Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/crankshaft/arm64/lithium-codegen-arm64.cc b/src/crankshaft/arm64/lithium-codegen-arm64.cc
new file mode 100644
index 0000000..571bc15
--- /dev/null
+++ b/src/crankshaft/arm64/lithium-codegen-arm64.cc
@@ -0,0 +1,5788 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/arm64/lithium-codegen-arm64.h"
+
+#include "src/arm64/frames-arm64.h"
+#include "src/base/bits.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator final : public CallWrapper {
+ public:
+  SafepointGenerator(LCodeGen* codegen,
+                     LPointerMap* pointers,
+                     Safepoint::DeoptMode mode)
+      : codegen_(codegen),
+        pointers_(pointers),
+        deopt_mode_(mode) { }
+  virtual ~SafepointGenerator() { }
+
+  virtual void BeforeCall(int call_size) const { }
+
+  virtual void AfterCall() const {
+    codegen_->RecordSafepoint(pointers_, deopt_mode_);
+  }
+
+ private:
+  LCodeGen* codegen_;
+  LPointerMap* pointers_;
+  Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+// Emit code to branch if the given condition holds.
+// The code generated here doesn't modify the flags and they must have
+// been set by some prior instructions.
+//
+// The EmitInverted function simply inverts the condition.
+class BranchOnCondition : public BranchGenerator {
+ public:
+  BranchOnCondition(LCodeGen* codegen, Condition cond)
+    : BranchGenerator(codegen),
+      cond_(cond) { }
+
+  virtual void Emit(Label* label) const {
+    __ B(cond_, label);
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    if (cond_ != al) {
+      __ B(NegateCondition(cond_), label);
+    }
+  }
+
+ private:
+  Condition cond_;
+};
+
+
+// Emit code to compare lhs and rhs and branch if the condition holds.
+// This uses MacroAssembler's CompareAndBranch function so it will handle
+// converting the comparison to Cbz/Cbnz if the right-hand side is 0.
+//
+// EmitInverted still compares the two operands but inverts the condition.
+class CompareAndBranch : public BranchGenerator {
+ public:
+  CompareAndBranch(LCodeGen* codegen,
+                   Condition cond,
+                   const Register& lhs,
+                   const Operand& rhs)
+    : BranchGenerator(codegen),
+      cond_(cond),
+      lhs_(lhs),
+      rhs_(rhs) { }
+
+  virtual void Emit(Label* label) const {
+    __ CompareAndBranch(lhs_, rhs_, cond_, label);
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
+  }
+
+ private:
+  Condition cond_;
+  const Register& lhs_;
+  const Operand& rhs_;
+};
+
+
+// Test the input with the given mask and branch if the condition holds.
+// If the condition is 'eq' or 'ne' this will use MacroAssembler's
+// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
+// conversion to Tbz/Tbnz when possible.
+class TestAndBranch : public BranchGenerator {
+ public:
+  TestAndBranch(LCodeGen* codegen,
+                Condition cond,
+                const Register& value,
+                uint64_t mask)
+    : BranchGenerator(codegen),
+      cond_(cond),
+      value_(value),
+      mask_(mask) { }
+
+  virtual void Emit(Label* label) const {
+    switch (cond_) {
+      case eq:
+        __ TestAndBranchIfAllClear(value_, mask_, label);
+        break;
+      case ne:
+        __ TestAndBranchIfAnySet(value_, mask_, label);
+        break;
+      default:
+        __ Tst(value_, mask_);
+        __ B(cond_, label);
+    }
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    // The inverse of "all clear" is "any set" and vice versa.
+    switch (cond_) {
+      case eq:
+        __ TestAndBranchIfAnySet(value_, mask_, label);
+        break;
+      case ne:
+        __ TestAndBranchIfAllClear(value_, mask_, label);
+        break;
+      default:
+        __ Tst(value_, mask_);
+        __ B(NegateCondition(cond_), label);
+    }
+  }
+
+ private:
+  Condition cond_;
+  const Register& value_;
+  uint64_t mask_;
+};
+
+
+// Test the input and branch if it is non-zero and not a NaN.
+class BranchIfNonZeroNumber : public BranchGenerator {
+ public:
+  BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
+                        const FPRegister& scratch)
+    : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
+
+  virtual void Emit(Label* label) const {
+    __ Fabs(scratch_, value_);
+    // Compare with 0.0. Because scratch_ is positive, the result can be one of
+    // nZCv (equal), nzCv (greater) or nzCV (unordered).
+    __ Fcmp(scratch_, 0.0);
+    __ B(gt, label);
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    __ Fabs(scratch_, value_);
+    __ Fcmp(scratch_, 0.0);
+    __ B(le, label);
+  }
+
+ private:
+  const FPRegister& value_;
+  const FPRegister& scratch_;
+};
+
+
+// Test the input and branch if it is a heap number.
+class BranchIfHeapNumber : public BranchGenerator {
+ public:
+  BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
+      : BranchGenerator(codegen), value_(value) { }
+
+  virtual void Emit(Label* label) const {
+    __ JumpIfHeapNumber(value_, label);
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    __ JumpIfNotHeapNumber(value_, label);
+  }
+
+ private:
+  const Register& value_;
+};
+
+
+// Test the input and branch if it is the specified root value.
+class BranchIfRoot : public BranchGenerator {
+ public:
+  BranchIfRoot(LCodeGen* codegen, const Register& value,
+               Heap::RootListIndex index)
+      : BranchGenerator(codegen), value_(value), index_(index) { }
+
+  virtual void Emit(Label* label) const {
+    __ JumpIfRoot(value_, index_, label);
+  }
+
+  virtual void EmitInverted(Label* label) const {
+    __ JumpIfNotRoot(value_, index_, label);
+  }
+
+ private:
+  const Register& value_;
+  const Heap::RootListIndex index_;
+};
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+                                Translation* translation) {
+  if (environment == NULL) return;
+
+  // The translation includes one command per value in the environment.
+  int translation_size = environment->translation_size();
+
+  WriteTranslation(environment->outer(), translation);
+  WriteTranslationFrame(environment, translation);
+
+  int object_index = 0;
+  int dematerialized_index = 0;
+  for (int i = 0; i < translation_size; ++i) {
+    LOperand* value = environment->values()->at(i);
+    AddToTranslation(
+        environment, translation, value, environment->HasTaggedValueAt(i),
+        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
+  }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+                                Translation* translation,
+                                LOperand* op,
+                                bool is_tagged,
+                                bool is_uint32,
+                                int* object_index_pointer,
+                                int* dematerialized_index_pointer) {
+  if (op == LEnvironment::materialization_marker()) {
+    int object_index = (*object_index_pointer)++;
+    if (environment->ObjectIsDuplicateAt(object_index)) {
+      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+      translation->DuplicateObject(dupe_of);
+      return;
+    }
+    int object_length = environment->ObjectLengthAt(object_index);
+    if (environment->ObjectIsArgumentsAt(object_index)) {
+      translation->BeginArgumentsObject(object_length);
+    } else {
+      translation->BeginCapturedObject(object_length);
+    }
+    int dematerialized_index = *dematerialized_index_pointer;
+    int env_offset = environment->translation_size() + dematerialized_index;
+    *dematerialized_index_pointer += object_length;
+    for (int i = 0; i < object_length; ++i) {
+      LOperand* value = environment->values()->at(env_offset + i);
+      AddToTranslation(environment,
+                       translation,
+                       value,
+                       environment->HasTaggedValueAt(env_offset + i),
+                       environment->HasUint32ValueAt(env_offset + i),
+                       object_index_pointer,
+                       dematerialized_index_pointer);
+    }
+    return;
+  }
+
+  if (op->IsStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    if (is_tagged) {
+      translation->StoreStackSlot(index);
+    } else if (is_uint32) {
+      translation->StoreUint32StackSlot(index);
+    } else {
+      translation->StoreInt32StackSlot(index);
+    }
+  } else if (op->IsDoubleStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    translation->StoreDoubleStackSlot(index);
+  } else if (op->IsRegister()) {
+    Register reg = ToRegister(op);
+    if (is_tagged) {
+      translation->StoreRegister(reg);
+    } else if (is_uint32) {
+      translation->StoreUint32Register(reg);
+    } else {
+      translation->StoreInt32Register(reg);
+    }
+  } else if (op->IsDoubleRegister()) {
+    DoubleRegister reg = ToDoubleRegister(op);
+    translation->StoreDoubleRegister(reg);
+  } else if (op->IsConstantOperand()) {
+    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+    translation->StoreLiteral(src_index);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                                    Safepoint::DeoptMode mode) {
+  environment->set_has_been_used();
+  if (!environment->HasBeenRegistered()) {
+    int frame_count = 0;
+    int jsframe_count = 0;
+    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+      ++frame_count;
+      if (e->frame_type() == JS_FUNCTION) {
+        ++jsframe_count;
+      }
+    }
+    Translation translation(&translations_, frame_count, jsframe_count, zone());
+    WriteTranslation(environment, &translation);
+    int deoptimization_index = deoptimizations_.length();
+    int pc_offset = masm()->pc_offset();
+    environment->Register(deoptimization_index,
+                          translation.index(),
+                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+    deoptimizations_.Add(environment, zone());
+  }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+                        RelocInfo::Mode mode,
+                        LInstruction* instr) {
+  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+                               RelocInfo::Mode mode,
+                               LInstruction* instr,
+                               SafepointMode safepoint_mode) {
+  DCHECK(instr != NULL);
+
+  Assembler::BlockPoolsScope scope(masm_);
+  __ Call(code, mode);
+  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+
+  if ((code->kind() == Code::BINARY_OP_IC) ||
+      (code->kind() == Code::COMPARE_IC)) {
+    // Signal that we don't inline smi code before these stubs in the
+    // optimizing code generator.
+    InlineSmiCheckInfo::EmitNotInlined(masm());
+  }
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).Is(x1));
+  DCHECK(ToRegister(instr->result()).Is(x0));
+
+  int arity = instr->arity();
+  ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    Register slot_register = ToRegister(instr->temp_slot());
+    Register vector_register = ToRegister(instr->temp_vector());
+    DCHECK(slot_register.is(x3));
+    DCHECK(vector_register.is(x2));
+
+    AllowDeferredHandleDereference vector_structure_check;
+    Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+    int index = vector->GetIndex(instr->hydrogen()->slot());
+
+    __ Mov(vector_register, vector);
+    __ Mov(slot_register, Operand(Smi::FromInt(index)));
+
+    Handle<Code> ic =
+        CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
+    CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  } else {
+    __ Mov(x0, arity);
+    CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
+  }
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+  DCHECK(instr->IsMarkedAsCall());
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->constructor()).is(x1));
+
+  __ Mov(x0, Operand(instr->arity()));
+  if (instr->arity() == 1) {
+    // We only need the allocation site for the case we have a length argument.
+    // The case may bail out to the runtime, which will determine the correct
+    // elements kind with the site.
+    __ Mov(x2, instr->hydrogen()->site());
+  } else {
+    __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
+  }
+
+
+  ElementsKind kind = instr->hydrogen()->elements_kind();
+  AllocationSiteOverrideMode override_mode =
+      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+          ? DISABLE_ALLOCATION_SITES
+          : DONT_OVERRIDE;
+
+  if (instr->arity() == 0) {
+    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  } else if (instr->arity() == 1) {
+    Label done;
+    if (IsFastPackedElementsKind(kind)) {
+      Label packed_case;
+
+      // We might need to create a holey array; look at the first argument.
+      __ Peek(x10, 0);
+      __ Cbz(x10, &packed_case);
+
+      ElementsKind holey_kind = GetHoleyElementsKind(kind);
+      ArraySingleArgumentConstructorStub stub(isolate(),
+                                              holey_kind,
+                                              override_mode);
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      __ B(&done);
+      __ Bind(&packed_case);
+    }
+
+    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+    __ Bind(&done);
+  } else {
+    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  }
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+
+  DCHECK(ToRegister(instr->result()).is(x0));
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+                           int num_arguments,
+                           LInstruction* instr,
+                           SaveFPRegsMode save_doubles) {
+  DCHECK(instr != NULL);
+
+  __ CallRuntime(function, num_arguments, save_doubles);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+  if (context->IsRegister()) {
+    __ Mov(cp, ToRegister(context));
+  } else if (context->IsStackSlot()) {
+    __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
+  } else if (context->IsConstantOperand()) {
+    HConstant* constant =
+        chunk_->LookupConstant(LConstantOperand::cast(context));
+    __ LoadHeapObject(cp,
+                      Handle<HeapObject>::cast(constant->handle(isolate())));
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+                                       int argc,
+                                       LInstruction* instr,
+                                       LOperand* context) {
+  LoadContextFromDeferred(context);
+  __ CallRuntimeSaveDoubles(id);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+  if (position == RelocInfo::kNoPosition) return;
+  masm()->positions_recorder()->RecordPosition(position);
+  masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
+                                            SafepointMode safepoint_mode) {
+  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+  } else {
+    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::Kind kind,
+                               int arguments,
+                               Safepoint::DeoptMode deopt_mode) {
+  DCHECK(expected_safepoint_kind_ == kind);
+
+  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+  Safepoint safepoint = safepoints_.DefineSafepoint(
+      masm(), kind, arguments, deopt_mode);
+
+  for (int i = 0; i < operands->length(); i++) {
+    LOperand* pointer = operands->at(i);
+    if (pointer->IsStackSlot()) {
+      safepoint.DefinePointerSlot(pointer->index(), zone());
+    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+    }
+  }
+}
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+  LPointerMap empty_pointers(zone());
+  RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+                                            int arguments,
+                                            Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+bool LCodeGen::GenerateCode() {
+  LPhase phase("Z_Code generation", chunk());
+  DCHECK(is_unused());
+  status_ = GENERATING;
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // NONE indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done in GeneratePrologue).
+  FrameScope frame_scope(masm_, StackFrame::NONE);
+
+  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
+         GenerateJumpTable() && GenerateSafepointTable();
+}
+
+
+void LCodeGen::SaveCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Save clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator iterator(doubles);
+  int count = 0;
+  while (!iterator.Done()) {
+    // TODO(all): Is this supposed to save just the callee-saved doubles? It
+    // looks like it's saving all of them.
+    FPRegister value = FPRegister::from_code(iterator.Current());
+    __ Poke(value, count * kDoubleSize);
+    iterator.Advance();
+    count++;
+  }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Restore clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator iterator(doubles);
+  int count = 0;
+  while (!iterator.Done()) {
+    // TODO(all): Is this supposed to restore just the callee-saved doubles? It
+    // looks like it's restoring all of them.
+    FPRegister value = FPRegister::from_code(iterator.Current());
+    __ Peek(value, count * kDoubleSize);
+    iterator.Advance();
+    count++;
+  }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+  DCHECK(is_generating());
+
+  if (info()->IsOptimizing()) {
+    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+    if (strlen(FLAG_stop_at) > 0 &&
+        info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+      __ Debug("stop-at", __LINE__, BREAK);
+    }
+#endif
+  }
+
+  DCHECK(__ StackPointer().Is(jssp));
+  info()->set_prologue_offset(masm_->pc_offset());
+  if (NeedsEagerFrame()) {
+    if (info()->IsStub()) {
+      __ StubPrologue();
+    } else {
+      __ Prologue(info()->GeneratePreagedPrologue());
+    }
+    frame_is_built_ = true;
+  }
+
+  // Reserve space for the stack slots needed by the code.
+  int slots = GetStackSlotCount();
+  if (slots > 0) {
+    __ Claim(slots, kPointerSize);
+  }
+
+  if (info()->saves_caller_doubles()) {
+    SaveCallerDoubles();
+  }
+  return !is_aborted();
+}
+
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+  Comment(";;; Prologue begin");
+
+  // Allocate a local context if needed.
+  if (info()->num_heap_slots() > 0) {
+    Comment(";;; Allocate local context");
+    bool need_write_barrier = true;
+    // Argument to NewContext is the function, which is in x1.
+    int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+    if (info()->scope()->is_script_scope()) {
+      __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
+      __ Push(x1, x10);
+      __ CallRuntime(Runtime::kNewScriptContext);
+      deopt_mode = Safepoint::kLazyDeopt;
+    } else if (slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(isolate(), slots);
+      __ CallStub(&stub);
+      // Result of FastNewContextStub is always in new space.
+      need_write_barrier = false;
+    } else {
+      __ Push(x1);
+      __ CallRuntime(Runtime::kNewFunctionContext);
+    }
+    RecordSafepoint(deopt_mode);
+    // Context is returned in x0. It replaces the context passed to us. It's
+    // saved in the stack and kept live in cp.
+    __ Mov(cp, x0);
+    __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        Register value = x0;
+        Register scratch = x3;
+
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+            (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ Ldr(value, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ Str(value, target);
+        // Update the write barrier. This clobbers value and scratch.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
+                                    value, scratch, GetLinkRegisterState(),
+                                    kSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+    Comment(";;; End allocate local context");
+  }
+
+  Comment(";;; Prologue end");
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+  // Generate the OSR entry prologue at the first unknown OSR value, or if there
+  // are none, at the OSR entrypoint instruction.
