Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/crankshaft/x64/lithium-codegen-x64.cc b/src/crankshaft/x64/lithium-codegen-x64.cc
new file mode 100644
index 0000000..3f7e9ba
--- /dev/null
+++ b/src/crankshaft/x64/lithium-codegen-x64.cc
@@ -0,0 +1,5670 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X64
+
+#include "src/crankshaft/x64/lithium-codegen-x64.h"
+
+#include "src/base/bits.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+
+namespace v8 {
+namespace internal {
+
+
+// When invoking builtins, we need to record the safepoint in the middle of
+// the invoke instruction sequence generated by the macro assembler.
+class SafepointGenerator final : public CallWrapper {
+ public:
+  SafepointGenerator(LCodeGen* codegen,
+                     LPointerMap* pointers,
+                     Safepoint::DeoptMode mode)
+      : codegen_(codegen),
+        pointers_(pointers),
+        deopt_mode_(mode) { }
+  virtual ~SafepointGenerator() {}
+
+  void BeforeCall(int call_size) const override {}
+
+  void AfterCall() const override {
+    codegen_->RecordSafepoint(pointers_, deopt_mode_);
+  }
+
+ private:
+  LCodeGen* codegen_;
+  LPointerMap* pointers_;
+  Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+  LPhase phase("Z_Code generation", chunk());
+  DCHECK(is_unused());
+  status_ = GENERATING;
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // MANUAL indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done in GeneratePrologue).
+  FrameScope frame_scope(masm_, StackFrame::MANUAL);
+
+  return GeneratePrologue() &&
+      GenerateBody() &&
+      GenerateDeferredCode() &&
+      GenerateJumpTable() &&
+      GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+  DCHECK(is_done());
+  code->set_stack_slots(GetStackSlotCount());
+  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+  PopulateDeoptimizationData(code);
+}
+
+
+#ifdef _MSC_VER
+void LCodeGen::MakeSureStackPagesMapped(int offset) {
+  const int kPageSize = 4 * KB;
+  for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
+    __ movp(Operand(rsp, offset), rax);
+  }
+}
+#endif
+
+
+void LCodeGen::SaveCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Save clobbered callee double registers");
+  int count = 0;
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  while (!save_iterator.Done()) {
+    __ Movsd(MemOperand(rsp, count * kDoubleSize),
+             XMMRegister::from_code(save_iterator.Current()));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Restore clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  int count = 0;
+  while (!save_iterator.Done()) {
+    __ Movsd(XMMRegister::from_code(save_iterator.Current()),
+             MemOperand(rsp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+  DCHECK(is_generating());
+
+  if (info()->IsOptimizing()) {
+    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+    if (strlen(FLAG_stop_at) > 0 &&
+        info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+      __ int3();
+    }
+#endif
+  }
+
+  info()->set_prologue_offset(masm_->pc_offset());
+  if (NeedsEagerFrame()) {
+    DCHECK(!frame_is_built_);
+    frame_is_built_ = true;
+    if (info()->IsStub()) {
+      __ StubPrologue();
+    } else {
+      __ Prologue(info()->GeneratePreagedPrologue());
+    }
+  }
+
+  // Reserve space for the stack slots needed by the code.
+  int slots = GetStackSlotCount();
+  if (slots > 0) {
+    if (FLAG_debug_code) {
+      __ subp(rsp, Immediate(slots * kPointerSize));
+#ifdef _MSC_VER
+      MakeSureStackPagesMapped(slots * kPointerSize);
+#endif
+      __ Push(rax);
+      __ Set(rax, slots);
+      __ Set(kScratchRegister, kSlotsZapValue);
+      Label loop;
+      __ bind(&loop);
+      __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
+              kScratchRegister);
+      __ decl(rax);
+      __ j(not_zero, &loop);
+      __ Pop(rax);
+    } else {
+      __ subp(rsp, Immediate(slots * kPointerSize));
+#ifdef _MSC_VER
+      MakeSureStackPagesMapped(slots * kPointerSize);
+#endif
+    }
+
+    if (info()->saves_caller_doubles()) {
+      SaveCallerDoubles();
+    }
+  }
+  return !is_aborted();
+}
+
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+  Comment(";;; Prologue begin");
+
+  // Possibly allocate a local context.
+  if (info_->num_heap_slots() > 0) {
+    Comment(";;; Allocate local context");
+    bool need_write_barrier = true;
+    // Argument to NewContext is the function, which is still in rdi.
+    int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+    if (info()->scope()->is_script_scope()) {
+      __ Push(rdi);
+      __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      deopt_mode = Safepoint::kLazyDeopt;
+    } else if (slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(isolate(), slots);
+      __ CallStub(&stub);
+      // Result of FastNewContextStub is always in new space.
+      need_write_barrier = false;
+    } else {
+      __ Push(rdi);
+      __ CallRuntime(Runtime::kNewFunctionContext);
+    }
+    RecordSafepoint(deopt_mode);
+
+    // Context is returned in rax.  It replaces the context passed to us.
+    // It's saved in the stack and kept live in rsi.
+    __ movp(rsi, rax);
+    __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
+
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+            (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ movp(rax, Operand(rbp, parameter_offset));
+        // Store it in the context.
+        int context_offset = Context::SlotOffset(var->index());
+        __ movp(Operand(rsi, context_offset), rax);
+        // Update the write barrier. This clobbers rax and rbx.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+    Comment(";;; End allocate local context");
+  }
+
+  Comment(";;; Prologue end");
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+  // Generate the OSR entry prologue at the first unknown OSR value, or if there
+  // are none, at the OSR entrypoint instruction.
+  if (osr_pc_offset_ >= 0) return;
+
+  osr_pc_offset_ = masm()->pc_offset();
+
+  // Adjust the frame size, subsuming the unoptimized frame into the
+  // optimized frame.
+  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+  DCHECK(slots >= 0);
+  __ subp(rsp, Immediate(slots * kPointerSize));
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+  if (instr->IsCall()) {
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+  }
+  if (!instr->IsLazyBailout() && !instr->IsGap()) {
+    safepoints_.BumpLastLazySafepointIndex();
+  }
+}
+
+
+void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
+  if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
+      instr->hydrogen_value()->representation().IsInteger32() &&
+      instr->result()->IsRegister()) {
+    __ AssertZeroExtended(ToRegister(instr->result()));
+  }
+
+  if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
+    // We sign extend the dehoisted key at the definition point when the pointer
+    // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
+    // points and MustSignExtendResult is always false. We can't use
+    // STATIC_ASSERT here as the pointer size is 32-bit for x32.
+    DCHECK(kPointerSize == kInt64Size);
+    if (instr->result()->IsRegister()) {
+      Register result_reg = ToRegister(instr->result());
+      __ movsxlq(result_reg, result_reg);
+    } else {
+      // Sign extend the 32bit result in the stack slots.
+      DCHECK(instr->result()->IsStackSlot());
+      Operand src = ToOperand(instr->result());
+      __ movsxlq(kScratchRegister, src);
+      __ movq(src, kScratchRegister);
+    }
+  }
+}
+
+
+bool LCodeGen::GenerateJumpTable() {
+  if (jump_table_.length() == 0) return !is_aborted();
+
+  Label needs_frame;
+  Comment(";;; -------------------- Jump table --------------------");
+  for (int i = 0; i < jump_table_.length(); i++) {
+    Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
+    __ bind(&table_entry->label);
+    Address entry = table_entry->address;
+    DeoptComment(table_entry->deopt_info);
+    if (table_entry->needs_frame) {
+      DCHECK(!info()->saves_caller_doubles());
+      __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
+      __ call(&needs_frame);
+    } else {
+      if (info()->saves_caller_doubles()) {
+        DCHECK(info()->IsStub());
+        RestoreCallerDoubles();
+      }
+      __ call(entry, RelocInfo::RUNTIME_ENTRY);
+    }
+    info()->LogDeoptCallPosition(masm()->pc_offset(),
+                                 table_entry->deopt_info.inlining_id);
+  }
+
+  if (needs_frame.is_linked()) {
+    __ bind(&needs_frame);
+    /* stack layout
+       4: return address  <-- rsp
+       3: garbage
+       2: garbage
+       1: garbage
+       0: garbage
+    */
+    // Reserve space for context and stub marker.
