Upgrade to V8 3.3

Merge V8 at 3.3.10.39

Simple merge required updates to makefiles only.

Bug: 5688872
Change-Id: I14703f418235f5ce6013b9b3e2e502407a9f6dfd
diff --git a/src/mips/simulator-mips.cc b/src/mips/simulator-mips.cc
index 50ad7a1..68fb7ce 100644
--- a/src/mips/simulator-mips.cc
+++ b/src/mips/simulator-mips.cc
@@ -1,4 +1,4 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
+// Copyright 2011 the V8 project authors. All rights reserved.
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
 // met:
@@ -35,7 +35,7 @@
 
 #include "disasm.h"
 #include "assembler.h"
-#include "globals.h"    // Need the BitCast
+#include "globals.h"    // Need the BitCast.
 #include "mips/constants-mips.h"
 #include "mips/simulator-mips.h"
 
@@ -46,7 +46,7 @@
 namespace v8 {
 namespace internal {
 
-// Utils functions
+// Utils functions.
 bool HaveSameSign(int32_t a, int32_t b) {
   return ((a ^ b) >= 0);
 }
@@ -139,7 +139,7 @@
 }
 
 
-#else  // ndef GENERATED_CODE_COVERAGE
+#else  // GENERATED_CODE_COVERAGE
 
 #define UNSUPPORTED() printf("Unsupported instruction.\n");
 
@@ -263,15 +263,15 @@
 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
 
   PrintF("\n");
-  // at, v0, a0
+  // at, v0, a0.
   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          REG_INFO(1), REG_INFO(2), REG_INFO(4));
-  // v1, a1
+  // v1, a1.
   PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          "", REG_INFO(3), REG_INFO(5));
-  // a2
+  // a2.
   PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
-  // a3
+  // a3.
   PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
   PrintF("\n");
   // t0-t7, s0-s7
@@ -280,16 +280,16 @@
            REG_INFO(8+i), REG_INFO(16+i));
   }
   PrintF("\n");
-  // t8, k0, LO
+  // t8, k0, LO.
   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          REG_INFO(24), REG_INFO(26), REG_INFO(32));
-  // t9, k1, HI
+  // t9, k1, HI.
   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          REG_INFO(25), REG_INFO(27), REG_INFO(33));
-  // sp, fp, gp
+  // sp, fp, gp.
   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          REG_INFO(29), REG_INFO(30), REG_INFO(28));
-  // pc
+  // pc.
   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
          REG_INFO(31), REG_INFO(34));
 
@@ -307,7 +307,7 @@
   PrintAllRegs();
 
   PrintF("\n\n");
-  // f0, f1, f2, ... f31
+  // f0, f1, f2, ... f31.
   PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
   PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
   PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
@@ -345,7 +345,7 @@
   char arg2[ARG_SIZE + 1];
   char* argv[3] = { cmd, arg1, arg2 };
 
-  // make sure to have a proper terminating character if reaching the limit
+  // Make sure to have a proper terminating character if reaching the limit.
   cmd[COMMAND_SIZE] = 0;
   arg1[ARG_SIZE] = 0;
   arg2[ARG_SIZE] = 0;
@@ -358,10 +358,10 @@
     if (last_pc != sim_->get_pc()) {
       disasm::NameConverter converter;
       disasm::Disassembler dasm(converter);
-      // use a reasonably large buffer
+      // Use a reasonably large buffer.
       v8::internal::EmbeddedVector<char, 256> buffer;
       dasm.InstructionDecode(buffer,
-                             reinterpret_cast<byte_*>(sim_->get_pc()));
+                             reinterpret_cast<byte*>(sim_->get_pc()));
       PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
       last_pc = sim_->get_pc();
     }
@@ -475,7 +475,7 @@
 
         if (strcmp(cmd, "stack") == 0) {
           cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
-        } else {  // "mem"
+        } else {  // Command "mem".
           int32_t value;
           if (!GetValue(arg1, &value)) {
             PrintF("%s unrecognized\n", arg1);
@@ -496,35 +496,62 @@
         end = cur + words;
 
         while (cur < end) {
-          PrintF("  0x%08x:  0x%08x %10d\n",
+          PrintF("  0x%08x:  0x%08x %10d",
                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
+          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
+          int value = *cur;
+          Heap* current_heap = v8::internal::Isolate::Current()->heap();
+          if (current_heap->Contains(obj) || ((value & 1) == 0)) {
+            PrintF(" (");
+            if ((value & 1) == 0) {
+              PrintF("smi %d", value / 2);
+            } else {
+              obj->ShortPrint();
+            }
+            PrintF(")");
+          }
+          PrintF("\n");
           cur++;
         }
 