+  if (osr_pc_offset_ >= 0) return;
+
+  osr_pc_offset_ = masm()->pc_offset();
+
+  // Adjust the frame size, subsuming the unoptimized frame into the
+  // optimized frame.
+  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+  DCHECK(slots >= 0);
+  __ Claim(slots);
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+  if (instr->IsCall()) {
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+  }
+  if (!instr->IsLazyBailout() && !instr->IsGap()) {
+    safepoints_.BumpLastLazySafepointIndex();
+  }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+  DCHECK(is_generating());
+  if (deferred_.length() > 0) {
+    for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
+      LDeferredCode* code = deferred_[i];
+
+      HValue* value =
+          instructions_->at(code->instruction_index())->hydrogen_value();
+      RecordAndWritePosition(
+          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+      Comment(";;; <@%d,#%d> "
+              "-------------------- Deferred %s --------------------",
+              code->instruction_index(),
+              code->instr()->hydrogen_value()->id(),
+              code->instr()->Mnemonic());
+
+      __ Bind(code->entry());
+
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Build frame");
+        DCHECK(!frame_is_built_);
+        DCHECK(info()->IsStub());
+        frame_is_built_ = true;
+        __ Push(lr, fp, cp);
+        __ Mov(fp, Smi::FromInt(StackFrame::STUB));
+        __ Push(fp);
+        __ Add(fp, __ StackPointer(),
+               StandardFrameConstants::kFixedFrameSizeFromFp);
+        Comment(";;; Deferred code");
+      }
+
+      code->Generate();
+
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Destroy frame");
+        DCHECK(frame_is_built_);
+        __ Pop(xzr, cp, fp, lr);
+        frame_is_built_ = false;
+      }
+
+      __ B(code->exit());
+    }
+  }
+
+  // Force constant pool emission at the end of the deferred code to make
+  // sure that no constant pools are emitted after deferred code because
+  // deferred code generation is the last step which generates code. The two
+  // following steps will only output data used by crakshaft.
+  masm()->CheckConstPool(true, false);
+
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateJumpTable() {
+  Label needs_frame, call_deopt_entry;
+
+  if (jump_table_.length() > 0) {
+    Comment(";;; -------------------- Jump table --------------------");
+    Address base = jump_table_[0]->address;
+
+    UseScratchRegisterScope temps(masm());
+    Register entry_offset = temps.AcquireX();
+
+    int length = jump_table_.length();
+    for (int i = 0; i < length; i++) {
+      Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
+      __ Bind(&table_entry->label);
+
+      Address entry = table_entry->address;
+      DeoptComment(table_entry->deopt_info);
+
+      // Second-level deopt table entries are contiguous and small, so instead
+      // of loading the full, absolute address of each one, load the base
+      // address and add an immediate offset.
+      __ Mov(entry_offset, entry - base);
+
+      if (table_entry->needs_frame) {
+        DCHECK(!info()->saves_caller_doubles());
+        Comment(";;; call deopt with frame");
+        // Save lr before Bl, fp will be adjusted in the needs_frame code.
+        __ Push(lr, fp);
+        // Reuse the existing needs_frame code.
+        __ Bl(&needs_frame);
+      } else {
+        // There is nothing special to do, so just continue to the second-level
+        // table.
+        __ Bl(&call_deopt_entry);
+      }
+      info()->LogDeoptCallPosition(masm()->pc_offset(),
+                                   table_entry->deopt_info.inlining_id);
+
+      masm()->CheckConstPool(false, false);
+    }
+
+    if (needs_frame.is_linked()) {
+      // This variant of deopt can only be used with stubs. Since we don't
+      // have a function pointer to install in the stack frame that we're
+      // building, install a special marker there instead.
+      DCHECK(info()->IsStub());
+
+      Comment(";;; needs_frame common code");
+      UseScratchRegisterScope temps(masm());
+      Register stub_marker = temps.AcquireX();
+      __ Bind(&needs_frame);
+      __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
+      __ Push(cp, stub_marker);
+      __ Add(fp, __ StackPointer(), 2 * kPointerSize);
+    }
+
+    // Generate common code for calling the second-level deopt table.
+    __ Bind(&call_deopt_entry);
+
+    if (info()->saves_caller_doubles()) {
+      DCHECK(info()->IsStub());
+      RestoreCallerDoubles();
+    }
+
+    Register deopt_entry = temps.AcquireX();
+    __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
+                                RelocInfo::RUNTIME_ENTRY));
+    __ Add(deopt_entry, deopt_entry, entry_offset);
+    __ Br(deopt_entry);
+  }
+
+  // Force constant pool emission at the end of the deopt jump table to make
+  // sure that no constant pools are emitted after.
+  masm()->CheckConstPool(true, false);
+
+  // The deoptimization jump table is the last part of the instruction
+  // sequence. Mark the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+  DCHECK(is_done());
+  // We do not know how much data will be emitted for the safepoint table, so
+  // force emission of the veneer pool.
+  masm()->CheckVeneerPool(true, true);
+  safepoints_.Emit(masm(), GetStackSlotCount());
+  return !is_aborted();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+  DCHECK(is_done());
+  code->set_stack_slots(GetStackSlotCount());
+  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+  PopulateDeoptimizationData(code);
+}
+
+
+void LCodeGen::DeoptimizeBranch(
+    LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
+    BranchType branch_type, Register reg, int bit,
+    Deoptimizer::BailoutType* override_bailout_type) {
+  LEnvironment* environment = instr->environment();
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+  Deoptimizer::BailoutType bailout_type =
+    info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
+
+  if (override_bailout_type != NULL) {
+    bailout_type = *override_bailout_type;
+  }
+
+  DCHECK(environment->HasBeenRegistered());
+  int id = environment->deoptimization_index();
+  Address entry =
+      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+
+  if (entry == NULL) {
+    Abort(kBailoutWasNotPrepared);
+  }
+
+  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+    Label not_zero;
+    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+
+    __ Push(x0, x1, x2);
+    __ Mrs(x2, NZCV);
+    __ Mov(x0, count);
+    __ Ldr(w1, MemOperand(x0));
+    __ Subs(x1, x1, 1);
+    __ B(gt, &not_zero);
+    __ Mov(w1, FLAG_deopt_every_n_times);
+    __ Str(w1, MemOperand(x0));
+    __ Pop(x2, x1, x0);
+    DCHECK(frame_is_built_);
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+    __ Unreachable();
+
+    __ Bind(&not_zero);
+    __ Str(w1, MemOperand(x0));
+    __ Msr(NZCV, x2);
+    __ Pop(x2, x1, x0);
+  }
+
+  if (info()->ShouldTrapOnDeopt()) {
+    Label dont_trap;
+    __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
+    __ Debug("trap_on_deopt", __LINE__, BREAK);
+    __ Bind(&dont_trap);
+  }
+
+  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+  DCHECK(info()->IsStub() || frame_is_built_);
+  // Go through jump table if we need to build frame, or restore caller doubles.
+  if (branch_type == always &&
+      frame_is_built_ && !info()->saves_caller_doubles()) {
+    DeoptComment(deopt_info);
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+  } else {
+    Deoptimizer::JumpTableEntry* table_entry =
+        new (zone()) Deoptimizer::JumpTableEntry(
+            entry, deopt_info, bailout_type, !frame_is_built_);
+    // We often have several deopts to the same entry, reuse the last
+    // jump entry if this is the case.
+    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+        jump_table_.is_empty() ||
+        !table_entry->IsEquivalentTo(*jump_table_.last())) {
+      jump_table_.Add(table_entry, zone());
+    }
+    __ B(&jump_table_.last()->label, branch_type, reg, bit);
+  }
+}
+
+
+void LCodeGen::Deoptimize(LInstruction* instr,
+                          Deoptimizer::DeoptReason deopt_reason,
+                          Deoptimizer::BailoutType* override_bailout_type) {
+  DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
+                   override_bailout_type);
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
+}
+
+
+void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
+                                Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
+}
+
+
+void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
+                                   Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
+}
+
+
+void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
+                                    Deoptimizer::DeoptReason deopt_reason) {
+  int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
+  DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
+                               Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
+                                  Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
+                                LInstruction* instr,
+                                Deoptimizer::DeoptReason deopt_reason) {
+  __ CompareRoot(rt, index);
+  DeoptimizeIf(eq, instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
+                                   LInstruction* instr,
+                                   Deoptimizer::DeoptReason deopt_reason) {
+  __ CompareRoot(rt, index);
+  DeoptimizeIf(ne, instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
+                                     Deoptimizer::DeoptReason deopt_reason) {
+  __ TestForMinusZero(input);
+  DeoptimizeIf(vs, instr, deopt_reason);
+}
+
+
+void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
+  __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+}
+
+
+void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
+                                  Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
+}
+
+
+void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
+                                    Deoptimizer::DeoptReason deopt_reason) {
+  DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+    // Ensure that we have enough space after the previous lazy-bailout
+    // instruction for patching the code here.
+    intptr_t current_pc = masm()->pc_offset();
+
+    if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
+      ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+      DCHECK((padding_size % kInstructionSize) == 0);
+      InstructionAccurateScope instruction_accurate(
+          masm(), padding_size / kInstructionSize);
+
+      while (padding_size > 0) {
+        __ nop();
+        padding_size -= kInstructionSize;
+      }
+    }
+  }
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+  // TODO(all): support zero register results, as ToRegister32.
+  DCHECK((op != NULL) && op->IsRegister());
+  return Register::from_code(op->index());
+}
+
+
+Register LCodeGen::ToRegister32(LOperand* op) const {
+  DCHECK(op != NULL);
+  if (op->IsConstantOperand()) {
+    // If this is a constant operand, the result must be the zero register.
+    DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
+    return wzr;
+  } else {
+    return ToRegister(op).W();
+  }
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return Smi::FromInt(constant->Integer32Value());
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+  DCHECK((op != NULL) && op->IsDoubleRegister());
+  return DoubleRegister::from_code(op->index());
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+  DCHECK(op != NULL);
+  if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk()->LookupConstant(const_op);
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsSmi()) {
+      DCHECK(constant->HasSmiValue());
+      return Operand(Smi::FromInt(constant->Integer32Value()));
+    } else if (r.IsInteger32()) {
+      DCHECK(constant->HasInteger32Value());
+      return Operand(constant->Integer32Value());
+    } else if (r.IsDouble()) {
+      Abort(kToOperandUnsupportedDoubleImmediate);
+    }
+    DCHECK(r.IsTagged());
+    return Operand(constant->handle(isolate()));
+  } else if (op->IsRegister()) {
+    return Operand(ToRegister(op));
+  } else if (op->IsDoubleRegister()) {
+    Abort(kToOperandIsDoubleRegisterUnimplemented);
+    return Operand(0);
+  }
+  // Stack slots not implemented, use ToMemOperand instead.
+  UNREACHABLE();
+  return Operand(0);
+}
+
+
+Operand LCodeGen::ToOperand32(LOperand* op) {
+  DCHECK(op != NULL);
+  if (op->IsRegister()) {
+    return Operand(ToRegister32(op));
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk()->LookupConstant(const_op);
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      return Operand(constant->Integer32Value());
+    } else {
+      // Other constants not implemented.
+      Abort(kToOperand32UnsupportedImmediate);
+    }
+  }
+  // Other cases are not implemented.
+  UNREACHABLE();
+  return Operand(0);
+}
+
+
+static int64_t ArgumentsOffsetWithoutFrame(int index) {
+  DCHECK(index < 0);
+  return -(index + 1) * kPointerSize;
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
+  DCHECK(op != NULL);
+  DCHECK(!op->IsRegister());
+  DCHECK(!op->IsDoubleRegister());
+  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    int fp_offset = StackSlotOffset(op->index());
+    // Loads and stores have a bigger reach in positive offset than negative.
+    // We try to access using jssp (positive offset) first, then fall back to
+    // fp (negative offset) if that fails.
+    //
+    // We can reference a stack slot from jssp only if we know how much we've
+    // put on the stack. We don't know this in the following cases:
+    // - stack_mode != kCanUseStackPointer: this is the case when deferred
+    //   code has saved the registers.
+    // - saves_caller_doubles(): some double registers have been pushed, jssp
+    //   references the end of the double registers and not the end of the stack
+    //   slots.
+    // In both of the cases above, we _could_ add the tracking information
+    // required so that we can use jssp here, but in practice it isn't worth it.
+    if ((stack_mode == kCanUseStackPointer) &&
+        !info()->saves_caller_doubles()) {
+      int jssp_offset_to_fp =
+          StandardFrameConstants::kFixedFrameSizeFromFp +
+          (pushed_arguments_ + GetStackSlotCount()) * kPointerSize;
+      int jssp_offset = fp_offset + jssp_offset_to_fp;
+      if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
+        return MemOperand(masm()->StackPointer(), jssp_offset);
+      }
+    }
+    return MemOperand(fp, fp_offset);
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(masm()->StackPointer(),
+                      ArgumentsOffsetWithoutFrame(op->index()));
+  }
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+  return constant->handle(isolate());
+}
+
+
+template <class LI>
+Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
+  if (shift_info->shift() == NO_SHIFT) {
+    return ToOperand32(right);
+  } else {
+    return Operand(
+        ToRegister32(right),
+        shift_info->shift(),
+        JSShiftAmountFromLConstant(shift_info->shift_amount()));
+  }
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return constant->Integer32Value();
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasDoubleValue());
+  return constant->DoubleValue();
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+  Condition cond = nv;
+  switch (op) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      cond = eq;
+      break;
+    case Token::NE:
+    case Token::NE_STRICT:
+      cond = ne;
+      break;
+    case Token::LT:
+      cond = is_unsigned ? lo : lt;
+      break;
+    case Token::GT:
+      cond = is_unsigned ? hi : gt;
+      break;
+    case Token::LTE:
+      cond = is_unsigned ? ls : le;
+      break;
+    case Token::GTE:
+      cond = is_unsigned ? hs : ge;
+      break;
+    case Token::IN:
+    case Token::INSTANCEOF:
+    default:
+      UNREACHABLE();
+  }
+  return cond;
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchGeneric(InstrType instr,
+                                 const BranchGenerator& branch) {
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+
+  if (right_block == left_block) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
+  } else {
+    branch.Emit(chunk_->GetAssemblyLabel(left_block));
+    if (right_block != next_block) {
+      __ B(chunk_->GetAssemblyLabel(right_block));
+    }
+  }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
+  DCHECK((condition != al) && (condition != nv));
+  BranchOnCondition branch(this, condition);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitCompareAndBranch(InstrType instr,
+                                    Condition condition,
+                                    const Register& lhs,
+                                    const Operand& rhs) {
+  DCHECK((condition != al) && (condition != nv));
+  CompareAndBranch branch(this, condition, lhs, rhs);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitTestAndBranch(InstrType instr,
+                                 Condition condition,
+                                 const Register& value,
+                                 uint64_t mask) {
+  DCHECK((condition != al) && (condition != nv));
+  TestAndBranch branch(this, condition, value, mask);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
+                                         const FPRegister& value,
+                                         const FPRegister& scratch) {
+  BranchIfNonZeroNumber branch(this, value, scratch);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
+                                      const Register& value) {
+  BranchIfHeapNumber branch(this, value);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfRoot(InstrType instr,
+                                const Register& value,
+                                Heap::RootListIndex index) {
+  BranchIfRoot branch(this, value, index);
+  EmitBranchGeneric(instr, branch);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+  for (int i = LGap::FIRST_INNER_POSITION;
+       i <= LGap::LAST_INNER_POSITION;
+       i++) {
+    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+    LParallelMove* move = gap->GetParallelMove(inner_pos);
+    if (move != NULL) {
+      resolver_.Resolve(move);
+    }
+  }
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+  Register arguments = ToRegister(instr->arguments());
+  Register result = ToRegister(instr->result());
+
+  // The pointer to the arguments array come from DoArgumentsElements.
+  // It does not point directly to the arguments and there is an offest of
+  // two words that we must take into account when accessing an argument.
+  // Subtracting the index from length accounts for one, so we add one more.
+
+  if (instr->length()->IsConstantOperand() &&
+      instr->index()->IsConstantOperand()) {
+    int index = ToInteger32(LConstantOperand::cast(instr->index()));
+    int length = ToInteger32(LConstantOperand::cast(instr->length()));
+    int offset = ((length - index) + 1) * kPointerSize;
+    __ Ldr(result, MemOperand(arguments, offset));
+  } else if (instr->index()->IsConstantOperand()) {
+    Register length = ToRegister32(instr->length());
+    int index = ToInteger32(LConstantOperand::cast(instr->index()));
+    int loc = index - 1;
+    if (loc != 0) {
+      __ Sub(result.W(), length, loc);
+      __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
+    } else {
+      __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
+    }
+  } else {
+    Register length = ToRegister32(instr->length());
+    Operand index = ToOperand32(instr->index());
+    __ Sub(result.W(), length, index);
+    __ Add(result.W(), result.W(), 1);
+    __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
+  }
+}
+
+
+void LCodeGen::DoAddE(LAddE* instr) {
+  Register result = ToRegister(instr->result());
+  Register left = ToRegister(instr->left());
+  Operand right = Operand(x0);  // Dummy initialization.