+    __ subp(rsp, Immediate(2 * kPointerSize));
+    __ Push(MemOperand(rsp, 2 * kPointerSize));  // Copy return address.
+    __ Push(kScratchRegister);  // Save entry address for ret(0)
+
+    /* stack layout
+       4: return address
+       3: garbage
+       2: garbage
+       1: return address
+       0: entry address  <-- rsp
+    */
+
+    // Remember context pointer.
+    __ movp(kScratchRegister,
+            MemOperand(rbp, StandardFrameConstants::kContextOffset));
+    // Save context pointer into the stack frame.
+    __ movp(MemOperand(rsp, 3 * kPointerSize), kScratchRegister);
+
+    // Create a stack frame.
+    __ movp(MemOperand(rsp, 4 * kPointerSize), rbp);
+    __ leap(rbp, MemOperand(rsp, 4 * kPointerSize));
+
+    // This variant of deopt can only be used with stubs. Since we don't
+    // have a function pointer to install in the stack frame that we're
+    // building, install a special marker there instead.
+    DCHECK(info()->IsStub());
+    __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
+
+    /* stack layout
+       4: old rbp
+       3: context pointer
+       2: stub marker
+       1: return address
+       0: entry address  <-- rsp
+    */
+    __ ret(0);
+  }
+
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+  DCHECK(is_generating());
+  if (deferred_.length() > 0) {
+    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+      LDeferredCode* code = deferred_[i];
+
+      HValue* value =
+          instructions_->at(code->instruction_index())->hydrogen_value();
+      RecordAndWritePosition(
+          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+      Comment(";;; <@%d,#%d> "
+              "-------------------- Deferred %s --------------------",
+              code->instruction_index(),
+              code->instr()->hydrogen_value()->id(),
+              code->instr()->Mnemonic());
+      __ bind(code->entry());
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Build frame");
+        DCHECK(!frame_is_built_);
+        DCHECK(info()->IsStub());
+        frame_is_built_ = true;
+        // Build the frame in such a way that esi isn't trashed.
+        __ pushq(rbp);  // Caller's frame pointer.
+        __ Push(Operand(rbp, StandardFrameConstants::kContextOffset));
+        __ Push(Smi::FromInt(StackFrame::STUB));
+        __ leap(rbp, Operand(rsp, 2 * kPointerSize));
+        Comment(";;; Deferred code");
+      }
+      code->Generate();
+      if (NeedsDeferredFrame()) {
+        __ bind(code->done());
+        Comment(";;; Destroy frame");
+        DCHECK(frame_is_built_);
+        frame_is_built_ = false;
+        __ movp(rsp, rbp);
+        __ popq(rbp);
+      }
+      __ jmp(code->exit());
+    }
+  }
+
+  // Deferred code is the last part of the instruction sequence. Mark
+  // the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+  DCHECK(is_done());
+  safepoints_.Emit(masm(), GetStackSlotCount());
+  return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int index) const {
+  return Register::from_code(index);
+}
+
+
+XMMRegister LCodeGen::ToDoubleRegister(int index) const {
+  return XMMRegister::from_code(index);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+  DCHECK(op->IsRegister());
+  return ToRegister(op->index());
+}
+
+
+XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+  DCHECK(op->IsDoubleRegister());
+  return ToDoubleRegister(op->index());
+}
+
+
+bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsExternal();
+}
+
+
+bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
+  return op->IsConstantOperand() &&
+      chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
+}
+
+
+bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+  return ToRepresentation(op, Representation::Integer32());
+}
+
+
+int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
+                                   const Representation& r) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  int32_t value = constant->Integer32Value();
+  if (r.IsInteger32()) return value;
+  DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
+  return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return Smi::FromInt(constant->Integer32Value());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasDoubleValue());
+  return constant->DoubleValue();
+}
+
+
+ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasExternalReferenceValue());
+  return constant->ExternalReferenceValue();
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+  return constant->handle(isolate());
+}
+
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+  DCHECK(index < 0);
+  return -(index + 1) * kPointerSize + kPCOnStackSize;
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) const {
+  // Does not handle registers. In X64 assembler, plain registers are not
+  // representable as an Operand.
+  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return Operand(rbp, StackSlotOffset(op->index()));
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
+  }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+                                Translation* translation) {
+  if (environment == NULL) return;
+
+  // The translation includes one command per value in the environment.
+  int translation_size = environment->translation_size();
+
+  WriteTranslation(environment->outer(), translation);
+  WriteTranslationFrame(environment, translation);
+
+  int object_index = 0;
+  int dematerialized_index = 0;
+  for (int i = 0; i < translation_size; ++i) {
+    LOperand* value = environment->values()->at(i);
+    AddToTranslation(
+        environment, translation, value, environment->HasTaggedValueAt(i),
+        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
+  }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+                                Translation* translation,
+                                LOperand* op,
+                                bool is_tagged,
+                                bool is_uint32,
+                                int* object_index_pointer,
+                                int* dematerialized_index_pointer) {
+  if (op == LEnvironment::materialization_marker()) {
+    int object_index = (*object_index_pointer)++;
+    if (environment->ObjectIsDuplicateAt(object_index)) {
+      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+      translation->DuplicateObject(dupe_of);
+      return;
+    }
+    int object_length = environment->ObjectLengthAt(object_index);
+    if (environment->ObjectIsArgumentsAt(object_index)) {
+      translation->BeginArgumentsObject(object_length);
+    } else {
+      translation->BeginCapturedObject(object_length);
+    }
+    int dematerialized_index = *dematerialized_index_pointer;
+    int env_offset = environment->translation_size() + dematerialized_index;
+    *dematerialized_index_pointer += object_length;
+    for (int i = 0; i < object_length; ++i) {
+      LOperand* value = environment->values()->at(env_offset + i);
+      AddToTranslation(environment,
+                       translation,
+                       value,
+                       environment->HasTaggedValueAt(env_offset + i),
+                       environment->HasUint32ValueAt(env_offset + i),
+                       object_index_pointer,
+                       dematerialized_index_pointer);
+    }
+    return;
+  }
+
+  if (op->IsStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    if (is_tagged) {
+      translation->StoreStackSlot(index);
+    } else if (is_uint32) {
+      translation->StoreUint32StackSlot(index);
+    } else {
+      translation->StoreInt32StackSlot(index);
+    }
+  } else if (op->IsDoubleStackSlot()) {
+    int index = op->index();
+    if (index >= 0) {
+      index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+    }
+    translation->StoreDoubleStackSlot(index);
+  } else if (op->IsRegister()) {
+    Register reg = ToRegister(op);
+    if (is_tagged) {
+      translation->StoreRegister(reg);
+    } else if (is_uint32) {
+      translation->StoreUint32Register(reg);
+    } else {
+      translation->StoreInt32Register(reg);
+    }
+  } else if (op->IsDoubleRegister()) {
+    XMMRegister reg = ToDoubleRegister(op);
+    translation->StoreDoubleRegister(reg);
+  } else if (op->IsConstantOperand()) {
+    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+    translation->StoreLiteral(src_index);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+                               RelocInfo::Mode mode,
+                               LInstruction* instr,
+                               SafepointMode safepoint_mode,
+                               int argc) {
+  DCHECK(instr != NULL);
+  __ call(code, mode);
+  RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
+
+  // Signal that we don't inline smi code before these stubs in the
+  // optimizing code generator.