-      } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) {
+      } else if ((strcmp(cmd, "disasm") == 0) ||
+                 (strcmp(cmd, "dpc") == 0) ||
+                 (strcmp(cmd, "di") == 0)) {
         disasm::NameConverter converter;
         disasm::Disassembler dasm(converter);
-        // use a reasonably large buffer
+        // Use a reasonably large buffer.
         v8::internal::EmbeddedVector<char, 256> buffer;
 
-        byte_* cur = NULL;
-        byte_* end = NULL;
+        byte* cur = NULL;
+        byte* end = NULL;
 
         if (argc == 1) {
-          cur = reinterpret_cast<byte_*>(sim_->get_pc());
+          cur = reinterpret_cast<byte*>(sim_->get_pc());
           end = cur + (10 * Instruction::kInstrSize);
         } else if (argc == 2) {
-          int32_t value;
-          if (GetValue(arg1, &value)) {
-            cur = reinterpret_cast<byte_*>(value);
-            // no length parameter passed, assume 10 instructions
-            end = cur + (10 * Instruction::kInstrSize);
+          int regnum = Registers::Number(arg1);
+          if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
+            // The argument is an address or a register name.
+            int32_t value;
+            if (GetValue(arg1, &value)) {
+              cur = reinterpret_cast<byte*>(value);
+              // Disassemble 10 instructions at <arg1>.
+              end = cur + (10 * Instruction::kInstrSize);
+            }
+          } else {
+            // The argument is the number of instructions.
+            int32_t value;
+            if (GetValue(arg1, &value)) {
+              cur = reinterpret_cast<byte*>(sim_->get_pc());
+              // Disassemble <arg1> instructions.
+              end = cur + (value * Instruction::kInstrSize);
+            }
           }
         } else {
           int32_t value1;
           int32_t value2;
           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
-            cur = reinterpret_cast<byte_*>(value1);
+            cur = reinterpret_cast<byte*>(value1);
             end = cur + (value2 * Instruction::kInstrSize);
           }
         }
@@ -561,25 +588,25 @@
       } else if (strcmp(cmd, "unstop") == 0) {
           PrintF("Unstop command not implemented on MIPS.");
       } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
-        // Print registers and disassemble
+        // Print registers and disassemble.
         PrintAllRegs();
         PrintF("\n");
 
         disasm::NameConverter converter;
         disasm::Disassembler dasm(converter);
-        // use a reasonably large buffer
+        // Use a reasonably large buffer.
         v8::internal::EmbeddedVector<char, 256> buffer;
 
-        byte_* cur = NULL;
-        byte_* end = NULL;
+        byte* cur = NULL;
+        byte* end = NULL;
 
         if (argc == 1) {
-          cur = reinterpret_cast<byte_*>(sim_->get_pc());
+          cur = reinterpret_cast<byte*>(sim_->get_pc());
           end = cur + (10 * Instruction::kInstrSize);
         } else if (argc == 2) {
           int32_t value;
           if (GetValue(arg1, &value)) {
-            cur = reinterpret_cast<byte_*>(value);
+            cur = reinterpret_cast<byte*>(value);
             // no length parameter passed, assume 10 instructions
             end = cur + (10 * Instruction::kInstrSize);
           }
@@ -587,7 +614,7 @@
           int32_t value1;
           int32_t value2;
           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
-            cur = reinterpret_cast<byte_*>(value1);
+            cur = reinterpret_cast<byte*>(value1);
             end = cur + (value2 * Instruction::kInstrSize);
           }
         }
@@ -615,8 +642,10 @@
         PrintF("flags\n");
         PrintF("  print flags\n");
         PrintF("disasm [<instructions>]\n");
-        PrintF("disasm [[<address>] <instructions>]\n");
-        PrintF("  disassemble code, default is 10 instructions from pc\n");
+        PrintF("disasm [<address/register>]\n");
+        PrintF("disasm [[<address/register>] <instructions>]\n");
+        PrintF("  disassemble code, default is 10 instructions\n");
+        PrintF("  from pc (alias 'di')\n");
         PrintF("gdb\n");
         PrintF("  enter gdb\n");
         PrintF("break <address>\n");
@@ -689,8 +718,8 @@
 
 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
   v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
-                                                         ICacheHash(page),
-                                                         true);
+                                                        ICacheHash(page),
+                                                        true);
   if (entry->value == NULL) {
     CachePage* new_page = new CachePage();
     entry->value = new_page;
@@ -738,23 +767,23 @@
 }
 
 
-void Simulator::Initialize() {
-  if (Isolate::Current()->simulator_initialized()) return;
-  Isolate::Current()->set_simulator_initialized(true);
-  ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference);
+void Simulator::Initialize(Isolate* isolate) {
+  if (isolate->simulator_initialized()) return;
+  isolate->set_simulator_initialized(true);
+  ::v8::internal::ExternalReference::set_redirector(isolate,
+                                                    &RedirectExternalReference);
 }
 
