Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/compiler/mips/instruction-selector-mips.cc b/src/compiler/mips/instruction-selector-mips.cc
index 5e8e3b1..61cea76 100644
--- a/src/compiler/mips/instruction-selector-mips.cc
+++ b/src/compiler/mips/instruction-selector-mips.cc
@@ -2,9 +2,11 @@
 // Use of this source code is governed by a BSD-style license that can be
 // found in the LICENSE file.
 
+#include "src/base/adapters.h"
 #include "src/base/bits.h"
 #include "src/compiler/instruction-selector-impl.h"
 #include "src/compiler/node-matchers.h"
+#include "src/compiler/node-properties.h"
 
 namespace v8 {
 namespace internal {
@@ -17,12 +19,12 @@
 
 
 // Adds Mips-specific methods for generating InstructionOperands.
-class MipsOperandGenerator FINAL : public OperandGenerator {
+class MipsOperandGenerator final : public OperandGenerator {
  public:
   explicit MipsOperandGenerator(InstructionSelector* selector)
       : OperandGenerator(selector) {}
 
-  InstructionOperand* UseOperand(Node* node, InstructionCode opcode) {
+  InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
     if (CanBeImmediate(node, opcode)) {
       return UseImmediate(node);
     }
@@ -42,11 +44,10 @@
         return is_uint16(value);
       case kMipsLdc1:
       case kMipsSdc1:
-      case kCheckedLoadFloat32:
       case kCheckedLoadFloat64:
-      case kCheckedStoreFloat32:
       case kCheckedStoreFloat64:
-        return is_int16(value + kIntSize);
+        return std::numeric_limits<int16_t>::min() <= (value + kIntSize) &&
+               std::numeric_limits<int16_t>::max() >= (value + kIntSize);
       default:
         return is_int16(value);
     }
@@ -90,9 +91,9 @@
                        InstructionCode opcode, FlagsContinuation* cont) {
   MipsOperandGenerator g(selector);
   Int32BinopMatcher m(node);
-  InstructionOperand* inputs[4];
+  InstructionOperand inputs[4];
   size_t input_count = 0;
-  InstructionOperand* outputs[2];
+  InstructionOperand outputs[2];
   size_t output_count = 0;
 
   inputs[input_count++] = g.UseRegister(m.left().node());
@@ -108,14 +109,13 @@
     outputs[output_count++] = g.DefineAsRegister(cont->result());
   }
 
-  DCHECK_NE(0, input_count);
-  DCHECK_NE(0, output_count);
+  DCHECK_NE(0u, input_count);
+  DCHECK_NE(0u, output_count);
   DCHECK_GE(arraysize(inputs), input_count);
   DCHECK_GE(arraysize(outputs), output_count);
 
-  Instruction* instr = selector->Emit(cont->Encode(opcode), output_count,
-                                      outputs, input_count, inputs);
-  if (cont->IsBranch()) instr->MarkAsControl();
+  selector->Emit(cont->Encode(opcode), output_count, outputs, input_count,
+                 inputs);
 }
 
 
@@ -127,32 +127,32 @@
 
 
 void InstructionSelector::VisitLoad(Node* node) {
-  MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
-  MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
+  LoadRepresentation load_rep = LoadRepresentationOf(node->op());
   MipsOperandGenerator g(this);
   Node* base = node->InputAt(0);
   Node* index = node->InputAt(1);
 
-  ArchOpcode opcode;
-  switch (rep) {
-    case kRepFloat32:
+  ArchOpcode opcode = kArchNop;
+  switch (load_rep.representation()) {
+    case MachineRepresentation::kFloat32:
       opcode = kMipsLwc1;
       break;
-    case kRepFloat64:
+    case MachineRepresentation::kFloat64:
       opcode = kMipsLdc1;
       break;
-    case kRepBit:  // Fall through.
-    case kRepWord8:
-      opcode = typ == kTypeUint32 ? kMipsLbu : kMipsLb;
+    case MachineRepresentation::kBit:  // Fall through.
+    case MachineRepresentation::kWord8:
+      opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
       break;
-    case kRepWord16:
-      opcode = typ == kTypeUint32 ? kMipsLhu : kMipsLh;
+    case MachineRepresentation::kWord16:
+      opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh;
       break;
-    case kRepTagged:  // Fall through.
-    case kRepWord32:
+    case MachineRepresentation::kTagged:  // Fall through.
+    case MachineRepresentation::kWord32:
       opcode = kMipsLw;
       break;
-    default:
+    case MachineRepresentation::kWord64:  // Fall through.
+    case MachineRepresentation::kNone:
       UNREACHABLE();
       return;
   }
@@ -161,7 +161,7 @@
     Emit(opcode | AddressingModeField::encode(kMode_MRI),
          g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
   } else {
-    InstructionOperand* addr_reg = g.TempRegister();
+    InstructionOperand addr_reg = g.TempRegister();
     Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
          g.UseRegister(index), g.UseRegister(base));
     // Emit desired load opcode, using temp addr_reg.
@@ -177,59 +177,126 @@
   Node* index = node->InputAt(1);
   Node* value = node->InputAt(2);
 
-  StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
-  MachineType rep = RepresentationOf(store_rep.machine_type());
-  if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
-    DCHECK(rep == kRepTagged);
-    // TODO(dcarney): refactor RecordWrite function to take temp registers
-    //                and pass them here instead of using fixed regs
-    // TODO(dcarney): handle immediate indices.
-    InstructionOperand* temps[] = {g.TempRegister(t1), g.TempRegister(t2)};
-    Emit(kMipsStoreWriteBarrier, NULL, g.UseFixed(base, t0),
-         g.UseFixed(index, t1), g.UseFixed(value, t2), arraysize(temps), temps);
-    return;
-  }
-  DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
+  StoreRepresentation store_rep = StoreRepresentationOf(node->op());
+  WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
+  MachineRepresentation rep = store_rep.representation();
 