+  if (code->kind() == Code::BINARY_OP_IC ||
+      code->kind() == Code::COMPARE_IC) {
+    __ nop();
+  }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+                        RelocInfo::Mode mode,
+                        LInstruction* instr) {
+  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+                           int num_arguments,
+                           LInstruction* instr,
+                           SaveFPRegsMode save_doubles) {
+  DCHECK(instr != NULL);
+  DCHECK(instr->HasPointerMap());
+
+  __ CallRuntime(function, num_arguments, save_doubles);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+  if (context->IsRegister()) {
+    if (!ToRegister(context).is(rsi)) {
+      __ movp(rsi, ToRegister(context));
+    }
+  } else if (context->IsStackSlot()) {
+    __ movp(rsi, ToOperand(context));
+  } else if (context->IsConstantOperand()) {
+    HConstant* constant =
+        chunk_->LookupConstant(LConstantOperand::cast(context));
+    __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+                                       int argc,
+                                       LInstruction* instr,
+                                       LOperand* context) {
+  LoadContextFromDeferred(context);
+
+  __ CallRuntimeSaveDoubles(id);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                                    Safepoint::DeoptMode mode) {
+  environment->set_has_been_used();
+  if (!environment->HasBeenRegistered()) {
+    // Physical stack frame layout:
+    // -x ............. -4  0 ..................................... y
+    // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+    // Layout of the environment:
+    // 0 ..................................................... size-1
+    // [parameters] [locals] [expression stack including arguments]
+
+    // Layout of the translation:
+    // 0 ........................................................ size - 1 + 4
+    // [expression stack including arguments] [locals] [4 words] [parameters]
+    // |>------------  translation_size ------------<|
+
+    int frame_count = 0;
+    int jsframe_count = 0;
+    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+      ++frame_count;
+      if (e->frame_type() == JS_FUNCTION) {
+        ++jsframe_count;
+      }
+    }
+    Translation translation(&translations_, frame_count, jsframe_count, zone());
+    WriteTranslation(environment, &translation);
+    int deoptimization_index = deoptimizations_.length();
+    int pc_offset = masm()->pc_offset();
+    environment->Register(deoptimization_index,
+                          translation.index(),
+                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+    deoptimizations_.Add(environment, environment->zone());
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            Deoptimizer::BailoutType bailout_type) {
+  LEnvironment* environment = instr->environment();
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+  DCHECK(environment->HasBeenRegistered());
+  int id = environment->deoptimization_index();
+  Address entry =
+      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+  if (entry == NULL) {
+    Abort(kBailoutWasNotPrepared);
+    return;
+  }
+
+  if (DeoptEveryNTimes()) {
+    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+    Label no_deopt;
+    __ pushfq();
+    __ pushq(rax);
+    Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
+    __ movl(rax, count_operand);
+    __ subl(rax, Immediate(1));
+    __ j(not_zero, &no_deopt, Label::kNear);
+    if (FLAG_trap_on_deopt) __ int3();
+    __ movl(rax, Immediate(FLAG_deopt_every_n_times));
+    __ movl(count_operand, rax);
+    __ popq(rax);
+    __ popfq();
+    DCHECK(frame_is_built_);
+    __ call(entry, RelocInfo::RUNTIME_ENTRY);
+    __ bind(&no_deopt);
+    __ movl(count_operand, rax);
+    __ popq(rax);
+    __ popfq();
+  }
+
+  if (info()->ShouldTrapOnDeopt()) {
+    Label done;
+    if (cc != no_condition) {
+      __ j(NegateCondition(cc), &done, Label::kNear);
+    }
+    __ int3();
+    __ bind(&done);
+  }
+
+  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+  DCHECK(info()->IsStub() || frame_is_built_);
+  // Go through jump table if we need to handle condition, build frame, or
+  // restore caller doubles.
+  if (cc == no_condition && frame_is_built_ &&
+      !info()->saves_caller_doubles()) {
+    DeoptComment(deopt_info);
+    __ call(entry, RelocInfo::RUNTIME_ENTRY);
+    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+  } else {
+    Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
+                                            !frame_is_built_);
+    // We often have several deopts to the same entry, reuse the last
+    // jump entry if this is the case.
+    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+        jump_table_.is_empty() ||
+        !table_entry.IsEquivalentTo(jump_table_.last())) {
+      jump_table_.Add(table_entry, zone());
+    }
+    if (cc == no_condition) {
+      __ jmp(&jump_table_.last().label);
+    } else {
+      __ j(cc, &jump_table_.last().label);
+    }
+  }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason) {
+  Deoptimizer::BailoutType bailout_type = info()->IsStub()
+      ? Deoptimizer::LAZY
+      : Deoptimizer::EAGER;
+  DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(
+    LInstruction* instr, SafepointMode safepoint_mode, int argc) {
+  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+  } else {
+    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), argc, Safepoint::kLazyDeopt);
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(
+    LPointerMap* pointers,
+    Safepoint::Kind kind,
+    int arguments,
+    Safepoint::DeoptMode deopt_mode) {
+  DCHECK(kind == expected_safepoint_kind_);
+
+  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+
+  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+      kind, arguments, deopt_mode);
+  for (int i = 0; i < operands->length(); i++) {
+    LOperand* pointer = operands->at(i);
+    if (pointer->IsStackSlot()) {
+      safepoint.DefinePointerSlot(pointer->index(), zone());
+    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+    }
+  }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+  LPointerMap empty_pointers(zone());
+  RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+                                            int arguments,
+                                            Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+  if (position == RelocInfo::kNoPosition) return;
+  masm()->positions_recorder()->RecordPosition(position);
+  masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+static const char* LabelType(LLabel* label) {
+  if (label->is_loop_header()) return " (loop header)";
+  if (label->is_osr_entry()) return " (OSR entry)";
+  return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+          current_instruction_,
+          label->hydrogen_value()->id(),
+          label->block_id(),
+          LabelType(label));
+  __ bind(label->label());
+  current_block_ = label->block_id();
+  DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+  resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+  for (int i = LGap::FIRST_INNER_POSITION;
+       i <= LGap::LAST_INNER_POSITION;
+       i++) {
+    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+    LParallelMove* move = gap->GetParallelMove(inner_pos);
+    if (move != NULL) DoParallelMove(move);
+  }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+  DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+  // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->result()).is(rax));
+  switch (instr->hydrogen()->major_key()) {
+    case CodeStub::RegExpExec: {
+      RegExpExecStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    case CodeStub::SubString: {
+      SubStringStub stub(isolate());
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister(instr->result())));
+
+  // Theoretically, a variation of the branch-free code for integer division by
+  // a power of 2 (calculating the remainder via an additional multiplication
+  // (which gets simplified to an 'and') and subtraction) should be faster, and
+  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+  // indicate that positive dividends are heavily favored, so the branching
+  // version performs better.
+  HMod* hmod = instr->hydrogen();
+  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+  Label dividend_is_not_negative, done;
+  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+    __ testl(dividend, dividend);
+    __ j(not_sign, &dividend_is_not_negative, Label::kNear);
+    // Note that this is correct even for kMinInt operands.
+    __ negl(dividend);
+    __ andl(dividend, Immediate(mask));
+    __ negl(dividend);
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+    }
+    __ jmp(&done, Label::kNear);
+  }
+
+  __ bind(&dividend_is_not_negative);
+  __ andl(dividend, Immediate(mask));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  if (divisor == 0) {
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  __ TruncatingDiv(dividend, Abs(divisor));
+  __ imull(rdx, rdx, Immediate(Abs(divisor)));
+  __ movl(rax, dividend);
+  __ subl(rax, rdx);
+
+  // Check for negative zero.
+  HMod* hmod = instr->hydrogen();
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label remainder_not_zero;
+    __ j(not_zero, &remainder_not_zero, Label::kNear);
+    __ cmpl(dividend, Immediate(0));
+    DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
+    __ bind(&remainder_not_zero);
+  }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+  HMod* hmod = instr->hydrogen();
+
+  Register left_reg = ToRegister(instr->left());
+  DCHECK(left_reg.is(rax));
+  Register right_reg = ToRegister(instr->right());
+  DCHECK(!right_reg.is(rax));
+  DCHECK(!right_reg.is(rdx));
+  Register result_reg = ToRegister(instr->result());
+  DCHECK(result_reg.is(rdx));
+
+  Label done;
+  // Check for x % 0, idiv would signal a divide error. We have to
+  // deopt in this case because we can't return a NaN.
+  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ testl(right_reg, right_reg);
+    DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for kMinInt % -1, idiv would signal a divide error. We
+  // have to deopt if we care about -0, because we can't return that.
