Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/ast/ast.cc b/src/ast/ast.cc
new file mode 100644
index 0000000..69e7351
--- /dev/null
+++ b/src/ast/ast.cc
@@ -0,0 +1,826 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/ast/ast.h"
+
+#include <cmath>  // For isfinite.
+#include "src/ast/scopes.h"
+#include "src/builtins.h"
+#include "src/code-stubs.h"
+#include "src/contexts.h"
+#include "src/conversions.h"
+#include "src/hashmap.h"
+#include "src/parsing/parser.h"
+#include "src/property.h"
+#include "src/property-details.h"
+#include "src/string-stream.h"
+#include "src/type-info.h"
+
+namespace v8 {
+namespace internal {
+
+// ----------------------------------------------------------------------------
+// All the Accept member functions for each syntax tree node type.
+
+#define DECL_ACCEPT(type)                                       \
+  void type::Accept(AstVisitor* v) { v->Visit##type(this); }
+AST_NODE_LIST(DECL_ACCEPT)
+#undef DECL_ACCEPT
+
+
+// ----------------------------------------------------------------------------
+// Implementation of other node functionality.
+
+
+bool Expression::IsSmiLiteral() const {
+  return IsLiteral() && AsLiteral()->value()->IsSmi();
+}
+
+
+bool Expression::IsStringLiteral() const {
+  return IsLiteral() && AsLiteral()->value()->IsString();
+}
+
+
+bool Expression::IsNullLiteral() const {
+  return IsLiteral() && AsLiteral()->value()->IsNull();
+}
+
+
+bool Expression::IsUndefinedLiteral(Isolate* isolate) const {
+  const VariableProxy* var_proxy = AsVariableProxy();
+  if (var_proxy == NULL) return false;
+  Variable* var = var_proxy->var();
+  // The global identifier "undefined" is immutable. Everything
+  // else could be reassigned.
+  return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
+         var_proxy->raw_name()->IsOneByteEqualTo("undefined");
+}
+
+
+bool Expression::IsValidReferenceExpressionOrThis() const {
+  return IsValidReferenceExpression() ||
+         (IsVariableProxy() && AsVariableProxy()->is_this());
+}
+
+
+VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
+                             int end_position)
+    : Expression(zone, start_position),
+      bit_field_(IsThisField::encode(var->is_this()) |
+                 IsAssignedField::encode(false) |
+                 IsResolvedField::encode(false)),
+      raw_name_(var->raw_name()),
+      end_position_(end_position) {
+  BindTo(var);
+}
+
+
+VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
+                             Variable::Kind variable_kind, int start_position,
+                             int end_position)
+    : Expression(zone, start_position),
+      bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
+                 IsAssignedField::encode(false) |
+                 IsResolvedField::encode(false)),
+      raw_name_(name),
+      end_position_(end_position) {}
+
+
+void VariableProxy::BindTo(Variable* var) {
+  DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
+  set_var(var);
+  set_is_resolved();
+  var->set_is_used();
+}
+
+
+void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
+                                              FeedbackVectorSpec* spec,
+                                              FeedbackVectorSlotCache* cache) {
+  if (UsesVariableFeedbackSlot()) {
+    // VariableProxies that point to the same Variable within a function can
+    // make their loads from the same IC slot.
+    if (var()->IsUnallocated()) {
+      ZoneHashMap::Entry* entry = cache->Get(var());
+      if (entry != NULL) {
+        variable_feedback_slot_ = FeedbackVectorSlot(
+            static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
+        return;
+      }
+    }
+    variable_feedback_slot_ = spec->AddLoadICSlot();
+    if (var()->IsUnallocated()) {
+      cache->Put(var(), variable_feedback_slot_);
+    }
+  }
+}
+
+
+static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
+                              FeedbackVectorSlot* out_slot) {
+  Property* property = expr->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(property);
+  if ((assign_type == VARIABLE &&
+       expr->AsVariableProxy()->var()->IsUnallocated()) ||
+      assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
+    // TODO(ishell): consider using ICSlotCache for variables here.