 
-Simulator::Simulator() : isolate_(Isolate::Current()) {
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
   i_cache_ = isolate_->simulator_i_cache();
   if (i_cache_ == NULL) {
     i_cache_ = new v8::internal::HashMap(&ICacheMatch);
     isolate_->set_simulator_i_cache(i_cache_);
   }
-  Initialize();
+  Initialize(isolate);
   // Setup simulator support first. Some of this information is needed to
   // setup the architecture state.
-  stack_size_ = 1 * 1024*1024;  // allocate 1MB for stack
   stack_ = reinterpret_cast<char*>(malloc(stack_size_));
   pc_modified_ = false;
   icount_ = 0;
@@ -852,17 +881,14 @@
 // Get the active Simulator for the current thread.
 Simulator* Simulator::current(Isolate* isolate) {
   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
-      Isolate::CurrentPerIsolateThreadData();
-  if (isolate_data == NULL) {
-    Isolate::EnterDefaultIsolate();
-    isolate_data = Isolate::CurrentPerIsolateThreadData();
-  }
+       isolate->FindOrAllocatePerThreadDataForThisThread();
+  ASSERT(isolate_data != NULL);
   ASSERT(isolate_data != NULL);
 
   Simulator* sim = isolate_data->simulator();
   if (sim == NULL) {
     // TODO(146): delete the simulator object when a thread/isolate goes away.
-    sim = new Simulator();
+    sim = new Simulator(isolate);
     isolate_data->set_simulator(sim);
   }
   return sim;
@@ -877,7 +903,7 @@
     pc_modified_ = true;
   }
 
-  // zero register always hold 0.
+  // Zero register always holds 0.
   registers_[reg] = (reg == 0) ? 0 : value;
 }
 
@@ -937,6 +963,87 @@
 }
 
 
+// For use in calls that take two double values, constructed either
+// from a0-a3 or f12 and f14.
+void Simulator::GetFpArgs(double* x, double* y) {
+  if (!IsMipsSoftFloatABI) {
+    *x = get_fpu_register_double(12);
+    *y = get_fpu_register_double(14);
+  } else {
+    // We use a char buffer to get around the strict-aliasing rules which
+    // otherwise allow the compiler to optimize away the copy.
+    char buffer[sizeof(*x)];
+    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
+
+    // Registers a0 and a1 -> x.
+    reg_buffer[0] = get_register(a0);
+    reg_buffer[1] = get_register(a1);
+    memcpy(x, buffer, sizeof(buffer));
+
+    // Registers a2 and a3 -> y.
+    reg_buffer[0] = get_register(a2);
+    reg_buffer[1] = get_register(a3);
+    memcpy(y, buffer, sizeof(buffer));
+  }
+}
+
+
+// For use in calls that take one double value, constructed either
+// from a0 and a1 or f12.
+void Simulator::GetFpArgs(double* x) {
+  if (!IsMipsSoftFloatABI) {
+    *x = get_fpu_register_double(12);
+  } else {
+    // We use a char buffer to get around the strict-aliasing rules which
+    // otherwise allow the compiler to optimize away the copy.
+    char buffer[sizeof(*x)];
+    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
+    // Registers a0 and a1 -> x.
+    reg_buffer[0] = get_register(a0);
+    reg_buffer[1] = get_register(a1);
+    memcpy(x, buffer, sizeof(buffer));
+  }
+}
+
+
+// For use in calls that take one double value constructed either
+// from a0 and a1 or f12 and one integer value.
+void Simulator::GetFpArgs(double* x, int32_t* y) {
+  if (!IsMipsSoftFloatABI) {
+    *x = get_fpu_register_double(12);
+    *y = get_register(a2);
+  } else {
+    // We use a char buffer to get around the strict-aliasing rules which
+    // otherwise allow the compiler to optimize away the copy.
+    char buffer[sizeof(*x)];
+    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
+    // Registers 0 and 1 -> x.
+    reg_buffer[0] = get_register(a0);
+    reg_buffer[1] = get_register(a1);
+    memcpy(x, buffer, sizeof(buffer));
+
+    // Register 2 -> y.
+    reg_buffer[0] = get_register(a2);
+    memcpy(y, buffer, sizeof(*y));
+  }
+}
+
+
+// The return value is either in v0/v1 or f0.
+void Simulator::SetFpResult(const double& result) {
+  if (!IsMipsSoftFloatABI) {
+    set_fpu_register_double(0, result);
+  } else {
+    char buffer[2 * sizeof(registers_[0])];
+    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
+    memcpy(buffer, &result, sizeof(buffer));
+    // Copy result to v0 and v1.
+    set_register(v0, reg_buffer[0]);
+    set_register(v1, reg_buffer[1]);
+  }
+}
+
+
 // Helper functions for setting and testing the FCSR register's bits.
 void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
   if (value) {
@@ -995,7 +1102,7 @@
 
