Make GrGLGradientEffect derive directly from GrGLEffect.
Review URL: https://codereview.appspot.com/6784053
git-svn-id: http://skia.googlecode.com/svn/branches/gpu_dev@6163 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/effects/gradients/SkTwoPointConicalGradient.cpp b/src/effects/gradients/SkTwoPointConicalGradient.cpp
index 5305b44..396981f 100644
--- a/src/effects/gradients/SkTwoPointConicalGradient.cpp
+++ b/src/effects/gradients/SkTwoPointConicalGradient.cpp
@@ -326,13 +326,13 @@
const GrEffect&);
virtual ~GrGLConical2Gradient() { }
- virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
- virtual void emitVS(GrGLShaderBuilder* builder,
- const char* vertexCoords) SK_OVERRIDE;
- virtual void emitFS(GrGLShaderBuilder* builder,
- const char* outputColor,
- const char* inputColor,
- const TextureSamplerArray&) SK_OVERRIDE;
+ virtual void emitCode(GrGLShaderBuilder*,
+ const GrEffect&,
+ EffectKey,
+ const char* vertexCoords,
+ const char* outputColor,
+ const char* inputColor,
+ const TextureSamplerArray&) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE;
static EffectKey GenKey(const GrEffect& s, const GrGLCaps& caps);
@@ -465,8 +465,14 @@
fIsDegenerate = data.isDegenerate();
}
-void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* builder) {
- INHERITED::setupVariables(builder);
+void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
+ const GrEffect&,
+ EffectKey,
+ const char* vertexCoords,
+ const char* outputColor,
+ const char* inputColor,
+ const TextureSamplerArray& samplers) {
+ this->emitYCoordUniform(builder);
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
@@ -481,148 +487,146 @@
builder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
&fVSVaryingName, &fFSVaryingName);
}
-}
-void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* builder,
- const char* vertexCoords) {
- SkString* code = &builder->fVSCode;
- SkString p2; // distance between centers
- SkString p3; // start radius
- SkString p5; // difference in radii (r1 - r0)
- builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
- builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
- builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
+ // VS
+ {
+ SkString* code = &builder->fVSCode;
+ SkString p2; // distance between centers
+ SkString p3; // start radius
+ SkString p5; // difference in radii (r1 - r0)
+ builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
+ builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
+ builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
- // For radial gradients without perspective we can pass the linear
- // part of the quadratic as a varying.
- if (!builder->defaultTextureMatrixIsPerspective()) {
- // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
- code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
- fVSVaryingName, p2.c_str(),
- vertexCoords, p3.c_str(), p5.c_str());
- }
-}
-
-void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* builder,
- const char* outputColor,
- const char* inputColor,
- const TextureSamplerArray& samplers) {
- SkString* code = &builder->fFSCode;
-
- SkString cName("c");
- SkString ac4Name("ac4");
- SkString dName("d");
- SkString qName("q");
- SkString r0Name("r0");
- SkString r1Name("r1");
- SkString tName("t");
- SkString p0; // 4a
- SkString p1; // 1/a
- SkString p2; // distance between centers
- SkString p3; // start radius
- SkString p4; // start radius squared
- SkString p5; // difference in radii (r1 - r0)
-
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
- builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
-
- // If we we're able to interpolate the linear component,
- // bVar is the varying; otherwise compute it
- SkString bVar;
- if (!builder->defaultTextureMatrixIsPerspective()) {
- bVar = fFSVaryingName;
- } else {
- bVar = "b";
- code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
- bVar.c_str(), p2.c_str(), builder->defaultTexCoordsName(),
- p3.c_str(), p5.c_str());
+ // For radial gradients without perspective we can pass the linear
+ // part of the quadratic as a varying.
