Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/crankshaft/arm/lithium-codegen-arm.cc b/src/crankshaft/arm/lithium-codegen-arm.cc
new file mode 100644
index 0000000..2bd0788
--- /dev/null
+++ b/src/crankshaft/arm/lithium-codegen-arm.cc
@@ -0,0 +1,5607 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/arm/lithium-codegen-arm.h"
+
+#include "src/base/bits.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/crankshaft/arm/lithium-gap-resolver-arm.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator final : public CallWrapper {
+ public:
+  SafepointGenerator(LCodeGen* codegen,
+                     LPointerMap* pointers,
+                     Safepoint::DeoptMode mode)
+      : codegen_(codegen),
+        pointers_(pointers),
+        deopt_mode_(mode) { }
+  virtual ~SafepointGenerator() {}
+
+  void BeforeCall(int call_size) const override {}
+
+  void AfterCall() const override {
+    codegen_->RecordSafepoint(pointers_, deopt_mode_);
+  }
+
+ private:
+  LCodeGen* codegen_;
+  LPointerMap* pointers_;
+  Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+  LPhase phase("Z_Code generation", chunk());
+  DCHECK(is_unused());
+  status_ = GENERATING;
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // NONE indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done in GeneratePrologue).
+  FrameScope frame_scope(masm_, StackFrame::NONE);
+
+  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
+         GenerateJumpTable() && GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+  DCHECK(is_done());
+  code->set_stack_slots(GetStackSlotCount());
+  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+  PopulateDeoptimizationData(code);
+}
+
+
+void LCodeGen::SaveCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Save clobbered callee double registers");
+  int count = 0;
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  while (!save_iterator.Done()) {
+    __ vstr(DoubleRegister::from_code(save_iterator.Current()),
+            MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Restore clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  int count = 0;
+  while (!save_iterator.Done()) {
+    __ vldr(DoubleRegister::from_code(save_iterator.Current()),
+            MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+  DCHECK(is_generating());
+
+  if (info()->IsOptimizing()) {
+    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+    if (strlen(FLAG_stop_at) > 0 &&
+        info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+      __ stop("stop_at");
+    }
+#endif
+
+    // r1: Callee's JS function.
+    // cp: Callee's context.
+    // pp: Callee's constant pool pointer (if enabled)
+    // fp: Caller's frame pointer.
+    // lr: Caller's pc.
+  }
+
+  info()->set_prologue_offset(masm_->pc_offset());
+  if (NeedsEagerFrame()) {
+    if (info()->IsStub()) {
+      __ StubPrologue();
+    } else {
+      __ Prologue(info()->GeneratePreagedPrologue());
+    }
+    frame_is_built_ = true;
+  }
+
+  // Reserve space for the stack slots needed by the code.
+  int slots = GetStackSlotCount();
+  if (slots > 0) {
+    if (FLAG_debug_code) {
+      __ sub(sp,  sp, Operand(slots * kPointerSize));
+      __ push(r0);
+      __ push(r1);
+      __ add(r0, sp, Operand(slots *  kPointerSize));
+      __ mov(r1, Operand(kSlotsZapValue));
+      Label loop;
+      __ bind(&loop);
+      __ sub(r0, r0, Operand(kPointerSize));
+      __ str(r1, MemOperand(r0, 2 * kPointerSize));
+      __ cmp(r0, sp);
+      __ b(ne, &loop);
+      __ pop(r1);
+      __ pop(r0);
+    } else {
+      __ sub(sp,  sp, Operand(slots * kPointerSize));
+    }
+  }
+
+  if (info()->saves_caller_doubles()) {
+    SaveCallerDoubles();
+  }
+  return !is_aborted();
+}
+
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+  Comment(";;; Prologue begin");
+
+  // Possibly allocate a local context.
+  if (info()->scope()->num_heap_slots() > 0) {
+    Comment(";;; Allocate local context");
+    bool need_write_barrier = true;
+    // Argument to NewContext is the function, which is in r1.
+    int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+    if (info()->scope()->is_script_scope()) {
+      __ push(r1);
+      __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      deopt_mode = Safepoint::kLazyDeopt;
+    } else if (slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(isolate(), slots);
+      __ CallStub(&stub);
+      // Result of FastNewContextStub is always in new space.
+      need_write_barrier = false;
+    } else {
+      __ push(r1);
+      __ CallRuntime(Runtime::kNewFunctionContext);
+    }
+    RecordSafepoint(deopt_mode);
+
+    // Context is returned in both r0 and cp.  It replaces the context
+    // passed to us.  It's saved in the stack and kept live in cp.
+    __ mov(cp, r0);
+    __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+            (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ ldr(r0, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ str(r0, target);
+        // Update the write barrier. This clobbers r3 and r0.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(
+              cp,
+              target.offset(),
+              r0,
+              r3,
+              GetLinkRegisterState(),
+              kSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, r0, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+    Comment(";;; End allocate local context");
+  }
+
+  Comment(";;; Prologue end");
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+  // Generate the OSR entry prologue at the first unknown OSR value, or if there
+  // are none, at the OSR entrypoint instruction.
+  if (osr_pc_offset_ >= 0) return;
+
+  osr_pc_offset_ = masm()->pc_offset();
+
+  // Adjust the frame size, subsuming the unoptimized frame into the
+  // optimized frame.
+  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+  DCHECK(slots >= 0);
+  __ sub(sp, sp, Operand(slots * kPointerSize));
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+  if (instr->IsCall()) {
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+  }
+  if (!instr->IsLazyBailout() && !instr->IsGap()) {
+    safepoints_.BumpLastLazySafepointIndex();
+  }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+  DCHECK(is_generating());
+  if (deferred_.length() > 0) {
+    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+      LDeferredCode* code = deferred_[i];
+
+      HValue* value =
+          instructions_->at(code->instruction_index())->hydrogen_value();
+      RecordAndWritePosition(
+          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+      Comment(";;; <@%d,#%d> "
+              "-------------------- Deferred %s --------------------",
+              code->instruction_index(),
+              code->instr()->hydrogen_value()->id(),
+              code->instr()->Mnemonic());
+      __ bind(code->entry());
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Build frame");
+        DCHECK(!frame_is_built_);
+        DCHECK(info()->IsStub());
+        frame_is_built_ = true;
+        __ PushFixedFrame();
+        __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
+        __ push(scratch0());
+        __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+        Comment(";;; Deferred code");
+      }
+      code->Generate();
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Destroy frame");
+        DCHECK(frame_is_built_);
+        __ pop(ip);
+        __ PopFixedFrame();
+        frame_is_built_ = false;
+      }
+      __ jmp(code->exit());
+    }
+  }
+
+  // Force constant pool emission at the end of the deferred code to make
+  // sure that no constant pools are emitted after.
+  masm()->CheckConstPool(true, false);
+
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateJumpTable() {
+  // Check that the jump table is accessible from everywhere in the function
+  // code, i.e. that offsets to the table can be encoded in the 24bit signed
+  // immediate of a branch instruction.
+  // To simplify we consider the code size from the first instruction to the
+  // end of the jump table. We also don't consider the pc load delta.
+  // Each entry in the jump table generates one instruction and inlines one
+  // 32bit data after it.
+  if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
+                jump_table_.length() * 7)) {
+    Abort(kGeneratedCodeIsTooLarge);
+  }
+
+  if (jump_table_.length() > 0) {
+    Label needs_frame, call_deopt_entry;
+
+    Comment(";;; -------------------- Jump table --------------------");
+    Address base = jump_table_[0].address;
+
+    Register entry_offset = scratch0();
+
+    int length = jump_table_.length();
+    for (int i = 0; i < length; i++) {
+      Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
+      __ bind(&table_entry->label);
+
+      DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
+      Address entry = table_entry->address;
+      DeoptComment(table_entry->deopt_info);
+
+      // Second-level deopt table entries are contiguous and small, so instead
+      // of loading the full, absolute address of each one, load an immediate
+      // offset which will be added to the base address later.
+      __ mov(entry_offset, Operand(entry - base));
+
+      if (table_entry->needs_frame) {
+        DCHECK(!info()->saves_caller_doubles());
+        Comment(";;; call deopt with frame");
+        __ PushFixedFrame();
+        __ bl(&needs_frame);
+      } else {
+        __ bl(&call_deopt_entry);
+      }
+      info()->LogDeoptCallPosition(masm()->pc_offset(),
+                                   table_entry->deopt_info.inlining_id);
+      masm()->CheckConstPool(false, false);
+    }
+
+    if (needs_frame.is_linked()) {
+      __ bind(&needs_frame);
+      // This variant of deopt can only be used with stubs. Since we don't
+      // have a function pointer to install in the stack frame that we're
+      // building, install a special marker there instead.
+      DCHECK(info()->IsStub());
+      __ mov(ip, Operand(Smi::FromInt(StackFrame::STUB)));
+      __ push(ip);
+      __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+    }
+
+    Comment(";;; call deopt");
+    __ bind(&call_deopt_entry);
+
+    if (info()->saves_caller_doubles()) {
+      DCHECK(info()->IsStub());
+      RestoreCallerDoubles();
+    }
+
+    // Add the base address to the offset previously loaded in entry_offset.
+    __ add(entry_offset, entry_offset,
+           Operand(ExternalReference::ForDeoptEntry(base)));
+    __ bx(entry_offset);
+  }
+
+  // Force constant pool emission at the end of the deopt jump table to make
+  // sure that no constant pools are emitted after.
+  masm()->CheckConstPool(true, false);
+
+  // The deoptimization jump table is the last part of the instruction
+  // sequence. Mark the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+  DCHECK(is_done());
+  safepoints_.Emit(masm(), GetStackSlotCount());
+  return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int code) const {
+  return Register::from_code(code);
+}
+
+
+DwVfpRegister LCodeGen::ToDoubleRegister(int code) const {
+  return DwVfpRegister::from_code(code);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+  DCHECK(op->IsRegister());
+  return ToRegister(op->index());
+}
+
+
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
+  if (op->IsRegister()) {
+    return ToRegister(op->index());
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk_->LookupConstant(const_op);
+    Handle<Object> literal = constant->handle(isolate());
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      AllowDeferredHandleDereference get_number;
+      DCHECK(literal->IsNumber());
+      __ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
+    } else if (r.IsDouble()) {
+      Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
+    } else {
+      DCHECK(r.IsSmiOrTagged());
+      __ Move(scratch, literal);
+    }
+    return scratch;
+  } else if (op->IsStackSlot()) {
+    __ ldr(scratch, ToMemOperand(op));
+    return scratch;
+  }
+  UNREACHABLE();
+  return scratch;
+}
+
+
+DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+  DCHECK(op->IsDoubleRegister());
+  return ToDoubleRegister(op->index());
+}
+
+
+DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
+                                               SwVfpRegister flt_scratch,
+                                               DwVfpRegister dbl_scratch) {
+  if (op->IsDoubleRegister()) {
+    return ToDoubleRegister(op->index());
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk_->LookupConstant(const_op);
+    Handle<Object> literal = constant->handle(isolate());
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      DCHECK(literal->IsNumber());
+      __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
+      __ vmov(flt_scratch, ip);
+      __ vcvt_f64_s32(dbl_scratch, flt_scratch);
+      return dbl_scratch;
+    } else if (r.IsDouble()) {
+      Abort(kUnsupportedDoubleImmediate);
+    } else if (r.IsTagged()) {
+      Abort(kUnsupportedTaggedImmediate);
+    }
+  } else if (op->IsStackSlot()) {
+    // TODO(regis): Why is vldr not taking a MemOperand?
+    // __ vldr(dbl_scratch, ToMemOperand(op));
+    MemOperand mem_op = ToMemOperand(op);
+    __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
+    return dbl_scratch;
+  }
+  UNREACHABLE();
+  return dbl_scratch;
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+  return constant->handle(isolate());
+}
+
+
+bool LCodeGen::IsInteger32(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+  return ToRepresentation(op, Representation::Integer32());
+}
+
+
+int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
+                                   const Representation& r) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  int32_t value = constant->Integer32Value();
+  if (r.IsInteger32()) return value;
+  DCHECK(r.IsSmiOrTagged());
+  return reinterpret_cast<int32_t>(Smi::FromInt(value));
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return Smi::FromInt(constant->Integer32Value());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasDoubleValue());
+  return constant->DoubleValue();
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+  if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk()->LookupConstant(const_op);
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsSmi()) {
+      DCHECK(constant->HasSmiValue());
+      return Operand(Smi::FromInt(constant->Integer32Value()));
+    } else if (r.IsInteger32()) {
+      DCHECK(constant->HasInteger32Value());
+      return Operand(constant->Integer32Value());
+    } else if (r.IsDouble()) {
+      Abort(kToOperandUnsupportedDoubleImmediate);
+    }
+    DCHECK(r.IsTagged());
+    return Operand(constant->handle(isolate()));
+  } else if (op->IsRegister()) {
+    return Operand(ToRegister(op));
+  } else if (op->IsDoubleRegister()) {
+    Abort(kToOperandIsDoubleRegisterUnimplemented);
+    return Operand::Zero();
+  }
+  // Stack slots not implemented, use ToMemOperand instead.
+  UNREACHABLE();
+  return Operand::Zero();
+}
+
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+  DCHECK(index < 0);
+  return -(index + 1) * kPointerSize;
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+  DCHECK(!op->IsRegister());
+  DCHECK(!op->IsDoubleRegister());
+  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return MemOperand(fp, StackSlotOffset(op->index()));
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
+  }
+}
+
+
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
+  DCHECK(op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(
+        sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
+  }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+                                Translation* translation) {
+  if (environment == NULL) return;
+
+  // The translation includes one command per value in the environment.
+  int translation_size = environment->translation_size();
+
+  WriteTranslation(environment->outer(), translation);
+  WriteTranslationFrame(environment, translation);
+
+  int object_index = 0;
+  int dematerialized_index = 0;
+  for (int i = 0; i < translation_size; ++i) {
+    LOperand* value = environment->values()->at(i);
+    AddToTranslation(
+        environment, translation, value, environment->HasTaggedValueAt(i),
+        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
+  }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+                                Translation* translation,
+                                LOperand* op,
+                                bool is_tagged,
+                                bool is_uint32,
+                                int* object_index_pointer,
+                                int* dematerialized_index_pointer) {
+  if (op == LEnvironment::materialization_marker()) {
+    int object_index = (*object_index_pointer)++;
+    if (environment->ObjectIsDuplicateAt(object_index)) {
+      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+      translation->DuplicateObject(dupe_of);
+      return;
+    }
+    int object_length = environment->ObjectLengthAt(object_index);
+    if (environment->ObjectIsArgumentsAt(object_index)) {
+      translation->BeginArgumentsObject(object_length);
+    } else {
+      translation->BeginCapturedObject(object_length);
+    }
+    int dematerialized_index = *dematerialized_index_pointer;
+    int env_offset = environment->translation_size() + dematerialized_index;
+    *dematerialized_index_pointer += object_length;
+    for (int i = 0; i < object_length; ++i) {
+      LOperand* value = environment->values()->at(env_offset + i);
+      AddToTranslation(environment,
+                       translation,
+                       value,
+                       environment->HasTaggedValueAt(env_offset + i),
+                       environment->HasUint32ValueAt(env_offset + i),
+                       object_index_pointer,
+                       dematerialized_index_pointer);
+    }
+    return;
+  }
+
+  if (op->IsStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    if (is_tagged) {
+      translation->StoreStackSlot(index);
+    } else if (is_uint32) {
+      translation->StoreUint32StackSlot(index);
+    } else {
+      translation->StoreInt32StackSlot(index);
+    }
+  } else if (op->IsDoubleStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    translation->StoreDoubleStackSlot(index);
+  } else if (op->IsRegister()) {
+    Register reg = ToRegister(op);
+    if (is_tagged) {
+      translation->StoreRegister(reg);
+    } else if (is_uint32) {
+      translation->StoreUint32Register(reg);
+    } else {
+      translation->StoreInt32Register(reg);
+    }
+  } else if (op->IsDoubleRegister()) {
+    DoubleRegister reg = ToDoubleRegister(op);
+    translation->StoreDoubleRegister(reg);
+  } else if (op->IsConstantOperand()) {
+    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+    translation->StoreLiteral(src_index);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) {
+  int size = masm()->CallSize(code, mode);
+  if (code->kind() == Code::BINARY_OP_IC ||
+      code->kind() == Code::COMPARE_IC) {
+    size += Assembler::kInstrSize;  // extra nop() added in CallCodeGeneric.