+  if (hmod->CheckFlag(HValue::kCanOverflow)) {
+    Label no_overflow_possible;
+    __ cmpl(left_reg, Immediate(kMinInt));
+    __ j(not_zero, &no_overflow_possible, Label::kNear);
+    __ cmpl(right_reg, Immediate(-1));
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
+    } else {
+      __ j(not_equal, &no_overflow_possible, Label::kNear);
+      __ Set(result_reg, 0);
+      __ jmp(&done, Label::kNear);
+    }
+    __ bind(&no_overflow_possible);
+  }
+
+  // Sign extend dividend in eax into edx:eax, since we are using only the low
+  // 32 bits of the values.
+  __ cdq();
+
+  // If we care about -0, test if the dividend is <0 and the result is 0.
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label positive_left;
+    __ testl(left_reg, left_reg);
+    __ j(not_sign, &positive_left, Label::kNear);
+    __ idivl(right_reg);
+    __ testl(result_reg, result_reg);
+    DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+    __ jmp(&done, Label::kNear);
+    __ bind(&positive_left);
+  }
+  __ idivl(right_reg);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister(instr->result())));
+
+  // If the divisor is positive, things are easy: There can be no deopts and we
+  // can simply do an arithmetic right shift.
+  if (divisor == 1) return;
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (divisor > 1) {
+    __ sarl(dividend, Immediate(shift));
+    return;
+  }
+
+  // If the divisor is negative, we have to negate and handle edge cases.
+  __ negl(dividend);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Dividing by -1 is basically negation, unless we overflow.
+  if (divisor == -1) {
+    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+      DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+    }
+    return;
+  }
+
+  // If the negation could not overflow, simply shifting is OK.
+  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+    __ sarl(dividend, Immediate(shift));
+    return;
+  }
+
+  Label not_kmin_int, done;
+  __ j(no_overflow, &not_kmin_int, Label::kNear);
+  __ movl(dividend, Immediate(kMinInt / divisor));
+  __ jmp(&done, Label::kNear);
+  __ bind(&not_kmin_int);
+  __ sarl(dividend, Immediate(shift));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(ToRegister(instr->result()).is(rdx));
+
+  if (divisor == 0) {
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HMathFloorOfDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ testl(dividend, dividend);
+    DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Easy case: We need no dynamic check for the dividend and the flooring
+  // division is the same as the truncating division.
+  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+    __ TruncatingDiv(dividend, Abs(divisor));
+    if (divisor < 0) __ negl(rdx);
+    return;
+  }
+
+  // In the general case we may need to adjust before and after the truncating
+  // division to get a flooring division.
+  Register temp = ToRegister(instr->temp3());
+  DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
+  Label needs_adjustment, done;
+  __ cmpl(dividend, Immediate(0));
+  __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
+  __ TruncatingDiv(dividend, Abs(divisor));
+  if (divisor < 0) __ negl(rdx);
+  __ jmp(&done, Label::kNear);
+  __ bind(&needs_adjustment);
+  __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
+  __ TruncatingDiv(temp, Abs(divisor));
+  if (divisor < 0) __ negl(rdx);
+  __ decl(rdx);
+  __ bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register divisor = ToRegister(instr->divisor());
+  Register remainder = ToRegister(instr->temp());
+  Register result = ToRegister(instr->result());
+  DCHECK(dividend.is(rax));
+  DCHECK(remainder.is(rdx));
+  DCHECK(result.is(rax));
+  DCHECK(!divisor.is(rax));
+  DCHECK(!divisor.is(rdx));
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ testl(divisor, divisor);
+    DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label dividend_not_zero;
+    __ testl(dividend, dividend);
+    __ j(not_zero, &dividend_not_zero, Label::kNear);
+    __ testl(divisor, divisor);
+    DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+    __ bind(&dividend_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+    Label dividend_not_min_int;
+    __ cmpl(dividend, Immediate(kMinInt));
+    __ j(not_zero, &dividend_not_min_int, Label::kNear);
+    __ cmpl(divisor, Immediate(-1));
+    DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+    __ bind(&dividend_not_min_int);
+  }
+
+  // Sign extend to rdx (= remainder).
+  __ cdq();
+  __ idivl(divisor);
+
+  Label done;
+  __ testl(remainder, remainder);
+  __ j(zero, &done, Label::kNear);
+  __ xorl(remainder, divisor);
+  __ sarl(remainder, Immediate(31));
+  __ addl(result, remainder);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+  DCHECK(!result.is(dividend));
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ testl(dividend, dividend);
+    DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+  }
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+    __ cmpl(dividend, Immediate(kMinInt));
+    DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+  }
+  // Deoptimize if remainder will not be 0.
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+      divisor != 1 && divisor != -1) {
+    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+    __ testl(dividend, Immediate(mask));
+    DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
+  }
+  __ Move(result, dividend);
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (shift > 0) {
+    // The arithmetic shift is always OK, the 'if' is an optimization only.
+    if (shift > 1) __ sarl(result, Immediate(31));
+    __ shrl(result, Immediate(32 - shift));
+    __ addl(result, dividend);
+    __ sarl(result, Immediate(shift));
+  }
+  if (divisor < 0) __ negl(result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(ToRegister(instr->result()).is(rdx));
+
+  if (divisor == 0) {
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ testl(dividend, dividend);
+    DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ TruncatingDiv(dividend, Abs(divisor));
+  if (divisor < 0) __ negl(rdx);
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    __ movl(rax, rdx);
+    __ imull(rax, rax, Immediate(divisor));
+    __ subl(rax, dividend);
+    DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register divisor = ToRegister(instr->divisor());
+  Register remainder = ToRegister(instr->temp());
+  DCHECK(dividend.is(rax));
+  DCHECK(remainder.is(rdx));
+  DCHECK(ToRegister(instr->result()).is(rax));
+  DCHECK(!divisor.is(rax));
+  DCHECK(!divisor.is(rdx));
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ testl(divisor, divisor);
+    DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label dividend_not_zero;
+    __ testl(dividend, dividend);
+    __ j(not_zero, &dividend_not_zero, Label::kNear);
+    __ testl(divisor, divisor);
+    DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+    __ bind(&dividend_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+    Label dividend_not_min_int;
+    __ cmpl(dividend, Immediate(kMinInt));
+    __ j(not_zero, &dividend_not_min_int, Label::kNear);
+    __ cmpl(divisor, Immediate(-1));
+    DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+    __ bind(&dividend_not_min_int);
+  }
+
+  // Sign extend to rdx (= remainder).
+  __ cdq();
+  __ idivl(divisor);
+
+  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    // Deoptimize if remainder is not 0.
+    __ testl(remainder, remainder);
+    DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+  Register left = ToRegister(instr->left());
+  LOperand* right = instr->right();
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ movp(kScratchRegister, left);
+    } else {
+      __ movl(kScratchRegister, left);
+    }
+  }
+
+  bool can_overflow =
+      instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+  if (right->IsConstantOperand()) {
+    int32_t right_value = ToInteger32(LConstantOperand::cast(right));
+    if (right_value == -1) {
+      __ negl(left);
+    } else if (right_value == 0) {
+      __ xorl(left, left);
+    } else if (right_value == 2) {
+      __ addl(left, left);
+    } else if (!can_overflow) {
+      // If the multiplication is known to not overflow, we
+      // can use operations that don't set the overflow flag
+      // correctly.
+      switch (right_value) {
+        case 1:
+          // Do nothing.
+          break;
+        case 3:
+          __ leal(left, Operand(left, left, times_2, 0));
+          break;
+        case 4:
+          __ shll(left, Immediate(2));
+          break;
+        case 5:
+          __ leal(left, Operand(left, left, times_4, 0));
+          break;
+        case 8:
+          __ shll(left, Immediate(3));
+          break;
+        case 9:
+          __ leal(left, Operand(left, left, times_8, 0));
+          break;
+        case 16:
+          __ shll(left, Immediate(4));
+          break;
+        default:
+          __ imull(left, left, Immediate(right_value));
+          break;
+      }
+    } else {
+      __ imull(left, left, Immediate(right_value));
+    }
+  } else if (right->IsStackSlot()) {
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ SmiToInteger64(left, left);
+      __ imulp(left, ToOperand(right));
+    } else {
+      __ imull(left, ToOperand(right));
+    }
+  } else {
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ SmiToInteger64(left, left);
+      __ imulp(left, ToRegister(right));
+    } else {
+      __ imull(left, ToRegister(right));
+    }
+  }
+
+  if (can_overflow) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  }
+
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // Bail out if the result is supposed to be negative zero.
