Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/crankshaft/mips64/OWNERS b/src/crankshaft/mips64/OWNERS
new file mode 100644
index 0000000..89455a4
--- /dev/null
+++ b/src/crankshaft/mips64/OWNERS
@@ -0,0 +1,6 @@
+paul.lind@imgtec.com
+gergely.kis@imgtec.com
+akos.palfi@imgtec.com
+balazs.kilvady@imgtec.com
+dusan.milosavljevic@imgtec.com
+ivica.bogosavljevic@imgtec.com
diff --git a/src/crankshaft/mips64/lithium-codegen-mips64.cc b/src/crankshaft/mips64/lithium-codegen-mips64.cc
new file mode 100644
index 0000000..29d19ee
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-codegen-mips64.cc
@@ -0,0 +1,5842 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/mips64/lithium-codegen-mips64.h"
+
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator final : public CallWrapper {
+ public:
+  SafepointGenerator(LCodeGen* codegen,
+                     LPointerMap* pointers,
+                     Safepoint::DeoptMode mode)
+      : codegen_(codegen),
+        pointers_(pointers),
+        deopt_mode_(mode) { }
+  virtual ~SafepointGenerator() {}
+
+  void BeforeCall(int call_size) const override {}
+
+  void AfterCall() const override {
+    codegen_->RecordSafepoint(pointers_, deopt_mode_);
+  }
+
+ private:
+  LCodeGen* codegen_;
+  LPointerMap* pointers_;
+  Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+  LPhase phase("Z_Code generation", chunk());
+  DCHECK(is_unused());
+  status_ = GENERATING;
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // NONE indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done in GeneratePrologue).
+  FrameScope frame_scope(masm_, StackFrame::NONE);
+
+  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
+         GenerateJumpTable() && GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+  DCHECK(is_done());
+  code->set_stack_slots(GetStackSlotCount());
+  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+  PopulateDeoptimizationData(code);
+}
+
+
+void LCodeGen::SaveCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Save clobbered callee double registers");
+  int count = 0;
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  while (!save_iterator.Done()) {
+    __ sdc1(DoubleRegister::from_code(save_iterator.Current()),
+            MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Restore clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  int count = 0;
+  while (!save_iterator.Done()) {
+    __ ldc1(DoubleRegister::from_code(save_iterator.Current()),
+            MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+  DCHECK(is_generating());
+
+  if (info()->IsOptimizing()) {
+    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+    if (strlen(FLAG_stop_at) > 0 &&
+        info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+      __ stop("stop_at");
+    }
+#endif
+
+    // a1: Callee's JS function.
+    // cp: Callee's context.
+    // fp: Caller's frame pointer.
+    // lr: Caller's pc.
+  }
+
+  info()->set_prologue_offset(masm_->pc_offset());
+  if (NeedsEagerFrame()) {
+    if (info()->IsStub()) {
+      __ StubPrologue();
+    } else {
+      __ Prologue(info()->GeneratePreagedPrologue());
+    }
+    frame_is_built_ = true;
+  }
+
+  // Reserve space for the stack slots needed by the code.
+  int slots = GetStackSlotCount();
+  if (slots > 0) {
+    if (FLAG_debug_code) {
+      __ Dsubu(sp,  sp, Operand(slots * kPointerSize));
+      __ Push(a0, a1);
+      __ Daddu(a0, sp, Operand(slots *  kPointerSize));
+      __ li(a1, Operand(kSlotsZapValue));
+      Label loop;
+      __ bind(&loop);
+      __ Dsubu(a0, a0, Operand(kPointerSize));
+      __ sd(a1, MemOperand(a0, 2 * kPointerSize));
+      __ Branch(&loop, ne, a0, Operand(sp));
+      __ Pop(a0, a1);
+    } else {
+      __ Dsubu(sp, sp, Operand(slots * kPointerSize));
+    }
+  }
+
+  if (info()->saves_caller_doubles()) {
+    SaveCallerDoubles();
+  }
+  return !is_aborted();
+}
+
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+  Comment(";;; Prologue begin");
+
+  // Possibly allocate a local context.
+  if (info()->scope()->num_heap_slots() > 0) {
+    Comment(";;; Allocate local context");
+    bool need_write_barrier = true;
+    // Argument to NewContext is the function, which is in a1.
+    int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+    if (info()->scope()->is_script_scope()) {
+      __ push(a1);
+      __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      deopt_mode = Safepoint::kLazyDeopt;
+    } else if (slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(isolate(), slots);
+      __ CallStub(&stub);
+      // Result of FastNewContextStub is always in new space.
+      need_write_barrier = false;
+    } else {
+      __ push(a1);
+      __ CallRuntime(Runtime::kNewFunctionContext);
+    }
+    RecordSafepoint(deopt_mode);
+
+    // Context is returned in both v0. It replaces the context passed to us.
+    // It's saved in the stack and kept live in cp.
+    __ mov(cp, v0);
+    __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+            (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ ld(a0, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ sd(a0, target);
+        // Update the write barrier. This clobbers a3 and a0.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(
+              cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, a0, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+    Comment(";;; End allocate local context");
+  }
+
+  Comment(";;; Prologue end");
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+  // Generate the OSR entry prologue at the first unknown OSR value, or if there
+  // are none, at the OSR entrypoint instruction.
+  if (osr_pc_offset_ >= 0) return;
+
+  osr_pc_offset_ = masm()->pc_offset();
+
+  // Adjust the frame size, subsuming the unoptimized frame into the
+  // optimized frame.
+  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+  DCHECK(slots >= 0);
+  __ Dsubu(sp, sp, Operand(slots * kPointerSize));
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+  if (instr->IsCall()) {
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+  }
+  if (!instr->IsLazyBailout() && !instr->IsGap()) {
+    safepoints_.BumpLastLazySafepointIndex();
+  }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+  DCHECK(is_generating());
+  if (deferred_.length() > 0) {
+    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+      LDeferredCode* code = deferred_[i];
+
+      HValue* value =
+          instructions_->at(code->instruction_index())->hydrogen_value();
+      RecordAndWritePosition(
+          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+      Comment(";;; <@%d,#%d> "
+              "-------------------- Deferred %s --------------------",
+              code->instruction_index(),
+              code->instr()->hydrogen_value()->id(),
+              code->instr()->Mnemonic());
+      __ bind(code->entry());
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Build frame");
+        DCHECK(!frame_is_built_);
+        DCHECK(info()->IsStub());
+        frame_is_built_ = true;
+        __ MultiPush(cp.bit() | fp.bit() | ra.bit());
+        __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
+        __ push(scratch0());
+        __ Daddu(fp, sp,
+            Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+        Comment(";;; Deferred code");
+      }
+      code->Generate();
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Destroy frame");
+        DCHECK(frame_is_built_);
+        __ pop(at);
+        __ MultiPop(cp.bit() | fp.bit() | ra.bit());
+        frame_is_built_ = false;
+      }
+      __ jmp(code->exit());
+    }
+  }
+  // Deferred code is the last part of the instruction sequence. Mark
+  // the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateJumpTable() {
+  if (jump_table_.length() > 0) {
+    Comment(";;; -------------------- Jump table --------------------");
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    Label table_start, call_deopt_entry;
+
+    __ bind(&table_start);
+    Label needs_frame;
+    Address base = jump_table_[0]->address;
+    for (int i = 0; i < jump_table_.length(); i++) {
+      Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
+      __ bind(&table_entry->label);
+      Address entry = table_entry->address;
+      DeoptComment(table_entry->deopt_info);
+
+      // Second-level deopt table entries are contiguous and small, so instead
+      // of loading the full, absolute address of each one, load the base
+      // address and add an immediate offset.
+      if (is_int16(entry - base)) {
+        if (table_entry->needs_frame) {
+          DCHECK(!info()->saves_caller_doubles());
+          Comment(";;; call deopt with frame");
+          __ MultiPush(cp.bit() | fp.bit() | ra.bit());
+          __ BranchAndLink(&needs_frame, USE_DELAY_SLOT);
+          __ li(t9, Operand(entry - base));
+        } else {
+          __ BranchAndLink(&call_deopt_entry, USE_DELAY_SLOT);
+          __ li(t9, Operand(entry - base));
+        }
+
+      } else {
+        __ li(t9, Operand(entry - base));
+        if (table_entry->needs_frame) {
+          DCHECK(!info()->saves_caller_doubles());
+          Comment(";;; call deopt with frame");
+          __ MultiPush(cp.bit() | fp.bit() | ra.bit());
+          __ BranchAndLink(&needs_frame);
+        } else {
+          __ BranchAndLink(&call_deopt_entry);
+        }
+      }
+      info()->LogDeoptCallPosition(masm()->pc_offset(),
+                                   table_entry->deopt_info.inlining_id);
+    }
+    if (needs_frame.is_linked()) {
+      __ bind(&needs_frame);
+      // This variant of deopt can only be used with stubs. Since we don't
+      // have a function pointer to install in the stack frame that we're
+      // building, install a special marker there instead.
+      DCHECK(info()->IsStub());
+      __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
+      __ push(at);
+      __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+    }
+
+    Comment(";;; call deopt");
+    __ bind(&call_deopt_entry);
+
+    if (info()->saves_caller_doubles()) {
+      DCHECK(info()->IsStub());
+      RestoreCallerDoubles();
+    }
+
+    __ li(at,
+          Operand(reinterpret_cast<int64_t>(base), RelocInfo::RUNTIME_ENTRY));
+    __ Daddu(t9, t9, Operand(at));
+    __ Jump(t9);
+  }
+  // The deoptimization jump table is the last part of the instruction
+  // sequence. Mark the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+  DCHECK(is_done());
+  safepoints_.Emit(masm(), GetStackSlotCount());
+  return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int index) const {
+  return Register::from_code(index);
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
+  return DoubleRegister::from_code(index);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+  DCHECK(op->IsRegister());
+  return ToRegister(op->index());
+}
+
+
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
+  if (op->IsRegister()) {
+    return ToRegister(op->index());
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk_->LookupConstant(const_op);
+    Handle<Object> literal = constant->handle(isolate());
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      AllowDeferredHandleDereference get_number;
+      DCHECK(literal->IsNumber());
+      __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
+    } else if (r.IsSmi()) {
+      DCHECK(constant->HasSmiValue());
+      __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
+    } else if (r.IsDouble()) {
+      Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
+    } else {
+      DCHECK(r.IsSmiOrTagged());
+      __ li(scratch, literal);
+    }
+    return scratch;
+  } else if (op->IsStackSlot()) {
+    __ ld(scratch, ToMemOperand(op));
+    return scratch;
+  }
+  UNREACHABLE();
+  return scratch;
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+  DCHECK(op->IsDoubleRegister());
+  return ToDoubleRegister(op->index());
+}
+
+
+DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
+                                                FloatRegister flt_scratch,
+                                                DoubleRegister dbl_scratch) {
+  if (op->IsDoubleRegister()) {
+    return ToDoubleRegister(op->index());
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk_->LookupConstant(const_op);
+    Handle<Object> literal = constant->handle(isolate());
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      DCHECK(literal->IsNumber());
+      __ li(at, Operand(static_cast<int32_t>(literal->Number())));
+      __ mtc1(at, flt_scratch);
+      __ cvt_d_w(dbl_scratch, flt_scratch);
+      return dbl_scratch;
+    } else if (r.IsDouble()) {
+      Abort(kUnsupportedDoubleImmediate);
+    } else if (r.IsTagged()) {
+      Abort(kUnsupportedTaggedImmediate);
+    }
+  } else if (op->IsStackSlot()) {
+    MemOperand mem_op = ToMemOperand(op);
+    __ ldc1(dbl_scratch, mem_op);
+    return dbl_scratch;
+  }
+  UNREACHABLE();
+  return dbl_scratch;
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+  return constant->handle(isolate());
+}
+
+
+bool LCodeGen::IsInteger32(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+  // return ToRepresentation(op, Representation::Integer32());
+  HConstant* constant = chunk_->LookupConstant(op);
+  return constant->Integer32Value();
+}
+
+
+int64_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
+                                            const Representation& r) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  int32_t value = constant->Integer32Value();
+  if (r.IsInteger32()) return value;
+  DCHECK(r.IsSmiOrTagged());
+  return reinterpret_cast<int64_t>(Smi::FromInt(value));
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return Smi::FromInt(constant->Integer32Value());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasDoubleValue());
+  return constant->DoubleValue();
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+  if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk()->LookupConstant(const_op);
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsSmi()) {
+      DCHECK(constant->HasSmiValue());
+      return Operand(Smi::FromInt(constant->Integer32Value()));
+    } else if (r.IsInteger32()) {
+      DCHECK(constant->HasInteger32Value());
+      return Operand(constant->Integer32Value());
+    } else if (r.IsDouble()) {
+      Abort(kToOperandUnsupportedDoubleImmediate);
+    }
+    DCHECK(r.IsTagged());
+    return Operand(constant->handle(isolate()));
+  } else if (op->IsRegister()) {
+    return Operand(ToRegister(op));
+  } else if (op->IsDoubleRegister()) {
+    Abort(kToOperandIsDoubleRegisterUnimplemented);
+    return Operand((int64_t)0);
+  }
+  // Stack slots not implemented, use ToMemOperand instead.
+  UNREACHABLE();
+  return Operand((int64_t)0);
+}
+
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+  DCHECK(index < 0);
+  return -(index + 1) * kPointerSize;
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+  DCHECK(!op->IsRegister());
+  DCHECK(!op->IsDoubleRegister());
+  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return MemOperand(fp, StackSlotOffset(op->index()));
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
+  }
+}
+
+
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
+  DCHECK(op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    // return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
+    return MemOperand(fp, StackSlotOffset(op->index()) + kIntSize);
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    // return MemOperand(
+    //    sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
+    return MemOperand(
+        sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
+  }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+                                Translation* translation) {
+  if (environment == NULL) return;
+
+  // The translation includes one command per value in the environment.
+  int translation_size = environment->translation_size();
+
+  WriteTranslation(environment->outer(), translation);
+  WriteTranslationFrame(environment, translation);
+
+  int object_index = 0;
+  int dematerialized_index = 0;
+  for (int i = 0; i < translation_size; ++i) {
+    LOperand* value = environment->values()->at(i);
+    AddToTranslation(
+        environment, translation, value, environment->HasTaggedValueAt(i),
+        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
+  }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+                                Translation* translation,
+                                LOperand* op,
+                                bool is_tagged,
+                                bool is_uint32,
+                                int* object_index_pointer,
+                                int* dematerialized_index_pointer) {
+  if (op == LEnvironment::materialization_marker()) {
+    int object_index = (*object_index_pointer)++;
+    if (environment->ObjectIsDuplicateAt(object_index)) {
+      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+      translation->DuplicateObject(dupe_of);
+      return;
+    }
+    int object_length = environment->ObjectLengthAt(object_index);
+    if (environment->ObjectIsArgumentsAt(object_index)) {
+      translation->BeginArgumentsObject(object_length);
+    } else {
+      translation->BeginCapturedObject(object_length);
+    }
+    int dematerialized_index = *dematerialized_index_pointer;
+    int env_offset = environment->translation_size() + dematerialized_index;
+    *dematerialized_index_pointer += object_length;
+    for (int i = 0; i < object_length; ++i) {
+      LOperand* value = environment->values()->at(env_offset + i);
+      AddToTranslation(environment,
+                       translation,
+                       value,
+                       environment->HasTaggedValueAt(env_offset + i),
+                       environment->HasUint32ValueAt(env_offset + i),
+                       object_index_pointer,
+                       dematerialized_index_pointer);
+    }
+    return;
+  }
+
+  if (op->IsStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    if (is_tagged) {
+      translation->StoreStackSlot(index);
+    } else if (is_uint32) {
+      translation->StoreUint32StackSlot(index);
+    } else {
+      translation->StoreInt32StackSlot(index);
+    }
+  } else if (op->IsDoubleStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    translation->StoreDoubleStackSlot(index);
+  } else if (op->IsRegister()) {
+    Register reg = ToRegister(op);
+    if (is_tagged) {
+      translation->StoreRegister(reg);
+    } else if (is_uint32) {
+      translation->StoreUint32Register(reg);
+    } else {
+      translation->StoreInt32Register(reg);
+    }
+  } else if (op->IsDoubleRegister()) {
+    DoubleRegister reg = ToDoubleRegister(op);
+    translation->StoreDoubleRegister(reg);
+  } else if (op->IsConstantOperand()) {
+    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+    translation->StoreLiteral(src_index);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+                        RelocInfo::Mode mode,
+                        LInstruction* instr) {
+  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+                               RelocInfo::Mode mode,
+                               LInstruction* instr,
+                               SafepointMode safepoint_mode) {
+  DCHECK(instr != NULL);
+  __ Call(code, mode);
+  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+                           int num_arguments,
+                           LInstruction* instr,
+                           SaveFPRegsMode save_doubles) {
+  DCHECK(instr != NULL);
+
+  __ CallRuntime(function, num_arguments, save_doubles);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+  if (context->IsRegister()) {
+    __ Move(cp, ToRegister(context));
+  } else if (context->IsStackSlot()) {
+    __ ld(cp, ToMemOperand(context));
+  } else if (context->IsConstantOperand()) {
+    HConstant* constant =
+        chunk_->LookupConstant(LConstantOperand::cast(context));
+    __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+                                       int argc,
+                                       LInstruction* instr,
+                                       LOperand* context) {
+  LoadContextFromDeferred(context);
+  __ CallRuntimeSaveDoubles(id);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                                    Safepoint::DeoptMode mode) {
+  environment->set_has_been_used();
+  if (!environment->HasBeenRegistered()) {
+    // Physical stack frame layout:
+    // -x ............. -4  0 ..................................... y
+    // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+    // Layout of the environment:
+    // 0 ..................................................... size-1
+    // [parameters] [locals] [expression stack including arguments]
+
+    // Layout of the translation:
+    // 0 ........................................................ size - 1 + 4
+    // [expression stack including arguments] [locals] [4 words] [parameters]
+    // |>------------  translation_size ------------<|
+
+    int frame_count = 0;
+    int jsframe_count = 0;
+    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+      ++frame_count;
+      if (e->frame_type() == JS_FUNCTION) {
+        ++jsframe_count;
+      }
+    }
+    Translation translation(&translations_, frame_count, jsframe_count, zone());
+    WriteTranslation(environment, &translation);
+    int deoptimization_index = deoptimizations_.length();
+    int pc_offset = masm()->pc_offset();
+    environment->Register(deoptimization_index,
+                          translation.index(),
+                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+    deoptimizations_.Add(environment, zone());
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            Deoptimizer::BailoutType bailout_type,
+                            Register src1, const Operand& src2) {
+  LEnvironment* environment = instr->environment();
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+  DCHECK(environment->HasBeenRegistered());
+  int id = environment->deoptimization_index();
+  Address entry =
+      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+  if (entry == NULL) {
+    Abort(kBailoutWasNotPrepared);
+    return;
+  }
+
+  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+    Register scratch = scratch0();
+    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+    Label no_deopt;
+    __ Push(a1, scratch);
+    __ li(scratch, Operand(count));
+    __ lw(a1, MemOperand(scratch));
+    __ Subu(a1, a1, Operand(1));
+    __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
+    __ li(a1, Operand(FLAG_deopt_every_n_times));
+    __ sw(a1, MemOperand(scratch));
+    __ Pop(a1, scratch);
+
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+    __ bind(&no_deopt);
+    __ sw(a1, MemOperand(scratch));
+    __ Pop(a1, scratch);
+  }
+
+  if (info()->ShouldTrapOnDeopt()) {
+    Label skip;
+    if (condition != al) {
+      __ Branch(&skip, NegateCondition(condition), src1, src2);
+    }
+    __ stop("trap_on_deopt");
+    __ bind(&skip);
+  }
+
+  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+  DCHECK(info()->IsStub() || frame_is_built_);
+  // Go through jump table if we need to handle condition, build frame, or
+  // restore caller doubles.
+  if (condition == al && frame_is_built_ &&
+      !info()->saves_caller_doubles()) {
+    DeoptComment(deopt_info);
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
+    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+  } else {
+    Deoptimizer::JumpTableEntry* table_entry =
+        new (zone()) Deoptimizer::JumpTableEntry(
+            entry, deopt_info, bailout_type, !frame_is_built_);
+    // We often have several deopts to the same entry, reuse the last
+    // jump entry if this is the case.
+    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+        jump_table_.is_empty() ||
+        !table_entry->IsEquivalentTo(*jump_table_.last())) {
+      jump_table_.Add(table_entry, zone());
+    }
+    __ Branch(&jump_table_.last()->label, condition, src1, src2);
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            Register src1, const Operand& src2) {
+  Deoptimizer::BailoutType bailout_type = info()->IsStub()
+      ? Deoptimizer::LAZY
+      : Deoptimizer::EAGER;
+  DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(
+    LInstruction* instr, SafepointMode safepoint_mode) {
+  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+  } else {
+    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(
+    LPointerMap* pointers,
+    Safepoint::Kind kind,
+    int arguments,
+    Safepoint::DeoptMode deopt_mode) {
+  DCHECK(expected_safepoint_kind_ == kind);
+
+  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+      kind, arguments, deopt_mode);
+  for (int i = 0; i < operands->length(); i++) {
+    LOperand* pointer = operands->at(i);
+    if (pointer->IsStackSlot()) {
+      safepoint.DefinePointerSlot(pointer->index(), zone());
+    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+    }
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+  LPointerMap empty_pointers(zone());
+  RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+                                            int arguments,
+                                            Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(
+      pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+  if (position == RelocInfo::kNoPosition) return;
+  masm()->positions_recorder()->RecordPosition(position);
+  masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+static const char* LabelType(LLabel* label) {
+  if (label->is_loop_header()) return " (loop header)";
+  if (label->is_osr_entry()) return " (OSR entry)";
+  return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+          current_instruction_,
+          label->hydrogen_value()->id(),
+          label->block_id(),
+          LabelType(label));
+  __ bind(label->label());
+  current_block_ = label->block_id();
+  DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+  resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+  for (int i = LGap::FIRST_INNER_POSITION;
+       i <= LGap::LAST_INNER_POSITION;
+       i++) {
+    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+    LParallelMove* move = gap->GetParallelMove(inner_pos);
+    if (move != NULL) DoParallelMove(move);
+  }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+  DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+  // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->result()).is(v0));
+  switch (instr->hydrogen()->major_key()) {
+    case CodeStub::RegExpExec: {
+      RegExpExecStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    case CodeStub::SubString: {
+      SubStringStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister(instr->result())));
+
+  // Theoretically, a variation of the branch-free code for integer division by
+  // a power of 2 (calculating the remainder via an additional multiplication
+  // (which gets simplified to an 'and') and subtraction) should be faster, and
+  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+  // indicate that positive dividends are heavily favored, so the branching
+  // version performs better.
+  HMod* hmod = instr->hydrogen();
+  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+  Label dividend_is_not_negative, done;
+
+  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+    __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
+    // Note: The code below even works when right contains kMinInt.
+    __ dsubu(dividend, zero_reg, dividend);
+    __ And(dividend, dividend, Operand(mask));
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
+                   Operand(zero_reg));
+    }
+    __ Branch(USE_DELAY_SLOT, &done);
+    __ dsubu(dividend, zero_reg, dividend);
+  }
+
+  __ bind(&dividend_is_not_negative);
+  __ And(dividend, dividend, Operand(mask));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  __ Dmul(result, result, Operand(Abs(divisor)));
+  __ Dsubu(result, dividend, Operand(result));
+
+  // Check for negative zero.
+  HMod* hmod = instr->hydrogen();
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label remainder_not_zero;
+    __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, dividend,
+                 Operand(zero_reg));
+    __ bind(&remainder_not_zero);
+  }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+  HMod* hmod = instr->hydrogen();
+  const Register left_reg = ToRegister(instr->left());
+  const Register right_reg = ToRegister(instr->right());
+  const Register result_reg = ToRegister(instr->result());
+
+  // div runs in the background while we check for special cases.
+  __ Dmod(result_reg, left_reg, right_reg);
+
+  Label done;
+  // Check for x % 0, we have to deopt in this case because we can't return a
+  // NaN.
+  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, right_reg,
+                 Operand(zero_reg));
+  }
+
+  // Check for kMinInt % -1, div will return kMinInt, which is not what we
+  // want. We have to deopt if we care about -0, because we can't return that.
+  if (hmod->CheckFlag(HValue::kCanOverflow)) {
+    Label no_overflow_possible;
+    __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, right_reg, Operand(-1));
+    } else {
+      __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
+      __ Branch(USE_DELAY_SLOT, &done);
+      __ mov(result_reg, zero_reg);
+    }
+    __ bind(&no_overflow_possible);
+  }
+
+  // If we care about -0, test if the dividend is <0 and the result is 0.
+  __ Branch(&done, ge, left_reg, Operand(zero_reg));
+
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result_reg,
+                 Operand(zero_reg));
+  }
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+  DCHECK(!result.is(dividend));
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
+                 Operand(zero_reg));
+  }
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, dividend, Operand(kMinInt));
+  }
+  // Deoptimize if remainder will not be 0.
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+      divisor != 1 && divisor != -1) {
+    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+    __ And(at, dividend, Operand(mask));
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, at, Operand(zero_reg));
+  }
+
+  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
+    __ Dsubu(result, zero_reg, dividend);
+    return;
+  }
+  uint16_t shift = WhichPowerOf2Abs(divisor);
+  if (shift == 0) {
+    __ Move(result, dividend);
+  } else if (shift == 1) {
+    __ dsrl32(result, dividend, 31);
+    __ Daddu(result, dividend, Operand(result));
+  } else {
+    __ dsra32(result, dividend, 31);
+    __ dsrl32(result, result, 32 - shift);
+    __ Daddu(result, dividend, Operand(result));
+  }
+  if (shift > 0) __ dsra(result, result, shift);
+  if (divisor < 0) __ Dsubu(result, zero_reg, result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
+                 Operand(zero_reg));
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ Subu(result, zero_reg, result);
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    __ Dmul(scratch0(), result, Operand(divisor));
+    __ Dsubu(scratch0(), scratch0(), dividend);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, scratch0(),
+                 Operand(zero_reg));
+  }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register divisor = ToRegister(instr->divisor());
+  const Register result = ToRegister(instr->result());
+
+  // On MIPS div is asynchronous - it will run in the background while we
+  // check for special cases.
+  __ Div(result, dividend, divisor);
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
+                 Operand(zero_reg));
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label left_not_zero;
+    __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
+                 Operand(zero_reg));
+    __ bind(&left_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+      !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    Label left_not_min_int;
+    __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
+    __ bind(&left_not_min_int);
+  }
+
+  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    // Calculate remainder.
+    Register remainder = ToRegister(instr->temp());
+    if (kArchVariant != kMips64r6) {
+      __ mfhi(remainder);
+    } else {
+      __ dmod(remainder, dividend, divisor);
+    }
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, remainder,
+                 Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
+  DoubleRegister addend = ToDoubleRegister(instr->addend());
+  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
+  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+
+  // This is computed in-place.
+  DCHECK(addend.is(ToDoubleRegister(instr->result())));
+
+  __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  Register result = ToRegister(instr->result());
+  int32_t divisor = instr->divisor();
+  Register scratch = result.is(dividend) ? scratch0() : dividend;
+  DCHECK(!result.is(dividend) || !scratch.is(dividend));
+
+  // If the divisor is 1, return the dividend.
+  if (divisor == 1) {
+    __ Move(result, dividend);
+    return;
+  }
+
+  // If the divisor is positive, things are easy: There can be no deopts and we
+  // can simply do an arithmetic right shift.
+  uint16_t shift = WhichPowerOf2Abs(divisor);
+  if (divisor > 1) {
+    __ dsra(result, dividend, shift);
+    return;
+  }
+
+  // If the divisor is negative, we have to negate and handle edge cases.
+  // Dividend can be the same register as result so save the value of it
+  // for checking overflow.
+  __ Move(scratch, dividend);
+
+  __ Dsubu(result, zero_reg, dividend);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
+  }
+
+  __ Xor(scratch, scratch, result);
+  // Dividing by -1 is basically negation, unless we overflow.
+  if (divisor == -1) {
+    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+      DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, result, Operand(kMaxInt));
+    }
+    return;
+  }
+
+  // If the negation could not overflow, simply shifting is OK.
+  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+    __ dsra(result, result, shift);
+    return;
+  }
+
+  Label no_overflow, done;
+  __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
+  __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
+  __ Branch(&done);
+  __ bind(&no_overflow);
+  __ dsra(result, result, shift);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HMathFloorOfDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
+                 Operand(zero_reg));
+  }
+
+  // Easy case: We need no dynamic check for the dividend and the flooring
+  // division is the same as the truncating division.
+  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+    __ TruncatingDiv(result, dividend, Abs(divisor));
+    if (divisor < 0) __ Dsubu(result, zero_reg, result);
+    return;
+  }
+
+  // In the general case we may need to adjust before and after the truncating
+  // division to get a flooring division.
+  Register temp = ToRegister(instr->temp());
+  DCHECK(!temp.is(dividend) && !temp.is(result));
+  Label needs_adjustment, done;
+  __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
+            dividend, Operand(zero_reg));
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ Dsubu(result, zero_reg, result);
+  __ jmp(&done);
+  __ bind(&needs_adjustment);
+  __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
+  __ TruncatingDiv(result, temp, Abs(divisor));
+  if (divisor < 0) __ Dsubu(result, zero_reg, result);
+  __ Dsubu(result, result, Operand(1));
+  __ bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register divisor = ToRegister(instr->divisor());
+  const Register result = ToRegister(instr->result());
+
+  // On MIPS div is asynchronous - it will run in the background while we
+  // check for special cases.
+  __ Ddiv(result, dividend, divisor);
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
+                 Operand(zero_reg));
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label left_not_zero;
+    __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
+                 Operand(zero_reg));
+    __ bind(&left_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+      !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    Label left_not_min_int;
+    __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
+    __ bind(&left_not_min_int);
+  }
+
+  // We performed a truncating division. Correct the result if necessary.
+  Label done;
+  Register remainder = scratch0();
+  if (kArchVariant != kMips64r6) {
+    __ mfhi(remainder);
+  } else {
+    __ dmod(remainder, dividend, divisor);
+  }
+  __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
+  __ Xor(remainder, remainder, Operand(divisor));
+  __ Branch(&done, ge, remainder, Operand(zero_reg));
+  __ Dsubu(result, result, Operand(1));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMulS(LMulS* instr) {
+  Register scratch = scratch0();
+  Register result = ToRegister(instr->result());
+  // Note that result may alias left.
+  Register left = ToRegister(instr->left());
+  LOperand* right_op = instr->right();
+
+  bool bailout_on_minus_zero =
+    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+  bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (right_op->IsConstantOperand()) {
+    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+    if (bailout_on_minus_zero && (constant < 0)) {
+      // The case of a null constant will be handled separately.
+      // If constant is negative and left is null, the result should be -0.
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
+    }
+
+    switch (constant) {
+      case -1:
+        if (overflow) {
+          __ DsubuAndCheckForOverflow(result, zero_reg, left, scratch);
+          DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch,
+                       Operand(zero_reg));
+        } else {
+          __ Dsubu(result, zero_reg, left);
+        }
+        break;
+      case 0:
+        if (bailout_on_minus_zero) {
+          // If left is strictly negative and the constant is null, the
+          // result is -0. Deoptimize if required, otherwise return 0.
+          DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
+                       Operand(zero_reg));
+        }
+        __ mov(result, zero_reg);
+        break;
+      case 1:
+        // Nothing to do.
+        __ Move(result, left);
+        break;
+      default:
+        // Multiplying by powers of two and powers of two plus or minus
+        // one can be done faster with shifted operands.
+        // For other constants we emit standard code.
+        int32_t mask = constant >> 31;
+        uint32_t constant_abs = (constant + mask) ^ mask;
+
+        if (base::bits::IsPowerOfTwo32(constant_abs)) {
+          int32_t shift = WhichPowerOf2(constant_abs);
+          __ dsll(result, left, shift);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Dsubu(result, zero_reg, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs - 1);
+          __ dsll(scratch, left, shift);
+          __ Daddu(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Dsubu(result, zero_reg, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs + 1);
+          __ dsll(scratch, left, shift);
+          __ Dsubu(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Dsubu(result, zero_reg, result);
+        } else {
+          // Generate standard code.
+          __ li(at, constant);
+          __ Dmul(result, left, at);
+        }
+    }
+  } else {
+    DCHECK(right_op->IsRegister());
+    Register right = ToRegister(right_op);
+
+    if (overflow) {
+      // hi:lo = left * right.
+      __ Dmulh(result, left, right);
+      __ dsra32(scratch, result, 0);
+      __ sra(at, result, 31);
+      __ SmiTag(result);
+      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
+    } else {
+      __ SmiUntag(result, left);
+      __ dmul(result, result, right);
+    }
+
+    if (bailout_on_minus_zero) {
+      Label done;
+      __ Xor(at, left, right);
+      __ Branch(&done, ge, at, Operand(zero_reg));
+      // Bail out if the result is minus zero.
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
+                   Operand(zero_reg));
+      __ bind(&done);
+    }
+  }
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+  Register scratch = scratch0();
+  Register result = ToRegister(instr->result());
+  // Note that result may alias left.
+  Register left = ToRegister(instr->left());
+  LOperand* right_op = instr->right();
+
+  bool bailout_on_minus_zero =
+      instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+  bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (right_op->IsConstantOperand()) {
+    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+    if (bailout_on_minus_zero && (constant < 0)) {
+      // The case of a null constant will be handled separately.
+      // If constant is negative and left is null, the result should be -0.
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
+    }
+
+    switch (constant) {
+      case -1:
+        if (overflow) {
+          __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
+          DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch,
+                       Operand(zero_reg));
+        } else {
+          __ Subu(result, zero_reg, left);
+        }
+        break;
+      case 0:
+        if (bailout_on_minus_zero) {
+          // If left is strictly negative and the constant is null, the
+          // result is -0. Deoptimize if required, otherwise return 0.
+          DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
+                       Operand(zero_reg));
+        }
+        __ mov(result, zero_reg);
+        break;
+      case 1:
+        // Nothing to do.
+        __ Move(result, left);
+        break;
+      default:
+        // Multiplying by powers of two and powers of two plus or minus
+        // one can be done faster with shifted operands.
+        // For other constants we emit standard code.
+        int32_t mask = constant >> 31;
+        uint32_t constant_abs = (constant + mask) ^ mask;
+
+        if (base::bits::IsPowerOfTwo32(constant_abs)) {
+          int32_t shift = WhichPowerOf2(constant_abs);
+          __ sll(result, left, shift);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Subu(result, zero_reg, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs - 1);
+          __ sll(scratch, left, shift);
+          __ addu(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Subu(result, zero_reg, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs + 1);
+          __ sll(scratch, left, shift);
+          __ Subu(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ Subu(result, zero_reg, result);
+        } else {
+          // Generate standard code.