+  }
+  return size;
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+                        RelocInfo::Mode mode,
+                        LInstruction* instr,
+                        TargetAddressStorageMode storage_mode) {
+  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+                               RelocInfo::Mode mode,
+                               LInstruction* instr,
+                               SafepointMode safepoint_mode,
+                               TargetAddressStorageMode storage_mode) {
+  DCHECK(instr != NULL);
+  // Block literal pool emission to ensure nop indicating no inlined smi code
+  // is in the correct position.
+  Assembler::BlockConstPoolScope block_const_pool(masm());
+  __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
+  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+
+  // Signal that we don't inline smi code before these stubs in the
+  // optimizing code generator.
+  if (code->kind() == Code::BINARY_OP_IC ||
+      code->kind() == Code::COMPARE_IC) {
+    __ nop();
+  }
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+                           int num_arguments,
+                           LInstruction* instr,
+                           SaveFPRegsMode save_doubles) {
+  DCHECK(instr != NULL);
+
+  __ CallRuntime(function, num_arguments, save_doubles);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+  if (context->IsRegister()) {
+    __ Move(cp, ToRegister(context));
+  } else if (context->IsStackSlot()) {
+    __ ldr(cp, ToMemOperand(context));
+  } else if (context->IsConstantOperand()) {
+    HConstant* constant =
+        chunk_->LookupConstant(LConstantOperand::cast(context));
+    __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+                                       int argc,
+                                       LInstruction* instr,
+                                       LOperand* context) {
+  LoadContextFromDeferred(context);
+  __ CallRuntimeSaveDoubles(id);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                                    Safepoint::DeoptMode mode) {
+  environment->set_has_been_used();
+  if (!environment->HasBeenRegistered()) {
+    // Physical stack frame layout:
+    // -x ............. -4  0 ..................................... y
+    // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+    // Layout of the environment:
+    // 0 ..................................................... size-1
+    // [parameters] [locals] [expression stack including arguments]
+
+    // Layout of the translation:
+    // 0 ........................................................ size - 1 + 4
+    // [expression stack including arguments] [locals] [4 words] [parameters]
+    // |>------------  translation_size ------------<|
+
+    int frame_count = 0;
+    int jsframe_count = 0;
+    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+      ++frame_count;
+      if (e->frame_type() == JS_FUNCTION) {
+        ++jsframe_count;
+      }
+    }
+    Translation translation(&translations_, frame_count, jsframe_count, zone());
+    WriteTranslation(environment, &translation);
+    int deoptimization_index = deoptimizations_.length();
+    int pc_offset = masm()->pc_offset();
+    environment->Register(deoptimization_index,
+                          translation.index(),
+                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+    deoptimizations_.Add(environment, zone());
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            Deoptimizer::BailoutType bailout_type) {
+  LEnvironment* environment = instr->environment();
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+  DCHECK(environment->HasBeenRegistered());
+  int id = environment->deoptimization_index();
+  Address entry =
+      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+  if (entry == NULL) {
+    Abort(kBailoutWasNotPrepared);
+    return;
+  }
+
+  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+    Register scratch = scratch0();
+    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+
+    // Store the condition on the stack if necessary
+    if (condition != al) {
+      __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
+      __ mov(scratch, Operand(1), LeaveCC, condition);
+      __ push(scratch);
+    }
+
+    __ push(r1);
+    __ mov(scratch, Operand(count));
+    __ ldr(r1, MemOperand(scratch));
+    __ sub(r1, r1, Operand(1), SetCC);
+    __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
+    __ str(r1, MemOperand(scratch));
+    __ pop(r1);
+
+    if (condition != al) {
+      // Clean up the stack before the deoptimizer call
+      __ pop(scratch);
+    }
+
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
+
+    // 'Restore' the condition in a slightly hacky way. (It would be better
+    // to use 'msr' and 'mrs' instructions here, but they are not supported by
+    // our ARM simulator).
+    if (condition != al) {
+      condition = ne;
+      __ cmp(scratch, Operand::Zero());
+    }
+  }
+
+  if (info()->ShouldTrapOnDeopt()) {
+    __ stop("trap_on_deopt", condition);
+  }
+
+  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+  DCHECK(info()->IsStub() || frame_is_built_);
+  // Go through jump table if we need to handle condition, build frame, or
+  // restore caller doubles.
+  if (condition == al && frame_is_built_ &&
+      !info()->saves_caller_doubles()) {
+    DeoptComment(deopt_info);
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+  } else {
+    Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
+                                            !frame_is_built_);
+    // We often have several deopts to the same entry, reuse the last
+    // jump entry if this is the case.
+    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+        jump_table_.is_empty() ||
+        !table_entry.IsEquivalentTo(jump_table_.last())) {
+      jump_table_.Add(table_entry, zone());
+    }
+    __ b(condition, &jump_table_.last().label);
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason) {
+  Deoptimizer::BailoutType bailout_type = info()->IsStub()
+      ? Deoptimizer::LAZY
+      : Deoptimizer::EAGER;
+  DeoptimizeIf(condition, instr, deopt_reason, bailout_type);
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(
+    LInstruction* instr, SafepointMode safepoint_mode) {
+  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+  } else {
+    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(
+    LPointerMap* pointers,
+    Safepoint::Kind kind,
+    int arguments,
+    Safepoint::DeoptMode deopt_mode) {
+  DCHECK(expected_safepoint_kind_ == kind);
+
+  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+      kind, arguments, deopt_mode);
+  for (int i = 0; i < operands->length(); i++) {
+    LOperand* pointer = operands->at(i);
+    if (pointer->IsStackSlot()) {
+      safepoint.DefinePointerSlot(pointer->index(), zone());
+    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+    }
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+  LPointerMap empty_pointers(zone());
+  RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+                                            int arguments,
+                                            Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(
+      pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+  if (position == RelocInfo::kNoPosition) return;
+  masm()->positions_recorder()->RecordPosition(position);
+  masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+static const char* LabelType(LLabel* label) {
+  if (label->is_loop_header()) return " (loop header)";
+  if (label->is_osr_entry()) return " (OSR entry)";
+  return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+          current_instruction_,
+          label->hydrogen_value()->id(),
+          label->block_id(),
+          LabelType(label));
+  __ bind(label->label());
+  current_block_ = label->block_id();
+  DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+  resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+  for (int i = LGap::FIRST_INNER_POSITION;
+       i <= LGap::LAST_INNER_POSITION;
+       i++) {
+    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+    LParallelMove* move = gap->GetParallelMove(inner_pos);
+    if (move != NULL) DoParallelMove(move);
+  }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+  DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+  // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->result()).is(r0));
+  switch (instr->hydrogen()->major_key()) {
+    case CodeStub::RegExpExec: {
+      RegExpExecStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    case CodeStub::SubString: {
+      SubStringStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister(instr->result())));
+
+  // Theoretically, a variation of the branch-free code for integer division by
+  // a power of 2 (calculating the remainder via an additional multiplication
+  // (which gets simplified to an 'and') and subtraction) should be faster, and
+  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+  // indicate that positive dividends are heavily favored, so the branching
+  // version performs better.
+  HMod* hmod = instr->hydrogen();
+  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+  Label dividend_is_not_negative, done;
+  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+    __ cmp(dividend, Operand::Zero());
+    __ b(pl, &dividend_is_not_negative);
+    // Note that this is correct even for kMinInt operands.
+    __ rsb(dividend, dividend, Operand::Zero());
+    __ and_(dividend, dividend, Operand(mask));
+    __ rsb(dividend, dividend, Operand::Zero(), SetCC);
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+    __ b(&done);
+  }
+
+  __ bind(&dividend_is_not_negative);
+  __ and_(dividend, dividend, Operand(mask));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  __ mov(ip, Operand(Abs(divisor)));
+  __ smull(result, ip, result, ip);
+  __ sub(result, dividend, result, SetCC);
+
+  // Check for negative zero.
+  HMod* hmod = instr->hydrogen();
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label remainder_not_zero;
+    __ b(ne, &remainder_not_zero);
+    __ cmp(dividend, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    __ bind(&remainder_not_zero);
+  }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+  HMod* hmod = instr->hydrogen();
+  if (CpuFeatures::IsSupported(SUDIV)) {
+    CpuFeatureScope scope(masm(), SUDIV);
+
+    Register left_reg = ToRegister(instr->left());
+    Register right_reg = ToRegister(instr->right());
+    Register result_reg = ToRegister(instr->result());
+
+    Label done;
+    // Check for x % 0, sdiv might signal an exception. We have to deopt in this
+    // case because we can't return a NaN.
+    if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+      __ cmp(right_reg, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+    }
+
+    // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
+    // want. We have to deopt if we care about -0, because we can't return that.
+    if (hmod->CheckFlag(HValue::kCanOverflow)) {
+      Label no_overflow_possible;
+      __ cmp(left_reg, Operand(kMinInt));
+      __ b(ne, &no_overflow_possible);
+      __ cmp(right_reg, Operand(-1));
+      if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+        DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+      } else {
+        __ b(ne, &no_overflow_possible);
+        __ mov(result_reg, Operand::Zero());
+        __ jmp(&done);
+      }
+      __ bind(&no_overflow_possible);
+    }
+
+    // For 'r3 = r1 % r2' we can have the following ARM code:
+    //   sdiv r3, r1, r2
+    //   mls r3, r3, r2, r1
+
+    __ sdiv(result_reg, left_reg, right_reg);
+    __ Mls(result_reg, result_reg, right_reg, left_reg);
+
+    // If we care about -0, test if the dividend is <0 and the result is 0.
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ cmp(result_reg, Operand::Zero());
+      __ b(ne, &done);
+      __ cmp(left_reg, Operand::Zero());
+      DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    }
+    __ bind(&done);
+
+  } else {
+    // General case, without any SDIV support.
+    Register left_reg = ToRegister(instr->left());
+    Register right_reg = ToRegister(instr->right());
+    Register result_reg = ToRegister(instr->result());
+    Register scratch = scratch0();
+    DCHECK(!scratch.is(left_reg));
+    DCHECK(!scratch.is(right_reg));
+    DCHECK(!scratch.is(result_reg));
+    DwVfpRegister dividend = ToDoubleRegister(instr->temp());
+    DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
+    DCHECK(!divisor.is(dividend));
+    LowDwVfpRegister quotient = double_scratch0();
+    DCHECK(!quotient.is(dividend));
+    DCHECK(!quotient.is(divisor));
+
+    Label done;
+    // Check for x % 0, we have to deopt in this case because we can't return a
+    // NaN.
+    if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+      __ cmp(right_reg, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+    }
+
+    __ Move(result_reg, left_reg);
+    // Load the arguments in VFP registers. The divisor value is preloaded
+    // before. Be careful that 'right_reg' is only live on entry.
+    // TODO(svenpanne) The last comments seems to be wrong nowadays.
+    __ vmov(double_scratch0().low(), left_reg);
+    __ vcvt_f64_s32(dividend, double_scratch0().low());
+    __ vmov(double_scratch0().low(), right_reg);
+    __ vcvt_f64_s32(divisor, double_scratch0().low());
+
+    // We do not care about the sign of the divisor. Note that we still handle
+    // the kMinInt % -1 case correctly, though.
+    __ vabs(divisor, divisor);
+    // Compute the quotient and round it to a 32bit integer.
+    __ vdiv(quotient, dividend, divisor);
+    __ vcvt_s32_f64(quotient.low(), quotient);
+    __ vcvt_f64_s32(quotient, quotient.low());
+
+    // Compute the remainder in result.
+    __ vmul(double_scratch0(), divisor, quotient);
+    __ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
+    __ vmov(scratch, double_scratch0().low());
+    __ sub(result_reg, left_reg, scratch, SetCC);
+
+    // If we care about -0, test if the dividend is <0 and the result is 0.
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ b(ne, &done);
+      __ cmp(left_reg, Operand::Zero());
+      DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+    }
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+  DCHECK(!result.is(dividend));
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ cmp(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+    __ cmp(dividend, Operand(kMinInt));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+  // Deoptimize if remainder will not be 0.
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+      divisor != 1 && divisor != -1) {
+    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+    __ tst(dividend, Operand(mask));
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+
+  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
+    __ rsb(result, dividend, Operand(0));
+    return;
+  }
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (shift == 0) {
+    __ mov(result, dividend);
+  } else if (shift == 1) {
+    __ add(result, dividend, Operand(dividend, LSR, 31));
+  } else {
+    __ mov(result, Operand(dividend, ASR, 31));
+    __ add(result, dividend, Operand(result, LSR, 32 - shift));
+  }
+  if (shift > 0) __ mov(result, Operand(result, ASR, shift));
+  if (divisor < 0) __ rsb(result, result, Operand(0));
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ cmp(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ rsb(result, result, Operand::Zero());
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    __ mov(ip, Operand(divisor));
+    __ smull(scratch0(), ip, result, ip);
+    __ sub(scratch0(), scratch0(), dividend, SetCC);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register divisor = ToRegister(instr->divisor());
+  Register result = ToRegister(instr->result());
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ cmp(divisor, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label positive;
+    if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
+      // Do the test only if it hadn't be done above.
+      __ cmp(divisor, Operand::Zero());
+    }
+    __ b(pl, &positive);
+    __ cmp(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    __ bind(&positive);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+      (!CpuFeatures::IsSupported(SUDIV) ||
+       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
+    // We don't need to check for overflow when truncating with sdiv
+    // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
+    __ cmp(dividend, Operand(kMinInt));
+    __ cmp(divisor, Operand(-1), eq);
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+
+  if (CpuFeatures::IsSupported(SUDIV)) {
+    CpuFeatureScope scope(masm(), SUDIV);
+    __ sdiv(result, dividend, divisor);
+  } else {
+    DoubleRegister vleft = ToDoubleRegister(instr->temp());
+    DoubleRegister vright = double_scratch0();
+    __ vmov(double_scratch0().low(), dividend);
+    __ vcvt_f64_s32(vleft, double_scratch0().low());
+    __ vmov(double_scratch0().low(), divisor);
+    __ vcvt_f64_s32(vright, double_scratch0().low());
+    __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
+    __ vcvt_s32_f64(double_scratch0().low(), vleft);
+    __ vmov(result, double_scratch0().low());
+  }
+
+  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    // Compute remainder and deopt if it's not zero.
+    Register remainder = scratch0();
+    __ Mls(remainder, result, divisor, dividend);
+    __ cmp(remainder, Operand::Zero());
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+
+void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
+  DwVfpRegister addend = ToDoubleRegister(instr->addend());
+  DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
+  DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+
+  // This is computed in-place.
+  DCHECK(addend.is(ToDoubleRegister(instr->result())));
+
+  __ vmla(addend, multiplier, multiplicand);
+}
+
+
+void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
+  DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
+  DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
+  DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+
+  // This is computed in-place.