+    Label done;
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ testp(left, left);
+    } else {
+      __ testl(left, left);
+    }
+    __ j(not_zero, &done, Label::kNear);
+    if (right->IsConstantOperand()) {
+      // Constant can't be represented as 32-bit Smi due to immediate size
+      // limit.
+      DCHECK(SmiValuesAre32Bits()
+          ? !instr->hydrogen_value()->representation().IsSmi()
+          : SmiValuesAre31Bits());
+      if (ToInteger32(LConstantOperand::cast(right)) < 0) {
+        DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+      } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
+        __ cmpl(kScratchRegister, Immediate(0));
+        DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
+      }
+    } else if (right->IsStackSlot()) {
+      if (instr->hydrogen_value()->representation().IsSmi()) {
+        __ orp(kScratchRegister, ToOperand(right));
+      } else {
+        __ orl(kScratchRegister, ToOperand(right));
+      }
+      DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+    } else {
+      // Test the non-zero operand for negative sign.
+      if (instr->hydrogen_value()->representation().IsSmi()) {
+        __ orp(kScratchRegister, ToRegister(right));
+      } else {
+        __ orl(kScratchRegister, ToRegister(right));
+      }
+      DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+    }
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  DCHECK(left->Equals(instr->result()));
+  DCHECK(left->IsRegister());
+
+  if (right->IsConstantOperand()) {
+    int32_t right_operand =
+        ToRepresentation(LConstantOperand::cast(right),
+                         instr->hydrogen()->right()->representation());
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        __ andl(ToRegister(left), Immediate(right_operand));
+        break;
+      case Token::BIT_OR:
+        __ orl(ToRegister(left), Immediate(right_operand));
+        break;
+      case Token::BIT_XOR:
+        if (right_operand == int32_t(~0)) {
+          __ notl(ToRegister(left));
+        } else {
+          __ xorl(ToRegister(left), Immediate(right_operand));
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else if (right->IsStackSlot()) {
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        if (instr->IsInteger32()) {
+          __ andl(ToRegister(left), ToOperand(right));
+        } else {
+          __ andp(ToRegister(left), ToOperand(right));
+        }
+        break;
+      case Token::BIT_OR:
+        if (instr->IsInteger32()) {
+          __ orl(ToRegister(left), ToOperand(right));
+        } else {
+          __ orp(ToRegister(left), ToOperand(right));
+        }
+        break;
+      case Token::BIT_XOR:
+        if (instr->IsInteger32()) {
+          __ xorl(ToRegister(left), ToOperand(right));
+        } else {
+          __ xorp(ToRegister(left), ToOperand(right));
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    DCHECK(right->IsRegister());
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        if (instr->IsInteger32()) {
+          __ andl(ToRegister(left), ToRegister(right));
+        } else {
+          __ andp(ToRegister(left), ToRegister(right));
+        }
+        break;
+      case Token::BIT_OR:
+        if (instr->IsInteger32()) {
+          __ orl(ToRegister(left), ToRegister(right));
+        } else {
+          __ orp(ToRegister(left), ToRegister(right));
+        }
+        break;
+      case Token::BIT_XOR:
+        if (instr->IsInteger32()) {
+          __ xorl(ToRegister(left), ToRegister(right));
+        } else {
+          __ xorp(ToRegister(left), ToRegister(right));
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  DCHECK(left->Equals(instr->result()));
+  DCHECK(left->IsRegister());
+  if (right->IsRegister()) {
+    DCHECK(ToRegister(right).is(rcx));
+
+    switch (instr->op()) {
+      case Token::ROR:
+        __ rorl_cl(ToRegister(left));
+        break;
+      case Token::SAR:
+        __ sarl_cl(ToRegister(left));
+        break;
+      case Token::SHR:
+        __ shrl_cl(ToRegister(left));
+        if (instr->can_deopt()) {
+          __ testl(ToRegister(left), ToRegister(left));
+          DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case Token::SHL:
+        __ shll_cl(ToRegister(left));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    int32_t value = ToInteger32(LConstantOperand::cast(right));
+    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+    switch (instr->op()) {
+      case Token::ROR:
+        if (shift_count != 0) {
+          __ rorl(ToRegister(left), Immediate(shift_count));
+        }
+        break;
+      case Token::SAR:
+        if (shift_count != 0) {
+          __ sarl(ToRegister(left), Immediate(shift_count));
+        }
+        break;
+      case Token::SHR:
+        if (shift_count != 0) {
+          __ shrl(ToRegister(left), Immediate(shift_count));
+        } else if (instr->can_deopt()) {
+          __ testl(ToRegister(left), ToRegister(left));
+          DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case Token::SHL:
+        if (shift_count != 0) {
+          if (instr->hydrogen_value()->representation().IsSmi()) {
+            if (SmiValuesAre32Bits()) {
+              __ shlp(ToRegister(left), Immediate(shift_count));
+            } else {
+              DCHECK(SmiValuesAre31Bits());
+              if (instr->can_deopt()) {
+                if (shift_count != 1) {
+                  __ shll(ToRegister(left), Immediate(shift_count - 1));
+                }
+                __ Integer32ToSmi(ToRegister(left), ToRegister(left));
+                DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+              } else {
+                __ shll(ToRegister(left), Immediate(shift_count));
+              }
+            }
+          } else {
+            __ shll(ToRegister(left), Immediate(shift_count));
+          }
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  DCHECK(left->Equals(instr->result()));
+
+  if (right->IsConstantOperand()) {
+    int32_t right_operand =
+        ToRepresentation(LConstantOperand::cast(right),
+                         instr->hydrogen()->right()->representation());
+    __ subl(ToRegister(left), Immediate(right_operand));
+  } else if (right->IsRegister()) {
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ subp(ToRegister(left), ToRegister(right));
+    } else {
+      __ subl(ToRegister(left), ToRegister(right));
+    }
+  } else {
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+      __ subp(ToRegister(left), ToOperand(right));
+    } else {
+      __ subl(ToRegister(left), ToOperand(right));
+    }
+  }
+
+  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+  Register dst = ToRegister(instr->result());
+  if (instr->value() == 0) {
+    __ xorl(dst, dst);
+  } else {
+    __ movl(dst, Immediate(instr->value()));
+  }
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+  __ Move(ToRegister(instr->result()), instr->value());
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+  __ Move(ToDoubleRegister(instr->result()), instr->bits());
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+  __ LoadAddress(ToRegister(instr->result()), instr->value());
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+  Handle<Object> object = instr->value(isolate());
+  AllowDeferredHandleDereference smi_check;
+  __ Move(ToRegister(instr->result()), object);
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+  Register result = ToRegister(instr->result());
+  Register map = ToRegister(instr->value());
+  __ EnumLength(result, map);
+}
+
+
+Operand LCodeGen::BuildSeqStringOperand(Register string,
+                                        LOperand* index,
+                                        String::Encoding encoding) {
+  if (index->IsConstantOperand()) {
+    int offset = ToInteger32(LConstantOperand::cast(index));
+    if (encoding == String::TWO_BYTE_ENCODING) {
+      offset *= kUC16Size;
+    }
+    STATIC_ASSERT(kCharSize == 1);
+    return FieldOperand(string, SeqString::kHeaderSize + offset);
+  }
+  return FieldOperand(
+      string, ToRegister(index),
+      encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
+      SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register result = ToRegister(instr->result());
+  Register string = ToRegister(instr->string());
+
+  if (FLAG_debug_code) {
+    __ Push(string);
+    __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
+    __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
+
+    __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
+                              ? one_byte_seq_type : two_byte_seq_type));
+    __ Check(equal, kUnexpectedStringType);
+    __ Pop(string);
+  }
+
+  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ movzxbl(result, operand);
+  } else {
+    __ movzxwl(result, operand);
+  }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+
+  if (FLAG_debug_code) {
+    Register value = ToRegister(instr->value());
+    Register index = ToRegister(instr->index());
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    int encoding_mask =
+        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+        ? one_byte_seq_type : two_byte_seq_type;
+    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
+  }
+
+  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (instr->value()->IsConstantOperand()) {
+    int value = ToInteger32(LConstantOperand::cast(instr->value()));
+    DCHECK_LE(0, value);
+    if (encoding == String::ONE_BYTE_ENCODING) {
+      DCHECK_LE(value, String::kMaxOneByteCharCode);
+      __ movb(operand, Immediate(value));
+    } else {
+      DCHECK_LE(value, String::kMaxUtf16CodeUnit);
+      __ movw(operand, Immediate(value));
+    }
+  } else {
+    Register value = ToRegister(instr->value());
+    if (encoding == String::ONE_BYTE_ENCODING) {
+      __ movb(operand, value);
+    } else {
+      __ movw(operand, value);
+    }
+  }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+
+  Representation target_rep = instr->hydrogen()->representation();
+  bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
+
+  if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
+    if (right->IsConstantOperand()) {
+      // No support for smi-immediates for 32-bit SMI.