+  if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
+    right = Operand(ToRegister(instr->right()));
+  } else if (instr->right()->IsConstantOperand()) {
+    right = ToInteger32(LConstantOperand::cast(instr->right()));
+  } else {
+    right = Operand(ToRegister32(instr->right()), SXTW);
+  }
+
+  DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
+  __ Add(result, left, right);
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  Register result = ToRegister32(instr->result());
+  Register left = ToRegister32(instr->left());
+  Operand right = ToShiftedRightOperand32(instr->right(), instr);
+
+  if (can_overflow) {
+    __ Adds(result, left, right);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  } else {
+    __ Add(result, left, right);
+  }
+}
+
+
+void LCodeGen::DoAddS(LAddS* instr) {
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  Register result = ToRegister(instr->result());
+  Register left = ToRegister(instr->left());
+  Operand right = ToOperand(instr->right());
+  if (can_overflow) {
+    __ Adds(result, left, right);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  } else {
+    __ Add(result, left, right);
+  }
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+  class DeferredAllocate: public LDeferredCode {
+   public:
+    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LAllocate* instr_;
+  };
+
+  DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
+
+  Register result = ToRegister(instr->result());
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  // Allocate memory for the object.
+  AllocationFlags flags = TAG_OBJECT;
+  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+  }
+
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = static_cast<AllocationFlags>(flags | PRETENURE);
+  }
+
+  if (instr->size()->IsConstantOperand()) {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    CHECK(size <= Page::kMaxRegularHeapObjectSize);
+    __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
+  } else {
+    Register size = ToRegister32(instr->size());
+    __ Sxtw(size.X(), size);
+    __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
+  }
+
+  __ Bind(deferred->exit());
+
+  if (instr->hydrogen()->MustPrefillWithFiller()) {
+    Register start = temp1;
+    Register end = temp2;
+    Register filler = ToRegister(instr->temp3());
+
+    __ Sub(start, result, kHeapObjectTag);
+
+    if (instr->size()->IsConstantOperand()) {
+      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+      __ Add(end, start, size);
+    } else {
+      __ Add(end, start, ToRegister(instr->size()));
+    }
+    __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
+    __ InitializeFieldsWithFiller(start, end, filler);
+  } else {
+    DCHECK(instr->temp3() == NULL);
+  }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
+
+  PushSafepointRegistersScope scope(this);
+  // We're in a SafepointRegistersScope so we can use any scratch registers.
+  Register size = x0;
+  if (instr->size()->IsConstantOperand()) {
+    __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
+  } else {
+    __ SmiTag(size, ToRegister32(instr->size()).X());
+  }
+  int flags = AllocateDoubleAlignFlag::encode(
+      instr->hydrogen()->MustAllocateDoubleAligned());
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+  } else {
+    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+  }
+  __ Mov(x10, Smi::FromInt(flags));
+  __ Push(size, x10);
+
+  CallRuntimeFromDeferred(
+      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+  __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register length = ToRegister32(instr->length());
+
+  Register elements = ToRegister(instr->elements());
+  Register scratch = x5;
+  DCHECK(receiver.Is(x0));  // Used for parameter count.
+  DCHECK(function.Is(x1));  // Required by InvokeFunction.
+  DCHECK(ToRegister(instr->result()).Is(x0));
+  DCHECK(instr->IsMarkedAsCall());
+
+  // Copy the arguments to this function possibly from the
+  // adaptor frame below it.
+  const uint32_t kArgumentsLimit = 1 * KB;
+  __ Cmp(length, kArgumentsLimit);
+  DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
+
+  // Push the receiver and use the register to keep the original
+  // number of arguments.
+  __ Push(receiver);
+  Register argc = receiver;
+  receiver = NoReg;
+  __ Sxtw(argc, length);
+  // The arguments are at a one pointer size offset from elements.
+  __ Add(elements, elements, 1 * kPointerSize);
+
+  // Loop through the arguments pushing them onto the execution
+  // stack.
+  Label invoke, loop;
+  // length is a small non-negative integer, due to the test above.
+  __ Cbz(length, &invoke);
+  __ Bind(&loop);
+  __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
+  __ Push(scratch);
+  __ Subs(length, length, 1);
+  __ B(ne, &loop);
+
+  __ Bind(&invoke);
+  DCHECK(instr->HasPointerMap());
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
+  // The number of arguments is stored in argc (receiver) which is x0, as
+  // expected by InvokeFunction.
+  ParameterCount actual(argc);
+  __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
+                    safepoint_generator);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->from_inlined()) {
+    // When we are inside an inlined function, the arguments are the last things
+    // that have been pushed on the stack. Therefore the arguments array can be
+    // accessed directly from jssp.
+    // However in the normal case, it is accessed via fp but there are two words
+    // on the stack between fp and the arguments (the saved lr and fp) and the
+    // LAccessArgumentsAt implementation take that into account.
+    // In the inlined case we need to subtract the size of 2 words to jssp to
+    // get a pointer which will work well with LAccessArgumentsAt.
+    DCHECK(masm()->StackPointer().Is(jssp));
+    __ Sub(result, jssp, 2 * kPointerSize);
+  } else {
+    DCHECK(instr->temp() != NULL);
+    Register previous_fp = ToRegister(instr->temp());
+
+    __ Ldr(previous_fp,
+           MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+    __ Ldr(result,
+           MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
+    __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+    __ Csel(result, fp, previous_fp, ne);
+  }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+  Register elements = ToRegister(instr->elements());
+  Register result = ToRegister32(instr->result());
+  Label done;
+
+  // If no arguments adaptor frame the number of arguments is fixed.
+  __ Cmp(fp, elements);
+  __ Mov(result, scope()->num_parameters());
+  __ B(eq, &done);
+
+  // Arguments adaptor frame present. Get argument length from there.
+  __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ Ldr(result,
+         UntagSmiMemOperand(result.X(),
+                            ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+  // Argument length is in result register.
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+  DoubleRegister left = ToDoubleRegister(instr->left());
+  DoubleRegister right = ToDoubleRegister(instr->right());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+
+  switch (instr->op()) {
+    case Token::ADD: __ Fadd(result, left, right); break;
+    case Token::SUB: __ Fsub(result, left, right); break;
+    case Token::MUL: __ Fmul(result, left, right); break;
+    case Token::DIV: __ Fdiv(result, left, right); break;
+    case Token::MOD: {
+      // The ECMA-262 remainder operator is the remainder from a truncating
+      // (round-towards-zero) division. Note that this differs from IEEE-754.
+      //
+      // TODO(jbramley): See if it's possible to do this inline, rather than by
+      // calling a helper function. With frintz (to produce the intermediate
+      // quotient) and fmsub (to calculate the remainder without loss of
+      // precision), it should be possible. However, we would need support for
+      // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
+      // support that yet.
+      DCHECK(left.Is(d0));
+      DCHECK(right.Is(d1));
+      __ CallCFunction(
+          ExternalReference::mod_two_doubles_operation(isolate()),
+          0, 2);
+      DCHECK(result.Is(d0));
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(x1));
+  DCHECK(ToRegister(instr->right()).is(x0));
+  DCHECK(ToRegister(instr->result()).is(x0));
+
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+  Register result = ToRegister32(instr->result());
+  Register left = ToRegister32(instr->left());
+  Operand right = ToShiftedRightOperand32(instr->right(), instr);
+
+  switch (instr->op()) {
+    case Token::BIT_AND: __ And(result, left, right); break;
+    case Token::BIT_OR:  __ Orr(result, left, right); break;
+    case Token::BIT_XOR: __ Eor(result, left, right); break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoBitS(LBitS* instr) {
+  Register result = ToRegister(instr->result());
+  Register left = ToRegister(instr->left());
+  Operand right = ToOperand(instr->right());
+
+  switch (instr->op()) {
+    case Token::BIT_AND: __ And(result, left, right); break;
+    case Token::BIT_OR:  __ Orr(result, left, right); break;
+    case Token::BIT_XOR: __ Eor(result, left, right); break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
+  Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
+  DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
+  if (instr->index()->IsConstantOperand()) {
+    Operand index = ToOperand32(instr->index());
+    Register length = ToRegister32(instr->length());
+    __ Cmp(length, index);
+    cond = CommuteCondition(cond);
+  } else {
+    Register index = ToRegister32(instr->index());
+    Operand length = ToOperand32(instr->length());
+    __ Cmp(index, length);
+  }
+  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+    __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
+  } else {
+    DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
+  }
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  Label* true_label = instr->TrueLabel(chunk_);
+  Label* false_label = instr->FalseLabel(chunk_);
+
+  if (r.IsInteger32()) {
+    DCHECK(!info()->IsStub());
+    EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
+  } else if (r.IsSmi()) {
+    DCHECK(!info()->IsStub());
+    STATIC_ASSERT(kSmiTag == 0);
+    EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
+  } else if (r.IsDouble()) {
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    // Test the double value. Zero and NaN are false.
+    EmitBranchIfNonZeroNumber(instr, value, double_scratch());
+  } else {
+    DCHECK(r.IsTagged());
+    Register value = ToRegister(instr->value());
+    HType type = instr->hydrogen()->value()->type();
+
+    if (type.IsBoolean()) {
+      DCHECK(!info()->IsStub());
+      __ CompareRoot(value, Heap::kTrueValueRootIndex);
+      EmitBranch(instr, eq);
+    } else if (type.IsSmi()) {
+      DCHECK(!info()->IsStub());
+      EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
+    } else if (type.IsJSArray()) {
+      DCHECK(!info()->IsStub());
+      EmitGoto(instr->TrueDestination(chunk()));
+    } else if (type.IsHeapNumber()) {
+      DCHECK(!info()->IsStub());
+      __ Ldr(double_scratch(), FieldMemOperand(value,
+                                               HeapNumber::kValueOffset));
+      // Test the double value. Zero and NaN are false.
+      EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
+    } else if (type.IsString()) {
+      DCHECK(!info()->IsStub());
+      Register temp = ToRegister(instr->temp1());
+      __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
+      EmitCompareAndBranch(instr, ne, temp, 0);
+    } else {
+      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+      // Avoid deopts in the case where we've never executed this path before.
+      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+        // undefined -> false.
+        __ JumpIfRoot(
+            value, Heap::kUndefinedValueRootIndex, false_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+        // Boolean -> its value.
+        __ JumpIfRoot(
+            value, Heap::kTrueValueRootIndex, true_label);
+        __ JumpIfRoot(
+            value, Heap::kFalseValueRootIndex, false_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+        // 'null' -> false.
+        __ JumpIfRoot(
+            value, Heap::kNullValueRootIndex, false_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::SMI)) {
+        // Smis: 0 -> false, all other -> true.
+        DCHECK(Smi::FromInt(0) == 0);
+        __ Cbz(value, false_label);
+        __ JumpIfSmi(value, true_label);
+      } else if (expected.NeedsMap()) {
+        // If we need a map later and have a smi, deopt.
+        DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
+      }
+
+      Register map = NoReg;
+      Register scratch = NoReg;
+
+      if (expected.NeedsMap()) {
+        DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
+        map = ToRegister(instr->temp1());
+        scratch = ToRegister(instr->temp2());
+
+        __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+
+        if (expected.CanBeUndetectable()) {
+          // Undetectable -> false.
+          __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
+          __ TestAndBranchIfAnySet(
+              scratch, 1 << Map::kIsUndetectable, false_label);
+        }
+      }
+
+      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+        // spec object -> true.
+        __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
+        __ B(ge, true_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::STRING)) {
+        // String value -> false iff empty.
+        Label not_string;
+        __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
+        __ B(ge, &not_string);
+        __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
+        __ Cbz(scratch, false_label);
+        __ B(true_label);
+        __ Bind(&not_string);
+      }
+
+      if (expected.Contains(ToBooleanStub::SYMBOL)) {
+        // Symbol value -> true.
+        __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
+        __ B(eq, true_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
+        // SIMD value -> true.
+        __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
+        __ B(eq, true_label);
+      }
+
+      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+        Label not_heap_number;
+        __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
+
+        __ Ldr(double_scratch(),
+               FieldMemOperand(value, HeapNumber::kValueOffset));
+        __ Fcmp(double_scratch(), 0.0);
+        // If we got a NaN (overflow bit is set), jump to the false branch.
+        __ B(vs, false_label);
+        __ B(eq, false_label);
+        __ B(true_label);
+        __ Bind(&not_heap_number);
+      }
+
+      if (!expected.IsGeneric()) {
+        // We've seen something for the first time -> deopt.
+        // This can only happen if we are not generic already.
+        Deoptimize(instr, Deoptimizer::kUnexpectedObject);
+      }
+    }
+  }
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+                                 int formal_parameter_count, int arity,
+                                 LInstruction* instr) {
+  bool dont_adapt_arguments =
+      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+  bool can_invoke_directly =
+      dont_adapt_arguments || formal_parameter_count == arity;
+
+  // The function interface relies on the following register assignments.
+  Register function_reg = x1;
+  Register arity_reg = x0;
+
+  LPointerMap* pointers = instr->pointer_map();
+
+  if (FLAG_debug_code) {
+    Label is_not_smi;
+    // Try to confirm that function_reg (x1) is a tagged pointer.
+    __ JumpIfNotSmi(function_reg, &is_not_smi);
+    __ Abort(kExpectedFunctionObject);
+    __ Bind(&is_not_smi);
+  }
+
+  if (can_invoke_directly) {
+    // Change context.
+    __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
+
+    // Always initialize new target and number of actual arguments.
+    __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
+    __ Mov(arity_reg, arity);
+
+    // Invoke function.
+    __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
+    __ Call(x10);
+
+    // Set up deoptimization.
+    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+  } else {
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(arity);
+    ParameterCount expected(formal_parameter_count);
+    __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
+  }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+  DCHECK(instr->IsMarkedAsCall());
+  DCHECK(ToRegister(instr->result()).Is(x0));
+
+  if (instr->hydrogen()->IsTailCall()) {
+    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      // TODO(all): on ARM we use a call descriptor to specify a storage mode
+      // but on ARM64 we only have one storage mode so it isn't necessary. Check
+      // this understanding is correct.
+      __ Jump(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
+      __ Br(target);
+    }
+  } else {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+      // TODO(all): on ARM we use a call descriptor to specify a storage mode
+      // but on ARM64 we only have one storage mode so it isn't necessary. Check
+      // this understanding is correct.
+      __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      generator.BeforeCall(__ CallSize(target));
+      __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
+      __ Call(target);
+    }
+    generator.AfterCall();
+  }
+
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+  DCHECK(instr->IsMarkedAsCall());
+  DCHECK(ToRegister(instr->function()).is(x1));
+
+  // Change context.
+  __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
+
+  // Always initialize new target and number of actual arguments.
+  __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
+  __ Mov(x0, instr->arity());
+
+  // Load the code entry address
+  __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
+  __ Call(x10);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+  CallRuntime(instr->function(), instr->arity(), instr);
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->result()).is(x0));
+  switch (instr->hydrogen()->major_key()) {
+    case CodeStub::RegExpExec: {
+      RegExpExecStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    case CodeStub::SubString: {
+      SubStringStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+  Register temp = ToRegister(instr->temp());
+  {
+    PushSafepointRegistersScope scope(this);
+    __ Push(object);
+    __ Mov(cp, 0);
+    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(x0, temp);
+  }
+  DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+  class DeferredCheckMaps: public LDeferredCode {
+   public:
+    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+        : LDeferredCode(codegen), instr_(instr), object_(object) {
+      SetExit(check_maps());
+    }
+    virtual void Generate() {
+      codegen()->DoDeferredInstanceMigration(instr_, object_);
+    }
+    Label* check_maps() { return &check_maps_; }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LCheckMaps* instr_;
+    Label check_maps_;
+    Register object_;
+  };
+
+  if (instr->hydrogen()->IsStabilityCheck()) {
+    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+    for (int i = 0; i < maps->size(); ++i) {
+      AddStabilityDependency(maps->at(i).handle());
+    }
+    return;
+  }
+
+  Register object = ToRegister(instr->value());
+  Register map_reg = ToRegister(instr->temp());
+
+  __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
+
+  DeferredCheckMaps* deferred = NULL;
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    deferred = new(zone()) DeferredCheckMaps(this, instr, object);
+    __ Bind(deferred->check_maps());
+  }
+
+  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+  Label success;
+  for (int i = 0; i < maps->size() - 1; i++) {
+    Handle<Map> map = maps->at(i).handle();
+    __ CompareMap(map_reg, map);
+    __ B(eq, &success);
+  }
+  Handle<Map> map = maps->at(maps->size() - 1).handle();
+  __ CompareMap(map_reg, map);
+
+  // We didn't match a map.
