blob: 9cd24e9f5349f281c735e6ed32d86b798dc8ec3f [file] [log] [blame]
caryclark@google.com235f56a2012-09-14 14:19:30 +00001// Another approach is to start with the implicit form of one curve and solve
2// (seek implicit coefficients in QuadraticParameter.cpp
3// by substituting in the parametric form of the other.
4// The downside of this approach is that early rejects are difficult to come by.
5// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
6
7
caryclark@google.com73ca6242013-01-17 21:02:47 +00008#include "CubicUtilities.h"
caryclark@google.com235f56a2012-09-14 14:19:30 +00009#include "CurveIntersection.h"
10#include "Intersections.h"
11#include "QuadraticParameterization.h"
12#include "QuarticRoot.h"
13#include "QuadraticUtilities.h"
caryclark@google.com73ca6242013-01-17 21:02:47 +000014#include "TSearch.h"
15
caryclark@google.com235f56a2012-09-14 14:19:30 +000016/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
17 * and given x = at^2 + bt + c (the parameterized form)
18 * y = dt^2 + et + f
skia.committer@gmail.com055c7c22012-09-15 02:01:41 +000019 * then
caryclark@google.com235f56a2012-09-14 14:19:30 +000020 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
21 */
skia.committer@gmail.com15dd3002013-01-18 07:07:28 +000022
caryclark@google.com73ca6242013-01-17 21:02:47 +000023static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4],
caryclark@google.com9f602912013-01-24 21:47:16 +000024 bool oneHint) {
caryclark@google.com235f56a2012-09-14 14:19:30 +000025 double a, b, c;
26 set_abc(&q2[0].x, a, b, c);
27 double d, e, f;
28 set_abc(&q2[0].y, d, e, f);
29 const double t4 = i.x2() * a * a
30 + i.xy() * a * d
31 + i.y2() * d * d;
32 const double t3 = 2 * i.x2() * a * b
33 + i.xy() * (a * e + b * d)
34 + 2 * i.y2() * d * e;
35 const double t2 = i.x2() * (b * b + 2 * a * c)
36 + i.xy() * (c * d + b * e + a * f)
37 + i.y2() * (e * e + 2 * d * f)
38 + i.x() * a
39 + i.y() * d;
40 const double t1 = 2 * i.x2() * b * c
41 + i.xy() * (c * e + b * f)
42 + 2 * i.y2() * e * f
43 + i.x() * b
44 + i.y() * e;
45 const double t0 = i.x2() * c * c
46 + i.xy() * c * f
47 + i.y2() * f * f
48 + i.x() * c
49 + i.y() * f
50 + i.c();
caryclark@google.com9f602912013-01-24 21:47:16 +000051 int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
52 if (rootCount >= 0) {
53 return rootCount;
caryclark@google.com73ca6242013-01-17 21:02:47 +000054 }
caryclark@google.com9f602912013-01-24 21:47:16 +000055 return quarticRootsReal(t4, t3, t2, t1, t0, roots);
caryclark@google.com235f56a2012-09-14 14:19:30 +000056}
57
58static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) {
59 int index;
60 for (index = 0; index < count; ++index) {
61 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
62 continue;
63 }
64 double t = 1 - roots[index];
65 if (approximately_less_than_zero(t)) {
66 t = 0;
67 } else if (approximately_greater_than_one(t)) {
68 t = 1;
69 }
70 i.insertOne(t, side);
71 }
72}
73
caryclark@google.com6aea33f2012-10-09 14:11:58 +000074static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
75// the idea here is to see at minimum do a quick reject by rotating all points
76// to either side of the line formed by connecting the endpoints