-  ArchOpcode opcode;
-  switch (rep) {
-    case kRepFloat32:
-      opcode = kMipsSwc1;
-      break;
-    case kRepFloat64:
-      opcode = kMipsSdc1;
-      break;
-    case kRepBit:  // Fall through.
-    case kRepWord8:
-      opcode = kMipsSb;
-      break;
-    case kRepWord16:
-      opcode = kMipsSh;
-      break;
-    case kRepTagged:  // Fall through.
-    case kRepWord32:
-      opcode = kMipsSw;
-      break;
-    default:
-      UNREACHABLE();
-      return;
-  }
-
-  if (g.CanBeImmediate(index, opcode)) {
-    Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
-         g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
+  // TODO(mips): I guess this could be done in a better way.
+  if (write_barrier_kind != kNoWriteBarrier) {
+    DCHECK_EQ(MachineRepresentation::kTagged, rep);
+    InstructionOperand inputs[3];
+    size_t input_count = 0;
+    inputs[input_count++] = g.UseUniqueRegister(base);
+    inputs[input_count++] = g.UseUniqueRegister(index);
+    inputs[input_count++] = (write_barrier_kind == kMapWriteBarrier)
+                                ? g.UseRegister(value)
+                                : g.UseUniqueRegister(value);
+    RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
+    switch (write_barrier_kind) {
+      case kNoWriteBarrier:
+        UNREACHABLE();
+        break;
+      case kMapWriteBarrier:
+        record_write_mode = RecordWriteMode::kValueIsMap;
+        break;
+      case kPointerWriteBarrier:
+        record_write_mode = RecordWriteMode::kValueIsPointer;
+        break;
+      case kFullWriteBarrier:
+        record_write_mode = RecordWriteMode::kValueIsAny;
+        break;
+    }
+    InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
+    size_t const temp_count = arraysize(temps);
+    InstructionCode code = kArchStoreWithWriteBarrier;
+    code |= MiscField::encode(static_cast<int>(record_write_mode));
+    Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
   } else {
-    InstructionOperand* addr_reg = g.TempRegister();
-    Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
-         g.UseRegister(index), g.UseRegister(base));
-    // Emit desired store opcode, using temp addr_reg.
-    Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL, addr_reg,
-         g.TempImmediate(0), g.UseRegister(value));
+    ArchOpcode opcode = kArchNop;
+    switch (rep) {
+      case MachineRepresentation::kFloat32:
+        opcode = kMipsSwc1;
+        break;
+      case MachineRepresentation::kFloat64:
+        opcode = kMipsSdc1;
+        break;
+      case MachineRepresentation::kBit:  // Fall through.
+      case MachineRepresentation::kWord8:
+        opcode = kMipsSb;
+        break;
+      case MachineRepresentation::kWord16:
+        opcode = kMipsSh;
+        break;
+      case MachineRepresentation::kTagged:  // Fall through.
+      case MachineRepresentation::kWord32:
+        opcode = kMipsSw;
+        break;
+      case MachineRepresentation::kWord64:  // Fall through.
+      case MachineRepresentation::kNone:
+        UNREACHABLE();
+        return;
+    }
+
+    if (g.CanBeImmediate(index, opcode)) {
+      Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
+           g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
+    } else {
+      InstructionOperand addr_reg = g.TempRegister();
+      Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
+           g.UseRegister(index), g.UseRegister(base));
+      // Emit desired store opcode, using temp addr_reg.
+      Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
+           addr_reg, g.TempImmediate(0), g.UseRegister(value));
+    }
   }
 }
 
 
 void InstructionSelector::VisitWord32And(Node* node) {
+  MipsOperandGenerator g(this);
+  Int32BinopMatcher m(node);
+  if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
+      m.right().HasValue()) {
+    uint32_t mask = m.right().Value();
+    uint32_t mask_width = base::bits::CountPopulation32(mask);
+    uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
+    if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
+      // The mask must be contiguous, and occupy the least-significant bits.
+      DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
+
+      // Select Ext for And(Shr(x, imm), mask) where the mask is in the least
+      // significant bits.
+      Int32BinopMatcher mleft(m.left().node());
+      if (mleft.right().HasValue()) {
+        // Any shift value can match; int32 shifts use `value % 32`.
+        uint32_t lsb = mleft.right().Value() & 0x1f;
+
+        // Ext cannot extract bits past the register size, however since
+        // shifting the original value would have introduced some zeros we can
+        // still use Ext with a smaller mask and the remaining bits will be
+        // zeros.
+        if (lsb + mask_width > 32) mask_width = 32 - lsb;
+
+        Emit(kMipsExt, g.DefineAsRegister(node),
+             g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
+             g.TempImmediate(mask_width));
+        return;
+      }
+      // Other cases fall through to the normal And operation.
+    }
+  }
+  if (m.right().HasValue()) {
+    uint32_t mask = m.right().Value();
+    uint32_t shift = base::bits::CountPopulation32(~mask);
+    uint32_t msb = base::bits::CountLeadingZeros32(~mask);
+    if (shift != 0 && shift != 32 && msb + shift == 32) {
+      // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
+      // and remove constant loading of invereted mask.
+      Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
+           g.TempImmediate(0), g.TempImmediate(shift));
+      return;
+    }
+  }
   VisitBinop(this, node, kMipsAnd);
 }
 
