|  | 
 | /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "Test.h" | 
 | #include "SkFloatingPoint.h" | 
 | #include "SkMath.h" | 
 | #include "SkPoint.h" | 
 | #include "SkRandom.h" | 
 | #include "SkColorPriv.h" | 
 |  | 
 | static float float_blend(int src, int dst, float unit) { | 
 |     return dst + (src - dst) * unit; | 
 | } | 
 |  | 
 | static int blend31(int src, int dst, int a31) { | 
 |     return dst + ((src - dst) * a31 * 2114 >> 16); | 
 |     //    return dst + ((src - dst) * a31 * 33 >> 10); | 
 | } | 
 |  | 
 | static int blend31_slow(int src, int dst, int a31) { | 
 |     int prod = src * a31 + (31 - a31) * dst + 16; | 
 |     prod = (prod + (prod >> 5)) >> 5; | 
 |     return prod; | 
 | } | 
 |  | 
 | static int blend31_round(int src, int dst, int a31) { | 
 |     int prod = (src - dst) * a31 + 16; | 
 |     prod = (prod + (prod >> 5)) >> 5; | 
 |     return dst + prod; | 
 | } | 
 |  | 
 | static int blend31_old(int src, int dst, int a31) { | 
 |     a31 += a31 >> 4; | 
 |     return dst + ((src - dst) * a31 >> 5); | 
 | } | 
 |  | 
 | static void test_blend31() { | 
 |     int failed = 0; | 
 |     int death = 0; | 
 |     for (int src = 0; src <= 255; src++) { | 
 |         for (int dst = 0; dst <= 255; dst++) { | 
 |             for (int a = 0; a <= 31; a++) { | 
 | //                int r0 = blend31(src, dst, a); | 
 | //                int r0 = blend31_round(src, dst, a); | 
 | //                int r0 = blend31_old(src, dst, a); | 
 |                 int r0 = blend31_slow(src, dst, a); | 
 |  | 
 |                 float f = float_blend(src, dst, a / 31.f); | 
 |                 int r1 = (int)f; | 
 |                 int r2 = SkScalarRoundToInt(SkFloatToScalar(f)); | 
 |  | 
 |                 if (r0 != r1 && r0 != r2) { | 
 |                     printf("src:%d dst:%d a:%d result:%d float:%g\n", | 
 |                                  src, dst, a, r0, f); | 
 |                     failed += 1; | 
 |                 } | 
 |                 if (r0 > 255) { | 
 |                     death += 1; | 
 |                     printf("death src:%d dst:%d a:%d result:%d float:%g\n", | 
 |                            src, dst, a, r0, f); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     SkDebugf("---- failed %d death %d\n", failed, death); | 
 | } | 
 |  | 
 | static void test_blend(skiatest::Reporter* reporter) { | 
 |     for (int src = 0; src <= 255; src++) { | 
 |         for (int dst = 0; dst <= 255; dst++) { | 
 |             for (int a = 0; a <= 255; a++) { | 
 |                 int r0 = SkAlphaBlend255(src, dst, a); | 
 |                 float f1 = float_blend(src, dst, a / 255.f); | 
 |                 int r1 = SkScalarRoundToInt(SkFloatToScalar(f1)); | 
 |  | 
 |                 if (r0 != r1) { | 
 |                     float diff = sk_float_abs(f1 - r1); | 
 |                     diff = sk_float_abs(diff - 0.5f); | 
 |                     if (diff > (1 / 255.f)) { | 
 | #ifdef SK_DEBUG | 
 |                         SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", | 
 |                                  src, dst, a, r0, f1); | 
 | #endif | 
 |                         REPORTER_ASSERT(reporter, false); | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #if defined(SkLONGLONG) | 
 | static int symmetric_fixmul(int a, int b) { | 
 |     int sa = SkExtractSign(a); | 
 |     int sb = SkExtractSign(b); | 
 |  | 
 |     a = SkApplySign(a, sa); | 
 |     b = SkApplySign(b, sb); | 
 |  | 
 | #if 1 | 
 |     int c = (int)(((SkLONGLONG)a * b) >> 16); | 
 |  | 
 |     return SkApplySign(c, sa ^ sb); | 
 | #else | 
 |     SkLONGLONG ab = (SkLONGLONG)a * b; | 
 |     if (sa ^ sb) { | 
 |         ab = -ab; | 
 |     } | 
 |     return ab >> 16; | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | static void check_length(skiatest::Reporter* reporter, | 
 |                          const SkPoint& p, SkScalar targetLen) { | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |     float x = SkScalarToFloat(p.fX); | 