77// if the opposite curves points are on the line or on the other side, the
78// curves at most intersect at the endpoints
79 for (int oddMan = 0; oddMan < 3; ++oddMan) {
80 const _Point* endPt[2];
81 for (int opp = 1; opp < 3; ++opp) {
82 int end = oddMan ^ opp;
83 if (end == 3) {
84 end = opp;
85 }
86 endPt[opp - 1] = &q1[end];
87 }
88 double origX = endPt[0]->x;
89 double origY = endPt[0]->y;
90 double adj = endPt[1]->x - origX;
91 double opp = endPt[1]->y - origY;
92 double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
caryclark@google.com73ca6242013-01-17 21:02:47 +000093 if (approximately_zero(sign)) {
94 goto tryNextHalfPlane;
95 }
caryclark@google.com6aea33f2012-10-09 14:11:58 +000096 for (int n = 0; n < 3; ++n) {
97 double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
98 if (test * sign > 0) {
99 goto tryNextHalfPlane;
100 }
101 }
102 for (int i1 = 0; i1 < 3; i1 += 2) {
103 for (int i2 = 0; i2 < 3; i2 += 2) {
104 if (q1[i1] == q2[i2]) {
caryclark@google.comfb51afb2012-10-19 15:54:16 +0000105 i.insert(i1 >> 1, i2 >> 1);
caryclark@google.com6aea33f2012-10-09 14:11:58 +0000106 }
107 }
108 }
109 assert(i.fUsed < 3);
110 return true;
111tryNextHalfPlane:
112 ;
113 }
114 return false;
115}
116
caryclark@google.com73ca6242013-01-17 21:02:47 +0000117// http://www.blackpawn.com/texts/pointinpoly/default.html
118static bool pointInTriangle(const _Point& pt, const _Line* testLines[]) {
119 const _Point& A = (*testLines[0])[0];
120 const _Point& B = (*testLines[1])[0];
121 const _Point& C = (*testLines[2])[0];
122
skia.committer@gmail.com15dd3002013-01-18 07:07:28 +0000123// Compute vectors
caryclark@google.com73ca6242013-01-17 21:02:47 +0000124 _Point v0 = C - A;
125 _Point v1 = B - A;
126 _Point v2 = pt - A;
127
128// Compute dot products
129 double dot00 = v0.dot(v0);
130 double dot01 = v0.dot(v1);
131 double dot02 = v0.dot(v2);
132 double dot11 = v1.dot(v1);
133 double dot12 = v1.dot(v2);
134
135// Compute barycentric coordinates
136 double invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
137 double u = (dot11 * dot02 - dot01 * dot12) * invDenom;
138 double v = (dot00 * dot12 - dot01 * dot02) * invDenom;
139
140// Check if point is in triangle
141 return (u >= 0) && (v >= 0) && (u + v < 1);
142}
143
144static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
145 Intersections& i) {
146 double tMid = (tMin + tMax) / 2;
147 _Point mid;
148 xy_at_t(q2, tMid, mid.x, mid.y);
149 _Line line;
150 line[0] = line[1] = mid;
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000151 _Point dxdy;
152 dxdy_at_t(q2, tMid, dxdy);
153 line[0].x -= dxdy.x;
154 line[0].y -= dxdy.y;
155 line[1].x += dxdy.x;
156 line[1].y += dxdy.y;
caryclark@google.com73ca6242013-01-17 21:02:47 +0000157 Intersections rootTs;
158 int roots = intersect(q1, line, rootTs);
caryclark@google.com9f602912013-01-24 21:47:16 +0000159 if (roots == 2) {
160 return false;
161 }
162 SkASSERT(roots == 1);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000163 _Point pt2;
164 xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
165 if (!pt2.approximatelyEqual(mid)) {
166 return false;
167 }
168 i.add(rootTs.fT[0][0], tMid);
169 return true;
170}
171