 int Simulator::ReadW(int32_t addr, Instruction* instr) {
   if (addr >=0 && addr < 0x400) {
-    // this has to be a NULL-dereference
+    // This has to be a NULL-dereference, drop into debugger.
     MipsDebugger dbg(this);
     dbg.Debug();
   }
@@ -1003,8 +1110,9 @@
     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
     return *ptr;
   }
-  PrintF("Unaligned read at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   MipsDebugger dbg(this);
   dbg.Debug();
   return 0;
@@ -1013,7 +1121,7 @@
 
 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
   if (addr >= 0 && addr < 0x400) {
-    // this has to be a NULL-dereference
+    // This has to be a NULL-dereference, drop into debugger.
     MipsDebugger dbg(this);
     dbg.Debug();
   }
@@ -1022,8 +1130,9 @@
     *ptr = value;
     return;
   }
-  PrintF("Unaligned write at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   MipsDebugger dbg(this);
   dbg.Debug();
 }
@@ -1034,8 +1143,9 @@
     double* ptr = reinterpret_cast<double*>(addr);
     return *ptr;
   }
-  PrintF("Unaligned (double) read at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
   return 0;
 }
@@ -1047,8 +1157,9 @@
     *ptr = value;
     return;
   }
-  PrintF("Unaligned (double) write at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
 }
 
@@ -1058,8 +1169,9 @@
     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
     return *ptr;
   }
-  PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
   return 0;
 }
@@ -1070,8 +1182,9 @@
     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
     return *ptr;
   }
-  PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
   return 0;
 }
@@ -1083,8 +1196,9 @@
     *ptr = value;
     return;
   }
-  PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
 }
 
@@ -1095,8 +1209,9 @@
     *ptr = value;
     return;
   }
-  PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr,
-      reinterpret_cast<void*>(instr));
+  PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
+         addr,
+         reinterpret_cast<intptr_t>(instr));
   OS::Abort();
 }
 
@@ -1158,6 +1273,14 @@
                                          int32_t arg2,
                                          int32_t arg3);
 
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
+
+// This signature supports direct call to accessor getter callback.
+typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectGetterCall)(int32_t arg0,
+                                                                  int32_t arg1);
+
 // Software interrupt instructions are used by the simulator to call into the
 // C-based V8 runtime. They are also used for debugging with simulator.
 void Simulator::SoftwareInterrupt(Instruction* instr) {
@@ -1169,11 +1292,6 @@
 
   // We first check if we met a call_rt_redirected.
   if (instr->InstructionBits() == rtCallRedirInstr) {
-    // Check if stack is aligned. Error if not aligned is reported below to
-    // include information on the function called.
-    bool stack_aligned =
-        (get_register(sp)
-         & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
     Redirection* redirection = Redirection::FromSwiInstruction(instr);
     int32_t arg0 = get_register(a0);
     int32_t arg1 = get_register(a1);
@@ -1188,58 +1306,122 @@
     // stack check here.
     int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
     int32_t* stack = reinterpret_cast<int32_t*>(stack_);
-    if (stack_pointer >= stack && stack_pointer < stack + stack_size_) {
-      arg4 = stack_pointer[0];
-      arg5 = stack_pointer[1];
+    if (stack_pointer >= stack && stack_pointer < stack + stack_size_ - 5) {
+      // Args 4 and 5 are on the stack after the reserved space for args 0..3.
+      arg4 = stack_pointer[4];
+      arg5 = stack_pointer[5];
     }
+
+    bool fp_call =
+         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
+         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
+         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
+         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
+
+    if (!IsMipsSoftFloatABI) {
+      // With the hard floating point calling convention, double
+      // arguments are passed in FPU registers. Fetch the arguments
+      // from there and call the builtin using soft floating point
+      // convention.
+      switch (redirection->type()) {
+      case ExternalReference::BUILTIN_FP_FP_CALL:
+      case ExternalReference::BUILTIN_COMPARE_CALL:
+        arg0 = get_fpu_register(f12);
+        arg1 = get_fpu_register(f13);
+        arg2 = get_fpu_register(f14);
+        arg3 = get_fpu_register(f15);
+        break;
+      case ExternalReference::BUILTIN_FP_CALL:
+        arg0 = get_fpu_register(f12);
+        arg1 = get_fpu_register(f13);
+        break;
+      case ExternalReference::BUILTIN_FP_INT_CALL:
+        arg0 = get_fpu_register(f12);
+        arg1 = get_fpu_register(f13);
+        arg2 = get_register(a2);
+        break;
+      default:
+        break;
+      }
+    }
+
     // This is dodgy but it works because the C entry stubs are never moved.
     // See comment in codegen-arm.cc and bug 1242173.
     int32_t saved_ra = get_register(ra);
 
     intptr_t external =
-        reinterpret_cast<int32_t>(redirection->external_function());
+          reinterpret_cast<intptr_t>(redirection->external_function());
 
     // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
     // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
     // simulator. Soft-float has additional abstraction of ExternalReference,
-    // to support serialization. Finally, when simulated on x86 host, the
-    // x86 softfloat routines are used, and this Redirection infrastructure
-    // lets simulated-mips make calls into x86 C code.
-    // When doing that, the 'double' return type must be handled differently
-    // than the usual int64_t return. The data is returned in different
-    // registers and cannot be cast from one type to the other. However, the
-    // calling arguments are passed the same way in both cases.
-    if (redirection->type() == ExternalReference::FP_RETURN_CALL) {
+    // to support serialization.
+    if (fp_call) {
       SimulatorRuntimeFPCall target =
-          reinterpret_cast<SimulatorRuntimeFPCall>(external);
-      if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
-        PrintF("Call to host function at %p with args %08x:%08x %08x:%08x",
-               FUNCTION_ADDR(target), arg0, arg1, arg2, arg3);
-        if (!stack_aligned) {
-          PrintF(" with unaligned stack %08x\n", get_register(sp));
+                  reinterpret_cast<SimulatorRuntimeFPCall>(external);
+      if (::v8::internal::FLAG_trace_sim) {
+        double dval0, dval1;
+        int32_t ival;
+        switch (redirection->type()) {
+          case ExternalReference::BUILTIN_FP_FP_CALL:
+          case ExternalReference::BUILTIN_COMPARE_CALL:
+            GetFpArgs(&dval0, &dval1);
+            PrintF("Call to host function at %p with args %f, %f",
+                FUNCTION_ADDR(target), dval0, dval1);
+            break;
+          case ExternalReference::BUILTIN_FP_CALL:
+            GetFpArgs(&dval0);
+            PrintF("Call to host function at %p with arg %f",
+                FUNCTION_ADDR(target), dval1);
+            break;
+          case ExternalReference::BUILTIN_FP_INT_CALL:
+            GetFpArgs(&dval0, &ival);
+            PrintF("Call to host function at %p with args %f, %d",
+                FUNCTION_ADDR(target), dval0, ival);
+            break;
+          default:
+            UNREACHABLE();
+            break;
         }
-        PrintF("\n");
       }
       double result = target(arg0, arg1, arg2, arg3);
-      // fp result -> registers v0 and v1.
-      int32_t gpreg_pair[2];
-      memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
-      set_register(v0, gpreg_pair[0]);
-      set_register(v1, gpreg_pair[1]);
+      if (redirection->type() != ExternalReference::BUILTIN_COMPARE_CALL) {
+          SetFpResult(result);
+      } else {
+        int32_t gpreg_pair[2];
+        memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
+        set_register(v0, gpreg_pair[0]);
+        set_register(v1, gpreg_pair[1]);
+      }
     } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
-      PrintF("Mips does not yet support ExternalReference::DIRECT_API_CALL\n");
-      ASSERT(redirection->type() != ExternalReference::DIRECT_API_CALL);
+      // See DirectCEntryStub::GenerateCall for explanation of register usage.
+      SimulatorRuntimeDirectApiCall target =
+                  reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+      if (::v8::internal::FLAG_trace_sim) {
+        PrintF("Call to host function at %p args %08x\n",
+               FUNCTION_ADDR(target), arg1);
+      }
+      v8::Handle<v8::Value> result = target(arg1);
+      *(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
+      set_register(v0, arg0);
     } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
-      PrintF("Mips does not support ExternalReference::DIRECT_GETTER_CALL\n");
-      ASSERT(redirection->type() != ExternalReference::DIRECT_GETTER_CALL);
+      // See DirectCEntryStub::GenerateCall for explanation of register usage.
+      SimulatorRuntimeDirectGetterCall target =
+                  reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+      if (::v8::internal::FLAG_trace_sim) {
+        PrintF("Call to host function at %p args %08x %08x\n",
+               FUNCTION_ADDR(target), arg1, arg2);
+      }
+      v8::Handle<v8::Value> result = target(arg1, arg2);
+      *(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
+      set_register(v0, arg0);
     } else {
-      // Builtin call.
-      ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL);
       SimulatorRuntimeCall target =
-          reinterpret_cast<SimulatorRuntimeCall>(external);
-      if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+                  reinterpret_cast<SimulatorRuntimeCall>(external);
+      if (::v8::internal::FLAG_trace_sim) {
         PrintF(
-            "Call to host function at %p: %08x, %08x, %08x, %08x, %08x, %08x",
+            "Call to host function at %p "
+            "args %08x, %08x, %08x, %08x, %08x, %08x\n",
             FUNCTION_ADDR(target),
             arg0,
             arg1,
@@ -1247,12 +1429,7 @@
             arg3,
             arg4,
             arg5);
-        if (!stack_aligned) {
-          PrintF(" with unaligned stack %08x\n", get_register(sp));
-        }
-        PrintF("\n");
       }
-
       int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
       set_register(v0, static_cast<int32_t>(result));
       set_register(v1, static_cast<int32_t>(result >> 32));
@@ -1263,8 +1440,8 @@
     set_register(ra, saved_ra);
     set_pc(get_register(ra));
 