+  DCHECK(minuend.is(ToDoubleRegister(instr->result())));
+
+  __ vmls(minuend, multiplier, multiplicand);
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  Register result = ToRegister(instr->result());
+  int32_t divisor = instr->divisor();
+
+  // If the divisor is 1, return the dividend.
+  if (divisor == 1) {
+    __ Move(result, dividend);
+    return;
+  }
+
+  // If the divisor is positive, things are easy: There can be no deopts and we
+  // can simply do an arithmetic right shift.
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (divisor > 1) {
+    __ mov(result, Operand(dividend, ASR, shift));
+    return;
+  }
+
+  // If the divisor is negative, we have to negate and handle edge cases.
+  __ rsb(result, dividend, Operand::Zero(), SetCC);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Dividing by -1 is basically negation, unless we overflow.
+  if (divisor == -1) {
+    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+      DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+    }
+    return;
+  }
+
+  // If the negation could not overflow, simply shifting is OK.
+  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+    __ mov(result, Operand(result, ASR, shift));
+    return;
+  }
+
+  __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs);
+  __ mov(result, Operand(result, ASR, shift), LeaveCC, vc);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HMathFloorOfDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ cmp(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Easy case: We need no dynamic check for the dividend and the flooring
+  // division is the same as the truncating division.
+  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+    __ TruncatingDiv(result, dividend, Abs(divisor));
+    if (divisor < 0) __ rsb(result, result, Operand::Zero());
+    return;
+  }
+
+  // In the general case we may need to adjust before and after the truncating
+  // division to get a flooring division.
+  Register temp = ToRegister(instr->temp());
+  DCHECK(!temp.is(dividend) && !temp.is(result));
+  Label needs_adjustment, done;
+  __ cmp(dividend, Operand::Zero());
+  __ b(divisor > 0 ? lt : gt, &needs_adjustment);
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ rsb(result, result, Operand::Zero());
+  __ jmp(&done);
+  __ bind(&needs_adjustment);
+  __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
+  __ TruncatingDiv(result, temp, Abs(divisor));
+  if (divisor < 0) __ rsb(result, result, Operand::Zero());
+  __ sub(result, result, Operand(1));
+  __ bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register left = ToRegister(instr->dividend());
+  Register right = ToRegister(instr->divisor());
+  Register result = ToRegister(instr->result());
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ cmp(right, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label positive;
+    if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
+      // Do the test only if it hadn't be done above.
+      __ cmp(right, Operand::Zero());
+    }
+    __ b(pl, &positive);
+    __ cmp(left, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    __ bind(&positive);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+      (!CpuFeatures::IsSupported(SUDIV) ||
+       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
+    // We don't need to check for overflow when truncating with sdiv
+    // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
+    __ cmp(left, Operand(kMinInt));
+    __ cmp(right, Operand(-1), eq);
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+
+  if (CpuFeatures::IsSupported(SUDIV)) {
+    CpuFeatureScope scope(masm(), SUDIV);
+    __ sdiv(result, left, right);
+  } else {
+    DoubleRegister vleft = ToDoubleRegister(instr->temp());
+    DoubleRegister vright = double_scratch0();
+    __ vmov(double_scratch0().low(), left);
+    __ vcvt_f64_s32(vleft, double_scratch0().low());
+    __ vmov(double_scratch0().low(), right);
+    __ vcvt_f64_s32(vright, double_scratch0().low());
+    __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
+    __ vcvt_s32_f64(double_scratch0().low(), vleft);
+    __ vmov(result, double_scratch0().low());
+  }
+
+  Label done;
+  Register remainder = scratch0();
+  __ Mls(remainder, result, right, left);
+  __ cmp(remainder, Operand::Zero());
+  __ b(eq, &done);
+  __ eor(remainder, remainder, Operand(right));
+  __ add(result, result, Operand(remainder, ASR, 31));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+  Register result = ToRegister(instr->result());
+  // Note that result may alias left.
+  Register left = ToRegister(instr->left());
+  LOperand* right_op = instr->right();
+
+  bool bailout_on_minus_zero =
+    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+  bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (right_op->IsConstantOperand()) {
+    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+    if (bailout_on_minus_zero && (constant < 0)) {
+      // The case of a null constant will be handled separately.
+      // If constant is negative and left is null, the result should be -0.
+      __ cmp(left, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+
+    switch (constant) {
+      case -1:
+        if (overflow) {
+          __ rsb(result, left, Operand::Zero(), SetCC);
+          DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+        } else {
+          __ rsb(result, left, Operand::Zero());
+        }
+        break;
+      case 0:
+        if (bailout_on_minus_zero) {
+          // If left is strictly negative and the constant is null, the
+          // result is -0. Deoptimize if required, otherwise return 0.
+          __ cmp(left, Operand::Zero());
+          DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+        }
+        __ mov(result, Operand::Zero());
+        break;
+      case 1:
+        __ Move(result, left);
+        break;
+      default:
+        // Multiplying by powers of two and powers of two plus or minus
+        // one can be done faster with shifted operands.
+        // For other constants we emit standard code.
+        int32_t mask = constant >> 31;
+        uint32_t constant_abs = (constant + mask) ^ mask;
+
+        if (base::bits::IsPowerOfTwo32(constant_abs)) {
+          int32_t shift = WhichPowerOf2(constant_abs);
+          __ mov(result, Operand(left, LSL, shift));
+          // Correct the sign of the result is the constant is negative.
+          if (constant < 0)  __ rsb(result, result, Operand::Zero());
+        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs - 1);
+          __ add(result, left, Operand(left, LSL, shift));
+          // Correct the sign of the result is the constant is negative.
+          if (constant < 0)  __ rsb(result, result, Operand::Zero());
+        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs + 1);
+          __ rsb(result, left, Operand(left, LSL, shift));
+          // Correct the sign of the result is the constant is negative.
+          if (constant < 0)  __ rsb(result, result, Operand::Zero());
+        } else {
+          // Generate standard code.
+          __ mov(ip, Operand(constant));
+          __ mul(result, left, ip);
+        }
+    }
+
+  } else {
+    DCHECK(right_op->IsRegister());
+    Register right = ToRegister(right_op);
+
+    if (overflow) {
+      Register scratch = scratch0();
+      // scratch:result = left * right.
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiUntag(result, left);
+        __ smull(result, scratch, result, right);
+      } else {
+        __ smull(result, scratch, left, right);
+      }
+      __ cmp(scratch, Operand(result, ASR, 31));
+      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+    } else {
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiUntag(result, left);
+        __ mul(result, result, right);
+      } else {
+        __ mul(result, left, right);
+      }
+    }
+
+    if (bailout_on_minus_zero) {
+      Label done;
+      __ teq(left, Operand(right));
+      __ b(pl, &done);
+      // Bail out if the result is minus zero.
+      __ cmp(result, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+  LOperand* left_op = instr->left();
+  LOperand* right_op = instr->right();
+  DCHECK(left_op->IsRegister());
+  Register left = ToRegister(left_op);
+  Register result = ToRegister(instr->result());
+  Operand right(no_reg);
+
+  if (right_op->IsStackSlot()) {
+    right = Operand(EmitLoadRegister(right_op, ip));
+  } else {
+    DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
+    right = ToOperand(right_op);
+  }
+
+  switch (instr->op()) {
+    case Token::BIT_AND:
+      __ and_(result, left, right);
+      break;
+    case Token::BIT_OR:
+      __ orr(result, left, right);
+      break;
+    case Token::BIT_XOR:
+      if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
+        __ mvn(result, Operand(left));
+      } else {
+        __ eor(result, left, right);
+      }
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
+  // result may alias either of them.
+  LOperand* right_op = instr->right();
+  Register left = ToRegister(instr->left());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  if (right_op->IsRegister()) {
+    // Mask the right_op operand.
+    __ and_(scratch, ToRegister(right_op), Operand(0x1F));
+    switch (instr->op()) {
+      case Token::ROR:
+        __ mov(result, Operand(left, ROR, scratch));
+        break;
+      case Token::SAR:
+        __ mov(result, Operand(left, ASR, scratch));
+        break;
+      case Token::SHR:
+        if (instr->can_deopt()) {
+          __ mov(result, Operand(left, LSR, scratch), SetCC);
+          DeoptimizeIf(mi, instr, Deoptimizer::kNegativeValue);
+        } else {
+          __ mov(result, Operand(left, LSR, scratch));
+        }
+        break;
+      case Token::SHL:
+        __ mov(result, Operand(left, LSL, scratch));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    // Mask the right_op operand.
+    int value = ToInteger32(LConstantOperand::cast(right_op));
+    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+    switch (instr->op()) {
+      case Token::ROR:
+          if (shift_count != 0) {
+          __ mov(result, Operand(left, ROR, shift_count));
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SAR:
+        if (shift_count != 0) {
+          __ mov(result, Operand(left, ASR, shift_count));
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHR:
+        if (shift_count != 0) {
+          __ mov(result, Operand(left, LSR, shift_count));
+        } else {
+          if (instr->can_deopt()) {
+            __ tst(left, Operand(0x80000000));
+            DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
+          }
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHL:
+        if (shift_count != 0) {
+          if (instr->hydrogen_value()->representation().IsSmi() &&
+              instr->can_deopt()) {
+            if (shift_count != 1) {
+              __ mov(result, Operand(left, LSL, shift_count - 1));
+              __ SmiTag(result, result, SetCC);
+            } else {
+              __ SmiTag(result, left, SetCC);
+            }
+            DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+          } else {
+            __ mov(result, Operand(left, LSL, shift_count));
+          }
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  SBit set_cond = can_overflow ? SetCC : LeaveCC;
+
+  if (right->IsStackSlot()) {
+    Register right_reg = EmitLoadRegister(right, ip);
+    __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
+  } else {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
+  }
+
+  if (can_overflow) {
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoRSubI(LRSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  SBit set_cond = can_overflow ? SetCC : LeaveCC;
+
+  if (right->IsStackSlot()) {
+    Register right_reg = EmitLoadRegister(right, ip);
+    __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
+  } else {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
+  }
+
+  if (can_overflow) {
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+  __ mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+  __ mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+  DCHECK(instr->result()->IsDoubleRegister());
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+#if V8_HOST_ARCH_IA32
+  // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator
+  // builds.
+  uint64_t bits = instr->bits();
+  if ((bits & V8_UINT64_C(0x7FF8000000000000)) ==
+      V8_UINT64_C(0x7FF0000000000000)) {
+    uint32_t lo = static_cast<uint32_t>(bits);
+    uint32_t hi = static_cast<uint32_t>(bits >> 32);
+    __ mov(ip, Operand(lo));
+    __ mov(scratch0(), Operand(hi));
+    __ vmov(result, ip, scratch0());
+    return;
+  }
+#endif
+  double v = instr->value();
+  __ Vmov(result, v, scratch0());
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+  __ mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+  Handle<Object> object = instr->value(isolate());
+  AllowDeferredHandleDereference smi_check;
+  __ Move(ToRegister(instr->result()), object);
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+  Register result = ToRegister(instr->result());
+  Register map = ToRegister(instr->value());
+  __ EnumLength(result, map);
+}
+
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string,
+                                           LOperand* index,
+                                           String::Encoding encoding) {
+  if (index->IsConstantOperand()) {
+    int offset = ToInteger32(LConstantOperand::cast(index));
+    if (encoding == String::TWO_BYTE_ENCODING) {
+      offset *= kUC16Size;
+    }
+    STATIC_ASSERT(kCharSize == 1);
+    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+  }
+  Register scratch = scratch0();
+  DCHECK(!scratch.is(string));
+  DCHECK(!scratch.is(ToRegister(index)));
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ add(scratch, string, Operand(ToRegister(index)));
+  } else {
+    STATIC_ASSERT(kUC16Size == 2);
+    __ add(scratch, string, Operand(ToRegister(index), LSL, 1));
+  }
+  return FieldMemOperand(scratch, SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+
+  if (FLAG_debug_code) {
+    Register scratch = scratch0();
+    __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
+    __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+    __ and_(scratch, scratch,
+            Operand(kStringRepresentationMask | kStringEncodingMask));
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
+                            ? one_byte_seq_type : two_byte_seq_type));
+    __ Check(eq, kUnexpectedStringType);
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ ldrb(result, operand);
+  } else {
+    __ ldrh(result, operand);
+  }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register value = ToRegister(instr->value());
+
+  if (FLAG_debug_code) {
+    Register index = ToRegister(instr->index());
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    int encoding_mask =
+        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+        ? one_byte_seq_type : two_byte_seq_type;
+    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ strb(value, operand);
+  } else {
+    __ strh(value, operand);
+  }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  SBit set_cond = can_overflow ? SetCC : LeaveCC;
+
+  if (right->IsStackSlot()) {
+    Register right_reg = EmitLoadRegister(right, ip);
+    __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
+  } else {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
+  }
+
+  if (can_overflow) {
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  HMathMinMax::Operation operation = instr->hydrogen()->operation();
+  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+    Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
+    Register left_reg = ToRegister(left);
+    Operand right_op = (right->IsRegister() || right->IsConstantOperand())
+        ? ToOperand(right)
+        : Operand(EmitLoadRegister(right, ip));
+    Register result_reg = ToRegister(instr->result());
+    __ cmp(left_reg, right_op);
+    __ Move(result_reg, left_reg, condition);
+    __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
+  } else {
+    DCHECK(instr->hydrogen()->representation().IsDouble());
+    DwVfpRegister left_reg = ToDoubleRegister(left);
+    DwVfpRegister right_reg = ToDoubleRegister(right);
+    DwVfpRegister result_reg = ToDoubleRegister(instr->result());
+    Label result_is_nan, return_left, return_right, check_zero, done;
+    __ VFPCompareAndSetFlags(left_reg, right_reg);
+    if (operation == HMathMinMax::kMathMin) {
+      __ b(mi, &return_left);
+      __ b(gt, &return_right);
+    } else {
+      __ b(mi, &return_right);
+      __ b(gt, &return_left);
+    }
+    __ b(vs, &result_is_nan);
+    // Left equals right => check for -0.
+    __ VFPCompareAndSetFlags(left_reg, 0.0);
+    if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
+      __ b(ne, &done);  // left == right != 0.
+    } else {
+      __ b(ne, &return_left);  // left == right != 0.
+    }
+    // At this point, both left and right are either 0 or -0.
+    if (operation == HMathMinMax::kMathMin) {
+      // We could use a single 'vorr' instruction here if we had NEON support.
+      __ vneg(left_reg, left_reg);
+      __ vsub(result_reg, left_reg, right_reg);
+      __ vneg(result_reg, result_reg);
+    } else {
+      // Since we operate on +0 and/or -0, vadd and vand have the same effect;
+      // the decision for vadd is easy because vand is a NEON instruction.
+      __ vadd(result_reg, left_reg, right_reg);
+    }
+    __ b(&done);
+
+    __ bind(&result_is_nan);
+    __ vadd(result_reg, left_reg, right_reg);
+    __ b(&done);
+
+    __ bind(&return_right);
+    __ Move(result_reg, right_reg);
+    if (!left_reg.is(result_reg)) {
+      __ b(&done);
+    }
+
+    __ bind(&return_left);
+    __ Move(result_reg, left_reg);
+
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+  DwVfpRegister left = ToDoubleRegister(instr->left());
+  DwVfpRegister right = ToDoubleRegister(instr->right());
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+  switch (instr->op()) {
+    case Token::ADD:
+      __ vadd(result, left, right);
+      break;
+    case Token::SUB:
+      __ vsub(result, left, right);
+      break;
+    case Token::MUL:
+      __ vmul(result, left, right);
+      break;
+    case Token::DIV:
+      __ vdiv(result, left, right);
+      break;
+    case Token::MOD: {
+      __ PrepareCallCFunction(0, 2, scratch0());
+      __ MovToFloatParameters(left, right);
+      __ CallCFunction(
+          ExternalReference::mod_two_doubles_operation(isolate()),
+          0, 2);
+      // Move the result in the double result register.