+          __ li(at, constant);
+          __ Mul(result, left, at);
+        }
+    }
+
+  } else {
+    DCHECK(right_op->IsRegister());
+    Register right = ToRegister(right_op);
+
+    if (overflow) {
+      // hi:lo = left * right.
+      __ Dmul(result, left, right);
+      __ dsra32(scratch, result, 0);
+      __ sra(at, result, 31);
+
+      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
+    } else {
+      __ mul(result, left, right);
+    }
+
+    if (bailout_on_minus_zero) {
+      Label done;
+      __ Xor(at, left, right);
+      __ Branch(&done, ge, at, Operand(zero_reg));
+      // Bail out if the result is minus zero.
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
+                   Operand(zero_reg));
+      __ bind(&done);
+    }
+  }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+  LOperand* left_op = instr->left();
+  LOperand* right_op = instr->right();
+  DCHECK(left_op->IsRegister());
+  Register left = ToRegister(left_op);
+  Register result = ToRegister(instr->result());
+  Operand right(no_reg);
+
+  if (right_op->IsStackSlot()) {
+    right = Operand(EmitLoadRegister(right_op, at));
+  } else {
+    DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
+    right = ToOperand(right_op);
+  }
+
+  switch (instr->op()) {
+    case Token::BIT_AND:
+      __ And(result, left, right);
+      break;
+    case Token::BIT_OR:
+      __ Or(result, left, right);
+      break;
+    case Token::BIT_XOR:
+      if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
+        __ Nor(result, zero_reg, left);
+      } else {
+        __ Xor(result, left, right);
+      }
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
+  // result may alias either of them.
+  LOperand* right_op = instr->right();
+  Register left = ToRegister(instr->left());
+  Register result = ToRegister(instr->result());
+
+  if (right_op->IsRegister()) {
+    // No need to mask the right operand on MIPS, it is built into the variable
+    // shift instructions.
+    switch (instr->op()) {
+      case Token::ROR:
+        __ Ror(result, left, Operand(ToRegister(right_op)));
+        break;
+      case Token::SAR:
+        __ srav(result, left, ToRegister(right_op));
+        break;
+      case Token::SHR:
+        __ srlv(result, left, ToRegister(right_op));
+        if (instr->can_deopt()) {
+           // TODO(yy): (-1) >>> 0. anything else?
+          DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, result,
+                       Operand(zero_reg));
+          DeoptimizeIf(gt, instr, Deoptimizer::kNegativeValue, result,
+                       Operand(kMaxInt));
+        }
+        break;
+      case Token::SHL:
+        __ sllv(result, left, ToRegister(right_op));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    // Mask the right_op operand.
+    int value = ToInteger32(LConstantOperand::cast(right_op));
+    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+    switch (instr->op()) {
+      case Token::ROR:
+        if (shift_count != 0) {
+          __ Ror(result, left, Operand(shift_count));
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SAR:
+        if (shift_count != 0) {
+          __ sra(result, left, shift_count);
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHR:
+        if (shift_count != 0) {
+          __ srl(result, left, shift_count);
+        } else {
+          if (instr->can_deopt()) {
+            __ And(at, left, Operand(0x80000000));
+            DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue, at,
+                         Operand(zero_reg));
+          }
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHL:
+        if (shift_count != 0) {
+          if (instr->hydrogen_value()->representation().IsSmi()) {
+            __ dsll(result, left, shift_count);
+          } else {
+            __ sll(result, left, shift_count);
+          }
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoSubS(LSubS* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (!can_overflow) {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else {  // can_overflow.
+    Register overflow = scratch0();
+    Register scratch = scratch1();
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ DsubuAndCheckForOverflow(ToRegister(result), ToRegister(left),
+                                ToOperand(right), overflow, scratch);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
+                 Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (!can_overflow) {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else {  // can_overflow.
+    Register overflow = scratch0();
+    Register scratch = scratch1();
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left),
+                               ToOperand(right), overflow, scratch);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
+                 Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+  __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+  __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+  DCHECK(instr->result()->IsDoubleRegister());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  double v = instr->value();
+  __ Move(result, v);
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+  __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+  Handle<Object> object = instr->value(isolate());
+  AllowDeferredHandleDereference smi_check;
+  __ li(ToRegister(instr->result()), object);
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+  Register result = ToRegister(instr->result());
+  Register map = ToRegister(instr->value());
+  __ EnumLength(result, map);
+}
+
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string,
+                                           LOperand* index,
+                                           String::Encoding encoding) {
+  if (index->IsConstantOperand()) {
+    int offset = ToInteger32(LConstantOperand::cast(index));
+    if (encoding == String::TWO_BYTE_ENCODING) {
+      offset *= kUC16Size;
+    }
+    STATIC_ASSERT(kCharSize == 1);
+    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+  }
+  Register scratch = scratch0();
+  DCHECK(!scratch.is(string));
+  DCHECK(!scratch.is(ToRegister(index)));
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ Daddu(scratch, string, ToRegister(index));
+  } else {
+    STATIC_ASSERT(kUC16Size == 2);
+    __ dsll(scratch, ToRegister(index), 1);
+    __ Daddu(scratch, string, scratch);
+  }
+  return FieldMemOperand(scratch, SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+
+  if (FLAG_debug_code) {
+    Register scratch = scratch0();
+    __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
+    __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+    __ And(scratch, scratch,
+           Operand(kStringRepresentationMask | kStringEncodingMask));
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
+                                ? one_byte_seq_type : two_byte_seq_type));
+    __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ lbu(result, operand);
+  } else {
+    __ lhu(result, operand);
+  }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register value = ToRegister(instr->value());
+
+  if (FLAG_debug_code) {
+    Register scratch = scratch0();
+    Register index = ToRegister(instr->index());
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    int encoding_mask =
+        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+        ? one_byte_seq_type : two_byte_seq_type;
+    __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ sb(value, operand);
+  } else {
+    __ sh(value, operand);
+  }
+}
+
+
+void LCodeGen::DoAddE(LAddE* instr) {
+  LOperand* result = instr->result();
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+
+  DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
+  DCHECK(right->IsRegister() || right->IsConstantOperand());
+  __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
+}
+
+
+void LCodeGen::DoAddS(LAddS* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (!can_overflow) {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else {  // can_overflow.
+    Register overflow = scratch0();
+    Register scratch = scratch1();
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ DadduAndCheckForOverflow(ToRegister(result), ToRegister(left),
+                                ToOperand(right), overflow, scratch);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
+                 Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (!can_overflow) {
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else {  // can_overflow.
+    Register overflow = scratch0();
+    Register scratch = scratch1();
+    DCHECK(right->IsRegister() || right->IsConstantOperand());
+    __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left),
+                               ToOperand(right), overflow, scratch);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
+                 Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  HMathMinMax::Operation operation = instr->hydrogen()->operation();
+  Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
+  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+    Register left_reg = ToRegister(left);
+    Register right_reg = EmitLoadRegister(right, scratch0());
+    Register result_reg = ToRegister(instr->result());
+    Label return_right, done;
+    Register scratch = scratch1();
+    __ Slt(scratch, left_reg, Operand(right_reg));
+    if (condition == ge) {
+     __  Movz(result_reg, left_reg, scratch);
+     __  Movn(result_reg, right_reg, scratch);
+    } else {
+     DCHECK(condition == le);
+     __  Movn(result_reg, left_reg, scratch);
+     __  Movz(result_reg, right_reg, scratch);
+    }
+  } else {
+    DCHECK(instr->hydrogen()->representation().IsDouble());
+    FPURegister left_reg = ToDoubleRegister(left);
+    FPURegister right_reg = ToDoubleRegister(right);
+    FPURegister result_reg = ToDoubleRegister(instr->result());
+    Label check_nan_left, check_zero, return_left, return_right, done;
+    __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
+    __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
+    __ Branch(&return_right);
+
+    __ bind(&check_zero);
+    // left == right != 0.
+    __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
+    // At this point, both left and right are either 0 or -0.
+    if (operation == HMathMinMax::kMathMin) {
+      __ neg_d(left_reg, left_reg);
+      __ sub_d(result_reg, left_reg, right_reg);
+      __ neg_d(result_reg, result_reg);
+    } else {
+      __ add_d(result_reg, left_reg, right_reg);
+    }
+    __ Branch(&done);
+
+    __ bind(&check_nan_left);
+    // left == NaN.
+    __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
+    __ bind(&return_right);
+    if (!right_reg.is(result_reg)) {
+      __ mov_d(result_reg, right_reg);
+    }
+    __ Branch(&done);
+
+    __ bind(&return_left);
+    if (!left_reg.is(result_reg)) {
+      __ mov_d(result_reg, left_reg);
+    }
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+  DoubleRegister left = ToDoubleRegister(instr->left());
+  DoubleRegister right = ToDoubleRegister(instr->right());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  switch (instr->op()) {
+    case Token::ADD:
+      __ add_d(result, left, right);
+      break;
+    case Token::SUB:
+      __ sub_d(result, left, right);
+      break;
+    case Token::MUL:
+      __ mul_d(result, left, right);
+      break;
+    case Token::DIV:
+      __ div_d(result, left, right);
+      break;
+    case Token::MOD: {
+      // Save a0-a3 on the stack.
+      RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+      __ MultiPush(saved_regs);
+
+      __ PrepareCallCFunction(0, 2, scratch0());
+      __ MovToFloatParameters(left, right);
+      __ CallCFunction(
+          ExternalReference::mod_two_doubles_operation(isolate()),
+          0, 2);
+      // Move the result in the double result register.
+      __ MovFromFloatResult(result);
+
+      // Restore saved register.
+      __ MultiPop(saved_regs);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(a1));
+  DCHECK(ToRegister(instr->right()).is(a0));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+  // Other arch use a nop here, to signal that there is no inlined
+  // patchable code. Mips does not need the nop, since our marker
+  // instruction (andi zero_reg) will never be used in normal code.
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr,
+                          Condition condition,
+                          Register src1,
+                          const Operand& src2) {
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+  if (right_block == left_block || condition == al) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    __ Branch(chunk_->GetAssemblyLabel(right_block),
+              NegateCondition(condition), src1, src2);
+  } else if (right_block == next_block) {
+    __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
+  } else {
+    __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
+    __ Branch(chunk_->GetAssemblyLabel(right_block));
+  }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchF(InstrType instr,
+                           Condition condition,
+                           FPURegister src1,
+                           FPURegister src2) {
+  int right_block = instr->FalseDestination(chunk_);
+  int left_block = instr->TrueDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+  if (right_block == left_block) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
+               NegateFpuCondition(condition), src1, src2);
+  } else if (right_block == next_block) {
+    __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
+               condition, src1, src2);
+  } else {
+    __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
+               condition, src1, src2);
+    __ Branch(chunk_->GetAssemblyLabel(right_block));
+  }
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
+                              Register src1, const Operand& src2) {
+  int true_block = instr->TrueDestination(chunk_);
+  __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
+                               Register src1, const Operand& src2) {
+  int false_block = instr->FalseDestination(chunk_);
+  __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitFalseBranchF(InstrType instr,
+                                Condition condition,
+                                FPURegister src1,
+                                FPURegister src2) {
+  int false_block = instr->FalseDestination(chunk_);
+  __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
+             condition, src1, src2);
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+  __ stop("LDebugBreak");
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsInteger32() || r.IsSmi()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    EmitBranch(instr, ne, reg, Operand(zero_reg));
+  } else if (r.IsDouble()) {
+    DCHECK(!info()->IsStub());
+    DoubleRegister reg = ToDoubleRegister(instr->value());
+    // Test the double value. Zero and NaN are false.
+    EmitBranchF(instr, ogl, reg, kDoubleRegZero);
+  } else {
+    DCHECK(r.IsTagged());
+    Register reg = ToRegister(instr->value());
+    HType type = instr->hydrogen()->value()->type();
+    if (type.IsBoolean()) {
+      DCHECK(!info()->IsStub());
+      __ LoadRoot(at, Heap::kTrueValueRootIndex);
+      EmitBranch(instr, eq, reg, Operand(at));
+    } else if (type.IsSmi()) {
+      DCHECK(!info()->IsStub());
+      EmitBranch(instr, ne, reg, Operand(zero_reg));
+    } else if (type.IsJSArray()) {
+      DCHECK(!info()->IsStub());
+      EmitBranch(instr, al, zero_reg, Operand(zero_reg));
+    } else if (type.IsHeapNumber()) {
+      DCHECK(!info()->IsStub());
+      DoubleRegister dbl_scratch = double_scratch0();
+      __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+      // Test the double value. Zero and NaN are false.
+      EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
+    } else if (type.IsString()) {
+      DCHECK(!info()->IsStub());
+      __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
+      EmitBranch(instr, ne, at, Operand(zero_reg));
+    } else {
+      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+      // Avoid deopts in the case where we've never executed this path before.
+      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+        // undefined -> false.
+        __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+      }
+      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+        // Boolean -> its value.
+        __ LoadRoot(at, Heap::kTrueValueRootIndex);
+        __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
+        __ LoadRoot(at, Heap::kFalseValueRootIndex);
+        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+      }
+      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+        // 'null' -> false.
+        __ LoadRoot(at, Heap::kNullValueRootIndex);
+        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+      }
+
+      if (expected.Contains(ToBooleanStub::SMI)) {
+        // Smis: 0 -> false, all other -> true.
+        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
+        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+      } else if (expected.NeedsMap()) {
+        // If we need a map later and have a Smi -> deopt.
+        __ SmiTst(reg, at);
+        DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
+      }
+
+      const Register map = scratch0();
+      if (expected.NeedsMap()) {
+        __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
+        if (expected.CanBeUndetectable()) {
+          // Undetectable -> false.
+          __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
+          __ And(at, at, Operand(1 << Map::kIsUndetectable));
+          __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
+        }
+      }
+
+      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+        // spec object -> true.
+        __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+        __ Branch(instr->TrueLabel(chunk_),
+                  ge, at, Operand(FIRST_JS_RECEIVER_TYPE));
+      }
+
+      if (expected.Contains(ToBooleanStub::STRING)) {
+        // String value -> false iff empty.
+        Label not_string;
+        __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+        __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
+        __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
+        __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
+        __ Branch(instr->FalseLabel(chunk_));
+        __ bind(&not_string);
+      }
+
+      if (expected.Contains(ToBooleanStub::SYMBOL)) {
+        // Symbol value -> true.
+        const Register scratch = scratch1();
+        __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+        __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
+      }
+
+      if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
+        // SIMD value -> true.
+        const Register scratch = scratch1();
+        __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+        __ Branch(instr->TrueLabel(chunk_), eq, scratch,
+                  Operand(SIMD128_VALUE_TYPE));
+      }
+
+      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+        // heap number -> false iff +0, -0, or NaN.
+        DoubleRegister dbl_scratch = double_scratch0();
+        Label not_heap_number;
+        __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+        __ Branch(&not_heap_number, ne, map, Operand(at));
+        __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+        __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+                   ne, dbl_scratch, kDoubleRegZero);
+        // Falls through if dbl_scratch == 0.
+        __ Branch(instr->FalseLabel(chunk_));
+        __ bind(&not_heap_number);
+      }
+
+      if (!expected.IsGeneric()) {
+        // We've seen something for the first time -> deopt.
+        // This can only happen if we are not generic already.
+        DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject, zero_reg,
+                     Operand(zero_reg));
+      }
+    }
+  }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+  if (!IsNextEmittedBlock(block)) {
+    __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
+  }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+  EmitGoto(instr->block_id());
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+  Condition cond = kNoCondition;
+  switch (op) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      cond = eq;
+      break;
+    case Token::NE:
+    case Token::NE_STRICT:
+      cond = ne;
+      break;
+    case Token::LT:
+      cond = is_unsigned ? lo : lt;
+      break;
+    case Token::GT:
+      cond = is_unsigned ? hi : gt;
+      break;
+    case Token::LTE:
+      cond = is_unsigned ? ls : le;
+      break;
+    case Token::GTE:
+      cond = is_unsigned ? hs : ge;
+      break;
+    case Token::IN:
+    case Token::INSTANCEOF:
+    default:
+      UNREACHABLE();
+  }
+  return cond;
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  bool is_unsigned =
+      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+  Condition cond = TokenToCondition(instr->op(), is_unsigned);
+
+  if (left->IsConstantOperand() && right->IsConstantOperand()) {
+    // We can statically evaluate the comparison.
+    double left_val = ToDouble(LConstantOperand::cast(left));
+    double right_val = ToDouble(LConstantOperand::cast(right));
+    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+    EmitGoto(next_block);
+  } else {
+    if (instr->is_double()) {
+      // Compare left and right as doubles and load the
+      // resulting flags into the normal status register.
+      FPURegister left_reg = ToDoubleRegister(left);
+      FPURegister right_reg = ToDoubleRegister(right);
+
+      // If a NaN is involved, i.e. the result is unordered,
+      // jump to false block label.
+      __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
+                 left_reg, right_reg);
+
+      EmitBranchF(instr, cond, left_reg, right_reg);
+    } else {
+      Register cmp_left;
+      Operand cmp_right = Operand((int64_t)0);
+      if (right->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(right));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          cmp_left = ToRegister(left);
+          cmp_right = Operand(Smi::FromInt(value));
+        } else {
+          cmp_left = ToRegister(left);
+          cmp_right = Operand(value);
+        }
+      } else if (left->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(left));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          cmp_left = ToRegister(right);
+          cmp_right = Operand(Smi::FromInt(value));
+        } else {
+          cmp_left = ToRegister(right);
+          cmp_right = Operand(value);
+        }
+        // We commuted the operands, so commute the condition.
+        cond = CommuteCondition(cond);
+      } else {
+        cmp_left = ToRegister(left);
+        cmp_right = Operand(ToRegister(right));
+      }
+
+      EmitBranch(instr, cond, cmp_left, cmp_right);
+    }
+  }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+  Register left = ToRegister(instr->left());
+  Register right = ToRegister(instr->right());
+
+  EmitBranch(instr, eq, left, Operand(right));
+}
+
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+  if (instr->hydrogen()->representation().IsTagged()) {
+    Register input_reg = ToRegister(instr->object());
+    __ li(at, Operand(factory()->the_hole_value()));
+    EmitBranch(instr, eq, input_reg, Operand(at));
+    return;
+  }
+
+  DoubleRegister input_reg = ToDoubleRegister(instr->object());
+  EmitFalseBranchF(instr, eq, input_reg, input_reg);
+
+  Register scratch = scratch0();
+  __ FmoveHigh(scratch, input_reg);
+  EmitBranch(instr, eq, scratch,
+             Operand(static_cast<int32_t>(kHoleNanUpper32)));
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+  Representation rep = instr->hydrogen()->value()->representation();
+  DCHECK(!rep.IsInteger32());
+  Register scratch = ToRegister(instr->temp());
+
+  if (rep.IsDouble()) {
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
+    __ FmoveHigh(scratch, value);
+    // Only use low 32-bits of value.
+    __ dsll32(scratch, scratch, 0);
+    __ dsrl32(scratch, scratch, 0);
+    __ li(at, 0x80000000);
+  } else {
+    Register value = ToRegister(instr->value());
+    __ CheckMap(value,
+                scratch,
+                Heap::kHeapNumberMapRootIndex,
+                instr->FalseLabel(chunk()),
+                DO_SMI_CHECK);
+    __ lwu(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
+    EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
+    __ lwu(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
+    __ mov(at, zero_reg);
+  }
+  EmitBranch(instr, eq, scratch, Operand(at));
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+                                 Register temp1,
+                                 Label* is_not_string,
+                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
+  if (check_needed == INLINE_SMI_CHECK) {
+    __ JumpIfSmi(input, is_not_string);
+  }
+  __ GetObjectType(input, temp1, temp1);
+
+  return lt;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp1 = ToRegister(instr->temp());
+
+  SmiCheck check_needed =
+      instr->hydrogen()->value()->type().IsHeapObject()
+          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+  Condition true_cond =
+      EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
+
+  EmitBranch(instr, true_cond, temp1,
+             Operand(FIRST_NONSTRING_TYPE));
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+  Register input_reg = EmitLoadRegister(instr->value(), at);
+  __ And(at, input_reg, kSmiTagMask);
+  EmitBranch(instr, eq, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+  __ And(at, temp, Operand(1 << Map::kIsUndetectable));
+  EmitBranch(instr, ne, at, Operand(zero_reg));
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+  switch (op) {
+    case Token::EQ_STRICT:
+    case Token::EQ:
+      return eq;
+    case Token::LT:
+      return lt;
+    case Token::GT:
+      return gt;
+    case Token::LTE:
+      return le;
+    case Token::GTE:
+      return ge;
+    default:
+      UNREACHABLE();
+      return kNoCondition;
+  }
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(a1));
+  DCHECK(ToRegister(instr->right()).is(a0));
+
+  Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+
+  EmitBranch(instr, ComputeCompareCondition(instr->op()), v0,
+             Operand(zero_reg));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == FIRST_TYPE) return to;
+  DCHECK(from == to || to == LAST_TYPE);
+  return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == to) return eq;
+  if (to == LAST_TYPE) return hs;
+  if (from == FIRST_TYPE) return ls;
+  UNREACHABLE();
+  return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+  Register scratch = scratch0();
+  Register input = ToRegister(instr->value());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+
+  __ GetObjectType(input, scratch, scratch);
+  EmitBranch(instr,
+             BranchCondition(instr->hydrogen()),
+             scratch,
+             Operand(TestType(instr->hydrogen())));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ AssertString(input);
+
+  __ lwu(result, FieldMemOperand(input, String::kHashFieldOffset));
+  __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+    LHasCachedArrayIndexAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ lwu(scratch,
+         FieldMemOperand(input, String::kHashFieldOffset));
+  __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
+  EmitBranch(instr, eq, at, Operand(zero_reg));
+}
+
+
+// Branches to a label or falls through with the answer in flags.  Trashes
+// the temp registers, but not the input.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+                               Label* is_false,
+                               Handle<String>class_name,
+                               Register input,
+                               Register temp,
+                               Register temp2) {
+  DCHECK(!input.is(temp));
+  DCHECK(!input.is(temp2));
+  DCHECK(!temp.is(temp2));
+
+  __ JumpIfSmi(input, is_false);
+
+  __ GetObjectType(input, temp, temp2);
+  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+    __ Branch(is_true, eq, temp2, Operand(JS_FUNCTION_TYPE));
+  } else {
+    __ Branch(is_false, eq, temp2, Operand(JS_FUNCTION_TYPE));
+  }
+
+  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
+  // Check if the constructor in the map is a function.
+  Register instance_type = scratch1();
+  DCHECK(!instance_type.is(temp));
+  __ GetMapConstructor(temp, temp, temp2, instance_type);
+
+  // Objects with a non-function constructor have class 'Object'.
+  if (String::Equals(class_name, isolate()->factory()->Object_string())) {
+    __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
+  } else {
+    __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
+  }
+
+  // temp now contains the constructor function. Grab the
+  // instance class name from there.
+  __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+  __ ld(temp, FieldMemOperand(temp,
+                               SharedFunctionInfo::kInstanceClassNameOffset));
+  // The class name we are testing against is internalized since it's a literal.
+  // The name in the constructor is internalized because of the way the context
+  // is booted.  This routine isn't expected to work for random API-created
+  // classes and it doesn't have to because you can't access it with natives
+  // syntax.  Since both sides are internalized it is sufficient to use an
+  // identity comparison.
+
+  // End with the address of this class_name instance in temp register.
+  // On MIPS, the caller must do the comparison with Handle<String>class_name.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = scratch0();
+  Register temp2 = ToRegister(instr->temp());
+  Handle<String> class_name = instr->hydrogen()->class_name();
+
+  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+                  class_name, input, temp, temp2);
+
+  EmitBranch(instr, eq, temp, Operand(class_name));
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
+  EmitBranch(instr, eq, temp, Operand(instr->map()));
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Label true_label, done;
+  DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+  DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  InstanceOfStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+    LHasInPrototypeChainAndBranch* instr) {
+  Register const object = ToRegister(instr->object());
+  Register const object_map = scratch0();
+  Register const object_instance_type = scratch1();
+  Register const object_prototype = object_map;
+  Register const prototype = ToRegister(instr->prototype());
+
+  // The {object} must be a spec object.  It's sufficient to know that {object}
+  // is not a smi, since all other non-spec objects have {null} prototypes and
+  // will be ruled out below.
+  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+    __ SmiTst(object, at);
+    EmitFalseBranch(instr, eq, at, Operand(zero_reg));
+  }
+
+  // Loop through the {object}s prototype chain looking for the {prototype}.
+  __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
+  Label loop;
+  __ bind(&loop);
+
+  // Deoptimize if the object needs to be access checked.
+  __ lbu(object_instance_type,
+         FieldMemOperand(object_map, Map::kBitFieldOffset));
+  __ And(object_instance_type, object_instance_type,
+         Operand(1 << Map::kIsAccessCheckNeeded));
+  DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, object_instance_type,
+               Operand(zero_reg));
+  __ lbu(object_instance_type,
+         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
+  DeoptimizeIf(eq, instr, Deoptimizer::kProxy, object_instance_type,
+               Operand(JS_PROXY_TYPE));
+
+  __ ld(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
+  EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
+  __ LoadRoot(at, Heap::kNullValueRootIndex);
+  EmitFalseBranch(instr, eq, object_prototype, Operand(at));
+  __ Branch(&loop, USE_DELAY_SLOT);
+  __ ld(object_map, FieldMemOperand(object_prototype,
+                                    HeapObject::kMapOffset));  // In delay slot.
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Token::Value op = instr->op();
+
+  Handle<Code> ic =
+      CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  // On MIPS there is no need for a "no inlined smi code" marker (nop).
+
+  Condition condition = ComputeCompareCondition(op);
+  // A minor optimization that relies on LoadRoot always emitting one
+  // instruction.
+  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
+  Label done, check;
+  __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
+  __ bind(&check);
+  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
+  DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
+  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+  if (FLAG_trace && info()->IsOptimizing()) {
+    // Push the return value on the stack as the parameter.
+    // Runtime::TraceExit returns its parameter in v0. We're leaving the code
+    // managed by the register allocator and tearing down the frame, it's
+    // safe to write to the context register.
+    __ push(v0);
+    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntime(Runtime::kTraceExit);
+  }
+  if (info()->saves_caller_doubles()) {
+    RestoreCallerDoubles();
+  }
+  if (NeedsEagerFrame()) {
+    __ mov(sp, fp);
+    __ Pop(ra, fp);
+  }
+  if (instr->has_constant_parameter_count()) {
+    int parameter_count = ToInteger32(instr->constant_parameter_count());
+    int32_t sp_delta = (parameter_count + 1) * kPointerSize;
+    if (sp_delta != 0) {
+      __ Daddu(sp, sp, Operand(sp_delta));
+    }
+  } else {
+    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
+    Register reg = ToRegister(instr->parameter_count());
+    // The argument count parameter is a smi
+    __ SmiUntag(reg);
+    __ dsll(at, reg, kPointerSizeLog2);
+    __ Daddu(sp, sp, at);
+  }
+
+  __ Jump(ra);
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = LoadWithVectorDescriptor::SlotRegister();
+  DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+  DCHECK(slot_register.is(a0));
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ li(vector_register, vector);
+  // No need to allocate this register.
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ li(slot_register, Operand(Smi::FromInt(index)));
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = ToRegister(instr->temp_slot());
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ li(vector_register, vector);
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ li(slot_register, Operand(Smi::FromInt(index)));
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->global_object())
+            .is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
+                                         SLOPPY, PREMONOMORPHIC).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register result = ToRegister(instr->result());
+
+  __ ld(result, ContextMemOperand(context, instr->slot_index()));
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
+    } else {
+      Label is_not_hole;
+      __ Branch(&is_not_hole, ne, result, Operand(at));
+      __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+      __ bind(&is_not_hole);
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register value = ToRegister(instr->value());
+  Register scratch = scratch0();
+  MemOperand target = ContextMemOperand(context, instr->slot_index());
+
+  Label skip_assignment;
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ ld(scratch, target);
+    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch, Operand(at));
+    } else {
+      __ Branch(&skip_assignment, ne, scratch, Operand(at));
+    }
+  }
+
+  __ sd(value, target);
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    __ RecordWriteContextSlot(context,
+                              target.offset(),
+                              value,
+                              scratch0(),
+                              GetRAState(),
+                              kSaveFPRegs,
+                              EMIT_REMEMBERED_SET,
+                              check_needed);
+  }
+
+  __ bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+  Register object = ToRegister(instr->object());
+  if (access.IsExternalMemory()) {
+    Register result = ToRegister(instr->result());
+    MemOperand operand = MemOperand(object, offset);
+    __ Load(result, operand, access.representation());
+    return;
+  }
+
+  if (instr->hydrogen()->representation().IsDouble()) {
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ ldc1(result, FieldMemOperand(object, offset));
+    return;
+  }
+
+  Register result = ToRegister(instr->result());
+  if (!access.IsInobject()) {
+    __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    object = result;
+  }
+
+  Representation representation = access.representation();
+  if (representation.IsSmi() && SmiValuesAre32Bits() &&
+      instr->hydrogen()->representation().IsInteger32()) {
+    if (FLAG_debug_code) {
+      // Verify this is really an Smi.
+      Register scratch = scratch0();
+      __ Load(scratch, FieldMemOperand(object, offset), representation);
+      __ AssertSmi(scratch);
+    }
+
+    // Read int value directly from upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+    offset = SmiWordOffset(offset);
+    representation = Representation::Integer32();
+  }
+  __ Load(result, FieldMemOperand(object, offset), representation);
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  // Name is always in a2.
+  __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(
+          isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
+          instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+  Register scratch = scratch0();
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+
+  // Get the prototype or initial map from the function.
+  __ ld(result,
+         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Check that the function has a prototype or an initial map.
+  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+  DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  __ GetObjectType(result, scratch, scratch);
+  __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
+
+  // Get the prototype from the initial map.
+  __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+  // All done.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+  Register arguments = ToRegister(instr->arguments());
+  Register result = ToRegister(instr->result());
+  // There are two words between the frame pointer and the last argument.
+  // Subtracting from length accounts for one of them add one more.
+  if (instr->length()->IsConstantOperand()) {
+    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+    if (instr->index()->IsConstantOperand()) {
+      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+      int index = (const_length - const_index) + 1;
+      __ ld(result, MemOperand(arguments, index * kPointerSize));
+    } else {
+      Register index = ToRegister(instr->index());
+      __ li(at, Operand(const_length + 1));
+      __ Dsubu(result, at, index);
+      __ dsll(at, result, kPointerSizeLog2);
+      __ Daddu(at, arguments, at);
+      __ ld(result, MemOperand(at));
+    }
+  } else if (instr->index()->IsConstantOperand()) {
+    Register length = ToRegister(instr->length());
+    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    int loc = const_index - 1;
+    if (loc != 0) {
+      __ Dsubu(result, length, Operand(loc));
+      __ dsll(at, result, kPointerSizeLog2);
+      __ Daddu(at, arguments, at);
+      __ ld(result, MemOperand(at));
+    } else {
+      __ dsll(at, length, kPointerSizeLog2);
+      __ Daddu(at, arguments, at);
+      __ ld(result, MemOperand(at));
+    }
+  } else {
+    Register length = ToRegister(instr->length());
+    Register index = ToRegister(instr->index());
+    __ Dsubu(result, length, index);
+    __ Daddu(result, result, 1);
+    __ dsll(at, result, kPointerSizeLog2);
+    __ Daddu(at, arguments, at);
+    __ ld(result, MemOperand(at));
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+      ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+      : element_size_shift;
+  int base_offset = instr->base_offset();
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    FPURegister result = ToDoubleRegister(instr->result());
+    if (key_is_constant) {
+      __ Daddu(scratch0(), external_pointer,
+          constant_key << element_size_shift);
+    } else {
+      if (shift_size < 0) {
+         if (shift_size == -32) {
+           __ dsra32(scratch0(), key, 0);
+         } else {
+           __ dsra(scratch0(), key, -shift_size);
+         }
+      } else {
+        __ dsll(scratch0(), key, shift_size);
+      }
+      __ Daddu(scratch0(), scratch0(), external_pointer);
+    }
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      __ lwc1(result, MemOperand(scratch0(), base_offset));
+      __ cvt_d_s(result, result);
+    } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+      __ ldc1(result, MemOperand(scratch0(), base_offset));
+    }
+  } else {
+    Register result = ToRegister(instr->result());
+    MemOperand mem_operand = PrepareKeyedOperand(
+        key, external_pointer, key_is_constant, constant_key,
+        element_size_shift, shift_size, base_offset);
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+        __ lb(result, mem_operand);
+        break;
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ lbu(result, mem_operand);
+        break;
+      case INT16_ELEMENTS:
+        __ lh(result, mem_operand);
+        break;
+      case UINT16_ELEMENTS:
+        __ lhu(result, mem_operand);
+        break;
+      case INT32_ELEMENTS:
+        __ lw(result, mem_operand);
+        break;
+      case UINT32_ELEMENTS:
+        __ lw(result, mem_operand);
+        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+          DeoptimizeIf(Ugreater_equal, instr, Deoptimizer::kNegativeValue,
+                       result, Operand(0x80000000));
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+  Register elements = ToRegister(instr->elements());
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  Register key = no_reg;
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  Register scratch = scratch0();
+
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+
+  int base_offset = instr->base_offset();
+  if (key_is_constant) {
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    base_offset += constant_key * kDoubleSize;
+  }
+  __ Daddu(scratch, elements, Operand(base_offset));
+
+  if (!key_is_constant) {
+    key = ToRegister(instr->key());
+    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+        ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+        : element_size_shift;
+    if (shift_size > 0) {
+      __ dsll(at, key, shift_size);
+    } else if (shift_size == -32) {
+      __ dsra32(at, key, 0);
+    } else {
+      __ dsra(at, key, -shift_size);
+    }
+    __ Daddu(scratch, scratch, at);
+  }
+
+  __ ldc1(result, MemOperand(scratch));
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ FmoveHigh(scratch, result);
+    DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch,
+                 Operand(static_cast<int32_t>(kHoleNanUpper32)));
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+  HLoadKeyed* hinstr = instr->hydrogen();
+  Register elements = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  Register store_base = scratch;
+  int offset = instr->base_offset();
+
+  if (instr->key()->IsConstantOperand()) {
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+    store_base = elements;
+  } else {
+    Register key = ToRegister(instr->key());
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (instr->hydrogen()->key()->representation().IsSmi()) {
+    __ SmiScale(scratch, key, kPointerSizeLog2);
+    __ daddu(scratch, elements, scratch);
+    } else {
+      __ dsll(scratch, key, kPointerSizeLog2);
+      __ daddu(scratch, elements, scratch);
+    }
+  }
+
+  Representation representation = hinstr->representation();
+  if (representation.IsInteger32() && SmiValuesAre32Bits() &&
+      hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
+    DCHECK(!hinstr->RequiresHoleCheck());
+    if (FLAG_debug_code) {
+      Register temp = scratch1();
+      __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
+      __ AssertSmi(temp);
+    }
+
+    // Read int value directly from upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+    offset = SmiWordOffset(offset);
+  }
+
+  __ Load(result, MemOperand(store_base, offset), representation);
+
+  // Check for the hole value.