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    __ B(ne, deferred->entry());
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+  }
+
+  __ Bind(&success);
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
+  }
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+  Register value = ToRegister(instr->value());
+  DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
+  DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
+}
+
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+    LCheckArrayBufferNotNeutered* instr) {
+  UseScratchRegisterScope temps(masm());
+  Register view = ToRegister(instr->view());
+  Register scratch = temps.AcquireX();
+
+  __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
+  __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
+  __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
+  DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = ToRegister(instr->temp());
+
+  __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+  if (instr->hydrogen()->is_interval_check()) {
+    InstanceType first, last;
+    instr->hydrogen()->GetCheckInterval(&first, &last);
+
+    __ Cmp(scratch, first);
+    if (first == last) {
+      // If there is only one type in the interval check for equality.
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    } else if (last == LAST_TYPE) {
+      // We don't need to compare with the higher bound of the interval.
+      DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      // If we are below the lower bound, set the C flag and clear the Z flag
+      // to force a deopt.
+      __ Ccmp(scratch, last, CFlag, hs);
+      DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
+    }
+  } else {
+    uint8_t mask;
+    uint8_t tag;
+    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+    if (base::bits::IsPowerOfTwo32(mask)) {
+      DCHECK((tag == 0) || (tag == mask));
+      if (tag == 0) {
+        DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
+                           Deoptimizer::kWrongInstanceType);
+      } else {
+        DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
+                             Deoptimizer::kWrongInstanceType);
+      }
+    } else {
+      if (tag == 0) {
+        __ Tst(scratch, mask);
+      } else {
+        __ And(scratch, scratch, mask);
+        __ Cmp(scratch, tag);
+      }
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    }
+  }
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->unclamped());
+  Register result = ToRegister32(instr->result());
+  __ ClampDoubleToUint8(result, input, double_scratch());
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+  Register input = ToRegister32(instr->unclamped());
+  Register result = ToRegister32(instr->result());
+  __ ClampInt32ToUint8(result, input);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+  Register input = ToRegister(instr->unclamped());
+  Register result = ToRegister32(instr->result());
+  Label done;
+
+  // Both smi and heap number cases are handled.
+  Label is_not_smi;
+  __ JumpIfNotSmi(input, &is_not_smi);
+  __ SmiUntag(result.X(), input);
+  __ ClampInt32ToUint8(result);
+  __ B(&done);
+
+  __ Bind(&is_not_smi);
+
+  // Check for heap number.
+  Label is_heap_number;
+  __ JumpIfHeapNumber(input, &is_heap_number);
+
+  // Check for undefined. Undefined is coverted to zero for clamping conversion.
+  DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
+                      Deoptimizer::kNotAHeapNumberUndefined);
+  __ Mov(result, 0);
+  __ B(&done);
+
+  // Heap number case.
+  __ Bind(&is_heap_number);
+  DoubleRegister dbl_scratch = double_scratch();
+  DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
+  __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
+  __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+  DoubleRegister value_reg = ToDoubleRegister(instr->value());
+  Register result_reg = ToRegister(instr->result());
+  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+    __ Fmov(result_reg, value_reg);
+    __ Lsr(result_reg, result_reg, 32);
+  } else {
+    __ Fmov(result_reg.W(), value_reg.S());
+  }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+  Register hi_reg = ToRegister(instr->hi());
+  Register lo_reg = ToRegister(instr->lo());
+  DoubleRegister result_reg = ToDoubleRegister(instr->result());
+
+  // Insert the least significant 32 bits of hi_reg into the most significant
+  // 32 bits of lo_reg, and move to a floating point register.
+  __ Bfi(lo_reg, hi_reg, 32, 32);
+  __ Fmov(result_reg, lo_reg);
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+  Handle<String> class_name = instr->hydrogen()->class_name();
+  Label* true_label = instr->TrueLabel(chunk_);
+  Label* false_label = instr->FalseLabel(chunk_);
+  Register input = ToRegister(instr->value());
+  Register scratch1 = ToRegister(instr->temp1());
+  Register scratch2 = ToRegister(instr->temp2());
+
+  __ JumpIfSmi(input, false_label);
+
+  Register map = scratch2;
+  __ CompareObjectType(input, map, scratch1, JS_FUNCTION_TYPE);
+  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+    __ B(eq, true_label);
+  } else {
+    __ B(eq, false_label);
+  }
+
+  // Check if the constructor in the map is a function.
+  {
+    UseScratchRegisterScope temps(masm());
+    Register instance_type = temps.AcquireX();
+    __ GetMapConstructor(scratch1, map, scratch2, instance_type);
+    __ Cmp(instance_type, JS_FUNCTION_TYPE);
+  }
+  // Objects with a non-function constructor have class 'Object'.
+  if (String::Equals(class_name, isolate()->factory()->Object_string())) {
+    __ B(ne, true_label);
+  } else {
+    __ B(ne, false_label);
+  }
+
+  // The constructor function is in scratch1. Get its instance class name.
+  __ Ldr(scratch1,
+         FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
+  __ Ldr(scratch1,
+         FieldMemOperand(scratch1,
+                         SharedFunctionInfo::kInstanceClassNameOffset));
+
+  // The class name we are testing against is internalized since it's a literal.
+  // The name in the constructor is internalized because of the way the context
+  // is booted. This routine isn't expected to work for random API-created
+  // classes and it doesn't have to because you can't access it with natives
+  // syntax. Since both sides are internalized it is sufficient to use an
+  // identity comparison.
+  EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
+}
+
+
+void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
+  DCHECK(instr->hydrogen()->representation().IsDouble());
+  FPRegister object = ToDoubleRegister(instr->object());
+  Register temp = ToRegister(instr->temp());
+
+  // If we don't have a NaN, we don't have the hole, so branch now to avoid the
+  // (relatively expensive) hole-NaN check.
+  __ Fcmp(object, object);
+  __ B(vc, instr->FalseLabel(chunk_));
+
+  // We have a NaN, but is it the hole?
+  __ Fmov(temp, object);
+  EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
+}
+
+
+void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
+  DCHECK(instr->hydrogen()->representation().IsTagged());
+  Register object = ToRegister(instr->object());
+
+  EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+  Register value = ToRegister(instr->value());
+  Register map = ToRegister(instr->temp());
+
+  __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+  EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+  Representation rep = instr->hydrogen()->value()->representation();
+  DCHECK(!rep.IsInteger32());
+  Register scratch = ToRegister(instr->temp());
+
+  if (rep.IsDouble()) {
+    __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
+                       instr->TrueLabel(chunk()));
+  } else {
+    Register value = ToRegister(instr->value());
+    __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK);
+    __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
+    __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
+  }
+  EmitGoto(instr->FalseDestination(chunk()));
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  bool is_unsigned =
+      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+  Condition cond = TokenToCondition(instr->op(), is_unsigned);
+
+  if (left->IsConstantOperand() && right->IsConstantOperand()) {
+    // We can statically evaluate the comparison.
+    double left_val = ToDouble(LConstantOperand::cast(left));
+    double right_val = ToDouble(LConstantOperand::cast(right));
+    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+    EmitGoto(next_block);
+  } else {
+    if (instr->is_double()) {
+      __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
+
+      // If a NaN is involved, i.e. the result is unordered (V set),
+      // jump to false block label.
+      __ B(vs, instr->FalseLabel(chunk_));
+      EmitBranch(instr, cond);
+    } else {
+      if (instr->hydrogen_value()->representation().IsInteger32()) {
+        if (right->IsConstantOperand()) {
+          EmitCompareAndBranch(instr, cond, ToRegister32(left),
+                               ToOperand32(right));
+        } else {
+          // Commute the operands and the condition.
+          EmitCompareAndBranch(instr, CommuteCondition(cond),
+                               ToRegister32(right), ToOperand32(left));
+        }
+      } else {
+        DCHECK(instr->hydrogen_value()->representation().IsSmi());
+        if (right->IsConstantOperand()) {
+          int32_t value = ToInteger32(LConstantOperand::cast(right));
+          EmitCompareAndBranch(instr,
+                               cond,
+                               ToRegister(left),
+                               Operand(Smi::FromInt(value)));
+        } else if (left->IsConstantOperand()) {
+          // Commute the operands and the condition.
+          int32_t value = ToInteger32(LConstantOperand::cast(left));
+          EmitCompareAndBranch(instr,
+                               CommuteCondition(cond),
+                               ToRegister(right),
+                               Operand(Smi::FromInt(value)));
+        } else {
+          EmitCompareAndBranch(instr,
+                               cond,
+                               ToRegister(left),
+                               ToRegister(right));
+        }
+      }
+    }
+  }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+  Register left = ToRegister(instr->left());
+  Register right = ToRegister(instr->right());
+  EmitCompareAndBranch(instr, eq, left, right);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Token::Value op = instr->op();
+  Condition cond = TokenToCondition(op, false);
+
+  DCHECK(ToRegister(instr->left()).Is(x1));
+  DCHECK(ToRegister(instr->right()).Is(x0));
+  Handle<Code> ic =
+      CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  // Signal that we don't inline smi code before this stub.
+  InlineSmiCheckInfo::EmitNotInlined(masm());
+
+  // Return true or false depending on CompareIC result.
+  // This instruction is marked as call. We can clobber any register.
+  DCHECK(instr->IsMarkedAsCall());
+  __ LoadTrueFalseRoots(x1, x2);
+  __ Cmp(x0, 0);
+  __ Csel(ToRegister(instr->result()), x1, x2, cond);
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+  DCHECK(instr->result()->IsDoubleRegister());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  if (instr->value() == 0) {
+    if (copysign(1.0, instr->value()) == 1.0) {
+      __ Fmov(result, fp_zero);
+    } else {
+      __ Fneg(result, fp_zero);
+    }
+  } else {
+    __ Fmov(result, instr->value());
+  }
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+  __ Mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+  DCHECK(is_int32(instr->value()));
+  // Cast the value here to ensure that the value isn't sign extended by the
+  // implicit Operand constructor.
+  __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+  __ Mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+  Handle<Object> object = instr->value(isolate());
+  AllowDeferredHandleDereference smi_check;
+  __ LoadObject(ToRegister(instr->result()), object);
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+  // If there is a non-return use, the context must be moved to a register.
+  Register result = ToRegister(instr->result());
+  if (info()->IsOptimizing()) {
+    __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  } else {
+    // If there is no frame, the context must be in cp.
+    DCHECK(result.is(cp));
+  }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+  Register reg = ToRegister(instr->value());
+  Handle<HeapObject> object = instr->hydrogen()->object().handle();
+  AllowDeferredHandleDereference smi_check;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    UseScratchRegisterScope temps(masm());
+    Register temp = temps.AcquireX();
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    __ Mov(temp, Operand(cell));
+    __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
+    __ Cmp(reg, temp);
+  } else {
+    __ Cmp(reg, Operand(object));
+  }
+  DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+  Deoptimizer::BailoutType type = instr->hydrogen()->type();
+  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+  // needed return address), even though the implementation of LAZY and EAGER is
+  // now identical. When LAZY is eventually completely folded into EAGER, remove
+  // the special case below.
+  if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
+    type = Deoptimizer::LAZY;
+  }
+
+  Deoptimize(instr, instr->hydrogen()->reason(), &type);
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister32(instr->result());
+  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+  DCHECK(!result.is(dividend));
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
+  }
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+    // Test dividend for kMinInt by subtracting one (cmp) and checking for
+    // overflow.
+    __ Cmp(dividend, 1);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  }
+  // Deoptimize if remainder will not be 0.
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+      divisor != 1 && divisor != -1) {
+    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+    __ Tst(dividend, mask);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+
+  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
+    __ Neg(result, dividend);
+    return;
+  }
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (shift == 0) {
+    __ Mov(result, dividend);
+  } else if (shift == 1) {
+    __ Add(result, dividend, Operand(dividend, LSR, 31));
+  } else {
+    __ Mov(result, Operand(dividend, ASR, 31));
+    __ Add(result, dividend, Operand(result, LSR, 32 - shift));
+  }
+  if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
+  if (divisor < 0) __ Neg(result, result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister32(instr->result());
+  DCHECK(!AreAliased(dividend, result));
+
+  if (divisor == 0) {
+    Deoptimize(instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ Neg(result, result);
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    Register temp = ToRegister32(instr->temp());
+    DCHECK(!AreAliased(dividend, result, temp));
+    __ Sxtw(dividend.X(), dividend);
+    __ Mov(temp, divisor);
+    __ Smsubl(temp.X(), result, temp, dividend.X());
+    DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister32(instr->dividend());
+  Register divisor = ToRegister32(instr->divisor());
+  Register result = ToRegister32(instr->result());
+
+  // Issue the division first, and then check for any deopt cases whilst the
+  // result is computed.
+  __ Sdiv(result, dividend, divisor);
+
+  if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    DCHECK(!instr->temp());
+    return;
+  }
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) as that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Cmp(divisor, 0);
+
+    // If the divisor < 0 (mi), compare the dividend, and deopt if it is
+    // zero, ie. zero dividend with negative divisor deopts.
+    // If the divisor >= 0 (pl, the opposite of mi) set the flags to
+    // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
+    __ Ccmp(dividend, 0, NoFlag, mi);
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+    // Test dividend for kMinInt by subtracting one (cmp) and checking for
+    // overflow.
+    __ Cmp(dividend, 1);
+    // If overflow is set, ie. dividend = kMinInt, compare the divisor with
+    // -1. If overflow is clear, set the flags for condition ne, as the
+    // dividend isn't -1, and thus we shouldn't deopt.
+    __ Ccmp(divisor, -1, NoFlag, vs);
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+
+  // Compute remainder and deopt if it's not zero.
+  Register remainder = ToRegister32(instr->temp());
+  __ Msub(remainder, result, divisor, dividend);
+  DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
+}
+
+
+void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister32(instr->result());
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ TryRepresentDoubleAsInt32(result, input, double_scratch());
+  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+  if (instr->tag_result()) {
+    __ SmiTag(result.X());
+  }
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+  __ Drop(instr->count());
+
+  RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+  Register map = ToRegister(instr->map());
+  Register result = ToRegister(instr->result());
+  Label load_cache, done;
+
+  __ EnumLengthUntagged(result, map);
+  __ Cbnz(result, &load_cache);
+
+  __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
+  __ B(&done);
+
+  __ Bind(&load_cache);
+  __ LoadInstanceDescriptors(map, result);
+  __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+  __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+  DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+  Register object = ToRegister(instr->object());
+  Register null_value = x5;
+
+  DCHECK(instr->IsMarkedAsCall());
+  DCHECK(object.Is(x0));
+
+  DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi);
+
+  STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
+  __ CompareObjectType(object, x1, x1, JS_PROXY_TYPE);
+  DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject);
+
+  Label use_cache, call_runtime;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
+
+  __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
+  __ B(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ Bind(&call_runtime);
+  __ Push(object);
+  CallRuntime(Runtime::kGetPropertyNamesFast, instr);
+
+  __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
+  DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr,
+                      Deoptimizer::kWrongMap);
+
+  __ Bind(&use_cache);
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ AssertString(input);
+
+  // Assert that we can use a W register load to get the hash.
+  DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
+  __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
+  __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+  // Do not emit jump if we are emitting a goto to the next block.
+  if (!IsNextEmittedBlock(block)) {
+    __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
+  }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+  EmitGoto(instr->block_id());
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+    LHasCachedArrayIndexAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister32(instr->temp());
+
+  // Assert that the cache status bits fit in a W register.
+  DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
+  __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
+  __ Tst(temp, String::kContainsCachedArrayIndexMask);
+  EmitBranch(instr, eq);
+}
+
+
+// HHasInstanceTypeAndBranch instruction is built with an interval of type
+// to test but is only used in very restricted ways. The only possible kinds
+// of intervals are:
+//  - [ FIRST_TYPE, instr->to() ]
+//  - [ instr->form(), LAST_TYPE ]
+//  - instr->from() == instr->to()
+//
+// These kinds of intervals can be check with only one compare instruction
+// providing the correct value and test condition are used.
+//
+// TestType() will return the value to use in the compare instruction and
+// BranchCondition() will return the condition to use depending on the kind
+// of interval actually specified in the instruction.
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == FIRST_TYPE) return to;
+  DCHECK((from == to) || (to == LAST_TYPE));
+  return from;
+}
+
+
+// See comment above TestType function for what this function does.
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == to) return eq;
+  if (to == LAST_TYPE) return hs;
+  if (from == FIRST_TYPE) return ls;
+  UNREACHABLE();
+  return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
+  EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+  Register result = ToRegister(instr->result());
+  Register base = ToRegister(instr->base_object());
+  if (instr->offset()->IsConstantOperand()) {
+    __ Add(result, base, ToOperand32(instr->offset()));
+  } else {
+    __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
+  }
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+  DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+  DCHECK(ToRegister(instr->result()).is(x0));
+  InstanceOfStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+    LHasInPrototypeChainAndBranch* instr) {
+  Register const object = ToRegister(instr->object());
+  Register const object_map = ToRegister(instr->scratch1());
+  Register const object_instance_type = ToRegister(instr->scratch2());
+  Register const object_prototype = object_map;
+  Register const prototype = ToRegister(instr->prototype());
+
+  // The {object} must be a spec object.  It's sufficient to know that {object}
+  // is not a smi, since all other non-spec objects have {null} prototypes and
+  // will be ruled out below.