+      DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
+      int32_t offset =
+          ToRepresentation(LConstantOperand::cast(right),
+                           instr->hydrogen()->right()->representation());
+      if (is_p) {
+        __ leap(ToRegister(instr->result()),
+                MemOperand(ToRegister(left), offset));
+      } else {
+        __ leal(ToRegister(instr->result()),
+                MemOperand(ToRegister(left), offset));
+      }
+    } else {
+      Operand address(ToRegister(left), ToRegister(right), times_1, 0);
+      if (is_p) {
+        __ leap(ToRegister(instr->result()), address);
+      } else {
+        __ leal(ToRegister(instr->result()), address);
+      }
+    }
+  } else {
+    if (right->IsConstantOperand()) {
+      // No support for smi-immediates for 32-bit SMI.
+      DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
+      int32_t right_operand =
+          ToRepresentation(LConstantOperand::cast(right),
+                           instr->hydrogen()->right()->representation());
+      if (is_p) {
+        __ addp(ToRegister(left), Immediate(right_operand));
+      } else {
+        __ addl(ToRegister(left), Immediate(right_operand));
+      }
+    } else if (right->IsRegister()) {
+      if (is_p) {
+        __ addp(ToRegister(left), ToRegister(right));
+      } else {
+        __ addl(ToRegister(left), ToRegister(right));
+      }
+    } else {
+      if (is_p) {
+        __ addp(ToRegister(left), ToOperand(right));
+      } else {
+        __ addl(ToRegister(left), ToOperand(right));
+      }
+    }
+    if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+      DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+    }
+  }
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  DCHECK(left->Equals(instr->result()));
+  HMathMinMax::Operation operation = instr->hydrogen()->operation();
+  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+    Label return_left;
+    Condition condition = (operation == HMathMinMax::kMathMin)
+        ? less_equal
+        : greater_equal;
+    Register left_reg = ToRegister(left);
+    if (right->IsConstantOperand()) {
+      Immediate right_imm = Immediate(
+          ToRepresentation(LConstantOperand::cast(right),
+                           instr->hydrogen()->right()->representation()));
+      DCHECK(SmiValuesAre32Bits()
+          ? !instr->hydrogen()->representation().IsSmi()
+          : SmiValuesAre31Bits());
+      __ cmpl(left_reg, right_imm);
+      __ j(condition, &return_left, Label::kNear);
+      __ movp(left_reg, right_imm);
+    } else if (right->IsRegister()) {
+      Register right_reg = ToRegister(right);
+      if (instr->hydrogen_value()->representation().IsSmi()) {
+        __ cmpp(left_reg, right_reg);
+      } else {
+        __ cmpl(left_reg, right_reg);
+      }
+      __ j(condition, &return_left, Label::kNear);
+      __ movp(left_reg, right_reg);
+    } else {
+      Operand right_op = ToOperand(right);
+      if (instr->hydrogen_value()->representation().IsSmi()) {
+        __ cmpp(left_reg, right_op);
+      } else {
+        __ cmpl(left_reg, right_op);
+      }
+      __ j(condition, &return_left, Label::kNear);
+      __ movp(left_reg, right_op);
+    }
+    __ bind(&return_left);
+  } else {
+    DCHECK(instr->hydrogen()->representation().IsDouble());
+    Label not_nan, distinct, return_left, return_right;
+    Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
+    XMMRegister left_reg = ToDoubleRegister(left);
+    XMMRegister right_reg = ToDoubleRegister(right);
+    __ Ucomisd(left_reg, right_reg);
+    __ j(parity_odd, &not_nan, Label::kNear);  // Both are not NaN.
+
+    // One of the numbers is NaN. Find which one and return it.
+    __ Ucomisd(left_reg, left_reg);
+    __ j(parity_even, &return_left, Label::kNear);  // left is NaN.
+    __ jmp(&return_right, Label::kNear);            // right is NaN.
+
+    __ bind(&not_nan);
+    __ j(not_equal, &distinct, Label::kNear);  // left != right.
+
+    // left == right
+    XMMRegister xmm_scratch = double_scratch0();
+    __ Xorpd(xmm_scratch, xmm_scratch);
+    __ Ucomisd(left_reg, xmm_scratch);
+    __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
+
+    // At this point, both left and right are either +0 or -0.
+    if (operation == HMathMinMax::kMathMin) {
+      __ Orpd(left_reg, right_reg);
+    } else {
+      __ Andpd(left_reg, right_reg);
+    }
+    __ jmp(&return_left, Label::kNear);
+
+    __ bind(&distinct);
+    __ j(condition, &return_left, Label::kNear);
+
+    __ bind(&return_right);
+    __ Movapd(left_reg, right_reg);
+
+    __ bind(&return_left);
+  }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+  XMMRegister left = ToDoubleRegister(instr->left());
+  XMMRegister right = ToDoubleRegister(instr->right());
+  XMMRegister result = ToDoubleRegister(instr->result());
+  switch (instr->op()) {
+    case Token::ADD:
+      if (CpuFeatures::IsSupported(AVX)) {
+        CpuFeatureScope scope(masm(), AVX);
+        __ vaddsd(result, left, right);
+      } else {
+        DCHECK(result.is(left));
+        __ addsd(left, right);
+      }
+      break;
+    case Token::SUB:
+      if (CpuFeatures::IsSupported(AVX)) {
+        CpuFeatureScope scope(masm(), AVX);
+        __ vsubsd(result, left, right);
+      } else {
+        DCHECK(result.is(left));
+        __ subsd(left, right);
+      }
+       break;
+    case Token::MUL:
+      if (CpuFeatures::IsSupported(AVX)) {
+        CpuFeatureScope scope(masm(), AVX);
+        __ vmulsd(result, left, right);
+      } else {
+        DCHECK(result.is(left));
+        __ mulsd(left, right);
+      }
+      break;
+    case Token::DIV:
+      if (CpuFeatures::IsSupported(AVX)) {
+        CpuFeatureScope scope(masm(), AVX);
+        __ vdivsd(result, left, right);
+      } else {
+        DCHECK(result.is(left));
+        __ divsd(left, right);
+      }
+      // Don't delete this mov. It may improve performance on some CPUs,
+      // when there is a (v)mulsd depending on the result
+      __ Movapd(result, result);
+      break;
+    case Token::MOD: {
+      XMMRegister xmm_scratch = double_scratch0();
+      __ PrepareCallCFunction(2);
+      __ Movapd(xmm_scratch, left);
+      DCHECK(right.is(xmm1));
+      __ CallCFunction(
+          ExternalReference::mod_two_doubles_operation(isolate()), 2);
+      __ Movapd(result, xmm_scratch);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->left()).is(rdx));
+  DCHECK(ToRegister(instr->right()).is(rax));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+
+  if (right_block == left_block || cc == no_condition) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
+  } else if (right_block == next_block) {
+    __ j(cc, chunk_->GetAssemblyLabel(left_block));
+  } else {
+    __ j(cc, chunk_->GetAssemblyLabel(left_block));
+    if (cc != always) {
+      __ jmp(chunk_->GetAssemblyLabel(right_block));
+    }
+  }
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
+  int true_block = instr->TrueDestination(chunk_);
+  __ j(cc, chunk_->GetAssemblyLabel(true_block));
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
+  int false_block = instr->FalseDestination(chunk_);
+  __ j(cc, chunk_->GetAssemblyLabel(false_block));
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+  __ int3();
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsInteger32()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    __ testl(reg, reg);
+    EmitBranch(instr, not_zero);
+  } else if (r.IsSmi()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    __ testp(reg, reg);
+    EmitBranch(instr, not_zero);
+  } else if (r.IsDouble()) {
+    DCHECK(!info()->IsStub());
+    XMMRegister reg = ToDoubleRegister(instr->value());
+    XMMRegister xmm_scratch = double_scratch0();
+    __ Xorpd(xmm_scratch, xmm_scratch);
+    __ Ucomisd(reg, xmm_scratch);
+    EmitBranch(instr, not_equal);
+  } else {
+    DCHECK(r.IsTagged());
+    Register reg = ToRegister(instr->value());
+    HType type = instr->hydrogen()->value()->type();
+    if (type.IsBoolean()) {
+      DCHECK(!info()->IsStub());
+      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+      EmitBranch(instr, equal);
+    } else if (type.IsSmi()) {
+      DCHECK(!info()->IsStub());
+      __ SmiCompare(reg, Smi::FromInt(0));
+      EmitBranch(instr, not_equal);
+    } else if (type.IsJSArray()) {
+      DCHECK(!info()->IsStub());
+      EmitBranch(instr, no_condition);
+    } else if (type.IsHeapNumber()) {
+      DCHECK(!info()->IsStub());
+      XMMRegister xmm_scratch = double_scratch0();
+      __ Xorpd(xmm_scratch, xmm_scratch);
+      __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
+      EmitBranch(instr, not_equal);
+    } else if (type.IsString()) {
+      DCHECK(!info()->IsStub());
+      __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
+      EmitBranch(instr, not_equal);
+    } else {
+      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+      // Avoid deopts in the case where we've never executed this path before.