+  if (hinstr->RequiresHoleCheck()) {
+    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+      __ SmiTst(result, scratch);
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch,
+                   Operand(zero_reg));
+    } else {
+      __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(scratch));
+    }
+  } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+    DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
+    Label done;
+    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+    __ Branch(&done, ne, result, Operand(scratch));
+    if (info()->IsStub()) {
+      // A stub can safely convert the hole to undefined only if the array
+      // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+      // it needs to bail out.
+      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
+      // The comparison only needs LS bits of value, which is a smi.
+      __ ld(result, FieldMemOperand(result, Cell::kValueOffset));
+      DeoptimizeIf(ne, instr, Deoptimizer::kHole, result,
+                   Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
+    }
+    __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+  if (instr->is_fixed_typed_array()) {
+    DoLoadKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->representation().IsDouble()) {
+    DoLoadKeyedFixedDoubleArray(instr);
+  } else {
+    DoLoadKeyedFixedArray(instr);
+  }
+}
+
+
+MemOperand LCodeGen::PrepareKeyedOperand(Register key,
+                                         Register base,
+                                         bool key_is_constant,
+                                         int constant_key,
+                                         int element_size,
+                                         int shift_size,
+                                         int base_offset) {
+  if (key_is_constant) {
+    return MemOperand(base, (constant_key << element_size) + base_offset);
+  }
+
+  if (base_offset == 0) {
+    if (shift_size >= 0) {
+      __ dsll(scratch0(), key, shift_size);
+      __ Daddu(scratch0(), base, scratch0());
+      return MemOperand(scratch0());
+    } else {
+      if (shift_size == -32) {
+        __ dsra32(scratch0(), key, 0);
+      } else {
+        __ dsra(scratch0(), key, -shift_size);
+      }
+      __ Daddu(scratch0(), base, scratch0());
+      return MemOperand(scratch0());
+    }
+  }
+
+  if (shift_size >= 0) {
+    __ dsll(scratch0(), key, shift_size);
+    __ Daddu(scratch0(), base, scratch0());
+    return MemOperand(scratch0(), base_offset);
+  } else {
+    if (shift_size == -32) {
+       __ dsra32(scratch0(), key, 0);
+    } else {
+      __ dsra(scratch0(), key, -shift_size);
+    }
+    __ Daddu(scratch0(), base, scratch0());
+    return MemOperand(scratch0(), base_offset);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+                        isolate(), instr->hydrogen()->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+  Register scratch = scratch0();
+  Register temp = scratch1();
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->from_inlined()) {
+    __ Dsubu(result, sp, 2 * kPointerSize);
+  } else {
+    // Check if the calling frame is an arguments adaptor frame.
+    Label done, adapted;
+    __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+    __ ld(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
+    __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+    // Result is the frame pointer for the frame if not adapted and for the real
+    // frame below the adaptor frame if adapted.
+    __ Movn(result, fp, temp);  // Move only if temp is not equal to zero (ne).
+    __ Movz(result, scratch, temp);  // Move only if temp is equal to zero (eq).
+  }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+  Register elem = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+
+  Label done;
+
+  // If no arguments adaptor frame the number of arguments is fixed.
+  __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
+  __ Branch(&done, eq, fp, Operand(elem));
+
+  // Arguments adaptor frame present. Get argument length from there.
+  __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ ld(result,
+        MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ SmiUntag(result);
+
+  // Argument length is in result register.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // If the receiver is null or undefined, we have to pass the global
+  // object as a receiver to normal functions. Values have to be
+  // passed unchanged to builtins and strict-mode functions.
+  Label global_object, result_in_receiver;
+
+  if (!instr->hydrogen()->known_function()) {
+    // Do not transform the receiver to object for strict mode functions.
+    __ ld(scratch,
+           FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+
+    // Do not transform the receiver to object for builtins.
+    int32_t strict_mode_function_mask =
+        1 <<  SharedFunctionInfo::kStrictModeBitWithinByte;
+    int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
+
+    __ lbu(at,
+           FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
+    __ And(at, at, Operand(strict_mode_function_mask));
+    __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
+    __ lbu(at,
+           FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
+    __ And(at, at, Operand(native_mask));
+    __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
+  }
+
+  // Normal function. Replace undefined or null with global receiver.
+  __ LoadRoot(scratch, Heap::kNullValueRootIndex);
+  __ Branch(&global_object, eq, receiver, Operand(scratch));
+  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+  __ Branch(&global_object, eq, receiver, Operand(scratch));
+
+  // Deoptimize if the receiver is not a JS object.
+  __ SmiTst(receiver, scratch);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, scratch, Operand(zero_reg));
+
+  __ GetObjectType(receiver, scratch, scratch);
+  DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject, scratch,
+               Operand(FIRST_JS_RECEIVER_TYPE));
+  __ Branch(&result_in_receiver);
+
+  __ bind(&global_object);
+  __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
+  __ ld(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
+  __ ld(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
+
+  if (result.is(receiver)) {
+    __ bind(&result_in_receiver);
+  } else {
+    Label result_ok;
+    __ Branch(&result_ok);
+    __ bind(&result_in_receiver);
+    __ mov(result, receiver);
+    __ bind(&result_ok);
+  }
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register length = ToRegister(instr->length());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = scratch0();
+  DCHECK(receiver.is(a0));  // Used for parameter count.
+  DCHECK(function.is(a1));  // Required by InvokeFunction.
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  // Copy the arguments to this function possibly from the
+  // adaptor frame below it.
+  const uint32_t kArgumentsLimit = 1 * KB;
+  DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments, length,
+               Operand(kArgumentsLimit));
+
+  // Push the receiver and use the register to keep the original
+  // number of arguments.
+  __ push(receiver);
+  __ Move(receiver, length);
+  // The arguments are at a one pointer size offset from elements.
+  __ Daddu(elements, elements, Operand(1 * kPointerSize));
+
+  // Loop through the arguments pushing them onto the execution
+  // stack.
+  Label invoke, loop;
+  // length is a small non-negative integer, due to the test above.
+  __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
+  __ dsll(scratch, length, kPointerSizeLog2);
+  __ bind(&loop);
+  __ Daddu(scratch, elements, scratch);
+  __ ld(scratch, MemOperand(scratch));
+  __ push(scratch);
+  __ Dsubu(length, length, Operand(1));
+  __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
+  __ dsll(scratch, length, kPointerSizeLog2);
+
+  __ bind(&invoke);
+  DCHECK(instr->HasPointerMap());
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator safepoint_generator(
+      this, pointers, Safepoint::kLazyDeopt);
+  // The number of arguments is stored in receiver which is a0, as expected
+  // by InvokeFunction.
+  ParameterCount actual(receiver);
+  __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
+                    safepoint_generator);
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+  LOperand* argument = instr->value();
+  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+    Abort(kDoPushArgumentNotImplementedForDoubleType);
+  } else {
+    Register argument_reg = EmitLoadRegister(argument, at);
+    __ push(argument_reg);
+  }
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+  __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+  Register result = ToRegister(instr->result());
+  __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+  // If there is a non-return use, the context must be moved to a register.
+  Register result = ToRegister(instr->result());
+  if (info()->IsOptimizing()) {
+    __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  } else {
+    // If there is no frame, the context must be in cp.
+    DCHECK(result.is(cp));
+  }
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  __ li(scratch0(), instr->hydrogen()->pairs());
+  __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
+  __ Push(scratch0(), scratch1());
+  CallRuntime(Runtime::kDeclareGlobals, instr);
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+                                 int formal_parameter_count, int arity,
+                                 LInstruction* instr) {
+  bool dont_adapt_arguments =
+      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+  bool can_invoke_directly =
+      dont_adapt_arguments || formal_parameter_count == arity;
+
+  Register function_reg = a1;
+  LPointerMap* pointers = instr->pointer_map();
+
+  if (can_invoke_directly) {
+    // Change context.
+    __ ld(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
+
+    // Always initialize new target and number of actual arguments.
+    __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
+    __ li(a0, Operand(arity));
+
+    // Invoke function.
+    __ ld(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
+    __ Call(at);
+
+    // Set up deoptimization.
+    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+  } else {
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(arity);
+    ParameterCount expected(formal_parameter_count);
+    __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
+  }
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+  DCHECK(instr->context() != NULL);
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // Deoptimize if not a heap number.
+  __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch, Operand(at));
+
+  Label done;
+  Register exponent = scratch0();
+  scratch = no_reg;
+  __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+  // Check the sign of the argument. If the argument is positive, just
+  // return it.
+  __ Move(result, input);
+  __ And(at, exponent, Operand(HeapNumber::kSignMask));
+  __ Branch(&done, eq, at, Operand(zero_reg));
+
+  // Input is negative. Reverse its sign.
+  // Preserve the value of all registers.
+  {
+    PushSafepointRegistersScope scope(this);
+
+    // Registers were saved at the safepoint, so we can use
+    // many scratch registers.
+    Register tmp1 = input.is(a1) ? a0 : a1;
+    Register tmp2 = input.is(a2) ? a0 : a2;
+    Register tmp3 = input.is(a3) ? a0 : a3;
+    Register tmp4 = input.is(a4) ? a0 : a4;
+
+    // exponent: floating point exponent value.
+
+    Label allocated, slow;
+    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
+    __ Branch(&allocated);
+
+    // Slow case: Call the runtime system to do the number allocation.
+    __ bind(&slow);
+
+    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+                            instr->context());
+    // Set the pointer to the new heap number in tmp.
+    if (!tmp1.is(v0))
+      __ mov(tmp1, v0);
+    // Restore input_reg after call to runtime.
+    __ LoadFromSafepointRegisterSlot(input, input);
+    __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+
+    __ bind(&allocated);
+    // exponent: floating point exponent value.
+    // tmp1: allocated heap number.
+    __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
+    __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
+    __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
+    __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
+
+    __ StoreToSafepointRegisterSlot(tmp1, result);
+  }
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+  Label done;
+  __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
+  __ mov(result, input);
+  __ subu(result, zero_reg, input);
+  // Overflow if result is still negative, i.e. 0x80000000.
+  DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
+  __ bind(&done);
+}
+
+
+void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+  Label done;
+  __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
+  __ mov(result, input);
+  __ dsubu(result, zero_reg, input);
+  // Overflow if result is still negative, i.e. 0x80000000 00000000.
+  DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+  // Class for deferred case.
+  class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
+   public:
+    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMathAbs* instr_;
+  };
+
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsDouble()) {
+    FPURegister input = ToDoubleRegister(instr->value());
+    FPURegister result = ToDoubleRegister(instr->result());
+    __ abs_d(result, input);
+  } else if (r.IsInteger32()) {
+    EmitIntegerMathAbs(instr);
+  } else if (r.IsSmi()) {
+    EmitSmiMathAbs(instr);
+  } else {
+    // Representation is tagged.
+    DeferredMathAbsTaggedHeapNumber* deferred =
+        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
+    Register input = ToRegister(instr->value());
+    // Smi check.
+    __ JumpIfNotSmi(input, deferred->entry());
+    // If smi, handle it directly.
+    EmitSmiMathAbs(instr);
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  Register except_flag = ToRegister(instr->temp());
+
+  __ EmitFPUTruncate(kRoundToMinusInf,
+                     result,
+                     input,
+                     scratch1,
+                     double_scratch0(),
+                     except_flag);
+
+  // Deopt if the operation did not succeed.
+  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
+               Operand(zero_reg));
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // Test for -0.
+    Label done;
+    __ Branch(&done, ne, result, Operand(zero_reg));
+    __ mfhc1(scratch1, input);  // Get exponent/sign bits.
+    __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+    DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
+                 Operand(zero_reg));
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
+  Register scratch = scratch0();
+  Label done, check_sign_on_zero;
+
+  // Extract exponent bits.
+  __ mfhc1(result, input);
+  __ Ext(scratch,
+         result,
+         HeapNumber::kExponentShift,
+         HeapNumber::kExponentBits);
+
+  // If the number is in ]-0.5, +0.5[, the result is +/- 0.
+  Label skip1;
+  __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
+  __ mov(result, zero_reg);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Branch(&check_sign_on_zero);
+  } else {
+    __ Branch(&done);
+  }
+  __ bind(&skip1);
+
+  // The following conversion will not work with numbers
+  // outside of ]-2^32, 2^32[.
+  DeoptimizeIf(ge, instr, Deoptimizer::kOverflow, scratch,
+               Operand(HeapNumber::kExponentBias + 32));
+
+  // Save the original sign for later comparison.
+  __ And(scratch, result, Operand(HeapNumber::kSignMask));
+
+  __ Move(double_scratch0(), 0.5);
+  __ add_d(double_scratch0(), input, double_scratch0());
+
+  // Check sign of the result: if the sign changed, the input
+  // value was in ]0.5, 0[ and the result should be -0.
+  __ mfhc1(result, double_scratch0());
+  // mfhc1 sign-extends, clear the upper bits.
+  __ dsll32(result, result, 0);
+  __ dsrl32(result, result, 0);
+  __ Xor(result, result, Operand(scratch));
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // ARM uses 'mi' here, which is 'lt'
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
+  } else {
+    Label skip2;
+    // ARM uses 'mi' here, which is 'lt'
+    // Negating it results in 'ge'
+    __ Branch(&skip2, ge, result, Operand(zero_reg));
+    __ mov(result, zero_reg);
+    __ Branch(&done);
+    __ bind(&skip2);
+  }
+
+  Register except_flag = scratch;
+  __ EmitFPUTruncate(kRoundToMinusInf,
+                     result,
+                     double_scratch0(),
+                     at,
+                     double_scratch1,
+                     except_flag);
+
+  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
+               Operand(zero_reg));
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // Test for -0.
+    __ Branch(&done, ne, result, Operand(zero_reg));
+    __ bind(&check_sign_on_zero);
+    __ mfhc1(scratch, input);  // Get exponent/sign bits.
+    __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
+    DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch,
+                 Operand(zero_reg));
+  }
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ cvt_s_d(result, input);
+  __ cvt_d_s(result, result);
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ sqrt_d(result, input);
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister temp = ToDoubleRegister(instr->temp());
+
+  DCHECK(!input.is(result));
+
+  // Note that according to ECMA-262 15.8.2.13:
+  // Math.pow(-Infinity, 0.5) == Infinity
+  // Math.sqrt(-Infinity) == NaN
+  Label done;
+  __ Move(temp, static_cast<double>(-V8_INFINITY));
+  __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
+  // Set up Infinity in the delay slot.
+  // result is overwritten if the branch is not taken.
+  __ neg_d(result, temp);
+
+  // Add +0 to convert -0 to +0.
+  __ add_d(result, input, kDoubleRegZero);
+  __ sqrt_d(result, result);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+  Representation exponent_type = instr->hydrogen()->right()->representation();
+  // Having marked this as a call, we can use any registers.
+  // Just make sure that the input/output registers are the expected ones.
+  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
+  DCHECK(!instr->right()->IsDoubleRegister() ||
+         ToDoubleRegister(instr->right()).is(f4));
+  DCHECK(!instr->right()->IsRegister() ||
+         ToRegister(instr->right()).is(tagged_exponent));
+  DCHECK(ToDoubleRegister(instr->left()).is(f2));
+  DCHECK(ToDoubleRegister(instr->result()).is(f0));
+
+  if (exponent_type.IsSmi()) {
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsTagged()) {
+    Label no_deopt;
+    __ JumpIfSmi(tagged_exponent, &no_deopt);
+    DCHECK(!a7.is(tagged_exponent));
+    __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
+    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, a7, Operand(at));
+    __ bind(&no_deopt);
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsInteger32()) {
+    MathPowStub stub(isolate(), MathPowStub::INTEGER);
+    __ CallStub(&stub);
+  } else {
+    DCHECK(exponent_type.IsDouble());
+    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+    __ CallStub(&stub);
+  }
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
+  DoubleRegister double_scratch2 = double_scratch0();
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  MathExpGenerator::EmitMathExp(
+      masm(), input, result, double_scratch1, double_scratch2,
+      temp1, temp2, scratch0());
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+  __ PrepareCallCFunction(0, 1, scratch0());
+  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
+  __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
+                   0, 1);
+  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  __ Clz(result, input);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).is(a1));
+  DCHECK(instr->HasPointerMap());
+
+  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+  if (known_function.is_null()) {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(instr->arity());
+    __ InvokeFunction(a1, no_reg, count, CALL_FUNCTION, generator);
+  } else {
+    CallKnownFunction(known_function,
+                      instr->hydrogen()->formal_parameter_count(),
+                      instr->arity(), instr);
+  }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  if (instr->hydrogen()->IsTailCall()) {
+    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      __ Jump(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      __ Jump(target);
+    }
+  } else {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+      __ Call(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      generator.BeforeCall(__ CallSize(target));
+      __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      __ Call(target);
+    }
+    generator.AfterCall();
+  }
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+  DCHECK(ToRegister(instr->function()).is(a1));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  // Change context.
+  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+  // Always initialize new target and number of actual arguments.
+  __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
+  __ li(a0, Operand(instr->arity()));
+
+  // Load the code entry address
+  __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+  __ Call(at);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).is(a1));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  int arity = instr->arity();
+  ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    Register slot_register = ToRegister(instr->temp_slot());
+    Register vector_register = ToRegister(instr->temp_vector());
+    DCHECK(slot_register.is(a3));
+    DCHECK(vector_register.is(a2));
+
+    AllowDeferredHandleDereference vector_structure_check;
+    Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+    int index = vector->GetIndex(instr->hydrogen()->slot());
+
+    __ li(vector_register, vector);
+    __ li(slot_register, Operand(Smi::FromInt(index)));
+
+    Handle<Code> ic =
+        CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
+    CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  } else {
+    __ li(a0, Operand(arity));
+    CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->constructor()).is(a1));
+  DCHECK(ToRegister(instr->result()).is(v0));
+
+  __ li(a0, Operand(instr->arity()));
+  if (instr->arity() == 1) {
+    // We only need the allocation site for the case we have a length argument.
+    // The case may bail out to the runtime, which will determine the correct
+    // elements kind with the site.
+    __ li(a2, instr->hydrogen()->site());
+  } else {
+    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+  }
+  ElementsKind kind = instr->hydrogen()->elements_kind();
+  AllocationSiteOverrideMode override_mode =
+      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+          ? DISABLE_ALLOCATION_SITES
+          : DONT_OVERRIDE;
+
+  if (instr->arity() == 0) {
+    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  } else if (instr->arity() == 1) {
+    Label done;
+    if (IsFastPackedElementsKind(kind)) {
+      Label packed_case;
+      // We might need a change here,
+      // look at the first argument.
+      __ ld(a5, MemOperand(sp, 0));
+      __ Branch(&packed_case, eq, a5, Operand(zero_reg));
+
+      ElementsKind holey_kind = GetHoleyElementsKind(kind);
+      ArraySingleArgumentConstructorStub stub(isolate(),
+                                              holey_kind,
+                                              override_mode);
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      __ jmp(&done);
+      __ bind(&packed_case);
+    }
+
+    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+    __ bind(&done);
+  } else {
+    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+  CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+  Register function = ToRegister(instr->function());
+  Register code_object = ToRegister(instr->code_object());
+  __ Daddu(code_object, code_object,
+          Operand(Code::kHeaderSize - kHeapObjectTag));
+  __ sd(code_object,
+        FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+  Register result = ToRegister(instr->result());
+  Register base = ToRegister(instr->base_object());
+  if (instr->offset()->IsConstantOperand()) {
+    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+    __ Daddu(result, base, Operand(ToInteger32(offset)));
+  } else {
+    Register offset = ToRegister(instr->offset());
+    __ Daddu(result, base, offset);
+  }
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+  Representation representation = instr->representation();
+
+  Register object = ToRegister(instr->object());
+  Register scratch2 = scratch1();
+  Register scratch1 = scratch0();
+
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+  if (access.IsExternalMemory()) {
+    Register value = ToRegister(instr->value());
+    MemOperand operand = MemOperand(object, offset);
+    __ Store(value, operand, representation);
+    return;
+  }
+
+  __ AssertNotSmi(object);
+
+  DCHECK(!representation.IsSmi() ||
+         !instr->value()->IsConstantOperand() ||
+         IsSmi(LConstantOperand::cast(instr->value())));
+  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DCHECK(!instr->hydrogen()->has_transition());
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    __ sdc1(value, FieldMemOperand(object, offset));
+    return;
+  }
+
+  if (instr->hydrogen()->has_transition()) {
+    Handle<Map> transition = instr->hydrogen()->transition_map();
+    AddDeprecationDependency(transition);
+    __ li(scratch1, Operand(transition));
+    __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
+    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+      Register temp = ToRegister(instr->temp());
+      // Update the write barrier for the map field.
+      __ RecordWriteForMap(object,
+                           scratch1,
+                           temp,
+                           GetRAState(),
+                           kSaveFPRegs);
+    }
+  }
+
+  // Do the store.
+  Register destination = object;
+  if (!access.IsInobject()) {
+       destination = scratch1;
+    __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
+  }
+
+  if (representation.IsSmi() && SmiValuesAre32Bits() &&
+      instr->hydrogen()->value()->representation().IsInteger32()) {
+    DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+    if (FLAG_debug_code) {
+      __ Load(scratch2, FieldMemOperand(destination, offset), representation);
+      __ AssertSmi(scratch2);
+    }
+    // Store int value directly to upper half of the smi.
+    offset = SmiWordOffset(offset);
+    representation = Representation::Integer32();
+  }
+  MemOperand operand = FieldMemOperand(destination, offset);
+
+  if (FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    __ sdc1(value, operand);
+  } else {
+    DCHECK(instr->value()->IsRegister());
+    Register value = ToRegister(instr->value());
+    __ Store(value, operand, representation);
+  }
+
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    // Update the write barrier for the object for in-object properties.
+    Register value = ToRegister(instr->value());
+    __ RecordWriteField(destination,
+                        offset,
+                        value,
+                        scratch2,
+                        GetRAState(),
+                        kSaveFPRegs,
+                        EMIT_REMEMBERED_SET,
+                        instr->hydrogen()->SmiCheckForWriteBarrier(),
+                        instr->hydrogen()->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+  }
+
+  __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
+  Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+  Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
+  Operand operand((int64_t)0);
+  Register reg;
+  if (instr->index()->IsConstantOperand()) {
+    operand = ToOperand(instr->index());
+    reg = ToRegister(instr->length());
+    cc = CommuteCondition(cc);
+  } else {
+    reg = ToRegister(instr->index());
+    operand = ToOperand(instr->length());
+  }
+  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+    Label done;
+    __ Branch(&done, NegateCondition(cc), reg, operand);
+    __ stop("eliminated bounds check failed");
+    __ bind(&done);
+  } else {
+    DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds, reg, operand);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+      ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+      : element_size_shift;
+  int base_offset = instr->base_offset();
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    Register address = scratch0();
+    FPURegister value(ToDoubleRegister(instr->value()));
+    if (key_is_constant) {
+      if (constant_key != 0) {
+        __ Daddu(address, external_pointer,
+                Operand(constant_key << element_size_shift));
+      } else {
+        address = external_pointer;
+      }
+    } else {
+      if (shift_size < 0) {
+        if (shift_size == -32) {
+          __ dsra32(address, key, 0);
+        } else {
+          __ dsra(address, key, -shift_size);
+        }
+      } else {
+        __ dsll(address, key, shift_size);
+      }
+      __ Daddu(address, external_pointer, address);
+    }
+
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      __ cvt_s_d(double_scratch0(), value);
+      __ swc1(double_scratch0(), MemOperand(address, base_offset));
+    } else {  // Storing doubles, not floats.
+      __ sdc1(value, MemOperand(address, base_offset));
+    }
+  } else {
+    Register value(ToRegister(instr->value()));
+    MemOperand mem_operand = PrepareKeyedOperand(
+        key, external_pointer, key_is_constant, constant_key,
+        element_size_shift, shift_size,
+        base_offset);
+    switch (elements_kind) {
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+      case INT8_ELEMENTS:
+        __ sb(value, mem_operand);
+        break;
+      case INT16_ELEMENTS:
+      case UINT16_ELEMENTS:
+        __ sh(value, mem_operand);
+        break;
+      case INT32_ELEMENTS:
+      case UINT32_ELEMENTS:
+        __ sw(value, mem_operand);
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+  DoubleRegister value = ToDoubleRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = scratch0();
+  DoubleRegister double_scratch = double_scratch0();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int base_offset = instr->base_offset();
+  Label not_nan, done;
+
+  // Calculate the effective address of the slot in the array to store the
+  // double value.
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+  if (key_is_constant) {
+    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    __ Daddu(scratch, elements,
+             Operand((constant_key << element_size_shift) + base_offset));
+  } else {
+    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+        ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+        : element_size_shift;
+    __ Daddu(scratch, elements, Operand(base_offset));
+    DCHECK((shift_size == 3) || (shift_size == -29));
+    if (shift_size == 3) {
+      __ dsll(at, ToRegister(instr->key()), 3);
+    } else if (shift_size == -29) {
+      __ dsra(at, ToRegister(instr->key()), 29);
+    }
+    __ Daddu(scratch, scratch, at);
+  }
+
+  if (instr->NeedsCanonicalization()) {
+    __ FPUCanonicalizeNaN(double_scratch, value);
+    __ sdc1(double_scratch, MemOperand(scratch, 0));
+  } else {
+    __ sdc1(value, MemOperand(scratch, 0));
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+  Register value = ToRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
+      : no_reg;
+  Register scratch = scratch0();
+  Register store_base = scratch;
+  int offset = instr->base_offset();
+
+  // Do the store.
+  if (instr->key()->IsConstantOperand()) {
+    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+    store_base = elements;
+  } else {
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (instr->hydrogen()->key()->representation().IsSmi()) {
+      __ SmiScale(scratch, key, kPointerSizeLog2);
+      __ daddu(store_base, elements, scratch);
+    } else {
+      __ dsll(scratch, key, kPointerSizeLog2);
+      __ daddu(store_base, elements, scratch);
+    }
+  }
+
+  Representation representation = instr->hydrogen()->value()->representation();
+  if (representation.IsInteger32() && SmiValuesAre32Bits()) {
+    DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+    DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
+    if (FLAG_debug_code) {
+      Register temp = scratch1();
+      __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
+      __ AssertSmi(temp);
+    }
+
+    // Store int value directly to upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+    offset = SmiWordOffset(offset);
+    representation = Representation::Integer32();
+  }
+
+  __ Store(value, MemOperand(store_base, offset), representation);
+
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+        instr->hydrogen()->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    // Compute address of modified element and store it into key register.
+    __ Daddu(key, store_base, Operand(offset));
+    __ RecordWrite(elements,
+                   key,
+                   value,
+                   GetRAState(),
+                   kSaveFPRegs,
+                   EMIT_REMEMBERED_SET,
+                   check_needed,
+                   instr->hydrogen()->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+  // By cases: external, fast double
+  if (instr->is_fixed_typed_array()) {
+    DoStoreKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+    DoStoreKeyedFixedDoubleArray(instr);
+  } else {
+    DoStoreKeyedFixedArray(instr);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+  class DeferredMaybeGrowElements final : public LDeferredCode {
+   public:
+    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMaybeGrowElements* instr_;
+  };
+
+  Register result = v0;
+  DeferredMaybeGrowElements* deferred =
+      new (zone()) DeferredMaybeGrowElements(this, instr);
+  LOperand* key = instr->key();
+  LOperand* current_capacity = instr->current_capacity();
+
+  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+  DCHECK(key->IsConstantOperand() || key->IsRegister());
+  DCHECK(current_capacity->IsConstantOperand() ||
+         current_capacity->IsRegister());
+
+  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    if (constant_key >= constant_capacity) {
+      // Deferred case.
+      __ jmp(deferred->entry());
+    }
+  } else if (key->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    __ Branch(deferred->entry(), le, ToRegister(current_capacity),
+              Operand(constant_key));
+  } else if (current_capacity->IsConstantOperand()) {
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    __ Branch(deferred->entry(), ge, ToRegister(key),
+              Operand(constant_capacity));
+  } else {
+    __ Branch(deferred->entry(), ge, ToRegister(key),
+              Operand(ToRegister(current_capacity)));
+  }
+
+  if (instr->elements()->IsRegister()) {
+    __ mov(result, ToRegister(instr->elements()));
+  } else {
+    __ ld(result, ToMemOperand(instr->elements()));
+  }
+
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = v0;
+  __ mov(result, zero_reg);
+
+  // We have to call a stub.
+  {
+    PushSafepointRegistersScope scope(this);
+    if (instr->object()->IsRegister()) {
+      __ mov(result, ToRegister(instr->object()));
+    } else {
+      __ ld(result, ToMemOperand(instr->object()));
+    }
+
+    LOperand* key = instr->key();
+    if (key->IsConstantOperand()) {
+      __ li(a3, Operand(ToSmi(LConstantOperand::cast(key))));
+    } else {
+      __ mov(a3, ToRegister(key));
+      __ SmiTag(a3);
+    }
+
+    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+                               instr->hydrogen()->kind());
+    __ mov(a0, result);
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(
+        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    __ StoreToSafepointRegisterSlot(result, result);
+  }
+
+  // Deopt on smi, which means the elements array changed to dictionary mode.
+  __ SmiTst(result, at);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+  Register object_reg = ToRegister(instr->object());
+  Register scratch = scratch0();
+
+  Handle<Map> from_map = instr->original_map();
+  Handle<Map> to_map = instr->transitioned_map();
+  ElementsKind from_kind = instr->from_kind();
+  ElementsKind to_kind = instr->to_kind();
+
+  Label not_applicable;
+  __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+  __ Branch(&not_applicable, ne, scratch, Operand(from_map));
+
+  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+    Register new_map_reg = ToRegister(instr->new_map_temp());
+    __ li(new_map_reg, Operand(to_map));
+    __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+    // Write barrier.
+    __ RecordWriteForMap(object_reg,
+                         new_map_reg,
+                         scratch,
+                         GetRAState(),
+                         kDontSaveFPRegs);
+  } else {
+    DCHECK(object_reg.is(a0));
+    DCHECK(ToRegister(instr->context()).is(cp));
+    PushSafepointRegistersScope scope(this);
+    __ li(a1, Operand(to_map));
+    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+    __ CallStub(&stub);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+  }
+  __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+  Register object = ToRegister(instr->object());
+  Register temp = ToRegister(instr->temp());
+  Label no_memento_found;
+  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
+                                     ne, &no_memento_found);
+  DeoptimizeIf(al, instr, Deoptimizer::kMementoFound);
+  __ bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(a1));
+  DCHECK(ToRegister(instr->right()).is(a0));
+  StringAddStub stub(isolate(),
+                     instr->hydrogen()->flags(),
+                     instr->hydrogen()->pretenure_flag());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+  class DeferredStringCharCodeAt final : public LDeferredCode {
+   public:
+    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharCodeAt* instr_;
+  };
+
+  DeferredStringCharCodeAt* deferred =
+      new(zone()) DeferredStringCharCodeAt(this, instr);
+  StringCharLoadGenerator::Generate(masm(),
+                                    ToRegister(instr->string()),
+                                    ToRegister(instr->index()),
+                                    ToRegister(instr->result()),
+                                    deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, zero_reg);
+
+  PushSafepointRegistersScope scope(this);
+  __ push(string);
+  // Push the index as a smi. This is safe because of the checks in
+  // DoStringCharCodeAt above.
+  if (instr->index()->IsConstantOperand()) {
+    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
+    __ push(scratch);
+  } else {
+    Register index = ToRegister(instr->index());
+    __ SmiTag(index);
+    __ push(index);
+  }
+  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
+                          instr->context());
+  __ AssertSmi(v0);
+  __ SmiUntag(v0);
+  __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+  class DeferredStringCharFromCode final : public LDeferredCode {
+   public:
+    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredStringCharFromCode(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharFromCode* instr_;
+  };
+
+  DeferredStringCharFromCode* deferred =
+      new(zone()) DeferredStringCharFromCode(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  DCHECK(!char_code.is(result));
+
+  __ Branch(deferred->entry(), hi,
+            char_code, Operand(String::kMaxOneByteCharCode));
+  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+  __ dsll(scratch, char_code, kPointerSizeLog2);
+  __ Daddu(result, result, scratch);
+  __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+  __ Branch(deferred->entry(), eq, result, Operand(scratch));
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, zero_reg);
+
+  PushSafepointRegistersScope scope(this);
+  __ SmiTag(char_code);
+  __ push(char_code);
+  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() || input->IsStackSlot());
+  LOperand* output = instr->result();
+  DCHECK(output->IsDoubleRegister());
+  FPURegister single_scratch = double_scratch0().low();
+  if (input->IsStackSlot()) {
+    Register scratch = scratch0();
+    __ ld(scratch, ToMemOperand(input));
+    __ mtc1(scratch, single_scratch);
+  } else {
+    __ mtc1(ToRegister(input), single_scratch);
+  }
+  __ cvt_d_w(ToDoubleRegister(output), single_scratch);
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+  LOperand* input = instr->value();
+  LOperand* output = instr->result();
+
+  FPURegister dbl_scratch = double_scratch0();
+  __ mtc1(ToRegister(input), dbl_scratch);
+  __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch);
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+  class DeferredNumberTagU final : public LDeferredCode {
+   public:
+    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_,
+                                       instr_->value(),
+                                       instr_->temp1(),
+                                       instr_->temp2(),
+                                       UNSIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagU* instr_;
+  };
+
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+  __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
+  __ SmiTag(result, input);
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+                                     LOperand* value,
+                                     LOperand* temp1,
+                                     LOperand* temp2,
+                                     IntegerSignedness signedness) {
+  Label done, slow;
+  Register src = ToRegister(value);
+  Register dst = ToRegister(instr->result());
+  Register tmp1 = scratch0();
+  Register tmp2 = ToRegister(temp1);
+  Register tmp3 = ToRegister(temp2);
+  DoubleRegister dbl_scratch = double_scratch0();
+
+  if (signedness == SIGNED_INT32) {
+    // There was overflow, so bits 30 and 31 of the original integer
+    // disagree. Try to allocate a heap number in new space and store
+    // the value in there. If that fails, call the runtime system.
+    if (dst.is(src)) {
+      __ SmiUntag(src, dst);
+      __ Xor(src, src, Operand(0x80000000));
+    }
+    __ mtc1(src, dbl_scratch);
+    __ cvt_d_w(dbl_scratch, dbl_scratch);
+  } else {
+    __ mtc1(src, dbl_scratch);
+    __ Cvt_d_uw(dbl_scratch, dbl_scratch);
+  }
+
+  if (FLAG_inline_new) {
+    __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, TAG_RESULT);
+    __ Branch(&done);
+  }
+
+  // Slow case: Call the runtime system to do the number allocation.
+  __ bind(&slow);
+  {
+    // TODO(3095996): Put a valid pointer value in the stack slot where the
+    // result register is stored, as this register is in the pointer map, but
+    // contains an integer value.
+    __ mov(dst, zero_reg);
+    // Preserve the value of all registers.
