Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/compiler/js-native-context-specialization.cc b/src/compiler/js-native-context-specialization.cc
new file mode 100644
index 0000000..06cf770
--- /dev/null
+++ b/src/compiler/js-native-context-specialization.cc
@@ -0,0 +1,1033 @@
+// Copyright 2015 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/js-native-context-specialization.h"
+
+#include "src/accessors.h"
+#include "src/code-factory.h"
+#include "src/compilation-dependencies.h"
+#include "src/compiler/access-builder.h"
+#include "src/compiler/access-info.h"
+#include "src/compiler/js-graph.h"
+#include "src/compiler/js-operator.h"
+#include "src/compiler/linkage.h"
+#include "src/compiler/node-matchers.h"
+#include "src/field-index-inl.h"
+#include "src/isolate-inl.h"
+#include "src/objects-inl.h"  // TODO(mstarzinger): Temporary cycle breaker!
+#include "src/type-cache.h"
+#include "src/type-feedback-vector.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+JSNativeContextSpecialization::JSNativeContextSpecialization(
+    Editor* editor, JSGraph* jsgraph, Flags flags,
+    MaybeHandle<Context> native_context, CompilationDependencies* dependencies,
+    Zone* zone)
+    : AdvancedReducer(editor),
+      jsgraph_(jsgraph),
+      flags_(flags),
+      native_context_(native_context),
+      dependencies_(dependencies),
+      zone_(zone),
+      type_cache_(TypeCache::Get()) {}
+
+
+Reduction JSNativeContextSpecialization::Reduce(Node* node) {
+  switch (node->opcode()) {
+    case IrOpcode::kJSLoadNamed:
+      return ReduceJSLoadNamed(node);
+    case IrOpcode::kJSStoreNamed:
+      return ReduceJSStoreNamed(node);
+    case IrOpcode::kJSLoadProperty:
+      return ReduceJSLoadProperty(node);
+    case IrOpcode::kJSStoreProperty:
+      return ReduceJSStoreProperty(node);
+    default:
+      break;
+  }
+  return NoChange();
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceNamedAccess(
+    Node* node, Node* value, MapHandleList const& receiver_maps,
+    Handle<Name> name, AccessMode access_mode, LanguageMode language_mode,
+    Node* index) {
+  DCHECK(node->opcode() == IrOpcode::kJSLoadNamed ||
+         node->opcode() == IrOpcode::kJSStoreNamed ||
+         node->opcode() == IrOpcode::kJSLoadProperty ||
+         node->opcode() == IrOpcode::kJSStoreProperty);
+  Node* receiver = NodeProperties::GetValueInput(node, 0);
+  Node* frame_state = NodeProperties::GetFrameStateInput(node, 1);
+  Node* effect = NodeProperties::GetEffectInput(node);
+  Node* control = NodeProperties::GetControlInput(node);
+
+  // Not much we can do if deoptimization support is disabled.
+  if (!(flags() & kDeoptimizationEnabled)) return NoChange();
+
+  // Retrieve the native context from the given {node}.
+  Handle<Context> native_context;
+  if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange();
+
+  // Compute property access infos for the receiver maps.
+  AccessInfoFactory access_info_factory(dependencies(), native_context,
+                                        graph()->zone());
+  ZoneVector<PropertyAccessInfo> access_infos(zone());
+  if (!access_info_factory.ComputePropertyAccessInfos(
+          receiver_maps, name, access_mode, &access_infos)) {
+    return NoChange();
+  }
+
+  // Nothing to do if we have no non-deprecated maps.
+  if (access_infos.empty()) return NoChange();
+
+  // The final states for every polymorphic branch. We join them with
+  // Merge++Phi+EffectPhi at the bottom.
+  ZoneVector<Node*> values(zone());
+  ZoneVector<Node*> effects(zone());
+  ZoneVector<Node*> controls(zone());
+
+  // The list of "exiting" controls, which currently go to a single deoptimize.
+  // TODO(bmeurer): Consider using an IC as fallback.
+  Node* const exit_effect = effect;
+  ZoneVector<Node*> exit_controls(zone());
+
+  // Ensure that {index} matches the specified {name} (if {index} is given).
+  if (index != nullptr) {
+    Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Name()),
+                                   index, jsgraph()->HeapConstant(name));
+    Node* branch =
+        graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control);
+    exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+    control = graph()->NewNode(common()->IfTrue(), branch);
+  }
+
+  // Ensure that {receiver} is a heap object.
+  Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver);
+  Node* branch = graph()->NewNode(common()->Branch(), check, control);
+  control = graph()->NewNode(common()->IfFalse(), branch);
+  Node* receiverissmi_control = graph()->NewNode(common()->IfTrue(), branch);
+  Node* receiverissmi_effect = effect;
+
+  // Load the {receiver} map. The resulting effect is the dominating effect for
+  // all (polymorphic) branches.
+  Node* receiver_map = effect =
+      graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
+                       receiver, effect, control);
+
+  // Generate code for the various different property access patterns.
+  Node* fallthrough_control = control;
+  for (PropertyAccessInfo const& access_info : access_infos) {
+    Node* this_value = value;
+    Node* this_receiver = receiver;
+    Node* this_effect = effect;
+    Node* this_control;
+
+    // Perform map check on {receiver}.
+    Type* receiver_type = access_info.receiver_type();
+    if (receiver_type->Is(Type::String())) {
+      // Emit an instance type check for strings.