@@ -240,16 +307,81 @@
 
 
 void InstructionSelector::VisitWord32Xor(Node* node) {
+  Int32BinopMatcher m(node);
+  if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
+      m.right().Is(-1)) {
+    Int32BinopMatcher mleft(m.left().node());
+    if (!mleft.right().HasValue()) {
+      MipsOperandGenerator g(this);
+      Emit(kMipsNor, g.DefineAsRegister(node),
+           g.UseRegister(mleft.left().node()),
+           g.UseRegister(mleft.right().node()));
+      return;
+    }
+  }
+  if (m.right().Is(-1)) {
+    // Use Nor for bit negation and eliminate constant loading for xori.
+    MipsOperandGenerator g(this);
+    Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
+         g.TempImmediate(0));
+    return;
+  }
   VisitBinop(this, node, kMipsXor);
 }
 
 
 void InstructionSelector::VisitWord32Shl(Node* node) {
+  Int32BinopMatcher m(node);
+  if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
+      m.right().IsInRange(1, 31)) {
+    MipsOperandGenerator g(this);
+    Int32BinopMatcher mleft(m.left().node());
+    // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
+    // contiguous, and the shift immediate non-zero.
+    if (mleft.right().HasValue()) {
+      uint32_t mask = mleft.right().Value();
+      uint32_t mask_width = base::bits::CountPopulation32(mask);
+      uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
+      if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
+        uint32_t shift = m.right().Value();
+        DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
+        DCHECK_NE(0u, shift);
+        if ((shift + mask_width) >= 32) {
+          // If the mask is contiguous and reaches or extends beyond the top
+          // bit, only the shift is needed.
+          Emit(kMipsShl, g.DefineAsRegister(node),
+               g.UseRegister(mleft.left().node()),
+               g.UseImmediate(m.right().node()));
+          return;
+        }
+      }
+    }
+  }
   VisitRRO(this, kMipsShl, node);
 }
 
 
 void InstructionSelector::VisitWord32Shr(Node* node) {
+  Int32BinopMatcher m(node);
+  if (m.left().IsWord32And() && m.right().HasValue()) {
+    uint32_t lsb = m.right().Value() & 0x1f;
+    Int32BinopMatcher mleft(m.left().node());
+    if (mleft.right().HasValue()) {
+      // Select Ext for Shr(And(x, mask), imm) where the result of the mask is
+      // shifted into the least-significant bits.
+      uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
+      unsigned mask_width = base::bits::CountPopulation32(mask);
+      unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
+      if ((mask_msb + mask_width + lsb) == 32) {
+        MipsOperandGenerator g(this);
+        DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
+        Emit(kMipsExt, g.DefineAsRegister(node),
+             g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
+             g.TempImmediate(mask_width));
+        return;
+      }
+    }
+  }
   VisitRRO(this, kMipsShr, node);
 }
 
@@ -264,6 +396,17 @@
 }
 
 
+void InstructionSelector::VisitWord32Clz(Node* node) {
+  VisitRR(this, kMipsClz, node);
+}
+
+
+void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
+
+
+void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); }
+
+
 void InstructionSelector::VisitInt32Add(Node* node) {
   MipsOperandGenerator g(this);
 
@@ -289,7 +432,7 @@
       return;
     }
     if (base::bits::IsPowerOfTwo32(value - 1)) {
-      InstructionOperand* temp = g.TempRegister();
+      InstructionOperand temp = g.TempRegister();
       Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
            g.UseRegister(m.left().node()),
            g.TempImmediate(WhichPowerOf2(value - 1)));
@@ -298,7 +441,7 @@
       return;
     }
     if (base::bits::IsPowerOfTwo32(value + 1)) {
-      InstructionOperand* temp = g.TempRegister();
+      InstructionOperand temp = g.TempRegister();
       Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
            g.UseRegister(m.left().node()),
            g.TempImmediate(WhichPowerOf2(value + 1)));
@@ -307,15 +450,12 @@
       return;
     }
   }
-  Emit(kMipsMul, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
-       g.UseRegister(m.right().node()));
+  VisitRRR(this, kMipsMul, node);
 }
 
 
 void InstructionSelector::VisitInt32MulHigh(Node* node) {
-  MipsOperandGenerator g(this);
-  Emit(kMipsMulHigh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
-       g.UseRegister(node->InputAt(1)));
+  VisitRRR(this, kMipsMulHigh, node);
 }
 
 
@@ -329,7 +469,7 @@
 void InstructionSelector::VisitInt32Div(Node* node) {
   MipsOperandGenerator g(this);
   Int32BinopMatcher m(node);
-  Emit(kMipsDiv, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
+  Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
        g.UseRegister(m.right().node()));
 }
 
@@ -337,7 +477,7 @@
 void InstructionSelector::VisitUint32Div(Node* node) {
   MipsOperandGenerator g(this);
   Int32BinopMatcher m(node);
-  Emit(kMipsDivU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
+  Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
        g.UseRegister(m.right().node()));
 }
 
@@ -359,39 +499,130 @@
 
 
 void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
-  MipsOperandGenerator g(this);
-  Emit(kMipsCvtDS, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  VisitRR(this, kMipsCvtDS, node);
 }
 
 
 void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
-  MipsOperandGenerator g(this);
-  Emit(kMipsCvtDW, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  VisitRR(this, kMipsCvtDW, node);
 }
 
 
 void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
-  MipsOperandGenerator g(this);
-  Emit(kMipsCvtDUw, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  VisitRR(this, kMipsCvtDUw, node);
 }
 