+    PushSafepointRegistersScope scope(this);
+
+    // NumberTagI and NumberTagD use the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(v0, dst);
+  }
+
+  // Done. Put the value in dbl_scratch into the value of the allocated heap
+  // number.
+  __ bind(&done);
+  __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+  class DeferredNumberTagD final : public LDeferredCode {
+   public:
+    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagD* instr_;
+  };
+
+  DoubleRegister input_reg = ToDoubleRegister(instr->value());
+  Register scratch = scratch0();
+  Register reg = ToRegister(instr->result());
+  Register temp1 = ToRegister(instr->temp());
+  Register temp2 = ToRegister(instr->temp2());
+
+  DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+  if (FLAG_inline_new) {
+    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
+    // We want the untagged address first for performance
+    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
+                          DONT_TAG_RESULT);
+  } else {
+    __ Branch(deferred->entry());
+  }
+  __ bind(deferred->exit());
+  __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
+  // Now that we have finished with the object's real address tag it
+  __ Daddu(reg, reg, kHeapObjectTag);
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register reg = ToRegister(instr->result());
+  __ mov(reg, zero_reg);
+
+  PushSafepointRegistersScope scope(this);
+  // NumberTagI and NumberTagD use the context from the frame, rather than
+  // the environment's HContext or HInlinedContext value.
+  // They only call Runtime::kAllocateHeapNumber.
+  // The corresponding HChange instructions are added in a phase that does
+  // not have easy access to the local context.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+  __ Dsubu(v0, v0, kHeapObjectTag);
+  __ StoreToSafepointRegisterSlot(v0, reg);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+  HChange* hchange = instr->hydrogen();
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ And(at, input, Operand(0x80000000));
+    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
+  }
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      !hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ SmiTagCheckOverflow(output, input, at);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
+  } else {
+    __ SmiTag(output, input);
+  }
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+  Register scratch = scratch0();
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  if (instr->needs_check()) {
+    STATIC_ASSERT(kHeapObjectTag == 1);
+    // If the input is a HeapObject, value of scratch won't be zero.
+    __ And(scratch, input, Operand(kHeapObjectTag));
+    __ SmiUntag(result, input);
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch, Operand(zero_reg));
+  } else {
+    __ SmiUntag(result, input);
+  }
+}
+
+
+void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
+                                DoubleRegister result_reg,
+                                NumberUntagDMode mode) {
+  bool can_convert_undefined_to_nan =
+      instr->hydrogen()->can_convert_undefined_to_nan();
+  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
+
+  Register scratch = scratch0();
+  Label convert, load_smi, done;
+  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+    // Smi check.
+    __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
+    // Heap number map check.
+    __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+    if (can_convert_undefined_to_nan) {
+      __ Branch(&convert, ne, scratch, Operand(at));
+    } else {
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch,
+                   Operand(at));
+    }
+    // Load heap number.
+    __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+    if (deoptimize_on_minus_zero) {
+      __ mfc1(at, result_reg);
+      __ Branch(&done, ne, at, Operand(zero_reg));
+      __ mfhc1(scratch, result_reg);  // Get exponent/sign bits.
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, scratch,
+                   Operand(HeapNumber::kSignMask));
+    }
+    __ Branch(&done);
+    if (can_convert_undefined_to_nan) {
+      __ bind(&convert);
+      // Convert undefined (and hole) to NaN.
+      __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
+                   Operand(at));
+      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+      __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
+      __ Branch(&done);
+    }
+  } else {
+    __ SmiUntag(scratch, input_reg);
+    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+  }
+  // Smi to double register conversion
+  __ bind(&load_smi);
+  // scratch: untagged value of input_reg
+  __ mtc1(scratch, result_reg);
+  __ cvt_d_w(result_reg, result_reg);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+  Register input_reg = ToRegister(instr->value());
+  Register scratch1 = scratch0();
+  Register scratch2 = ToRegister(instr->temp());
+  DoubleRegister double_scratch = double_scratch0();
+  DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
+
+  DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
+  DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
+
+  Label done;
+
+  // The input is a tagged HeapObject.
+  // Heap number map check.
+  __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+  __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+  // This 'at' value and scratch1 map value are used for tests in both clauses
+  // of the if.
+
+  if (instr->truncating()) {
+    // Performs a truncating conversion of a floating point number as used by
+    // the JS bitwise operations.
+    Label no_heap_number, check_bools, check_false;
+    // Check HeapNumber map.
+    __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
+    __ mov(scratch2, input_reg);  // In delay slot.
+    __ TruncateHeapNumberToI(input_reg, scratch2);
+    __ Branch(&done);
+
+    // Check for Oddballs. Undefined/False is converted to zero and True to one
+    // for truncating conversions.
+    __ bind(&no_heap_number);
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ Branch(&check_bools, ne, input_reg, Operand(at));
+    DCHECK(ToRegister(instr->result()).is(input_reg));
+    __ Branch(USE_DELAY_SLOT, &done);
+    __ mov(input_reg, zero_reg);  // In delay slot.
+
+    __ bind(&check_bools);
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(&check_false, ne, scratch2, Operand(at));
+    __ Branch(USE_DELAY_SLOT, &done);
+    __ li(input_reg, Operand(1));  // In delay slot.
+
+    __ bind(&check_false);
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean,
+                 scratch2, Operand(at));
+    __ Branch(USE_DELAY_SLOT, &done);
+    __ mov(input_reg, zero_reg);  // In delay slot.
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch1,
+                 Operand(at));
+
+    // Load the double value.
+    __ ldc1(double_scratch,
+            FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+
+    Register except_flag = scratch2;
+    __ EmitFPUTruncate(kRoundToZero,
+                       input_reg,
+                       double_scratch,
+                       scratch1,
+                       double_scratch2,
+                       except_flag,
+                       kCheckForInexactConversion);
+
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
+                 Operand(zero_reg));
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ Branch(&done, ne, input_reg, Operand(zero_reg));
+
+      __ mfhc1(scratch1, double_scratch);  // Get exponent/sign bits.
+      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
+                   Operand(zero_reg));
+    }
+  }
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+  class DeferredTaggedToI final : public LDeferredCode {
+   public:
+    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LTaggedToI* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  DCHECK(input->Equals(instr->result()));
+
+  Register input_reg = ToRegister(input);
+
+  if (instr->hydrogen()->value()->representation().IsSmi()) {
+    __ SmiUntag(input_reg);
+  } else {
+    DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+
+    // Let the deferred code handle the HeapObject case.
+    __ JumpIfNotSmi(input_reg, deferred->entry());
+
+    // Smi to int32 conversion.
+    __ SmiUntag(input_reg);
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsDoubleRegister());
+
+  Register input_reg = ToRegister(input);
+  DoubleRegister result_reg = ToDoubleRegister(result);
+
+  HValue* value = instr->hydrogen()->value();
+  NumberUntagDMode mode = value->representation().IsSmi()
+      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+  EmitNumberUntagD(instr, input_reg, result_reg, mode);
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  DoubleRegister double_input = ToDoubleRegister(instr->value());
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    Register except_flag = LCodeGen::scratch1();
+
+    __ EmitFPUTruncate(kRoundToMinusInf,
+                       result_reg,
+                       double_input,
+                       scratch1,
+                       double_scratch0(),
+                       except_flag,
+                       kCheckForInexactConversion);
+
+    // Deopt if the operation did not succeed (except_flag != 0).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
+                 Operand(zero_reg));
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ Branch(&done, ne, result_reg, Operand(zero_reg));
+      __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
+      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
+                   Operand(zero_reg));
+      __ bind(&done);
+    }
+  }
+}
+
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = LCodeGen::scratch0();
+  DoubleRegister double_input = ToDoubleRegister(instr->value());
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    Register except_flag = LCodeGen::scratch1();
+
+    __ EmitFPUTruncate(kRoundToMinusInf,
+                       result_reg,
+                       double_input,
+                       scratch1,
+                       double_scratch0(),
+                       except_flag,
+                       kCheckForInexactConversion);
+
+    // Deopt if the operation did not succeed (except_flag != 0).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
+                 Operand(zero_reg));
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ Branch(&done, ne, result_reg, Operand(zero_reg));
+      __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
+      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
+                   Operand(zero_reg));
+      __ bind(&done);
+    }
+  }
+  __ SmiTag(result_reg, result_reg);
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+  LOperand* input = instr->value();
+  __ SmiTst(ToRegister(input), at);
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    LOperand* input = instr->value();
+    __ SmiTst(ToRegister(input), at);
+    DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+    LCheckArrayBufferNotNeutered* instr) {
+  Register view = ToRegister(instr->view());
+  Register scratch = scratch0();
+
+  __ ld(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
+  __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
+  __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift);
+  DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ GetObjectType(input, scratch, scratch);
+
+  if (instr->hydrogen()->is_interval_check()) {
+    InstanceType first;
+    InstanceType last;
+    instr->hydrogen()->GetCheckInterval(&first, &last);
+
+    // If there is only one type in the interval check for equality.
+    if (first == last) {
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
+                   Operand(first));
+    } else {
+      DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType, scratch,
+                   Operand(first));
+      // Omit check for the last type.
+      if (last != LAST_TYPE) {
+        DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType, scratch,
+                     Operand(last));
+      }
+    }
+  } else {
+    uint8_t mask;
+    uint8_t tag;
+    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+    if (base::bits::IsPowerOfTwo32(mask)) {
+      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
+      __ And(at, scratch, mask);
+      DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType,
+                   at, Operand(zero_reg));
+    } else {
+      __ And(scratch, scratch, Operand(mask));
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
+                   Operand(tag));
+    }
+  }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+  Register reg = ToRegister(instr->value());
+  Handle<HeapObject> object = instr->hydrogen()->object().handle();
+  AllowDeferredHandleDereference smi_check;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Register reg = ToRegister(instr->value());
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    __ li(at, Operand(cell));
+    __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
+    DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(at));
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(object));
+  }
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+  {
+    PushSafepointRegistersScope scope(this);
+    __ push(object);
+    __ mov(cp, zero_reg);
+    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(v0, scratch0());
+  }
+  __ SmiTst(scratch0(), at);
+  DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, at,
+               Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+  class DeferredCheckMaps final : public LDeferredCode {
+   public:
+    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+        : LDeferredCode(codegen), instr_(instr), object_(object) {
+      SetExit(check_maps());
+    }
+    void Generate() override {
+      codegen()->DoDeferredInstanceMigration(instr_, object_);
+    }
+    Label* check_maps() { return &check_maps_; }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LCheckMaps* instr_;
+    Label check_maps_;
+    Register object_;
+  };
+
+  if (instr->hydrogen()->IsStabilityCheck()) {
+    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+    for (int i = 0; i < maps->size(); ++i) {
+      AddStabilityDependency(maps->at(i).handle());
+    }
+    return;
+  }
+
+  Register map_reg = scratch0();
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  Register reg = ToRegister(input);
+  __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
+
+  DeferredCheckMaps* deferred = NULL;
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
+    __ bind(deferred->check_maps());
+  }
+
+  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+  Label success;
+  for (int i = 0; i < maps->size() - 1; i++) {
+    Handle<Map> map = maps->at(i).handle();
+    __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
+  }
+  Handle<Map> map = maps->at(maps->size() - 1).handle();
+  // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    __ Branch(deferred->entry(), ne, map_reg, Operand(map));
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map_reg, Operand(map));
+  }
+
+  __ bind(&success);
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+  DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
+  __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+  Register unclamped_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  __ ClampUint8(result_reg, unclamped_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+  Register scratch = scratch0();
+  Register input_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
+  Label is_smi, done, heap_number;
+
+  // Both smi and heap number cases are handled.
+  __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
+
+  // Check for heap number
+  __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+  __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
+
+  // Check for undefined. Undefined is converted to zero for clamping
+  // conversions.
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
+               Operand(factory()->undefined_value()));
+  __ mov(result_reg, zero_reg);
+  __ jmp(&done);
+
+  // Heap number
+  __ bind(&heap_number);
+  __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
+                                             HeapNumber::kValueOffset));
+  __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
+  __ jmp(&done);
+
+  __ bind(&is_smi);
+  __ ClampUint8(result_reg, scratch);
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+  DoubleRegister value_reg = ToDoubleRegister(instr->value());
+  Register result_reg = ToRegister(instr->result());
+  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+    __ FmoveHigh(result_reg, value_reg);
+  } else {
+    __ FmoveLow(result_reg, value_reg);
+  }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+  Register hi_reg = ToRegister(instr->hi());
+  Register lo_reg = ToRegister(instr->lo());
+  DoubleRegister result_reg = ToDoubleRegister(instr->result());
+  __ Move(result_reg, lo_reg, hi_reg);
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+  class DeferredAllocate final : public LDeferredCode {
+   public:
+    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredAllocate(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LAllocate* instr_;
+  };
+
+  DeferredAllocate* deferred =
+      new(zone()) DeferredAllocate(this, instr);
+
+  Register result = ToRegister(instr->result());
+  Register scratch = ToRegister(instr->temp1());
+  Register scratch2 = ToRegister(instr->temp2());
+
+  // Allocate memory for the object.
+  AllocationFlags flags = TAG_OBJECT;
+  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+  }
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = static_cast<AllocationFlags>(flags | PRETENURE);
+  }
+  if (instr->size()->IsConstantOperand()) {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    CHECK(size <= Page::kMaxRegularHeapObjectSize);
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  } else {
+    Register size = ToRegister(instr->size());
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  }
+
+  __ bind(deferred->exit());
+
+  if (instr->hydrogen()->MustPrefillWithFiller()) {
+    STATIC_ASSERT(kHeapObjectTag == 1);
+    if (instr->size()->IsConstantOperand()) {
+      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+      __ li(scratch, Operand(size - kHeapObjectTag));
+    } else {
+      __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
+    }
+    __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+    Label loop;
+    __ bind(&loop);
+    __ Dsubu(scratch, scratch, Operand(kPointerSize));
+    __ Daddu(at, result, Operand(scratch));
+    __ sd(scratch2, MemOperand(at));
+    __ Branch(&loop, ge, scratch, Operand(zero_reg));
+  }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ mov(result, zero_reg);
+
+  PushSafepointRegistersScope scope(this);
+  if (instr->size()->IsRegister()) {
+    Register size = ToRegister(instr->size());
+    DCHECK(!size.is(result));
+    __ SmiTag(size);
+    __ push(size);
+  } else {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    if (size >= 0 && size <= Smi::kMaxValue) {
+      __ li(v0, Operand(Smi::FromInt(size)));
+      __ Push(v0);
+    } else {
+      // We should never get here at runtime => abort
+      __ stop("invalid allocation size");
+      return;
+    }
+  }
+
+  int flags = AllocateDoubleAlignFlag::encode(
+      instr->hydrogen()->MustAllocateDoubleAligned());
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+  } else {
+    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+  }
+  __ li(v0, Operand(Smi::FromInt(flags)));
+  __ Push(v0);
+
+  CallRuntimeFromDeferred(
+      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+  __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+  DCHECK(ToRegister(instr->value()).is(a0));
+  DCHECK(ToRegister(instr->result()).is(v0));
+  __ push(a0);
+  CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+  DCHECK(ToRegister(instr->value()).is(a3));
+  DCHECK(ToRegister(instr->result()).is(v0));
+  Label end, do_call;
+  Register value_register = ToRegister(instr->value());
+  __ JumpIfNotSmi(value_register, &do_call);
+  __ li(v0, Operand(isolate()->factory()->number_string()));
+  __ jmp(&end);
+  __ bind(&do_call);
+  TypeofStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  __ bind(&end);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+
+  Register cmp1 = no_reg;
+  Operand cmp2 = Operand(no_reg);
+
+  Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
+                                                  instr->FalseLabel(chunk_),
+                                                  input,
+                                                  instr->type_literal(),
+                                                  &cmp1,
+                                                  &cmp2);
+
+  DCHECK(cmp1.is_valid());
+  DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
+
+  if (final_branch_condition != kNoCondition) {
+    EmitBranch(instr, final_branch_condition, cmp1, cmp2);
+  }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label,
+                                 Label* false_label,
+                                 Register input,
+                                 Handle<String> type_name,
+                                 Register* cmp1,
+                                 Operand* cmp2) {
+  // This function utilizes the delay slot heavily. This is used to load
+  // values that are always usable without depending on the type of the input
+  // register.
+  Condition final_branch_condition = kNoCondition;
+  Register scratch = scratch0();
+  Factory* factory = isolate()->factory();
+  if (String::Equals(type_name, factory->number_string())) {
+    __ JumpIfSmi(input, true_label);
+    __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+    *cmp1 = input;
+    *cmp2 = Operand(at);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->string_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ GetObjectType(input, input, scratch);
+    *cmp1 = scratch;
+    *cmp2 = Operand(FIRST_NONSTRING_TYPE);
+    final_branch_condition = lt;
+
+  } else if (String::Equals(type_name, factory->symbol_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ GetObjectType(input, input, scratch);
+    *cmp1 = scratch;
+    *cmp2 = Operand(SYMBOL_TYPE);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->boolean_string())) {
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+    *cmp1 = at;
+    *cmp2 = Operand(input);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->undefined_string())) {
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+    // The first instruction of JumpIfSmi is an And - it is safe in the delay
+    // slot.
+    __ JumpIfSmi(input, false_label);
+    // Check for undetectable objects => true.
+    __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+    __ And(at, at, 1 << Map::kIsUndetectable);
+    *cmp1 = at;
+    *cmp2 = Operand(zero_reg);
+    final_branch_condition = ne;
+
+  } else if (String::Equals(type_name, factory->function_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ And(scratch, scratch,
+           Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    *cmp1 = scratch;
+    *cmp2 = Operand(1 << Map::kIsCallable);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->object_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ LoadRoot(at, Heap::kNullValueRootIndex);
+    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ GetObjectType(input, scratch, scratch1());
+    __ Branch(false_label, lt, scratch1(), Operand(FIRST_JS_RECEIVER_TYPE));
+    // Check for callable or undetectable objects => false.
+    __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ And(at, scratch,
+           Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    *cmp1 = at;
+    *cmp2 = Operand(zero_reg);
+    final_branch_condition = eq;
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
+  } else if (String::Equals(type_name, factory->type##_string())) {  \
+    __ JumpIfSmi(input, false_label);                                \
+    __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));    \
+    __ LoadRoot(at, Heap::k##Type##MapRootIndex);                    \
+    *cmp1 = input;                                                   \
+    *cmp2 = Operand(at);                                             \
+    final_branch_condition = eq;
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+
+
+  } else {
+    *cmp1 = at;
+    *cmp2 = Operand(zero_reg);  // Set to valid regs, to avoid caller assertion.
+    __ Branch(false_label);
+  }
+
+  return final_branch_condition;
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+    // Ensure that we have enough space after the previous lazy-bailout
+    // instruction for patching the code here.
+    int current_pc = masm()->pc_offset();
+    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+      DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
+      while (padding_size > 0) {
+        __ nop();
+        padding_size -= Assembler::kInstrSize;
+      }
+    }
+  }
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+  Deoptimizer::BailoutType type = instr->hydrogen()->type();
+  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+  // needed return address), even though the implementation of LAZY and EAGER is
+  // now identical. When LAZY is eventually completely folded into EAGER, remove
+  // the special case below.
+  if (info()->IsStub() && type == Deoptimizer::EAGER) {
+    type = Deoptimizer::LAZY;
+  }
+
+  DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
+               Operand(zero_reg));
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+  PushSafepointRegistersScope scope(this);
+  LoadContextFromDeferred(instr->context());
+  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+  RecordSafepointWithLazyDeopt(
+      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+  class DeferredStackCheck final : public LDeferredCode {
+   public:
+    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStackCheck* instr_;
+  };
+
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  // There is no LLazyBailout instruction for stack-checks. We have to
+  // prepare for lazy deoptimization explicitly here.
+  if (instr->hydrogen()->is_function_entry()) {
+    // Perform stack overflow check.
+    Label done;
+    __ LoadRoot(at, Heap::kStackLimitRootIndex);
+    __ Branch(&done, hs, sp, Operand(at));
+    DCHECK(instr->context()->IsRegister());
+    DCHECK(ToRegister(instr->context()).is(cp));
+    CallCode(isolate()->builtins()->StackCheck(),
+             RelocInfo::CODE_TARGET,
+             instr);
+    __ bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->is_backwards_branch());
+    // Perform stack overflow check if this goto needs it before jumping.
+    DeferredStackCheck* deferred_stack_check =
+        new(zone()) DeferredStackCheck(this, instr);
+    __ LoadRoot(at, Heap::kStackLimitRootIndex);
+    __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+    __ bind(instr->done_label());
+    deferred_stack_check->SetExit(instr->done_label());
+    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+    // Don't record a deoptimization index for the safepoint here.
+    // This will be done explicitly when emitting call and the safepoint in
+    // the deferred code.
+  }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+  // This is a pseudo-instruction that ensures that the environment here is
+  // properly registered for deoptimization and records the assembler's PC
+  // offset.
+  LEnvironment* environment = instr->environment();
+
+  // If the environment were already registered, we would have no way of
+  // backpatching it with the spill slot operands.
+  DCHECK(!environment->HasBeenRegistered());
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+  Register result = ToRegister(instr->result());
+  Register object = ToRegister(instr->object());
+
+  __ And(at, object, kSmiTagMask);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
+
+  STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
+  __ GetObjectType(object, a1, a1);
+  DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject, a1,
+               Operand(JS_PROXY_TYPE));
+
+  Label use_cache, call_runtime;
+  DCHECK(object.is(a0));
+  Register null_value = a5;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ CheckEnumCache(null_value, &call_runtime);
+
+  __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
+  __ Branch(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(object);
+  CallRuntime(Runtime::kGetPropertyNamesFast, instr);
+
+  __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+  DCHECK(result.is(v0));
+  __ LoadRoot(at, Heap::kMetaMapRootIndex);
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, a1, Operand(at));
+  __ bind(&use_cache);
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+  Register map = ToRegister(instr->map());
+  Register result = ToRegister(instr->result());
+  Label load_cache, done;
+  __ EnumLength(result, map);
+  __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
+  __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
+  __ jmp(&done);
+
+  __ bind(&load_cache);
+  __ LoadInstanceDescriptors(map, result);
+  __ ld(result,
+        FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+  __ ld(result,
+        FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+  DeoptimizeIf(eq, instr, Deoptimizer::kNoCache, result, Operand(zero_reg));
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+  Register object = ToRegister(instr->value());
+  Register map = ToRegister(instr->map());
+  __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map, Operand(scratch0()));
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                           Register result,
+                                           Register object,
+                                           Register index) {
+  PushSafepointRegistersScope scope(this);
+  __ Push(object, index);
+  __ mov(cp, zero_reg);
+  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+  RecordSafepointWithRegisters(
+     instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+  class DeferredLoadMutableDouble final : public LDeferredCode {
+   public:
+    DeferredLoadMutableDouble(LCodeGen* codegen,
+                              LLoadFieldByIndex* instr,
+                              Register result,
+                              Register object,
+                              Register index)
+        : LDeferredCode(codegen),
+          instr_(instr),
+          result_(result),
+          object_(object),
+          index_(index) {
+    }
+    void Generate() override {
+      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LLoadFieldByIndex* instr_;
+    Register result_;
+    Register object_;
+    Register index_;
+  };
+
+  Register object = ToRegister(instr->object());
+  Register index = ToRegister(instr->index());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  DeferredLoadMutableDouble* deferred;
+  deferred = new(zone()) DeferredLoadMutableDouble(
+      this, instr, result, object, index);
+
+  Label out_of_object, done;
+
+  __ And(scratch, index, Operand(Smi::FromInt(1)));
+  __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
+  __ dsra(index, index, 1);
+
+  __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
+  __ SmiScale(scratch, index, kPointerSizeLog2);  // In delay slot.
+  __ Daddu(scratch, object, scratch);
+  __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
+
+  __ Branch(&done);
+
+  __ bind(&out_of_object);
+  __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+  // Index is equal to negated out of object property index plus 1.
+  __ Dsubu(scratch, result, scratch);
+  __ ld(result, FieldMemOperand(scratch,
+                                FixedArray::kHeaderSize - kPointerSize));
+  __ bind(deferred->exit());
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+  Register context = ToRegister(instr->context());
+  __ sd(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+  Handle<ScopeInfo> scope_info = instr->scope_info();
+  __ li(at, scope_info);
+  __ Push(at, ToRegister(instr->function()));
+  CallRuntime(Runtime::kPushBlockContext, instr);
+  RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/crankshaft/mips64/lithium-codegen-mips64.h b/src/crankshaft/mips64/lithium-codegen-mips64.h
new file mode 100644
index 0000000..efadb0f
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-codegen-mips64.h
@@ -0,0 +1,425 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_
+#define V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_
+
+#include "src/ast/scopes.h"
+#include "src/crankshaft/lithium-codegen.h"
+#include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h"
+#include "src/crankshaft/mips64/lithium-mips64.h"
+#include "src/deoptimizer.h"
+#include "src/safepoint-table.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declarations.
+class LDeferredCode;
+class SafepointGenerator;
+
+class LCodeGen: public LCodeGenBase {
+ public:
+  LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info)
+      : LCodeGenBase(chunk, assembler, info),
+        jump_table_(4, info->zone()),
+        scope_(info->scope()),
+        deferred_(8, info->zone()),
+        frame_is_built_(false),
+        safepoints_(info->zone()),
+        resolver_(this),
+        expected_safepoint_kind_(Safepoint::kSimple) {
+    PopulateDeoptimizationLiteralsWithInlinedFunctions();
+  }
+
+
+  int LookupDestination(int block_id) const {
+    return chunk()->LookupDestination(block_id);
+  }
+
+  bool IsNextEmittedBlock(int block_id) const {
+    return LookupDestination(block_id) == GetNextEmittedBlock();
+  }
+
+  bool NeedsEagerFrame() const {
+    return GetStackSlotCount() > 0 ||
+        info()->is_non_deferred_calling() ||
+        !info()->IsStub() ||
+        info()->requires_frame();
+  }
+  bool NeedsDeferredFrame() const {
+    return !NeedsEagerFrame() && info()->is_deferred_calling();
+  }
+
+  RAStatus GetRAState() const {
+    return frame_is_built_ ? kRAHasBeenSaved : kRAHasNotBeenSaved;
+  }
+
+  // Support for converting LOperands to assembler types.
+  // LOperand must be a register.
+  Register ToRegister(LOperand* op) const;
+
+  // LOperand is loaded into scratch, unless already a register.
+  Register EmitLoadRegister(LOperand* op, Register scratch);
+
+  // LOperand must be a double register.
+  DoubleRegister ToDoubleRegister(LOperand* op) const;
+
+  // LOperand is loaded into dbl_scratch, unless already a double register.
+  DoubleRegister EmitLoadDoubleRegister(LOperand* op,
+                                        FloatRegister flt_scratch,
+                                        DoubleRegister dbl_scratch);
+  int64_t ToRepresentation_donotuse(LConstantOperand* op,
+                                    const Representation& r) const;
+  int32_t ToInteger32(LConstantOperand* op) const;
+  Smi* ToSmi(LConstantOperand* op) const;
+  double ToDouble(LConstantOperand* op) const;
+  Operand ToOperand(LOperand* op);
+  MemOperand ToMemOperand(LOperand* op) const;
+  // Returns a MemOperand pointing to the high word of a DoubleStackSlot.
+  MemOperand ToHighMemOperand(LOperand* op) const;
+
+  bool IsInteger32(LConstantOperand* op) const;
+  bool IsSmi(LConstantOperand* op) const;
+  Handle<Object> ToHandle(LConstantOperand* op) const;
+
+  // Try to generate code for the entire chunk, but it may fail if the
+  // chunk contains constructs we cannot handle. Returns true if the
+  // code generation attempt succeeded.
+  bool GenerateCode();
+
+  // Finish the code by setting stack height, safepoint, and bailout
+  // information on it.
+  void FinishCode(Handle<Code> code);
+
+  void DoDeferredNumberTagD(LNumberTagD* instr);
+
+  enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 };
+  void DoDeferredNumberTagIU(LInstruction* instr,
+                             LOperand* value,
+                             LOperand* temp1,
+                             LOperand* temp2,
+                             IntegerSignedness signedness);
+
+  void DoDeferredTaggedToI(LTaggedToI* instr);
+  void DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr);
+  void DoDeferredStackCheck(LStackCheck* instr);
+  void DoDeferredMaybeGrowElements(LMaybeGrowElements* instr);
+  void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr);
+  void DoDeferredStringCharFromCode(LStringCharFromCode* instr);
+  void DoDeferredAllocate(LAllocate* instr);
+
+  void DoDeferredInstanceMigration(LCheckMaps* instr, Register object);
+  void DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                   Register result,
+                                   Register object,
+                                   Register index);
+
+  // Parallel move support.
+  void DoParallelMove(LParallelMove* move);
+  void DoGap(LGap* instr);
+
+  MemOperand PrepareKeyedOperand(Register key,
+                                 Register base,
+                                 bool key_is_constant,
+                                 int constant_key,
+                                 int element_size,
+                                 int shift_size,
+                                 int base_offset);
+
+  // Emit frame translation commands for an environment.
+  void WriteTranslation(LEnvironment* environment, Translation* translation);
+
+  // Declare methods that deal with the individual node types.
+#define DECLARE_DO(type) void Do##type(L##type* node);
+  LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
+#undef DECLARE_DO
+
+ private:
+  LanguageMode language_mode() const { return info()->language_mode(); }
+
+  Scope* scope() const { return scope_; }
+
+  Register scratch0() { return kLithiumScratchReg; }
+  Register scratch1() { return kLithiumScratchReg2; }
+  DoubleRegister double_scratch0() { return kLithiumScratchDouble; }
+
+  LInstruction* GetNextInstruction();
+
+  void EmitClassOfTest(Label* if_true,
+                       Label* if_false,
+                       Handle<String> class_name,
+                       Register input,
+                       Register temporary,
+                       Register temporary2);
+
+  int GetStackSlotCount() const { return chunk()->spill_slot_count(); }
+
+  void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); }
+
+  void SaveCallerDoubles();
+  void RestoreCallerDoubles();
+
+  // Code generation passes.  Returns true if code generation should
+  // continue.
+  void GenerateBodyInstructionPre(LInstruction* instr) override;
+  bool GeneratePrologue();
+  bool GenerateDeferredCode();
+  bool GenerateJumpTable();
+  bool GenerateSafepointTable();
+
+  // Generates the custom OSR entrypoint and sets the osr_pc_offset.
+  void GenerateOsrPrologue();
+
+  enum SafepointMode {
+    RECORD_SIMPLE_SAFEPOINT,
+    RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS
+  };
+
+  void CallCode(Handle<Code> code,
+                RelocInfo::Mode mode,
+                LInstruction* instr);
+
+  void CallCodeGeneric(Handle<Code> code,
+                       RelocInfo::Mode mode,
+                       LInstruction* instr,
+                       SafepointMode safepoint_mode);
+
+  void CallRuntime(const Runtime::Function* function,
+                   int num_arguments,
+                   LInstruction* instr,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+
+  void CallRuntime(Runtime::FunctionId id,
+                   int num_arguments,
+                   LInstruction* instr) {
+    const Runtime::Function* function = Runtime::FunctionForId(id);
+    CallRuntime(function, num_arguments, instr);
+  }
+
+  void CallRuntime(Runtime::FunctionId id, LInstruction* instr) {
+    const Runtime::Function* function = Runtime::FunctionForId(id);
+    CallRuntime(function, function->nargs, instr);
+  }
+
+  void LoadContextFromDeferred(LOperand* context);
+  void CallRuntimeFromDeferred(Runtime::FunctionId id,
+                               int argc,
+                               LInstruction* instr,
+                               LOperand* context);
+
+  // Generate a direct call to a known function.  Expects the function
+  // to be in a1.
+  void CallKnownFunction(Handle<JSFunction> function,
+                         int formal_parameter_count, int arity,
+                         LInstruction* instr);
+
+  void RecordSafepointWithLazyDeopt(LInstruction* instr,
+                                    SafepointMode safepoint_mode);
+
+  void RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                            Safepoint::DeoptMode mode);
+  void DeoptimizeIf(Condition condition, LInstruction* instr,
+                    Deoptimizer::DeoptReason deopt_reason,
+                    Deoptimizer::BailoutType bailout_type,
+                    Register src1 = zero_reg,
+                    const Operand& src2 = Operand(zero_reg));
+  void DeoptimizeIf(
+      Condition condition, LInstruction* instr,
+      Deoptimizer::DeoptReason deopt_reason = Deoptimizer::kNoReason,
+      Register src1 = zero_reg, const Operand& src2 = Operand(zero_reg));
+
+  void AddToTranslation(LEnvironment* environment,
+                        Translation* translation,
+                        LOperand* op,
+                        bool is_tagged,
+                        bool is_uint32,
+                        int* object_index_pointer,
+                        int* dematerialized_index_pointer);
+
+  Register ToRegister(int index) const;
+  DoubleRegister ToDoubleRegister(int index) const;
+
+  MemOperand BuildSeqStringOperand(Register string,
+                                   LOperand* index,
+                                   String::Encoding encoding);
+
+  void EmitIntegerMathAbs(LMathAbs* instr);
+  void EmitSmiMathAbs(LMathAbs* instr);
+
+  // Support for recording safepoint and position information.
+  void RecordSafepoint(LPointerMap* pointers,
+                       Safepoint::Kind kind,
+                       int arguments,
+                       Safepoint::DeoptMode mode);
+  void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode);
+  void RecordSafepoint(Safepoint::DeoptMode mode);
+  void RecordSafepointWithRegisters(LPointerMap* pointers,
+                                    int arguments,
+                                    Safepoint::DeoptMode mode);
+
+  void RecordAndWritePosition(int position) override;
+
+  static Condition TokenToCondition(Token::Value op, bool is_unsigned);
+  void EmitGoto(int block);
+
+  // EmitBranch expects to be the last instruction of a block.
+  template<class InstrType>
+  void EmitBranch(InstrType instr,
+                  Condition condition,
+                  Register src1,
+                  const Operand& src2);
+  template<class InstrType>
+  void EmitBranchF(InstrType instr,
+                   Condition condition,
+                   FPURegister src1,
+                   FPURegister src2);
+  template <class InstrType>
+  void EmitTrueBranch(InstrType instr, Condition condition, Register src1,
+                      const Operand& src2);
+  template <class InstrType>
+  void EmitFalseBranch(InstrType instr, Condition condition, Register src1,
+                       const Operand& src2);
+  template<class InstrType>
+  void EmitFalseBranchF(InstrType instr,
+                        Condition condition,
+                        FPURegister src1,
+                        FPURegister src2);
+  void EmitCmpI(LOperand* left, LOperand* right);
+  void EmitNumberUntagD(LNumberUntagD* instr, Register input,
+                        DoubleRegister result, NumberUntagDMode mode);
+
+  // Emits optimized code for typeof x == "y".  Modifies input register.
+  // Returns the condition on which a final split to
+  // true and false label should be made, to optimize fallthrough.