+      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+        // undefined -> false.
+        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
+        __ j(equal, instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+        // true -> true.
+        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+        __ j(equal, instr->TrueLabel(chunk_));
+        // false -> false.
+        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
+        __ j(equal, instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+        // 'null' -> false.
+        __ CompareRoot(reg, Heap::kNullValueRootIndex);
+        __ j(equal, instr->FalseLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::SMI)) {
+        // Smis: 0 -> false, all other -> true.
+        __ Cmp(reg, Smi::FromInt(0));
+        __ j(equal, instr->FalseLabel(chunk_));
+        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+      } else if (expected.NeedsMap()) {
+        // If we need a map later and have a Smi -> deopt.
+        __ testb(reg, Immediate(kSmiTagMask));
+        DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
+      }
+
+      const Register map = kScratchRegister;
+      if (expected.NeedsMap()) {
+        __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
+
+        if (expected.CanBeUndetectable()) {
+          // Undetectable -> false.
+          __ testb(FieldOperand(map, Map::kBitFieldOffset),
+                   Immediate(1 << Map::kIsUndetectable));
+          __ j(not_zero, instr->FalseLabel(chunk_));
+        }
+      }
+
+      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+        // spec object -> true.
+        __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
+        __ j(above_equal, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::STRING)) {
+        // String value -> false iff empty.
+        Label not_string;
+        __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
+        __ j(above_equal, &not_string, Label::kNear);
+        __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
+        __ j(not_zero, instr->TrueLabel(chunk_));
+        __ jmp(instr->FalseLabel(chunk_));
+        __ bind(&not_string);
+      }
+
+      if (expected.Contains(ToBooleanStub::SYMBOL)) {
+        // Symbol value -> true.
+        __ CmpInstanceType(map, SYMBOL_TYPE);
+        __ j(equal, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
+        // SIMD value -> true.
+        __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
+        __ j(equal, instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+        // heap number -> false iff +0, -0, or NaN.
+        Label not_heap_number;
+        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
+        __ j(not_equal, &not_heap_number, Label::kNear);
+        XMMRegister xmm_scratch = double_scratch0();
+        __ Xorpd(xmm_scratch, xmm_scratch);
+        __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
+        __ j(zero, instr->FalseLabel(chunk_));
+        __ jmp(instr->TrueLabel(chunk_));
+        __ bind(&not_heap_number);
+      }
+
+      if (!expected.IsGeneric()) {
+        // We've seen something for the first time -> deopt.
+        // This can only happen if we are not generic already.
+        DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
+      }
+    }
+  }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+  if (!IsNextEmittedBlock(block)) {
+    __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
+  }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+  EmitGoto(instr->block_id());
+}
+
+
+inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+  Condition cond = no_condition;
+  switch (op) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      cond = equal;
+      break;
+    case Token::NE:
+    case Token::NE_STRICT:
+      cond = not_equal;
+      break;
+    case Token::LT:
+      cond = is_unsigned ? below : less;
+      break;
+    case Token::GT:
+      cond = is_unsigned ? above : greater;
+      break;
+    case Token::LTE:
+      cond = is_unsigned ? below_equal : less_equal;
+      break;
+    case Token::GTE:
+      cond = is_unsigned ? above_equal : greater_equal;
+      break;
+    case Token::IN:
+    case Token::INSTANCEOF:
+    default:
+      UNREACHABLE();
+  }
+  return cond;
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  bool is_unsigned =
+      instr->is_double() ||
+      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+  Condition cc = TokenToCondition(instr->op(), is_unsigned);
+
+  if (left->IsConstantOperand() && right->IsConstantOperand()) {
+    // We can statically evaluate the comparison.
+    double left_val = ToDouble(LConstantOperand::cast(left));
+    double right_val = ToDouble(LConstantOperand::cast(right));
+    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+    EmitGoto(next_block);
+  } else {
+    if (instr->is_double()) {
+      // Don't base result on EFLAGS when a NaN is involved. Instead
+      // jump to the false block.
+      __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
+      __ j(parity_even, instr->FalseLabel(chunk_));
+    } else {
+      int32_t value;
+      if (right->IsConstantOperand()) {
+        value = ToInteger32(LConstantOperand::cast(right));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          __ Cmp(ToRegister(left), Smi::FromInt(value));
+        } else {
+          __ cmpl(ToRegister(left), Immediate(value));
+        }
+      } else if (left->IsConstantOperand()) {
+        value = ToInteger32(LConstantOperand::cast(left));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          if (right->IsRegister()) {
+            __ Cmp(ToRegister(right), Smi::FromInt(value));
+          } else {
+            __ Cmp(ToOperand(right), Smi::FromInt(value));
+          }
+        } else if (right->IsRegister()) {
+          __ cmpl(ToRegister(right), Immediate(value));
+        } else {
+          __ cmpl(ToOperand(right), Immediate(value));
+        }
+        // We commuted the operands, so commute the condition.