+  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+    __ JumpIfSmi(object, instr->FalseLabel(chunk_));
+  }
+
+  // Loop through the {object}s prototype chain looking for the {prototype}.
+  __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
+  Label loop;
+  __ Bind(&loop);
+
+  // Deoptimize if the object needs to be access checked.
+  __ Ldrb(object_instance_type,
+          FieldMemOperand(object_map, Map::kBitFieldOffset));
+  __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
+  DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
+  // Deoptimize for proxies.
+  __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
+  DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
+
+  __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
+  __ Cmp(object_prototype, prototype);
+  __ B(eq, instr->TrueLabel(chunk_));
+  __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
+  __ B(eq, instr->FalseLabel(chunk_));
+  __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
+  __ B(&loop);
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+  DoGap(instr);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+  Register value = ToRegister32(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ Scvtf(result, value);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  // The function is required to be in x1.
+  DCHECK(ToRegister(instr->function()).is(x1));
+  DCHECK(instr->HasPointerMap());
+
+  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+  if (known_function.is_null()) {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(instr->arity());
+    __ InvokeFunction(x1, no_reg, count, CALL_FUNCTION, generator);
+  } else {
+    CallKnownFunction(known_function,
+                      instr->hydrogen()->formal_parameter_count(),
+                      instr->arity(), instr);
+  }
+  RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+                                 Register temp1,
+                                 Label* is_not_string,
+                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
+  if (check_needed == INLINE_SMI_CHECK) {
+    __ JumpIfSmi(input, is_not_string);
+  }
+  __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
+
+  return lt;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+  Register val = ToRegister(instr->value());
+  Register scratch = ToRegister(instr->temp());
+
+  SmiCheck check_needed =
+      instr->hydrogen()->value()->type().IsHeapObject()
+          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+  Condition true_cond =
+      EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
+
+  EmitBranch(instr, true_cond);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+  Register value = ToRegister(instr->value());
+  STATIC_ASSERT(kSmiTag == 0);
+  EmitTestAndBranch(instr, eq, value, kSmiTagMask);
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+
+  EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
+}
+
+
+static const char* LabelType(LLabel* label) {
+  if (label->is_loop_header()) return " (loop header)";
+  if (label->is_osr_entry()) return " (OSR entry)";
+  return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+          current_instruction_,
+          label->hydrogen_value()->id(),
+          label->block_id(),
+          LabelType(label));
+
+  // Inherit pushed_arguments_ from the predecessor's argument count.
+  if (label->block()->HasPredecessor()) {
+    pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
+#ifdef DEBUG
+    for (auto p : *label->block()->predecessors()) {
+      DCHECK_EQ(p->argument_count(), pushed_arguments_);
+    }
+#endif
+  }
+
+  __ Bind(label->label());
+  current_block_ = label->block_id();
+  DoGap(label);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register result = ToRegister(instr->result());
+  __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
+                       Deoptimizer::kHole);
+    } else {
+      Label not_the_hole;
+      __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
+      __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+      __ Bind(&not_the_hole);
+    }
+  }
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+  Register temp = ToRegister(instr->temp());
+
+  // Get the prototype or initial map from the function.
+  __ Ldr(result, FieldMemOperand(function,
+                                 JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Check that the function has a prototype or an initial map.
+  DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
+                   Deoptimizer::kHole);
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  __ CompareObjectType(result, temp, temp, MAP_TYPE);
+  __ B(ne, &done);
+
+  // Get the prototype from the initial map.
+  __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+  // All done.
+  __ Bind(&done);
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = LoadWithVectorDescriptor::SlotRegister();
+  DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+  DCHECK(slot_register.is(x0));
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Mov(vector_register, vector);
+  // No need to allocate this register.
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ Mov(slot_register, Smi::FromInt(index));
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = ToRegister(instr->temp_slot());
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Mov(vector_register, vector);
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ Mov(slot_register, Smi::FromInt(index));
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->global_object())
+             .is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).Is(x0));
+  __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
+                                         SLOPPY, PREMONOMORPHIC).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
+    Register key,
+    Register base,
+    Register scratch,
+    bool key_is_smi,
+    bool key_is_constant,
+    int constant_key,
+    ElementsKind elements_kind,
+    int base_offset) {
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+
+  if (key_is_constant) {
+    int key_offset = constant_key << element_size_shift;
+    return MemOperand(base, key_offset + base_offset);
+  }
+
+  if (key_is_smi) {
+    __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
+    return MemOperand(scratch, base_offset);
+  }
+
+  if (base_offset == 0) {
+    return MemOperand(base, key, SXTW, element_size_shift);
+  }
+
+  DCHECK(!AreAliased(scratch, key));
+  __ Add(scratch, base, base_offset);
+  return MemOperand(scratch, key, SXTW, element_size_shift);
+}
+
+
+void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
+  Register ext_ptr = ToRegister(instr->elements());
+  Register scratch;
+  ElementsKind elements_kind = instr->elements_kind();
+
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  Register key = no_reg;
+  int constant_key = 0;
+  if (key_is_constant) {
+    DCHECK(instr->temp() == NULL);
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xf0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    scratch = ToRegister(instr->temp());
+    key = ToRegister(instr->key());
+  }
+
+  MemOperand mem_op =
+      PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
+                                       key_is_constant, constant_key,
+                                       elements_kind,
+                                       instr->base_offset());
+
+  if (elements_kind == FLOAT32_ELEMENTS) {
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ Ldr(result.S(), mem_op);
+    __ Fcvt(result, result.S());
+  } else if (elements_kind == FLOAT64_ELEMENTS) {
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ Ldr(result, mem_op);
+  } else {
+    Register result = ToRegister(instr->result());
+
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+        __ Ldrsb(result, mem_op);
+        break;
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ Ldrb(result, mem_op);
+        break;
+      case INT16_ELEMENTS:
+        __ Ldrsh(result, mem_op);
+        break;
+      case UINT16_ELEMENTS:
+        __ Ldrh(result, mem_op);
+        break;
+      case INT32_ELEMENTS:
+        __ Ldrsw(result, mem_op);
+        break;
+      case UINT32_ELEMENTS:
+        __ Ldr(result.W(), mem_op);
+        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+          // Deopt if value > 0x80000000.
+          __ Tst(result, 0xFFFFFFFF80000000);
+          DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
+                                              Register elements,
+                                              Register key,
+                                              bool key_is_tagged,
+                                              ElementsKind elements_kind,
+                                              Representation representation,
+                                              int base_offset) {
+  STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
+  STATIC_ASSERT(kSmiTag == 0);
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+
+  // Even though the HLoad/StoreKeyed instructions force the input
+  // representation for the key to be an integer, the input gets replaced during
+  // bounds check elimination with the index argument to the bounds check, which
+  // can be tagged, so that case must be handled here, too.
+  if (key_is_tagged) {
+    __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
+    if (representation.IsInteger32()) {
+      DCHECK(elements_kind == FAST_SMI_ELEMENTS);
+      // Read or write only the smi payload in the case of fast smi arrays.
+      return UntagSmiMemOperand(base, base_offset);
+    } else {
+      return MemOperand(base, base_offset);
+    }
+  } else {
+    // Sign extend key because it could be a 32-bit negative value or contain
+    // garbage in the top 32-bits. The address computation happens in 64-bit.
+    DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
+    if (representation.IsInteger32()) {
+      DCHECK(elements_kind == FAST_SMI_ELEMENTS);
+      // Read or write only the smi payload in the case of fast smi arrays.
+      __ Add(base, elements, Operand(key, SXTW, element_size_shift));
+      return UntagSmiMemOperand(base, base_offset);
+    } else {
+      __ Add(base, elements, base_offset);
+      return MemOperand(base, key, SXTW, element_size_shift);
+    }
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
+  Register elements = ToRegister(instr->elements());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  MemOperand mem_op;
+
+  if (instr->key()->IsConstantOperand()) {
+    DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
+           (instr->temp() == NULL));
+
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xf0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    int offset = instr->base_offset() + constant_key * kDoubleSize;
+    mem_op = MemOperand(elements, offset);
+  } else {
+    Register load_base = ToRegister(instr->temp());
+    Register key = ToRegister(instr->key());
+    bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+    mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
+                                      instr->hydrogen()->elements_kind(),
+                                      instr->hydrogen()->representation(),
+                                      instr->base_offset());
+  }
+
+  __ Ldr(result, mem_op);
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    Register scratch = ToRegister(instr->temp());
+    __ Fmov(scratch, result);
+    __ Eor(scratch, scratch, kHoleNanInt64);
+    DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
+  Register elements = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+  MemOperand mem_op;
+
+  Representation representation = instr->hydrogen()->representation();
+  if (instr->key()->IsConstantOperand()) {
+    DCHECK(instr->temp() == NULL);
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    int offset = instr->base_offset() +
+        ToInteger32(const_operand) * kPointerSize;
+    if (representation.IsInteger32()) {
+      DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
+      STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
+      STATIC_ASSERT(kSmiTag == 0);
+      mem_op = UntagSmiMemOperand(elements, offset);
+    } else {
+      mem_op = MemOperand(elements, offset);
+    }
+  } else {
+    Register load_base = ToRegister(instr->temp());
+    Register key = ToRegister(instr->key());
+    bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+
+    mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
+                                      instr->hydrogen()->elements_kind(),
+                                      representation, instr->base_offset());
+  }
+
+  __ Load(result, mem_op, representation);
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+      DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
+    } else {
+      DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
+                       Deoptimizer::kHole);
+    }
+  } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+    DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
+    Label done;
+    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+    __ B(ne, &done);
+    if (info()->IsStub()) {
+      // A stub can safely convert the hole to undefined only if the array
+      // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+      // it needs to bail out.
+      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
+      __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
+      __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
+      DeoptimizeIf(ne, instr, Deoptimizer::kHole);
+    }
+    __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+    __ Bind(&done);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+                        isolate(), instr->hydrogen()->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+  DCHECK(ToRegister(instr->result()).Is(x0));
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+  Register object = ToRegister(instr->object());
+
+  if (access.IsExternalMemory()) {
+    Register result = ToRegister(instr->result());
+    __ Load(result, MemOperand(object, offset), access.representation());
+    return;
+  }
+
+  if (instr->hydrogen()->representation().IsDouble()) {
+    DCHECK(access.IsInobject());
+    FPRegister result = ToDoubleRegister(instr->result());
+    __ Ldr(result, FieldMemOperand(object, offset));
+    return;
+  }
+
+  Register result = ToRegister(instr->result());
+  Register source;
+  if (access.IsInobject()) {
+    source = object;
+  } else {
+    // Load the properties array, using result as a scratch register.
+    __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    source = result;
+  }
+
+  if (access.representation().IsSmi() &&
+      instr->hydrogen()->representation().IsInteger32()) {
+    // Read int value directly from upper half of the smi.
+    STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
+    STATIC_ASSERT(kSmiTag == 0);
+    __ Load(result, UntagSmiFieldMemOperand(source, offset),
+            Representation::Integer32());
+  } else {
+    __ Load(result, FieldMemOperand(source, offset), access.representation());
+  }
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  // LoadIC expects name and receiver in registers.
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(
+          isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
+          instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+  DCHECK(ToRegister(instr->result()).is(x0));
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+  Register result = ToRegister(instr->result());
+  Register map = ToRegister(instr->value());
+  __ EnumLengthSmi(result, map);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsDouble()) {
+    DoubleRegister input = ToDoubleRegister(instr->value());
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ Fabs(result, input);
+  } else if (r.IsSmi() || r.IsInteger32()) {
+    Register input = r.IsSmi() ? ToRegister(instr->value())
+                               : ToRegister32(instr->value());
+    Register result = r.IsSmi() ? ToRegister(instr->result())
+                                : ToRegister32(instr->result());
+    __ Abs(result, input);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
+                                       Label* exit,
+                                       Label* allocation_entry) {
+  // Handle the tricky cases of MathAbsTagged:
+  //  - HeapNumber inputs.
+  //    - Negative inputs produce a positive result, so a new HeapNumber is
+  //      allocated to hold it.
+  //    - Positive inputs are returned as-is, since there is no need to allocate
+  //      a new HeapNumber for the result.
+  //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
+  //    a smi. In this case, the inline code sets the result and jumps directly
+  //    to the allocation_entry label.
+  DCHECK(instr->context() != NULL);
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Register input = ToRegister(instr->value());
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+  Register result_bits = ToRegister(instr->temp3());
+  Register result = ToRegister(instr->result());
+
+  Label runtime_allocation;
+
+  // Deoptimize if the input is not a HeapNumber.
+  DeoptimizeIfNotHeapNumber(input, instr);
+
+  // If the argument is positive, we can return it as-is, without any need to
+  // allocate a new HeapNumber for the result. We have to do this in integer
+  // registers (rather than with fabs) because we need to be able to distinguish
+  // the two zeroes.
+  __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
+  __ Mov(result, input);
+  __ Tbz(result_bits, kXSignBit, exit);
+
+  // Calculate abs(input) by clearing the sign bit.
+  __ Bic(result_bits, result_bits, kXSignMask);
+
+  // Allocate a new HeapNumber to hold the result.
+  //  result_bits   The bit representation of the (double) result.
+  __ Bind(allocation_entry);
+  __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
+  // The inline (non-deferred) code will store result_bits into result.
+  __ B(exit);
+
+  __ Bind(&runtime_allocation);
+  if (FLAG_debug_code) {
+    // Because result is in the pointer map, we need to make sure it has a valid
+    // tagged value before we call the runtime. We speculatively set it to the
+    // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
+    // be valid.
+    Label result_ok;
+    Register input = ToRegister(instr->value());
+    __ JumpIfSmi(result, &result_ok);
+    __ Cmp(input, result);
+    __ Assert(eq, kUnexpectedValue);
+    __ Bind(&result_ok);
+  }
+
+  { PushSafepointRegistersScope scope(this);
+    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+                            instr->context());
+    __ StoreToSafepointRegisterSlot(x0, result);
+  }
+  // The inline (non-deferred) code will store result_bits into result.
+}
+
+
+void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
+  // Class for deferred case.
+  class DeferredMathAbsTagged: public LDeferredCode {
+   public:
+    DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() {
+      codegen()->DoDeferredMathAbsTagged(instr_, exit(),
+                                         allocation_entry());
+    }
+    virtual LInstruction* instr() { return instr_; }
+    Label* allocation_entry() { return &allocation; }
+   private:
+    LMathAbsTagged* instr_;
+    Label allocation;
+  };
+
+  // TODO(jbramley): The early-exit mechanism would skip the new frame handling
+  // in GenerateDeferredCode. Tidy this up.
+  DCHECK(!NeedsDeferredFrame());
+
+  DeferredMathAbsTagged* deferred =
+      new(zone()) DeferredMathAbsTagged(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
+         instr->hydrogen()->value()->representation().IsSmi());
+  Register input = ToRegister(instr->value());
+  Register result_bits = ToRegister(instr->temp3());
+  Register result = ToRegister(instr->result());
+  Label done;
+
+  // Handle smis inline.
+  // We can treat smis as 64-bit integers, since the (low-order) tag bits will
+  // never get set by the negation. This is therefore the same as the Integer32
+  // case in DoMathAbs, except that it operates on 64-bit values.
+  STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
+
+  __ JumpIfNotSmi(input, deferred->entry());
+
+  __ Abs(result, input, NULL, &done);
+
+  // The result is the magnitude (abs) of the smallest value a smi can
+  // represent, encoded as a double.
+  __ Mov(result_bits, double_to_rawbits(0x80000000));
+  __ B(deferred->allocation_entry());
+
+  __ Bind(deferred->exit());
+  __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
+  DoubleRegister double_temp2 = double_scratch();
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+  Register temp3 = ToRegister(instr->temp3());
+
+  MathExpGenerator::EmitMathExp(masm(), input, result,
+                                double_temp1, double_temp2,
+                                temp1, temp2, temp3);
+}
+
+
+void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+
+  __ Frintm(result, input);
+}
+
+
+void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ Fcvtms(result, input);
+
+  // Check that the result fits into a 32-bit integer.
+  //  - The result did not overflow.
+  __ Cmp(result, Operand(result, SXTW));
+  //  - The input was not NaN.
+  __ Fccmp(input, input, NoFlag, eq);
+  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  Register result = ToRegister32(instr->result());
+  int32_t divisor = instr->divisor();
+
+  // If the divisor is 1, return the dividend.
+  if (divisor == 1) {
+    __ Mov(result, dividend, kDiscardForSameWReg);
+    return;
+  }
+
+  // If the divisor is positive, things are easy: There can be no deopts and we
+  // can simply do an arithmetic right shift.
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (divisor > 1) {
+    __ Mov(result, Operand(dividend, ASR, shift));
+    return;
+  }
+
+  // If the divisor is negative, we have to negate and handle edge cases.
+  __ Negs(result, dividend);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Dividing by -1 is basically negation, unless we overflow.
+  if (divisor == -1) {
+    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+      DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+    }
+    return;
+  }
+
+  // If the negation could not overflow, simply shifting is OK.