+  // Returns two registers in cmp1 and cmp2 that can be used in the
+  // Branch instruction after EmitTypeofIs.
+  Condition EmitTypeofIs(Label* true_label,
+                         Label* false_label,
+                         Register input,
+                         Handle<String> type_name,
+                         Register* cmp1,
+                         Operand* cmp2);
+
+  // Emits optimized code for %_IsString(x).  Preserves input register.
+  // Returns the condition on which a final split to
+  // true and false label should be made, to optimize fallthrough.
+  Condition EmitIsString(Register input,
+                         Register temp1,
+                         Label* is_not_string,
+                         SmiCheck check_needed);
+
+  // Emits optimized code to deep-copy the contents of statically known
+  // object graphs (e.g. object literal boilerplate).
+  void EmitDeepCopy(Handle<JSObject> object,
+                    Register result,
+                    Register source,
+                    int* offset,
+                    AllocationSiteMode mode);
+  // Emit optimized code for integer division.
+  // Inputs are signed.
+  // All registers are clobbered.
+  // If 'remainder' is no_reg, it is not computed.
+  void EmitSignedIntegerDivisionByConstant(Register result,
+                                           Register dividend,
+                                           int32_t divisor,
+                                           Register remainder,
+                                           Register scratch,
+                                           LEnvironment* environment);
+
+
+  void EnsureSpaceForLazyDeopt(int space_needed) override;
+  void DoLoadKeyedExternalArray(LLoadKeyed* instr);
+  void DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr);
+  void DoLoadKeyedFixedArray(LLoadKeyed* instr);
+  void DoStoreKeyedExternalArray(LStoreKeyed* instr);
+  void DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr);
+  void DoStoreKeyedFixedArray(LStoreKeyed* instr);
+
+  template <class T>
+  void EmitVectorLoadICRegisters(T* instr);
+  template <class T>
+  void EmitVectorStoreICRegisters(T* instr);
+
+  ZoneList<Deoptimizer::JumpTableEntry*> jump_table_;
+  Scope* const scope_;
+  ZoneList<LDeferredCode*> deferred_;
+  bool frame_is_built_;
+
+  // Builder that keeps track of safepoints in the code. The table
+  // itself is emitted at the end of the generated code.
+  SafepointTableBuilder safepoints_;
+
+  // Compiler from a set of parallel moves to a sequential list of moves.
+  LGapResolver resolver_;
+
+  Safepoint::Kind expected_safepoint_kind_;
+
+  class PushSafepointRegistersScope final BASE_EMBEDDED {
+   public:
+    explicit PushSafepointRegistersScope(LCodeGen* codegen)
+        : codegen_(codegen) {
+      DCHECK(codegen_->info()->is_calling());
+      DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
+      codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
+
+      StoreRegistersStateStub stub(codegen_->isolate());
+      codegen_->masm_->push(ra);
+      codegen_->masm_->CallStub(&stub);
+    }
+
+    ~PushSafepointRegistersScope() {
+      DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
+      RestoreRegistersStateStub stub(codegen_->isolate());
+      codegen_->masm_->push(ra);
+      codegen_->masm_->CallStub(&stub);
+      codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
+    }
+
+   private:
+    LCodeGen* codegen_;
+  };
+
+  friend class LDeferredCode;
+  friend class LEnvironment;
+  friend class SafepointGenerator;
+  DISALLOW_COPY_AND_ASSIGN(LCodeGen);
+};
+
+
+class LDeferredCode : public ZoneObject {
+ public:
+  explicit LDeferredCode(LCodeGen* codegen)
+      : codegen_(codegen),
+        external_exit_(NULL),
+        instruction_index_(codegen->current_instruction_) {
+    codegen->AddDeferredCode(this);
+  }
+
+  virtual ~LDeferredCode() {}
+  virtual void Generate() = 0;
+  virtual LInstruction* instr() = 0;
+
+  void SetExit(Label* exit) { external_exit_ = exit; }
+  Label* entry() { return &entry_; }
+  Label* exit() { return external_exit_ != NULL ? external_exit_ : &exit_; }
+  int instruction_index() const { return instruction_index_; }
+
+ protected:
+  LCodeGen* codegen() const { return codegen_; }
+  MacroAssembler* masm() const { return codegen_->masm(); }
+
+ private:
+  LCodeGen* codegen_;
+  Label entry_;
+  Label exit_;
+  Label* external_exit_;
+  int instruction_index_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_
diff --git a/src/crankshaft/mips64/lithium-gap-resolver-mips64.cc b/src/crankshaft/mips64/lithium-gap-resolver-mips64.cc
new file mode 100644
index 0000000..0374cbc
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-gap-resolver-mips64.cc
@@ -0,0 +1,300 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h"
+
+#include "src/crankshaft/mips64/lithium-codegen-mips64.h"
+
+namespace v8 {
+namespace internal {
+
+LGapResolver::LGapResolver(LCodeGen* owner)
+    : cgen_(owner),
+      moves_(32, owner->zone()),
+      root_index_(0),
+      in_cycle_(false),
+      saved_destination_(NULL) {}
+
+
+void LGapResolver::Resolve(LParallelMove* parallel_move) {
+  DCHECK(moves_.is_empty());
+  // Build up a worklist of moves.
+  BuildInitialMoveList(parallel_move);
+
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands move = moves_[i];
+    // Skip constants to perform them last.  They don't block other moves
+    // and skipping such moves with register destinations keeps those
+    // registers free for the whole algorithm.
+    if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
+      root_index_ = i;  // Any cycle is found when by reaching this move again.
+      PerformMove(i);
+      if (in_cycle_) {
+        RestoreValue();
+      }
+    }
+  }
+
+  // Perform the moves with constant sources.
+  for (int i = 0; i < moves_.length(); ++i) {
+    if (!moves_[i].IsEliminated()) {
+      DCHECK(moves_[i].source()->IsConstantOperand());
+      EmitMove(i);
+    }
+  }
+
+  moves_.Rewind(0);
+}
+
+
+void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
+  // Perform a linear sweep of the moves to add them to the initial list of
+  // moves to perform, ignoring any move that is redundant (the source is
+  // the same as the destination, the destination is ignored and
+  // unallocated, or the move was already eliminated).
+  const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
+  for (int i = 0; i < moves->length(); ++i) {
+    LMoveOperands move = moves->at(i);
+    if (!move.IsRedundant()) moves_.Add(move, cgen_->zone());
+  }
+  Verify();
+}
+
+
+void LGapResolver::PerformMove(int index) {
+  // Each call to this function performs a move and deletes it from the move
+  // graph.  We first recursively perform any move blocking this one.  We
+  // mark a move as "pending" on entry to PerformMove in order to detect
+  // cycles in the move graph.
+
+  // We can only find a cycle, when doing a depth-first traversal of moves,
+  // be encountering the starting move again. So by spilling the source of
+  // the starting move, we break the cycle.  All moves are then unblocked,
+  // and the starting move is completed by writing the spilled value to
+  // its destination.  All other moves from the spilled source have been
+  // completed prior to breaking the cycle.
+  // An additional complication is that moves to MemOperands with large
+  // offsets (more than 1K or 4K) require us to spill this spilled value to
+  // the stack, to free up the register.
+  DCHECK(!moves_[index].IsPending());
+  DCHECK(!moves_[index].IsRedundant());
+
+  // Clear this move's destination to indicate a pending move.  The actual
+  // destination is saved in a stack allocated local.  Multiple moves can
+  // be pending because this function is recursive.
+  DCHECK(moves_[index].source() != NULL);  // Or else it will look eliminated.
+  LOperand* destination = moves_[index].destination();
+  moves_[index].set_destination(NULL);
+
+  // Perform a depth-first traversal of the move graph to resolve
+  // dependencies.  Any unperformed, unpending move with a source the same
+  // as this one's destination blocks this one so recursively perform all
+  // such moves.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands other_move = moves_[i];
+    if (other_move.Blocks(destination) && !other_move.IsPending()) {
+      PerformMove(i);
+      // If there is a blocking, pending move it must be moves_[root_index_]
+      // and all other moves with the same source as moves_[root_index_] are
+      // sucessfully executed (because they are cycle-free) by this loop.
+    }
+  }
+
+  // We are about to resolve this move and don't need it marked as
+  // pending, so restore its destination.
+  moves_[index].set_destination(destination);
+
+  // The move may be blocked on a pending move, which must be the starting move.
+  // In this case, we have a cycle, and we save the source of this move to
+  // a scratch register to break it.
+  LMoveOperands other_move = moves_[root_index_];
+  if (other_move.Blocks(destination)) {
+    DCHECK(other_move.IsPending());
+    BreakCycle(index);
+    return;
+  }
+
+  // This move is no longer blocked.
+  EmitMove(index);
+}
+
+
+void LGapResolver::Verify() {
+#ifdef ENABLE_SLOW_DCHECKS
+  // No operand should be the destination for more than one move.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LOperand* destination = moves_[i].destination();
+    for (int j = i + 1; j < moves_.length(); ++j) {
+      SLOW_DCHECK(!destination->Equals(moves_[j].destination()));
+    }
+  }
+#endif
+}
+
+#define __ ACCESS_MASM(cgen_->masm())
+
+void LGapResolver::BreakCycle(int index) {
+  // We save in a register the value that should end up in the source of
+  // moves_[root_index].  After performing all moves in the tree rooted
+  // in that move, we save the value to that source.
+  DCHECK(moves_[index].destination()->Equals(moves_[root_index_].source()));
+  DCHECK(!in_cycle_);
+  in_cycle_ = true;
+  LOperand* source = moves_[index].source();
+  saved_destination_ = moves_[index].destination();
+  if (source->IsRegister()) {
+    __ mov(kLithiumScratchReg, cgen_->ToRegister(source));
+  } else if (source->IsStackSlot()) {
+    __ ld(kLithiumScratchReg, cgen_->ToMemOperand(source));
+  } else if (source->IsDoubleRegister()) {
+    __ mov_d(kLithiumScratchDouble, cgen_->ToDoubleRegister(source));
+  } else if (source->IsDoubleStackSlot()) {
+    __ ldc1(kLithiumScratchDouble, cgen_->ToMemOperand(source));
+  } else {
+    UNREACHABLE();
+  }
+  // This move will be done by restoring the saved value to the destination.
+  moves_[index].Eliminate();
+}
+
+
+void LGapResolver::RestoreValue() {
+  DCHECK(in_cycle_);
+  DCHECK(saved_destination_ != NULL);
+
+  // Spilled value is in kLithiumScratchReg or kLithiumScratchDouble.
+  if (saved_destination_->IsRegister()) {
+    __ mov(cgen_->ToRegister(saved_destination_), kLithiumScratchReg);
+  } else if (saved_destination_->IsStackSlot()) {
+    __ sd(kLithiumScratchReg, cgen_->ToMemOperand(saved_destination_));
+  } else if (saved_destination_->IsDoubleRegister()) {
+    __ mov_d(cgen_->ToDoubleRegister(saved_destination_),
+            kLithiumScratchDouble);
+  } else if (saved_destination_->IsDoubleStackSlot()) {
+    __ sdc1(kLithiumScratchDouble,
+            cgen_->ToMemOperand(saved_destination_));
+  } else {
+    UNREACHABLE();
+  }
+
+  in_cycle_ = false;
+  saved_destination_ = NULL;
+}
+
+
+void LGapResolver::EmitMove(int index) {
+  LOperand* source = moves_[index].source();
+  LOperand* destination = moves_[index].destination();
+
+  // Dispatch on the source and destination operand kinds.  Not all
+  // combinations are possible.
+
+  if (source->IsRegister()) {
+    Register source_register = cgen_->ToRegister(source);
+    if (destination->IsRegister()) {
+      __ mov(cgen_->ToRegister(destination), source_register);
+    } else {
+      DCHECK(destination->IsStackSlot());
+      __ sd(source_register, cgen_->ToMemOperand(destination));
+    }
+  } else if (source->IsStackSlot()) {
+    MemOperand source_operand = cgen_->ToMemOperand(source);
+    if (destination->IsRegister()) {
+      __ ld(cgen_->ToRegister(destination), source_operand);
+    } else {
+      DCHECK(destination->IsStackSlot());
+      MemOperand destination_operand = cgen_->ToMemOperand(destination);
+      if (in_cycle_) {
+        if (!destination_operand.OffsetIsInt16Encodable()) {
+          // 'at' is overwritten while saving the value to the destination.
+          // Therefore we can't use 'at'.  It is OK if the read from the source
+          // destroys 'at', since that happens before the value is read.
+          // This uses only a single reg of the double reg-pair.
+          __ ldc1(kLithiumScratchDouble, source_operand);
+          __ sdc1(kLithiumScratchDouble, destination_operand);
+        } else {
+          __ ld(at, source_operand);
+          __ sd(at, destination_operand);
+        }
+      } else {
+        __ ld(kLithiumScratchReg, source_operand);
+        __ sd(kLithiumScratchReg, destination_operand);
+      }
+    }
+
+  } else if (source->IsConstantOperand()) {
+    LConstantOperand* constant_source = LConstantOperand::cast(source);
+    if (destination->IsRegister()) {
+      Register dst = cgen_->ToRegister(destination);
+      if (cgen_->IsSmi(constant_source)) {
+         __ li(dst, Operand(cgen_->ToSmi(constant_source)));
+      } else if (cgen_->IsInteger32(constant_source)) {
+         __ li(dst, Operand(cgen_->ToInteger32(constant_source)));
+      } else {
+         __ li(dst, cgen_->ToHandle(constant_source));
+      }
+    } else if (destination->IsDoubleRegister()) {
+      DoubleRegister result = cgen_->ToDoubleRegister(destination);
+      double v = cgen_->ToDouble(constant_source);
+      __ Move(result, v);
+    } else {
+      DCHECK(destination->IsStackSlot());
+      DCHECK(!in_cycle_);  // Constant moves happen after all cycles are gone.
+      if (cgen_->IsSmi(constant_source)) {
+         __ li(kLithiumScratchReg, Operand(cgen_->ToSmi(constant_source)));
+         __ sd(kLithiumScratchReg, cgen_->ToMemOperand(destination));
+      } else if (cgen_->IsInteger32(constant_source)) {
+        __ li(kLithiumScratchReg, Operand(cgen_->ToInteger32(constant_source)));
+        __ sd(kLithiumScratchReg, cgen_->ToMemOperand(destination));
+      } else {
+        __ li(kLithiumScratchReg, cgen_->ToHandle(constant_source));
+        __ sd(kLithiumScratchReg, cgen_->ToMemOperand(destination));
+      }
+    }
+
+  } else if (source->IsDoubleRegister()) {
+    DoubleRegister source_register = cgen_->ToDoubleRegister(source);
+    if (destination->IsDoubleRegister()) {
+      __ mov_d(cgen_->ToDoubleRegister(destination), source_register);
+    } else {
+      DCHECK(destination->IsDoubleStackSlot());
+      MemOperand destination_operand = cgen_->ToMemOperand(destination);
+      __ sdc1(source_register, destination_operand);
+    }
+
+  } else if (source->IsDoubleStackSlot()) {
+    MemOperand source_operand = cgen_->ToMemOperand(source);
+    if (destination->IsDoubleRegister()) {
+      __ ldc1(cgen_->ToDoubleRegister(destination), source_operand);
+    } else {
+      DCHECK(destination->IsDoubleStackSlot());
+      MemOperand destination_operand = cgen_->ToMemOperand(destination);
+      if (in_cycle_) {
+        // kLithiumScratchDouble was used to break the cycle,
+        // but kLithiumScratchReg is free.
+        MemOperand source_high_operand =
+            cgen_->ToHighMemOperand(source);
+        MemOperand destination_high_operand =
+            cgen_->ToHighMemOperand(destination);
+        __ lw(kLithiumScratchReg, source_operand);
+        __ sw(kLithiumScratchReg, destination_operand);
+        __ lw(kLithiumScratchReg, source_high_operand);
+        __ sw(kLithiumScratchReg, destination_high_operand);
+      } else {
+        __ ldc1(kLithiumScratchDouble, source_operand);
+        __ sdc1(kLithiumScratchDouble, destination_operand);
+      }
+    }
+  } else {
+    UNREACHABLE();
+  }
+
+  moves_[index].Eliminate();
+}
+
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/crankshaft/mips64/lithium-gap-resolver-mips64.h b/src/crankshaft/mips64/lithium-gap-resolver-mips64.h
new file mode 100644
index 0000000..85d8e29
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-gap-resolver-mips64.h
@@ -0,0 +1,59 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_MIPS64_LITHIUM_GAP_RESOLVER_MIPS_H_
+#define V8_CRANKSHAFT_MIPS64_LITHIUM_GAP_RESOLVER_MIPS_H_
+
+#include "src/crankshaft/lithium.h"
+
+namespace v8 {
+namespace internal {
+
+class LCodeGen;
+class LGapResolver;
+
+class LGapResolver final BASE_EMBEDDED {
+ public:
+  explicit LGapResolver(LCodeGen* owner);
+
+  // Resolve a set of parallel moves, emitting assembler instructions.
+  void Resolve(LParallelMove* parallel_move);
+
+ private:
+  // Build the initial list of moves.
+  void BuildInitialMoveList(LParallelMove* parallel_move);
+
+  // Perform the move at the moves_ index in question (possibly requiring
+  // other moves to satisfy dependencies).
+  void PerformMove(int index);
+
+  // If a cycle is found in the series of moves, save the blocking value to
+  // a scratch register.  The cycle must be found by hitting the root of the
+  // depth-first search.
+  void BreakCycle(int index);
+
+  // After a cycle has been resolved, restore the value from the scratch
+  // register to its proper destination.
+  void RestoreValue();
+
+  // Emit a move and remove it from the move graph.
+  void EmitMove(int index);
+
+  // Verify the move list before performing moves.
+  void Verify();
+
+  LCodeGen* cgen_;
+
+  // List of moves not yet resolved.
+  ZoneList<LMoveOperands> moves_;
+
+  int root_index_;
+  bool in_cycle_;
+  LOperand* saved_destination_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_MIPS64_LITHIUM_GAP_RESOLVER_MIPS_H_
diff --git a/src/crankshaft/mips64/lithium-mips64.cc b/src/crankshaft/mips64/lithium-mips64.cc
new file mode 100644
index 0000000..129f615
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-mips64.cc
@@ -0,0 +1,2591 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/mips64/lithium-mips64.h"
+
+#include <sstream>
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/crankshaft/lithium-inl.h"
+#include "src/crankshaft/mips64/lithium-codegen-mips64.h"
+
+namespace v8 {
+namespace internal {
+
+#define DEFINE_COMPILE(type)                            \
+  void L##type::CompileToNative(LCodeGen* generator) {  \
+    generator->Do##type(this);                          \
+  }
+LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
+#undef DEFINE_COMPILE
+
+#ifdef DEBUG
+void LInstruction::VerifyCall() {
+  // Call instructions can use only fixed registers as temporaries and
+  // outputs because all registers are blocked by the calling convention.
+  // Inputs operands must use a fixed register or use-at-start policy or
+  // a non-register policy.
+  DCHECK(Output() == NULL ||
+         LUnallocated::cast(Output())->HasFixedPolicy() ||
+         !LUnallocated::cast(Output())->HasRegisterPolicy());
+  for (UseIterator it(this); !it.Done(); it.Advance()) {
+    LUnallocated* operand = LUnallocated::cast(it.Current());
+    DCHECK(operand->HasFixedPolicy() ||
+           operand->IsUsedAtStart());
+  }
+  for (TempIterator it(this); !it.Done(); it.Advance()) {
+    LUnallocated* operand = LUnallocated::cast(it.Current());
+    DCHECK(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy());
+  }
+}
+#endif
+
+
+void LInstruction::PrintTo(StringStream* stream) {
+  stream->Add("%s ", this->Mnemonic());
+
+  PrintOutputOperandTo(stream);
+
+  PrintDataTo(stream);
+
+  if (HasEnvironment()) {
+    stream->Add(" ");
+    environment()->PrintTo(stream);
+  }
+
+  if (HasPointerMap()) {
+    stream->Add(" ");
+    pointer_map()->PrintTo(stream);
+  }
+}
+
+
+void LInstruction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  for (int i = 0; i < InputCount(); i++) {
+    if (i > 0) stream->Add(" ");
+    if (InputAt(i) == NULL) {
+      stream->Add("NULL");
+    } else {
+      InputAt(i)->PrintTo(stream);
+    }
+  }
+}
+
+
+void LInstruction::PrintOutputOperandTo(StringStream* stream) {
+  if (HasResult()) result()->PrintTo(stream);
+}
+
+
+void LLabel::PrintDataTo(StringStream* stream) {
+  LGap::PrintDataTo(stream);
+  LLabel* rep = replacement();
+  if (rep != NULL) {
+    stream->Add(" Dead block replaced with B%d", rep->block_id());
+  }
+}
+
+
+bool LGap::IsRedundant() const {
+  for (int i = 0; i < 4; i++) {
+    if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
+      return false;
+    }
+  }
+
+  return true;
+}
+
+
+void LGap::PrintDataTo(StringStream* stream) {
+  for (int i = 0; i < 4; i++) {
+    stream->Add("(");
+    if (parallel_moves_[i] != NULL) {
+      parallel_moves_[i]->PrintDataTo(stream);
+    }
+    stream->Add(") ");
+  }
+}
+
+
+const char* LArithmeticD::Mnemonic() const {
+  switch (op()) {
+    case Token::ADD: return "add-d";
+    case Token::SUB: return "sub-d";
+    case Token::MUL: return "mul-d";
+    case Token::DIV: return "div-d";
+    case Token::MOD: return "mod-d";
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+const char* LArithmeticT::Mnemonic() const {
+  switch (op()) {
+    case Token::ADD: return "add-t";
+    case Token::SUB: return "sub-t";
+    case Token::MUL: return "mul-t";
+    case Token::MOD: return "mod-t";
+    case Token::DIV: return "div-t";
+    case Token::BIT_AND: return "bit-and-t";
+    case Token::BIT_OR: return "bit-or-t";
+    case Token::BIT_XOR: return "bit-xor-t";
+    case Token::ROR: return "ror-t";
+    case Token::SHL: return "sll-t";
+    case Token::SAR: return "sra-t";
+    case Token::SHR: return "srl-t";
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+bool LGoto::HasInterestingComment(LCodeGen* gen) const {
+  return !gen->IsNextEmittedBlock(block_id());
+}
+
+
+void LGoto::PrintDataTo(StringStream* stream) {
+  stream->Add("B%d", block_id());
+}
+
+
+void LBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
+  value()->PrintTo(stream);
+}
+
+
+LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) {
+  return new(zone()) LDebugBreak();
+}
+
+
+void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if ");
+  left()->PrintTo(stream);
+  stream->Add(" %s ", Token::String(op()));
+  right()->PrintTo(stream);
+  stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsStringAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_string(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_smi(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_undetectable(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LStringCompareAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if string_compare(");
+  left()->PrintTo(stream);
+  right()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if has_instance_type(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if has_cached_array_index(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if class_of_test(");
+  value()->PrintTo(stream);
+  stream->Add(", \"%o\") then B%d else B%d",
+              *hydrogen()->class_name(),
+              true_block_id(),
+              false_block_id());
+}
+
+
+void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if typeof ");
+  value()->PrintTo(stream);
+  stream->Add(" == \"%s\" then B%d else B%d",
+              hydrogen()->type_literal()->ToCString().get(),
+              true_block_id(), false_block_id());
+}
+
+
+void LStoreCodeEntry::PrintDataTo(StringStream* stream) {
+  stream->Add(" = ");
+  function()->PrintTo(stream);
+  stream->Add(".code_entry = ");
+  code_object()->PrintTo(stream);
+}
+
+
+void LInnerAllocatedObject::PrintDataTo(StringStream* stream) {
+  stream->Add(" = ");
+  base_object()->PrintTo(stream);
+  stream->Add(" + ");
+  offset()->PrintTo(stream);
+}
+
+
+void LCallFunction::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add(" ");
+  function()->PrintTo(stream);
+  if (hydrogen()->HasVectorAndSlot()) {
+    stream->Add(" (type-feedback-vector ");
+    temp_vector()->PrintTo(stream);
+    stream->Add(" ");
+    temp_slot()->PrintTo(stream);
+    stream->Add(")");
+  }
+}
+
+
+void LCallJSFunction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  function()->PrintTo(stream);
+  stream->Add("#%d / ", arity());
+}
+
+
+void LCallWithDescriptor::PrintDataTo(StringStream* stream) {
+  for (int i = 0; i < InputCount(); i++) {
+    InputAt(i)->PrintTo(stream);
+    stream->Add(" ");
+  }
+  stream->Add("#%d / ", arity());
+}
+
+
+void LLoadContextSlot::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add("[%d]", slot_index());
+}
+
+
+void LStoreContextSlot::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add("[%d] <- ", slot_index());
+  value()->PrintTo(stream);
+}
+
+
+void LInvokeFunction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  function()->PrintTo(stream);
+  stream->Add(" #%d / ", arity());
+}
+
+
+void LCallNewArray::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  constructor()->PrintTo(stream);
+  stream->Add(" #%d / ", arity());
+  ElementsKind kind = hydrogen()->elements_kind();
+  stream->Add(" (%s) ", ElementsKindToString(kind));
+}
+
+
+void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
+  arguments()->PrintTo(stream);
+  stream->Add(" length ");
+  length()->PrintTo(stream);
+  stream->Add(" index ");
+  index()->PrintTo(stream);
+}
+
+
+void LStoreNamedField::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  std::ostringstream os;
+  os << hydrogen()->access() << " <- ";
+  stream->Add(os.str().c_str());
+  value()->PrintTo(stream);
+}
+
+
+void LStoreNamedGeneric::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add(".");
+  stream->Add(String::cast(*name())->ToCString().get());
+  stream->Add(" <- ");
+  value()->PrintTo(stream);
+}
+
+
+void LLoadKeyed::PrintDataTo(StringStream* stream) {
+  elements()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  if (hydrogen()->IsDehoisted()) {
+    stream->Add(" + %d]", base_offset());
+  } else {
+    stream->Add("]");
+  }
+}
+
+
+void LStoreKeyed::PrintDataTo(StringStream* stream) {
+  elements()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  if (hydrogen()->IsDehoisted()) {
+    stream->Add(" + %d] <-", base_offset());
+  } else {
+    stream->Add("] <- ");
+  }
+
+  if (value() == NULL) {
+    DCHECK(hydrogen()->IsConstantHoleStore() &&
+           hydrogen()->value()->representation().IsDouble());
+    stream->Add("<the hole(nan)>");
+  } else {
+    value()->PrintTo(stream);
+  }
+}
+
+
+void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  stream->Add("] <- ");
+  value()->PrintTo(stream);
+}
+
+
+void LTransitionElementsKind::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add(" %p -> %p", *original_map(), *transitioned_map());
+}
+
+
+int LPlatformChunk::GetNextSpillIndex(RegisterKind kind) {
+  // Skip a slot if for a double-width slot.
+  if (kind == DOUBLE_REGISTERS) spill_slot_count_++;
+  return spill_slot_count_++;
+}
+
+
+LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind)  {
+  int index = GetNextSpillIndex(kind);
+  if (kind == DOUBLE_REGISTERS) {
+    return LDoubleStackSlot::Create(index, zone());
+  } else {
+    DCHECK(kind == GENERAL_REGISTERS);
+    return LStackSlot::Create(index, zone());
+  }
+}
+
+
+LPlatformChunk* LChunkBuilder::Build() {
+  DCHECK(is_unused());
+  chunk_ = new(zone()) LPlatformChunk(info(), graph());
+  LPhase phase("L_Building chunk", chunk_);
+  status_ = BUILDING;
+
+  // If compiling for OSR, reserve space for the unoptimized frame,
+  // which will be subsumed into this frame.
+  if (graph()->has_osr()) {
+    for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) {
+      chunk_->GetNextSpillIndex(GENERAL_REGISTERS);
+    }
+  }
+
+  const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
+  for (int i = 0; i < blocks->length(); i++) {
+    HBasicBlock* next = NULL;
+    if (i < blocks->length() - 1) next = blocks->at(i + 1);
+    DoBasicBlock(blocks->at(i), next);
+    if (is_aborted()) return NULL;
+  }
+  status_ = DONE;
+  return chunk_;
+}
+
+
+LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
+  return new (zone()) LUnallocated(LUnallocated::FIXED_REGISTER, reg.code());
+}
+
+
+LUnallocated* LChunkBuilder::ToUnallocated(DoubleRegister reg) {
+  return new (zone())
+      LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, reg.code());
+}
+
+
+LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
+  return Use(value, ToUnallocated(fixed_register));
+}
+
+
+LOperand* LChunkBuilder::UseFixedDouble(HValue* value, DoubleRegister reg) {
+  return Use(value, ToUnallocated(reg));
+}
+
+
+LOperand* LChunkBuilder::UseRegister(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
+}
+
+
+LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
+  return Use(value,
+             new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
+                                      LUnallocated::USED_AT_START));
+}
+
+
+LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER));
+}
+
+
+LOperand* LChunkBuilder::Use(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::NONE));
+}
+
+
+LOperand* LChunkBuilder::UseAtStart(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::NONE,
+                                     LUnallocated::USED_AT_START));
+}
+
+
+LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : Use(value);
+}
+
+
+LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseAtStart(value);
+}
+
+
+LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseRegister(value);
+}
+
+
+LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseRegisterAtStart(value);
+}
+
+
+LOperand* LChunkBuilder::UseConstant(HValue* value) {
+  return chunk_->DefineConstantOperand(HConstant::cast(value));
+}
+
+
+LOperand* LChunkBuilder::UseAny(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      :  Use(value, new(zone()) LUnallocated(LUnallocated::ANY));
+}
+
+
+LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
+  if (value->EmitAtUses()) {
+    HInstruction* instr = HInstruction::cast(value);
+    VisitInstruction(instr);
+  }
+  operand->set_virtual_register(value->id());
+  return operand;
+}
+
+
+LInstruction* LChunkBuilder::Define(LTemplateResultInstruction<1>* instr,
+                                    LUnallocated* result) {
+  result->set_virtual_register(current_instruction_->id());
+  instr->set_result(result);
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::DefineAsRegister(
+    LTemplateResultInstruction<1>* instr) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
+}
+
+
+LInstruction* LChunkBuilder::DefineAsSpilled(
+    LTemplateResultInstruction<1>* instr, int index) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index));
+}
+
+
+LInstruction* LChunkBuilder::DefineSameAsFirst(
+    LTemplateResultInstruction<1>* instr) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
+}
+
+
+LInstruction* LChunkBuilder::DefineFixed(
+    LTemplateResultInstruction<1>* instr, Register reg) {
+  return Define(instr, ToUnallocated(reg));
+}
+
+
+LInstruction* LChunkBuilder::DefineFixedDouble(
+    LTemplateResultInstruction<1>* instr, DoubleRegister reg) {
+  return Define(instr, ToUnallocated(reg));
+}
+
+
+LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
+  HEnvironment* hydrogen_env = current_block_->last_environment();
+  int argument_index_accumulator = 0;
+  ZoneList<HValue*> objects_to_materialize(0, zone());
+  instr->set_environment(CreateEnvironment(hydrogen_env,
+                                           &argument_index_accumulator,
+                                           &objects_to_materialize));
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
+                                        HInstruction* hinstr,
+                                        CanDeoptimize can_deoptimize) {
+  info()->MarkAsNonDeferredCalling();
+#ifdef DEBUG
+  instr->VerifyCall();
+#endif
+  instr->MarkAsCall();
+  instr = AssignPointerMap(instr);
+
+  // If instruction does not have side-effects lazy deoptimization
+  // after the call will try to deoptimize to the point before the call.
+  // Thus we still need to attach environment to this call even if
+  // call sequence can not deoptimize eagerly.
+  bool needs_environment =
+      (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) ||
+      !hinstr->HasObservableSideEffects();
+  if (needs_environment && !instr->HasEnvironment()) {
+    instr = AssignEnvironment(instr);
+    // We can't really figure out if the environment is needed or not.
+    instr->environment()->set_has_been_used();
+  }
+
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
+  DCHECK(!instr->HasPointerMap());
+  instr->set_pointer_map(new(zone()) LPointerMap(zone()));
+  return instr;
+}
+
+
+LUnallocated* LChunkBuilder::TempRegister() {
+  LUnallocated* operand =
+      new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
+  int vreg = allocator_->GetVirtualRegister();
+  if (!allocator_->AllocationOk()) {
+    Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
+    vreg = 0;
+  }
+  operand->set_virtual_register(vreg);
+  return operand;
+}
+
+
+LUnallocated* LChunkBuilder::TempDoubleRegister() {
+  LUnallocated* operand =
+      new(zone()) LUnallocated(LUnallocated::MUST_HAVE_DOUBLE_REGISTER);
+  int vreg = allocator_->GetVirtualRegister();
+  if (!allocator_->AllocationOk()) {
+    Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
+    vreg = 0;
+  }
+  operand->set_virtual_register(vreg);
+  return operand;
+}
+
+
+LOperand* LChunkBuilder::FixedTemp(Register reg) {
+  LUnallocated* operand = ToUnallocated(reg);
+  DCHECK(operand->HasFixedPolicy());
+  return operand;
+}
+
+
+LOperand* LChunkBuilder::FixedTemp(DoubleRegister reg) {
+  LUnallocated* operand = ToUnallocated(reg);
+  DCHECK(operand->HasFixedPolicy());
+  return operand;
+}
+
+
+LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
+  return new(zone()) LLabel(instr->block());
+}
+
+
+LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) {
+  return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value())));
+}
+
+
+LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) {
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
+  return AssignEnvironment(new(zone()) LDeoptimize);
+}
+
+
+LInstruction* LChunkBuilder::DoShift(Token::Value op,
+                                     HBitwiseBinaryOperation* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->left());
+
+    HValue* right_value = instr->right();
+    LOperand* right = NULL;
+    int constant_value = 0;
+    bool does_deopt = false;
+    if (right_value->IsConstant()) {
+      HConstant* constant = HConstant::cast(right_value);
+      right = chunk_->DefineConstantOperand(constant);
+      constant_value = constant->Integer32Value() & 0x1f;
+      // Left shifts can deoptimize if we shift by > 0 and the result cannot be
+      // truncated to smi.
+      if (instr->representation().IsSmi() && constant_value > 0) {
+        does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
+      }
+    } else {
+      right = UseRegisterAtStart(right_value);
+    }
+
+    // Shift operations can only deoptimize if we do a logical shift
+    // by 0 and the result cannot be truncated to int32.
+    if (op == Token::SHR && constant_value == 0) {
+      does_deopt = !instr->CheckFlag(HInstruction::kUint32);
+    }
+
+    LInstruction* result =
+        DefineAsRegister(new(zone()) LShiftI(op, left, right, does_deopt));
+    return does_deopt ? AssignEnvironment(result) : result;
+  } else {
+    return DoArithmeticT(op, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
+                                           HArithmeticBinaryOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->left()->representation().IsDouble());
+  DCHECK(instr->right()->representation().IsDouble());
+  if (op == Token::MOD) {
+    LOperand* left = UseFixedDouble(instr->left(), f2);
+    LOperand* right = UseFixedDouble(instr->right(), f4);
+    LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
+    // We call a C function for double modulo. It can't trigger a GC. We need
+    // to use fixed result register for the call.