+    FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
+                                      ? FeedbackVectorSlotKind::KEYED_STORE_IC
+                                      : FeedbackVectorSlotKind::STORE_IC;
+    *out_slot = spec->AddSlot(kind);
+  }
+}
+
+
+void ForEachStatement::AssignFeedbackVectorSlots(
+    Isolate* isolate, FeedbackVectorSpec* spec,
+    FeedbackVectorSlotCache* cache) {
+  // TODO(adamk): for-of statements do not make use of this feedback slot.
+  // The each_slot_ should be specific to ForInStatement, and this work moved
+  // there.
+  if (IsForOfStatement()) return;
+  AssignVectorSlots(each(), spec, &each_slot_);
+}
+
+
+Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
+                       Expression* value, int pos)
+    : Expression(zone, pos),
+      bit_field_(
+          IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
+          StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
+      target_(target),
+      value_(value),
+      binary_operation_(NULL) {}
+
+
+void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
+                                           FeedbackVectorSpec* spec,
+                                           FeedbackVectorSlotCache* cache) {
+  AssignVectorSlots(target(), spec, &slot_);
+}
+
+
+void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
+                                               FeedbackVectorSpec* spec,
+                                               FeedbackVectorSlotCache* cache) {
+  AssignVectorSlots(expression(), spec, &slot_);
+}
+
+
+Token::Value Assignment::binary_op() const {
+  switch (op()) {
+    case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
+    case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
+    case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
+    case Token::ASSIGN_SHL: return Token::SHL;
+    case Token::ASSIGN_SAR: return Token::SAR;
+    case Token::ASSIGN_SHR: return Token::SHR;
+    case Token::ASSIGN_ADD: return Token::ADD;
+    case Token::ASSIGN_SUB: return Token::SUB;
+    case Token::ASSIGN_MUL: return Token::MUL;
+    case Token::ASSIGN_DIV: return Token::DIV;
+    case Token::ASSIGN_MOD: return Token::MOD;
+    default: UNREACHABLE();
+  }
+  return Token::ILLEGAL;
+}
+
+
+bool FunctionLiteral::AllowsLazyCompilation() {
+  return scope()->AllowsLazyCompilation();
+}
+
+
+bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
+  return scope()->AllowsLazyCompilationWithoutContext();
+}
+
+
+int FunctionLiteral::start_position() const {
+  return scope()->start_position();
+}
+
+
+int FunctionLiteral::end_position() const {
+  return scope()->end_position();
+}
+
+
+LanguageMode FunctionLiteral::language_mode() const {
+  return scope()->language_mode();
+}
+
+
+bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
+  if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
+  DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
+  return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
+}
+
+
+ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
+                                             Kind kind, bool is_static,
+                                             bool is_computed_name)
+    : key_(key),
+      value_(value),
+      kind_(kind),
+      emit_store_(true),
+      is_static_(is_static),
+      is_computed_name_(is_computed_name) {}
+
+
+ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
+                                             Expression* key, Expression* value,
+                                             bool is_static,
+                                             bool is_computed_name)
+    : key_(key),
+      value_(value),
+      emit_store_(true),
+      is_static_(is_static),
+      is_computed_name_(is_computed_name) {
+  if (!is_computed_name &&
+      key->AsLiteral()->raw_value()->EqualsString(
+          ast_value_factory->proto_string())) {
+    kind_ = PROTOTYPE;
+  } else if (value_->AsMaterializedLiteral() != NULL) {
+    kind_ = MATERIALIZED_LITERAL;
+  } else if (value_->IsLiteral()) {
+    kind_ = CONSTANT;
+  } else {
+    kind_ = COMPUTED;
+  }
+}
+
+
+void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
+                                             FeedbackVectorSpec* spec,
+                                             FeedbackVectorSlotCache* cache) {
+  // This logic that computes the number of slots needed for vector store
+  // ICs must mirror FullCodeGenerator::VisitClassLiteral.