 
 void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
   MipsOperandGenerator g(this);
-  Emit(kMipsTruncWD, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  Node* value = node->InputAt(0);
+  // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
+  // which does rounding and conversion to integer format.
+  if (CanCover(node, value)) {
+    switch (value->opcode()) {
+      case IrOpcode::kFloat64RoundDown:
+        Emit(kMipsFloorWD, g.DefineAsRegister(node),
+             g.UseRegister(value->InputAt(0)));
+        return;
+      case IrOpcode::kFloat64RoundUp:
+        Emit(kMipsCeilWD, g.DefineAsRegister(node),
+             g.UseRegister(value->InputAt(0)));
+        return;
+      case IrOpcode::kFloat64RoundTiesEven:
+        Emit(kMipsRoundWD, g.DefineAsRegister(node),
+             g.UseRegister(value->InputAt(0)));
+        return;
+      case IrOpcode::kFloat64RoundTruncate:
+        Emit(kMipsTruncWD, g.DefineAsRegister(node),
+             g.UseRegister(value->InputAt(0)));
+        return;
+      default:
+        break;
+    }
+    if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
+      Node* next = value->InputAt(0);
+      if (CanCover(value, next)) {
+        // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
+        switch (next->opcode()) {
+          case IrOpcode::kFloat32RoundDown:
+            Emit(kMipsFloorWS, g.DefineAsRegister(node),
+                 g.UseRegister(next->InputAt(0)));
+            return;
+          case IrOpcode::kFloat32RoundUp:
+            Emit(kMipsCeilWS, g.DefineAsRegister(node),
+                 g.UseRegister(next->InputAt(0)));
+            return;
+          case IrOpcode::kFloat32RoundTiesEven:
+            Emit(kMipsRoundWS, g.DefineAsRegister(node),
+                 g.UseRegister(next->InputAt(0)));
+            return;
+          case IrOpcode::kFloat32RoundTruncate:
+            Emit(kMipsTruncWS, g.DefineAsRegister(node),
+                 g.UseRegister(next->InputAt(0)));
+            return;
+          default:
+            Emit(kMipsTruncWS, g.DefineAsRegister(node),
+                 g.UseRegister(value->InputAt(0)));
+            return;
+        }
+      } else {
+        // Match float32 -> float64 -> int32 representation change path.
+        Emit(kMipsTruncWS, g.DefineAsRegister(node),
+             g.UseRegister(value->InputAt(0)));
+        return;
+      }
+    }
+  }
+  VisitRR(this, kMipsTruncWD, node);
 }
 
 
 void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
-  MipsOperandGenerator g(this);
-  Emit(kMipsTruncUwD, g.DefineAsRegister(node),
-       g.UseRegister(node->InputAt(0)));
+  VisitRR(this, kMipsTruncUwD, node);
 }
 
 
 void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
   MipsOperandGenerator g(this);
-  Emit(kMipsCvtSD, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  Node* value = node->InputAt(0);
+  // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
+  // instruction.
+  if (CanCover(node, value) &&
+      value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
+    Emit(kMipsCvtSW, g.DefineAsRegister(node),
+         g.UseRegister(value->InputAt(0)));
+    return;
+  }
+  VisitRR(this, kMipsCvtSD, node);
+}
+
+
+void InstructionSelector::VisitTruncateFloat64ToInt32(Node* node) {
+  switch (TruncationModeOf(node->op())) {
+    case TruncationMode::kJavaScript:
+      return VisitRR(this, kArchTruncateDoubleToI, node);
+    case TruncationMode::kRoundToZero:
+      return VisitRR(this, kMipsTruncWD, node);
+  }
+  UNREACHABLE();
+}
+
+
+void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
+  VisitRR(this, kMipsFloat64ExtractLowWord32, node);
+}
+
+
+void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
+  MipsOperandGenerator g(this);
+  Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node),
+       ImmediateOperand(ImmediateOperand::INLINE, 0),
+       g.UseRegister(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat32Add(Node* node) {
+  VisitRRR(this, kMipsAddS, node);
 }
 
 
@@ -400,16 +631,45 @@
 }
 
 
+void InstructionSelector::VisitFloat32Sub(Node* node) {
+  VisitRRR(this, kMipsSubS, node);
+}
+
+
 void InstructionSelector::VisitFloat64Sub(Node* node) {
+  MipsOperandGenerator g(this);
+  Float64BinopMatcher m(node);
+  if (m.left().IsMinusZero() && m.right().IsFloat64RoundDown() &&
+      CanCover(m.node(), m.right().node())) {
+    if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
+        CanCover(m.right().node(), m.right().InputAt(0))) {
+      Float64BinopMatcher mright0(m.right().InputAt(0));
+      if (mright0.left().IsMinusZero()) {
+        Emit(kMipsFloat64RoundUp, g.DefineAsRegister(node),
+             g.UseRegister(mright0.right().node()));
+        return;
+      }
+    }
+  }
   VisitRRR(this, kMipsSubD, node);
 }
 
 
+void InstructionSelector::VisitFloat32Mul(Node* node) {
+  VisitRRR(this, kMipsMulS, node);
+}
+
+
 void InstructionSelector::VisitFloat64Mul(Node* node) {
   VisitRRR(this, kMipsMulD, node);
 }
 
 
+void InstructionSelector::VisitFloat32Div(Node* node) {
+  VisitRRR(this, kMipsDivS, node);
+}
+
+
 void InstructionSelector::VisitFloat64Div(Node* node) {
   VisitRRR(this, kMipsDivD, node);
 }
@@ -422,19 +682,108 @@
 }
 
 
-void InstructionSelector::VisitFloat64Sqrt(Node* node) {
+void InstructionSelector::VisitFloat32Max(Node* node) {
   MipsOperandGenerator g(this);
-  Emit(kMipsSqrtD, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
+  if (IsMipsArchVariant(kMips32r6)) {
+    Emit(kMipsFloat32Max, g.DefineAsRegister(node),
+         g.UseUniqueRegister(node->InputAt(0)),
+         g.UseUniqueRegister(node->InputAt(1)));
+
+  } else {
+    // Reverse operands, and use same reg. for result and right operand.
+    Emit(kMipsFloat32Max, g.DefineSameAsFirst(node),
+         g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
+  }
 }
 