+      Node* receiver_instance_type = this_effect = graph()->NewNode(
+          simplified()->LoadField(AccessBuilder::ForMapInstanceType()),
+          receiver_map, this_effect, fallthrough_control);
+      Node* check =
+          graph()->NewNode(machine()->Uint32LessThan(), receiver_instance_type,
+                           jsgraph()->Uint32Constant(FIRST_NONSTRING_TYPE));
+      Node* branch =
+          graph()->NewNode(common()->Branch(), check, fallthrough_control);
+      fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
+      this_control = graph()->NewNode(common()->IfTrue(), branch);
+    } else {
+      // Emit a (sequence of) map checks for other {receiver}s.
+      ZoneVector<Node*> this_controls(zone());
+      ZoneVector<Node*> this_effects(zone());
+      for (auto i = access_info.receiver_type()->Classes(); !i.Done();
+           i.Advance()) {
+        Handle<Map> map = i.Current();
+        Node* check =
+            graph()->NewNode(simplified()->ReferenceEqual(Type::Internal()),
+                             receiver_map, jsgraph()->Constant(map));
+        Node* branch =
+            graph()->NewNode(common()->Branch(), check, fallthrough_control);
+        fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
+        this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+        this_effects.push_back(this_effect);
+      }
+
+      // The Number case requires special treatment to also deal with Smis.
+      if (receiver_type->Is(Type::Number())) {
+        // Join this check with the "receiver is smi" check above, and mark the
+        // "receiver is smi" check as "consumed" so that we don't deoptimize if
+        // the {receiver} is actually a Smi.
+        if (receiverissmi_control != nullptr) {
+          this_controls.push_back(receiverissmi_control);
+          this_effects.push_back(receiverissmi_effect);
+          receiverissmi_control = receiverissmi_effect = nullptr;
+        }
+      }
+
+      // Create dominating Merge+EffectPhi for this {receiver} type.
+      int const this_control_count = static_cast<int>(this_controls.size());
+      this_control =
+          (this_control_count == 1)
+              ? this_controls.front()
+              : graph()->NewNode(common()->Merge(this_control_count),
+                                 this_control_count, &this_controls.front());
+      this_effects.push_back(this_control);
+      int const this_effect_count = static_cast<int>(this_effects.size());
+      this_effect =
+          (this_control_count == 1)
+              ? this_effects.front()
+              : graph()->NewNode(common()->EffectPhi(this_control_count),
+                                 this_effect_count, &this_effects.front());
+    }
+
+    // Determine actual holder and perform prototype chain checks.
+    Handle<JSObject> holder;
+    if (access_info.holder().ToHandle(&holder)) {
+      AssumePrototypesStable(receiver_type, native_context, holder);
+    }
+
+    // Generate the actual property access.
+    if (access_info.IsNotFound()) {
+      DCHECK_EQ(AccessMode::kLoad, access_mode);
+      if (is_strong(language_mode)) {
+        // TODO(bmeurer/mstarzinger): Add support for lowering inside try
+        // blocks rewiring the IfException edge to a runtime call/throw.
+        exit_controls.push_back(this_control);
+        continue;
+      } else {
+        this_value = jsgraph()->UndefinedConstant();
+      }
+    } else if (access_info.IsDataConstant()) {
+      this_value = jsgraph()->Constant(access_info.constant());
+      if (access_mode == AccessMode::kStore) {
+        Node* check = graph()->NewNode(
+            simplified()->ReferenceEqual(Type::Tagged()), value, this_value);
+        Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                        check, this_control);
+        exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+        this_control = graph()->NewNode(common()->IfTrue(), branch);
+      }
+    } else {
+      DCHECK(access_info.IsDataField());
+      FieldIndex const field_index = access_info.field_index();
+      FieldCheck const field_check = access_info.field_check();
+      Type* const field_type = access_info.field_type();
+      switch (field_check) {
+        case FieldCheck::kNone:
+          break;
+        case FieldCheck::kJSArrayBufferViewBufferNotNeutered: {
+          Node* this_buffer = this_effect =
+              graph()->NewNode(simplified()->LoadField(
+                                   AccessBuilder::ForJSArrayBufferViewBuffer()),
+                               this_receiver, this_effect, this_control);
+          Node* this_buffer_bit_field = this_effect =
+              graph()->NewNode(simplified()->LoadField(
+                                   AccessBuilder::ForJSArrayBufferBitField()),
+                               this_buffer, this_effect, this_control);
+          Node* check = graph()->NewNode(
+              machine()->Word32Equal(),
+              graph()->NewNode(machine()->Word32And(), this_buffer_bit_field,
+                               jsgraph()->Int32Constant(
+                                   1 << JSArrayBuffer::WasNeutered::kShift)),
+              jsgraph()->Int32Constant(0));
+          Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse),
+                                          check, this_control);
+          exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+          this_control = graph()->NewNode(common()->IfFalse(), branch);
+          break;
+        }
+      }
+      if (access_mode == AccessMode::kLoad &&
+          access_info.holder().ToHandle(&holder)) {
+        this_receiver = jsgraph()->Constant(holder);
+      }
+      Node* this_storage = this_receiver;
+      if (!field_index.is_inobject()) {
+        this_storage = this_effect = graph()->NewNode(
+            simplified()->LoadField(AccessBuilder::ForJSObjectProperties()),
+            this_storage, this_effect, this_control);
+      }
+      FieldAccess field_access = {kTaggedBase, field_index.offset(), name,
+                                  field_type, MachineType::AnyTagged()};
+      if (access_mode == AccessMode::kLoad) {
+        if (field_type->Is(Type::UntaggedFloat64())) {
+          if (!field_index.is_inobject() || field_index.is_hidden_field() ||
+              !FLAG_unbox_double_fields) {
+            this_storage = this_effect =
+                graph()->NewNode(simplified()->LoadField(field_access),
+                                 this_storage, this_effect, this_control);
+            field_access.offset = HeapNumber::kValueOffset;
+            field_access.name = MaybeHandle<Name>();
+          }
+          field_access.machine_type = MachineType::Float64();
+        }
+        this_value = this_effect =
+            graph()->NewNode(simplified()->LoadField(field_access),
+                             this_storage, this_effect, this_control);
+      } else {
+        DCHECK_EQ(AccessMode::kStore, access_mode);
+        if (field_type->Is(Type::UntaggedFloat64())) {
+          Node* check =
+              graph()->NewNode(simplified()->ObjectIsNumber(), this_value);
+          Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                          check, this_control);
+          exit_controls.push_back(
+              graph()->NewNode(common()->IfFalse(), branch));
+          this_control = graph()->NewNode(common()->IfTrue(), branch);
+          this_value = graph()->NewNode(common()->Guard(Type::Number()),
+                                        this_value, this_control);
+
+          if (!field_index.is_inobject() || field_index.is_hidden_field() ||
+              !FLAG_unbox_double_fields) {
+            if (access_info.HasTransitionMap()) {
+              // Allocate a MutableHeapNumber for the new property.