+  if (NeedsProxySlot()) {
+    slot_ = spec->AddStoreICSlot();
+  }
+
+  for (int i = 0; i < properties()->length(); i++) {
+    ObjectLiteral::Property* property = properties()->at(i);
+    Expression* value = property->value();
+    if (FunctionLiteral::NeedsHomeObject(value)) {
+      property->SetSlot(spec->AddStoreICSlot());
+    }
+  }
+}
+
+
+bool ObjectLiteral::Property::IsCompileTimeValue() {
+  return kind_ == CONSTANT ||
+      (kind_ == MATERIALIZED_LITERAL &&
+       CompileTimeValue::IsCompileTimeValue(value_));
+}
+
+
+void ObjectLiteral::Property::set_emit_store(bool emit_store) {
+  emit_store_ = emit_store;
+}
+
+
+bool ObjectLiteral::Property::emit_store() {
+  return emit_store_;
+}
+
+
+void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
+                                              FeedbackVectorSpec* spec,
+                                              FeedbackVectorSlotCache* cache) {
+  // This logic that computes the number of slots needed for vector store
+  // ics must mirror FullCodeGenerator::VisitObjectLiteral.
+  int property_index = 0;
+  for (; property_index < properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = properties()->at(property_index);
+    if (property->is_computed_name()) break;
+    if (property->IsCompileTimeValue()) continue;
+
+    Literal* key = property->key()->AsLiteral();
+    Expression* value = property->value();
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+        UNREACHABLE();
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+      // Fall through.
+      case ObjectLiteral::Property::COMPUTED:
+        // It is safe to use [[Put]] here because the boilerplate already
+        // contains computed properties with an uninitialized value.
+        if (key->value()->IsInternalizedString()) {
+          if (property->emit_store()) {
+            property->SetSlot(spec->AddStoreICSlot());
+            if (FunctionLiteral::NeedsHomeObject(value)) {
+              property->SetSlot(spec->AddStoreICSlot(), 1);
+            }
+          }
+          break;
+        }
+        if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
+          property->SetSlot(spec->AddStoreICSlot());
+        }
+        break;
+      case ObjectLiteral::Property::PROTOTYPE:
+        break;
+      case ObjectLiteral::Property::GETTER:
+        if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
+          property->SetSlot(spec->AddStoreICSlot());
+        }
+        break;
+      case ObjectLiteral::Property::SETTER:
+        if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
+          property->SetSlot(spec->AddStoreICSlot());
+        }
+        break;
+    }
+  }
+
+  for (; property_index < properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = properties()->at(property_index);
+
+    Expression* value = property->value();
+    if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
+      if (FunctionLiteral::NeedsHomeObject(value)) {
+        property->SetSlot(spec->AddStoreICSlot());
+      }
+    }
+  }
+}
+
+
+void ObjectLiteral::CalculateEmitStore(Zone* zone) {
+  const auto GETTER = ObjectLiteral::Property::GETTER;
+  const auto SETTER = ObjectLiteral::Property::SETTER;
+
+  ZoneAllocationPolicy allocator(zone);
+
+  ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
+                    allocator);
+  for (int i = properties()->length() - 1; i >= 0; i--) {
+    ObjectLiteral::Property* property = properties()->at(i);
+    if (property->is_computed_name()) continue;
+    if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
+    Literal* literal = property->key()->AsLiteral();
+    DCHECK(!literal->value()->IsNull());
+
+    // If there is an existing entry do not emit a store unless the previous
+    // entry was also an accessor.
+    uint32_t hash = literal->Hash();
+    ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
+    if (entry->value != NULL) {
+      auto previous_kind =
+          static_cast<ObjectLiteral::Property*>(entry->value)->kind();
+      if (!((property->kind() == GETTER && previous_kind == SETTER) ||
+            (property->kind() == SETTER && previous_kind == GETTER))) {
+        property->set_emit_store(false);
+      }
+    }
+    entry->value = property;
+  }
+}
+
+
+bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
+  return property != NULL &&
+         property->kind() != ObjectLiteral::Property::PROTOTYPE;
+}
+
+
+void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
+  if (!constant_properties_.is_null()) return;
+
+  // Allocate a fixed array to hold all the constant properties.
+  Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
+      boilerplate_properties_ * 2, TENURED);
+
+  int position = 0;
+  // Accumulate the value in local variables and store it at the end.