172static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
173 double t2s, double t2e, Intersections& i) {
174 Quadratic hull;
175 sub_divide(q1, t1s, t1e, hull);
176 _Line line = {hull[2], hull[0]};
177 const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
178 size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
179 SkTDArray<double> tsFound;
180 for (size_t index = 0; index < testCount; ++index) {
181 Intersections rootTs;
182 int roots = intersect(q2, *testLines[index], rootTs);
183 for (int idx2 = 0; idx2 < roots; ++idx2) {
184 double t = rootTs.fT[0][idx2];
185 if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
186 continue;
187 }
188 *tsFound.append() = rootTs.fT[0][idx2];
189 }
190 }
191 int tCount = tsFound.count();
192 if (!tCount) {
193 return true;
194 }
195 double tMin, tMax;
196 _Point dxy1, dxy2;
197 if (tCount == 1) {
198 tMin = tMax = tsFound[0];
199 } else if (tCount > 1) {
200 QSort<double>(tsFound.begin(), tsFound.end() - 1);
201 tMin = tsFound[0];
202 tMax = tsFound[1];
203 }
204 _Point end;
205 xy_at_t(q2, t2s, end.x, end.y);
206 bool startInTriangle = pointInTriangle(end, testLines);
207 if (startInTriangle) {
208 tMin = t2s;
skia.committer@gmail.com15dd3002013-01-18 07:07:28 +0000209 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000210 xy_at_t(q2, t2e, end.x, end.y);
211 bool endInTriangle = pointInTriangle(end, testLines);
212 if (endInTriangle) {
213 tMax = t2e;
214 }
215 int split = 0;
216 if (tMin != tMax || tCount > 2) {
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000217 dxdy_at_t(q2, tMin, dxy2);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000218 for (int index = 1; index < tCount; ++index) {
219 dxy1 = dxy2;
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000220 dxdy_at_t(q2, tsFound[index], dxy2);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000221 double dot = dxy1.dot(dxy2);
222 if (dot < 0) {
223 split = index - 1;
224 break;
225 }
226 }
skia.committer@gmail.com15dd3002013-01-18 07:07:28 +0000227
caryclark@google.com73ca6242013-01-17 21:02:47 +0000228 }
229 if (split == 0) { // there's one point
230 if (addIntercept(q1, q2, tMin, tMax, i)) {
231 return true;
232 }
233 i.swap();
234 return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i);
235 }
236 // At this point, we have two ranges of t values -- treat each separately at the split
237 bool result;
238 if (addIntercept(q1, q2, tMin, tsFound[split - 1], i)) {
239 result = true;
240 } else {
241 i.swap();
242 result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i);
243 }
244 if (addIntercept(q1, q2, tsFound[split], tMax, i)) {
245 result = true;
246 } else {
247 i.swap();
248 result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i);
249 }
250 return result;
251}
252
253static double flatMeasure(const Quadratic& q) {
caryclark@google.com9f602912013-01-24 21:47:16 +0000254 _Point mid = q[1];
255 mid -= q[0];
256 _Point dxy = q[2];
257 dxy -= q[0];
258 double length = dxy.length(); // OPTIMIZE: get rid of sqrt
259 return fabs(mid.cross(dxy) / length);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000260}
261
262// FIXME ? should this measure both and then use the quad that is the flattest as the line?