-  } else if (func == BREAK && code >= 0 && code < 16) {
-    // First 16 break_ codes interpreted as debug markers.
+  } else if (func == BREAK && code >= 0 && code < 32) {
+    // First 32 break_ codes interpreted as debug-markers/watchpoints.
     MipsDebugger dbg(this);
     ++break_count_;
     PrintF("\n---- break %d marker: %3d  (instr count: %8d) ----------"
@@ -1314,9 +1491,9 @@
   const int32_t  fs_reg = instr->FsValue();
 
 
-  // ---------- Configuration
+  // ---------- Configuration.
   switch (op) {
-    case COP1:    // Coprocessor instructions
+    case COP1:    // Coprocessor instructions.
       switch (instr->RsFieldRaw()) {
         case BC1:   // Handled in DecodeTypeImmed, should never come here.
           UNREACHABLE();
@@ -1365,7 +1542,7 @@
           } else {
             // Logical right-rotate of a word by a fixed number of bits. This
             // is special case of SRL instruction, added in MIPS32 Release 2.
-            // RS field is equal to 00001
+            // RS field is equal to 00001.
             alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
           }
           break;
@@ -1383,7 +1560,7 @@
           } else {
             // Logical right-rotate of a word by a variable number of bits.
             // This is special case od SRLV instruction, added in MIPS32
-            // Release 2. SA field is equal to 00001
+            // Release 2. SA field is equal to 00001.
             alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
           }
           break;
@@ -1402,10 +1579,6 @@
         case MULTU:
           u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
           break;
-        case DIV:
-        case DIVU:
-            exceptions[kDivideByZero] = rt == 0;
-          break;
         case ADD:
           if (HaveSameSign(rs, rt)) {
             if (rs > 0) {
@@ -1450,7 +1623,7 @@
         case SLTU:
           alu_out = rs_u < rt_u ? 1 : 0;
           break;
-        // Break and trap instructions
+        // Break and trap instructions.
         case BREAK:
 
           do_interrupt = true;
@@ -1478,6 +1651,10 @@
         case MOVCI:
           // No action taken on decode.
           break;
+        case DIV:
+        case DIVU:
+          // div and divu never raise exceptions.
+          break;
         default:
           UNREACHABLE();
       };
@@ -1497,7 +1674,7 @@
     case SPECIAL3:
       switch (instr->FunctionFieldRaw()) {
         case INS: {   // Mips32r2 instruction.
-          // Interpret Rd field as 5-bit msb of insert.
+          // Interpret rd field as 5-bit msb of insert.
           uint16_t msb = rd_reg;
           // Interpret sa field as 5-bit lsb of insert.
           uint16_t lsb = sa;
@@ -1507,7 +1684,7 @@
           break;
         }
         case EXT: {   // Mips32r2 instruction.
-          // Interpret Rd field as 5-bit msb of extract.
+          // Interpret rd field as 5-bit msb of extract.
           uint16_t msb = rd_reg;
           // Interpret sa field as 5-bit lsb of extract.
           uint16_t lsb = sa;
@@ -1543,7 +1720,7 @@
   int64_t  i64hilo = 0;
   uint64_t u64hilo = 0;
 
-  // ALU output
+  // ALU output.
   // It should not be used as is. Instructions using it should always
   // initialize it first.
   int32_t alu_out = 0x12345678;
@@ -1551,7 +1728,7 @@
   // For break and trap instructions.
   bool do_interrupt = false;
 
-  // For jr and jalr
+  // For jr and jalr.
   // Get current pc.
   int32_t current_pc = get_pc();
   // Next pc
@@ -1568,11 +1745,11 @@
   // ---------- Raise exceptions triggered.
   SignalExceptions();
 