+              Callable callable =
+                  CodeFactory::AllocateMutableHeapNumber(isolate());
+              CallDescriptor* desc = Linkage::GetStubCallDescriptor(
+                  isolate(), jsgraph()->zone(), callable.descriptor(), 0,
+                  CallDescriptor::kNoFlags, Operator::kNoThrow);
+              Node* this_box = this_effect = graph()->NewNode(
+                  common()->Call(desc),
+                  jsgraph()->HeapConstant(callable.code()),
+                  jsgraph()->NoContextConstant(), this_effect, this_control);
+              this_effect = graph()->NewNode(
+                  simplified()->StoreField(AccessBuilder::ForHeapNumberValue()),
+                  this_box, this_value, this_effect, this_control);
+              this_value = this_box;
+
+              field_access.type = Type::TaggedPointer();
+            } else {
+              // We just store directly to the MutableHeapNumber.
+              this_storage = this_effect =
+                  graph()->NewNode(simplified()->LoadField(field_access),
+                                   this_storage, this_effect, this_control);
+              field_access.offset = HeapNumber::kValueOffset;
+              field_access.name = MaybeHandle<Name>();
+              field_access.machine_type = MachineType::Float64();
+            }
+          } else {
+            // Unboxed double field, we store directly to the field.
+            field_access.machine_type = MachineType::Float64();
+          }
+        } else if (field_type->Is(Type::TaggedSigned())) {
+          Node* check =
+              graph()->NewNode(simplified()->ObjectIsSmi(), this_value);
+          Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                          check, this_control);
+          exit_controls.push_back(
+              graph()->NewNode(common()->IfFalse(), branch));
+          this_control = graph()->NewNode(common()->IfTrue(), branch);
+          this_value = graph()->NewNode(common()->Guard(type_cache_.kSmi),
+                                        this_value, this_control);
+        } else if (field_type->Is(Type::TaggedPointer())) {
+          Node* check =
+              graph()->NewNode(simplified()->ObjectIsSmi(), this_value);
+          Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse),
+                                          check, this_control);
+          exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+          this_control = graph()->NewNode(common()->IfFalse(), branch);
+          if (field_type->NumClasses() > 0) {
+            // Emit a (sequence of) map checks for the value.
+            ZoneVector<Node*> this_controls(zone());
+            Node* this_value_map = this_effect = graph()->NewNode(
+                simplified()->LoadField(AccessBuilder::ForMap()), this_value,
+                this_effect, this_control);
+            for (auto i = field_type->Classes(); !i.Done(); i.Advance()) {
+              Handle<Map> field_map(i.Current());
+              check = graph()->NewNode(
+                  simplified()->ReferenceEqual(Type::Internal()),
+                  this_value_map, jsgraph()->Constant(field_map));
+              branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                        check, this_control);
+              this_control = graph()->NewNode(common()->IfFalse(), branch);
+              this_controls.push_back(
+                  graph()->NewNode(common()->IfTrue(), branch));
+            }
+            exit_controls.push_back(this_control);
+            int const this_control_count =
+                static_cast<int>(this_controls.size());
+            this_control =
+                (this_control_count == 1)
+                    ? this_controls.front()
+                    : graph()->NewNode(common()->Merge(this_control_count),
+                                       this_control_count,
+                                       &this_controls.front());
+          }
+        } else {
+          DCHECK(field_type->Is(Type::Tagged()));
+        }
+        Handle<Map> transition_map;
+        if (access_info.transition_map().ToHandle(&transition_map)) {
+          this_effect = graph()->NewNode(common()->BeginRegion(), this_effect);
+          this_effect = graph()->NewNode(
+              simplified()->StoreField(AccessBuilder::ForMap()), this_receiver,
+              jsgraph()->Constant(transition_map), this_effect, this_control);
+        }
+        this_effect = graph()->NewNode(simplified()->StoreField(field_access),
+                                       this_storage, this_value, this_effect,
+                                       this_control);
+        if (access_info.HasTransitionMap()) {
+          this_effect =
+              graph()->NewNode(common()->FinishRegion(),
+                               jsgraph()->UndefinedConstant(), this_effect);
+        }
+      }
+    }
+
+    // Remember the final state for this property access.