+ if (!builder->defaultTextureMatrixIsPerspective()) {
+ // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
+ code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
+ fVSVaryingName, p2.c_str(),
+ vertexCoords, p3.c_str(), p5.c_str());
+ }
}
- // output will default to transparent black (we simply won't write anything
- // else to it if invalid, instead of discarding or returning prematurely)
- code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
+ // FS
+ {
+ SkString* code = &builder->fFSCode;
- // c = (x^2)+(y^2) - params[4]
- code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
- builder->defaultTexCoordsName(), builder->defaultTexCoordsName(),
- p4.c_str());
+ SkString cName("c");
+ SkString ac4Name("ac4");
+ SkString dName("d");
+ SkString qName("q");
+ SkString r0Name("r0");
+ SkString r1Name("r1");
+ SkString tName("t");
+ SkString p0; // 4a
+ SkString p1; // 1/a
+ SkString p2; // distance between centers
+ SkString p3; // start radius
+ SkString p4; // start radius squared
+ SkString p5; // difference in radii (r1 - r0)
- // Non-degenerate case (quadratic)
- if (!fIsDegenerate) {
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
+ builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
- // ac4 = params[0] * c
- code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
- cName.c_str());
+ // If we we're able to interpolate the linear component,
+ // bVar is the varying; otherwise compute it
+ SkString bVar;
+ if (!builder->defaultTextureMatrixIsPerspective()) {
+ bVar = fFSVaryingName;
+ } else {
+ bVar = "b";
+ code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
+ bVar.c_str(), p2.c_str(), builder->defaultTexCoordsName(),
+ p3.c_str(), p5.c_str());
+ }
- // d = b^2 - ac4
- code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
- bVar.c_str(), bVar.c_str(), ac4Name.c_str());
+ // output will default to transparent black (we simply won't write anything
+ // else to it if invalid, instead of discarding or returning prematurely)
+ code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
- // only proceed if discriminant is >= 0
- code->appendf("\tif (%s >= 0.0) {\n", dName.c_str());
+ // c = (x^2)+(y^2) - params[4]
+ code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
+ builder->defaultTexCoordsName(), builder->defaultTexCoordsName(),
+ p4.c_str());
- // intermediate value we'll use to compute the roots
- // q = -0.5 * (b +/- sqrt(d))
- code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
- " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
- bVar.c_str(), dName.c_str());
+ // Non-degenerate case (quadratic)
+ if (!fIsDegenerate) {
- // compute both roots
- // r0 = q * params[1]
- code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
- qName.c_str(), p1.c_str());
- // r1 = c / q
- code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
- cName.c_str(), qName.c_str());
+ // ac4 = params[0] * c
+ code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
+ cName.c_str());
- // Note: If there are two roots that both generate radius(t) > 0, the
- // Canvas spec says to choose the larger t.
+ // d = b^2 - ac4
+ code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
+ bVar.c_str(), bVar.c_str(), ac4Name.c_str());
- // so we'll look at the larger one first:
- code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
- r0Name.c_str(), r1Name.c_str());
+ // only proceed if discriminant is >= 0
+ code->appendf("\tif (%s >= 0.0) {\n", dName.c_str());
- // if r(t) > 0, then we're done; t will be our x coordinate
- code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
- p5.c_str(), p3.c_str());
+ // intermediate value we'll use to compute the roots
+ // q = -0.5 * (b +/- sqrt(d))
+ code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
+ " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
+ bVar.c_str(), dName.c_str());
- code->appendf("\t\t");
- this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
+ // compute both roots
+ // r0 = q * params[1]
+ code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
+ qName.c_str(), p1.c_str());
+ // r1 = c / q
+ code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
+ cName.c_str(), qName.c_str());
- // otherwise, if r(t) for the larger root was <= 0, try the other root
- code->appendf("\t\t} else {\n");
- code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
- r0Name.c_str(), r1Name.c_str());
+ // Note: If there are two roots that both generate radius(t) > 0, the
+ // Canvas spec says to choose the larger t.
- // if r(t) > 0 for the smaller root, then t will be our x coordinate
- code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
- tName.c_str(), p5.c_str(), p3.c_str());
+ // so we'll look at the larger one first:
+ code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
+ r0Name.c_str(), r1Name.c_str());
- code->appendf("\t\t\t");
- this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
+ // if r(t) > 0, then we're done; t will be our x coordinate
+ code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
+ p5.c_str(), p3.c_str());
- // end if (r(t) > 0) for smaller root
- code->appendf("\t\t\t}\n");
- // end if (r(t) > 0), else, for larger root
- code->appendf("\t\t}\n");
- // end if (discriminant >= 0)
- code->appendf("\t}\n");
- } else {
+ code->appendf("\t\t");
+ this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
- // linear case: t = -c/b
- code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
- cName.c_str(), bVar.c_str());
+ // otherwise, if r(t) for the larger root was <= 0, try the other root
+ code->appendf("\t\t} else {\n");
+ code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
+ r0Name.c_str(), r1Name.c_str());
- // if r(t) > 0, then t will be the x coordinate
- code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
- p5.c_str(), p3.c_str());
- code->appendf("\t");
- this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
- code->appendf("\t}\n");
+ // if r(t) > 0 for the smaller root, then t will be our x coordinate
+ code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
+ tName.c_str(), p5.c_str(), p3.c_str());
+
+ code->appendf("\t\t\t");
+ this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
+
+ // end if (r(t) > 0) for smaller root
+ code->appendf("\t\t\t}\n");
+ // end if (r(t) > 0), else, for larger root
+ code->appendf("\t\t}\n");
+ // end if (discriminant >= 0)
+ code->appendf("\t}\n");
+ } else {
+
+ // linear case: t = -c/b
+ code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
+ cName.c_str(), bVar.c_str());
+
+ // if r(t) > 0, then t will be the x coordinate
+ code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
+ p5.c_str(), p3.c_str());
+ code->appendf("\t");
+ this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
+ code->appendf("\t}\n");
+ }
}
}