+  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+    __ Mov(result, Operand(dividend, ASR, shift));
+    return;
+  }
+
+  __ Asr(result, result, shift);
+  __ Csel(result, result, kMinInt / divisor, vc);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister32(instr->result());
+  DCHECK(!AreAliased(dividend, result));
+
+  if (divisor == 0) {
+    Deoptimize(instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HMathFloorOfDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Easy case: We need no dynamic check for the dividend and the flooring
+  // division is the same as the truncating division.
+  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+    __ TruncatingDiv(result, dividend, Abs(divisor));
+    if (divisor < 0) __ Neg(result, result);
+    return;
+  }
+
+  // In the general case we may need to adjust before and after the truncating
+  // division to get a flooring division.
+  Register temp = ToRegister32(instr->temp());
+  DCHECK(!AreAliased(temp, dividend, result));
+  Label needs_adjustment, done;
+  __ Cmp(dividend, 0);
+  __ B(divisor > 0 ? lt : gt, &needs_adjustment);
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ Neg(result, result);
+  __ B(&done);
+  __ Bind(&needs_adjustment);
+  __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
+  __ TruncatingDiv(result, temp, Abs(divisor));
+  if (divisor < 0) __ Neg(result, result);
+  __ Sub(result, result, Operand(1));
+  __ Bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  Register divisor = ToRegister32(instr->divisor());
+  Register remainder = ToRegister32(instr->temp());
+  Register result = ToRegister32(instr->result());
+
+  // This can't cause an exception on ARM, so we can speculatively
+  // execute it already now.
+  __ Sdiv(result, dividend, divisor);
+
+  // Check for x / 0.
+  DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
+
+  // Check for (kMinInt / -1).
+  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+    // The V flag will be set iff dividend == kMinInt.
+    __ Cmp(dividend, 1);
+    __ Ccmp(divisor, -1, NoFlag, vs);
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Cmp(divisor, 0);
+    __ Ccmp(dividend, 0, ZFlag, mi);
+    // "divisor" can't be null because the code would have already been
+    // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
+    // In this case we need to deoptimize to produce a -0.
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  Label done;
+  // If both operands have the same sign then we are done.
+  __ Eor(remainder, dividend, divisor);
+  __ Tbz(remainder, kWSignBit, &done);
+
+  // Check if the result needs to be corrected.
+  __ Msub(remainder, result, divisor, dividend);
+  __ Cbz(remainder, &done);
+  __ Sub(result, result, 1);
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+  DCHECK(instr->IsMarkedAsCall());
+  DCHECK(ToDoubleRegister(instr->value()).is(d0));
+  __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
+                   0, 1);
+  DCHECK(ToDoubleRegister(instr->result()).Is(d0));
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+  Register input = ToRegister32(instr->value());
+  Register result = ToRegister32(instr->result());
+  __ Clz(result, input);
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  Label done;
+
+  // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
+  //  Math.pow(-Infinity, 0.5) == +Infinity
+  //  Math.pow(-0.0, 0.5) == +0.0
+
+  // Catch -infinity inputs first.
+  // TODO(jbramley): A constant infinity register would be helpful here.
+  __ Fmov(double_scratch(), kFP64NegativeInfinity);
+  __ Fcmp(double_scratch(), input);
+  __ Fabs(result, input);
+  __ B(&done, eq);
+
+  // Add +0.0 to convert -0.0 to +0.0.
+  __ Fadd(double_scratch(), input, fp_zero);
+  __ Fsqrt(result, double_scratch());
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+  Representation exponent_type = instr->hydrogen()->right()->representation();
+  // Having marked this as a call, we can use any registers.
+  // Just make sure that the input/output registers are the expected ones.
+  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
+  Register integer_exponent = MathPowIntegerDescriptor::exponent();
+  DCHECK(!instr->right()->IsDoubleRegister() ||
+         ToDoubleRegister(instr->right()).is(d1));
+  DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
+         ToRegister(instr->right()).is(tagged_exponent));
+  DCHECK(!exponent_type.IsInteger32() ||
+         ToRegister(instr->right()).is(integer_exponent));
+  DCHECK(ToDoubleRegister(instr->left()).is(d0));
+  DCHECK(ToDoubleRegister(instr->result()).is(d0));
+
+  if (exponent_type.IsSmi()) {
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsTagged()) {
+    Label no_deopt;
+    __ JumpIfSmi(tagged_exponent, &no_deopt);
+    DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
+    __ Bind(&no_deopt);
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsInteger32()) {
+    // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
+    // supports large integer exponents.
+    __ Sxtw(integer_exponent, integer_exponent);
+    MathPowStub stub(isolate(), MathPowStub::INTEGER);
+    __ CallStub(&stub);
+  } else {
+    DCHECK(exponent_type.IsDouble());
+    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+    __ CallStub(&stub);
+  }
+}
+
+
+void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister scratch_d = double_scratch();
+
+  DCHECK(!AreAliased(input, result, scratch_d));
+
+  Label done;
+
+  __ Frinta(result, input);
+  __ Fcmp(input, 0.0);
+  __ Fccmp(result, input, ZFlag, lt);
+  // The result is correct if the input was in [-0, +infinity], or was a
+  // negative integral value.
+  __ B(eq, &done);
+
+  // Here the input is negative, non integral, with an exponent lower than 52.
+  // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
+  // case. So we can safely add 0.5.
+  __ Fmov(scratch_d, 0.5);
+  __ Fadd(result, input, scratch_d);
+  __ Frintm(result, result);
+  // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
+  __ Fabs(result, result);
+  __ Fneg(result, result);
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister temp = ToDoubleRegister(instr->temp1());
+  DoubleRegister dot_five = double_scratch();
+  Register result = ToRegister(instr->result());
+  Label done;
+
+  // Math.round() rounds to the nearest integer, with ties going towards
+  // +infinity. This does not match any IEEE-754 rounding mode.
+  //  - Infinities and NaNs are propagated unchanged, but cause deopts because
+  //    they can't be represented as integers.
+  //  - The sign of the result is the same as the sign of the input. This means
+  //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
+  //    result of -0.0.
+
+  // Add 0.5 and round towards -infinity.
+  __ Fmov(dot_five, 0.5);
+  __ Fadd(temp, input, dot_five);
+  __ Fcvtms(result, temp);
+
+  // The result is correct if:
+  //  result is not 0, as the input could be NaN or [-0.5, -0.0].
+  //  result is not 1, as 0.499...94 will wrongly map to 1.
+  //  result fits in 32 bits.
+  __ Cmp(result, Operand(result.W(), SXTW));
+  __ Ccmp(result, 1, ZFlag, eq);
+  __ B(hi, &done);
+
+  // At this point, we have to handle possible inputs of NaN or numbers in the
+  // range [-0.5, 1.5[, or numbers larger than 32 bits.
+
+  // Deoptimize if the result > 1, as it must be larger than 32 bits.
+  __ Cmp(result, 1);
+  DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
+
+  // Deoptimize for negative inputs, which at this point are only numbers in
+  // the range [-0.5, -0.0]
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Fmov(result, input);
+    DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Deoptimize if the input was NaN.
+  __ Fcmp(input, dot_five);
+  DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
+
+  // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
+  // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
+  // else 0; we avoid dealing with 0.499...94 directly.
+  __ Cset(result, ge);
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ Fcvt(result.S(), input);
+  __ Fcvt(result, result.S());
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ Fsqrt(result, input);
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+  HMathMinMax::Operation op = instr->hydrogen()->operation();
+  if (instr->hydrogen()->representation().IsInteger32()) {
+    Register result = ToRegister32(instr->result());
+    Register left = ToRegister32(instr->left());
+    Operand right = ToOperand32(instr->right());
+
+    __ Cmp(left, right);
+    __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
+  } else if (instr->hydrogen()->representation().IsSmi()) {
+    Register result = ToRegister(instr->result());
+    Register left = ToRegister(instr->left());
+    Operand right = ToOperand(instr->right());
+
+    __ Cmp(left, right);
+    __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
+  } else {
+    DCHECK(instr->hydrogen()->representation().IsDouble());
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    DoubleRegister left = ToDoubleRegister(instr->left());
+    DoubleRegister right = ToDoubleRegister(instr->right());
+
+    if (op == HMathMinMax::kMathMax) {
+      __ Fmax(result, left, right);
+    } else {
+      DCHECK(op == HMathMinMax::kMathMin);
+      __ Fmin(result, left, right);
+    }
+  }
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister32(instr->result())));
+
+  // Theoretically, a variation of the branch-free code for integer division by
+  // a power of 2 (calculating the remainder via an additional multiplication
+  // (which gets simplified to an 'and') and subtraction) should be faster, and
+  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+  // indicate that positive dividends are heavily favored, so the branching
+  // version performs better.
+  HMod* hmod = instr->hydrogen();
+  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+  Label dividend_is_not_negative, done;
+  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+    __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
+    // Note that this is correct even for kMinInt operands.
+    __ Neg(dividend, dividend);
+    __ And(dividend, dividend, mask);
+    __ Negs(dividend, dividend);
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+    __ B(&done);
+  }
+
+  __ bind(&dividend_is_not_negative);
+  __ And(dividend, dividend, mask);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+  Register dividend = ToRegister32(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister32(instr->result());
+  Register temp = ToRegister32(instr->temp());
+  DCHECK(!AreAliased(dividend, result, temp));
+
+  if (divisor == 0) {
+    Deoptimize(instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  __ Sxtw(dividend.X(), dividend);
+  __ Mov(temp, Abs(divisor));
+  __ Smsubl(result.X(), result, temp, dividend.X());
+
+  // Check for negative zero.
+  HMod* hmod = instr->hydrogen();
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label remainder_not_zero;
+    __ Cbnz(result, &remainder_not_zero);
+    DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
+    __ bind(&remainder_not_zero);
+  }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+  Register dividend = ToRegister32(instr->left());
+  Register divisor = ToRegister32(instr->right());
+  Register result = ToRegister32(instr->result());
+
+  Label done;
+  // modulo = dividend - quotient * divisor
+  __ Sdiv(result, dividend, divisor);
+  if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+    DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
+  }
+  __ Msub(result, result, divisor, dividend);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Cbnz(result, &done);
+    DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
+  }
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
+  DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
+  bool is_smi = instr->hydrogen()->representation().IsSmi();
+  Register result =
+      is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
+  Register left =
+      is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
+  int32_t right = ToInteger32(instr->right());
+  DCHECK((right > -kMaxInt) && (right < kMaxInt));
+
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  bool bailout_on_minus_zero =
+    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+  if (bailout_on_minus_zero) {
+    if (right < 0) {
+      // The result is -0 if right is negative and left is zero.
+      DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
+    } else if (right == 0) {
+      // The result is -0 if the right is zero and the left is negative.
+      DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
+    }
+  }
+
+  switch (right) {
+    // Cases which can detect overflow.
+    case -1:
+      if (can_overflow) {
+        // Only 0x80000000 can overflow here.
+        __ Negs(result, left);
+        DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+      } else {
+        __ Neg(result, left);
+      }
+      break;
+    case 0:
+      // This case can never overflow.
+      __ Mov(result, 0);
+      break;
+    case 1:
+      // This case can never overflow.
+      __ Mov(result, left, kDiscardForSameWReg);
+      break;
+    case 2:
+      if (can_overflow) {
+        __ Adds(result, left, left);
+        DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+      } else {
+        __ Add(result, left, left);
+      }
+      break;
+
+    default:
+      // Multiplication by constant powers of two (and some related values)
+      // can be done efficiently with shifted operands.
+      int32_t right_abs = Abs(right);
+
+      if (base::bits::IsPowerOfTwo32(right_abs)) {
+        int right_log2 = WhichPowerOf2(right_abs);
+
+        if (can_overflow) {
+          Register scratch = result;
+          DCHECK(!AreAliased(scratch, left));
+          __ Cls(scratch, left);
+          __ Cmp(scratch, right_log2);
+          DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
+        }
+
+        if (right >= 0) {
+          // result = left << log2(right)
+          __ Lsl(result, left, right_log2);
+        } else {
+          // result = -left << log2(-right)
+          if (can_overflow) {
+            __ Negs(result, Operand(left, LSL, right_log2));
+            DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+          } else {
+            __ Neg(result, Operand(left, LSL, right_log2));
+          }
+        }
+        return;
+      }
+
+
+      // For the following cases, we could perform a conservative overflow check
+      // with CLS as above. However the few cycles saved are likely not worth
+      // the risk of deoptimizing more often than required.
+      DCHECK(!can_overflow);
+
+      if (right >= 0) {
+        if (base::bits::IsPowerOfTwo32(right - 1)) {
+          // result = left + left << log2(right - 1)
+          __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
+        } else if (base::bits::IsPowerOfTwo32(right + 1)) {
+          // result = -left + left << log2(right + 1)
+          __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
+          __ Neg(result, result);
+        } else {
+          UNREACHABLE();
+        }
+      } else {
+        if (base::bits::IsPowerOfTwo32(-right + 1)) {
+          // result = left - left << log2(-right + 1)
+          __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
+        } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
+          // result = -left - left << log2(-right - 1)
+          __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
+          __ Neg(result, result);
+        } else {
+          UNREACHABLE();
+        }
+      }
+  }
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+  Register result = ToRegister32(instr->result());
+  Register left = ToRegister32(instr->left());
+  Register right = ToRegister32(instr->right());
+
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  bool bailout_on_minus_zero =
+    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+  if (bailout_on_minus_zero && !left.Is(right)) {
+    // If one operand is zero and the other is negative, the result is -0.
+    //  - Set Z (eq) if either left or right, or both, are 0.
+    __ Cmp(left, 0);
+    __ Ccmp(right, 0, ZFlag, ne);
+    //  - If so (eq), set N (mi) if left + right is negative.
+    //  - Otherwise, clear N.
+    __ Ccmn(left, right, NoFlag, eq);
+    DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+  }
+
+  if (can_overflow) {
+    __ Smull(result.X(), left, right);
+    __ Cmp(result.X(), Operand(result, SXTW));
+    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+  } else {
+    __ Mul(result, left, right);
+  }
+}
+
+
+void LCodeGen::DoMulS(LMulS* instr) {
+  Register result = ToRegister(instr->result());
+  Register left = ToRegister(instr->left());
+  Register right = ToRegister(instr->right());
+
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  bool bailout_on_minus_zero =
+    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+  if (bailout_on_minus_zero && !left.Is(right)) {
+    // If one operand is zero and the other is negative, the result is -0.
+    //  - Set Z (eq) if either left or right, or both, are 0.
+    __ Cmp(left, 0);
+    __ Ccmp(right, 0, ZFlag, ne);
+    //  - If so (eq), set N (mi) if left + right is negative.
+    //  - Otherwise, clear N.
+    __ Ccmn(left, right, NoFlag, eq);
+    DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
+  }
+
+  STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
+  if (can_overflow) {
+    __ Smulh(result, left, right);
+    __ Cmp(result, Operand(result.W(), SXTW));
+    __ SmiTag(result);
+    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+  } else {
+    if (AreAliased(result, left, right)) {
+      // All three registers are the same: half untag the input and then
+      // multiply, giving a tagged result.
+      STATIC_ASSERT((kSmiShift % 2) == 0);
+      __ Asr(result, left, kSmiShift / 2);
+      __ Mul(result, result, result);
+    } else if (result.Is(left) && !left.Is(right)) {
+      // Registers result and left alias, right is distinct: untag left into
+      // result, and then multiply by right, giving a tagged result.
+      __ SmiUntag(result, left);
+      __ Mul(result, result, right);
+    } else {
+      DCHECK(!left.Is(result));
+      // Registers result and right alias, left is distinct, or all registers
+      // are distinct: untag right into result, and then multiply by left,
+      // giving a tagged result.
+      __ SmiUntag(result, right);
+      __ Mul(result, left, result);
+    }
+  }
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = ToRegister(instr->result());
+  __ Mov(result, 0);
+
+  PushSafepointRegistersScope scope(this);
+  // NumberTagU and NumberTagD use the context from the frame, rather than
+  // the environment's HContext or HInlinedContext value.
+  // They only call Runtime::kAllocateHeapNumber.
+  // The corresponding HChange instructions are added in a phase that does
+  // not have easy access to the local context.
+  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+  class DeferredNumberTagD: public LDeferredCode {
+   public:
+    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LNumberTagD* instr_;
+  };
+
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+  if (FLAG_inline_new) {
+    __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
+  } else {
+    __ B(deferred->entry());
+  }
+
+  __ Bind(deferred->exit());
+  __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
+                                    LOperand* value,
+                                    LOperand* temp1,
+                                    LOperand* temp2) {
+  Label slow, convert_and_store;
+  Register src = ToRegister32(value);
+  Register dst = ToRegister(instr->result());
+  Register scratch1 = ToRegister(temp1);
+
+  if (FLAG_inline_new) {
+    Register scratch2 = ToRegister(temp2);
+    __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
+    __ B(&convert_and_store);
+  }
+
+  // Slow case: call the runtime system to do the number allocation.
+  __ Bind(&slow);
+  // TODO(3095996): Put a valid pointer value in the stack slot where the result
+  // register is stored, as this register is in the pointer map, but contains an
+  // integer value.