+    values.push_back(this_value);
+    effects.push_back(this_effect);
+    controls.push_back(this_control);
+  }
+
+  // Collect the fallthrough control as final "exit" control.
+  if (fallthrough_control != control) {
+    // Mark the last fallthrough branch as deferred.
+    MarkAsDeferred(fallthrough_control);
+  }
+  exit_controls.push_back(fallthrough_control);
+
+  // Also collect the "receiver is smi" control if we didn't handle the case of
+  // Number primitives in the polymorphic branches above.
+  if (receiverissmi_control != nullptr) {
+    // Mark the "receiver is smi" case as deferred.
+    MarkAsDeferred(receiverissmi_control);
+    DCHECK_EQ(exit_effect, receiverissmi_effect);
+    exit_controls.push_back(receiverissmi_control);
+  }
+
+  // Generate the single "exit" point, where we get if either all map/instance
+  // type checks failed, or one of the assumptions inside one of the cases
+  // failes (i.e. failing prototype chain check).
+  // TODO(bmeurer): Consider falling back to IC here if deoptimization is
+  // disabled.
+  int const exit_control_count = static_cast<int>(exit_controls.size());
+  Node* exit_control =
+      (exit_control_count == 1)
+          ? exit_controls.front()
+          : graph()->NewNode(common()->Merge(exit_control_count),
+                             exit_control_count, &exit_controls.front());
+  Node* deoptimize =
+      graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kEager),
+                       frame_state, exit_effect, exit_control);
+  // TODO(bmeurer): This should be on the AdvancedReducer somehow.
+  NodeProperties::MergeControlToEnd(graph(), common(), deoptimize);
+
+  // Generate the final merge point for all (polymorphic) branches.
+  int const control_count = static_cast<int>(controls.size());
+  if (control_count == 0) {
+    value = effect = control = jsgraph()->Dead();
+  } else if (control_count == 1) {
+    value = values.front();
+    effect = effects.front();
+    control = controls.front();
+  } else {
+    control = graph()->NewNode(common()->Merge(control_count), control_count,
+                               &controls.front());
+    values.push_back(control);
+    value = graph()->NewNode(
+        common()->Phi(MachineRepresentation::kTagged, control_count),
+        control_count + 1, &values.front());
+    effects.push_back(control);
+    effect = graph()->NewNode(common()->EffectPhi(control_count),
+                              control_count + 1, &effects.front());
+  }
+  ReplaceWithValue(node, value, effect, control);
+  return Replace(value);
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceJSLoadNamed(Node* node) {
+  DCHECK_EQ(IrOpcode::kJSLoadNamed, node->opcode());
+  NamedAccess const& p = NamedAccessOf(node->op());
+  Node* const value = jsgraph()->Dead();
+
+  // Extract receiver maps from the LOAD_IC using the LoadICNexus.
+  MapHandleList receiver_maps;
+  if (!p.feedback().IsValid()) return NoChange();
+  LoadICNexus nexus(p.feedback().vector(), p.feedback().slot());
+  if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange();
+  DCHECK_LT(0, receiver_maps.length());
+
+  // Try to lower the named access based on the {receiver_maps}.
+  return ReduceNamedAccess(node, value, receiver_maps, p.name(),
+                           AccessMode::kLoad, p.language_mode());
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceJSStoreNamed(Node* node) {
+  DCHECK_EQ(IrOpcode::kJSStoreNamed, node->opcode());
+  NamedAccess const& p = NamedAccessOf(node->op());
+  Node* const value = NodeProperties::GetValueInput(node, 1);
+
+  // Extract receiver maps from the STORE_IC using the StoreICNexus.
+  MapHandleList receiver_maps;
+  if (!p.feedback().IsValid()) return NoChange();
+  StoreICNexus nexus(p.feedback().vector(), p.feedback().slot());
+  if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange();
+  DCHECK_LT(0, receiver_maps.length());
+
+  // Try to lower the named access based on the {receiver_maps}.
+  return ReduceNamedAccess(node, value, receiver_maps, p.name(),
+                           AccessMode::kStore, p.language_mode());
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceElementAccess(
+    Node* node, Node* index, Node* value, MapHandleList const& receiver_maps,
+    AccessMode access_mode, LanguageMode language_mode,
+    KeyedAccessStoreMode store_mode) {
+  DCHECK(node->opcode() == IrOpcode::kJSLoadProperty ||
+         node->opcode() == IrOpcode::kJSStoreProperty);
+  Node* receiver = NodeProperties::GetValueInput(node, 0);
+  Node* context = NodeProperties::GetContextInput(node);
+  Node* frame_state = NodeProperties::GetFrameStateInput(node, 1);
+  Node* effect = NodeProperties::GetEffectInput(node);
+  Node* control = NodeProperties::GetControlInput(node);
+
+  // Not much we can do if deoptimization support is disabled.
+  if (!(flags() & kDeoptimizationEnabled)) return NoChange();
+
+  // TODO(bmeurer): Add support for non-standard stores.
+  if (store_mode != STANDARD_STORE) return NoChange();
+
+  // Retrieve the native context from the given {node}.
+  Handle<Context> native_context;
+  if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange();
+
+  // Compute element access infos for the receiver maps.