 
-void InstructionSelector::VisitFloat64Floor(Node* node) {
-  VisitRR(this, kMipsFloat64Floor, node);
+void InstructionSelector::VisitFloat64Max(Node* node) {
+  MipsOperandGenerator g(this);
+  if (IsMipsArchVariant(kMips32r6)) {
+    Emit(kMipsFloat64Max, g.DefineAsRegister(node),
+         g.UseUniqueRegister(node->InputAt(0)),
+         g.UseUniqueRegister(node->InputAt(1)));
+
+  } else {
+    // Reverse operands, and use same reg. for result and right operand.
+    Emit(kMipsFloat64Max, g.DefineSameAsFirst(node),
+         g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
+  }
 }
 
 
-void InstructionSelector::VisitFloat64Ceil(Node* node) {
-  VisitRR(this, kMipsFloat64Ceil, node);
+void InstructionSelector::VisitFloat32Min(Node* node) {
+  MipsOperandGenerator g(this);
+  if (IsMipsArchVariant(kMips32r6)) {
+    Emit(kMipsFloat32Min, g.DefineAsRegister(node),
+         g.UseUniqueRegister(node->InputAt(0)),
+         g.UseUniqueRegister(node->InputAt(1)));
+
+  } else {
+    // Reverse operands, and use same reg. for result and right operand.
+    Emit(kMipsFloat32Min, g.DefineSameAsFirst(node),
+         g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
+  }
+}
+
+
+void InstructionSelector::VisitFloat64Min(Node* node) {
+  MipsOperandGenerator g(this);
+  if (IsMipsArchVariant(kMips32r6)) {
+    Emit(kMipsFloat64Min, g.DefineAsRegister(node),
+         g.UseUniqueRegister(node->InputAt(0)),
+         g.UseUniqueRegister(node->InputAt(1)));
+
+  } else {
+    // Reverse operands, and use same reg. for result and right operand.
+    Emit(kMipsFloat64Min, g.DefineSameAsFirst(node),
+         g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
+  }
+}
+
+
+void InstructionSelector::VisitFloat32Abs(Node* node) {
+  VisitRR(this, kMipsAbsS, node);
+}
+
+
+void InstructionSelector::VisitFloat64Abs(Node* node) {
+  VisitRR(this, kMipsAbsD, node);
+}
+
+
+void InstructionSelector::VisitFloat32Sqrt(Node* node) {
+  VisitRR(this, kMipsSqrtS, node);
+}
+
+
+void InstructionSelector::VisitFloat64Sqrt(Node* node) {
+  VisitRR(this, kMipsSqrtD, node);
+}
+
+
+void InstructionSelector::VisitFloat32RoundDown(Node* node) {
+  VisitRR(this, kMipsFloat32RoundDown, node);
+}
+
+
+void InstructionSelector::VisitFloat64RoundDown(Node* node) {
+  VisitRR(this, kMipsFloat64RoundDown, node);
+}
+
+
+void InstructionSelector::VisitFloat32RoundUp(Node* node) {
+  VisitRR(this, kMipsFloat32RoundUp, node);
+}
+
+
+void InstructionSelector::VisitFloat64RoundUp(Node* node) {
+  VisitRR(this, kMipsFloat64RoundUp, node);
+}
+
+
+void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
+  VisitRR(this, kMipsFloat32RoundTruncate, node);
 }
 
 
@@ -448,96 +797,94 @@
 }
 
 
-void InstructionSelector::VisitCall(Node* node) {
-  MipsOperandGenerator g(this);
-  const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
-
-  FrameStateDescriptor* frame_state_descriptor = NULL;
-  if (descriptor->NeedsFrameState()) {
-    frame_state_descriptor =
-        GetFrameStateDescriptor(node->InputAt(descriptor->InputCount()));
-  }
-
-  CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
-
-  // Compute InstructionOperands for inputs and outputs.
-  InitializeCallBuffer(node, &buffer, true, false);
-  // Possibly align stack here for functions.
-  int push_count = buffer.pushed_nodes.size();
-  if (push_count > 0) {
-    Emit(kMipsStackClaim | MiscField::encode(push_count), NULL);
-  }
-  int slot = buffer.pushed_nodes.size() - 1;
-  for (NodeVectorRIter input = buffer.pushed_nodes.rbegin();
-       input != buffer.pushed_nodes.rend(); input++) {
-    Emit(kMipsStoreToStackSlot | MiscField::encode(slot), NULL,
-         g.UseRegister(*input));
-    slot--;
-  }
-
-  // Select the appropriate opcode based on the call type.
-  InstructionCode opcode;
-  switch (descriptor->kind()) {
-    case CallDescriptor::kCallCodeObject: {
-      opcode = kArchCallCodeObject;
-      break;
-    }
-    case CallDescriptor::kCallJSFunction:
-      opcode = kArchCallJSFunction;
-      break;
-    default:
-      UNREACHABLE();
-      return;
-  }
-  opcode |= MiscField::encode(descriptor->flags());
-
-  // Emit the call instruction.
-  InstructionOperand** first_output =
-      buffer.outputs.size() > 0 ? &buffer.outputs.front() : NULL;
-  Instruction* call_instr =
-      Emit(opcode, buffer.outputs.size(), first_output,
-           buffer.instruction_args.size(), &buffer.instruction_args.front());
-  call_instr->MarkAsCall();
+void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
+  VisitRR(this, kMipsFloat32RoundTiesEven, node);
 }
 