+  bool is_simple = true;
+  int depth_acc = 1;
+  uint32_t max_element_index = 0;
+  uint32_t elements = 0;
+  for (int i = 0; i < properties()->length(); i++) {
+    ObjectLiteral::Property* property = properties()->at(i);
+    if (!IsBoilerplateProperty(property)) {
+      is_simple = false;
+      continue;
+    }
+
+    if (position == boilerplate_properties_ * 2) {
+      DCHECK(property->is_computed_name());
+      is_simple = false;
+      break;
+    }
+    DCHECK(!property->is_computed_name());
+
+    MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
+    if (m_literal != NULL) {
+      m_literal->BuildConstants(isolate);
+      if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
+    }
+
+    // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
+    // value for COMPUTED properties, the real value is filled in at
+    // runtime. The enumeration order is maintained.
+    Handle<Object> key = property->key()->AsLiteral()->value();
+    Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
+
+    // Ensure objects that may, at any point in time, contain fields with double
+    // representation are always treated as nested objects. This is true for
+    // computed fields (value is undefined), and smi and double literals
+    // (value->IsNumber()).
+    // TODO(verwaest): Remove once we can store them inline.
+    if (FLAG_track_double_fields &&
+        (value->IsNumber() || value->IsUninitialized())) {
+      may_store_doubles_ = true;
+    }
+
+    is_simple = is_simple && !value->IsUninitialized();
+
+    // Keep track of the number of elements in the object literal and
+    // the largest element index.  If the largest element index is
+    // much larger than the number of elements, creating an object
+    // literal with fast elements will be a waste of space.
+    uint32_t element_index = 0;
+    if (key->IsString()
+        && Handle<String>::cast(key)->AsArrayIndex(&element_index)
+        && element_index > max_element_index) {
+      max_element_index = element_index;
+      elements++;
+    } else if (key->IsSmi()) {
+      int key_value = Smi::cast(*key)->value();
+      if (key_value > 0
+          && static_cast<uint32_t>(key_value) > max_element_index) {
+        max_element_index = key_value;
+      }
+      elements++;
+    }
+
+    // Add name, value pair to the fixed array.
+    constant_properties->set(position++, *key);
+    constant_properties->set(position++, *value);
+  }
+
+  constant_properties_ = constant_properties;
+  fast_elements_ =
+      (max_element_index <= 32) || ((2 * elements) >= max_element_index);
+  has_elements_ = elements > 0;
+  set_is_simple(is_simple);
+  set_depth(depth_acc);
+}
+
+
+void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
+  if (!constant_elements_.is_null()) return;
+
+  int constants_length =
+      first_spread_index_ >= 0 ? first_spread_index_ : values()->length();
+
+  // Allocate a fixed array to hold all the object literals.
+  Handle<JSArray> array = isolate->factory()->NewJSArray(
+      FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
+      Strength::WEAK, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
+
+  // Fill in the literals.
+  bool is_simple = (first_spread_index_ < 0);
+  int depth_acc = 1;
+  bool is_holey = false;
+  int array_index = 0;
+  for (; array_index < constants_length; array_index++) {
+    Expression* element = values()->at(array_index);
+    DCHECK(!element->IsSpread());
+    MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
+    if (m_literal != NULL) {
+      m_literal->BuildConstants(isolate);
+      if (m_literal->depth() + 1 > depth_acc) {
+        depth_acc = m_literal->depth() + 1;
+      }
+    }
+
+    // New handle scope here, needs to be after BuildContants().
+    HandleScope scope(isolate);
+    Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
+    if (boilerplate_value->IsTheHole()) {
+      is_holey = true;
+      continue;
+    }
+
+    if (boilerplate_value->IsUninitialized()) {
+      boilerplate_value = handle(Smi::FromInt(0), isolate);
+      is_simple = false;
+    }
+
+    JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
+        .Assert();
+  }
+
+  JSObject::ValidateElements(array);
+  Handle<FixedArrayBase> element_values(array->elements());
+
+  // Simple and shallow arrays can be lazily copied, we transform the
+  // elements array to a copy-on-write array.