+  AccessInfoFactory access_info_factory(dependencies(), native_context,
+                                        graph()->zone());
+  ZoneVector<ElementAccessInfo> access_infos(zone());
+  if (!access_info_factory.ComputeElementAccessInfos(receiver_maps, access_mode,
+                                                     &access_infos)) {
+    return NoChange();
+  }
+
+  // Nothing to do if we have no non-deprecated maps.
+  if (access_infos.empty()) return NoChange();
+
+  // The final states for every polymorphic branch. We join them with
+  // Merge+Phi+EffectPhi at the bottom.
+  ZoneVector<Node*> values(zone());
+  ZoneVector<Node*> effects(zone());
+  ZoneVector<Node*> controls(zone());
+
+  // The list of "exiting" controls, which currently go to a single deoptimize.
+  // TODO(bmeurer): Consider using an IC as fallback.
+  Node* const exit_effect = effect;
+  ZoneVector<Node*> exit_controls(zone());
+
+  // Ensure that {receiver} is a heap object.
+  Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver);
+  Node* branch =
+      graph()->NewNode(common()->Branch(BranchHint::kFalse), check, control);
+  exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+  control = graph()->NewNode(common()->IfFalse(), branch);
+
+  // Load the {receiver} map. The resulting effect is the dominating effect for
+  // all (polymorphic) branches.
+  Node* receiver_map = effect =
+      graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
+                       receiver, effect, control);
+
+  // Generate code for the various different element access patterns.
+  Node* fallthrough_control = control;
+  for (ElementAccessInfo const& access_info : access_infos) {
+    Node* this_receiver = receiver;
+    Node* this_value = value;
+    Node* this_index = index;
+    Node* this_effect;
+    Node* this_control;
+
+    // Perform map check on {receiver}.
+    Type* receiver_type = access_info.receiver_type();
+    bool receiver_is_jsarray = true;
+    {
+      ZoneVector<Node*> this_controls(zone());
+      ZoneVector<Node*> this_effects(zone());
+      for (auto i = access_info.receiver_type()->Classes(); !i.Done();
+           i.Advance()) {
+        Handle<Map> map = i.Current();
+        Node* check =
+            graph()->NewNode(simplified()->ReferenceEqual(Type::Any()),
+                             receiver_map, jsgraph()->Constant(map));
+        Node* branch =
+            graph()->NewNode(common()->Branch(), check, fallthrough_control);
+        this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+        this_effects.push_back(effect);
+        fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
+        if (!map->IsJSArrayMap()) receiver_is_jsarray = false;
+      }
+
+      // Generate possible elements kind transitions.
+      for (auto transition : access_info.transitions()) {
+        Handle<Map> transition_source = transition.first;
+        Handle<Map> transition_target = transition.second;
+
+        // Check if {receiver} has the specified {transition_source} map.
+        Node* check = graph()->NewNode(
+            simplified()->ReferenceEqual(Type::Any()), receiver_map,
+            jsgraph()->HeapConstant(transition_source));
+        Node* branch =
+            graph()->NewNode(common()->Branch(), check, fallthrough_control);
+
+        // Migrate {receiver} from {transition_source} to {transition_target}.
+        Node* transition_control = graph()->NewNode(common()->IfTrue(), branch);
+        Node* transition_effect = effect;
+        if (IsSimpleMapChangeTransition(transition_source->elements_kind(),
+                                        transition_target->elements_kind())) {
+          // In-place migration, just store the {transition_target} map.
+          transition_effect = graph()->NewNode(
+              simplified()->StoreField(AccessBuilder::ForMap()), receiver,
+              jsgraph()->HeapConstant(transition_target), transition_effect,
+              transition_control);
+        } else {
+          // Instance migration, let the stub deal with the {receiver}.
+          TransitionElementsKindStub stub(isolate(),
+                                          transition_source->elements_kind(),
+                                          transition_target->elements_kind(),
+                                          transition_source->IsJSArrayMap());
+          CallDescriptor const* const desc = Linkage::GetStubCallDescriptor(
+              isolate(), graph()->zone(), stub.GetCallInterfaceDescriptor(), 0,
+              CallDescriptor::kNeedsFrameState, node->op()->properties());
+          transition_effect = graph()->NewNode(
+              common()->Call(desc), jsgraph()->HeapConstant(stub.GetCode()),
+              receiver, jsgraph()->HeapConstant(transition_target), context,
+              frame_state, transition_effect, transition_control);
+        }
+        this_controls.push_back(transition_control);
+        this_effects.push_back(transition_effect);
+
+        fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
+      }
+
+      // Create single chokepoint for the control.
+      int const this_control_count = static_cast<int>(this_controls.size());
+      if (this_control_count == 1) {
+        this_control = this_controls.front();
+        this_effect = this_effects.front();
+      } else {
+        this_control =
+            graph()->NewNode(common()->Merge(this_control_count),
+                             this_control_count, &this_controls.front());
+        this_effects.push_back(this_control);
+        this_effect =
+            graph()->NewNode(common()->EffectPhi(this_control_count),
+                             this_control_count + 1, &this_effects.front());
+      }
+    }
+
+    // Certain stores need a prototype chain check because shape changes
+    // could allow callbacks on elements in the prototype chain that are
+    // not compatible with (monomorphic) keyed stores.
+    Handle<JSObject> holder;
+    if (access_info.holder().ToHandle(&holder)) {
+      AssumePrototypesStable(receiver_type, native_context, holder);
+    }
+
+    // Check that the {index} is actually a Number.