+      __ MovFromFloatResult(result);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r1));
+  DCHECK(ToRegister(instr->right()).is(r0));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
+  // Block literal pool emission to ensure nop indicating no inlined smi code
+  // is in the correct position.
+  Assembler::BlockConstPoolScope block_const_pool(masm());
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+
+  if (right_block == left_block || condition == al) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
+  } else if (right_block == next_block) {
+    __ b(condition, chunk_->GetAssemblyLabel(left_block));
+  } else {
+    __ b(condition, chunk_->GetAssemblyLabel(left_block));
+    __ b(chunk_->GetAssemblyLabel(right_block));
+  }
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition) {
+  int true_block = instr->TrueDestination(chunk_);
+  __ b(condition, chunk_->GetAssemblyLabel(true_block));
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
+  int false_block = instr->FalseDestination(chunk_);
+  __ b(condition, chunk_->GetAssemblyLabel(false_block));
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+  __ stop("LBreak");
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsInteger32() || r.IsSmi()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    __ cmp(reg, Operand::Zero());
+    EmitBranch(instr, ne);
+  } else if (r.IsDouble()) {
+    DCHECK(!info()->IsStub());
+    DwVfpRegister reg = ToDoubleRegister(instr->value());
+    // Test the double value. Zero and NaN are false.
+    __ VFPCompareAndSetFlags(reg, 0.0);
+    __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN -> false)
+    EmitBranch(instr, ne);
+  } else {
+    DCHECK(r.IsTagged());
+    Register reg = ToRegister(instr->value());
+    HType type = instr->hydrogen()->value()->type();
+    if (type.IsBoolean()) {
+      DCHECK(!info()->IsStub());
+      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+      EmitBranch(instr, eq);
+    } else if (type.IsSmi()) {
+      DCHECK(!info()->IsStub());
+      __ cmp(reg, Operand::Zero());
+      EmitBranch(instr, ne);
+    } else if (type.IsJSArray()) {
+      DCHECK(!info()->IsStub());
+      EmitBranch(instr, al);
+    } else if (type.IsHeapNumber()) {
+      DCHECK(!info()->IsStub());
+      DwVfpRegister dbl_scratch = double_scratch0();
+      __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+      // Test the double value. Zero and NaN are false.
+      __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
+      __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN)
+      EmitBranch(instr, ne);
+    } else if (type.IsString()) {
+      DCHECK(!info()->IsStub());
+      __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
+      __ cmp(ip, Operand::Zero());
+      EmitBranch(instr, ne);
+    } else {
+      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+      // Avoid deopts in the case where we've never executed this path before.
+      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+        // undefined -> false.
+        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
+        __ b(eq, instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+        // Boolean -> its value.
+        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+        __ b(eq, instr->TrueLabel(chunk_));
+        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
+        __ b(eq, instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+        // 'null' -> false.
+        __ CompareRoot(reg, Heap::kNullValueRootIndex);
+        __ b(eq, instr->FalseLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::SMI)) {
+        // Smis: 0 -> false, all other -> true.
+        __ cmp(reg, Operand::Zero());
+        __ b(eq, instr->FalseLabel(chunk_));
+        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+      } else if (expected.NeedsMap()) {
+        // If we need a map later and have a Smi -> deopt.
+        __ SmiTst(reg);
+        DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
+      }
+
+      const Register map = scratch0();
+      if (expected.NeedsMap()) {
+        __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
+
+        if (expected.CanBeUndetectable()) {
+          // Undetectable -> false.
+          __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
+          __ tst(ip, Operand(1 << Map::kIsUndetectable));
+          __ b(ne, instr->FalseLabel(chunk_));
+        }
+      }
+
+      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+        // spec object -> true.
+        __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
+        __ b(ge, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::STRING)) {
+        // String value -> false iff empty.
+        Label not_string;
+        __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
+        __ b(ge, &not_string);
+        __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
+        __ cmp(ip, Operand::Zero());
+        __ b(ne, instr->TrueLabel(chunk_));
+        __ b(instr->FalseLabel(chunk_));
+        __ bind(&not_string);
+      }
+
+      if (expected.Contains(ToBooleanStub::SYMBOL)) {
+        // Symbol value -> true.
+        __ CompareInstanceType(map, ip, SYMBOL_TYPE);
+        __ b(eq, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
+        // SIMD value -> true.
+        __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
+        __ b(eq, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+        // heap number -> false iff +0, -0, or NaN.
+        DwVfpRegister dbl_scratch = double_scratch0();
+        Label not_heap_number;
+        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
+        __ b(ne, &not_heap_number);
+        __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+        __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
+        __ cmp(r0, r0, vs);  // NaN -> false.
+        __ b(eq, instr->FalseLabel(chunk_));  // +0, -0 -> false.
+        __ b(instr->TrueLabel(chunk_));
+        __ bind(&not_heap_number);
+      }
+
+      if (!expected.IsGeneric()) {
+        // We've seen something for the first time -> deopt.
+        // This can only happen if we are not generic already.
+        DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
+      }
+    }
+  }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+  if (!IsNextEmittedBlock(block)) {
+    __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
+  }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+  EmitGoto(instr->block_id());
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+  Condition cond = kNoCondition;
+  switch (op) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      cond = eq;
+      break;
+    case Token::NE:
+    case Token::NE_STRICT:
+      cond = ne;
+      break;
+    case Token::LT:
+      cond = is_unsigned ? lo : lt;
+      break;
+    case Token::GT:
+      cond = is_unsigned ? hi : gt;
+      break;
+    case Token::LTE:
+      cond = is_unsigned ? ls : le;
+      break;
+    case Token::GTE:
+      cond = is_unsigned ? hs : ge;
+      break;
+    case Token::IN:
+    case Token::INSTANCEOF:
+    default:
+      UNREACHABLE();
+  }
+  return cond;
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  bool is_unsigned =
+      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+  Condition cond = TokenToCondition(instr->op(), is_unsigned);
+
+  if (left->IsConstantOperand() && right->IsConstantOperand()) {
+    // We can statically evaluate the comparison.
+    double left_val = ToDouble(LConstantOperand::cast(left));
+    double right_val = ToDouble(LConstantOperand::cast(right));
+    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+    EmitGoto(next_block);
+  } else {
+    if (instr->is_double()) {
+      // Compare left and right operands as doubles and load the
+      // resulting flags into the normal status register.
+      __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
+      // If a NaN is involved, i.e. the result is unordered (V set),
+      // jump to false block label.
+      __ b(vs, instr->FalseLabel(chunk_));
+    } else {
+      if (right->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(right));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          __ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
+        } else {
+          __ cmp(ToRegister(left), Operand(value));
+        }
+      } else if (left->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(left));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          __ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
+        } else {
+          __ cmp(ToRegister(right), Operand(value));
+        }
+        // We commuted the operands, so commute the condition.
+        cond = CommuteCondition(cond);
+      } else {
+        __ cmp(ToRegister(left), ToRegister(right));
+      }
+    }
+    EmitBranch(instr, cond);
+  }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+  Register left = ToRegister(instr->left());
+  Register right = ToRegister(instr->right());
+
+  __ cmp(left, Operand(right));
+  EmitBranch(instr, eq);
+}
+
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+  if (instr->hydrogen()->representation().IsTagged()) {
+    Register input_reg = ToRegister(instr->object());
+    __ mov(ip, Operand(factory()->the_hole_value()));
+    __ cmp(input_reg, ip);
+    EmitBranch(instr, eq);
+    return;
+  }
+
+  DwVfpRegister input_reg = ToDoubleRegister(instr->object());
+  __ VFPCompareAndSetFlags(input_reg, input_reg);
+  EmitFalseBranch(instr, vc);
+
+  Register scratch = scratch0();
+  __ VmovHigh(scratch, input_reg);
+  __ cmp(scratch, Operand(kHoleNanUpper32));
+  EmitBranch(instr, eq);
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+  Representation rep = instr->hydrogen()->value()->representation();
+  DCHECK(!rep.IsInteger32());
+  Register scratch = ToRegister(instr->temp());
+
+  if (rep.IsDouble()) {
+    DwVfpRegister value = ToDoubleRegister(instr->value());
+    __ VFPCompareAndSetFlags(value, 0.0);
+    EmitFalseBranch(instr, ne);
+    __ VmovHigh(scratch, value);
+    __ cmp(scratch, Operand(0x80000000));
+  } else {
+    Register value = ToRegister(instr->value());
+    __ CheckMap(value,
+                scratch,
+                Heap::kHeapNumberMapRootIndex,
+                instr->FalseLabel(chunk()),
+                DO_SMI_CHECK);
+    __ ldr(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
+    __ ldr(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset));
+    __ cmp(scratch, Operand(0x80000000));
+    __ cmp(ip, Operand(0x00000000), eq);
+  }
+  EmitBranch(instr, eq);
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+                                 Register temp1,
+                                 Label* is_not_string,
+                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
+  if (check_needed == INLINE_SMI_CHECK) {
+    __ JumpIfSmi(input, is_not_string);
+  }
+  __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
+
+  return lt;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp1 = ToRegister(instr->temp());
+
+  SmiCheck check_needed =
+      instr->hydrogen()->value()->type().IsHeapObject()
+          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+  Condition true_cond =
+      EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
+
+  EmitBranch(instr, true_cond);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+  Register input_reg = EmitLoadRegister(instr->value(), ip);
+  __ SmiTst(input_reg);
+  EmitBranch(instr, eq);
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+  __ tst(temp, Operand(1 << Map::kIsUndetectable));
+  EmitBranch(instr, ne);
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+  switch (op) {
+    case Token::EQ_STRICT:
+    case Token::EQ:
+      return eq;
+    case Token::LT:
+      return lt;
+    case Token::GT:
+      return gt;
+    case Token::LTE:
+      return le;
+    case Token::GTE:
+      return ge;
+    default:
+      UNREACHABLE();
+      return kNoCondition;
+  }
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r1));
+  DCHECK(ToRegister(instr->right()).is(r0));
+
+  Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+  __ cmp(r0, Operand::Zero());
+
+  EmitBranch(instr, ComputeCompareCondition(instr->op()));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == FIRST_TYPE) return to;
+  DCHECK(from == to || to == LAST_TYPE);
+  return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == to) return eq;
+  if (to == LAST_TYPE) return hs;
+  if (from == FIRST_TYPE) return ls;
+  UNREACHABLE();
+  return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+  Register scratch = scratch0();
+  Register input = ToRegister(instr->value());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+
+  __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
+  EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ AssertString(input);
+
+  __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
+  __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+    LHasCachedArrayIndexAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ ldr(scratch,
+         FieldMemOperand(input, String::kHashFieldOffset));
+  __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
+  EmitBranch(instr, eq);
+}
+
+
+// Branches to a label or falls through with the answer in flags.  Trashes
+// the temp registers, but not the input.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+                               Label* is_false,
+                               Handle<String>class_name,
+                               Register input,
+                               Register temp,
+                               Register temp2) {
+  DCHECK(!input.is(temp));
+  DCHECK(!input.is(temp2));
+  DCHECK(!temp.is(temp2));
+
+  __ JumpIfSmi(input, is_false);
+
+  __ CompareObjectType(input, temp, temp2, JS_FUNCTION_TYPE);
+  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+    __ b(eq, is_true);
+  } else {
+    __ b(eq, is_false);
+  }
+
+  // Check if the constructor in the map is a function.
+  Register instance_type = ip;
+  __ GetMapConstructor(temp, temp, temp2, instance_type);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ cmp(instance_type, Operand(JS_FUNCTION_TYPE));
+  if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
+    __ b(ne, is_true);
+  } else {
+    __ b(ne, is_false);
+  }
+
+  // temp now contains the constructor function. Grab the
+  // instance class name from there.
+  __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+  __ ldr(temp, FieldMemOperand(temp,
+                               SharedFunctionInfo::kInstanceClassNameOffset));
+  // The class name we are testing against is internalized since it's a literal.
+  // The name in the constructor is internalized because of the way the context
+  // is booted.  This routine isn't expected to work for random API-created
+  // classes and it doesn't have to because you can't access it with natives
+  // syntax.  Since both sides are internalized it is sufficient to use an
+  // identity comparison.
+  __ cmp(temp, Operand(class_name));
+  // End with the answer in flags.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = scratch0();
+  Register temp2 = ToRegister(instr->temp());
+  Handle<String> class_name = instr->hydrogen()->class_name();
+
+  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+      class_name, input, temp, temp2);
+
+  EmitBranch(instr, eq);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
+  __ cmp(temp, Operand(instr->map()));
+  EmitBranch(instr, eq);
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+  DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+  DCHECK(ToRegister(instr->result()).is(r0));
+  InstanceOfStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+    LHasInPrototypeChainAndBranch* instr) {
+  Register const object = ToRegister(instr->object());
+  Register const object_map = scratch0();
+  Register const object_instance_type = ip;
+  Register const object_prototype = object_map;
+  Register const prototype = ToRegister(instr->prototype());
+
+  // The {object} must be a spec object.  It's sufficient to know that {object}
+  // is not a smi, since all other non-spec objects have {null} prototypes and
+  // will be ruled out below.
+  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+    __ SmiTst(object);
+    EmitFalseBranch(instr, eq);
+  }
+
+  // Loop through the {object}s prototype chain looking for the {prototype}.
+  __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
+  Label loop;
+  __ bind(&loop);
+
+  // Deoptimize if the object needs to be access checked.
+  __ ldrb(object_instance_type,
+          FieldMemOperand(object_map, Map::kBitFieldOffset));
+  __ tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
+  DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
+  // Deoptimize for proxies.
+  __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
+  DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
+
+  __ ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
+  __ cmp(object_prototype, prototype);
+  EmitTrueBranch(instr, eq);
+  __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
+  EmitFalseBranch(instr, eq);
+  __ ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
+  __ b(&loop);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Token::Value op = instr->op();
+
+  Handle<Code> ic =
+      CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  // This instruction also signals no smi code inlined.
+  __ cmp(r0, Operand::Zero());
+
+  Condition condition = ComputeCompareCondition(op);
+  __ LoadRoot(ToRegister(instr->result()),
+              Heap::kTrueValueRootIndex,
+              condition);
+  __ LoadRoot(ToRegister(instr->result()),
+              Heap::kFalseValueRootIndex,
+              NegateCondition(condition));
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+  if (FLAG_trace && info()->IsOptimizing()) {
+    // Push the return value on the stack as the parameter.
+    // Runtime::TraceExit returns its parameter in r0.  We're leaving the code
+    // managed by the register allocator and tearing down the frame, it's
+    // safe to write to the context register.
+    __ push(r0);
+    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntime(Runtime::kTraceExit);
+  }
+  if (info()->saves_caller_doubles()) {
+    RestoreCallerDoubles();
+  }
+  if (NeedsEagerFrame()) {
+    masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
+  }
+  { ConstantPoolUnavailableScope constant_pool_unavailable(masm());
+    if (instr->has_constant_parameter_count()) {
+      int parameter_count = ToInteger32(instr->constant_parameter_count());
+      int32_t sp_delta = (parameter_count + 1) * kPointerSize;
+      if (sp_delta != 0) {
+        __ add(sp, sp, Operand(sp_delta));
+      }
+    } else {
+      DCHECK(info()->IsStub());  // Functions would need to drop one more value.