-  // ---------- Execution
+  // ---------- Execution.
   switch (op) {
     case COP1:
       switch (instr->RsFieldRaw()) {
-        case BC1:   // branch on coprocessor condition
+        case BC1:   // Branch on coprocessor condition.
           UNREACHABLE();
           break;
         case CFC1:
@@ -1802,7 +1979,7 @@
           Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
               current_pc+Instruction::kInstrSize);
           BranchDelayInstructionDecode(branch_delay_instr);
-          set_register(31, current_pc + 2* Instruction::kInstrSize);
+          set_register(31, current_pc + 2 * Instruction::kInstrSize);
           set_pc(next_pc);
           pc_modified_ = true;
           break;
@@ -1817,13 +1994,19 @@
           set_register(HI, static_cast<int32_t>(u64hilo >> 32));
           break;
         case DIV:
-          // Divide by zero was checked in the configuration step.
-          set_register(LO, rs / rt);
-          set_register(HI, rs % rt);
+          // Divide by zero was not checked in the configuration step - div and
+          // divu do not raise exceptions. On division by 0, the result will
+          // be UNPREDICTABLE.
+          if (rt != 0) {
+            set_register(LO, rs / rt);
+            set_register(HI, rs % rt);
+          }
           break;
         case DIVU:
-          set_register(LO, rs_u / rt_u);
-          set_register(HI, rs_u % rt_u);
+          if (rt_u != 0) {
+            set_register(LO, rs_u / rt_u);
+            set_register(HI, rs_u % rt_u);
+          }
           break;
         // Break and trap instructions.
         case BREAK:
@@ -1842,9 +2025,9 @@
           if (rt) set_register(rd_reg, rs);
           break;
         case MOVCI: {
-          uint32_t cc = instr->FCccValue();
+          uint32_t cc = instr->FBccValue();
           uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
-          if (instr->Bit(16)) {  // Read Tf bit
+          if (instr->Bit(16)) {  // Read Tf bit.
             if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
           } else {
             if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
@@ -1893,17 +2076,17 @@
 }
 
 
-// Type 2: instructions using a 16 bytes immediate. (eg: addi, beq)
+// Type 2: instructions using a 16 bytes immediate. (eg: addi, beq).
 void Simulator::DecodeTypeImmediate(Instruction* instr) {
   // Instruction fields.
   Opcode   op     = instr->OpcodeFieldRaw();
   int32_t  rs     = get_register(instr->RsValue());
   uint32_t rs_u   = static_cast<uint32_t>(rs);
-  int32_t  rt_reg = instr->RtValue();  // destination register
+  int32_t  rt_reg = instr->RtValue();  // Destination register.
   int32_t  rt     = get_register(rt_reg);
   int16_t  imm16  = instr->Imm16Value();
 
-  int32_t  ft_reg = instr->FtValue();  // destination register
+  int32_t  ft_reg = instr->FtValue();  // Destination register.
 
   // Zero extended immediate.
   uint32_t  oe_imm16 = 0xffff & imm16;
@@ -1927,10 +2110,10 @@
 
   // Used for memory instructions.
   int32_t addr = 0x0;
-  // Value to be written in memory
+  // Value to be written in memory.
   uint32_t mem_value = 0x0;
 
-  // ---------- Configuration (and execution for REGIMM)
+  // ---------- Configuration (and execution for REGIMM).
   switch (op) {
     // ------------- COP1. Coprocessor instructions.
     case COP1:
@@ -1941,7 +2124,7 @@
           cc_value = test_fcsr_bit(fcsr_cc);
           do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
           execute_branch_delay_instruction = true;
-          // Set next_pc
+          // Set next_pc.
           if (do_branch) {
             next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
           } else {
@@ -1952,7 +2135,7 @@
           UNREACHABLE();
       };
       break;
-    // ------------- REGIMM class
+    // ------------- REGIMM class.
     case REGIMM:
       switch (instr->RtFieldRaw()) {
         case BLTZ:
@@ -1977,7 +2160,7 @@
         case BGEZAL:
           // Branch instructions common part.
           execute_branch_delay_instruction = true;
-          // Set next_pc
+          // Set next_pc.
           if (do_branch) {
             next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
             if (instr->IsLinkingInstruction()) {
@@ -1989,8 +2172,8 @@
         default:
           break;
         };
-    break;  // case REGIMM
-    // ------------- Branch instructions
+    break;  // case REGIMM.
+    // ------------- Branch instructions.
     // When comparing to zero, the encoding of rt field is always 0, so we don't
     // need to replace rt with zero.
     case BEQ:
@@ -2005,7 +2188,7 @@
     case BGTZ:
       do_branch = rs  > 0;
       break;
-    // ------------- Arithmetic instructions
+    // ------------- Arithmetic instructions.
     case ADDI:
       if (HaveSameSign(rs, se_imm16)) {
         if (rs > 0) {
@@ -2038,7 +2221,7 @@
     case LUI:
         alu_out = (oe_imm16 << 16);
       break;
-    // ------------- Memory instructions
+    // ------------- Memory instructions.
     case LB:
       addr = rs + se_imm16;
       alu_out = ReadB(addr);
@@ -2048,7 +2231,7 @@
       alu_out = ReadH(addr, instr);
       break;
     case LWL: {
-      // al_offset is an offset of the effective address within an aligned word
+      // al_offset is offset of the effective address within an aligned word.
       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
       uint8_t byte_shift = kPointerAlignmentMask - al_offset;
       uint32_t mask = (1 << byte_shift * 8) - 1;
@@ -2071,7 +2254,7 @@
       alu_out = ReadHU(addr, instr);
       break;
     case LWR: {
-      // al_offset is an offset of the effective address within an aligned word
+      // al_offset is offset of the effective address within an aligned word.
       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
       uint8_t byte_shift = kPointerAlignmentMask - al_offset;
       uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
@@ -2126,16 +2309,16 @@
   // ---------- Raise exceptions triggered.
   SignalExceptions();
 