+  __ Mov(dst, 0);
+  {
+    // Preserve the value of all registers.
+    PushSafepointRegistersScope scope(this);
+
+    // NumberTagU and NumberTagD use the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(
+      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(x0, dst);
+  }
+
+  // Convert number to floating point and store in the newly allocated heap
+  // number.
+  __ Bind(&convert_and_store);
+  DoubleRegister dbl_scratch = double_scratch();
+  __ Ucvtf(dbl_scratch, src);
+  __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+  class DeferredNumberTagU: public LDeferredCode {
+   public:
+    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() {
+      codegen()->DoDeferredNumberTagU(instr_,
+                                      instr_->value(),
+                                      instr_->temp1(),
+                                      instr_->temp2());
+    }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LNumberTagU* instr_;
+  };
+
+  Register value = ToRegister32(instr->value());
+  Register result = ToRegister(instr->result());
+
+  DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+  __ Cmp(value, Smi::kMaxValue);
+  __ B(hi, deferred->entry());
+  __ SmiTag(result, value.X());
+  __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = ToRegister(instr->temp());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  bool can_convert_undefined_to_nan =
+      instr->hydrogen()->can_convert_undefined_to_nan();
+
+  Label done, load_smi;
+
+  // Work out what untag mode we're working with.
+  HValue* value = instr->hydrogen()->value();
+  NumberUntagDMode mode = value->representation().IsSmi()
+      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+    __ JumpIfSmi(input, &load_smi);
+
+    Label convert_undefined;
+
+    // Heap number map check.
+    if (can_convert_undefined_to_nan) {
+      __ JumpIfNotHeapNumber(input, &convert_undefined);
+    } else {
+      DeoptimizeIfNotHeapNumber(input, instr);
+    }
+
+    // Load heap number.
+    __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
+    if (instr->hydrogen()->deoptimize_on_minus_zero()) {
+      DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
+    }
+    __ B(&done);
+
+    if (can_convert_undefined_to_nan) {
+      __ Bind(&convert_undefined);
+      DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
+                          Deoptimizer::kNotAHeapNumberUndefined);
+
+      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+      __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
+      __ B(&done);
+    }
+
+  } else {
+    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+    // Fall through to load_smi.
+  }
+
+  // Smi to double register conversion.
+  __ Bind(&load_smi);
+  __ SmiUntagToDouble(result, input);
+
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+  // This is a pseudo-instruction that ensures that the environment here is
+  // properly registered for deoptimization and records the assembler's PC
+  // offset.
+  LEnvironment* environment = instr->environment();
+
+  // If the environment were already registered, we would have no way of
+  // backpatching it with the spill slot operands.
+  DCHECK(!environment->HasBeenRegistered());
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+  // Nothing to do.
+}
+
+
+void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
+  __ PushPreamble(instr->argc(), kPointerSize);
+}
+
+
+void LCodeGen::DoPushArguments(LPushArguments* instr) {
+  MacroAssembler::PushPopQueue args(masm());
+
+  for (int i = 0; i < instr->ArgumentCount(); ++i) {
+    LOperand* arg = instr->argument(i);
+    if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
+      Abort(kDoPushArgumentNotImplementedForDoubleType);
+      return;
+    }
+    args.Queue(ToRegister(arg));
+  }
+
+  // The preamble was done by LPreparePushArguments.
+  args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
+
+  RecordPushedArgumentsDelta(instr->ArgumentCount());
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+  if (FLAG_trace && info()->IsOptimizing()) {
+    // Push the return value on the stack as the parameter.
+    // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
+    // managed by the register allocator and tearing down the frame, it's
+    // safe to write to the context register.
+    __ Push(x0);
+    __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntime(Runtime::kTraceExit);
+  }
+
+  if (info()->saves_caller_doubles()) {
+    RestoreCallerDoubles();
+  }
+
+  if (NeedsEagerFrame()) {
+    Register stack_pointer = masm()->StackPointer();
+    __ Mov(stack_pointer, fp);
+    __ Pop(fp, lr);
+  }
+
+  if (instr->has_constant_parameter_count()) {
+    int parameter_count = ToInteger32(instr->constant_parameter_count());
+    __ Drop(parameter_count + 1);
+  } else {
+    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
+    Register parameter_count = ToRegister(instr->parameter_count());
+    __ DropBySMI(parameter_count);
+  }
+  __ Ret();
+}
+
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string,
+                                           Register temp,
+                                           LOperand* index,
+                                           String::Encoding encoding) {
+  if (index->IsConstantOperand()) {
+    int offset = ToInteger32(LConstantOperand::cast(index));
+    if (encoding == String::TWO_BYTE_ENCODING) {
+      offset *= kUC16Size;
+    }
+    STATIC_ASSERT(kCharSize == 1);
+    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+  }
+
+  __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    return MemOperand(temp, ToRegister32(index), SXTW);
+  } else {
+    STATIC_ASSERT(kUC16Size == 2);
+    return MemOperand(temp, ToRegister32(index), SXTW, 1);
+  }
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+  Register temp = ToRegister(instr->temp());
+
+  if (FLAG_debug_code) {
+    // Even though this lithium instruction comes with a temp register, we
+    // can't use it here because we want to use "AtStart" constraints on the
+    // inputs and the debug code here needs a scratch register.
+    UseScratchRegisterScope temps(masm());
+    Register dbg_temp = temps.AcquireX();
+
+    __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
+    __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
+
+    __ And(dbg_temp, dbg_temp,
+           Operand(kStringRepresentationMask | kStringEncodingMask));
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
+                             ? one_byte_seq_type : two_byte_seq_type));
+    __ Check(eq, kUnexpectedStringType);
+  }
+
+  MemOperand operand =
+      BuildSeqStringOperand(string, temp, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ Ldrb(result, operand);
+  } else {
+    __ Ldrh(result, operand);
+  }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register value = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (FLAG_debug_code) {
+    DCHECK(ToRegister(instr->context()).is(cp));
+    Register index = ToRegister(instr->index());
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    int encoding_mask =
+        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+        ? one_byte_seq_type : two_byte_seq_type;
+    __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
+                                 encoding_mask);
+  }
+  MemOperand operand =
+      BuildSeqStringOperand(string, temp, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ Strb(value, operand);
+  } else {
+    __ Strh(value, operand);
+  }
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+  HChange* hchange = instr->hydrogen();
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      hchange->value()->CheckFlag(HValue::kUint32)) {
+    DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
+  }
+  __ SmiTag(output, input);
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Label done, untag;
+
+  if (instr->needs_check()) {
+    DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
+  }
+
+  __ Bind(&untag);
+  __ SmiUntag(result, input);
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+  LOperand* right_op = instr->right();
+  Register left = ToRegister32(instr->left());
+  Register result = ToRegister32(instr->result());
+
+  if (right_op->IsRegister()) {
+    Register right = ToRegister32(instr->right());
+    switch (instr->op()) {
+      case Token::ROR: __ Ror(result, left, right); break;
+      case Token::SAR: __ Asr(result, left, right); break;
+      case Token::SHL: __ Lsl(result, left, right); break;
+      case Token::SHR:
+        __ Lsr(result, left, right);
+        if (instr->can_deopt()) {
+          // If `left >>> right` >= 0x80000000, the result is not representable
+          // in a signed 32-bit smi.
+          DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      default: UNREACHABLE();
+    }
+  } else {
+    DCHECK(right_op->IsConstantOperand());
+    int shift_count = JSShiftAmountFromLConstant(right_op);
+    if (shift_count == 0) {
+      if ((instr->op() == Token::SHR) && instr->can_deopt()) {
+        DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
+      }
+      __ Mov(result, left, kDiscardForSameWReg);
+    } else {
+      switch (instr->op()) {
+        case Token::ROR: __ Ror(result, left, shift_count); break;
+        case Token::SAR: __ Asr(result, left, shift_count); break;
+        case Token::SHL: __ Lsl(result, left, shift_count); break;
+        case Token::SHR: __ Lsr(result, left, shift_count); break;
+        default: UNREACHABLE();
+      }
+    }
+  }
+}
+
+
+void LCodeGen::DoShiftS(LShiftS* instr) {
+  LOperand* right_op = instr->right();
+  Register left = ToRegister(instr->left());
+  Register result = ToRegister(instr->result());
+
+  if (right_op->IsRegister()) {
+    Register right = ToRegister(instr->right());
+
+    // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
+    // Since we're handling smis in X registers, we have to extract these bits
+    // explicitly.
+    __ Ubfx(result, right, kSmiShift, 5);
+
+    switch (instr->op()) {
+      case Token::ROR: {
+        // This is the only case that needs a scratch register. To keep things
+        // simple for the other cases, borrow a MacroAssembler scratch register.
+        UseScratchRegisterScope temps(masm());
+        Register temp = temps.AcquireW();
+        __ SmiUntag(temp, left);
+        __ Ror(result.W(), temp.W(), result.W());
+        __ SmiTag(result);
+        break;
+      }
+      case Token::SAR:
+        __ Asr(result, left, result);
+        __ Bic(result, result, kSmiShiftMask);
+        break;
+      case Token::SHL:
+        __ Lsl(result, left, result);
+        break;
+      case Token::SHR:
+        __ Lsr(result, left, result);
+        __ Bic(result, result, kSmiShiftMask);
+        if (instr->can_deopt()) {
+          // If `left >>> right` >= 0x80000000, the result is not representable
+          // in a signed 32-bit smi.
+          DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      default: UNREACHABLE();
+    }
+  } else {
+    DCHECK(right_op->IsConstantOperand());
+    int shift_count = JSShiftAmountFromLConstant(right_op);
+    if (shift_count == 0) {
+      if ((instr->op() == Token::SHR) && instr->can_deopt()) {
+        DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
+      }
+      __ Mov(result, left);
+    } else {
+      switch (instr->op()) {
+        case Token::ROR:
+          __ SmiUntag(result, left);
+          __ Ror(result.W(), result.W(), shift_count);
+          __ SmiTag(result);
+          break;
+        case Token::SAR:
+          __ Asr(result, left, shift_count);
+          __ Bic(result, result, kSmiShiftMask);
+          break;
+        case Token::SHL:
+          __ Lsl(result, left, shift_count);
+          break;
+        case Token::SHR:
+          __ Lsr(result, left, shift_count);
+          __ Bic(result, result, kSmiShiftMask);
+          break;
+        default: UNREACHABLE();
+      }
+    }
+  }
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+  __ Debug("LDebugBreak", 0, BREAK);
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Register scratch1 = x5;
+  Register scratch2 = x6;
+  DCHECK(instr->IsMarkedAsCall());
+
+  // TODO(all): if Mov could handle object in new space then it could be used
+  // here.
+  __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
+  __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
+  __ Push(scratch1, scratch2);
+  CallRuntime(Runtime::kDeclareGlobals, instr);
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+  PushSafepointRegistersScope scope(this);
+  LoadContextFromDeferred(instr->context());
+  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+  RecordSafepointWithLazyDeopt(
+      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+  class DeferredStackCheck: public LDeferredCode {
+   public:
+    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LStackCheck* instr_;
+  };
+
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  // There is no LLazyBailout instruction for stack-checks. We have to
+  // prepare for lazy deoptimization explicitly here.
+  if (instr->hydrogen()->is_function_entry()) {
+    // Perform stack overflow check.
+    Label done;
+    __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
+    __ B(hs, &done);
+
+    PredictableCodeSizeScope predictable(masm_,
+                                         Assembler::kCallSizeWithRelocation);
+    DCHECK(instr->context()->IsRegister());
+    DCHECK(ToRegister(instr->context()).is(cp));
+    CallCode(isolate()->builtins()->StackCheck(),
+             RelocInfo::CODE_TARGET,
+             instr);
+    __ Bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->is_backwards_branch());
+    // Perform stack overflow check if this goto needs it before jumping.
+    DeferredStackCheck* deferred_stack_check =
+        new(zone()) DeferredStackCheck(this, instr);
+    __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
+    __ B(lo, deferred_stack_check->entry());
+
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+    __ Bind(instr->done_label());
+    deferred_stack_check->SetExit(instr->done_label());
+    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+    // Don't record a deoptimization index for the safepoint here.
+    // This will be done explicitly when emitting call and the safepoint in
+    // the deferred code.
+  }
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+  Register function = ToRegister(instr->function());
+  Register code_object = ToRegister(instr->code_object());
+  Register temp = ToRegister(instr->temp());
+  __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
+  __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register value = ToRegister(instr->value());
+  Register scratch = ToRegister(instr->temp());
+  MemOperand target = ContextMemOperand(context, instr->slot_index());
+
+  Label skip_assignment;
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ Ldr(scratch, target);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
+                       Deoptimizer::kHole);
+    } else {
+      __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
+    }
+  }
+
+  __ Str(value, target);
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
+                              scratch, GetLinkRegisterState(), kSaveFPRegs,
+                              EMIT_REMEMBERED_SET, check_needed);
+  }
+  __ Bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
+  Register ext_ptr = ToRegister(instr->elements());
+  Register key = no_reg;
+  Register scratch;
+  ElementsKind elements_kind = instr->elements_kind();
+
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    DCHECK(instr->temp() == NULL);
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xf0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+    scratch = ToRegister(instr->temp());
+  }
+
+  MemOperand dst =
+    PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
+                                     key_is_constant, constant_key,
+                                     elements_kind,
+                                     instr->base_offset());
+
+  if (elements_kind == FLOAT32_ELEMENTS) {
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    DoubleRegister dbl_scratch = double_scratch();
+    __ Fcvt(dbl_scratch.S(), value);
+    __ Str(dbl_scratch.S(), dst);
+  } else if (elements_kind == FLOAT64_ELEMENTS) {
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    __ Str(value, dst);
+  } else {
+    Register value = ToRegister(instr->value());
+
+    switch (elements_kind) {
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+      case INT8_ELEMENTS:
+        __ Strb(value, dst);
+        break;
+      case INT16_ELEMENTS:
+      case UINT16_ELEMENTS:
+        __ Strh(value, dst);
+        break;
+      case INT32_ELEMENTS:
+      case UINT32_ELEMENTS:
+        __ Str(value.W(), dst);
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
+  Register elements = ToRegister(instr->elements());
+  DoubleRegister value = ToDoubleRegister(instr->value());
+  MemOperand mem_op;
+
+  if (instr->key()->IsConstantOperand()) {
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xf0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    int offset = instr->base_offset() + constant_key * kDoubleSize;
+    mem_op = MemOperand(elements, offset);
+  } else {
+    Register store_base = ToRegister(instr->temp());
+    Register key = ToRegister(instr->key());
+    bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+    mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
+                                      instr->hydrogen()->elements_kind(),
+                                      instr->hydrogen()->representation(),
+                                      instr->base_offset());
+  }
+
+  if (instr->NeedsCanonicalization()) {
+    __ CanonicalizeNaN(double_scratch(), value);
+    __ Str(double_scratch(), mem_op);
+  } else {
+    __ Str(value, mem_op);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
+  Register value = ToRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = no_reg;
+  Register store_base = no_reg;
+  Register key = no_reg;
+  MemOperand mem_op;
+
+  if (!instr->key()->IsConstantOperand() ||
+      instr->hydrogen()->NeedsWriteBarrier()) {
+    scratch = ToRegister(instr->temp());
+  }
+
+  Representation representation = instr->hydrogen()->value()->representation();
+  if (instr->key()->IsConstantOperand()) {
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    int offset = instr->base_offset() +
+        ToInteger32(const_operand) * kPointerSize;
+    store_base = elements;
+    if (representation.IsInteger32()) {
+      DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+      DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
+      STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
+      STATIC_ASSERT(kSmiTag == 0);
+      mem_op = UntagSmiMemOperand(store_base, offset);
+    } else {
+      mem_op = MemOperand(store_base, offset);
+    }
+  } else {
+    store_base = scratch;
+    key = ToRegister(instr->key());
+    bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+
+    mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
+                                      instr->hydrogen()->elements_kind(),
+                                      representation, instr->base_offset());
+  }
+
+  __ Store(value, mem_op, representation);
+
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    DCHECK(representation.IsTagged());
+    // This assignment may cause element_addr to alias store_base.
+    Register element_addr = scratch;
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    // Compute address of modified element and store it into key register.
+    __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
+    __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
+                   kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
+                   instr->hydrogen()->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+  class DeferredMaybeGrowElements final : public LDeferredCode {
+   public:
+    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMaybeGrowElements* instr_;
+  };
+
+  Register result = x0;
+  DeferredMaybeGrowElements* deferred =
+      new (zone()) DeferredMaybeGrowElements(this, instr);
+  LOperand* key = instr->key();
+  LOperand* current_capacity = instr->current_capacity();
+
+  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+  DCHECK(key->IsConstantOperand() || key->IsRegister());
+  DCHECK(current_capacity->IsConstantOperand() ||
+         current_capacity->IsRegister());
+
+  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    if (constant_key >= constant_capacity) {
+      // Deferred case.