+    if (!NumberMatcher(this_index).HasValue()) {
+      Node* check =
+          graph()->NewNode(simplified()->ObjectIsNumber(), this_index);
+      Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                      check, this_control);
+      exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+      this_control = graph()->NewNode(common()->IfTrue(), branch);
+      this_index = graph()->NewNode(common()->Guard(Type::Number()), this_index,
+                                    this_control);
+    }
+
+    // Convert the {index} to an unsigned32 value and check if the result is
+    // equal to the original {index}.
+    if (!NumberMatcher(this_index).IsInRange(0.0, kMaxUInt32)) {
+      Node* this_index32 =
+          graph()->NewNode(simplified()->NumberToUint32(), this_index);
+      Node* check = graph()->NewNode(simplified()->NumberEqual(), this_index32,
+                                     this_index);
+      Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                      check, this_control);
+      exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+      this_control = graph()->NewNode(common()->IfTrue(), branch);
+      this_index = this_index32;
+    }
+
+    // TODO(bmeurer): We currently specialize based on elements kind. We should
+    // also be able to properly support strings and other JSObjects here.
+    ElementsKind elements_kind = access_info.elements_kind();
+
+    // Load the elements for the {receiver}.
+    Node* this_elements = this_effect = graph()->NewNode(
+        simplified()->LoadField(AccessBuilder::ForJSObjectElements()),
+        this_receiver, this_effect, this_control);
+
+    // Don't try to store to a copy-on-write backing store.
+    if (access_mode == AccessMode::kStore &&
+        IsFastSmiOrObjectElementsKind(elements_kind)) {
+      Node* this_elements_map = this_effect =
+          graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
+                           this_elements, this_effect, this_control);
+      check = graph()->NewNode(
+          simplified()->ReferenceEqual(Type::Any()), this_elements_map,
+          jsgraph()->HeapConstant(factory()->fixed_array_map()));
+      branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check,
+                                this_control);
+      exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+      this_control = graph()->NewNode(common()->IfTrue(), branch);
+    }
+
+    // Load the length of the {receiver}.
+    Node* this_length = this_effect =
+        receiver_is_jsarray
+            ? graph()->NewNode(
+                  simplified()->LoadField(
+                      AccessBuilder::ForJSArrayLength(elements_kind)),
+                  this_receiver, this_effect, this_control)
+            : graph()->NewNode(
+                  simplified()->LoadField(AccessBuilder::ForFixedArrayLength()),
+                  this_elements, this_effect, this_control);
+
+    // Check that the {index} is in the valid range for the {receiver}.
+    Node* check = graph()->NewNode(simplified()->NumberLessThan(), this_index,
+                                   this_length);
+    Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check,
+                                    this_control);
+    exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+    this_control = graph()->NewNode(common()->IfTrue(), branch);
+
+    // Compute the element access.
+    Type* element_type = Type::Any();
+    MachineType element_machine_type = MachineType::AnyTagged();
+    if (IsFastDoubleElementsKind(elements_kind)) {
+      element_type = type_cache_.kFloat64;
+      element_machine_type = MachineType::Float64();
+    } else if (IsFastSmiElementsKind(elements_kind)) {
+      element_type = type_cache_.kSmi;
+    }
+    ElementAccess element_access = {kTaggedBase, FixedArray::kHeaderSize,
+                                    element_type, element_machine_type};
+
+    // Access the actual element.
+    // TODO(bmeurer): Refactor this into separate methods or even a separate
+    // class that deals with the elements access.
+    if (access_mode == AccessMode::kLoad) {
+      // Compute the real element access type, which includes the hole in case
+      // of holey backing stores.
+      if (elements_kind == FAST_HOLEY_ELEMENTS ||
+          elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
+        element_access.type = Type::Union(
+            element_type,
+            Type::Constant(factory()->the_hole_value(), graph()->zone()),
+            graph()->zone());
+      }
+      // Perform the actual backing store access.
+      this_value = this_effect = graph()->NewNode(
+          simplified()->LoadElement(element_access), this_elements, this_index,
+          this_effect, this_control);
+      // Handle loading from holey backing stores correctly, by either mapping
+      // the hole to undefined if possible, or deoptimizing otherwise.
+      if (elements_kind == FAST_HOLEY_ELEMENTS ||
+          elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
+        // Perform the hole check on the result.
+        Node* check =
+            graph()->NewNode(simplified()->ReferenceEqual(element_access.type),
+                             this_value, jsgraph()->TheHoleConstant());
+        Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse),
+                                        check, this_control);
+        Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
+        Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
+        // Check if we are allowed to turn the hole into undefined.
+        Type* initial_holey_array_type = Type::Class(
+            handle(isolate()->get_initial_js_array_map(elements_kind)),
+            graph()->zone());
+        if (receiver_type->NowIs(initial_holey_array_type) &&
+            isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
+          // Add a code dependency on the array protector cell.
+          AssumePrototypesStable(receiver_type, native_context,
+                                 isolate()->initial_object_prototype());
+          dependencies()->AssumePropertyCell(factory()->array_protector());
+          // Turn the hole into undefined.
+          this_control =
+              graph()->NewNode(common()->Merge(2), if_true, if_false);
+          this_value = graph()->NewNode(
+              common()->Phi(MachineRepresentation::kTagged, 2),
+              jsgraph()->UndefinedConstant(), this_value, this_control);
+          element_type =
+              Type::Union(element_type, Type::Undefined(), graph()->zone());
+        } else {
+          // Deoptimize in case of the hole.