+      Register reg = ToRegister(instr->parameter_count());
+      // The argument count parameter is a smi
+      __ SmiUntag(reg);
+      __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2));
+    }
+
+    __ Jump(lr);
+  }
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = LoadDescriptor::SlotRegister();
+  DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+  DCHECK(slot_register.is(r0));
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  // No need to allocate this register.
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ mov(slot_register, Operand(Smi::FromInt(index)));
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = ToRegister(instr->temp_slot());
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ mov(slot_register, Operand(Smi::FromInt(index)));
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->global_object())
+             .is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
+                                         SLOPPY, PREMONOMORPHIC).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register result = ToRegister(instr->result());
+  __ ldr(result, ContextMemOperand(context, instr->slot_index()));
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+    __ cmp(result, ip);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    } else {
+      __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register value = ToRegister(instr->value());
+  Register scratch = scratch0();
+  MemOperand target = ContextMemOperand(context, instr->slot_index());
+
+  Label skip_assignment;
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ ldr(scratch, target);
+    __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+    __ cmp(scratch, ip);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    } else {
+      __ b(ne, &skip_assignment);
+    }
+  }
+
+  __ str(value, target);
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    __ RecordWriteContextSlot(context,
+                              target.offset(),
+                              value,
+                              scratch,
+                              GetLinkRegisterState(),
+                              kSaveFPRegs,
+                              EMIT_REMEMBERED_SET,
+                              check_needed);
+  }
+
+  __ bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+  Register object = ToRegister(instr->object());
+
+  if (access.IsExternalMemory()) {
+    Register result = ToRegister(instr->result());
+    MemOperand operand = MemOperand(object, offset);
+    __ Load(result, operand, access.representation());
+    return;
+  }
+
+  if (instr->hydrogen()->representation().IsDouble()) {
+    DwVfpRegister result = ToDoubleRegister(instr->result());
+    __ vldr(result, FieldMemOperand(object, offset));
+    return;
+  }
+
+  Register result = ToRegister(instr->result());
+  if (!access.IsInobject()) {
+    __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    object = result;
+  }
+  MemOperand operand = FieldMemOperand(object, offset);
+  __ Load(result, operand, access.representation());
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  // Name is always in r2.
+  __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(
+          isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
+          instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+  Register scratch = scratch0();
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+
+  // Get the prototype or initial map from the function.
+  __ ldr(result,
+         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Check that the function has a prototype or an initial map.
+  __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+  __ cmp(result, ip);
+  DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
+  __ b(ne, &done);
+
+  // Get the prototype from the initial map.
+  __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+  // All done.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+  Register arguments = ToRegister(instr->arguments());
+  Register result = ToRegister(instr->result());
+  // There are two words between the frame pointer and the last argument.
+  // Subtracting from length accounts for one of them add one more.
+  if (instr->length()->IsConstantOperand()) {
+    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+    if (instr->index()->IsConstantOperand()) {
+      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+      int index = (const_length - const_index) + 1;
+      __ ldr(result, MemOperand(arguments, index * kPointerSize));
+    } else {
+      Register index = ToRegister(instr->index());
+      __ rsb(result, index, Operand(const_length + 1));
+      __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
+    }
+  } else if (instr->index()->IsConstantOperand()) {
+      Register length = ToRegister(instr->length());
+      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+      int loc = const_index - 1;
+      if (loc != 0) {
+        __ sub(result, length, Operand(loc));
+        __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
+      } else {
+        __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
+      }
+    } else {
+    Register length = ToRegister(instr->length());
+    Register index = ToRegister(instr->index());
+    __ sub(result, length, index);
+    __ add(result, result, Operand(1));
+    __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+      ? (element_size_shift - kSmiTagSize) : element_size_shift;
+  int base_offset = instr->base_offset();
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    DwVfpRegister result = ToDoubleRegister(instr->result());
+    Operand operand = key_is_constant
+        ? Operand(constant_key << element_size_shift)
+        : Operand(key, LSL, shift_size);
+    __ add(scratch0(), external_pointer, operand);
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      __ vldr(double_scratch0().low(), scratch0(), base_offset);
+      __ vcvt_f64_f32(result, double_scratch0().low());
+    } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+      __ vldr(result, scratch0(), base_offset);
+    }
+  } else {
+    Register result = ToRegister(instr->result());
+    MemOperand mem_operand = PrepareKeyedOperand(
+        key, external_pointer, key_is_constant, constant_key,
+        element_size_shift, shift_size, base_offset);
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+        __ ldrsb(result, mem_operand);
+        break;
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ ldrb(result, mem_operand);
+        break;
+      case INT16_ELEMENTS:
+        __ ldrsh(result, mem_operand);
+        break;
+      case UINT16_ELEMENTS:
+        __ ldrh(result, mem_operand);
+        break;
+      case INT32_ELEMENTS:
+        __ ldr(result, mem_operand);
+        break;
+      case UINT32_ELEMENTS:
+        __ ldr(result, mem_operand);
+        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+          __ cmp(result, Operand(0x80000000));
+          DeoptimizeIf(cs, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+  Register elements = ToRegister(instr->elements());
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  Register key = no_reg;
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+  Register scratch = scratch0();
+
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+
+  int base_offset = instr->base_offset();
+  if (key_is_constant) {
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    base_offset += constant_key * kDoubleSize;
+  }
+  __ add(scratch, elements, Operand(base_offset));
+
+  if (!key_is_constant) {
+    key = ToRegister(instr->key());
+    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+        ? (element_size_shift - kSmiTagSize) : element_size_shift;
+    __ add(scratch, scratch, Operand(key, LSL, shift_size));
+  }
+
+  __ vldr(result, scratch, 0);
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
+    __ cmp(scratch, Operand(kHoleNanUpper32));
+    DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+  Register elements = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  Register store_base = scratch;
+  int offset = instr->base_offset();
+
+  if (instr->key()->IsConstantOperand()) {
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+    store_base = elements;
+  } else {
+    Register key = ToRegister(instr->key());
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (instr->hydrogen()->key()->representation().IsSmi()) {
+      __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
+    } else {
+      __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
+    }
+  }
+  __ ldr(result, MemOperand(store_base, offset));
+
+  // Check for the hole value.
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+      __ SmiTst(result);
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi);
+    } else {
+      __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+      __ cmp(result, scratch);
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    }
+  } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+    DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
+    Label done;
+    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+    __ cmp(result, scratch);
+    __ b(ne, &done);
+    if (info()->IsStub()) {
+      // A stub can safely convert the hole to undefined only if the array
+      // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+      // it needs to bail out.
+      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
+      __ ldr(result, FieldMemOperand(result, Cell::kValueOffset));
+      __ cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
+      DeoptimizeIf(ne, instr, Deoptimizer::kHole);
+    }
+    __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+  if (instr->is_fixed_typed_array()) {
+    DoLoadKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->representation().IsDouble()) {
+    DoLoadKeyedFixedDoubleArray(instr);
+  } else {
+    DoLoadKeyedFixedArray(instr);
+  }
+}
+
+
+MemOperand LCodeGen::PrepareKeyedOperand(Register key,
+                                         Register base,
+                                         bool key_is_constant,
+                                         int constant_key,
+                                         int element_size,
+                                         int shift_size,
+                                         int base_offset) {
+  if (key_is_constant) {
+    return MemOperand(base, (constant_key << element_size) + base_offset);
+  }
+
+  if (base_offset == 0) {
+    if (shift_size >= 0) {
+      return MemOperand(base, key, LSL, shift_size);
+    } else {
+      DCHECK_EQ(-1, shift_size);
+      return MemOperand(base, key, LSR, 1);
+    }
+  }
+
+  if (shift_size >= 0) {
+    __ add(scratch0(), base, Operand(key, LSL, shift_size));
+    return MemOperand(scratch0(), base_offset);
+  } else {
+    DCHECK_EQ(-1, shift_size);
+    __ add(scratch0(), base, Operand(key, ASR, 1));
+    return MemOperand(scratch0(), base_offset);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+                        isolate(), instr->hydrogen()->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+  Register scratch = scratch0();
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->from_inlined()) {
+    __ sub(result, sp, Operand(2 * kPointerSize));
+  } else {
+    // Check if the calling frame is an arguments adaptor frame.
+    Label done, adapted;
+    __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+    __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
+    __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+    // Result is the frame pointer for the frame if not adapted and for the real
+    // frame below the adaptor frame if adapted.
+    __ mov(result, fp, LeaveCC, ne);
+    __ mov(result, scratch, LeaveCC, eq);
+  }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+  Register elem = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+
+  Label done;
+
+  // If no arguments adaptor frame the number of arguments is fixed.
+  __ cmp(fp, elem);
+  __ mov(result, Operand(scope()->num_parameters()));
+  __ b(eq, &done);
+
+  // Arguments adaptor frame present. Get argument length from there.
+  __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ ldr(result,
+         MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ SmiUntag(result);
+
+  // Argument length is in result register.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // If the receiver is null or undefined, we have to pass the global
+  // object as a receiver to normal functions. Values have to be
+  // passed unchanged to builtins and strict-mode functions.
+  Label global_object, result_in_receiver;
+
+  if (!instr->hydrogen()->known_function()) {
+    // Do not transform the receiver to object for strict mode
+    // functions.
+    __ ldr(scratch,
+           FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+    __ ldr(scratch,
+           FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+    int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
+    __ tst(scratch, Operand(mask));
+    __ b(ne, &result_in_receiver);
+
+    // Do not transform the receiver to object for builtins.
+    __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
+    __ b(ne, &result_in_receiver);
+  }
+
+  // Normal function. Replace undefined or null with global receiver.
+  __ LoadRoot(scratch, Heap::kNullValueRootIndex);
+  __ cmp(receiver, scratch);
+  __ b(eq, &global_object);
+  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+  __ cmp(receiver, scratch);
+  __ b(eq, &global_object);
+
+  // Deoptimize if the receiver is not a JS object.
+  __ SmiTst(receiver);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
+  __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
+  DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
+
+  __ b(&result_in_receiver);
+  __ bind(&global_object);
+  __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
+  __ ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
+  __ ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
+
+  if (result.is(receiver)) {
+    __ bind(&result_in_receiver);
+  } else {
+    Label result_ok;
+    __ b(&result_ok);
+    __ bind(&result_in_receiver);
+    __ mov(result, receiver);
+    __ bind(&result_ok);
+  }
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register length = ToRegister(instr->length());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = scratch0();
+  DCHECK(receiver.is(r0));  // Used for parameter count.
+  DCHECK(function.is(r1));  // Required by InvokeFunction.
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  // Copy the arguments to this function possibly from the
+  // adaptor frame below it.
+  const uint32_t kArgumentsLimit = 1 * KB;
+  __ cmp(length, Operand(kArgumentsLimit));
+  DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
+
+  // Push the receiver and use the register to keep the original
+  // number of arguments.
+  __ push(receiver);
+  __ mov(receiver, length);
+  // The arguments are at a one pointer size offset from elements.
+  __ add(elements, elements, Operand(1 * kPointerSize));
+
+  // Loop through the arguments pushing them onto the execution
+  // stack.
+  Label invoke, loop;
+  // length is a small non-negative integer, due to the test above.
+  __ cmp(length, Operand::Zero());
+  __ b(eq, &invoke);
+  __ bind(&loop);
+  __ ldr(scratch, MemOperand(elements, length, LSL, 2));
+  __ push(scratch);
+  __ sub(length, length, Operand(1), SetCC);
+  __ b(ne, &loop);
+
+  __ bind(&invoke);
+  DCHECK(instr->HasPointerMap());
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator safepoint_generator(
+      this, pointers, Safepoint::kLazyDeopt);
+  // The number of arguments is stored in receiver which is r0, as expected
+  // by InvokeFunction.
+  ParameterCount actual(receiver);
+  __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
+                    safepoint_generator);
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+  LOperand* argument = instr->value();
+  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+    Abort(kDoPushArgumentNotImplementedForDoubleType);
+  } else {
+    Register argument_reg = EmitLoadRegister(argument, ip);
+    __ push(argument_reg);
+  }
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+  __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+  Register result = ToRegister(instr->result());
+  __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+  // If there is a non-return use, the context must be moved to a register.
+  Register result = ToRegister(instr->result());
+  if (info()->IsOptimizing()) {
+    __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  } else {
+    // If there is no frame, the context must be in cp.
+    DCHECK(result.is(cp));
+  }
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  __ Move(scratch0(), instr->hydrogen()->pairs());
+  __ push(scratch0());
+  __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
+  __ push(scratch0());
+  CallRuntime(Runtime::kDeclareGlobals, instr);
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+                                 int formal_parameter_count, int arity,
+                                 LInstruction* instr) {
+  bool dont_adapt_arguments =
+      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+  bool can_invoke_directly =
+      dont_adapt_arguments || formal_parameter_count == arity;
+
+  Register function_reg = r1;
+
+  LPointerMap* pointers = instr->pointer_map();
+
+  if (can_invoke_directly) {
+    // Change context.
+    __ ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
+
+    // Always initialize new target and number of actual arguments.
+    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+    __ mov(r0, Operand(arity));
+
+    // Invoke function.
+    __ ldr(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
+    __ Call(ip);
+
+    // Set up deoptimization.
+    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+  } else {
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(arity);
+    ParameterCount expected(formal_parameter_count);
+    __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
+  }
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+  DCHECK(instr->context() != NULL);
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // Deoptimize if not a heap number.
+  __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+  __ cmp(scratch, Operand(ip));
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+
+  Label done;
+  Register exponent = scratch0();
+  scratch = no_reg;
+  __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+  // Check the sign of the argument. If the argument is positive, just
+  // return it.
+  __ tst(exponent, Operand(HeapNumber::kSignMask));
+  // Move the input to the result if necessary.
+  __ Move(result, input);
+  __ b(eq, &done);
+
+  // Input is negative. Reverse its sign.
+  // Preserve the value of all registers.
+  {
+    PushSafepointRegistersScope scope(this);
+
+    // Registers were saved at the safepoint, so we can use
+    // many scratch registers.
+    Register tmp1 = input.is(r1) ? r0 : r1;
+    Register tmp2 = input.is(r2) ? r0 : r2;
+    Register tmp3 = input.is(r3) ? r0 : r3;
+    Register tmp4 = input.is(r4) ? r0 : r4;
+
+    // exponent: floating point exponent value.
+
+    Label allocated, slow;
+    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
+    __ b(&allocated);
+
+    // Slow case: Call the runtime system to do the number allocation.
+    __ bind(&slow);
+
+    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+                            instr->context());
+    // Set the pointer to the new heap number in tmp.
+    if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
+    // Restore input_reg after call to runtime.
+    __ LoadFromSafepointRegisterSlot(input, input);
+    __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+
+    __ bind(&allocated);
+    // exponent: floating point exponent value.
+    // tmp1: allocated heap number.
+    __ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
+    __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
+    __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
+    __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
+
+    __ StoreToSafepointRegisterSlot(tmp1, result);
+  }
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  __ cmp(input, Operand::Zero());
+  __ Move(result, input, pl);
+  // We can make rsb conditional because the previous cmp instruction
+  // will clear the V (overflow) flag and rsb won't set this flag
+  // if input is positive.
+  __ rsb(result, input, Operand::Zero(), SetCC, mi);
+  // Deoptimize on overflow.
+  DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+  // Class for deferred case.
+  class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
+   public:
+    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMathAbs* instr_;
+  };
+
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsDouble()) {
+    DwVfpRegister input = ToDoubleRegister(instr->value());
+    DwVfpRegister result = ToDoubleRegister(instr->result());
+    __ vabs(result, input);
+  } else if (r.IsSmiOrInteger32()) {
+    EmitIntegerMathAbs(instr);
+  } else {
+    // Representation is tagged.