263static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
264 double measure = flatMeasure(q1);
265 // OPTIMIZE: (get rid of sqrt) use approximately_zero
266 if (!approximately_zero_sqrt(measure)) {
267 return false;
268 }
269 return isLinearInner(q1, 0, 1, q2, 0, 1, i);
270}
271
caryclark@google.com9f602912013-01-24 21:47:16 +0000272// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
caryclark@google.com73ca6242013-01-17 21:02:47 +0000273static bool relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
274 double m1 = flatMeasure(q1);
275 double m2 = flatMeasure(q2);
caryclark@google.com9f602912013-01-24 21:47:16 +0000276#if SK_DEBUG
277 double min = SkTMin(m1, m2);
278 if (min > 5) {
279 SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
280 }
281#endif
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000282 i.reset();
caryclark@google.com9f602912013-01-24 21:47:16 +0000283 if (m1 < m2) {
caryclark@google.com73ca6242013-01-17 21:02:47 +0000284 isLinearInner(q1, 0, 1, q2, 0, 1, i);
285 return false;
286 } else {
287 isLinearInner(q2, 0, 1, q1, 0, 1, i);
288 return true;
289 }
290}
291
292#if 0
293static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
294 const Quadratic* qs[2] = { &q1, &q2 };
295 // need t values for start and end of unsortable expanse on both curves
296 // try projecting lines parallel to the end points
297 i.fT[0][0] = 0;
298 i.fT[0][1] = 1;
299 int flip = -1; // undecided
300 for (int qIdx = 0; qIdx < 2; qIdx++) {
301 for (int t = 0; t < 2; t++) {
302 _Point dxdy;
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000303 dxdy_at_t(*qs[qIdx], t, dxdy);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000304 _Line perp;
305 perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
306 perp[0].x += dxdy.y;
307 perp[0].y -= dxdy.x;
308 perp[1].x -= dxdy.y;
309 perp[1].y += dxdy.x;
310 Intersections hitData;
311 int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
312 assert(hits <= 1);
313 if (hits) {
314 if (flip < 0) {
315 _Point dxdy2;
caryclark@google.com05c4bad2013-01-19 13:22:39 +0000316 dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000317 double dot = dxdy.dot(dxdy2);
318 flip = dot < 0;
319 i.fT[1][0] = flip;
320 i.fT[1][1] = !flip;
321 }
322 i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
323 }
324 }
325 }
326 i.fUnsortable = true; // failed, probably coincident or near-coincident
327 i.fUsed = 2;
328}
329#endif
330
caryclark@google.com235f56a2012-09-14 14:19:30 +0000331bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
caryclark@google.com6aea33f2012-10-09 14:11:58 +0000332 // if the quads share an end point, check to see if they overlap
333
334 if (onlyEndPtsInCommon(q1, q2, i)) {
caryclark@google.com6aea33f2012-10-09 14:11:58 +0000335 return i.intersected();
336 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000337 if (onlyEndPtsInCommon(q2, q1, i)) {
338 i.swapPts();
339 return i.intersected();
340 }
341 // see if either quad is really a line
342 if (isLinear(q1, q2, i)) {
343 return i.intersected();
344 }
345 if (isLinear(q2, q1, i)) {
346 i.swapPts();
347 return i.intersected();
348 }
caryclark@google.com235f56a2012-09-14 14:19:30 +0000349 QuadImplicitForm i1(q1);
350 QuadImplicitForm i2(q2);
351 if (i1.implicit_match(i2)) {
352 // FIXME: compute T values
353 // compute the intersections of the ends to find the coincident span
354 bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
355 double t;
356 if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
357 i.addCoincident(t, 0);
358 }
359 if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
360 i.addCoincident(t, 1);
361 }
362 useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
363 if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
364 i.addCoincident(0, t);
365 }
366 if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
367 i.addCoincident(1, t);
368 }
369 assert(i.fCoincidentUsed <= 2);
370 return i.fCoincidentUsed > 0;
371 }
372 double roots1[4], roots2[4];