 
+void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
+  VisitRR(this, kMipsFloat64RoundTiesEven, node);
+}
+
+
+void InstructionSelector::EmitPrepareArguments(
+    ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
+    Node* node) {
+  MipsOperandGenerator g(this);
+
+  // Prepare for C function call.
+  if (descriptor->IsCFunctionCall()) {
+    Emit(kArchPrepareCallCFunction |
+             MiscField::encode(static_cast<int>(descriptor->CParameterCount())),
+         0, nullptr, 0, nullptr);
+
+    // Poke any stack arguments.
+    int slot = kCArgSlotCount;
+    for (PushParameter input : (*arguments)) {
+      Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
+           g.TempImmediate(slot << kPointerSizeLog2));
+      ++slot;
+    }
+  } else {
+    // Possibly align stack here for functions.
+    int push_count = static_cast<int>(descriptor->StackParameterCount());
+    if (push_count > 0) {
+      Emit(kMipsStackClaim, g.NoOutput(),
+           g.TempImmediate(push_count << kPointerSizeLog2));
+    }
+    for (size_t n = 0; n < arguments->size(); ++n) {
+      PushParameter input = (*arguments)[n];
+      if (input.node()) {
+        Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
+             g.TempImmediate(n << kPointerSizeLog2));
+      }
+    }
+  }
+}
+
+
+bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
+
+
 void InstructionSelector::VisitCheckedLoad(Node* node) {
-  MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
-  MachineType typ = TypeOf(OpParameter<MachineType>(node));
+  CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
   MipsOperandGenerator g(this);
   Node* const buffer = node->InputAt(0);
   Node* const offset = node->InputAt(1);
   Node* const length = node->InputAt(2);
-  ArchOpcode opcode;
-  switch (rep) {
-    case kRepWord8:
-      opcode = typ == kTypeInt32 ? kCheckedLoadInt8 : kCheckedLoadUint8;
+  ArchOpcode opcode = kArchNop;
+  switch (load_rep.representation()) {
+    case MachineRepresentation::kWord8:
+      opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
       break;
-    case kRepWord16:
-      opcode = typ == kTypeInt32 ? kCheckedLoadInt16 : kCheckedLoadUint16;
+    case MachineRepresentation::kWord16:
+      opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
       break;
-    case kRepWord32:
+    case MachineRepresentation::kWord32:
       opcode = kCheckedLoadWord32;
       break;
-    case kRepFloat32:
+    case MachineRepresentation::kFloat32:
       opcode = kCheckedLoadFloat32;
       break;
-    case kRepFloat64:
+    case MachineRepresentation::kFloat64:
       opcode = kCheckedLoadFloat64;
       break;
-    default:
+    case MachineRepresentation::kBit:     // Fall through.
+    case MachineRepresentation::kTagged:  // Fall through.
+    case MachineRepresentation::kWord64:  // Fall through.
+    case MachineRepresentation::kNone:
       UNREACHABLE();
       return;
   }
-  InstructionOperand* offset_operand = g.CanBeImmediate(offset, opcode)
-                                           ? g.UseImmediate(offset)
-                                           : g.UseRegister(offset);
+  InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
+                                          ? g.UseImmediate(offset)
+                                          : g.UseRegister(offset);
 
-  InstructionOperand* length_operand =
-      (!g.CanBeImmediate(offset, opcode)) ? g.CanBeImmediate(length, opcode)
-      ? g.UseImmediate(length)
-      : g.UseRegister(length)
-      : g.UseRegister(length);
+  InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
+                                          ? g.CanBeImmediate(length, opcode)
+                                                ? g.UseImmediate(length)
+                                                : g.UseRegister(length)
+                                          : g.UseRegister(length);
 
   Emit(opcode | AddressingModeField::encode(kMode_MRI),
        g.DefineAsRegister(node), offset_operand, length_operand,
@@ -546,45 +893,46 @@
 
 
 void InstructionSelector::VisitCheckedStore(Node* node) {
-  MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
+  MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
   MipsOperandGenerator g(this);
   Node* const buffer = node->InputAt(0);
   Node* const offset = node->InputAt(1);
   Node* const length = node->InputAt(2);
   Node* const value = node->InputAt(3);
-  ArchOpcode opcode;
+  ArchOpcode opcode = kArchNop;
   switch (rep) {
-    case kRepWord8:
+    case MachineRepresentation::kWord8:
       opcode = kCheckedStoreWord8;
       break;
-    case kRepWord16:
+    case MachineRepresentation::kWord16:
       opcode = kCheckedStoreWord16;
       break;
-    case kRepWord32:
+    case MachineRepresentation::kWord32:
       opcode = kCheckedStoreWord32;
       break;
-    case kRepFloat32:
+    case MachineRepresentation::kFloat32:
       opcode = kCheckedStoreFloat32;
       break;
-    case kRepFloat64:
+    case MachineRepresentation::kFloat64:
       opcode = kCheckedStoreFloat64;
       break;
     default:
       UNREACHABLE();
       return;
   }
-  InstructionOperand* offset_operand = g.CanBeImmediate(offset, opcode)
-                                           ? g.UseImmediate(offset)
-                                           : g.UseRegister(offset);
+  InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
+                                          ? g.UseImmediate(offset)
+                                          : g.UseRegister(offset);
 
-  InstructionOperand* length_operand =
-      (!g.CanBeImmediate(offset, opcode)) ? g.CanBeImmediate(length, opcode)
-      ? g.UseImmediate(length)
-      : g.UseRegister(length)
-      : g.UseRegister(length);
+  InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
+                                          ? g.CanBeImmediate(length, opcode)
+                                                ? g.UseImmediate(length)
+                                                : g.UseRegister(length)
+                                          : g.UseRegister(length);
 
-  Emit(opcode | AddressingModeField::encode(kMode_MRI), nullptr, offset_operand,
-       length_operand, g.UseRegister(value), g.UseRegister(buffer));
+  Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
+       offset_operand, length_operand, g.UseRegister(value),
+       g.UseRegister(buffer));
 }
 