+          exit_controls.push_back(if_true);
+          this_control = if_false;
+        }
+        // Rename the result to represent the actual type (not polluted by the
+        // hole).
+        this_value = graph()->NewNode(common()->Guard(element_type), this_value,
+                                      this_control);
+      } else if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) {
+        // Perform the hole check on the result.
+        Node* check =
+            graph()->NewNode(simplified()->NumberIsHoleNaN(), this_value);
+        // Check if we are allowed to return the hole directly.
+        Type* initial_holey_array_type = Type::Class(
+            handle(isolate()->get_initial_js_array_map(elements_kind)),
+            graph()->zone());
+        if (receiver_type->NowIs(initial_holey_array_type) &&
+            isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
+          // Add a code dependency on the array protector cell.
+          AssumePrototypesStable(receiver_type, native_context,
+                                 isolate()->initial_object_prototype());
+          dependencies()->AssumePropertyCell(factory()->array_protector());
+          // Turn the hole into undefined.
+          this_value = graph()->NewNode(
+              common()->Select(MachineRepresentation::kTagged,
+                               BranchHint::kFalse),
+              check, jsgraph()->UndefinedConstant(), this_value);
+        } else {
+          // Deoptimize in case of the hole.
+          Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse),
+                                          check, this_control);
+          this_control = graph()->NewNode(common()->IfFalse(), branch);
+          exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
+        }
+      }
+    } else {
+      DCHECK_EQ(AccessMode::kStore, access_mode);
+      if (IsFastSmiElementsKind(elements_kind)) {
+        Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), this_value);
+        Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                        check, this_control);
+        exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+        this_control = graph()->NewNode(common()->IfTrue(), branch);
+        this_value = graph()->NewNode(common()->Guard(type_cache_.kSmi),
+                                      this_value, this_control);
+      } else if (IsFastDoubleElementsKind(elements_kind)) {
+        Node* check =
+            graph()->NewNode(simplified()->ObjectIsNumber(), this_value);
+        Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue),
+                                        check, this_control);
+        exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch));
+        this_control = graph()->NewNode(common()->IfTrue(), branch);
+        this_value = graph()->NewNode(common()->Guard(Type::Number()),
+                                      this_value, this_control);
+      }
+      this_effect = graph()->NewNode(simplified()->StoreElement(element_access),
+                                     this_elements, this_index, this_value,
+                                     this_effect, this_control);
+    }
+
+    // Remember the final state for this element access.
+    values.push_back(this_value);
+    effects.push_back(this_effect);
+    controls.push_back(this_control);
+  }
+
+  // Collect the fallthrough control as final "exit" control.
+  if (fallthrough_control != control) {
+    // Mark the last fallthrough branch as deferred.
+    MarkAsDeferred(fallthrough_control);
+  }
+  exit_controls.push_back(fallthrough_control);
+
+  // Generate the single "exit" point, where we get if either all map/instance
+  // type checks failed, or one of the assumptions inside one of the cases
+  // failes (i.e. failing prototype chain check).
+  // TODO(bmeurer): Consider falling back to IC here if deoptimization is
+  // disabled.
+  int const exit_control_count = static_cast<int>(exit_controls.size());
+  Node* exit_control =
+      (exit_control_count == 1)
+          ? exit_controls.front()
+          : graph()->NewNode(common()->Merge(exit_control_count),
+                             exit_control_count, &exit_controls.front());
+  Node* deoptimize =
+      graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kEager),
+                       frame_state, exit_effect, exit_control);
+  // TODO(bmeurer): This should be on the AdvancedReducer somehow.
+  NodeProperties::MergeControlToEnd(graph(), common(), deoptimize);
+
+  // Generate the final merge point for all (polymorphic) branches.
+  int const control_count = static_cast<int>(controls.size());
+  if (control_count == 0) {
+    value = effect = control = jsgraph()->Dead();
+  } else if (control_count == 1) {
+    value = values.front();
+    effect = effects.front();
+    control = controls.front();
+  } else {
+    control = graph()->NewNode(common()->Merge(control_count), control_count,
+                               &controls.front());
+    values.push_back(control);
+    value = graph()->NewNode(
+        common()->Phi(MachineRepresentation::kTagged, control_count),
+        control_count + 1, &values.front());
+    effects.push_back(control);
+    effect = graph()->NewNode(common()->EffectPhi(control_count),
+                              control_count + 1, &effects.front());
+  }
+  ReplaceWithValue(node, value, effect, control);
+  return Replace(value);
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceKeyedAccess(
+    Node* node, Node* index, Node* value, FeedbackNexus const& nexus,
+    AccessMode access_mode, LanguageMode language_mode,
+    KeyedAccessStoreMode store_mode) {
+  DCHECK(node->opcode() == IrOpcode::kJSLoadProperty ||
+         node->opcode() == IrOpcode::kJSStoreProperty);
+
+  // Extract receiver maps from the {nexus}.
+  MapHandleList receiver_maps;
+  if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange();
+  DCHECK_LT(0, receiver_maps.length());
+
+  // Optimize access for constant {index}.
+  HeapObjectMatcher mindex(index);
+  if (mindex.HasValue() && mindex.Value()->IsPrimitive()) {
+    // Keyed access requires a ToPropertyKey on the {index} first before
+    // looking up the property on the object (see ES6 section 12.3.2.1).