+    // TODO(fschneider): Allow any register as input registers.
+    return MarkAsCall(DefineFixedDouble(result, f2), instr);
+  } else {
+    LOperand* left = UseRegisterAtStart(instr->left());
+    LOperand* right = UseRegisterAtStart(instr->right());
+    LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
+    return DefineAsRegister(result);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
+                                           HBinaryOperation* instr) {
+  HValue* left = instr->left();
+  HValue* right = instr->right();
+  DCHECK(left->representation().IsTagged());
+  DCHECK(right->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* left_operand = UseFixed(left, a1);
+  LOperand* right_operand = UseFixed(right, a0);
+  LArithmeticT* result =
+      new(zone()) LArithmeticT(op, context, left_operand, right_operand);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
+  DCHECK(is_building());
+  current_block_ = block;
+  next_block_ = next_block;
+  if (block->IsStartBlock()) {
+    block->UpdateEnvironment(graph_->start_environment());
+    argument_count_ = 0;
+  } else if (block->predecessors()->length() == 1) {
+    // We have a single predecessor => copy environment and outgoing
+    // argument count from the predecessor.
+    DCHECK(block->phis()->length() == 0);
+    HBasicBlock* pred = block->predecessors()->at(0);
+    HEnvironment* last_environment = pred->last_environment();
+    DCHECK(last_environment != NULL);
+    // Only copy the environment, if it is later used again.
+    if (pred->end()->SecondSuccessor() == NULL) {
+      DCHECK(pred->end()->FirstSuccessor() == block);
+    } else {
+      if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
+          pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
+        last_environment = last_environment->Copy();
+      }
+    }
+    block->UpdateEnvironment(last_environment);
+    DCHECK(pred->argument_count() >= 0);
+    argument_count_ = pred->argument_count();
+  } else {
+    // We are at a state join => process phis.
+    HBasicBlock* pred = block->predecessors()->at(0);
+    // No need to copy the environment, it cannot be used later.
+    HEnvironment* last_environment = pred->last_environment();
+    for (int i = 0; i < block->phis()->length(); ++i) {
+      HPhi* phi = block->phis()->at(i);
+      if (phi->HasMergedIndex()) {
+        last_environment->SetValueAt(phi->merged_index(), phi);
+      }
+    }
+    for (int i = 0; i < block->deleted_phis()->length(); ++i) {
+      if (block->deleted_phis()->at(i) < last_environment->length()) {
+        last_environment->SetValueAt(block->deleted_phis()->at(i),
+                                     graph_->GetConstantUndefined());
+      }
+    }
+    block->UpdateEnvironment(last_environment);
+    // Pick up the outgoing argument count of one of the predecessors.
+    argument_count_ = pred->argument_count();
+  }
+  HInstruction* current = block->first();
+  int start = chunk_->instructions()->length();
+  while (current != NULL && !is_aborted()) {
+    // Code for constants in registers is generated lazily.
+    if (!current->EmitAtUses()) {
+      VisitInstruction(current);
+    }
+    current = current->next();
+  }
+  int end = chunk_->instructions()->length() - 1;
+  if (end >= start) {
+    block->set_first_instruction_index(start);
+    block->set_last_instruction_index(end);
+  }
+  block->set_argument_count(argument_count_);
+  next_block_ = NULL;
+  current_block_ = NULL;
+}
+
+
+void LChunkBuilder::VisitInstruction(HInstruction* current) {
+  HInstruction* old_current = current_instruction_;
+  current_instruction_ = current;
+
+  LInstruction* instr = NULL;
+  if (current->CanReplaceWithDummyUses()) {
+    if (current->OperandCount() == 0) {
+      instr = DefineAsRegister(new(zone()) LDummy());
+    } else {
+      DCHECK(!current->OperandAt(0)->IsControlInstruction());
+      instr = DefineAsRegister(new(zone())
+          LDummyUse(UseAny(current->OperandAt(0))));
+    }
+    for (int i = 1; i < current->OperandCount(); ++i) {
+      if (current->OperandAt(i)->IsControlInstruction()) continue;
+      LInstruction* dummy =
+          new(zone()) LDummyUse(UseAny(current->OperandAt(i)));
+      dummy->set_hydrogen_value(current);
+      chunk_->AddInstruction(dummy, current_block_);
+    }
+  } else {
+    HBasicBlock* successor;
+    if (current->IsControlInstruction() &&
+        HControlInstruction::cast(current)->KnownSuccessorBlock(&successor) &&
+        successor != NULL) {
+      instr = new(zone()) LGoto(successor);
+    } else {
+      instr = current->CompileToLithium(this);
+    }
+  }
+
+  argument_count_ += current->argument_delta();
+  DCHECK(argument_count_ >= 0);
+
+  if (instr != NULL) {
+    AddInstruction(instr, current);
+  }
+
+  current_instruction_ = old_current;
+}
+
+
+void LChunkBuilder::AddInstruction(LInstruction* instr,
+                                   HInstruction* hydrogen_val) {
+// Associate the hydrogen instruction first, since we may need it for
+  // the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
+  instr->set_hydrogen_value(hydrogen_val);
+
+#if DEBUG
+  // Make sure that the lithium instruction has either no fixed register
+  // constraints in temps or the result OR no uses that are only used at
+  // start. If this invariant doesn't hold, the register allocator can decide
+  // to insert a split of a range immediately before the instruction due to an
+  // already allocated register needing to be used for the instruction's fixed
+  // register constraint. In this case, The register allocator won't see an
+  // interference between the split child and the use-at-start (it would if
+  // the it was just a plain use), so it is free to move the split child into
+  // the same register that is used for the use-at-start.
+  // See https://code.google.com/p/chromium/issues/detail?id=201590
+  if (!(instr->ClobbersRegisters() &&
+        instr->ClobbersDoubleRegisters(isolate()))) {
+    int fixed = 0;
+    int used_at_start = 0;
+    for (UseIterator it(instr); !it.Done(); it.Advance()) {
+      LUnallocated* operand = LUnallocated::cast(it.Current());
+      if (operand->IsUsedAtStart()) ++used_at_start;
+    }
+    if (instr->Output() != NULL) {
+      if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
+    }
+    for (TempIterator it(instr); !it.Done(); it.Advance()) {
+      LUnallocated* operand = LUnallocated::cast(it.Current());
+      if (operand->HasFixedPolicy()) ++fixed;
+    }
+    DCHECK(fixed == 0 || used_at_start == 0);
+  }
+#endif
+
+  if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
+    instr = AssignPointerMap(instr);
+  }
+  if (FLAG_stress_environments && !instr->HasEnvironment()) {
+    instr = AssignEnvironment(instr);
+  }
+  chunk_->AddInstruction(instr, current_block_);
+
+  if (instr->IsCall() || instr->IsPrologue()) {
+    HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
+    if (hydrogen_val->HasObservableSideEffects()) {
+      HSimulate* sim = HSimulate::cast(hydrogen_val->next());
+      sim->ReplayEnvironment(current_block_->last_environment());
+      hydrogen_value_for_lazy_bailout = sim;
+    }
+    LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
+    bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
+    chunk_->AddInstruction(bailout, current_block_);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoPrologue(HPrologue* instr) {
+  return new (zone()) LPrologue();
+}
+
+
+LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
+  return new(zone()) LGoto(instr->FirstSuccessor());
+}
+
+
+LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
+  HValue* value = instr->value();
+  Representation r = value->representation();
+  HType type = value->type();
+  ToBooleanStub::Types expected = instr->expected_input_types();
+  if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+  bool easy_case = !r.IsTagged() || type.IsBoolean() || type.IsSmi() ||
+      type.IsJSArray() || type.IsHeapNumber() || type.IsString();
+  LInstruction* branch = new(zone()) LBranch(UseRegister(value));
+  if (!easy_case &&
+      ((!expected.Contains(ToBooleanStub::SMI) && expected.NeedsMap()) ||
+       !expected.IsGeneric())) {
+    branch = AssignEnvironment(branch);
+  }
+  return branch;
+}
+
+
+LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* temp = TempRegister();
+  return new(zone()) LCmpMapAndBranch(value, temp);
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
+  info()->MarkAsRequiresFrame();
+  return DefineAsRegister(
+      new(zone()) LArgumentsLength(UseRegister(length->value())));
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
+  info()->MarkAsRequiresFrame();
+  return DefineAsRegister(new(zone()) LArgumentsElements);
+}
+
+
+LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
+  LOperand* left =
+      UseFixed(instr->left(), InstanceOfDescriptor::LeftRegister());
+  LOperand* right =
+      UseFixed(instr->right(), InstanceOfDescriptor::RightRegister());
+  LOperand* context = UseFixed(instr->context(), cp);
+  LInstanceOf* result = new (zone()) LInstanceOf(context, left, right);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoHasInPrototypeChainAndBranch(
+    HHasInPrototypeChainAndBranch* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* prototype = UseRegister(instr->prototype());
+  LHasInPrototypeChainAndBranch* result =
+      new (zone()) LHasInPrototypeChainAndBranch(object, prototype);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) {
+  LOperand* receiver = UseRegisterAtStart(instr->receiver());
+  LOperand* function = UseRegisterAtStart(instr->function());
+  LWrapReceiver* result = new(zone()) LWrapReceiver(receiver, function);
+  return AssignEnvironment(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
+  LOperand* function = UseFixed(instr->function(), a1);
+  LOperand* receiver = UseFixed(instr->receiver(), a0);
+  LOperand* length = UseFixed(instr->length(), a2);
+  LOperand* elements = UseFixed(instr->elements(), a3);
+  LApplyArguments* result = new(zone()) LApplyArguments(function,
+                                                        receiver,
+                                                        length,
+                                                        elements);
+  return MarkAsCall(DefineFixed(result, v0), instr, CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoPushArguments(HPushArguments* instr) {
+  int argc = instr->OperandCount();
+  for (int i = 0; i < argc; ++i) {
+    LOperand* argument = Use(instr->argument(i));
+    AddInstruction(new(zone()) LPushArgument(argument), instr);
+  }
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoStoreCodeEntry(
+    HStoreCodeEntry* store_code_entry) {
+  LOperand* function = UseRegister(store_code_entry->function());
+  LOperand* code_object = UseTempRegister(store_code_entry->code_object());
+  return new(zone()) LStoreCodeEntry(function, code_object);
+}
+
+
+LInstruction* LChunkBuilder::DoInnerAllocatedObject(
+    HInnerAllocatedObject* instr) {
+  LOperand* base_object = UseRegisterAtStart(instr->base_object());
+  LOperand* offset = UseRegisterOrConstantAtStart(instr->offset());
+  return DefineAsRegister(
+      new(zone()) LInnerAllocatedObject(base_object, offset));
+}
+
+
+LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) {
+  return instr->HasNoUses()
+      ? NULL
+      : DefineAsRegister(new(zone()) LThisFunction);
+}
+
+
+LInstruction* LChunkBuilder::DoContext(HContext* instr) {
+  if (instr->HasNoUses()) return NULL;
+
+  if (info()->IsStub()) {
+    return DefineFixed(new(zone()) LContext, cp);
+  }
+
+  return DefineAsRegister(new(zone()) LContext);
+}
+
+
+LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  return MarkAsCall(new(zone()) LDeclareGlobals(context), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallJSFunction(
+    HCallJSFunction* instr) {
+  LOperand* function = UseFixed(instr->function(), a1);
+
+  LCallJSFunction* result = new(zone()) LCallJSFunction(function);
+
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallWithDescriptor(
+    HCallWithDescriptor* instr) {
+  CallInterfaceDescriptor descriptor = instr->descriptor();
+
+  LOperand* target = UseRegisterOrConstantAtStart(instr->target());
+  ZoneList<LOperand*> ops(instr->OperandCount(), zone());
+  // Target
+  ops.Add(target, zone());
+  // Context
+  LOperand* op = UseFixed(instr->OperandAt(1), cp);
+  ops.Add(op, zone());
+  // Other register parameters
+  for (int i = LCallWithDescriptor::kImplicitRegisterParameterCount;
+       i < instr->OperandCount(); i++) {
+    op =
+        UseFixed(instr->OperandAt(i),
+                 descriptor.GetRegisterParameter(
+                     i - LCallWithDescriptor::kImplicitRegisterParameterCount));
+    ops.Add(op, zone());
+  }
+
+  LCallWithDescriptor* result = new(zone()) LCallWithDescriptor(
+      descriptor, ops, zone());
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* function = UseFixed(instr->function(), a1);
+  LInvokeFunction* result = new(zone()) LInvokeFunction(context, function);
+  return MarkAsCall(DefineFixed(result, v0), instr, CANNOT_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
+  switch (instr->op()) {
+    case kMathFloor:
+      return DoMathFloor(instr);
+    case kMathRound:
+      return DoMathRound(instr);
+    case kMathFround:
+      return DoMathFround(instr);
+    case kMathAbs:
+      return DoMathAbs(instr);
+    case kMathLog:
+      return DoMathLog(instr);
+    case kMathExp:
+      return DoMathExp(instr);
+    case kMathSqrt:
+      return DoMathSqrt(instr);
+    case kMathPowHalf:
+      return DoMathPowHalf(instr);
+    case kMathClz32:
+      return DoMathClz32(instr);
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMathLog(HUnaryMathOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->value()->representation().IsDouble());
+  LOperand* input = UseFixedDouble(instr->value(), f4);
+  return MarkAsCall(DefineFixedDouble(new(zone()) LMathLog(input), f4), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoMathClz32(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegisterAtStart(instr->value());
+  LMathClz32* result = new(zone()) LMathClz32(input);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathExp(HUnaryMathOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->value()->representation().IsDouble());
+  LOperand* input = UseRegister(instr->value());
+  LOperand* temp1 = TempRegister();
+  LOperand* temp2 = TempRegister();
+  LOperand* double_temp = TempDoubleRegister();
+  LMathExp* result = new(zone()) LMathExp(input, double_temp, temp1, temp2);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathPowHalf(HUnaryMathOperation* instr) {
+  // Input cannot be the same as the result, see LCodeGen::DoMathPowHalf.
+  LOperand* input = UseFixedDouble(instr->value(), f8);
+  LOperand* temp = TempDoubleRegister();
+  LMathPowHalf* result = new(zone()) LMathPowHalf(input, temp);
+  return DefineFixedDouble(result, f4);
+}
+
+
+LInstruction* LChunkBuilder::DoMathFround(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LMathFround* result = new (zone()) LMathFround(input);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathAbs(HUnaryMathOperation* instr) {
+  Representation r = instr->value()->representation();
+  LOperand* context = (r.IsDouble() || r.IsSmiOrInteger32())
+      ? NULL
+      : UseFixed(instr->context(), cp);
+  LOperand* input = UseRegister(instr->value());
+  LInstruction* result =
+      DefineAsRegister(new(zone()) LMathAbs(context, input));
+  if (!r.IsDouble() && !r.IsSmiOrInteger32()) result = AssignPointerMap(result);
+  if (!r.IsDouble()) result = AssignEnvironment(result);
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloor(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LOperand* temp = TempRegister();
+  LMathFloor* result = new(zone()) LMathFloor(input, temp);
+  return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
+}
+
+
+LInstruction* LChunkBuilder::DoMathSqrt(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LMathSqrt* result = new(zone()) LMathSqrt(input);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathRound(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LOperand* temp = TempDoubleRegister();
+  LMathRound* result = new(zone()) LMathRound(input, temp);
+  return AssignEnvironment(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* constructor = UseFixed(instr->constructor(), a1);
+  LCallNewArray* result = new(zone()) LCallNewArray(context, constructor);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* function = UseFixed(instr->function(), a1);
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(a3);
+    vector = FixedTemp(a2);
+  }
+
+  LCallFunction* call =
+      new (zone()) LCallFunction(context, function, slot, vector);
+  return MarkAsCall(DefineFixed(call, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  return MarkAsCall(DefineFixed(new(zone()) LCallRuntime(context), v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoRor(HRor* instr) {
+  return DoShift(Token::ROR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoShr(HShr* instr) {
+  return DoShift(Token::SHR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoSar(HSar* instr) {
+  return DoShift(Token::SAR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoShl(HShl* instr) {
+  return DoShift(Token::SHL, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    DCHECK(instr->CheckFlag(HValue::kTruncatingToInt32));
+
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand());
+    return DefineAsRegister(new(zone()) LBitI(left, right));
+  } else {
+    return DoArithmeticT(instr->op(), instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineAsRegister(new(zone()) LDivByPowerOf2I(
+          dividend, divisor));
+  if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      (instr->CheckFlag(HValue::kCanOverflow) && divisor == -1) ||
+      (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+      divisor != 1 && divisor != -1)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivByConstI(HDiv* instr) {
+  DCHECK(instr->representation().IsInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineAsRegister(new(zone()) LDivByConstI(
+          dividend, divisor));
+  if (divisor == 0 ||
+      (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      !instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  LOperand* divisor = UseRegister(instr->right());
+  LOperand* temp = instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)
+    ? NULL : TempRegister();
+  LInstruction* result =
+      DefineAsRegister(new(zone()) LDivI(dividend, divisor, temp));
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
+      (instr->CheckFlag(HValue::kCanOverflow) &&
+       !instr->CheckFlag(HValue::kAllUsesTruncatingToInt32)) ||
+      (!instr->IsMathFloorOfDiv() &&
+       !instr->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    if (instr->RightIsPowerOf2()) {
+      return DoDivByPowerOf2I(instr);
+    } else if (instr->right()->IsConstant()) {
+      return DoDivByConstI(instr);
+    } else {
+      return DoDivI(instr);
+    }
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::DIV, instr);
+  } else {
+    return DoArithmeticT(Token::DIV, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+  LOperand* dividend = UseRegisterAtStart(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineAsRegister(new(zone()) LFlooringDivByPowerOf2I(
+          dividend, divisor));
+  if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      (instr->CheckFlag(HValue::kLeftCanBeMinInt) && divisor == -1)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
+  DCHECK(instr->representation().IsInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LOperand* temp =
+      ((divisor > 0 && !instr->CheckFlag(HValue::kLeftCanBeNegative)) ||
+       (divisor < 0 && !instr->CheckFlag(HValue::kLeftCanBePositive))) ?
+      NULL : TempRegister();
+  LInstruction* result = DefineAsRegister(
+      new(zone()) LFlooringDivByConstI(dividend, divisor, temp));
+  if (divisor == 0 ||
+      (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivI(HMathFloorOfDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  LOperand* divisor = UseRegister(instr->right());
+  LInstruction* result =
+      DefineAsRegister(new (zone()) LFlooringDivI(dividend, divisor));
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
+      (instr->CheckFlag(HValue::kCanOverflow))) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
+  if (instr->RightIsPowerOf2()) {
+    return DoFlooringDivByPowerOf2I(instr);
+  } else if (instr->right()->IsConstant()) {
+    return DoFlooringDivByConstI(instr);
+  } else {
+    return DoFlooringDivI(instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegisterAtStart(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineSameAsFirst(new(zone()) LModByPowerOf2I(
+          dividend, divisor));
+  if (instr->CheckFlag(HValue::kLeftCanBeNegative) &&
+      instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoModByConstI(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineAsRegister(new(zone()) LModByConstI(
+          dividend, divisor));
+  if (divisor == 0 || instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  LOperand* divisor = UseRegister(instr->right());
+  LInstruction* result = DefineAsRegister(new(zone()) LModI(
+      dividend, divisor));
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    return instr->RightIsPowerOf2() ? DoModByPowerOf2I(instr) : DoModI(instr);
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::MOD, instr);
+  } else {
+    return DoArithmeticT(Token::MOD, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMul(HMul* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    HValue* left = instr->BetterLeftOperand();
+    HValue* right = instr->BetterRightOperand();
+    LOperand* left_op;
+    LOperand* right_op;
+    bool can_overflow = instr->CheckFlag(HValue::kCanOverflow);
+    bool bailout_on_minus_zero = instr->CheckFlag(HValue::kBailoutOnMinusZero);
+
+    int32_t constant_value = 0;
+    if (right->IsConstant()) {
+      HConstant* constant = HConstant::cast(right);
+      constant_value = constant->Integer32Value();
+      // Constants -1, 0 and 1 can be optimized if the result can overflow.
+      // For other constants, it can be optimized only without overflow.
+      if (!can_overflow || ((constant_value >= -1) && (constant_value <= 1))) {
+        left_op = UseRegisterAtStart(left);
+        right_op = UseConstant(right);
+      } else {
+        if (bailout_on_minus_zero) {
+          left_op = UseRegister(left);
+        } else {
+          left_op = UseRegisterAtStart(left);
+        }
+        right_op = UseRegister(right);
+      }
+    } else {
+      if (bailout_on_minus_zero) {
+        left_op = UseRegister(left);
+      } else {
+        left_op = UseRegisterAtStart(left);
+      }
+      right_op = UseRegister(right);
+    }
+    LInstruction* result =
+        instr->representation().IsSmi()
+            ? DefineAsRegister(new (zone()) LMulS(left_op, right_op))
+            : DefineAsRegister(new (zone()) LMulI(left_op, right_op));
+    if (right_op->IsConstantOperand()
+            ? ((can_overflow && constant_value == -1) ||
+               (bailout_on_minus_zero && constant_value <= 0))
+            : (can_overflow || bailout_on_minus_zero)) {
+      AssignEnvironment(result);
+    }
+    return result;
+
+  } else if (instr->representation().IsDouble()) {
+    if (kArchVariant == kMips64r2) {
+      if (instr->HasOneUse() && instr->uses().value()->IsAdd()) {
+        HAdd* add = HAdd::cast(instr->uses().value());
+        if (instr == add->left()) {
+          // This mul is the lhs of an add. The add and mul will be folded
+          // into a multiply-add.
+          return NULL;
+        }
+        if (instr == add->right() && !add->left()->IsMul()) {
+          // This mul is the rhs of an add, where the lhs is not another mul.
+          // The add and mul will be folded into a multiply-add.
+          return NULL;
+        }
+      }
+    }
+    return DoArithmeticD(Token::MUL, instr);
+  } else {
+    return DoArithmeticT(Token::MUL, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoSub(HSub* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->left());
+    LOperand* right = UseRegisterOrConstantAtStart(instr->right());
+    LInstruction* result =
+        instr->representation().IsSmi()
+            ? DefineAsRegister(new (zone()) LSubS(left, right))
+            : DefineAsRegister(new (zone()) LSubI(left, right));
+    if (instr->CheckFlag(HValue::kCanOverflow)) {
+      result = AssignEnvironment(result);
+    }
+    return result;
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::SUB, instr);
+  } else {
+    return DoArithmeticT(Token::SUB, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMultiplyAdd(HMul* mul, HValue* addend) {
+  LOperand* multiplier_op = UseRegisterAtStart(mul->left());
+  LOperand* multiplicand_op = UseRegisterAtStart(mul->right());
+  LOperand* addend_op = UseRegisterAtStart(addend);
+  return DefineSameAsFirst(new(zone()) LMultiplyAddD(addend_op, multiplier_op,
+                                                     multiplicand_op));
+}
+
+
+LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right = UseRegisterOrConstantAtStart(instr->BetterRightOperand());
+    LInstruction* result =
+        instr->representation().IsSmi()
+            ? DefineAsRegister(new (zone()) LAddS(left, right))
+            : DefineAsRegister(new (zone()) LAddI(left, right));
+    if (instr->CheckFlag(HValue::kCanOverflow)) {
+      result = AssignEnvironment(result);
+    }
+    return result;
+  } else if (instr->representation().IsExternal()) {
+    DCHECK(instr->IsConsistentExternalRepresentation());
+    DCHECK(!instr->CheckFlag(HValue::kCanOverflow));
+    LOperand* left = UseRegisterAtStart(instr->left());
+    LOperand* right = UseRegisterOrConstantAtStart(instr->right());
+    return DefineAsRegister(new (zone()) LAddE(left, right));
+  } else if (instr->representation().IsDouble()) {
+    if (kArchVariant == kMips64r2) {
+      if (instr->left()->IsMul())
+        return DoMultiplyAdd(HMul::cast(instr->left()), instr->right());
+
+      if (instr->right()->IsMul()) {
+        DCHECK(!instr->left()->IsMul());
+        return DoMultiplyAdd(HMul::cast(instr->right()), instr->left());
+      }
+    }
+    return DoArithmeticD(Token::ADD, instr);
+  } else {
+    return DoArithmeticT(Token::ADD, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
+  LOperand* left = NULL;
+  LOperand* right = NULL;
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    left = UseRegisterAtStart(instr->BetterLeftOperand());
+    right = UseOrConstantAtStart(instr->BetterRightOperand());
+  } else {
+    DCHECK(instr->representation().IsDouble());
+    DCHECK(instr->left()->representation().IsDouble());
+    DCHECK(instr->right()->representation().IsDouble());
+    left = UseRegisterAtStart(instr->left());
+    right = UseRegisterAtStart(instr->right());
+  }
+  return DefineAsRegister(new(zone()) LMathMinMax(left, right));
+}
+
+
+LInstruction* LChunkBuilder::DoPower(HPower* instr) {
+  DCHECK(instr->representation().IsDouble());
+  // We call a C function for double power. It can't trigger a GC.
+  // We need to use fixed result register for the call.
+  Representation exponent_type = instr->right()->representation();
+  DCHECK(instr->left()->representation().IsDouble());
+  LOperand* left = UseFixedDouble(instr->left(), f2);
+  LOperand* right =
+      exponent_type.IsDouble()
+          ? UseFixedDouble(instr->right(), f4)
+          : UseFixed(instr->right(), MathPowTaggedDescriptor::exponent());
+  LPower* result = new(zone()) LPower(left, right);
+  return MarkAsCall(DefineFixedDouble(result, f0),
+                    instr,
+                    CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) {
+  DCHECK(instr->left()->representation().IsTagged());
+  DCHECK(instr->right()->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* left = UseFixed(instr->left(), a1);
+  LOperand* right = UseFixed(instr->right(), a0);
+  LCmpT* result = new(zone()) LCmpT(context, left, right);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareNumericAndBranch(
+    HCompareNumericAndBranch* instr) {
+  Representation r = instr->representation();
+  if (r.IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(r));
+    DCHECK(instr->right()->representation().Equals(r));
+    LOperand* left = UseRegisterOrConstantAtStart(instr->left());
+    LOperand* right = UseRegisterOrConstantAtStart(instr->right());
+    return new(zone()) LCompareNumericAndBranch(left, right);
+  } else {
+    DCHECK(r.IsDouble());
+    DCHECK(instr->left()->representation().IsDouble());
+    DCHECK(instr->right()->representation().IsDouble());
+    LOperand* left = UseRegisterAtStart(instr->left());
+    LOperand* right = UseRegisterAtStart(instr->right());
+    return new(zone()) LCompareNumericAndBranch(left, right);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch(
+    HCompareObjectEqAndBranch* instr) {
+  LOperand* left = UseRegisterAtStart(instr->left());
+  LOperand* right = UseRegisterAtStart(instr->right());
+  return new(zone()) LCmpObjectEqAndBranch(left, right);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareHoleAndBranch(
+    HCompareHoleAndBranch* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LCmpHoleAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareMinusZeroAndBranch(
+    HCompareMinusZeroAndBranch* instr) {
+  LOperand* value = UseRegister(instr->value());
+  LOperand* scratch = TempRegister();
+  return new(zone()) LCompareMinusZeroAndBranch(value, scratch);
+}
+
+
+LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* temp = TempRegister();
+  return new(zone()) LIsStringAndBranch(UseRegisterAtStart(instr->value()),
+                                        temp);
+}
+
+
+LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  return new(zone()) LIsSmiAndBranch(Use(instr->value()));
+}
+
+
+LInstruction* LChunkBuilder::DoIsUndetectableAndBranch(
+    HIsUndetectableAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  return new(zone()) LIsUndetectableAndBranch(
+      UseRegisterAtStart(instr->value()), TempRegister());
+}
+
+
+LInstruction* LChunkBuilder::DoStringCompareAndBranch(
+    HStringCompareAndBranch* instr) {
+  DCHECK(instr->left()->representation().IsTagged());
+  DCHECK(instr->right()->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* left = UseFixed(instr->left(), a1);
+  LOperand* right = UseFixed(instr->right(), a0);
+  LStringCompareAndBranch* result =
+      new(zone()) LStringCompareAndBranch(context, left, right);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch(
+    HHasInstanceTypeAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LHasInstanceTypeAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoGetCachedArrayIndex(
+    HGetCachedArrayIndex* instr)  {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+
+  return DefineAsRegister(new(zone()) LGetCachedArrayIndex(value));
+}
+
+
+LInstruction* LChunkBuilder::DoHasCachedArrayIndexAndBranch(
+    HHasCachedArrayIndexAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  return new(zone()) LHasCachedArrayIndexAndBranch(
+      UseRegisterAtStart(instr->value()));
+}
+
+
+LInstruction* LChunkBuilder::DoClassOfTestAndBranch(
+    HClassOfTestAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  return new(zone()) LClassOfTestAndBranch(UseRegister(instr->value()),
+                                           TempRegister());
+}
+
+
+LInstruction* LChunkBuilder::DoMapEnumLength(HMapEnumLength* instr) {
+  LOperand* map = UseRegisterAtStart(instr->value());
+  return DefineAsRegister(new(zone()) LMapEnumLength(map));
+}
+
+
+LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) {
+  LOperand* string = UseRegisterAtStart(instr->string());
+  LOperand* index = UseRegisterOrConstantAtStart(instr->index());
+  return DefineAsRegister(new(zone()) LSeqStringGetChar(string, index));
+}
+
+
+LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) {
+  LOperand* string = UseRegisterAtStart(instr->string());
+  LOperand* index = FLAG_debug_code
+      ? UseRegisterAtStart(instr->index())
+      : UseRegisterOrConstantAtStart(instr->index());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), cp) : NULL;
+  return new(zone()) LSeqStringSetChar(context, string, index, value);
+}
+
+
+LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
+  if (!FLAG_debug_code && instr->skip_check()) return NULL;
+  LOperand* index = UseRegisterOrConstantAtStart(instr->index());
+  LOperand* length = !index->IsConstantOperand()
+  ? UseRegisterOrConstantAtStart(instr->length())
+  : UseRegisterAtStart(instr->length());
+  LInstruction* result = new(zone()) LBoundsCheck(index, length);
+  if (!FLAG_debug_code || !instr->skip_check()) {
+    result = AssignEnvironment(result);
+  }
+return result;
+}
+
+
+LInstruction* LChunkBuilder::DoBoundsCheckBaseIndexInformation(
+    HBoundsCheckBaseIndexInformation* instr) {
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) {
+  // The control instruction marking the end of a block that completed
+  // abruptly (e.g., threw an exception).  There is nothing specific to do.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) {
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) {
+  // All HForceRepresentation instructions should be eliminated in the
+  // representation change phase of Hydrogen.
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoChange(HChange* instr) {
+  Representation from = instr->from();
+  Representation to = instr->to();
+  HValue* val = instr->value();
+  if (from.IsSmi()) {
+    if (to.IsTagged()) {
+      LOperand* value = UseRegister(val);
+      return DefineSameAsFirst(new(zone()) LDummyUse(value));
+    }
+    from = Representation::Tagged();
+  }
+  if (from.IsTagged()) {
+    if (to.IsDouble()) {
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LNumberUntagD(value));
+      if (!val->representation().IsSmi()) result = AssignEnvironment(result);
+      return result;
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      if (val->type().IsSmi()) {
+        return DefineSameAsFirst(new(zone()) LDummyUse(value));
+      }
+      return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value)));
+    } else {
+      DCHECK(to.IsInteger32());
+      if (val->type().IsSmi() || val->representation().IsSmi()) {
+        LOperand* value = UseRegisterAtStart(val);
+        return DefineAsRegister(new(zone()) LSmiUntag(value, false));
+      } else {
+        LOperand* value = UseRegister(val);
+        LOperand* temp1 = TempRegister();
+        LOperand* temp2 = TempDoubleRegister();
+        LInstruction* result =
+            DefineSameAsFirst(new(zone()) LTaggedToI(value, temp1, temp2));
+        if (!val->representation().IsSmi()) result = AssignEnvironment(result);
+        return result;
+      }
+    }
+  } else if (from.IsDouble()) {
+    if (to.IsTagged()) {
+      info()->MarkAsDeferredCalling();
+      LOperand* value = UseRegister(val);
+      LOperand* temp1 = TempRegister();
+      LOperand* temp2 = TempRegister();
+
+      LUnallocated* result_temp = TempRegister();
+      LNumberTagD* result = new(zone()) LNumberTagD(value, temp1, temp2);
+      return AssignPointerMap(Define(result, result_temp));
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      return AssignEnvironment(
+          DefineAsRegister(new(zone()) LDoubleToSmi(value)));
+    } else {
+      DCHECK(to.IsInteger32());
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LDoubleToI(value));
+      if (!instr->CanTruncateToInt32()) result = AssignEnvironment(result);
+      return result;
+    }
+  } else if (from.IsInteger32()) {
+    info()->MarkAsDeferredCalling();
+    if (to.IsTagged()) {
+      if (val->CheckFlag(HInstruction::kUint32)) {
+        LOperand* value = UseRegisterAtStart(val);
+        LOperand* temp1 = TempRegister();
+        LOperand* temp2 = TempRegister();
+        LNumberTagU* result = new(zone()) LNumberTagU(value, temp1, temp2);
+        return AssignPointerMap(DefineAsRegister(result));
+      } else {
+        STATIC_ASSERT((kMinInt == Smi::kMinValue) &&
+                      (kMaxInt == Smi::kMaxValue));
+        LOperand* value = UseRegisterAtStart(val);
+        return DefineAsRegister(new(zone()) LSmiTag(value));
+      }
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LSmiTag(value));
+      if (instr->CheckFlag(HValue::kCanOverflow)) {
+        result = AssignEnvironment(result);
+      }
+      return result;
+    } else {
+      DCHECK(to.IsDouble());
+      if (val->CheckFlag(HInstruction::kUint32)) {
+        return DefineAsRegister(new(zone()) LUint32ToDouble(UseRegister(val)));
+      } else {
+        return DefineAsRegister(new(zone()) LInteger32ToDouble(Use(val)));
+      }
+    }
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LInstruction* result = new(zone()) LCheckNonSmi(value);
+  if (!instr->value()->type().IsHeapObject()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return AssignEnvironment(new(zone()) LCheckSmi(value));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckArrayBufferNotNeutered(
+    HCheckArrayBufferNotNeutered* instr) {
+  LOperand* view = UseRegisterAtStart(instr->value());
+  LCheckArrayBufferNotNeutered* result =
+      new (zone()) LCheckArrayBufferNotNeutered(view);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LInstruction* result = new(zone()) LCheckInstanceType(value);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return AssignEnvironment(new(zone()) LCheckValue(value));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) {
+  if (instr->IsStabilityCheck()) return new(zone()) LCheckMaps;
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LInstruction* result = AssignEnvironment(new(zone()) LCheckMaps(value));
+  if (instr->HasMigrationTarget()) {
+    info()->MarkAsDeferredCalling();
+    result = AssignPointerMap(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) {
+  HValue* value = instr->value();
+  Representation input_rep = value->representation();
+  LOperand* reg = UseRegister(value);
+  if (input_rep.IsDouble()) {
+    // Revisit this decision, here and 8 lines below.