 |     float y = SkScalarToFloat(p.fY); | 
 |     float len = sk_float_sqrt(x*x + y*y); | 
 |  | 
 |     len /= SkScalarToFloat(targetLen); | 
 |  | 
 |     REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(SK_CAN_USE_FLOAT) | 
 |  | 
 | static float nextFloat(SkRandom& rand) { | 
 |     SkFloatIntUnion data; | 
 |     data.fSignBitInt = rand.nextU(); | 
 |     return data.fFloat; | 
 | } | 
 |  | 
 | /*  returns true if a == b as resulting from (int)x. Since it is undefined | 
 |  what to do if the float exceeds 2^32-1, we check for that explicitly. | 
 |  */ | 
 | static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) { | 
 |     if (!(x == x)) {    // NAN | 
 |         return si == SK_MaxS32 || si == SK_MinS32; | 
 |     } | 
 |     // for out of range, C is undefined, but skia always should return NaN32 | 
 |     if (x > SK_MaxS32) { | 
 |         return si == SK_MaxS32; | 
 |     } | 
 |     if (x < -SK_MaxS32) { | 
 |         return si == SK_MinS32; | 
 |     } | 
 |     return si == ni; | 
 | } | 
 |  | 
 | static void assert_float_equal(skiatest::Reporter* reporter, const char op[], | 
 |                                float x, uint32_t ni, uint32_t si) { | 
 |     if (!equal_float_native_skia(x, ni, si)) { | 
 |         SkString desc; | 
 |         desc.printf("%s float %g bits %x native %x skia %x\n", op, x, ni, si); | 
 |         reporter->reportFailed(desc); | 
 |     } | 
 | } | 
 |  | 
 | static void test_float_cast(skiatest::Reporter* reporter, float x) { | 
 |     int ix = (int)x; | 
 |     int iix = SkFloatToIntCast(x); | 
 |     assert_float_equal(reporter, "cast", x, ix, iix); | 
 | } | 
 |  | 
 | static void test_float_floor(skiatest::Reporter* reporter, float x) { | 
 |     int ix = (int)floor(x); | 
 |     int iix = SkFloatToIntFloor(x); | 
 |     assert_float_equal(reporter, "floor", x, ix, iix); | 
 | } | 
 |  | 
 | static void test_float_round(skiatest::Reporter* reporter, float x) { | 
 |     double xx = x + 0.5;    // need intermediate double to avoid temp loss | 
 |     int ix = (int)floor(xx); | 
 |     int iix = SkFloatToIntRound(x); | 
 |     assert_float_equal(reporter, "round", x, ix, iix); | 
 | } | 
 |  | 
 | static void test_float_ceil(skiatest::Reporter* reporter, float x) { | 
 |     int ix = (int)ceil(x); | 
 |     int iix = SkFloatToIntCeil(x); | 
 |     assert_float_equal(reporter, "ceil", x, ix, iix); | 
 | } | 
 |  | 
 | static void test_float_conversions(skiatest::Reporter* reporter, float x) { | 
 |     test_float_cast(reporter, x); | 
 |     test_float_floor(reporter, x); | 
 |     test_float_round(reporter, x); | 
 |     test_float_ceil(reporter, x); | 
 | } | 
 |  | 
 | static void test_int2float(skiatest::Reporter* reporter, int ival) { | 
 |     float x0 = (float)ival; | 
 |     float x1 = SkIntToFloatCast(ival); | 
 |     float x2 = SkIntToFloatCast_NoOverflowCheck(ival); | 
 |     REPORTER_ASSERT(reporter, x0 == x1); | 
 |     REPORTER_ASSERT(reporter, x0 == x2); | 
 | } | 
 |  | 
 | static void unittest_fastfloat(skiatest::Reporter* reporter) { | 
 |     SkRandom rand; | 
 |     size_t i; | 
 |  | 
 |     static const float gFloats[] = { | 
 |         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, | 
 |         0.000000001f, 1000000000.f,     // doesn't overflow | 
 |         0.0000000001f, 10000000000.f    // does overflow | 
 |     }; | 
 |     for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { | 
 |         test_float_conversions(reporter, gFloats[i]); | 
 |         test_float_conversions(reporter, -gFloats[i]); | 
 |     } | 
 |  | 
 |     for (int outer = 0; outer < 100; outer++) { | 
 |         rand.setSeed(outer); | 
 |         for (i = 0; i < 100000; i++) { | 
 |             float x = nextFloat(rand); | 
 |             test_float_conversions(reporter, x); | 
 |         } | 
 |  | 
 |         test_int2float(reporter, 0); | 