-  // ---------- Execution
+  // ---------- Execution.
   switch (op) {
-    // ------------- Branch instructions
+    // ------------- Branch instructions.
     case BEQ:
     case BNE:
     case BLEZ:
     case BGTZ:
       // Branch instructions common part.
       execute_branch_delay_instruction = true;
-      // Set next_pc
+      // Set next_pc.
       if (do_branch) {
         next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
         if (instr->IsLinkingInstruction()) {
@@ -2145,7 +2328,7 @@
         next_pc = current_pc + 2 * Instruction::kInstrSize;
       }
       break;
-    // ------------- Arithmetic instructions
+    // ------------- Arithmetic instructions.
     case ADDI:
     case ADDIU:
     case SLTI:
@@ -2156,7 +2339,7 @@
     case LUI:
       set_register(rt_reg, alu_out);
       break;
-    // ------------- Memory instructions
+    // ------------- Memory instructions.
     case LB:
     case LH:
     case LWL:
@@ -2216,26 +2399,26 @@
 }
 
 
-// Type 3: instructions using a 26 bytes immediate. (eg: j, jal)
+// Type 3: instructions using a 26 bytes immediate. (eg: j, jal).
 void Simulator::DecodeTypeJump(Instruction* instr) {
   // Get current pc.
   int32_t current_pc = get_pc();
   // Get unchanged bits of pc.
   int32_t pc_high_bits = current_pc & 0xf0000000;
-  // Next pc
+  // Next pc.
   int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
 
-  // Execute branch delay slot
+  // Execute branch delay slot.
   // We don't check for end_sim_pc. First it should not be met as the current pc
   // is valid. Secondly a jump should always execute its branch delay slot.
   Instruction* branch_delay_instr =
-    reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
+      reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
   BranchDelayInstructionDecode(branch_delay_instr);
 
   // Update pc and ra if necessary.
   // Do this after the branch delay execution.
   if (instr->IsLinkingInstruction()) {
-    set_register(31, current_pc + 2* Instruction::kInstrSize);
+    set_register(31, current_pc + 2 * Instruction::kInstrSize);
   }
   set_pc(next_pc);
   pc_modified_ = true;
@@ -2251,11 +2434,11 @@
   if (::v8::internal::FLAG_trace_sim) {
     disasm::NameConverter converter;
     disasm::Disassembler dasm(converter);
-    // use a reasonably large buffer
+    // Use a reasonably large buffer.
     v8::internal::EmbeddedVector<char, 256> buffer;
-    dasm.InstructionDecode(buffer, reinterpret_cast<byte_*>(instr));
+    dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
     PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr),
-           buffer.start());
+        buffer.start());
   }
 
   switch (instr->InstructionType()) {
@@ -2310,10 +2493,10 @@
 }
 
 
-int32_t Simulator::Call(byte_* entry, int argument_count, ...) {
+int32_t Simulator::Call(byte* entry, int argument_count, ...) {
   va_list parameters;
   va_start(parameters, argument_count);
-  // Setup arguments
+  // Setup arguments.
 
   // First four arguments passed in registers.
   ASSERT(argument_count >= 4);
@@ -2338,7 +2521,7 @@
   va_end(parameters);
   set_register(sp, entry_stack);
 
-  // Prepare to execute the code at entry
+  // Prepare to execute the code at entry.
   set_register(pc, reinterpret_cast<int32_t>(entry));
   // Put down marker for end of simulation. The simulator will stop simulation
   // when the PC reaches this value. By saving the "end simulation" value into
@@ -2374,7 +2557,7 @@
   set_register(gp, callee_saved_value);
   set_register(fp, callee_saved_value);
 
-  // Start the simulation
+  // Start the simulation.
   Execute();
 
   // Check that the callee-saved registers have been preserved.