+    DeferredMathAbsTaggedHeapNumber* deferred =
+        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
+    Register input = ToRegister(instr->value());
+    // Smi check.
+    __ JumpIfNotSmi(input, deferred->entry());
+    // If smi, handle it directly.
+    EmitIntegerMathAbs(instr);
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+  DwVfpRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register input_high = scratch0();
+  Label done, exact;
+
+  __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact);
+  DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+  __ bind(&exact);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // Test for -0.
+    __ cmp(result, Operand::Zero());
+    __ b(ne, &done);
+    __ cmp(input_high, Operand::Zero());
+    DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+  }
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+  DwVfpRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp());
+  DwVfpRegister input_plus_dot_five = double_scratch1;
+  Register input_high = scratch0();
+  DwVfpRegister dot_five = double_scratch0();
+  Label convert, done;
+
+  __ Vmov(dot_five, 0.5, scratch0());
+  __ vabs(double_scratch1, input);
+  __ VFPCompareAndSetFlags(double_scratch1, dot_five);
+  // If input is in [-0.5, -0], the result is -0.
+  // If input is in [+0, +0.5[, the result is +0.
+  // If the input is +0.5, the result is 1.
+  __ b(hi, &convert);  // Out of [-0.5, +0.5].
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ VmovHigh(input_high, input);
+    __ cmp(input_high, Operand::Zero());
+    // [-0.5, -0].
+    DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+  }
+  __ VFPCompareAndSetFlags(input, dot_five);
+  __ mov(result, Operand(1), LeaveCC, eq);  // +0.5.
+  // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
+  // flag kBailoutOnMinusZero.
+  __ mov(result, Operand::Zero(), LeaveCC, ne);
+  __ b(&done);
+
+  __ bind(&convert);
+  __ vadd(input_plus_dot_five, input, dot_five);
+  // Reuse dot_five (double_scratch0) as we no longer need this value.
+  __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(),
+                   &done, &done);
+  DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+  DwVfpRegister input_reg = ToDoubleRegister(instr->value());
+  DwVfpRegister output_reg = ToDoubleRegister(instr->result());
+  LowDwVfpRegister scratch = double_scratch0();
+  __ vcvt_f32_f64(scratch.low(), input_reg);
+  __ vcvt_f64_f32(output_reg, scratch.low());
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+  DwVfpRegister input = ToDoubleRegister(instr->value());
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+  __ vsqrt(result, input);
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+  DwVfpRegister input = ToDoubleRegister(instr->value());
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+  DwVfpRegister temp = double_scratch0();
+
+  // Note that according to ECMA-262 15.8.2.13:
+  // Math.pow(-Infinity, 0.5) == Infinity
+  // Math.sqrt(-Infinity) == NaN
+  Label done;
+  __ vmov(temp, -V8_INFINITY, scratch0());
+  __ VFPCompareAndSetFlags(input, temp);
+  __ vneg(result, temp, eq);
+  __ b(&done, eq);
+
+  // Add +0 to convert -0 to +0.
+  __ vadd(result, input, kDoubleRegZero);
+  __ vsqrt(result, result);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+  Representation exponent_type = instr->hydrogen()->right()->representation();
+  // Having marked this as a call, we can use any registers.
+  // Just make sure that the input/output registers are the expected ones.
+  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
+  DCHECK(!instr->right()->IsDoubleRegister() ||
+         ToDoubleRegister(instr->right()).is(d1));
+  DCHECK(!instr->right()->IsRegister() ||
+         ToRegister(instr->right()).is(tagged_exponent));
+  DCHECK(ToDoubleRegister(instr->left()).is(d0));
+  DCHECK(ToDoubleRegister(instr->result()).is(d2));
+
+  if (exponent_type.IsSmi()) {
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsTagged()) {
+    Label no_deopt;
+    __ JumpIfSmi(tagged_exponent, &no_deopt);
+    DCHECK(!r6.is(tagged_exponent));
+    __ ldr(r6, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
+    __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+    __ cmp(r6, Operand(ip));
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+    __ bind(&no_deopt);
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsInteger32()) {
+    MathPowStub stub(isolate(), MathPowStub::INTEGER);
+    __ CallStub(&stub);
+  } else {
+    DCHECK(exponent_type.IsDouble());
+    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+    __ CallStub(&stub);
+  }
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+  DwVfpRegister input = ToDoubleRegister(instr->value());
+  DwVfpRegister result = ToDoubleRegister(instr->result());
+  DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
+  DwVfpRegister double_scratch2 = double_scratch0();
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  MathExpGenerator::EmitMathExp(
+      masm(), input, result, double_scratch1, double_scratch2,
+      temp1, temp2, scratch0());
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+  __ PrepareCallCFunction(0, 1, scratch0());
+  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
+  __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
+                   0, 1);
+  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  __ clz(result, input);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).is(r1));
+  DCHECK(instr->HasPointerMap());
+
+  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+  if (known_function.is_null()) {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(instr->arity());
+    __ InvokeFunction(r1, no_reg, count, CALL_FUNCTION, generator);
+  } else {
+    CallKnownFunction(known_function,
+                      instr->hydrogen()->formal_parameter_count(),
+                      instr->arity(), instr);
+  }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  if (instr->hydrogen()->IsTailCall()) {
+    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      __ Jump(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      // Make sure we don't emit any additional entries in the constant pool
+      // before the call to ensure that the CallCodeSize() calculated the
+      // correct
+      // number of instructions for the constant pool load.
+      {
+        ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
+        __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      }
+      __ Jump(target);
+    }
+  } else {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+      PlatformInterfaceDescriptor* call_descriptor =
+          instr->descriptor().platform_specific_descriptor();
+      if (call_descriptor != NULL) {
+        __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al,
+                call_descriptor->storage_mode());
+      } else {
+        __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al);
+      }
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      generator.BeforeCall(__ CallSize(target));
+      // Make sure we don't emit any additional entries in the constant pool
+      // before the call to ensure that the CallCodeSize() calculated the
+      // correct
+      // number of instructions for the constant pool load.
+      {
+        ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
+        __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      }
+      __ Call(target);
+    }
+    generator.AfterCall();
+  }
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+  DCHECK(ToRegister(instr->function()).is(r1));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  // Change context.
+  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+
+  // Always initialize new target and number of actual arguments.
+  __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+  __ mov(r0, Operand(instr->arity()));
+
+  // Load the code entry address
+  __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
+  __ Call(ip);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).is(r1));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  int arity = instr->arity();
+  ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    Register slot_register = ToRegister(instr->temp_slot());
+    Register vector_register = ToRegister(instr->temp_vector());
+    DCHECK(slot_register.is(r3));
+    DCHECK(vector_register.is(r2));
+
+    AllowDeferredHandleDereference vector_structure_check;
+    Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+    int index = vector->GetIndex(instr->hydrogen()->slot());
+
+    __ Move(vector_register, vector);
+    __ mov(slot_register, Operand(Smi::FromInt(index)));
+
+    Handle<Code> ic =
+        CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
+    CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  } else {
+    __ mov(r0, Operand(arity));
+    CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->constructor()).is(r1));
+  DCHECK(ToRegister(instr->result()).is(r0));
+
+  __ mov(r0, Operand(instr->arity()));
+  if (instr->arity() == 1) {
+    // We only need the allocation site for the case we have a length argument.
+    // The case may bail out to the runtime, which will determine the correct
+    // elements kind with the site.
+    __ Move(r2, instr->hydrogen()->site());
+  } else {
+    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
+  }
+  ElementsKind kind = instr->hydrogen()->elements_kind();
+  AllocationSiteOverrideMode override_mode =
+      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+          ? DISABLE_ALLOCATION_SITES
+          : DONT_OVERRIDE;
+
+  if (instr->arity() == 0) {
+    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  } else if (instr->arity() == 1) {
+    Label done;
+    if (IsFastPackedElementsKind(kind)) {
+      Label packed_case;
+      // We might need a change here
+      // look at the first argument
+      __ ldr(r5, MemOperand(sp, 0));
+      __ cmp(r5, Operand::Zero());
+      __ b(eq, &packed_case);
+
+      ElementsKind holey_kind = GetHoleyElementsKind(kind);
+      ArraySingleArgumentConstructorStub stub(isolate(),
+                                              holey_kind,
+                                              override_mode);
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      __ jmp(&done);
+      __ bind(&packed_case);
+    }
+
+    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+    __ bind(&done);
+  } else {
+    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+  CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+  Register function = ToRegister(instr->function());
+  Register code_object = ToRegister(instr->code_object());
+  __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag));
+  __ str(code_object,
+         FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+  Register result = ToRegister(instr->result());
+  Register base = ToRegister(instr->base_object());
+  if (instr->offset()->IsConstantOperand()) {
+    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+    __ add(result, base, Operand(ToInteger32(offset)));
+  } else {
+    Register offset = ToRegister(instr->offset());
+    __ add(result, base, offset);
+  }
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+  Representation representation = instr->representation();
+
+  Register object = ToRegister(instr->object());
+  Register scratch = scratch0();
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+
+  if (access.IsExternalMemory()) {
+    Register value = ToRegister(instr->value());
+    MemOperand operand = MemOperand(object, offset);
+    __ Store(value, operand, representation);
+    return;
+  }
+
+  __ AssertNotSmi(object);
+
+  DCHECK(!representation.IsSmi() ||
+         !instr->value()->IsConstantOperand() ||
+         IsSmi(LConstantOperand::cast(instr->value())));
+  if (representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DCHECK(!instr->hydrogen()->has_transition());
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    DwVfpRegister value = ToDoubleRegister(instr->value());
+    __ vstr(value, FieldMemOperand(object, offset));
+    return;
+  }
+
+  if (instr->hydrogen()->has_transition()) {
+    Handle<Map> transition = instr->hydrogen()->transition_map();
+    AddDeprecationDependency(transition);
+    __ mov(scratch, Operand(transition));
+    __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+      Register temp = ToRegister(instr->temp());
+      // Update the write barrier for the map field.
+      __ RecordWriteForMap(object,
+                           scratch,
+                           temp,
+                           GetLinkRegisterState(),
+                           kSaveFPRegs);
+    }
+  }
+
+  // Do the store.
+  Register value = ToRegister(instr->value());
+  if (access.IsInobject()) {
+    MemOperand operand = FieldMemOperand(object, offset);
+    __ Store(value, operand, representation);
+    if (instr->hydrogen()->NeedsWriteBarrier()) {
+      // Update the write barrier for the object for in-object properties.
+      __ RecordWriteField(object,
+                          offset,
+                          value,
+                          scratch,
+                          GetLinkRegisterState(),
+                          kSaveFPRegs,
+                          EMIT_REMEMBERED_SET,
+                          instr->hydrogen()->SmiCheckForWriteBarrier(),
+                          instr->hydrogen()->PointersToHereCheckForValue());
+    }
+  } else {
+    __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    MemOperand operand = FieldMemOperand(scratch, offset);
+    __ Store(value, operand, representation);
+    if (instr->hydrogen()->NeedsWriteBarrier()) {
+      // Update the write barrier for the properties array.
+      // object is used as a scratch register.
+      __ RecordWriteField(scratch,
+                          offset,
+                          value,
+                          object,
+                          GetLinkRegisterState(),
+                          kSaveFPRegs,
+                          EMIT_REMEMBERED_SET,
+                          instr->hydrogen()->SmiCheckForWriteBarrier(),
+                          instr->hydrogen()->PointersToHereCheckForValue());
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+  }
+
+  __ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
+  Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+  Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
+  if (instr->index()->IsConstantOperand()) {
+    Operand index = ToOperand(instr->index());
+    Register length = ToRegister(instr->length());
+    __ cmp(length, index);
+    cc = CommuteCondition(cc);
+  } else {
+    Register index = ToRegister(instr->index());
+    Operand length = ToOperand(instr->length());
+    __ cmp(index, length);
+  }
+  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+    Label done;
+    __ b(NegateCondition(cc), &done);
+    __ stop("eliminated bounds check failed");
+    __ bind(&done);
+  } else {
+    DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+      ? (element_size_shift - kSmiTagSize) : element_size_shift;
+  int base_offset = instr->base_offset();
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    Register address = scratch0();
+    DwVfpRegister value(ToDoubleRegister(instr->value()));
+    if (key_is_constant) {
+      if (constant_key != 0) {
+        __ add(address, external_pointer,
+               Operand(constant_key << element_size_shift));
+      } else {
+        address = external_pointer;
+      }
+    } else {
+      __ add(address, external_pointer, Operand(key, LSL, shift_size));
+    }
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      __ vcvt_f32_f64(double_scratch0().low(), value);
+      __ vstr(double_scratch0().low(), address, base_offset);
+    } else {  // Storing doubles, not floats.
+      __ vstr(value, address, base_offset);
+    }
+  } else {
+    Register value(ToRegister(instr->value()));
+    MemOperand mem_operand = PrepareKeyedOperand(
+        key, external_pointer, key_is_constant, constant_key,
+        element_size_shift, shift_size,
+        base_offset);
+    switch (elements_kind) {
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+      case INT8_ELEMENTS:
+        __ strb(value, mem_operand);
+        break;
+      case INT16_ELEMENTS:
+      case UINT16_ELEMENTS:
+        __ strh(value, mem_operand);
+        break;
+      case INT32_ELEMENTS:
+      case UINT32_ELEMENTS:
+        __ str(value, mem_operand);
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+  DwVfpRegister value = ToDoubleRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = scratch0();
+  DwVfpRegister double_scratch = double_scratch0();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int base_offset = instr->base_offset();
+
+  // Calculate the effective address of the slot in the array to store the
+  // double value.
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+  if (key_is_constant) {
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    __ add(scratch, elements,
+           Operand((constant_key << element_size_shift) + base_offset));
+  } else {
+    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+        ? (element_size_shift - kSmiTagSize) : element_size_shift;
+    __ add(scratch, elements, Operand(base_offset));
+    __ add(scratch, scratch,
+           Operand(ToRegister(instr->key()), LSL, shift_size));
+  }
+
+  if (instr->NeedsCanonicalization()) {
+    // Force a canonical NaN.
+    if (masm()->emit_debug_code()) {
+      __ vmrs(ip);
+      __ tst(ip, Operand(kVFPDefaultNaNModeControlBit));
+      __ Assert(ne, kDefaultNaNModeNotSet);
+    }
+    __ VFPCanonicalizeNaN(double_scratch, value);
+    __ vstr(double_scratch, scratch, 0);
+  } else {
+    __ vstr(value, scratch, 0);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+  Register value = ToRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
+      : no_reg;
+  Register scratch = scratch0();
+  Register store_base = scratch;
+  int offset = instr->base_offset();
+
+  // Do the store.
+  if (instr->key()->IsConstantOperand()) {
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+    store_base = elements;
+  } else {
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (instr->hydrogen()->key()->representation().IsSmi()) {
+      __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
+    } else {
+      __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
+    }
+  }
+  __ str(value, MemOperand(store_base, offset));
+
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    // Compute address of modified element and store it into key register.
+    __ add(key, store_base, Operand(offset));
+    __ RecordWrite(elements,
+                   key,
+                   value,
+                   GetLinkRegisterState(),
+                   kSaveFPRegs,
+                   EMIT_REMEMBERED_SET,
+                   check_needed,
+                   instr->hydrogen()->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+  // By cases: external, fast double
+  if (instr->is_fixed_typed_array()) {
+    DoStoreKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+    DoStoreKeyedFixedDoubleArray(instr);
+  } else {
+    DoStoreKeyedFixedArray(instr);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
+}
+
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+  class DeferredMaybeGrowElements final : public LDeferredCode {
+   public:
+    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMaybeGrowElements* instr_;
+  };
+
+  Register result = r0;
+  DeferredMaybeGrowElements* deferred =
+      new (zone()) DeferredMaybeGrowElements(this, instr);
+  LOperand* key = instr->key();
+  LOperand* current_capacity = instr->current_capacity();
+
+  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+  DCHECK(key->IsConstantOperand() || key->IsRegister());
+  DCHECK(current_capacity->IsConstantOperand() ||
+         current_capacity->IsRegister());
+
+  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    if (constant_key >= constant_capacity) {
+      // Deferred case.