caryclark@google.com73ca6242013-01-17 21:02:47 +0000373 bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
caryclark@google.com9f602912013-01-24 21:47:16 +0000374 int rootCount = findRoots(i2, q1, roots1, useCubic);
caryclark@google.com235f56a2012-09-14 14:19:30 +0000375 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
caryclark@google.com9f602912013-01-24 21:47:16 +0000376 int rootCount2 = findRoots(i1, q2, roots2, useCubic);
caryclark@google.com235f56a2012-09-14 14:19:30 +0000377 addValidRoots(roots1, rootCount, 0, i);
caryclark@google.com73ca6242013-01-17 21:02:47 +0000378 addValidRoots(roots2, rootCount2, 1, i);
caryclark@google.com0b7da432012-10-31 19:00:20 +0000379 if (i.insertBalanced() && i.fUsed <= 1) {
380 if (i.fUsed == 1) {
381 _Point xy1, xy2;
382 xy_at_t(q1, i.fT[0][0], xy1.x, xy1.y);
383 xy_at_t(q2, i.fT[1][0], xy2.x, xy2.y);
384 if (!xy1.approximatelyEqual(xy2)) {
385 --i.fUsed;
386 --i.fUsed2;
387 }
388 }
389 return i.intersected();
390 }
caryclark@google.com235f56a2012-09-14 14:19:30 +0000391 _Point pts[4];
caryclark@google.com0b7da432012-10-31 19:00:20 +0000392 int closest[4];
393 double dist[4];
caryclark@google.comd1688742012-09-18 20:08:37 +0000394 int index, ndex2;
395 for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
396 xy_at_t(q2, i.fT[1][ndex2], pts[ndex2].x, pts[ndex2].y);
caryclark@google.com235f56a2012-09-14 14:19:30 +0000397 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000398 bool foundSomething = false;
caryclark@google.com0b7da432012-10-31 19:00:20 +0000399 for (index = 0; index < i.fUsed; ++index) {
caryclark@google.com235f56a2012-09-14 14:19:30 +0000400 _Point xy;
401 xy_at_t(q1, i.fT[0][index], xy.x, xy.y);
caryclark@google.com0b7da432012-10-31 19:00:20 +0000402 dist[index] = DBL_MAX;
403 closest[index] = -1;
caryclark@google.comd1688742012-09-18 20:08:37 +0000404 for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
caryclark@google.com0b7da432012-10-31 19:00:20 +0000405 if (!pts[ndex2].approximatelyEqual(xy)) {
406 continue;
407 }
408 double dx = pts[ndex2].x - xy.x;
409 double dy = pts[ndex2].y - xy.y;
410 double distance = dx * dx + dy * dy;
411 if (dist[index] <= distance) {
412 continue;
413 }
414 for (int outer = 0; outer < index; ++outer) {
415 if (closest[outer] != ndex2) {
416 continue;
417 }
418 if (dist[outer] < distance) {
419 goto next;
420 }
421 closest[outer] = -1;
422 }
423 dist[index] = distance;
424 closest[index] = ndex2;
caryclark@google.com73ca6242013-01-17 21:02:47 +0000425 foundSomething = true;
caryclark@google.com0b7da432012-10-31 19:00:20 +0000426 next:
427 ;
428 }
429 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000430 if (i.fUsed && i.fUsed2 && !foundSomething) {
431 if (relaxedIsLinear(q1, q2, i)) {
432 i.swapPts();
caryclark@google.com235f56a2012-09-14 14:19:30 +0000433 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000434 return i.intersected();
caryclark@google.com235f56a2012-09-14 14:19:30 +0000435 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000436 double roots1Copy[4], roots2Copy[4];
437 memcpy(roots1Copy, i.fT[0], i.fUsed * sizeof(double));
438 memcpy(roots2Copy, i.fT[1], i.fUsed2 * sizeof(double));
439 int used = 0;
440 do {
441 double lowest = DBL_MAX;
442 int lowestIndex = -1;
443 for (index = 0; index < i.fUsed; ++index) {
444 if (closest[index] < 0) {
caryclark@google.com235f56a2012-09-14 14:19:30 +0000445 continue;
caryclark@google.com73ca6242013-01-17 21:02:47 +0000446 }
447 if (roots1Copy[index] < lowest) {
448 lowestIndex = index;
449 lowest = roots1Copy[index];
450 }
caryclark@google.com235f56a2012-09-14 14:19:30 +0000451 }
caryclark@google.com73ca6242013-01-17 21:02:47 +0000452 if (lowestIndex < 0) {
453 break;
454 }
455 i.fT[0][used] = roots1Copy[lowestIndex];
456 i.fT[1][used] = roots2Copy[closest[lowestIndex]];
457 closest[lowestIndex] = -1;
458 } while (++used < i.fUsed);
459 i.fUsed = i.fUsed2 = used;
460 i.fFlip = false;
caryclark@google.com235f56a2012-09-14 14:19:30 +0000461 return i.intersected();
462}