+  if (is_simple && depth_acc == 1 && array_index > 0 &&
+      array->HasFastSmiOrObjectElements()) {
+    element_values->set_map(isolate->heap()->fixed_cow_array_map());
+  }
+
+  // Remember both the literal's constant values as well as the ElementsKind
+  // in a 2-element FixedArray.
+  Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
+
+  ElementsKind kind = array->GetElementsKind();
+  kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
+
+  literals->set(0, Smi::FromInt(kind));
+  literals->set(1, *element_values);
+
+  constant_elements_ = literals;
+  set_is_simple(is_simple);
+  set_depth(depth_acc);
+}
+
+
+void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
+                                             FeedbackVectorSpec* spec,
+                                             FeedbackVectorSlotCache* cache) {
+  // This logic that computes the number of slots needed for vector store
+  // ics must mirror FullCodeGenerator::VisitArrayLiteral.
+  int array_index = 0;
+  for (; array_index < values()->length(); array_index++) {
+    Expression* subexpr = values()->at(array_index);
+    if (subexpr->IsSpread()) break;
+    if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
+
+    // We'll reuse the same literal slot for all of the non-constant
+    // subexpressions that use a keyed store IC.
+    literal_slot_ = spec->AddKeyedStoreICSlot();
+    return;
+  }
+}
+
+
+Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
+                                                        Isolate* isolate) {
+  if (expression->IsLiteral()) {
+    return expression->AsLiteral()->value();
+  }
+  if (CompileTimeValue::IsCompileTimeValue(expression)) {
+    return CompileTimeValue::GetValue(isolate, expression);
+  }
+  return isolate->factory()->uninitialized_value();
+}
+
+
+void MaterializedLiteral::BuildConstants(Isolate* isolate) {
+  if (IsArrayLiteral()) {
+    return AsArrayLiteral()->BuildConstantElements(isolate);
+  }
+  if (IsObjectLiteral()) {
+    return AsObjectLiteral()->BuildConstantProperties(isolate);
+  }
+  DCHECK(IsRegExpLiteral());
+  DCHECK(depth() >= 1);  // Depth should be initialized.
+}
+
+
+void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
+  // TODO(olivf) If this Operation is used in a test context, then the
+  // expression has a ToBoolean stub and we want to collect the type
+  // information. However the GraphBuilder expects it to be on the instruction
+  // corresponding to the TestContext, therefore we have to store it here and
+  // not on the operand.
+  set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
+}
+
+
+void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
+  // TODO(olivf) If this Operation is used in a test context, then the right
+  // hand side has a ToBoolean stub and we want to collect the type information.
+  // However the GraphBuilder expects it to be on the instruction corresponding
+  // to the TestContext, therefore we have to store it here and not on the
+  // right hand operand.
+  set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
+}
+
+
+static bool IsTypeof(Expression* expr) {
+  UnaryOperation* maybe_unary = expr->AsUnaryOperation();
+  return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
+}
+
+
+// Check for the pattern: typeof <expression> equals <string literal>.
+static bool MatchLiteralCompareTypeof(Expression* left,
+                                      Token::Value op,
+                                      Expression* right,
+                                      Expression** expr,
+                                      Handle<String>* check) {
+  if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
+    *expr = left->AsUnaryOperation()->expression();
+    *check = Handle<String>::cast(right->AsLiteral()->value());
+    return true;
+  }
+  return false;
+}
+
+
+bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
+                                              Handle<String>* check) {
+  return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
+      MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
+}
+
+
+static bool IsVoidOfLiteral(Expression* expr) {
+  UnaryOperation* maybe_unary = expr->AsUnaryOperation();
+  return maybe_unary != NULL &&
+      maybe_unary->op() == Token::VOID &&
+      maybe_unary->expression()->IsLiteral();
+}
+
+
+// Check for the pattern: void <literal> equals <expression> or
+// undefined equals <expression>
+static bool MatchLiteralCompareUndefined(Expression* left,
+                                         Token::Value op,
+                                         Expression* right,
+                                         Expression** expr,
+                                         Isolate* isolate) {
+  if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
+    *expr = right;
+    return true;
+  }
+  if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
+    *expr = right;
+    return true;
+  }
+  return false;
+}
+
+
+bool CompareOperation::IsLiteralCompareUndefined(
+    Expression** expr, Isolate* isolate) {
+  return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
+      MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
+}
+
+
+// Check for the pattern: null equals <expression>
+static bool MatchLiteralCompareNull(Expression* left,
+                                    Token::Value op,
+                                    Expression* right,
+                                    Expression** expr) {
+  if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
+    *expr = right;
+    return true;
+  }
+  return false;
+}
+
+
+bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
+  return MatchLiteralCompareNull(left_, op_, right_, expr) ||
+      MatchLiteralCompareNull(right_, op_, left_, expr);
+}
+
+
+// ----------------------------------------------------------------------------
+// Inlining support
+
+bool Declaration::IsInlineable() const {
+  return proxy()->var()->IsStackAllocated();
+}
+
+bool FunctionDeclaration::IsInlineable() const {
+  return false;
+}
+
+
+// ----------------------------------------------------------------------------
+// Recording of type feedback
+
+// TODO(rossberg): all RecordTypeFeedback functions should disappear
+// once we use the common type field in the AST consistently.
