const double a2 = a * a;
+    const double Q = (-a2 + b * 3) / 9;
+    const double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
+    /* use Cardano's formula */
+    const double Q3 = Q * Q * Q;
+    const double R2plusQ3 = R * R + Q3;
+    if (approximately_zero(R2plusQ3)) {
+        if (approximately_zero(R)) {/* one triple solution */
+            s[0] = 0;
+            num = 1;
+        } else { /* one single and one double solution */
+            
+            double u = cube_root(-R);
+            s[0] = 2 * u;
+            s[1] = -u;
+            num = 2;
+        }
+    }
+    else if (R2plusQ3 < 0) { /* Casus irreducibilis: three real solutions */
+        const double theta = 1.0/3 * acos(-R / sqrt(-Q3));
+        const double _2RootQ = 2 * sqrt(-Q);
+        s[0] = _2RootQ * cos(theta);
+        s[1] = -_2RootQ * cos(theta + PI / 3);
+        s[2] = -_2RootQ * cos(theta - PI / 3);
+        num = 3;
+    } else { /* one real solution */
+        const double sqrt_D = sqrt(R2plusQ3);
+        const double u = cube_root(sqrt_D - R);
+        const double v = -cube_root(sqrt_D + R);
+        s[0] = u + v;
+        num = 1;
+    }
+    /* resubstitute */
+    const double sub = 1.0/3 * a;
+    for (int i = 0; i < num; ++i) {
+        s[i] -= sub;
+    }
+    return num;
+}
+
+int quarticRoots(const double A, const double B, const double C, const double D,
+        const double E, double s[4]) {
+    if (approximately_zero(A)) {
+        if (approximately_zero(B)) {
+            return quadraticRootsX(C, D, E, s);
+        }
+        return cubicRootsX(B, C, D, E, s);
+    }
+    double  u, v;
+    int num;
+    /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
+    const double invA = 1 / A;
+    const double a = B * invA;
+    const double b = C * invA;
+    const double c = D * invA;
+    const double d = E * invA;
+    /*  substitute x = y - a/4 to eliminate cubic term:
+	x^4 + px^2 + qx + r = 0 */
+    const double a2 = a * a;
+    const double p = -3 * a2 / 8 + b;
+    const double q = a2 * a / 8 - a * b / 2 + c;
+    const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
+    if (approximately_zero(r)) {
+	/* no absolute term: y(y^3 + py + q) = 0 */
+        num = cubicRootsX(1, 0, p, q, s);
+        s[num++] = 0;
+    } else {
+        /* solve the resolvent cubic ... */
+        (void) cubicRootsX(1, -p / 2, -r, r * p / 2 - q * q / 8, s);
+        /* ... and take the one real solution ... */
+        const double z = s[0];
+        /* ... to build two quadric equations */
+        u = z * z - r;
+        v = 2 * z - p;
+        if (approximately_zero(u)) {
+            u = 0;
+        } else if (u > 0) {
+            u = sqrt(u);
+        } else {
+            return 0;
+        }
+        if (approximately_zero(v)) {
+            v = 0;
+        } else if (v > 0) {
+            v = sqrt(v);
+        } else {
+            return 0;
+        }
+        num = quadraticRootsX(1, q < 0 ? -v : v, z - u, s);
+        num += quadraticRootsX(1, q < 0 ? v : -v, z + u, s + num);
+    }
+    // eliminate duplicates
+    int i;
+    for (i = 0; i < num - 1; ++i) {
+        for (int j = i + 1; j < num; ) {
+            if (approximately_equal(s[i], s[j])) {
+                if (j < --num) {
+                    s[j] = s[num];
+                }
+            } else {
+                ++j;
+            }
+        }
+    }
+    /* resubstitute */
+    const double sub = a / 4;
+    for (i = 0; i < num; ++i) {
+        s[i] -= sub;
+    }
+    return num;
+}
+
+