+      __ B(deferred->entry());
+    }
+  } else if (key->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    __ Cmp(ToRegister(current_capacity), Operand(constant_key));
+    __ B(le, deferred->entry());
+  } else if (current_capacity->IsConstantOperand()) {
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    __ Cmp(ToRegister(key), Operand(constant_capacity));
+    __ B(ge, deferred->entry());
+  } else {
+    __ Cmp(ToRegister(key), ToRegister(current_capacity));
+    __ B(ge, deferred->entry());
+  }
+
+  __ Mov(result, ToRegister(instr->elements()));
+
+  __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = x0;
+  __ Mov(result, 0);
+
+  // We have to call a stub.
+  {
+    PushSafepointRegistersScope scope(this);
+    __ Move(result, ToRegister(instr->object()));
+
+    LOperand* key = instr->key();
+    if (key->IsConstantOperand()) {
+      __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
+    } else {
+      __ Mov(x3, ToRegister(key));
+      __ SmiTag(x3);
+    }
+
+    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+                               instr->hydrogen()->kind());
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(
+        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    __ StoreToSafepointRegisterSlot(result, result);
+  }
+
+  // Deopt on smi, which means the elements array changed to dictionary mode.
+  DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+  Representation representation = instr->representation();
+
+  Register object = ToRegister(instr->object());
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+
+  if (access.IsExternalMemory()) {
+    DCHECK(!instr->hydrogen()->has_transition());
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    Register value = ToRegister(instr->value());
+    __ Store(value, MemOperand(object, offset), representation);
+    return;
+  }
+
+  __ AssertNotSmi(object);
+
+  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DCHECK(!instr->hydrogen()->has_transition());
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    FPRegister value = ToDoubleRegister(instr->value());
+    __ Str(value, FieldMemOperand(object, offset));
+    return;
+  }
+
+  DCHECK(!representation.IsSmi() ||
+         !instr->value()->IsConstantOperand() ||
+         IsInteger32Constant(LConstantOperand::cast(instr->value())));
+
+  if (instr->hydrogen()->has_transition()) {
+    Handle<Map> transition = instr->hydrogen()->transition_map();
+    AddDeprecationDependency(transition);
+    // Store the new map value.
+    Register new_map_value = ToRegister(instr->temp0());
+    __ Mov(new_map_value, Operand(transition));
+    __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
+    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+      // Update the write barrier for the map field.
+      __ RecordWriteForMap(object,
+                           new_map_value,
+                           ToRegister(instr->temp1()),
+                           GetLinkRegisterState(),
+                           kSaveFPRegs);
+    }
+  }
+
+  // Do the store.
+  Register destination;
+  if (access.IsInobject()) {
+    destination = object;
+  } else {
+    Register temp0 = ToRegister(instr->temp0());
+    __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    destination = temp0;
+  }
+
+  if (FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    FPRegister value = ToDoubleRegister(instr->value());
+    __ Str(value, FieldMemOperand(object, offset));
+  } else if (representation.IsSmi() &&
+             instr->hydrogen()->value()->representation().IsInteger32()) {
+    DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+#ifdef DEBUG
+    Register temp0 = ToRegister(instr->temp0());
+    __ Ldr(temp0, FieldMemOperand(destination, offset));
+    __ AssertSmi(temp0);
+    // If destination aliased temp0, restore it to the address calculated
+    // earlier.
+    if (destination.Is(temp0)) {
+      DCHECK(!access.IsInobject());
+      __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    }
+#endif
+    STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
+    STATIC_ASSERT(kSmiTag == 0);
+    Register value = ToRegister(instr->value());
+    __ Store(value, UntagSmiFieldMemOperand(destination, offset),
+             Representation::Integer32());
+  } else {
+    Register value = ToRegister(instr->value());
+    __ Store(value, FieldMemOperand(destination, offset), representation);
+  }
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    Register value = ToRegister(instr->value());
+    __ RecordWriteField(destination,
+                        offset,
+                        value,                        // Clobbered.
+                        ToRegister(instr->temp1()),   // Clobbered.
+                        GetLinkRegisterState(),
+                        kSaveFPRegs,
+                        EMIT_REMEMBERED_SET,
+                        instr->hydrogen()->SmiCheckForWriteBarrier(),
+                        instr->hydrogen()->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+  }
+
+  __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
+  Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).Is(x1));
+  DCHECK(ToRegister(instr->right()).Is(x0));
+  StringAddStub stub(isolate(),
+                     instr->hydrogen()->flags(),
+                     instr->hydrogen()->pretenure_flag());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+  class DeferredStringCharCodeAt: public LDeferredCode {
+   public:
+    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LStringCharCodeAt* instr_;
+  };
+
+  DeferredStringCharCodeAt* deferred =
+      new(zone()) DeferredStringCharCodeAt(this, instr);
+
+  StringCharLoadGenerator::Generate(masm(),
+                                    ToRegister(instr->string()),
+                                    ToRegister32(instr->index()),
+                                    ToRegister(instr->result()),
+                                    deferred->entry());
+  __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Mov(result, 0);
+
+  PushSafepointRegistersScope scope(this);
+  __ Push(string);
+  // Push the index as a smi. This is safe because of the checks in
+  // DoStringCharCodeAt above.
+  Register index = ToRegister(instr->index());
+  __ SmiTagAndPush(index);
+
+  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
+                          instr->context());
+  __ AssertSmi(x0);
+  __ SmiUntag(x0);
+  __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+  class DeferredStringCharFromCode: public LDeferredCode {
+   public:
+    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LStringCharFromCode* instr_;
+  };
+
+  DeferredStringCharFromCode* deferred =
+      new(zone()) DeferredStringCharFromCode(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+  Register char_code = ToRegister32(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  __ Cmp(char_code, String::kMaxOneByteCharCode);
+  __ B(hi, deferred->entry());
+  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+  __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
+  __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
+  __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
+  __ B(eq, deferred->entry());
+  __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Mov(result, 0);
+
+  PushSafepointRegistersScope scope(this);
+  __ SmiTagAndPush(char_code);
+  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(x1));
+  DCHECK(ToRegister(instr->right()).is(x0));
+
+  Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+
+  EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0);
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  Register result = ToRegister32(instr->result());
+  Register left = ToRegister32(instr->left());
+  Operand right = ToShiftedRightOperand32(instr->right(), instr);
+
+  if (can_overflow) {
+    __ Subs(result, left, right);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  } else {
+    __ Sub(result, left, right);
+  }
+}
+
+
+void LCodeGen::DoSubS(LSubS* instr) {
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  Register result = ToRegister(instr->result());
+  Register left = ToRegister(instr->left());
+  Operand right = ToOperand(instr->right());
+  if (can_overflow) {
+    __ Subs(result, left, right);
+    DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
+  } else {
+    __ Sub(result, left, right);
+  }
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
+                                   LOperand* value,
+                                   LOperand* temp1,
+                                   LOperand* temp2) {
+  Register input = ToRegister(value);
+  Register scratch1 = ToRegister(temp1);
+  DoubleRegister dbl_scratch1 = double_scratch();
+
+  Label done;
+
+  if (instr->truncating()) {
+    Register output = ToRegister(instr->result());
+    Label check_bools;
+
+    // If it's not a heap number, jump to undefined check.
+    __ JumpIfNotHeapNumber(input, &check_bools);
+
+    // A heap number: load value and convert to int32 using truncating function.
+    __ TruncateHeapNumberToI(output, input);
+    __ B(&done);
+
+    __ Bind(&check_bools);
+
+    Register true_root = output;
+    Register false_root = scratch1;
+    __ LoadTrueFalseRoots(true_root, false_root);
+    __ Cmp(input, true_root);
+    __ Cset(output, eq);
+    __ Ccmp(input, false_root, ZFlag, ne);
+    __ B(eq, &done);
+
+    // Output contains zero, undefined is converted to zero for truncating
+    // conversions.
+    DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
+                        Deoptimizer::kNotAHeapNumberUndefinedBoolean);
+  } else {
+    Register output = ToRegister32(instr->result());
+    DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
+
+    DeoptimizeIfNotHeapNumber(input, instr);
+
+    // A heap number: load value and convert to int32 using non-truncating
+    // function. If the result is out of range, branch to deoptimize.
+    __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
+    __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ Cmp(output, 0);
+      __ B(ne, &done);
+      __ Fmov(scratch1, dbl_scratch1);
+      DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
+    }
+  }
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+  class DeferredTaggedToI: public LDeferredCode {
+   public:
+    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    virtual void Generate() {
+      codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
+                                     instr_->temp2());
+    }
+
+    virtual LInstruction* instr() { return instr_; }
+   private:
+    LTaggedToI* instr_;
+  };
+
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+
+  if (instr->hydrogen()->value()->representation().IsSmi()) {
+    __ SmiUntag(output, input);
+  } else {
+    DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+
+    __ JumpIfNotSmi(input, deferred->entry());
+    __ SmiUntag(output, input);
+    __ Bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+  Register result = ToRegister(instr->result());
+  __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+  DCHECK(ToRegister(instr->value()).Is(x0));
+  DCHECK(ToRegister(instr->result()).Is(x0));
+  __ Push(x0);
+  CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+  Register object = ToRegister(instr->object());
+
+  Handle<Map> from_map = instr->original_map();
+  Handle<Map> to_map = instr->transitioned_map();
+  ElementsKind from_kind = instr->from_kind();
+  ElementsKind to_kind = instr->to_kind();
+
+  Label not_applicable;
+
+  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+    Register temp1 = ToRegister(instr->temp1());
+    Register new_map = ToRegister(instr->temp2());
+    __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
+    __ Mov(new_map, Operand(to_map));
+    __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
+    // Write barrier.
+    __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
+                         kDontSaveFPRegs);
+  } else {
+    {
+      UseScratchRegisterScope temps(masm());
+      // Use the temp register only in a restricted scope - the codegen checks
+      // that we do not use any register across a call.
+      __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
+                  DONT_DO_SMI_CHECK);
+    }
+    DCHECK(object.is(x0));
+    DCHECK(ToRegister(instr->context()).is(cp));
+    PushSafepointRegistersScope scope(this);
+    __ Mov(x1, Operand(to_map));
+    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+    __ CallStub(&stub);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+  __ Bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+  Register object = ToRegister(instr->object());
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  Label no_memento_found;
+  __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
+  DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
+  __ Bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  __ TruncateDoubleToI(result, input);
+  if (instr->tag_result()) {
+    __ SmiTag(result, result);
+  }
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+  DCHECK(ToRegister(instr->value()).is(x3));
+  DCHECK(ToRegister(instr->result()).is(x0));
+  Label end, do_call;
+  Register value_register = ToRegister(instr->value());
+  __ JumpIfNotSmi(value_register, &do_call);
+  __ Mov(x0, Immediate(isolate()->factory()->number_string()));
+  __ B(&end);
+  __ Bind(&do_call);
+  TypeofStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  __ Bind(&end);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+  Handle<String> type_name = instr->type_literal();
+  Label* true_label = instr->TrueLabel(chunk_);
+  Label* false_label = instr->FalseLabel(chunk_);
+  Register value = ToRegister(instr->value());
+
+  Factory* factory = isolate()->factory();
+  if (String::Equals(type_name, factory->number_string())) {
+    __ JumpIfSmi(value, true_label);
+
+    int true_block = instr->TrueDestination(chunk_);
+    int false_block = instr->FalseDestination(chunk_);
+    int next_block = GetNextEmittedBlock();
+
+    if (true_block == false_block) {
+      EmitGoto(true_block);
+    } else if (true_block == next_block) {
+      __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
+    } else {
+      __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
+      if (false_block != next_block) {
+        __ B(chunk_->GetAssemblyLabel(false_block));
+      }
+    }
+
+  } else if (String::Equals(type_name, factory->string_string())) {
+    DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
+    Register map = ToRegister(instr->temp1());
+    Register scratch = ToRegister(instr->temp2());
+
+    __ JumpIfSmi(value, false_label);
+    __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
+    EmitBranch(instr, lt);
+
+  } else if (String::Equals(type_name, factory->symbol_string())) {
+    DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
+    Register map = ToRegister(instr->temp1());
+    Register scratch = ToRegister(instr->temp2());
+
+    __ JumpIfSmi(value, false_label);
+    __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
+    EmitBranch(instr, eq);
+
+  } else if (String::Equals(type_name, factory->boolean_string())) {
+    __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
+    __ CompareRoot(value, Heap::kFalseValueRootIndex);
+    EmitBranch(instr, eq);
+
+  } else if (String::Equals(type_name, factory->undefined_string())) {
+    DCHECK(instr->temp1() != NULL);
+    Register scratch = ToRegister(instr->temp1());
+
+    __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
+    __ JumpIfSmi(value, false_label);
+    // Check for undetectable objects and jump to the true branch in this case.
+    __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+    __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
+
+  } else if (String::Equals(type_name, factory->function_string())) {
+    DCHECK(instr->temp1() != NULL);
+    Register scratch = ToRegister(instr->temp1());
+
+    __ JumpIfSmi(value, false_label);
+    __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+    __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ And(scratch, scratch,
+           (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
+    EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
+
+  } else if (String::Equals(type_name, factory->object_string())) {
+    DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
+    Register map = ToRegister(instr->temp1());
+    Register scratch = ToRegister(instr->temp2());
+
+    __ JumpIfSmi(value, false_label);
+    __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
+                        false_label, lt);
+    // Check for callable or undetectable objects => false.
+    __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
+    EmitTestAndBranch(instr, eq, scratch,
+                      (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
+  } else if (String::Equals(type_name, factory->type##_string())) { \
+    DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));   \
+    Register map = ToRegister(instr->temp1());                      \
+                                                                    \
+    __ JumpIfSmi(value, false_label);                               \
+    __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));    \
+    __ CompareRoot(map, Heap::k##Type##MapRootIndex);               \
+    EmitBranch(instr, eq);
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+
+  } else {
+    __ B(false_label);
+  }
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+  __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+  Register object = ToRegister(instr->value());
+  Register map = ToRegister(instr->map());
+  Register temp = ToRegister(instr->temp());
+  __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
+  __ Cmp(map, temp);
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+
+  // If the receiver is null or undefined, we have to pass the global object as
+  // a receiver to normal functions. Values have to be passed unchanged to
+  // builtins and strict-mode functions.
+  Label global_object, done, copy_receiver;
+
+  if (!instr->hydrogen()->known_function()) {
+    __ Ldr(result, FieldMemOperand(function,
+                                   JSFunction::kSharedFunctionInfoOffset));
+
+    // CompilerHints is an int32 field. See objects.h.
+    __ Ldr(result.W(),
+           FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
+
+    // Do not transform the receiver to object for strict mode functions.
+    __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
+
+    // Do not transform the receiver to object for builtins.
+    __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
+  }
+
+  // Normal function. Replace undefined or null with global receiver.
+  __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
+  __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
+
+  // Deoptimize if the receiver is not a JS object.
+  DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
+  __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
+  __ B(ge, &copy_receiver);
+  Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
+
+  __ Bind(&global_object);
+  __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
+  __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
+  __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
+  __ B(&done);
+
+  __ Bind(&copy_receiver);
+  __ Mov(result, receiver);
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                           Register result,
+                                           Register object,
+                                           Register index) {
+  PushSafepointRegistersScope scope(this);
+  __ Push(object);
+  __ Push(index);
+  __ Mov(cp, 0);
+  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+  class DeferredLoadMutableDouble final : public LDeferredCode {
+   public:
+    DeferredLoadMutableDouble(LCodeGen* codegen,
+                              LLoadFieldByIndex* instr,
+                              Register result,
+                              Register object,
+                              Register index)
+        : LDeferredCode(codegen),
+          instr_(instr),
+          result_(result),
+          object_(object),
+          index_(index) {
+    }
+    void Generate() override {
+      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LLoadFieldByIndex* instr_;
+    Register result_;
+    Register object_;
+    Register index_;
+  };
+  Register object = ToRegister(instr->object());
+  Register index = ToRegister(instr->index());
+  Register result = ToRegister(instr->result());
+
+  __ AssertSmi(index);
+
+  DeferredLoadMutableDouble* deferred;
+  deferred = new(zone()) DeferredLoadMutableDouble(
+      this, instr, result, object, index);
+
+  Label out_of_object, done;
+
+  __ TestAndBranchIfAnySet(
+      index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
+  __ Mov(index, Operand(index, ASR, 1));
+
+  __ Cmp(index, Smi::FromInt(0));
+  __ B(lt, &out_of_object);
+
+  STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
+  __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
+  __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
+
+  __ B(&done);
+
+  __ Bind(&out_of_object);
+  __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+  // Index is equal to negated out of object property index plus 1.
+  __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
+  __ Ldr(result, FieldMemOperand(result,
+                                 FixedArray::kHeaderSize - kPointerSize));
+  __ Bind(deferred->exit());
+  __ Bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+  Register context = ToRegister(instr->context());
+  __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+  Handle<ScopeInfo> scope_info = instr->scope_info();
+  __ Push(scope_info);
+  __ Push(ToRegister(instr->function()));
+  CallRuntime(Runtime::kPushBlockContext, instr);
+  RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+}  // namespace internal
+}  // namespace v8