+      __ jmp(deferred->entry());
+    }
+  } else if (key->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    __ cmp(ToRegister(current_capacity), Operand(constant_key));
+    __ b(le, deferred->entry());
+  } else if (current_capacity->IsConstantOperand()) {
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    __ cmp(ToRegister(key), Operand(constant_capacity));
+    __ b(ge, deferred->entry());
+  } else {
+    __ cmp(ToRegister(key), ToRegister(current_capacity));
+    __ b(ge, deferred->entry());
+  }
+
+  if (instr->elements()->IsRegister()) {
+    __ Move(result, ToRegister(instr->elements()));
+  } else {
+    __ ldr(result, ToMemOperand(instr->elements()));
+  }
+
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = r0;
+  __ mov(result, Operand::Zero());
+
+  // We have to call a stub.
+  {
+    PushSafepointRegistersScope scope(this);
+    if (instr->object()->IsRegister()) {
+      __ Move(result, ToRegister(instr->object()));
+    } else {
+      __ ldr(result, ToMemOperand(instr->object()));
+    }
+
+    LOperand* key = instr->key();
+    if (key->IsConstantOperand()) {
+      __ Move(r3, Operand(ToSmi(LConstantOperand::cast(key))));
+    } else {
+      __ Move(r3, ToRegister(key));
+      __ SmiTag(r3);
+    }
+
+    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+                               instr->hydrogen()->kind());
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(
+        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    __ StoreToSafepointRegisterSlot(result, result);
+  }
+
+  // Deopt on smi, which means the elements array changed to dictionary mode.
+  __ SmiTst(result);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+  Register object_reg = ToRegister(instr->object());
+  Register scratch = scratch0();
+
+  Handle<Map> from_map = instr->original_map();
+  Handle<Map> to_map = instr->transitioned_map();
+  ElementsKind from_kind = instr->from_kind();
+  ElementsKind to_kind = instr->to_kind();
+
+  Label not_applicable;
+  __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+  __ cmp(scratch, Operand(from_map));
+  __ b(ne, &not_applicable);
+
+  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+    Register new_map_reg = ToRegister(instr->new_map_temp());
+    __ mov(new_map_reg, Operand(to_map));
+    __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+    // Write barrier.
+    __ RecordWriteForMap(object_reg,
+                         new_map_reg,
+                         scratch,
+                         GetLinkRegisterState(),
+                         kDontSaveFPRegs);
+  } else {
+    DCHECK(ToRegister(instr->context()).is(cp));
+    DCHECK(object_reg.is(r0));
+    PushSafepointRegistersScope scope(this);
+    __ Move(r1, to_map);
+    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+    __ CallStub(&stub);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+  __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+  Register object = ToRegister(instr->object());
+  Register temp = ToRegister(instr->temp());
+  Label no_memento_found;
+  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
+  DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
+  __ bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r1));
+  DCHECK(ToRegister(instr->right()).is(r0));
+  StringAddStub stub(isolate(),
+                     instr->hydrogen()->flags(),
+                     instr->hydrogen()->pretenure_flag());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+  class DeferredStringCharCodeAt final : public LDeferredCode {
+   public:
+    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharCodeAt* instr_;
+  };
+
+  DeferredStringCharCodeAt* deferred =
+      new(zone()) DeferredStringCharCodeAt(this, instr);
+
+  StringCharLoadGenerator::Generate(masm(),
+                                    ToRegister(instr->string()),
+                                    ToRegister(instr->index()),
+                                    ToRegister(instr->result()),
+                                    deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  __ push(string);
+  // Push the index as a smi. This is safe because of the checks in
+  // DoStringCharCodeAt above.
+  if (instr->index()->IsConstantOperand()) {
+    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    __ mov(scratch, Operand(Smi::FromInt(const_index)));
+    __ push(scratch);
+  } else {
+    Register index = ToRegister(instr->index());
+    __ SmiTag(index);
+    __ push(index);
+  }
+  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
+                          instr->context());
+  __ AssertSmi(r0);
+  __ SmiUntag(r0);
+  __ StoreToSafepointRegisterSlot(r0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+  class DeferredStringCharFromCode final : public LDeferredCode {
+   public:
+    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredStringCharFromCode(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharFromCode* instr_;
+  };
+
+  DeferredStringCharFromCode* deferred =
+      new(zone()) DeferredStringCharFromCode(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+  DCHECK(!char_code.is(result));
+
+  __ cmp(char_code, Operand(String::kMaxOneByteCharCode));
+  __ b(hi, deferred->entry());
+  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+  __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
+  __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+  __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+  __ cmp(result, ip);
+  __ b(eq, deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  __ SmiTag(char_code);
+  __ push(char_code);
+  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(r0, result);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() || input->IsStackSlot());
+  LOperand* output = instr->result();
+  DCHECK(output->IsDoubleRegister());
+  SwVfpRegister single_scratch = double_scratch0().low();
+  if (input->IsStackSlot()) {
+    Register scratch = scratch0();
+    __ ldr(scratch, ToMemOperand(input));
+    __ vmov(single_scratch, scratch);
+  } else {
+    __ vmov(single_scratch, ToRegister(input));
+  }
+  __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+  LOperand* input = instr->value();
+  LOperand* output = instr->result();
+
+  SwVfpRegister flt_scratch = double_scratch0().low();
+  __ vmov(flt_scratch, ToRegister(input));
+  __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
+}
+
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+  class DeferredNumberTagI final : public LDeferredCode {
+   public:
+    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_,
+                                       instr_->value(),
+                                       instr_->temp1(),
+                                       instr_->temp2(),
+                                       SIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagI* instr_;
+  };
+
+  Register src = ToRegister(instr->value());
+  Register dst = ToRegister(instr->result());
+
+  DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
+  __ SmiTag(dst, src, SetCC);
+  __ b(vs, deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+  class DeferredNumberTagU final : public LDeferredCode {
+   public:
+    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_,
+                                       instr_->value(),
+                                       instr_->temp1(),
+                                       instr_->temp2(),
+                                       UNSIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagU* instr_;
+  };
+
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+  __ cmp(input, Operand(Smi::kMaxValue));
+  __ b(hi, deferred->entry());
+  __ SmiTag(result, input);
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+                                     LOperand* value,
+                                     LOperand* temp1,
+                                     LOperand* temp2,
+                                     IntegerSignedness signedness) {
+  Label done, slow;
+  Register src = ToRegister(value);
+  Register dst = ToRegister(instr->result());
+  Register tmp1 = scratch0();
+  Register tmp2 = ToRegister(temp1);
+  Register tmp3 = ToRegister(temp2);
+  LowDwVfpRegister dbl_scratch = double_scratch0();
+
+  if (signedness == SIGNED_INT32) {
+    // There was overflow, so bits 30 and 31 of the original integer
+    // disagree. Try to allocate a heap number in new space and store
+    // the value in there. If that fails, call the runtime system.
+    if (dst.is(src)) {
+      __ SmiUntag(src, dst);
+      __ eor(src, src, Operand(0x80000000));
+    }
+    __ vmov(dbl_scratch.low(), src);
+    __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
+  } else {
+    __ vmov(dbl_scratch.low(), src);
+    __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
+  }
+
+  if (FLAG_inline_new) {
+    __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT);
+    __ b(&done);
+  }
+
+  // Slow case: Call the runtime system to do the number allocation.
+  __ bind(&slow);
+  {
+    // TODO(3095996): Put a valid pointer value in the stack slot where the
+    // result register is stored, as this register is in the pointer map, but
+    // contains an integer value.
+    __ mov(dst, Operand::Zero());
+
+    // Preserve the value of all registers.
+    PushSafepointRegistersScope scope(this);
+
+    // NumberTagI and NumberTagD use the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+    __ sub(r0, r0, Operand(kHeapObjectTag));
+    __ StoreToSafepointRegisterSlot(r0, dst);
+  }
+
+  // Done. Put the value in dbl_scratch into the value of the allocated heap
+  // number.
+  __ bind(&done);
+  __ vstr(dbl_scratch, dst, HeapNumber::kValueOffset);
+  __ add(dst, dst, Operand(kHeapObjectTag));
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+  class DeferredNumberTagD final : public LDeferredCode {
+   public:
+    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagD* instr_;
+  };
+
+  DwVfpRegister input_reg = ToDoubleRegister(instr->value());
+  Register scratch = scratch0();
+  Register reg = ToRegister(instr->result());
+  Register temp1 = ToRegister(instr->temp());
+  Register temp2 = ToRegister(instr->temp2());
+
+  DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+  if (FLAG_inline_new) {
+    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
+    // We want the untagged address first for performance
+    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
+                          DONT_TAG_RESULT);
+  } else {
+    __ jmp(deferred->entry());
+  }
+  __ bind(deferred->exit());
+  __ vstr(input_reg, reg, HeapNumber::kValueOffset);
+  // Now that we have finished with the object's real address tag it
+  __ add(reg, reg, Operand(kHeapObjectTag));
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register reg = ToRegister(instr->result());
+  __ mov(reg, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  // NumberTagI and NumberTagD use the context from the frame, rather than
+  // the environment's HContext or HInlinedContext value.
+  // They only call Runtime::kAllocateHeapNumber.
+  // The corresponding HChange instructions are added in a phase that does
+  // not have easy access to the local context.
+  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+  __ sub(r0, r0, Operand(kHeapObjectTag));
+  __ StoreToSafepointRegisterSlot(r0, reg);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+  HChange* hchange = instr->hydrogen();
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ tst(input, Operand(0xc0000000));
+    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+  }
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      !hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ SmiTag(output, input, SetCC);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  } else {
+    __ SmiTag(output, input);
+  }
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  if (instr->needs_check()) {
+    STATIC_ASSERT(kHeapObjectTag == 1);
+    // If the input is a HeapObject, SmiUntag will set the carry flag.
+    __ SmiUntag(result, input, SetCC);
+    DeoptimizeIf(cs, instr, Deoptimizer::kNotASmi);
+  } else {
+    __ SmiUntag(result, input);
+  }
+}
+
+
+void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
+                                DwVfpRegister result_reg,
+                                NumberUntagDMode mode) {
+  bool can_convert_undefined_to_nan =
+      instr->hydrogen()->can_convert_undefined_to_nan();
+  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
+
+  Register scratch = scratch0();
+  SwVfpRegister flt_scratch = double_scratch0().low();
+  DCHECK(!result_reg.is(double_scratch0()));
+  Label convert, load_smi, done;
+  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+    // Smi check.
+    __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
+    // Heap number map check.
+    __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+    __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+    __ cmp(scratch, Operand(ip));
+    if (can_convert_undefined_to_nan) {
+      __ b(ne, &convert);
+    } else {
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+    }
+    // load heap number
+    __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag);
+    if (deoptimize_on_minus_zero) {
+      __ VmovLow(scratch, result_reg);
+      __ cmp(scratch, Operand::Zero());
+      __ b(ne, &done);
+      __ VmovHigh(scratch, result_reg);
+      __ cmp(scratch, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+    __ jmp(&done);
+    if (can_convert_undefined_to_nan) {
+      __ bind(&convert);
+      // Convert undefined (and hole) to NaN.
+      __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+      __ cmp(input_reg, Operand(ip));
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
+      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+      __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag);
+      __ jmp(&done);
+    }
+  } else {
+    __ SmiUntag(scratch, input_reg);
+    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+  }
+  // Smi to double register conversion
+  __ bind(&load_smi);
+  // scratch: untagged value of input_reg
+  __ vmov(flt_scratch, scratch);
+  __ vcvt_f64_s32(result_reg, flt_scratch);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+  Register input_reg = ToRegister(instr->value());
+  Register scratch1 = scratch0();
+  Register scratch2 = ToRegister(instr->temp());
+  LowDwVfpRegister double_scratch = double_scratch0();
+  DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2());
+
+  DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
+  DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
+
+  Label done;
+
+  // The input was optimistically untagged; revert it.
+  // The carry flag is set when we reach this deferred code as we just executed
+  // SmiUntag(heap_object, SetCC)
+  STATIC_ASSERT(kHeapObjectTag == 1);
+  __ adc(scratch2, input_reg, Operand(input_reg));
+
+  // Heap number map check.
+  __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset));
+  __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+  __ cmp(scratch1, Operand(ip));
+
+  if (instr->truncating()) {
+    // Performs a truncating conversion of a floating point number as used by
+    // the JS bitwise operations.
+    Label no_heap_number, check_bools, check_false;
+    __ b(ne, &no_heap_number);
+    __ TruncateHeapNumberToI(input_reg, scratch2);
+    __ b(&done);
+
+    // Check for Oddballs. Undefined/False is converted to zero and True to one
+    // for truncating conversions.
+    __ bind(&no_heap_number);
+    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+    __ cmp(scratch2, Operand(ip));
+    __ b(ne, &check_bools);
+    __ mov(input_reg, Operand::Zero());
+    __ b(&done);
+
+    __ bind(&check_bools);
+    __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+    __ cmp(scratch2, Operand(ip));
+    __ b(ne, &check_false);
+    __ mov(input_reg, Operand(1));
+    __ b(&done);
+
+    __ bind(&check_false);
+    __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+    __ cmp(scratch2, Operand(ip));
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
+    __ mov(input_reg, Operand::Zero());
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+
+    __ sub(ip, scratch2, Operand(kHeapObjectTag));
+    __ vldr(double_scratch2, ip, HeapNumber::kValueOffset);
+    __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ cmp(input_reg, Operand::Zero());
+      __ b(ne, &done);
+      __ VmovHigh(scratch1, double_scratch2);
+      __ tst(scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
+    }
+  }
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+  class DeferredTaggedToI final : public LDeferredCode {
+   public:
+    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LTaggedToI* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  DCHECK(input->Equals(instr->result()));
+
+  Register input_reg = ToRegister(input);
+
+  if (instr->hydrogen()->value()->representation().IsSmi()) {
+    __ SmiUntag(input_reg);
+  } else {
+    DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+
+    // Optimistically untag the input.
+    // If the input is a HeapObject, SmiUntag will set the carry flag.
+    __ SmiUntag(input_reg, SetCC);
+    // Branch to deferred code if the input was tagged.
+    // The deferred code will take care of restoring the tag.
+    __ b(cs, deferred->entry());
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsDoubleRegister());
+
+  Register input_reg = ToRegister(input);
+  DwVfpRegister result_reg = ToDoubleRegister(result);
+
+  HValue* value = instr->hydrogen()->value();
+  NumberUntagDMode mode = value->representation().IsSmi()
+      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+  EmitNumberUntagD(instr, input_reg, result_reg, mode);
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  DwVfpRegister double_input = ToDoubleRegister(instr->value());
+  LowDwVfpRegister double_scratch = double_scratch0();
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
+    // Deoptimize if the input wasn't a int32 (inside a double).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ cmp(result_reg, Operand::Zero());
+      __ b(ne, &done);
+      __ VmovHigh(scratch1, double_input);
+      __ tst(scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+}
+
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  DwVfpRegister double_input = ToDoubleRegister(instr->value());
+  LowDwVfpRegister double_scratch = double_scratch0();
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
+    // Deoptimize if the input wasn't a int32 (inside a double).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ cmp(result_reg, Operand::Zero());
+      __ b(ne, &done);
+      __ VmovHigh(scratch1, double_input);
+      __ tst(scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+  __ SmiTag(result_reg, SetCC);
+  DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+  LOperand* input = instr->value();
+  __ SmiTst(ToRegister(input));
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi);
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    LOperand* input = instr->value();
+    __ SmiTst(ToRegister(input));
+    DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
+  }
+}
+
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+    LCheckArrayBufferNotNeutered* instr) {
+  Register view = ToRegister(instr->view());
+  Register scratch = scratch0();
+
+  __ ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
+  __ ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
+  __ tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
+  DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+  if (instr->hydrogen()->is_interval_check()) {
+    InstanceType first;
+    InstanceType last;
+    instr->hydrogen()->GetCheckInterval(&first, &last);
+
+    __ cmp(scratch, Operand(first));
+
+    // If there is only one type in the interval check for equality.