 
@@ -592,29 +940,47 @@
 
 // Shared routine for multiple compare operations.
 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
-                         InstructionOperand* left, InstructionOperand* right,
+                         InstructionOperand left, InstructionOperand right,
                          FlagsContinuation* cont) {
   MipsOperandGenerator g(selector);
   opcode = cont->Encode(opcode);
   if (cont->IsBranch()) {
-    selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()),
-                   g.Label(cont->false_block()))->MarkAsControl();
+    selector->Emit(opcode, g.NoOutput(), left, right,
+                   g.Label(cont->true_block()), g.Label(cont->false_block()));
   } else {
     DCHECK(cont->IsSet());
-    // TODO(plind): Revisit and test this path.
     selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
   }
 }
 
 
-// Shared routine for multiple float compare operations.
+// Shared routine for multiple float32 compare operations.
+void VisitFloat32Compare(InstructionSelector* selector, Node* node,
+                         FlagsContinuation* cont) {
+  MipsOperandGenerator g(selector);
+  Float32BinopMatcher m(node);
+  InstructionOperand lhs, rhs;
+
+  lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
+                          : g.UseRegister(m.left().node());
+  rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
+                           : g.UseRegister(m.right().node());
+  VisitCompare(selector, kMipsCmpS, lhs, rhs, cont);
+}
+
+
+// Shared routine for multiple float64 compare operations.
 void VisitFloat64Compare(InstructionSelector* selector, Node* node,
                          FlagsContinuation* cont) {
   MipsOperandGenerator g(selector);
-  Node* left = node->InputAt(0);
-  Node* right = node->InputAt(1);
-  VisitCompare(selector, kMipsCmpD, g.UseRegister(left), g.UseRegister(right),
-               cont);
+  Float64BinopMatcher m(node);
+  InstructionOperand lhs, rhs;
+
+  lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
+                          : g.UseRegister(m.left().node());
+  rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
+                           : g.UseRegister(m.right().node());
+  VisitCompare(selector, kMipsCmpD, lhs, rhs, cont);
 }
 
 
@@ -628,12 +994,52 @@
 
   // Match immediates on left or right side of comparison.
   if (g.CanBeImmediate(right, opcode)) {
-    VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
-                 cont);
+    switch (cont->condition()) {
+      case kEqual:
+      case kNotEqual:
+        if (cont->IsSet()) {
+          VisitCompare(selector, opcode, g.UseRegister(left),
+                       g.UseImmediate(right), cont);
+        } else {
+          VisitCompare(selector, opcode, g.UseRegister(left),
+                       g.UseRegister(right), cont);
+        }
+        break;
+      case kSignedLessThan:
+      case kSignedGreaterThanOrEqual:
+      case kUnsignedLessThan:
+      case kUnsignedGreaterThanOrEqual:
+        VisitCompare(selector, opcode, g.UseRegister(left),
+                     g.UseImmediate(right), cont);
+        break;
+      default:
+        VisitCompare(selector, opcode, g.UseRegister(left),
+                     g.UseRegister(right), cont);
+    }
   } else if (g.CanBeImmediate(left, opcode)) {
     if (!commutative) cont->Commute();
-    VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
-                 cont);
+    switch (cont->condition()) {
+      case kEqual:
+      case kNotEqual:
+        if (cont->IsSet()) {
+          VisitCompare(selector, opcode, g.UseRegister(right),
+                       g.UseImmediate(left), cont);
+        } else {
+          VisitCompare(selector, opcode, g.UseRegister(right),
+                       g.UseRegister(left), cont);
+        }
+        break;
+      case kSignedLessThan:
+      case kSignedGreaterThanOrEqual:
+      case kUnsignedLessThan:
+      case kUnsignedGreaterThanOrEqual:
+        VisitCompare(selector, opcode, g.UseRegister(right),
+                     g.UseImmediate(left), cont);
+        break;
+      default:
+        VisitCompare(selector, opcode, g.UseRegister(right),
+                     g.UseRegister(left), cont);
+    }
   } else {
     VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
                  cont);
@@ -679,26 +1085,35 @@
       case IrOpcode::kUint32LessThanOrEqual:
         cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
         return VisitWordCompare(selector, value, cont);
+      case IrOpcode::kFloat32Equal:
+        cont->OverwriteAndNegateIfEqual(kEqual);
+        return VisitFloat32Compare(selector, value, cont);
+      case IrOpcode::kFloat32LessThan:
+        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
+        return VisitFloat32Compare(selector, value, cont);
+      case IrOpcode::kFloat32LessThanOrEqual:
+        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
+        return VisitFloat32Compare(selector, value, cont);
       case IrOpcode::kFloat64Equal:
-        cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
+        cont->OverwriteAndNegateIfEqual(kEqual);
         return VisitFloat64Compare(selector, value, cont);
       case IrOpcode::kFloat64LessThan:
-        cont->OverwriteAndNegateIfEqual(kUnorderedLessThan);
+        cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
         return VisitFloat64Compare(selector, value, cont);
       case IrOpcode::kFloat64LessThanOrEqual:
-        cont->OverwriteAndNegateIfEqual(kUnorderedLessThanOrEqual);
+        cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
         return VisitFloat64Compare(selector, value, cont);
       case IrOpcode::kProjection:
         // Check if this is the overflow output projection of an
         // <Operation>WithOverflow node.
-        if (OpParameter<size_t>(value) == 1u) {
+        if (ProjectionIndexOf(value->op()) == 1u) {
           // We cannot combine the <Operation>WithOverflow with this branch
           // unless the 0th projection (the use of the actual value of the
-          // <Operation> is either NULL, which means there's no use of the
+          // <Operation> is either nullptr, which means there's no use of the
           // actual value, or was already defined, which means it is scheduled
           // *AFTER* this branch).
           Node* const node = value->InputAt(0);
-          Node* const result = node->FindProjection(0);
+          Node* const result = NodeProperties::FindProjection(node, 0);
           if (!result || selector->IsDefined(result)) {
             switch (node->opcode()) {
               case IrOpcode::kInt32AddWithOverflow:
@@ -724,11 +1139,10 @@
   // Continuation could not be combined with a compare, emit compare against 0.
   MipsOperandGenerator g(selector);
   InstructionCode const opcode = cont->Encode(kMipsCmp);
-  InstructionOperand* const value_operand = g.UseRegister(value);
+  InstructionOperand const value_operand = g.UseRegister(value);
   if (cont->IsBranch()) {
-    selector->Emit(opcode, nullptr, value_operand, g.TempImmediate(0),
-                   g.Label(cont->true_block()),
-                   g.Label(cont->false_block()))->MarkAsControl();
+    selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
+                   g.Label(cont->true_block()), g.Label(cont->false_block()));
   } else {
     selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand,
                    g.TempImmediate(0));
@@ -743,6 +1157,34 @@
 }
 