+    // We can only do this for non-observable ToPropertyKey invocations,
+    // so we limit the constant indices to primitives at this point.
+    Handle<Name> name;
+    if (Object::ToName(isolate(), mindex.Value()).ToHandle(&name)) {
+      uint32_t array_index;
+      if (name->AsArrayIndex(&array_index)) {
+        // Use the constant array index.
+        index = jsgraph()->Constant(static_cast<double>(array_index));
+      } else {
+        name = factory()->InternalizeName(name);
+        return ReduceNamedAccess(node, value, receiver_maps, name, access_mode,
+                                 language_mode);
+      }
+    }
+  }
+
+  // Check if we have feedback for a named access.
+  if (Name* name = nexus.FindFirstName()) {
+    return ReduceNamedAccess(node, value, receiver_maps,
+                             handle(name, isolate()), access_mode,
+                             language_mode, index);
+  }
+
+  // Try to lower the element access based on the {receiver_maps}.
+  return ReduceElementAccess(node, index, value, receiver_maps, access_mode,
+                             language_mode, store_mode);
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceJSLoadProperty(Node* node) {
+  DCHECK_EQ(IrOpcode::kJSLoadProperty, node->opcode());
+  PropertyAccess const& p = PropertyAccessOf(node->op());
+  Node* const index = NodeProperties::GetValueInput(node, 1);
+  Node* const value = jsgraph()->Dead();
+
+  // Extract receiver maps from the KEYED_LOAD_IC using the KeyedLoadICNexus.
+  if (!p.feedback().IsValid()) return NoChange();
+  KeyedLoadICNexus nexus(p.feedback().vector(), p.feedback().slot());
+
+  // Try to lower the keyed access based on the {nexus}.
+  return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kLoad,
+                           p.language_mode(), STANDARD_STORE);
+}
+
+
+Reduction JSNativeContextSpecialization::ReduceJSStoreProperty(Node* node) {
+  DCHECK_EQ(IrOpcode::kJSStoreProperty, node->opcode());
+  PropertyAccess const& p = PropertyAccessOf(node->op());
+  Node* const index = NodeProperties::GetValueInput(node, 1);
+  Node* const value = NodeProperties::GetValueInput(node, 2);
+
+  // Extract receiver maps from the KEYED_STORE_IC using the KeyedStoreICNexus.
+  if (!p.feedback().IsValid()) return NoChange();
+  KeyedStoreICNexus nexus(p.feedback().vector(), p.feedback().slot());
+
+  // Extract the keyed access store mode from the KEYED_STORE_IC.
+  KeyedAccessStoreMode store_mode = nexus.GetKeyedAccessStoreMode();
+
+  // Try to lower the keyed access based on the {nexus}.
+  return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kStore,
+                           p.language_mode(), store_mode);
+}
+
+
+void JSNativeContextSpecialization::AssumePrototypesStable(
+    Type* receiver_type, Handle<Context> native_context,
+    Handle<JSObject> holder) {
+  // Determine actual holder and perform prototype chain checks.
+  for (auto i = receiver_type->Classes(); !i.Done(); i.Advance()) {
+    Handle<Map> map = i.Current();
+    // Perform the implicit ToObject for primitives here.
+    // Implemented according to ES6 section 7.3.2 GetV (V, P).
+    Handle<JSFunction> constructor;
+    if (Map::GetConstructorFunction(map, native_context)
+            .ToHandle(&constructor)) {
+      map = handle(constructor->initial_map(), isolate());
+    }
+    dependencies()->AssumePrototypeMapsStable(map, holder);
+  }
+}
+
+
+void JSNativeContextSpecialization::MarkAsDeferred(Node* if_projection) {
+  Node* branch = NodeProperties::GetControlInput(if_projection);
+  DCHECK_EQ(IrOpcode::kBranch, branch->opcode());
+  if (if_projection->opcode() == IrOpcode::kIfTrue) {
+    NodeProperties::ChangeOp(branch, common()->Branch(BranchHint::kFalse));
+  } else {
+    DCHECK_EQ(IrOpcode::kIfFalse, if_projection->opcode());
+    NodeProperties::ChangeOp(branch, common()->Branch(BranchHint::kTrue));
+  }
+}
+
+
+MaybeHandle<Context> JSNativeContextSpecialization::GetNativeContext(
+    Node* node) {
+  Node* const context = NodeProperties::GetContextInput(node);
+  return NodeProperties::GetSpecializationNativeContext(context,
+                                                        native_context());
+}
+
+
+Graph* JSNativeContextSpecialization::graph() const {
+  return jsgraph()->graph();
+}
+
+
+Isolate* JSNativeContextSpecialization::isolate() const {
+  return jsgraph()->isolate();
+}
+
+
+Factory* JSNativeContextSpecialization::factory() const {
+  return isolate()->factory();
+}
+
+
+MachineOperatorBuilder* JSNativeContextSpecialization::machine() const {
+  return jsgraph()->machine();
+}
+
+
+CommonOperatorBuilder* JSNativeContextSpecialization::common() const {
+  return jsgraph()->common();
+}
+
+
+JSOperatorBuilder* JSNativeContextSpecialization::javascript() const {
+  return jsgraph()->javascript();
+}
+
+
+SimplifiedOperatorBuilder* JSNativeContextSpecialization::simplified() const {
+  return jsgraph()->simplified();
+}
+
+}  // namespace compiler
+}  // namespace internal
+}  // namespace v8