+    return DefineAsRegister(new(zone()) LClampDToUint8(reg,
+        TempDoubleRegister()));
+  } else if (input_rep.IsInteger32()) {
+    return DefineAsRegister(new(zone()) LClampIToUint8(reg));
+  } else {
+    DCHECK(input_rep.IsSmiOrTagged());
+    LClampTToUint8* result =
+        new(zone()) LClampTToUint8(reg, TempDoubleRegister());
+    return AssignEnvironment(DefineAsRegister(result));
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoDoubleBits(HDoubleBits* instr) {
+  HValue* value = instr->value();
+  DCHECK(value->representation().IsDouble());
+  return DefineAsRegister(new(zone()) LDoubleBits(UseRegister(value)));
+}
+
+
+LInstruction* LChunkBuilder::DoConstructDouble(HConstructDouble* instr) {
+  LOperand* lo = UseRegister(instr->lo());
+  LOperand* hi = UseRegister(instr->hi());
+  return DefineAsRegister(new(zone()) LConstructDouble(hi, lo));
+}
+
+
+LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
+  LOperand* context = info()->IsStub()
+      ? UseFixed(instr->context(), cp)
+      : NULL;
+  LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count());
+  return new(zone()) LReturn(UseFixed(instr->value(), v0), context,
+                             parameter_count);
+}
+
+
+LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
+  Representation r = instr->representation();
+  if (r.IsSmi()) {
+    return DefineAsRegister(new(zone()) LConstantS);
+  } else if (r.IsInteger32()) {
+    return DefineAsRegister(new(zone()) LConstantI);
+  } else if (r.IsDouble()) {
+    return DefineAsRegister(new(zone()) LConstantD);
+  } else if (r.IsExternal()) {
+    return DefineAsRegister(new(zone()) LConstantE);
+  } else if (r.IsTagged()) {
+    return DefineAsRegister(new(zone()) LConstantT);
+  } else {
+    UNREACHABLE();
+    return NULL;
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* global_object =
+      UseFixed(instr->global_object(), LoadDescriptor::ReceiverRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+  LLoadGlobalGeneric* result =
+      new(zone()) LLoadGlobalGeneric(context, global_object, vector);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
+  LOperand* context = UseRegisterAtStart(instr->value());
+  LInstruction* result =
+      DefineAsRegister(new(zone()) LLoadContextSlot(context));
+  if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) {
+  LOperand* context;
+  LOperand* value;
+  if (instr->NeedsWriteBarrier()) {
+    context = UseTempRegister(instr->context());
+    value = UseTempRegister(instr->value());
+  } else {
+    context = UseRegister(instr->context());
+    value = UseRegister(instr->value());
+  }
+  LInstruction* result = new(zone()) LStoreContextSlot(context, value);
+  if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
+  LOperand* obj = UseRegisterAtStart(instr->object());
+  return DefineAsRegister(new(zone()) LLoadNamedField(obj));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* object =
+      UseFixed(instr->object(), LoadDescriptor::ReceiverRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+
+  LInstruction* result =
+      DefineFixed(new(zone()) LLoadNamedGeneric(context, object, vector), v0);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
+    HLoadFunctionPrototype* instr) {
+  return AssignEnvironment(DefineAsRegister(
+      new(zone()) LLoadFunctionPrototype(UseRegister(instr->function()))));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) {
+  return DefineAsRegister(new(zone()) LLoadRoot);
+}
+
+
+LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) {
+  DCHECK(instr->key()->representation().IsSmiOrInteger32());
+  ElementsKind elements_kind = instr->elements_kind();
+  LOperand* key = UseRegisterOrConstantAtStart(instr->key());
+  LInstruction* result = NULL;
+
+  if (!instr->is_fixed_typed_array()) {
+    LOperand* obj = NULL;
+    if (instr->representation().IsDouble()) {
+      obj = UseRegister(instr->elements());
+    } else {
+      DCHECK(instr->representation().IsSmiOrTagged() ||
+             instr->representation().IsInteger32());
+      obj = UseRegisterAtStart(instr->elements());
+    }
+    result = DefineAsRegister(new (zone()) LLoadKeyed(obj, key, nullptr));
+  } else {
+    DCHECK(
+        (instr->representation().IsInteger32() &&
+         !IsDoubleOrFloatElementsKind(elements_kind)) ||
+        (instr->representation().IsDouble() &&
+         IsDoubleOrFloatElementsKind(elements_kind)));
+    LOperand* backing_store = UseRegister(instr->elements());
+    LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
+    result = DefineAsRegister(
+        new (zone()) LLoadKeyed(backing_store, key, backing_store_owner));
+  }
+
+  bool needs_environment;
+  if (instr->is_fixed_typed_array()) {
+    // see LCodeGen::DoLoadKeyedExternalArray
+    needs_environment = elements_kind == UINT32_ELEMENTS &&
+                        !instr->CheckFlag(HInstruction::kUint32);
+  } else {
+    // see LCodeGen::DoLoadKeyedFixedDoubleArray and
+    // LCodeGen::DoLoadKeyedFixedArray
+    needs_environment =
+        instr->RequiresHoleCheck() ||
+        (instr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED && info()->IsStub());
+  }
+
+  if (needs_environment) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* object =
+      UseFixed(instr->object(), LoadDescriptor::ReceiverRegister());
+  LOperand* key = UseFixed(instr->key(), LoadDescriptor::NameRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+
+  LInstruction* result =
+      DefineFixed(new(zone()) LLoadKeyedGeneric(context, object, key, vector),
+                  v0);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) {
+  if (!instr->is_fixed_typed_array()) {
+    DCHECK(instr->elements()->representation().IsTagged());
+    bool needs_write_barrier = instr->NeedsWriteBarrier();
+    LOperand* object = NULL;
+    LOperand* val = NULL;
+    LOperand* key = NULL;
+
+    if (instr->value()->representation().IsDouble()) {
+      object = UseRegisterAtStart(instr->elements());
+      key = UseRegisterOrConstantAtStart(instr->key());
+      val = UseRegister(instr->value());
+    } else {
+      DCHECK(instr->value()->representation().IsSmiOrTagged() ||
+             instr->value()->representation().IsInteger32());
+      if (needs_write_barrier) {
+        object = UseTempRegister(instr->elements());
+        val = UseTempRegister(instr->value());
+        key = UseTempRegister(instr->key());
+      } else {
+        object = UseRegisterAtStart(instr->elements());
+        val = UseRegisterAtStart(instr->value());
+        key = UseRegisterOrConstantAtStart(instr->key());
+      }
+    }
+
+    return new (zone()) LStoreKeyed(object, key, val, nullptr);
+  }
+
+  DCHECK(
+      (instr->value()->representation().IsInteger32() &&
+       !IsDoubleOrFloatElementsKind(instr->elements_kind())) ||
+      (instr->value()->representation().IsDouble() &&
+       IsDoubleOrFloatElementsKind(instr->elements_kind())));
+  DCHECK(instr->elements()->representation().IsExternal());
+  LOperand* val = UseRegister(instr->value());
+  LOperand* key = UseRegisterOrConstantAtStart(instr->key());
+  LOperand* backing_store = UseRegister(instr->elements());
+  LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
+  return new (zone()) LStoreKeyed(backing_store, key, val, backing_store_owner);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* obj =
+      UseFixed(instr->object(), StoreDescriptor::ReceiverRegister());
+  LOperand* key = UseFixed(instr->key(), StoreDescriptor::NameRegister());
+  LOperand* val = UseFixed(instr->value(), StoreDescriptor::ValueRegister());
+
+  DCHECK(instr->object()->representation().IsTagged());
+  DCHECK(instr->key()->representation().IsTagged());
+  DCHECK(instr->value()->representation().IsTagged());
+
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(VectorStoreICDescriptor::SlotRegister());
+    vector = FixedTemp(VectorStoreICDescriptor::VectorRegister());
+  }
+
+  LStoreKeyedGeneric* result =
+      new (zone()) LStoreKeyedGeneric(context, obj, key, val, slot, vector);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTransitionElementsKind(
+    HTransitionElementsKind* instr) {
+  if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) {
+    LOperand* object = UseRegister(instr->object());
+    LOperand* new_map_reg = TempRegister();
+    LTransitionElementsKind* result =
+        new(zone()) LTransitionElementsKind(object, NULL, new_map_reg);
+    return result;
+  } else {
+    LOperand* object = UseFixed(instr->object(), a0);
+    LOperand* context = UseFixed(instr->context(), cp);
+    LTransitionElementsKind* result =
+        new(zone()) LTransitionElementsKind(object, context, NULL);
+    return MarkAsCall(result, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoTrapAllocationMemento(
+    HTrapAllocationMemento* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* temp = TempRegister();
+  LTrapAllocationMemento* result =
+      new(zone()) LTrapAllocationMemento(object, temp);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMaybeGrowElements(HMaybeGrowElements* instr) {
+  info()->MarkAsDeferredCalling();
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* object = Use(instr->object());
+  LOperand* elements = Use(instr->elements());
+  LOperand* key = UseRegisterOrConstant(instr->key());
+  LOperand* current_capacity = UseRegisterOrConstant(instr->current_capacity());
+
+  LMaybeGrowElements* result = new (zone())
+      LMaybeGrowElements(context, object, elements, key, current_capacity);
+  DefineFixed(result, v0);
+  return AssignPointerMap(AssignEnvironment(result));
+}
+
+
+LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
+  bool is_in_object = instr->access().IsInobject();
+  bool needs_write_barrier = instr->NeedsWriteBarrier();
+  bool needs_write_barrier_for_map = instr->has_transition() &&
+      instr->NeedsWriteBarrierForMap();
+
+  LOperand* obj;
+  if (needs_write_barrier) {
+    obj = is_in_object
+        ? UseRegister(instr->object())
+        : UseTempRegister(instr->object());
+  } else {
+    obj = needs_write_barrier_for_map
+        ? UseRegister(instr->object())
+        : UseRegisterAtStart(instr->object());
+  }
+
+  LOperand* val;
+  if (needs_write_barrier) {
+    val = UseTempRegister(instr->value());
+  } else if (instr->field_representation().IsDouble()) {
+    val = UseRegisterAtStart(instr->value());
+  } else {
+    val = UseRegister(instr->value());
+  }
+
+  // We need a temporary register for write barrier of the map field.
+  LOperand* temp = needs_write_barrier_for_map ? TempRegister() : NULL;
+
+  return new(zone()) LStoreNamedField(obj, val, temp);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* obj =
+      UseFixed(instr->object(), StoreDescriptor::ReceiverRegister());
+  LOperand* val = UseFixed(instr->value(), StoreDescriptor::ValueRegister());
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(VectorStoreICDescriptor::SlotRegister());
+    vector = FixedTemp(VectorStoreICDescriptor::VectorRegister());
+  }
+
+  LStoreNamedGeneric* result =
+      new (zone()) LStoreNamedGeneric(context, obj, val, slot, vector);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* left = UseFixed(instr->left(), a1);
+  LOperand* right = UseFixed(instr->right(), a0);
+  return MarkAsCall(
+      DefineFixed(new(zone()) LStringAdd(context, left, right), v0),
+      instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) {
+  LOperand* string = UseTempRegister(instr->string());
+  LOperand* index = UseTempRegister(instr->index());
+  LOperand* context = UseAny(instr->context());
+  LStringCharCodeAt* result =
+      new(zone()) LStringCharCodeAt(context, string, index);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) {
+  LOperand* char_code = UseRegister(instr->value());
+  LOperand* context = UseAny(instr->context());
+  LStringCharFromCode* result =
+      new(zone()) LStringCharFromCode(context, char_code);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoAllocate(HAllocate* instr) {
+  info()->MarkAsDeferredCalling();
+  LOperand* context = UseAny(instr->context());
+  LOperand* size = UseRegisterOrConstant(instr->size());
+  LOperand* temp1 = TempRegister();
+  LOperand* temp2 = TempRegister();
+  LAllocate* result = new(zone()) LAllocate(context, size, temp1, temp2);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
+  DCHECK(argument_count_ == 0);
+  allocator_->MarkAsOsrEntry();
+  current_block_->last_environment()->set_ast_id(instr->ast_id());
+  return AssignEnvironment(new(zone()) LOsrEntry);
+}
+
+
+LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
+  LParameter* result = new(zone()) LParameter;
+  if (instr->kind() == HParameter::STACK_PARAMETER) {
+    int spill_index = chunk()->GetParameterStackSlot(instr->index());
+    return DefineAsSpilled(result, spill_index);
+  } else {
+    DCHECK(info()->IsStub());
+    CallInterfaceDescriptor descriptor =
+        info()->code_stub()->GetCallInterfaceDescriptor();
+    int index = static_cast<int>(instr->index());
+    Register reg = descriptor.GetRegisterParameter(index);
+    return DefineFixed(result, reg);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
+  // Use an index that corresponds to the location in the unoptimized frame,
+  // which the optimized frame will subsume.
+  int env_index = instr->index();
+  int spill_index = 0;
+  if (instr->environment()->is_parameter_index(env_index)) {
+    spill_index = chunk()->GetParameterStackSlot(env_index);
+  } else {
+    spill_index = env_index - instr->environment()->first_local_index();
+    if (spill_index > LUnallocated::kMaxFixedSlotIndex) {
+      Retry(kTooManySpillSlotsNeededForOSR);
+      spill_index = 0;
+    }
+  }
+  return DefineAsSpilled(new(zone()) LUnknownOSRValue, spill_index);
+}
+
+
+LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  return MarkAsCall(DefineFixed(new(zone()) LCallStub(context), v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
+  // There are no real uses of the arguments object.
+  // arguments.length and element access are supported directly on
+  // stack arguments, and any real arguments object use causes a bailout.
+  // So this value is never used.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoCapturedObject(HCapturedObject* instr) {
+  instr->ReplayEnvironment(current_block_->last_environment());
+
+  // There are no real uses of a captured object.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
+  info()->MarkAsRequiresFrame();
+  LOperand* args = UseRegister(instr->arguments());
+  LOperand* length = UseRegisterOrConstantAtStart(instr->length());
+  LOperand* index = UseRegisterOrConstantAtStart(instr->index());
+  return DefineAsRegister(new(zone()) LAccessArgumentsAt(args, length, index));
+}
+
+
+LInstruction* LChunkBuilder::DoToFastProperties(HToFastProperties* instr) {
+  LOperand* object = UseFixed(instr->value(), a0);
+  LToFastProperties* result = new(zone()) LToFastProperties(object);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* value = UseFixed(instr->value(), a3);
+  LTypeof* result = new (zone()) LTypeof(context, value);
+  return MarkAsCall(DefineFixed(result, v0), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) {
+  return new(zone()) LTypeofIsAndBranch(UseTempRegister(instr->value()));
+}
+
+
+LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
+  instr->ReplayEnvironment(current_block_->last_environment());
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
+  if (instr->is_function_entry()) {
+    LOperand* context = UseFixed(instr->context(), cp);
+    return MarkAsCall(new(zone()) LStackCheck(context), instr);
+  } else {
+    DCHECK(instr->is_backwards_branch());
+    LOperand* context = UseAny(instr->context());
+    return AssignEnvironment(
+        AssignPointerMap(new(zone()) LStackCheck(context)));
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
+  HEnvironment* outer = current_block_->last_environment();
+  outer->set_ast_id(instr->ReturnId());
+  HConstant* undefined = graph()->GetConstantUndefined();
+  HEnvironment* inner = outer->CopyForInlining(instr->closure(),
+                                               instr->arguments_count(),
+                                               instr->function(),
+                                               undefined,
+                                               instr->inlining_kind());
+  // Only replay binding of arguments object if it wasn't removed from graph.
+  if (instr->arguments_var() != NULL && instr->arguments_object()->IsLinked()) {
+    inner->Bind(instr->arguments_var(), instr->arguments_object());
+  }
+  inner->BindContext(instr->closure_context());
+  inner->set_entry(instr);
+  current_block_->UpdateEnvironment(inner);
+  chunk_->AddInlinedFunction(instr->shared());
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
+  LInstruction* pop = NULL;
+
+  HEnvironment* env = current_block_->last_environment();
+
+  if (env->entry()->arguments_pushed()) {
+    int argument_count = env->arguments_environment()->parameter_count();
+    pop = new(zone()) LDrop(argument_count);
+    DCHECK(instr->argument_delta() == -argument_count);
+  }
+
+  HEnvironment* outer = current_block_->last_environment()->
+      DiscardInlined(false);
+  current_block_->UpdateEnvironment(outer);
+
+  return pop;
+}
+
+
+LInstruction* LChunkBuilder::DoForInPrepareMap(HForInPrepareMap* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* object = UseFixed(instr->enumerable(), a0);
+  LForInPrepareMap* result = new(zone()) LForInPrepareMap(context, object);
+  return MarkAsCall(DefineFixed(result, v0), instr, CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoForInCacheArray(HForInCacheArray* instr) {
+  LOperand* map = UseRegister(instr->map());
+  return AssignEnvironment(DefineAsRegister(new(zone()) LForInCacheArray(map)));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckMapValue(HCheckMapValue* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* map = UseRegisterAtStart(instr->map());
+  return AssignEnvironment(new(zone()) LCheckMapValue(value, map));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadFieldByIndex(HLoadFieldByIndex* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* index = UseTempRegister(instr->index());
+  LLoadFieldByIndex* load = new(zone()) LLoadFieldByIndex(object, index);
+  LInstruction* result = DefineSameAsFirst(load);
+  return AssignPointerMap(result);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreFrameContext(HStoreFrameContext* instr) {
+  LOperand* context = UseRegisterAtStart(instr->context());
+  return new(zone()) LStoreFrameContext(context);
+}
+
+
+LInstruction* LChunkBuilder::DoAllocateBlockContext(
+    HAllocateBlockContext* instr) {
+  LOperand* context = UseFixed(instr->context(), cp);
+  LOperand* function = UseRegisterAtStart(instr->function());
+  LAllocateBlockContext* result =
+      new(zone()) LAllocateBlockContext(context, function);
+  return MarkAsCall(DefineFixed(result, cp), instr);
+}
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_MIPS64
diff --git a/src/crankshaft/mips64/lithium-mips64.h b/src/crankshaft/mips64/lithium-mips64.h
new file mode 100644
index 0000000..01dc234
--- /dev/null
+++ b/src/crankshaft/mips64/lithium-mips64.h
@@ -0,0 +1,2792 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_MIPS64_LITHIUM_MIPS_H_
+#define V8_CRANKSHAFT_MIPS64_LITHIUM_MIPS_H_
+
+#include "src/crankshaft/hydrogen.h"
+#include "src/crankshaft/lithium.h"
+#include "src/crankshaft/lithium-allocator.h"
+#include "src/safepoint-table.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declarations.
+class LCodeGen;
+
+#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
+  V(AccessArgumentsAt)                       \
+  V(AddE)                                    \
+  V(AddI)                                    \
+  V(AddS)                                    \
+  V(Allocate)                                \
+  V(AllocateBlockContext)                    \
+  V(ApplyArguments)                          \
+  V(ArgumentsElements)                       \
+  V(ArgumentsLength)                         \
+  V(ArithmeticD)                             \
+  V(ArithmeticT)                             \
+  V(BitI)                                    \
+  V(BoundsCheck)                             \
+  V(Branch)                                  \
+  V(CallJSFunction)                          \
+  V(CallWithDescriptor)                      \
+  V(CallFunction)                            \
+  V(CallNewArray)                            \
+  V(CallRuntime)                             \
+  V(CallStub)                                \
+  V(CheckArrayBufferNotNeutered)             \
+  V(CheckInstanceType)                       \
+  V(CheckMaps)                               \
+  V(CheckMapValue)                           \
+  V(CheckNonSmi)                             \
+  V(CheckSmi)                                \
+  V(CheckValue)                              \
+  V(ClampDToUint8)                           \
+  V(ClampIToUint8)                           \
+  V(ClampTToUint8)                           \
+  V(ClassOfTestAndBranch)                    \
+  V(CompareMinusZeroAndBranch)               \
+  V(CompareNumericAndBranch)                 \
+  V(CmpObjectEqAndBranch)                    \
+  V(CmpHoleAndBranch)                        \
+  V(CmpMapAndBranch)                         \
+  V(CmpT)                                    \
+  V(ConstantD)                               \
+  V(ConstantE)                               \
+  V(ConstantI)                               \
+  V(ConstantS)                               \
+  V(ConstantT)                               \
+  V(ConstructDouble)                         \
+  V(Context)                                 \
+  V(DebugBreak)                              \
+  V(DeclareGlobals)                          \
+  V(Deoptimize)                              \
+  V(DivByConstI)                             \
+  V(DivByPowerOf2I)                          \
+  V(DivI)                                    \
+  V(DoubleToI)                               \
+  V(DoubleBits)                              \
+  V(DoubleToSmi)                             \
+  V(Drop)                                    \
+  V(Dummy)                                   \
+  V(DummyUse)                                \
+  V(FlooringDivByConstI)                     \
+  V(FlooringDivByPowerOf2I)                  \
+  V(FlooringDivI)                            \
+  V(ForInCacheArray)                         \
+  V(ForInPrepareMap)                         \
+  V(GetCachedArrayIndex)                     \
+  V(Goto)                                    \
+  V(HasCachedArrayIndexAndBranch)            \
+  V(HasInPrototypeChainAndBranch)            \
+  V(HasInstanceTypeAndBranch)                \
+  V(InnerAllocatedObject)                    \
+  V(InstanceOf)                              \
+  V(InstructionGap)                          \
+  V(Integer32ToDouble)                       \
+  V(InvokeFunction)                          \
+  V(IsStringAndBranch)                       \
+  V(IsSmiAndBranch)                          \
+  V(IsUndetectableAndBranch)                 \
+  V(Label)                                   \
+  V(LazyBailout)                             \
+  V(LoadContextSlot)                         \
+  V(LoadRoot)                                \
+  V(LoadFieldByIndex)                        \
+  V(LoadFunctionPrototype)                   \
+  V(LoadGlobalGeneric)                       \
+  V(LoadKeyed)                               \
+  V(LoadKeyedGeneric)                        \
+  V(LoadNamedField)                          \
+  V(LoadNamedGeneric)                        \
+  V(MapEnumLength)                           \
+  V(MathAbs)                                 \
+  V(MathExp)                                 \
+  V(MathClz32)                               \
+  V(MathFloor)                               \
+  V(MathFround)                              \
+  V(MathLog)                                 \
+  V(MathMinMax)                              \
+  V(MathPowHalf)                             \
+  V(MathRound)                               \
+  V(MathSqrt)                                \
+  V(MaybeGrowElements)                       \
+  V(ModByConstI)                             \
+  V(ModByPowerOf2I)                          \
+  V(ModI)                                    \
+  V(MulI)                                    \
+  V(MulS)                                    \
+  V(MultiplyAddD)                            \
+  V(NumberTagD)                              \
+  V(NumberTagU)                              \
+  V(NumberUntagD)                            \
+  V(OsrEntry)                                \
+  V(Parameter)                               \
+  V(Power)                                   \
+  V(Prologue)                                \
+  V(PushArgument)                            \
+  V(Return)                                  \
+  V(SeqStringGetChar)                        \
+  V(SeqStringSetChar)                        \
+  V(ShiftI)                                  \
+  V(SmiTag)                                  \
+  V(SmiUntag)                                \
+  V(StackCheck)                              \
+  V(StoreCodeEntry)                          \
+  V(StoreContextSlot)                        \
+  V(StoreFrameContext)                       \
+  V(StoreKeyed)                              \
+  V(StoreKeyedGeneric)                       \
+  V(StoreNamedField)                         \
+  V(StoreNamedGeneric)                       \
+  V(StringAdd)                               \
+  V(StringCharCodeAt)                        \
+  V(StringCharFromCode)                      \
+  V(StringCompareAndBranch)                  \
+  V(SubI)                                    \
+  V(SubS)                                    \
+  V(TaggedToI)                               \
+  V(ThisFunction)                            \
+  V(ToFastProperties)                        \
+  V(TransitionElementsKind)                  \
+  V(TrapAllocationMemento)                   \
+  V(Typeof)                                  \
+  V(TypeofIsAndBranch)                       \
+  V(Uint32ToDouble)                          \
+  V(UnknownOSRValue)                         \
+  V(WrapReceiver)
+
+#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic)            \
+  Opcode opcode() const final { return LInstruction::k##type; } \
+  void CompileToNative(LCodeGen* generator) final;              \
+  const char* Mnemonic() const final { return mnemonic; }       \
+  static L##type* cast(LInstruction* instr) {                   \
+    DCHECK(instr->Is##type());                                  \
+    return reinterpret_cast<L##type*>(instr);                   \
+  }
+
+
+#define DECLARE_HYDROGEN_ACCESSOR(type)     \
+  H##type* hydrogen() const {               \
+    return H##type::cast(hydrogen_value()); \
+  }
+
+
+class LInstruction : public ZoneObject {
+ public:
+  LInstruction()
+      : environment_(NULL),
+        hydrogen_value_(NULL),
+        bit_field_(IsCallBits::encode(false)) {
+  }
+
+  virtual ~LInstruction() {}
+
+  virtual void CompileToNative(LCodeGen* generator) = 0;
+  virtual const char* Mnemonic() const = 0;
+  virtual void PrintTo(StringStream* stream);
+  virtual void PrintDataTo(StringStream* stream);
+  virtual void PrintOutputOperandTo(StringStream* stream);
+
+  enum Opcode {
+    // Declare a unique enum value for each instruction.
+#define DECLARE_OPCODE(type) k##type,
+    LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
+    kNumberOfInstructions
+#undef DECLARE_OPCODE
+  };
+
+  virtual Opcode opcode() const = 0;
+
+  // Declare non-virtual type testers for all leaf IR classes.
+#define DECLARE_PREDICATE(type) \
+  bool Is##type() const { return opcode() == k##type; }
+  LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
+#undef DECLARE_PREDICATE
+
+  // Declare virtual predicates for instructions that don't have
+  // an opcode.
+  virtual bool IsGap() const { return false; }
+
+  virtual bool IsControl() const { return false; }
+
+  // Try deleting this instruction if possible.
+  virtual bool TryDelete() { return false; }
+
+  void set_environment(LEnvironment* env) { environment_ = env; }
+  LEnvironment* environment() const { return environment_; }
+  bool HasEnvironment() const { return environment_ != NULL; }
+
+  void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
+  LPointerMap* pointer_map() const { return pointer_map_.get(); }
+  bool HasPointerMap() const { return pointer_map_.is_set(); }
+
+  void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
+  HValue* hydrogen_value() const { return hydrogen_value_; }
+
+  void MarkAsCall() { bit_field_ = IsCallBits::update(bit_field_, true); }
+  bool IsCall() const { return IsCallBits::decode(bit_field_); }
+
+  // Interface to the register allocator and iterators.
+  bool ClobbersTemps() const { return IsCall(); }
+  bool ClobbersRegisters() const { return IsCall(); }
+  virtual bool ClobbersDoubleRegisters(Isolate* isolate) const {
+    return IsCall();
+  }
+
+  // Interface to the register allocator and iterators.
+  bool IsMarkedAsCall() const { return IsCall(); }
+
+  virtual bool HasResult() const = 0;
+  virtual LOperand* result() const = 0;
+
+  LOperand* FirstInput() { return InputAt(0); }
+  LOperand* Output() { return HasResult() ? result() : NULL; }
+
+  virtual bool HasInterestingComment(LCodeGen* gen) const { return true; }
+
+#ifdef DEBUG
+  void VerifyCall();
+#endif
+
+  virtual int InputCount() = 0;
+  virtual LOperand* InputAt(int i) = 0;
+
+ private:
+  // Iterator interface.
+  friend class InputIterator;
+
+  friend class TempIterator;
+  virtual int TempCount() = 0;
+  virtual LOperand* TempAt(int i) = 0;
+
+  class IsCallBits: public BitField<bool, 0, 1> {};
+
+  LEnvironment* environment_;
+  SetOncePointer<LPointerMap> pointer_map_;
+  HValue* hydrogen_value_;
+  int bit_field_;
+};
+
+
+// R = number of result operands (0 or 1).
+template<int R>
+class LTemplateResultInstruction : public LInstruction {
+ public:
+  // Allow 0 or 1 output operands.
+  STATIC_ASSERT(R == 0 || R == 1);
+  bool HasResult() const final { return R != 0 && result() != NULL; }
+  void set_result(LOperand* operand) { results_[0] = operand; }
+  LOperand* result() const override { return results_[0]; }
+
+ protected:
+  EmbeddedContainer<LOperand*, R> results_;
+};
+
+
+// R = number of result operands (0 or 1).
+// I = number of input operands.
+// T = number of temporary operands.
+template<int R, int I, int T>
+class LTemplateInstruction : public LTemplateResultInstruction<R> {
+ protected:
+  EmbeddedContainer<LOperand*, I> inputs_;
+  EmbeddedContainer<LOperand*, T> temps_;
+
+ private:
+  // Iterator support.
+  int InputCount() final { return I; }
+  LOperand* InputAt(int i) final { return inputs_[i]; }
+
+  int TempCount() final { return T; }
+  LOperand* TempAt(int i) final { return temps_[i]; }
+};
+
+
+class LGap : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LGap(HBasicBlock* block)
+      : block_(block) {
+    parallel_moves_[BEFORE] = NULL;
+    parallel_moves_[START] = NULL;
+    parallel_moves_[END] = NULL;
+    parallel_moves_[AFTER] = NULL;
+  }
+
+  // Can't use the DECLARE-macro here because of sub-classes.
+  bool IsGap() const final { return true; }
+  void PrintDataTo(StringStream* stream) override;
+  static LGap* cast(LInstruction* instr) {
+    DCHECK(instr->IsGap());
+    return reinterpret_cast<LGap*>(instr);
+  }
+
+  bool IsRedundant() const;
+
+  HBasicBlock* block() const { return block_; }
+
+  enum InnerPosition {
+    BEFORE,
+    START,
+    END,
+    AFTER,
+    FIRST_INNER_POSITION = BEFORE,
+    LAST_INNER_POSITION = AFTER
+  };
+
+  LParallelMove* GetOrCreateParallelMove(InnerPosition pos, Zone* zone)  {
+    if (parallel_moves_[pos] == NULL) {
+      parallel_moves_[pos] = new(zone) LParallelMove(zone);
+    }
+    return parallel_moves_[pos];
+  }
+
+  LParallelMove* GetParallelMove(InnerPosition pos)  {
+    return parallel_moves_[pos];
+  }
+
+ private:
+  LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
+  HBasicBlock* block_;
+};
+
+
+class LInstructionGap final : public LGap {
+ public:
+  explicit LInstructionGap(HBasicBlock* block) : LGap(block) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override {
+    return !IsRedundant();
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap")
+};
+
+
+class LGoto final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LGoto(HBasicBlock* block) : block_(block) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override;
+  DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
+  void PrintDataTo(StringStream* stream) override;
+  bool IsControl() const override { return true; }
+
+  int block_id() const { return block_->block_id(); }
+
+ private:
+  HBasicBlock* block_;
+};
+
+
+class LPrologue final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(Prologue, "prologue")
+};
+
+
+class LLazyBailout final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  LLazyBailout() : gap_instructions_size_(0) { }
+
+  DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
+
+  void set_gap_instructions_size(int gap_instructions_size) {
+    gap_instructions_size_ = gap_instructions_size;
+  }
+  int gap_instructions_size() { return gap_instructions_size_; }
+
+ private:
+  int gap_instructions_size_;
+};
+
+
+class LDummy final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  LDummy() {}
+  DECLARE_CONCRETE_INSTRUCTION(Dummy, "dummy")
+};
+
+
+class LDummyUse final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDummyUse(LOperand* value) {
+    inputs_[0] = value;
+  }
+  DECLARE_CONCRETE_INSTRUCTION(DummyUse, "dummy-use")
+};
+
+
+class LDeoptimize final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  bool IsControl() const override { return true; }
+  DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
+  DECLARE_HYDROGEN_ACCESSOR(Deoptimize)
+};
+
+
+class LLabel final : public LGap {
+ public:
+  explicit LLabel(HBasicBlock* block)
+      : LGap(block), replacement_(NULL) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(Label, "label")
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int block_id() const { return block()->block_id(); }
+  bool is_loop_header() const { return block()->IsLoopHeader(); }
+  bool is_osr_entry() const { return block()->is_osr_entry(); }
+  Label* label() { return &label_; }
+  LLabel* replacement() const { return replacement_; }
+  void set_replacement(LLabel* label) { replacement_ = label; }
+  bool HasReplacement() const { return replacement_ != NULL; }
+
+ private:
+  Label label_;
+  LLabel* replacement_;
+};
+
+
+class LParameter final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
+};
+
+
+class LCallStub final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallStub(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
+  DECLARE_HYDROGEN_ACCESSOR(CallStub)
+};
+
+
+class LUnknownOSRValue final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
+};
+
+
+template<int I, int T>
+class LControlInstruction : public LTemplateInstruction<0, I, T> {
+ public:
+  LControlInstruction() : false_label_(NULL), true_label_(NULL) { }
+
+  bool IsControl() const final { return true; }
+
+  int SuccessorCount() { return hydrogen()->SuccessorCount(); }
+  HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); }
+
+  int TrueDestination(LChunk* chunk) {
+    return chunk->LookupDestination(true_block_id());
+  }
+  int FalseDestination(LChunk* chunk) {
+    return chunk->LookupDestination(false_block_id());
+  }
+
+  Label* TrueLabel(LChunk* chunk) {
+    if (true_label_ == NULL) {
+      true_label_ = chunk->GetAssemblyLabel(TrueDestination(chunk));
+    }
+    return true_label_;
+  }
+  Label* FalseLabel(LChunk* chunk) {
+    if (false_label_ == NULL) {
+      false_label_ = chunk->GetAssemblyLabel(FalseDestination(chunk));
+    }
+    return false_label_;
+  }
+
+ protected:
+  int true_block_id() { return SuccessorAt(0)->block_id(); }
+  int false_block_id() { return SuccessorAt(1)->block_id(); }
+
+ private:
+  HControlInstruction* hydrogen() {
+    return HControlInstruction::cast(this->hydrogen_value());
+  }
+
+  Label* false_label_;
+  Label* true_label_;
+};
+
+
+class LWrapReceiver final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LWrapReceiver(LOperand* receiver, LOperand* function) {
+    inputs_[0] = receiver;
+    inputs_[1] = function;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver")
+  DECLARE_HYDROGEN_ACCESSOR(WrapReceiver)
+
+  LOperand* receiver() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+};
+
+
+class LApplyArguments final : public LTemplateInstruction<1, 4, 0> {
+ public:
+  LApplyArguments(LOperand* function,
+                  LOperand* receiver,
+                  LOperand* length,
+                  LOperand* elements) {
+    inputs_[0] = function;
+    inputs_[1] = receiver;
+    inputs_[2] = length;
+    inputs_[3] = elements;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
+
+  LOperand* function() { return inputs_[0]; }
+  LOperand* receiver() { return inputs_[1]; }
+  LOperand* length() { return inputs_[2]; }
+  LOperand* elements() { return inputs_[3]; }
+};
+
+
+class LAccessArgumentsAt final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
+    inputs_[0] = arguments;
+    inputs_[1] = length;
+    inputs_[2] = index;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
+
+  LOperand* arguments() { return inputs_[0]; }
+  LOperand* length() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LArgumentsLength final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LArgumentsLength(LOperand* elements) {
+    inputs_[0] = elements;
+  }
+
+  LOperand* elements() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
+};
+
+
+class LArgumentsElements final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
+  DECLARE_HYDROGEN_ACCESSOR(ArgumentsElements)
+};
+
+
+class LModByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LModByConstI final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LModByConstI(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModByConstI, "mod-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LModI final : public LTemplateInstruction<1, 2, 3> {
+ public:
+  LModI(LOperand* left,
+        LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+};
+
+
+class LDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LDivByConstI final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LDivByConstI(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivByConstI, "div-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LDivI final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LDivI(LOperand* dividend, LOperand* divisor,  LOperand* temp) {
+    inputs_[0] = dividend;
+    inputs_[1] = divisor;
+    temps_[0] = temp;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  LOperand* divisor() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
+  DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
+};
+
+
+class LFlooringDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+                               "flooring-div-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LFlooringDivByConstI final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LFlooringDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+    temps_[0] = temp;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LFlooringDivI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LFlooringDivI(LOperand* dividend, LOperand* divisor) {
+    inputs_[0] = dividend;
+    inputs_[1] = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  LOperand* divisor() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+};
+
+
+class LMulS final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMulS(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MulS, "mul-s")
+  DECLARE_HYDROGEN_ACCESSOR(Mul)
+};
+
+
+class LMulI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMulI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mul)
+};
+
+
+// Instruction for computing multiplier * multiplicand + addend.