 |         test_int2float(reporter, 1); | 
 |         test_int2float(reporter, -1); | 
 |         for (i = 0; i < 100000; i++) { | 
 |             // for now only test ints that are 24bits or less, since we don't | 
 |             // round (down) large ints the same as IEEE... | 
 |             int ival = rand.nextU() & 0xFFFFFF; | 
 |             test_int2float(reporter, ival); | 
 |             test_int2float(reporter, -ival); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #ifdef SK_SCALAR_IS_FLOAT | 
 | static float make_zero() { | 
 |     return sk_float_sin(0); | 
 | } | 
 | #endif | 
 |  | 
 | static void unittest_isfinite(skiatest::Reporter* reporter) { | 
 | #ifdef SK_SCALAR_IS_FLOAT | 
 |     float nan = sk_float_asin(2); | 
 |     float inf = 1.0 / make_zero(); | 
 |     float big = 3.40282e+038; | 
 |  | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); | 
 | #else | 
 |     SkFixed nan = SK_FixedNaN; | 
 |     SkFixed big = SK_FixedMax; | 
 | #endif | 
 |  | 
 |     REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); | 
 |      | 
 |     REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); | 
 |     REPORTER_ASSERT(reporter,  SkScalarIsFinite(big)); | 
 |     REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big)); | 
 |     REPORTER_ASSERT(reporter,  SkScalarIsFinite(0)); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void test_muldiv255(skiatest::Reporter* reporter) { | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |     for (int a = 0; a <= 255; a++) { | 
 |         for (int b = 0; b <= 255; b++) { | 
 |             int ab = a * b; | 
 |             float s = ab / 255.0f; | 
 |             int round = (int)floorf(s + 0.5f); | 
 |             int trunc = (int)floorf(s); | 
 |  | 
 |             int iround = SkMulDiv255Round(a, b); | 
 |             int itrunc = SkMulDiv255Trunc(a, b); | 
 |  | 
 |             REPORTER_ASSERT(reporter, iround == round); | 
 |             REPORTER_ASSERT(reporter, itrunc == trunc); | 
 |  | 
 |             REPORTER_ASSERT(reporter, itrunc <= iround); | 
 |             REPORTER_ASSERT(reporter, iround <= a); | 
 |             REPORTER_ASSERT(reporter, iround <= b); | 
 |         } | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | static void test_muldiv255ceiling(skiatest::Reporter* reporter) { | 
 |     for (int c = 0; c <= 255; c++) { | 
 |         for (int a = 0; a <= 255; a++) { | 
 |             int product = (c * a + 255); | 
 |             int expected_ceiling = (product + (product >> 8)) >> 8; | 
 |             int webkit_ceiling = (c * a + 254) / 255; | 
 |             REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); | 
 |             int skia_ceiling = SkMulDiv255Ceiling(c, a); | 
 |             REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_copysign(skiatest::Reporter* reporter) { | 
 |     static const int32_t gTriples[] = { | 
 |         // x, y, expected result | 
 |         0, 0, 0, | 
 |         0, 1, 0, | 
 |         0, -1, 0, | 
 |         1, 0, 1, | 
 |         1, 1, 1, | 
 |         1, -1, -1, | 
 |         -1, 0, 1, | 
 |         -1, 1, 1, | 
 |         -1, -1, -1, | 
 |     }; | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { | 
 |         REPORTER_ASSERT(reporter, | 
 |                         SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |         float x = (float)gTriples[i]; | 
 |         float y = (float)gTriples[i+1]; | 
 |         float expected = (float)gTriples[i+2]; | 
 |         REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); | 
 | #endif | 
 |     } | 
 |  | 
 |     SkRandom rand; | 
 |     for (int j = 0; j < 1000; j++) { | 
 |         int ix = rand.nextS(); | 
 |         REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); | 
 |         REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); | 
 |         REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); | 