+
+void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
+  set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
+}
+
+
+bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
+  CallType call_type = GetCallType(isolate);
+  if (call_type == POSSIBLY_EVAL_CALL) {
+    return false;
+  }
+  return true;
+}
+
+
+bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
+  // SuperConstructorCall uses a CallConstructStub, which wants
+  // a Slot, in addition to any IC slots requested elsewhere.
+  return GetCallType(isolate) == SUPER_CALL;
+}
+
+
+void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
+                                     FeedbackVectorSlotCache* cache) {
+  if (IsUsingCallFeedbackICSlot(isolate)) {
+    ic_slot_ = spec->AddCallICSlot();
+  }
+  if (IsUsingCallFeedbackSlot(isolate)) {
+    stub_slot_ = spec->AddGeneralSlot();
+  }
+}
+
+
+Call::CallType Call::GetCallType(Isolate* isolate) const {
+  VariableProxy* proxy = expression()->AsVariableProxy();
+  if (proxy != NULL) {
+    if (proxy->var()->is_possibly_eval(isolate)) {
+      return POSSIBLY_EVAL_CALL;
+    } else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
+      return GLOBAL_CALL;
+    } else if (proxy->var()->IsLookupSlot()) {
+      return LOOKUP_SLOT_CALL;
+    }
+  }
+
+  if (expression()->IsSuperCallReference()) return SUPER_CALL;
+
+  Property* property = expression()->AsProperty();
+  if (property != nullptr) {
+    bool is_super = property->IsSuperAccess();
+    if (property->key()->IsPropertyName()) {
+      return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
+    } else {
+      return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
+    }
+  }
+
+  return OTHER_CALL;
+}
+
+
+// ----------------------------------------------------------------------------
+// Implementation of AstVisitor
+
+void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
+  for (int i = 0; i < declarations->length(); i++) {
+    Visit(declarations->at(i));
+  }
+}
+
+
+void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
+  for (int i = 0; i < statements->length(); i++) {
+    Statement* stmt = statements->at(i);
+    Visit(stmt);
+    if (stmt->IsJump()) break;
+  }
+}
+
+
+void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
+  for (int i = 0; i < expressions->length(); i++) {
+    // The variable statement visiting code may pass NULL expressions
+    // to this code. Maybe this should be handled by introducing an
+    // undefined expression or literal?  Revisit this code if this
+    // changes
+    Expression* expression = expressions->at(i);
+    if (expression != NULL) Visit(expression);
+  }
+}
+
+
+CaseClause::CaseClause(Zone* zone, Expression* label,
+                       ZoneList<Statement*>* statements, int pos)
+    : Expression(zone, pos),
+      label_(label),
+      statements_(statements),
+      compare_type_(Type::None(zone)) {}
+
+
+uint32_t Literal::Hash() {
+  return raw_value()->IsString()
+             ? raw_value()->AsString()->hash()
+             : ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
+}
+
+
+// static
+bool Literal::Match(void* literal1, void* literal2) {
+  const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
+  const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
+  return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
+         (x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
+}
+
+
+}  // namespace internal
+}  // namespace v8