+class LMultiplyAddD final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LMultiplyAddD(LOperand* addend, LOperand* multiplier,
+                LOperand* multiplicand) {
+    inputs_[0] = addend;
+    inputs_[1] = multiplier;
+    inputs_[2] = multiplicand;
+  }
+
+  LOperand* addend() { return inputs_[0]; }
+  LOperand* multiplier() { return inputs_[1]; }
+  LOperand* multiplicand() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MultiplyAddD, "multiply-add-d")
+};
+
+
+class LDebugBreak final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(DebugBreak, "break")
+};
+
+
+class LCompareNumericAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LCompareNumericAndBranch(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch,
+                               "compare-numeric-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareNumericAndBranch)
+
+  Token::Value op() const { return hydrogen()->token(); }
+  bool is_double() const {
+    return hydrogen()->representation().IsDouble();
+  }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LMathFloor final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LMathFloor(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathFloor, "math-floor")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathRound final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LMathRound(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathRound, "math-round")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathFround final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathFround(LOperand* value) { inputs_[0] = value; }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathFround, "math-fround")
+};
+
+
+class LMathAbs final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMathAbs(LOperand* context, LOperand* value) {
+    inputs_[1] = context;
+    inputs_[0] = value;
+  }
+
+  LOperand* context() { return inputs_[1]; }
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathAbs, "math-abs")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathLog final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathLog(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathLog, "math-log")
+};
+
+
+class LMathClz32 final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathClz32(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathClz32, "math-clz32")
+};
+
+
+class LMathExp final : public LTemplateInstruction<1, 1, 3> {
+ public:
+  LMathExp(LOperand* value,
+           LOperand* double_temp,
+           LOperand* temp1,
+           LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+    temps_[2] = double_temp;
+    ExternalReference::InitializeMathExpData();
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+  LOperand* double_temp() { return temps_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathExp, "math-exp")
+};
+
+
+class LMathSqrt final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathSqrt(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathSqrt, "math-sqrt")
+};
+
+
+class LMathPowHalf final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LMathPowHalf(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathPowHalf, "math-pow-half")
+};
+
+
+class LCmpObjectEqAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LCmpObjectEqAndBranch(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareObjectEqAndBranch)
+};
+
+
+class LCmpHoleAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LCmpHoleAndBranch(LOperand* object) {
+    inputs_[0] = object;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranch, "cmp-hole-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch)
+};
+
+
+class LCompareMinusZeroAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  LCompareMinusZeroAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CompareMinusZeroAndBranch,
+                               "cmp-minus-zero-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareMinusZeroAndBranch)
+};
+
+
+class LIsStringAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  LIsStringAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LIsSmiAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LIsSmiAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LIsUndetectableAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  explicit LIsUndetectableAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch,
+                               "is-undetectable-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LStringCompareAndBranch final : public LControlInstruction<3, 0> {
+ public:
+  LStringCompareAndBranch(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch,
+                               "string-compare-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch)
+
+  Token::Value op() const { return hydrogen()->token(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LHasInstanceTypeAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LHasInstanceTypeAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
+                               "has-instance-type-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LGetCachedArrayIndex final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LGetCachedArrayIndex(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex, "get-cached-array-index")
+  DECLARE_HYDROGEN_ACCESSOR(GetCachedArrayIndex)
+};
+
+
+class LHasCachedArrayIndexAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LHasCachedArrayIndexAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
+                               "has-cached-array-index-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndexAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LClassOfTestAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  LClassOfTestAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
+                               "class-of-test-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LCmpT final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LCmpT(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
+  DECLARE_HYDROGEN_ACCESSOR(CompareGeneric)
+
+  Strength strength() { return hydrogen()->strength(); }
+
+  Token::Value op() const { return hydrogen()->token(); }
+};
+
+
+class LInstanceOf final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LInstanceOf(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() const { return inputs_[0]; }
+  LOperand* left() const { return inputs_[1]; }
+  LOperand* right() const { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
+};
+
+
+class LHasInPrototypeChainAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LHasInPrototypeChainAndBranch(LOperand* object, LOperand* prototype) {
+    inputs_[0] = object;
+    inputs_[1] = prototype;
+  }
+
+  LOperand* object() const { return inputs_[0]; }
+  LOperand* prototype() const { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasInPrototypeChainAndBranch,
+                               "has-in-prototype-chain-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasInPrototypeChainAndBranch)
+};
+
+
+class LBoundsCheck final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LBoundsCheck(LOperand* index, LOperand* length) {
+    inputs_[0] = index;
+    inputs_[1] = length;
+  }
+
+  LOperand* index() { return inputs_[0]; }
+  LOperand* length() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
+  DECLARE_HYDROGEN_ACCESSOR(BoundsCheck)
+};
+
+
+class LBitI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LBitI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  Token::Value op() const { return hydrogen()->op(); }
+
+  DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
+  DECLARE_HYDROGEN_ACCESSOR(Bitwise)
+};
+
+
+class LShiftI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
+      : op_(op), can_deopt_(can_deopt) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  Token::Value op() const { return op_; }
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+  bool can_deopt() const { return can_deopt_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
+
+ private:
+  Token::Value op_;
+  bool can_deopt_;
+};
+
+
+class LSubI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LSubI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
+  DECLARE_HYDROGEN_ACCESSOR(Sub)
+};
+
+
+class LSubS final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LSubS(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SubS, "sub-s")
+  DECLARE_HYDROGEN_ACCESSOR(Sub)
+};
+
+
+class LConstantI final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  int32_t value() const { return hydrogen()->Integer32Value(); }
+};
+
+
+class LConstantS final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantS, "constant-s")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  Smi* value() const { return Smi::FromInt(hydrogen()->Integer32Value()); }
+};
+
+
+class LConstantD final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  double value() const { return hydrogen()->DoubleValue(); }
+};
+
+
+class LConstantE final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantE, "constant-e")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  ExternalReference value() const {
+    return hydrogen()->ExternalReferenceValue();
+  }
+};
+
+
+class LConstantT final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  Handle<Object> value(Isolate* isolate) const {
+    return hydrogen()->handle(isolate);
+  }
+};
+
+
+class LBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
+  DECLARE_HYDROGEN_ACCESSOR(Branch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LCmpMapAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  LCmpMapAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareMap)
+
+  Handle<Map> map() const { return hydrogen()->map().handle(); }
+};
+
+
+class LMapEnumLength final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMapEnumLength(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MapEnumLength, "map-enum-length")
+};
+
+
+class LSeqStringGetChar final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LSeqStringGetChar(LOperand* string, LOperand* index) {
+    inputs_[0] = string;
+    inputs_[1] = index;
+  }
+
+  LOperand* string() const { return inputs_[0]; }
+  LOperand* index() const { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SeqStringGetChar, "seq-string-get-char")
+  DECLARE_HYDROGEN_ACCESSOR(SeqStringGetChar)
+};
+
+
+class LSeqStringSetChar final : public LTemplateInstruction<1, 4, 0> {
+ public:
+  LSeqStringSetChar(LOperand* context,
+                    LOperand* string,
+                    LOperand* index,
+                    LOperand* value) {
+    inputs_[0] = context;
+    inputs_[1] = string;
+    inputs_[2] = index;
+    inputs_[3] = value;
+  }
+
+  LOperand* string() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+  LOperand* value() { return inputs_[3]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar, "seq-string-set-char")
+  DECLARE_HYDROGEN_ACCESSOR(SeqStringSetChar)
+};
+
+
+class LAddE final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAddE(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(AddE, "add-e")
+  DECLARE_HYDROGEN_ACCESSOR(Add)
+};
+
+
+class LAddI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAddI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
+  DECLARE_HYDROGEN_ACCESSOR(Add)
+};
+
+
+class LAddS final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAddS(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(AddS, "add-s")
+  DECLARE_HYDROGEN_ACCESSOR(Add)
+};
+
+
+class LMathMinMax final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMathMinMax(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "math-min-max")
+  DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
+};
+
+
+class LPower final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LPower(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Power, "power")
+  DECLARE_HYDROGEN_ACCESSOR(Power)
+};
+
+
+class LArithmeticD final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
+      : op_(op) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  Token::Value op() const { return op_; }
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  Opcode opcode() const override { return LInstruction::kArithmeticD; }
+  void CompileToNative(LCodeGen* generator) override;
+  const char* Mnemonic() const override;
+
+ private:
+  Token::Value op_;
+};
+
+
+class LArithmeticT final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LArithmeticT(Token::Value op,
+               LOperand* context,
+               LOperand* left,
+               LOperand* right)
+      : op_(op) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+  Token::Value op() const { return op_; }
+
+  Opcode opcode() const final { return LInstruction::kArithmeticT; }
+  void CompileToNative(LCodeGen* generator) override;
+  const char* Mnemonic() const override;
+
+  DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
+
+  Strength strength() { return hydrogen()->strength(); }
+
+ private:
+  Token::Value op_;
+};
+
+
+class LReturn final : public LTemplateInstruction<0, 3, 0> {
+ public:
+  LReturn(LOperand* value, LOperand* context, LOperand* parameter_count) {
+    inputs_[0] = value;
+    inputs_[1] = context;
+    inputs_[2] = parameter_count;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  bool has_constant_parameter_count() {
+    return parameter_count()->IsConstantOperand();
+  }
+  LConstantOperand* constant_parameter_count() {
+    DCHECK(has_constant_parameter_count());
+    return LConstantOperand::cast(parameter_count());
+  }
+  LOperand* parameter_count() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Return, "return")
+};
+
+
+class LLoadNamedField final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadNamedField(LOperand* object) {
+    inputs_[0] = object;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
+  DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
+};
+
+
+class LLoadNamedGeneric final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LLoadNamedGeneric(LOperand* context, LOperand* object, LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    temps_[0] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* temp_vector() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+};
+
+
+class LLoadFunctionPrototype final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadFunctionPrototype(LOperand* function) {
+    inputs_[0] = function;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
+  DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
+};
+
+
+class LLoadRoot final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(LoadRoot, "load-root")
+  DECLARE_HYDROGEN_ACCESSOR(LoadRoot)
+
+  Heap::RootListIndex index() const { return hydrogen()->index(); }
+};
+
+
+class LLoadKeyed final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LLoadKeyed(LOperand* elements, LOperand* key, LOperand* backing_store_owner) {
+    inputs_[0] = elements;
+    inputs_[1] = key;
+    inputs_[2] = backing_store_owner;
+  }
+
+  LOperand* elements() { return inputs_[0]; }
+  LOperand* key() { return inputs_[1]; }
+  LOperand* backing_store_owner() { return inputs_[2]; }
+  ElementsKind elements_kind() const {
+    return hydrogen()->elements_kind();
+  }
+  bool is_fixed_typed_array() const {
+    return hydrogen()->is_fixed_typed_array();
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadKeyed, "load-keyed")
+  DECLARE_HYDROGEN_ACCESSOR(LoadKeyed)
+
+  void PrintDataTo(StringStream* stream) override;
+  uint32_t base_offset() const { return hydrogen()->base_offset(); }
+};
+
+
+class LLoadKeyedGeneric final : public LTemplateInstruction<1, 3, 1> {
+ public:
+  LLoadKeyedGeneric(LOperand* context, LOperand* object, LOperand* key,
+                    LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = key;
+    temps_[0] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* key() { return inputs_[2]; }
+  LOperand* temp_vector() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadKeyedGeneric)
+};
+
+
+class LLoadGlobalGeneric final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LLoadGlobalGeneric(LOperand* context, LOperand* global_object,
+                     LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = global_object;
+    temps_[0] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* global_object() { return inputs_[1]; }
+  LOperand* temp_vector() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric, "load-global-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadGlobalGeneric)
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+  TypeofMode typeof_mode() const { return hydrogen()->typeof_mode(); }
+};
+
+
+class LLoadContextSlot final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadContextSlot(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
+  DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
+
+  int slot_index() { return hydrogen()->slot_index(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LStoreContextSlot final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LStoreContextSlot(LOperand* context, LOperand* value) {
+    inputs_[0] = context;
+    inputs_[1] = value;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot")
+  DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot)
+
+  int slot_index() { return hydrogen()->slot_index(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LPushArgument final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LPushArgument(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
+};
+
+
+class LDrop final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LDrop(int count) : count_(count) { }
+
+  int count() const { return count_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Drop, "drop")
+
+ private:
+  int count_;
+};
+
+
+class LStoreCodeEntry final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LStoreCodeEntry(LOperand* function, LOperand* code_object) {
+    inputs_[0] = function;
+    inputs_[1] = code_object;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+  LOperand* code_object() { return inputs_[1]; }
+
+  void PrintDataTo(StringStream* stream) override;
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreCodeEntry, "store-code-entry")
+  DECLARE_HYDROGEN_ACCESSOR(StoreCodeEntry)
+};
+
+
+class LInnerAllocatedObject final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LInnerAllocatedObject(LOperand* base_object, LOperand* offset) {
+    inputs_[0] = base_object;
+    inputs_[1] = offset;
+  }
+
+  LOperand* base_object() const { return inputs_[0]; }
+  LOperand* offset() const { return inputs_[1]; }
+
+  void PrintDataTo(StringStream* stream) override;
+
+  DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject, "inner-allocated-object")
+};
+
+
+class LThisFunction final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function")
+  DECLARE_HYDROGEN_ACCESSOR(ThisFunction)
+};
+
+
+class LContext final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(Context, "context")
+  DECLARE_HYDROGEN_ACCESSOR(Context)
+};
+
+
+class LDeclareGlobals final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LDeclareGlobals(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals")
+  DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals)
+};
+
+
+class LCallJSFunction final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallJSFunction(LOperand* function) {
+    inputs_[0] = function;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallJSFunction, "call-js-function")
+  DECLARE_HYDROGEN_ACCESSOR(CallJSFunction)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallWithDescriptor final : public LTemplateResultInstruction<1> {
+ public:
+  LCallWithDescriptor(CallInterfaceDescriptor descriptor,
+                      const ZoneList<LOperand*>& operands, Zone* zone)
+      : descriptor_(descriptor),
+        inputs_(descriptor.GetRegisterParameterCount() +
+                    kImplicitRegisterParameterCount,
+                zone) {
+    DCHECK(descriptor.GetRegisterParameterCount() +
+               kImplicitRegisterParameterCount ==
+           operands.length());
+    inputs_.AddAll(operands, zone);
+  }
+
+  LOperand* target() const { return inputs_[0]; }
+
+  const CallInterfaceDescriptor descriptor() { return descriptor_; }
+
+  DECLARE_HYDROGEN_ACCESSOR(CallWithDescriptor)
+
+  // The target and context are passed as implicit parameters that are not
+  // explicitly listed in the descriptor.
+  static const int kImplicitRegisterParameterCount = 2;
+
+ private:
+  DECLARE_CONCRETE_INSTRUCTION(CallWithDescriptor, "call-with-descriptor")
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+
+  CallInterfaceDescriptor descriptor_;
+  ZoneList<LOperand*> inputs_;
+
+  // Iterator support.
+  int InputCount() final { return inputs_.length(); }
+  LOperand* InputAt(int i) final { return inputs_[i]; }
+
+  int TempCount() final { return 0; }
+  LOperand* TempAt(int i) final { return NULL; }
+};
+
+
+class LInvokeFunction final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LInvokeFunction(LOperand* context, LOperand* function) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function")
+  DECLARE_HYDROGEN_ACCESSOR(InvokeFunction)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallFunction final : public LTemplateInstruction<1, 2, 2> {
+ public:
+  LCallFunction(LOperand* context, LOperand* function, LOperand* slot,
+                LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
+  DECLARE_HYDROGEN_ACCESSOR(CallFunction)
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LCallNewArray final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LCallNewArray(LOperand* context, LOperand* constructor) {
+    inputs_[0] = context;
+    inputs_[1] = constructor;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* constructor() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallNewArray, "call-new-array")
+  DECLARE_HYDROGEN_ACCESSOR(CallNewArray)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallRuntime final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallRuntime(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
+  DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
+
+  bool ClobbersDoubleRegisters(Isolate* isolate) const override {
+    return save_doubles() == kDontSaveFPRegs;
+  }
+
+  const Runtime::Function* function() const { return hydrogen()->function(); }
+  int arity() const { return hydrogen()->argument_count(); }
+  SaveFPRegsMode save_doubles() const { return hydrogen()->save_doubles(); }
+};
+
+
+class LInteger32ToDouble final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LInteger32ToDouble(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
+};
+
+
+class LUint32ToDouble final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LUint32ToDouble(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Uint32ToDouble, "uint32-to-double")
+};
+
+
+class LNumberTagU final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LNumberTagU(LOperand* value, LOperand* temp1, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberTagU, "number-tag-u")
+};
+
+
+class LNumberTagD final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LNumberTagD(LOperand* value, LOperand* temp, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+};
+
+
+class LDoubleToSmi final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleToSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleToSmi, "double-to-smi")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
+
+  bool truncating() { return hydrogen()->CanTruncateToInt32(); }
+};
+
+
+// Sometimes truncating conversion from a tagged value to an int32.
+class LDoubleToI final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleToI(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
+
+  bool truncating() { return hydrogen()->CanTruncateToInt32(); }
+};
+
+
+// Truncating conversion from a tagged value to an int32.
+class LTaggedToI final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LTaggedToI(LOperand* value,
+             LOperand* temp,
+             LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+
+  bool truncating() { return hydrogen()->CanTruncateToInt32(); }
+};
+
+
+class LSmiTag final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LSmiTag(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+};
+
+
+class LNumberUntagD final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LNumberUntagD(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+};
+
+
+class LSmiUntag final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LSmiUntag(LOperand* value, bool needs_check)
+      : needs_check_(needs_check) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  bool needs_check() const { return needs_check_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
+
+ private:
+  bool needs_check_;
+};
+
+
+class LStoreNamedField final : public LTemplateInstruction<0, 2, 1> {
+ public:
+  LStoreNamedField(LOperand* object, LOperand* value, LOperand* temp) {
+    inputs_[0] = object;
+    inputs_[1] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
+  DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Representation representation() const {
+    return hydrogen()->field_representation();
+  }
+};
+
+
+class LStoreNamedGeneric final : public LTemplateInstruction<0, 3, 2> {
+ public:
+  LStoreNamedGeneric(LOperand* context, LOperand* object, LOperand* value,
+                     LOperand* slot, LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = value;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* value() { return inputs_[2]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic")
+  DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+  LanguageMode language_mode() { return hydrogen()->language_mode(); }
+};
+
+
+class LStoreKeyed final : public LTemplateInstruction<0, 4, 0> {
+ public:
+  LStoreKeyed(LOperand* object, LOperand* key, LOperand* value,
+              LOperand* backing_store_owner) {
+    inputs_[0] = object;
+    inputs_[1] = key;
+    inputs_[2] = value;
+    inputs_[3] = backing_store_owner;
+  }
+
+  bool is_fixed_typed_array() const {
+    return hydrogen()->is_fixed_typed_array();
+  }
+  LOperand* elements() { return inputs_[0]; }
+  LOperand* key() { return inputs_[1]; }
+  LOperand* value() { return inputs_[2]; }
+  LOperand* backing_store_owner() { return inputs_[3]; }
+  ElementsKind elements_kind() const {
+    return hydrogen()->elements_kind();
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreKeyed, "store-keyed")
+  DECLARE_HYDROGEN_ACCESSOR(StoreKeyed)
+
+  void PrintDataTo(StringStream* stream) override;
+  bool NeedsCanonicalization() { return hydrogen()->NeedsCanonicalization(); }
+  uint32_t base_offset() const { return hydrogen()->base_offset(); }
+};
+
+
+class LStoreKeyedGeneric final : public LTemplateInstruction<0, 4, 2> {
+ public:
+  LStoreKeyedGeneric(LOperand* context, LOperand* object, LOperand* key,
+                     LOperand* value, LOperand* slot, LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = key;
+    inputs_[3] = value;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* key() { return inputs_[2]; }
+  LOperand* value() { return inputs_[3]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic")
+  DECLARE_HYDROGEN_ACCESSOR(StoreKeyedGeneric)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  LanguageMode language_mode() { return hydrogen()->language_mode(); }
+};
+
+
+class LTransitionElementsKind final : public LTemplateInstruction<0, 2, 1> {
+ public:
+  LTransitionElementsKind(LOperand* object,
+                          LOperand* context,
+                          LOperand* new_map_temp) {
+    inputs_[0] = object;
+    inputs_[1] = context;
+    temps_[0] = new_map_temp;
+  }
+
+  LOperand* context() { return inputs_[1]; }
+  LOperand* object() { return inputs_[0]; }
+  LOperand* new_map_temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind,
+                               "transition-elements-kind")
+  DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Handle<Map> original_map() { return hydrogen()->original_map().handle(); }
+  Handle<Map> transitioned_map() {
+    return hydrogen()->transitioned_map().handle();
+  }
+  ElementsKind from_kind() { return hydrogen()->from_kind(); }
+  ElementsKind to_kind() { return hydrogen()->to_kind(); }
+};
+
+
+class LTrapAllocationMemento final : public LTemplateInstruction<0, 1, 1> {
+ public:
+  LTrapAllocationMemento(LOperand* object,
+                         LOperand* temp) {
+    inputs_[0] = object;
+    temps_[0] = temp;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento,
+                               "trap-allocation-memento")
+};
+
+
+class LMaybeGrowElements final : public LTemplateInstruction<1, 5, 0> {
+ public:
+  LMaybeGrowElements(LOperand* context, LOperand* object, LOperand* elements,
+                     LOperand* key, LOperand* current_capacity) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = elements;
+    inputs_[3] = key;
+    inputs_[4] = current_capacity;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* elements() { return inputs_[2]; }
+  LOperand* key() { return inputs_[3]; }
+  LOperand* current_capacity() { return inputs_[4]; }
+
+  DECLARE_HYDROGEN_ACCESSOR(MaybeGrowElements)
+  DECLARE_CONCRETE_INSTRUCTION(MaybeGrowElements, "maybe-grow-elements")
+};
+
+
+class LStringAdd final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LStringAdd(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add")
+  DECLARE_HYDROGEN_ACCESSOR(StringAdd)
+};
+
+
+class LStringCharCodeAt final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LStringCharCodeAt(LOperand* context, LOperand* string, LOperand* index) {
+    inputs_[0] = context;
+    inputs_[1] = string;
+    inputs_[2] = index;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* string() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
+  DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
+};
+
+
+class LStringCharFromCode final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  explicit LStringCharFromCode(LOperand* context, LOperand* char_code) {
+    inputs_[0] = context;
+    inputs_[1] = char_code;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* char_code() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code")
+  DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode)
+};
+
+
+class LCheckValue final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckValue(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckValue, "check-value")
+  DECLARE_HYDROGEN_ACCESSOR(CheckValue)
+};
+
+
+class LCheckArrayBufferNotNeutered final
+    : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckArrayBufferNotNeutered(LOperand* view) { inputs_[0] = view; }
+
+  LOperand* view() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckArrayBufferNotNeutered,
+                               "check-array-buffer-not-neutered")
+  DECLARE_HYDROGEN_ACCESSOR(CheckArrayBufferNotNeutered)
+};
+
+
+class LCheckInstanceType final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckInstanceType(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
+  DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
+};
+
+
+class LCheckMaps final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckMaps(LOperand* value = NULL) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckMaps, "check-maps")
+  DECLARE_HYDROGEN_ACCESSOR(CheckMaps)
+};
+
+
+class LCheckSmi final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCheckSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi")
+};
+
+
+class LCheckNonSmi final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckNonSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi")
+  DECLARE_HYDROGEN_ACCESSOR(CheckHeapObject)
+};
+
+
+class LClampDToUint8 final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LClampDToUint8(LOperand* unclamped, LOperand* temp) {
+    inputs_[0] = unclamped;
+    temps_[0] = temp;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8")
+};
+
+
+class LClampIToUint8 final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LClampIToUint8(LOperand* unclamped) {
+    inputs_[0] = unclamped;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8")
+};
+
+
+class LClampTToUint8 final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LClampTToUint8(LOperand* unclamped, LOperand* temp) {
+    inputs_[0] = unclamped;
+    temps_[0] = temp;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8, "clamp-t-to-uint8")
+};
+
+
+class LDoubleBits final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleBits(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleBits, "double-bits")
+  DECLARE_HYDROGEN_ACCESSOR(DoubleBits)
+};
+
+
+class LConstructDouble final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LConstructDouble(LOperand* hi, LOperand* lo) {
+    inputs_[0] = hi;
+    inputs_[1] = lo;
+  }
+
+  LOperand* hi() { return inputs_[0]; }
+  LOperand* lo() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ConstructDouble, "construct-double")
+};
+
+
+class LAllocate final : public LTemplateInstruction<1, 2, 2> {
+ public:
+  LAllocate(LOperand* context,
+            LOperand* size,
+            LOperand* temp1,
+            LOperand* temp2) {
+    inputs_[0] = context;
+    inputs_[1] = size;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* size() { return inputs_[1]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Allocate, "allocate")
+  DECLARE_HYDROGEN_ACCESSOR(Allocate)
+};
+
+
+class LToFastProperties final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LToFastProperties(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ToFastProperties, "to-fast-properties")
+  DECLARE_HYDROGEN_ACCESSOR(ToFastProperties)
+};
+
+
+class LTypeof final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LTypeof(LOperand* context, LOperand* value) {
+    inputs_[0] = context;
+    inputs_[1] = value;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
+};
+
+
+class LTypeofIsAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LTypeofIsAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch)
+
+  Handle<String> type_literal() { return hydrogen()->type_literal(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LOsrEntry final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  LOsrEntry() {}
+
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
+};
+
+
+class LStackCheck final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LStackCheck(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
+  DECLARE_HYDROGEN_ACCESSOR(StackCheck)
+
+  Label* done_label() { return &done_label_; }
+
+ private:
+  Label done_label_;
+};
+
+
+class LForInPrepareMap final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LForInPrepareMap(LOperand* context, LOperand* object) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map")
+};
+
+
+class LForInCacheArray final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LForInCacheArray(LOperand* map) {
+    inputs_[0] = map;
+  }
+
+  LOperand* map() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array")
+
+  int idx() {
+    return HForInCacheArray::cast(this->hydrogen_value())->idx();
+  }
+};
+
+
+class LCheckMapValue final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LCheckMapValue(LOperand* value, LOperand* map) {
+    inputs_[0] = value;
+    inputs_[1] = map;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* map() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value")
+};
+
+
+class LLoadFieldByIndex final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LLoadFieldByIndex(LOperand* object, LOperand* index) {
+    inputs_[0] = object;
+    inputs_[1] = index;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* index() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index")
+};
+
+
+class LStoreFrameContext: public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LStoreFrameContext(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreFrameContext, "store-frame-context")
+};
+
+
+class LAllocateBlockContext: public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAllocateBlockContext(LOperand* context, LOperand* function) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+
+  Handle<ScopeInfo> scope_info() { return hydrogen()->scope_info(); }
+
+  DECLARE_CONCRETE_INSTRUCTION(AllocateBlockContext, "allocate-block-context")
+  DECLARE_HYDROGEN_ACCESSOR(AllocateBlockContext)
+};
+
+
+class LChunkBuilder;
+class LPlatformChunk final : public LChunk {
+ public:
+  LPlatformChunk(CompilationInfo* info, HGraph* graph)
+      : LChunk(info, graph) { }
+
+  int GetNextSpillIndex(RegisterKind kind);
+  LOperand* GetNextSpillSlot(RegisterKind kind);
+};
+
+
+class LChunkBuilder final : public LChunkBuilderBase {
+ public:
+  LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator)
+      : LChunkBuilderBase(info, graph),
+        current_instruction_(NULL),
+        current_block_(NULL),
+        next_block_(NULL),
+        allocator_(allocator) {}
+
+  // Build the sequence for the graph.
+  LPlatformChunk* Build();
+
+  // Declare methods that deal with the individual node types.
+#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
+  HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
+#undef DECLARE_DO
+
+  LInstruction* DoMultiplyAdd(HMul* mul, HValue* addend);
+
+  static bool HasMagicNumberForDivisor(int32_t divisor);
+
+  LInstruction* DoMathFloor(HUnaryMathOperation* instr);
+  LInstruction* DoMathRound(HUnaryMathOperation* instr);
+  LInstruction* DoMathFround(HUnaryMathOperation* instr);
+  LInstruction* DoMathAbs(HUnaryMathOperation* instr);
+  LInstruction* DoMathLog(HUnaryMathOperation* instr);
+  LInstruction* DoMathExp(HUnaryMathOperation* instr);
+  LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
+  LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
+  LInstruction* DoMathClz32(HUnaryMathOperation* instr);
+  LInstruction* DoDivByPowerOf2I(HDiv* instr);
+  LInstruction* DoDivByConstI(HDiv* instr);
+  LInstruction* DoDivI(HDiv* instr);
+  LInstruction* DoModByPowerOf2I(HMod* instr);
+  LInstruction* DoModByConstI(HMod* instr);
+  LInstruction* DoModI(HMod* instr);
+  LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+  LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
+  LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr);
+
+ private:
+  // Methods for getting operands for Use / Define / Temp.
+  LUnallocated* ToUnallocated(Register reg);
+  LUnallocated* ToUnallocated(DoubleRegister reg);
+
+  // Methods for setting up define-use relationships.
+  MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
+  MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
+  MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
+                                           DoubleRegister fixed_register);
+
+  // A value that is guaranteed to be allocated to a register.
+  // Operand created by UseRegister is guaranteed to be live until the end of
+  // instruction. This means that register allocator will not reuse it's
+  // register for any other operand inside instruction.
+  // Operand created by UseRegisterAtStart is guaranteed to be live only at
+  // instruction start. Register allocator is free to assign the same register
+  // to some other operand used inside instruction (i.e. temporary or
+  // output).
+  MUST_USE_RESULT LOperand* UseRegister(HValue* value);
+  MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
+
+  // An input operand in a register that may be trashed.
+  MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
+
+  // An input operand in a register or stack slot.
+  MUST_USE_RESULT LOperand* Use(HValue* value);
+  MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
+
+  // An input operand in a register, stack slot or a constant operand.
+  MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
+  MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
+
+  // An input operand in a register or a constant operand.
+  MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
+  MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
+
+  // An input operand in a constant operand.
+  MUST_USE_RESULT LOperand* UseConstant(HValue* value);
+
+  // An input operand in register, stack slot or a constant operand.
+  // Will not be moved to a register even if one is freely available.
+  MUST_USE_RESULT LOperand* UseAny(HValue* value) override;
+
+  // Temporary operand that must be in a register.
+  MUST_USE_RESULT LUnallocated* TempRegister();
+  MUST_USE_RESULT LUnallocated* TempDoubleRegister();
+  MUST_USE_RESULT LOperand* FixedTemp(Register reg);
+  MUST_USE_RESULT LOperand* FixedTemp(DoubleRegister reg);
+
+  // Methods for setting up define-use relationships.
+  // Return the same instruction that they are passed.
+  LInstruction* Define(LTemplateResultInstruction<1>* instr,
+                       LUnallocated* result);
+  LInstruction* DefineAsRegister(LTemplateResultInstruction<1>* instr);
+  LInstruction* DefineAsSpilled(LTemplateResultInstruction<1>* instr,
+                                int index);
+  LInstruction* DefineSameAsFirst(LTemplateResultInstruction<1>* instr);
+  LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr,
+                            Register reg);
+  LInstruction* DefineFixedDouble(LTemplateResultInstruction<1>* instr,
+                                  DoubleRegister reg);
+  LInstruction* AssignEnvironment(LInstruction* instr);
+  LInstruction* AssignPointerMap(LInstruction* instr);
+
+  enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
+
+  // By default we assume that instruction sequences generated for calls
+  // cannot deoptimize eagerly and we do not attach environment to this
+  // instruction.
+  LInstruction* MarkAsCall(
+      LInstruction* instr,
+      HInstruction* hinstr,
+      CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
+
+  void VisitInstruction(HInstruction* current);
+  void AddInstruction(LInstruction* instr, HInstruction* current);
+
+  void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
+  LInstruction* DoBit(Token::Value op, HBitwiseBinaryOperation* instr);
+  LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
+  LInstruction* DoArithmeticD(Token::Value op,
+                              HArithmeticBinaryOperation* instr);
+  LInstruction* DoArithmeticT(Token::Value op,
+                              HBinaryOperation* instr);
+
+  HInstruction* current_instruction_;
+  HBasicBlock* current_block_;
+  HBasicBlock* next_block_;
+  LAllocator* allocator_;
+
+  DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
+};
+
+#undef DECLARE_HYDROGEN_ACCESSOR
+#undef DECLARE_CONCRETE_INSTRUCTION
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_MIPS64_LITHIUM_MIPS_H_