 |         REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); | 
 |  | 
 |         SkScalar sx = rand.nextSScalar1(); | 
 |         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); | 
 |         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); | 
 |         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); | 
 |         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); | 
 |     } | 
 | } | 
 |  | 
 | static void TestMath(skiatest::Reporter* reporter) { | 
 |     int         i; | 
 |     int32_t     x; | 
 |     SkRandom    rand; | 
 |  | 
 |     // these should assert | 
 | #if 0 | 
 |     SkToS8(128); | 
 |     SkToS8(-129); | 
 |     SkToU8(256); | 
 |     SkToU8(-5); | 
 |  | 
 |     SkToS16(32768); | 
 |     SkToS16(-32769); | 
 |     SkToU16(65536); | 
 |     SkToU16(-5); | 
 |  | 
 |     if (sizeof(size_t) > 4) { | 
 |         SkToS32(4*1024*1024); | 
 |         SkToS32(-4*1024*1024); | 
 |         SkToU32(5*1024*1024); | 
 |         SkToU32(-5); | 
 |     } | 
 | #endif | 
 |  | 
 |     test_muldiv255(reporter); | 
 |     test_muldiv255ceiling(reporter); | 
 |     test_copysign(reporter); | 
 |  | 
 |     { | 
 |         SkScalar x = SK_ScalarNaN; | 
 |         REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); | 
 |     } | 
 |  | 
 |     for (i = 1; i <= 10; i++) { | 
 |         x = SkCubeRootBits(i*i*i, 11); | 
 |         REPORTER_ASSERT(reporter, x == i); | 
 |     } | 
 |  | 
 |     x = SkFixedSqrt(SK_Fixed1); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fixed1); | 
 |     x = SkFixedSqrt(SK_Fixed1/4); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fixed1/2); | 
 |     x = SkFixedSqrt(SK_Fixed1*4); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fixed1*2); | 
 |  | 
 |     x = SkFractSqrt(SK_Fract1); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fract1); | 
 |     x = SkFractSqrt(SK_Fract1/4); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fract1/2); | 
 |     x = SkFractSqrt(SK_Fract1/16); | 
 |     REPORTER_ASSERT(reporter, x == SK_Fract1/4); | 
 |  | 
 |     for (i = 1; i < 100; i++) { | 
 |         x = SkFixedSqrt(SK_Fixed1 * i * i); | 
 |         REPORTER_ASSERT(reporter, x == SK_Fixed1 * i); | 
 |     } | 
 |  | 
 |     for (i = 0; i < 1000; i++) { | 
 |         int value = rand.nextS16(); | 
 |         int max = rand.nextU16(); | 
 |  | 
 |         int clamp = SkClampMax(value, max); | 
 |         int clamp2 = value < 0 ? 0 : (value > max ? max : value); | 
 |         REPORTER_ASSERT(reporter, clamp == clamp2); | 
 |     } | 
 |  | 
 |     for (i = 0; i < 10000; i++) { | 
 |         SkPoint p; | 
 |  | 
 |         p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1); | 
 |         check_length(reporter, p, SK_Scalar1); | 
 |         p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1); | 
 |         check_length(reporter, p, SK_Scalar1); | 
 |     } | 
 |  | 
 |     { | 
 |         SkFixed result = SkFixedDiv(100, 100); | 
 |         REPORTER_ASSERT(reporter, result == SK_Fixed1); | 
 |         result = SkFixedDiv(1, SK_Fixed1); | 
 |         REPORTER_ASSERT(reporter, result == 1); | 
 |     } | 
 |  | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |     unittest_fastfloat(reporter); | 
 |     unittest_isfinite(reporter); | 
 | #endif | 
 |  | 
 | #ifdef SkLONGLONG | 
 |     for (i = 0; i < 10000; i++) { | 
 |         SkFixed numer = rand.nextS(); | 
 |         SkFixed denom = rand.nextS(); | 
 |         SkFixed result = SkFixedDiv(numer, denom); | 
 |         SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom; | 
 |  | 
 |         (void)SkCLZ(numer); | 
 |         (void)SkCLZ(denom); | 
 |  | 
 |         REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); | 
 |         if (check > SK_MaxS32) { | 
 |             check = SK_MaxS32; | 
 |         } else if (check < -SK_MaxS32) { | 
 |             check = SK_MinS32; | 
 |         } | 
 |         REPORTER_ASSERT(reporter, result == (int32_t)check); | 