 
+void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
+  MipsOperandGenerator g(this);
+  InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
+
+  // Emit either ArchTableSwitch or ArchLookupSwitch.
+  size_t table_space_cost = 9 + sw.value_range;
+  size_t table_time_cost = 3;
+  size_t lookup_space_cost = 2 + 2 * sw.case_count;
+  size_t lookup_time_cost = sw.case_count;
+  if (sw.case_count > 0 &&
+      table_space_cost + 3 * table_time_cost <=
+          lookup_space_cost + 3 * lookup_time_cost &&
+      sw.min_value > std::numeric_limits<int32_t>::min()) {
+    InstructionOperand index_operand = value_operand;
+    if (sw.min_value) {
+      index_operand = g.TempRegister();
+      Emit(kMipsSub, index_operand, value_operand,
+           g.TempImmediate(sw.min_value));
+    }
+    // Generate a table lookup.
+    return EmitTableSwitch(sw, index_operand);
+  }
+
+  // Generate a sequence of conditional jumps.
+  return EmitLookupSwitch(sw, value_operand);
+}
+
+
 void InstructionSelector::VisitWord32Equal(Node* const node) {
   FlagsContinuation cont(kEqual, node);
   Int32BinopMatcher m(node);
@@ -778,7 +1220,7 @@
 
 
 void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
-  if (Node* ovf = node->FindProjection(1)) {
+  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
     FlagsContinuation cont(kOverflow, ovf);
     return VisitBinop(this, node, kMipsAddOvf, &cont);
   }
@@ -788,7 +1230,7 @@
 
 
 void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
-  if (Node* ovf = node->FindProjection(1)) {
+  if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
     FlagsContinuation cont(kOverflow, ovf);
     return VisitBinop(this, node, kMipsSubOvf, &cont);
   }
@@ -797,33 +1239,96 @@
 }
 
 
+void InstructionSelector::VisitFloat32Equal(Node* node) {
+  FlagsContinuation cont(kEqual, node);
+  VisitFloat32Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat32LessThan(Node* node) {
+  FlagsContinuation cont(kUnsignedLessThan, node);
+  VisitFloat32Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
+  FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
+  VisitFloat32Compare(this, node, &cont);
+}
+
+
 void InstructionSelector::VisitFloat64Equal(Node* node) {
-  FlagsContinuation cont(kUnorderedEqual, node);
+  FlagsContinuation cont(kEqual, node);
   VisitFloat64Compare(this, node, &cont);
 }
 
 
 void InstructionSelector::VisitFloat64LessThan(Node* node) {
-  FlagsContinuation cont(kUnorderedLessThan, node);
+  FlagsContinuation cont(kUnsignedLessThan, node);
   VisitFloat64Compare(this, node, &cont);
 }
 
 
 void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
-  FlagsContinuation cont(kUnorderedLessThanOrEqual, node);
+  FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
   VisitFloat64Compare(this, node, &cont);
 }
 
 
+void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
+  MipsOperandGenerator g(this);
+  Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node),
+       g.UseRegister(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
+  MipsOperandGenerator g(this);
+  Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node),
+       g.UseRegister(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
+  MipsOperandGenerator g(this);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+  Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node),
+       g.UseRegister(left), g.UseRegister(right));
+}
+
+
+void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
+  MipsOperandGenerator g(this);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+  Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node),
+       g.UseRegister(left), g.UseRegister(right));
+}
+
+
 // static
 MachineOperatorBuilder::Flags
 InstructionSelector::SupportedMachineOperatorFlags() {
-  if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
-    return MachineOperatorBuilder::kFloat64Floor |
-           MachineOperatorBuilder::kFloat64Ceil |
-           MachineOperatorBuilder::kFloat64RoundTruncate;
+  MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
+  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
+      IsFp64Mode()) {
+    flags |= MachineOperatorBuilder::kFloat64RoundDown |
+             MachineOperatorBuilder::kFloat64RoundUp |
+             MachineOperatorBuilder::kFloat64RoundTruncate |
+             MachineOperatorBuilder::kFloat64RoundTiesEven;
   }
-  return MachineOperatorBuilder::kNoFlags;
+  return flags | MachineOperatorBuilder::kInt32DivIsSafe |
+         MachineOperatorBuilder::kUint32DivIsSafe |
+         MachineOperatorBuilder::kWord32ShiftIsSafe |
+         MachineOperatorBuilder::kFloat64Min |
+         MachineOperatorBuilder::kFloat64Max |
+         MachineOperatorBuilder::kFloat32Min |
+         MachineOperatorBuilder::kFloat32Max |
+         MachineOperatorBuilder::kFloat32RoundDown |
+         MachineOperatorBuilder::kFloat32RoundUp |
+         MachineOperatorBuilder::kFloat32RoundTruncate |
+         MachineOperatorBuilder::kFloat32RoundTiesEven;
 }
 
 }  // namespace compiler