+    if (first == last) {
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
+      // Omit check for the last type.
+      if (last != LAST_TYPE) {
+        __ cmp(scratch, Operand(last));
+        DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
+      }
+    }
+  } else {
+    uint8_t mask;
+    uint8_t tag;
+    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+    if (base::bits::IsPowerOfTwo32(mask)) {
+      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
+      __ tst(scratch, Operand(mask));
+      DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      __ and_(scratch, scratch, Operand(mask));
+      __ cmp(scratch, Operand(tag));
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    }
+  }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+  Register reg = ToRegister(instr->value());
+  Handle<HeapObject> object = instr->hydrogen()->object().handle();
+  AllowDeferredHandleDereference smi_check;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Register reg = ToRegister(instr->value());
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    __ mov(ip, Operand(cell));
+    __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset));
+    __ cmp(reg, ip);
+  } else {
+    __ cmp(reg, Operand(object));
+  }
+  DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+  {
+    PushSafepointRegistersScope scope(this);
+    __ push(object);
+    __ mov(cp, Operand::Zero());
+    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(r0, scratch0());
+  }
+  __ tst(scratch0(), Operand(kSmiTagMask));
+  DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed);
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+  class DeferredCheckMaps final : public LDeferredCode {
+   public:
+    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+        : LDeferredCode(codegen), instr_(instr), object_(object) {
+      SetExit(check_maps());
+    }
+    void Generate() override {
+      codegen()->DoDeferredInstanceMigration(instr_, object_);
+    }
+    Label* check_maps() { return &check_maps_; }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LCheckMaps* instr_;
+    Label check_maps_;
+    Register object_;
+  };
+
+  if (instr->hydrogen()->IsStabilityCheck()) {
+    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+    for (int i = 0; i < maps->size(); ++i) {
+      AddStabilityDependency(maps->at(i).handle());
+    }
+    return;
+  }
+
+  Register map_reg = scratch0();
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  Register reg = ToRegister(input);
+
+  __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
+
+  DeferredCheckMaps* deferred = NULL;
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
+    __ bind(deferred->check_maps());
+  }
+
+  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+  Label success;
+  for (int i = 0; i < maps->size() - 1; i++) {
+    Handle<Map> map = maps->at(i).handle();
+    __ CompareMap(map_reg, map, &success);
+    __ b(eq, &success);
+  }
+
+  Handle<Map> map = maps->at(maps->size() - 1).handle();
+  __ CompareMap(map_reg, map, &success);
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    __ b(ne, deferred->entry());
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+  }
+
+  __ bind(&success);
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+  DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+  Register unclamped_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  __ ClampUint8(result_reg, unclamped_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+  Register scratch = scratch0();
+  Register input_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  DwVfpRegister temp_reg = ToDoubleRegister(instr->temp());
+  Label is_smi, done, heap_number;
+
+  // Both smi and heap number cases are handled.
+  __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
+
+  // Check for heap number
+  __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+  __ cmp(scratch, Operand(factory()->heap_number_map()));
+  __ b(eq, &heap_number);
+
+  // Check for undefined. Undefined is converted to zero for clamping
+  // conversions.
+  __ cmp(input_reg, Operand(factory()->undefined_value()));
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
+  __ mov(result_reg, Operand::Zero());
+  __ jmp(&done);
+
+  // Heap number
+  __ bind(&heap_number);
+  __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+  __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
+  __ jmp(&done);
+
+  // smi
+  __ bind(&is_smi);
+  __ ClampUint8(result_reg, result_reg);
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+  DwVfpRegister value_reg = ToDoubleRegister(instr->value());
+  Register result_reg = ToRegister(instr->result());
+  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+    __ VmovHigh(result_reg, value_reg);
+  } else {
+    __ VmovLow(result_reg, value_reg);
+  }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+  Register hi_reg = ToRegister(instr->hi());
+  Register lo_reg = ToRegister(instr->lo());
+  DwVfpRegister result_reg = ToDoubleRegister(instr->result());
+  __ VmovHigh(result_reg, hi_reg);
+  __ VmovLow(result_reg, lo_reg);
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+  class DeferredAllocate final : public LDeferredCode {
+   public:
+    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredAllocate(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LAllocate* instr_;
+  };
+
+  DeferredAllocate* deferred =
+      new(zone()) DeferredAllocate(this, instr);
+
+  Register result = ToRegister(instr->result());
+  Register scratch = ToRegister(instr->temp1());
+  Register scratch2 = ToRegister(instr->temp2());
+
+  // Allocate memory for the object.
+  AllocationFlags flags = TAG_OBJECT;
+  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+  }
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = static_cast<AllocationFlags>(flags | PRETENURE);
+  }
+
+  if (instr->size()->IsConstantOperand()) {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    CHECK(size <= Page::kMaxRegularHeapObjectSize);
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  } else {
+    Register size = ToRegister(instr->size());
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  }
+
+  __ bind(deferred->exit());
+
+  if (instr->hydrogen()->MustPrefillWithFiller()) {
+    STATIC_ASSERT(kHeapObjectTag == 1);
+    if (instr->size()->IsConstantOperand()) {
+      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+      __ mov(scratch, Operand(size - kHeapObjectTag));
+    } else {
+      __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
+    }
+    __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+    Label loop;
+    __ bind(&loop);
+    __ sub(scratch, scratch, Operand(kPointerSize), SetCC);
+    __ str(scratch2, MemOperand(result, scratch));
+    __ b(ge, &loop);
+  }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, Operand(Smi::FromInt(0)));
+
+  PushSafepointRegistersScope scope(this);
+  if (instr->size()->IsRegister()) {
+    Register size = ToRegister(instr->size());
+    DCHECK(!size.is(result));
+    __ SmiTag(size);
+    __ push(size);
+  } else {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    if (size >= 0 && size <= Smi::kMaxValue) {
+      __ Push(Smi::FromInt(size));
+    } else {
+      // We should never get here at runtime => abort
+      __ stop("invalid allocation size");
+      return;
+    }
+  }
+
+  int flags = AllocateDoubleAlignFlag::encode(
+      instr->hydrogen()->MustAllocateDoubleAligned());
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+  } else {
+    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+  }
+  __ Push(Smi::FromInt(flags));
+
+  CallRuntimeFromDeferred(
+      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+  __ StoreToSafepointRegisterSlot(r0, result);
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+  DCHECK(ToRegister(instr->value()).is(r0));
+  __ push(r0);
+  CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+  DCHECK(ToRegister(instr->value()).is(r3));
+  DCHECK(ToRegister(instr->result()).is(r0));
+  Label end, do_call;
+  Register value_register = ToRegister(instr->value());
+  __ JumpIfNotSmi(value_register, &do_call);
+  __ mov(r0, Operand(isolate()->factory()->number_string()));
+  __ jmp(&end);
+  __ bind(&do_call);
+  TypeofStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  __ bind(&end);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+
+  Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
+                                                  instr->FalseLabel(chunk_),
+                                                  input,
+                                                  instr->type_literal());
+  if (final_branch_condition != kNoCondition) {
+    EmitBranch(instr, final_branch_condition);
+  }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label,
+                                 Label* false_label,
+                                 Register input,
+                                 Handle<String> type_name) {
+  Condition final_branch_condition = kNoCondition;
+  Register scratch = scratch0();
+  Factory* factory = isolate()->factory();
+  if (String::Equals(type_name, factory->number_string())) {
+    __ JumpIfSmi(input, true_label);
+    __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->string_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
+    final_branch_condition = lt;
+
+  } else if (String::Equals(type_name, factory->symbol_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->boolean_string())) {
+    __ CompareRoot(input, Heap::kTrueValueRootIndex);
+    __ b(eq, true_label);
+    __ CompareRoot(input, Heap::kFalseValueRootIndex);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->undefined_string())) {
+    __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
+    __ b(eq, true_label);
+    __ JumpIfSmi(input, false_label);
+    // Check for undetectable objects => true.
+    __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ tst(scratch, Operand(1 << Map::kIsUndetectable));
+    final_branch_condition = ne;
+
+  } else if (String::Equals(type_name, factory->function_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ and_(scratch, scratch,
+            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    __ cmp(scratch, Operand(1 << Map::kIsCallable));
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->object_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareRoot(input, Heap::kNullValueRootIndex);
+    __ b(eq, true_label);
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
+    __ b(lt, false_label);
+    // Check for callable or undetectable objects => false.
+    __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ tst(scratch,
+           Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    final_branch_condition = eq;
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
+  } else if (String::Equals(type_name, factory->type##_string())) {  \
+    __ JumpIfSmi(input, false_label);                                \
+    __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
+    __ CompareRoot(scratch, Heap::k##Type##MapRootIndex);            \
+    final_branch_condition = eq;
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+
+  } else {
+    __ b(false_label);
+  }
+
+  return final_branch_condition;
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+    // Ensure that we have enough space after the previous lazy-bailout
+    // instruction for patching the code here.
+    int current_pc = masm()->pc_offset();
+    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+      // Block literal pool emission for duration of padding.
+      Assembler::BlockConstPoolScope block_const_pool(masm());
+      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+      DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
+      while (padding_size > 0) {
+        __ nop();
+        padding_size -= Assembler::kInstrSize;
+      }
+    }
+  }
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+  Deoptimizer::BailoutType type = instr->hydrogen()->type();
+  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+  // needed return address), even though the implementation of LAZY and EAGER is
+  // now identical. When LAZY is eventually completely folded into EAGER, remove
+  // the special case below.
+  if (info()->IsStub() && type == Deoptimizer::EAGER) {
+    type = Deoptimizer::LAZY;
+  }
+
+  DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+  PushSafepointRegistersScope scope(this);
+  LoadContextFromDeferred(instr->context());
+  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+  RecordSafepointWithLazyDeopt(
+      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+  class DeferredStackCheck final : public LDeferredCode {
+   public:
+    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStackCheck* instr_;
+  };
+
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  // There is no LLazyBailout instruction for stack-checks. We have to
+  // prepare for lazy deoptimization explicitly here.
+  if (instr->hydrogen()->is_function_entry()) {
+    // Perform stack overflow check.
+    Label done;
+    __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+    __ cmp(sp, Operand(ip));
+    __ b(hs, &done);
+    Handle<Code> stack_check = isolate()->builtins()->StackCheck();
+    PredictableCodeSizeScope predictable(masm());
+    predictable.ExpectSize(CallCodeSize(stack_check, RelocInfo::CODE_TARGET));
+    DCHECK(instr->context()->IsRegister());
+    DCHECK(ToRegister(instr->context()).is(cp));
+    CallCode(stack_check, RelocInfo::CODE_TARGET, instr);
+    __ bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->is_backwards_branch());
+    // Perform stack overflow check if this goto needs it before jumping.
+    DeferredStackCheck* deferred_stack_check =
+        new(zone()) DeferredStackCheck(this, instr);
+    __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+    __ cmp(sp, Operand(ip));
+    __ b(lo, deferred_stack_check->entry());
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+    __ bind(instr->done_label());
+    deferred_stack_check->SetExit(instr->done_label());
+    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+    // Don't record a deoptimization index for the safepoint here.
+    // This will be done explicitly when emitting call and the safepoint in
+    // the deferred code.
+  }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+  // This is a pseudo-instruction that ensures that the environment here is
+  // properly registered for deoptimization and records the assembler's PC
+  // offset.
+  LEnvironment* environment = instr->environment();
+
+  // If the environment were already registered, we would have no way of
+  // backpatching it with the spill slot operands.
+  DCHECK(!environment->HasBeenRegistered());
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+  __ SmiTst(r0);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
+
+  STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
+  __ CompareObjectType(r0, r1, r1, JS_PROXY_TYPE);
+  DeoptimizeIf(le, instr, Deoptimizer::kWrongInstanceType);
+
+  Label use_cache, call_runtime;
+  Register null_value = r5;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ CheckEnumCache(null_value, &call_runtime);
+
+  __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
+  __ b(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(r0);
+  CallRuntime(Runtime::kGetPropertyNamesFast, instr);
+
+  __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+  __ LoadRoot(ip, Heap::kMetaMapRootIndex);
+  __ cmp(r1, ip);
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+  __ bind(&use_cache);
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+  Register map = ToRegister(instr->map());
+  Register result = ToRegister(instr->result());
+  Label load_cache, done;
+  __ EnumLength(result, map);
+  __ cmp(result, Operand(Smi::FromInt(0)));
+  __ b(ne, &load_cache);
+  __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
+  __ jmp(&done);
+
+  __ bind(&load_cache);
+  __ LoadInstanceDescriptors(map, result);
+  __ ldr(result,
+         FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+  __ ldr(result,
+         FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+  __ cmp(result, Operand::Zero());
+  DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+  Register object = ToRegister(instr->value());
+  Register map = ToRegister(instr->map());
+  __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
+  __ cmp(map, scratch0());
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                           Register result,
+                                           Register object,
+                                           Register index) {
+  PushSafepointRegistersScope scope(this);
+  __ Push(object);
+  __ Push(index);
+  __ mov(cp, Operand::Zero());
+  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(r0, result);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+  class DeferredLoadMutableDouble final : public LDeferredCode {
+   public:
+    DeferredLoadMutableDouble(LCodeGen* codegen,
+                              LLoadFieldByIndex* instr,
+                              Register result,
+                              Register object,
+                              Register index)
+        : LDeferredCode(codegen),
+          instr_(instr),
+          result_(result),
+          object_(object),
+          index_(index) {
+    }
+    void Generate() override {
+      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LLoadFieldByIndex* instr_;
+    Register result_;
+    Register object_;
+    Register index_;
+  };
+
+  Register object = ToRegister(instr->object());
+  Register index = ToRegister(instr->index());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  DeferredLoadMutableDouble* deferred;
+  deferred = new(zone()) DeferredLoadMutableDouble(
+      this, instr, result, object, index);
+
+  Label out_of_object, done;
+
+  __ tst(index, Operand(Smi::FromInt(1)));
+  __ b(ne, deferred->entry());
+  __ mov(index, Operand(index, ASR, 1));
+
+  __ cmp(index, Operand::Zero());
+  __ b(lt, &out_of_object);
+
+  __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index));
+  __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
+
+  __ b(&done);
+
+  __ bind(&out_of_object);
+  __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+  // Index is equal to negated out of object property index plus 1.
+  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
+  __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index));
+  __ ldr(result, FieldMemOperand(scratch,
+                                 FixedArray::kHeaderSize - kPointerSize));
+  __ bind(deferred->exit());
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+  Register context = ToRegister(instr->context());
+  __ str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+  Handle<ScopeInfo> scope_info = instr->scope_info();
+  __ Push(scope_info);
+  __ push(ToRegister(instr->function()));
+  CallRuntime(Runtime::kPushBlockContext, instr);
+  RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8