 |  | 
 |         result = SkFractDiv(numer, denom); | 
 |         check = ((SkLONGLONG)numer << 30) / denom; | 
 |  | 
 |         REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); | 
 |         if (check > SK_MaxS32) { | 
 |             check = SK_MaxS32; | 
 |         } else if (check < -SK_MaxS32) { | 
 |             check = SK_MinS32; | 
 |         } | 
 |         REPORTER_ASSERT(reporter, result == (int32_t)check); | 
 |  | 
 |         // make them <= 2^24, so we don't overflow in fixmul | 
 |         numer = numer << 8 >> 8; | 
 |         denom = denom << 8 >> 8; | 
 |  | 
 |         result = SkFixedMul(numer, denom); | 
 |         SkFixed r2 = symmetric_fixmul(numer, denom); | 
 |         //        SkASSERT(result == r2); | 
 |  | 
 |         result = SkFixedMul(numer, numer); | 
 |         r2 = SkFixedSquare(numer); | 
 |         REPORTER_ASSERT(reporter, result == r2); | 
 |  | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |         if (numer >= 0 && denom >= 0) { | 
 |             SkFixed mean = SkFixedMean(numer, denom); | 
 |             float prod = SkFixedToFloat(numer) * SkFixedToFloat(denom); | 
 |             float fm = sk_float_sqrt(sk_float_abs(prod)); | 
 |             SkFixed mean2 = SkFloatToFixed(fm); | 
 |             int diff = SkAbs32(mean - mean2); | 
 |             REPORTER_ASSERT(reporter, diff <= 1); | 
 |         } | 
 |  | 
 |         { | 
 |             SkFixed mod = SkFixedMod(numer, denom); | 
 |             float n = SkFixedToFloat(numer); | 
 |             float d = SkFixedToFloat(denom); | 
 |             float m = sk_float_mod(n, d); | 
 |             // ensure the same sign | 
 |             REPORTER_ASSERT(reporter, mod == 0 || (mod < 0) == (m < 0)); | 
 |             int diff = SkAbs32(mod - SkFloatToFixed(m)); | 
 |             REPORTER_ASSERT(reporter, (diff >> 7) == 0); | 
 |         } | 
 | #endif | 
 |     } | 
 | #endif | 
 |  | 
 | #ifdef SK_CAN_USE_FLOAT | 
 |     for (i = 0; i < 10000; i++) { | 
 |         SkFract x = rand.nextU() >> 1; | 
 |         double xx = (double)x / SK_Fract1; | 
 |         SkFract xr = SkFractSqrt(x); | 
 |         SkFract check = SkFloatToFract(sqrt(xx)); | 
 |         REPORTER_ASSERT(reporter, xr == check || | 
 |                                   xr == check-1 || | 
 |                                   xr == check+1); | 
 |  | 
 |         xr = SkFixedSqrt(x); | 
 |         xx = (double)x / SK_Fixed1; | 
 |         check = SkFloatToFixed(sqrt(xx)); | 
 |         REPORTER_ASSERT(reporter, xr == check || xr == check-1); | 
 |  | 
 |         xr = SkSqrt32(x); | 
 |         xx = (double)x; | 
 |         check = (int32_t)sqrt(xx); | 
 |         REPORTER_ASSERT(reporter, xr == check || xr == check-1); | 
 |     } | 
 | #endif | 
 |  | 
 | #if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT) | 
 |     { | 
 |         SkFixed s, c; | 
 |         s = SkFixedSinCos(0, &c); | 
 |         REPORTER_ASSERT(reporter, s == 0); | 
 |         REPORTER_ASSERT(reporter, c == SK_Fixed1); | 
 |     } | 
 |  | 
 |     int maxDiff = 0; | 
 |     for (i = 0; i < 1000; i++) { | 
 |         SkFixed rads = rand.nextS() >> 10; | 
 |         double frads = SkFixedToFloat(rads); | 
 |  | 
 |         SkFixed s, c; | 
 |         s = SkScalarSinCos(rads, &c); | 
 |  | 
 |         double fs = sin(frads); | 
 |         double fc = cos(frads); | 
 |  | 
 |         SkFixed is = SkFloatToFixed(fs); | 
 |         SkFixed ic = SkFloatToFixed(fc); | 
 |  | 
 |         maxDiff = SkMax32(maxDiff, SkAbs32(is - s)); | 
 |         maxDiff = SkMax32(maxDiff, SkAbs32(ic - c)); | 
 |     } | 
 |     SkDebugf("SinCos: maximum error = %d\n", maxDiff); | 
 | #endif | 
 |  | 
 | #ifdef SK_SCALAR_IS_FLOAT | 
 |     test_blend(reporter); | 
 | #endif | 
 |  | 
 |     // disable for now | 
 | //    test_blend31(); | 
 | } | 
 |  | 
 | #include "TestClassDef.h" | 
 | DEFINE_TESTCLASS("Math", MathTestClass, TestMath) |