+        cc = CommuteCondition(cc);
+      } else if (instr->hydrogen_value()->representation().IsSmi()) {
+        if (right->IsRegister()) {
+          __ cmpp(ToRegister(left), ToRegister(right));
+        } else {
+          __ cmpp(ToRegister(left), ToOperand(right));
+        }
+      } else {
+        if (right->IsRegister()) {
+          __ cmpl(ToRegister(left), ToRegister(right));
+        } else {
+          __ cmpl(ToRegister(left), ToOperand(right));
+        }
+      }
+    }
+    EmitBranch(instr, cc);
+  }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+  Register left = ToRegister(instr->left());
+
+  if (instr->right()->IsConstantOperand()) {
+    Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
+    __ Cmp(left, right);
+  } else {
+    Register right = ToRegister(instr->right());
+    __ cmpp(left, right);
+  }
+  EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+  if (instr->hydrogen()->representation().IsTagged()) {
+    Register input_reg = ToRegister(instr->object());
+    __ Cmp(input_reg, factory()->the_hole_value());
+    EmitBranch(instr, equal);
+    return;
+  }
+
+  XMMRegister input_reg = ToDoubleRegister(instr->object());
+  __ Ucomisd(input_reg, input_reg);
+  EmitFalseBranch(instr, parity_odd);
+
+  __ subp(rsp, Immediate(kDoubleSize));
+  __ Movsd(MemOperand(rsp, 0), input_reg);
+  __ addp(rsp, Immediate(kDoubleSize));
+
+  int offset = sizeof(kHoleNanUpper32);
+  __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
+  EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+  Representation rep = instr->hydrogen()->value()->representation();
+  DCHECK(!rep.IsInteger32());
+
+  if (rep.IsDouble()) {
+    XMMRegister value = ToDoubleRegister(instr->value());
+    XMMRegister xmm_scratch = double_scratch0();
+    __ Xorpd(xmm_scratch, xmm_scratch);
+    __ Ucomisd(xmm_scratch, value);
+    EmitFalseBranch(instr, not_equal);
+    __ Movmskpd(kScratchRegister, value);
+    __ testl(kScratchRegister, Immediate(1));
+    EmitBranch(instr, not_zero);
+  } else {
+    Register value = ToRegister(instr->value());
+    Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
+    __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
+    __ cmpl(FieldOperand(value, HeapNumber::kExponentOffset),
+            Immediate(0x1));
+    EmitFalseBranch(instr, no_overflow);
+    __ cmpl(FieldOperand(value, HeapNumber::kMantissaOffset),
+            Immediate(0x00000000));
+    EmitBranch(instr, equal);
+  }
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+                                 Register temp1,
+                                 Label* is_not_string,
+                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
+  if (check_needed == INLINE_SMI_CHECK) {
+    __ JumpIfSmi(input, is_not_string);
+  }
+
+  Condition cond =  masm_->IsObjectStringType(input, temp1, temp1);
+
+  return cond;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  SmiCheck check_needed =
+      instr->hydrogen()->value()->type().IsHeapObject()
+          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+
+  Condition true_cond = EmitIsString(
+      reg, temp, instr->FalseLabel(chunk_), check_needed);
+
+  EmitBranch(instr, true_cond);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+  Condition is_smi;
+  if (instr->value()->IsRegister()) {
+    Register input = ToRegister(instr->value());
+    is_smi = masm()->CheckSmi(input);
+  } else {
+    Operand input = ToOperand(instr->value());
+    is_smi = masm()->CheckSmi(input);
+  }
+  EmitBranch(instr, is_smi);
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
+  __ testb(FieldOperand(temp, Map::kBitFieldOffset),
+           Immediate(1 << Map::kIsUndetectable));
+  EmitBranch(instr, not_zero);
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->left()).is(rdx));
+  DCHECK(ToRegister(instr->right()).is(rax));
+
+  Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+  __ testp(rax, rax);
+
+  EmitBranch(instr, TokenToCondition(instr->op(), false));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == FIRST_TYPE) return to;
+  DCHECK(from == to || to == LAST_TYPE);
+  return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == to) return equal;
+  if (to == LAST_TYPE) return above_equal;
+  if (from == FIRST_TYPE) return below_equal;
+  UNREACHABLE();
+  return equal;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+
+  __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
+  EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ AssertString(input);
+
+  __ movl(result, FieldOperand(input, String::kHashFieldOffset));
+  DCHECK(String::kHashShift >= kSmiTagSize);
+  __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+    LHasCachedArrayIndexAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+
+  __ testl(FieldOperand(input, String::kHashFieldOffset),
+           Immediate(String::kContainsCachedArrayIndexMask));
+  EmitBranch(instr, equal);
+}
+
+
+// Branches to a label or falls through with the answer in the z flag.
+// Trashes the temp register.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+                               Label* is_false,
+                               Handle<String> class_name,
+                               Register input,
+                               Register temp,
+                               Register temp2) {
+  DCHECK(!input.is(temp));
+  DCHECK(!input.is(temp2));
+  DCHECK(!temp.is(temp2));
+
+  __ JumpIfSmi(input, is_false);
+
+  __ CmpObjectType(input, JS_FUNCTION_TYPE, temp);
+  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+    __ j(equal, is_true);
+  } else {
+    __ j(equal, is_false);
+  }
+
+  // Check if the constructor in the map is a function.
+  __ GetMapConstructor(temp, temp, kScratchRegister);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
+  if (String::Equals(class_name, isolate()->factory()->Object_string())) {
+    __ j(not_equal, is_true);
+  } else {
+    __ j(not_equal, is_false);
+  }
+
+  // temp now contains the constructor function. Grab the
+  // instance class name from there.
+  __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+  __ movp(temp, FieldOperand(temp,
+                             SharedFunctionInfo::kInstanceClassNameOffset));
+  // The class name we are testing against is internalized since it's a literal.
+  // The name in the constructor is internalized because of the way the context
+  // is booted.  This routine isn't expected to work for random API-created
+  // classes and it doesn't have to because you can't access it with natives
+  // syntax.  Since both sides are internalized it is sufficient to use an
+  // identity comparison.
+  DCHECK(class_name->IsInternalizedString());
+  __ Cmp(temp, class_name);
+  // End with the answer in the z flag.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+  Register temp2 = ToRegister(instr->temp2());
+  Handle<String> class_name = instr->hydrogen()->class_name();
+
+  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+      class_name, input, temp, temp2);
+
+  EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+
+  __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
+  EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+  DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+  DCHECK(ToRegister(instr->result()).is(rax));
+  InstanceOfStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+    LHasInPrototypeChainAndBranch* instr) {
+  Register const object = ToRegister(instr->object());
+  Register const object_map = kScratchRegister;
+  Register const object_prototype = object_map;
+  Register const prototype = ToRegister(instr->prototype());
+
+  // The {object} must be a spec object.  It's sufficient to know that {object}
+  // is not a smi, since all other non-spec objects have {null} prototypes and
+  // will be ruled out below.
+  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+    Condition is_smi = __ CheckSmi(object);
+    EmitFalseBranch(instr, is_smi);
+  }
+
+  // Loop through the {object}s prototype chain looking for the {prototype}.
+  __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
+  Label loop;
+  __ bind(&loop);
+
+
+  // Deoptimize if the object needs to be access checked.
+  __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
+           Immediate(1 << Map::kIsAccessCheckNeeded));
+  DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
+  // Deoptimize for proxies.
+  __ CmpInstanceType(object_map, JS_PROXY_TYPE);
+  DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
+
+  __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
+  __ cmpp(object_prototype, prototype);
+  EmitTrueBranch(instr, equal);
+  __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
+  EmitFalseBranch(instr, equal);
+  __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
+  __ jmp(&loop);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  Token::Value op = instr->op();
+
+  Handle<Code> ic =
+      CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+  Condition condition = TokenToCondition(op, false);
+  Label true_value, done;
+  __ testp(rax, rax);
+  __ j(condition, &true_value, Label::kNear);
+  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
+  __ jmp(&done, Label::kNear);
+  __ bind(&true_value);
+  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+  if (FLAG_trace && info()->IsOptimizing()) {
+    // Preserve the return value on the stack and rely on the runtime call
+    // to return the value in the same register.  We're leaving the code
+    // managed by the register allocator and tearing down the frame, it's
+    // safe to write to the context register.
+    __ Push(rax);
+    __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
+    __ CallRuntime(Runtime::kTraceExit);
+  }
+  if (info()->saves_caller_doubles()) {
+    RestoreCallerDoubles();
+  }
+  if (NeedsEagerFrame()) {
+    __ movp(rsp, rbp);
+    __ popq(rbp);
+  }
+  if (instr->has_constant_parameter_count()) {
+    __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
+           rcx);
+  } else {
+    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
+    Register reg = ToRegister(instr->parameter_count());
+    // The argument count parameter is a smi
+    __ SmiToInteger32(reg, reg);
+    Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
+    __ PopReturnAddressTo(return_addr_reg);
+    __ shlp(reg, Immediate(kPointerSizeLog2));
+    __ addp(rsp, reg);
+    __ jmp(return_addr_reg);
+  }
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = LoadWithVectorDescriptor::SlotRegister();
+  DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+  DCHECK(slot_register.is(rax));
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  // No need to allocate this register.
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ Move(slot_register, Smi::FromInt(index));
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = ToRegister(instr->temp_slot());
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ Move(slot_register, Smi::FromInt(index));
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->global_object())
+             .is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  __ Move(LoadDescriptor::NameRegister(), instr->name());
+  EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
+                                         SLOPPY, PREMONOMORPHIC).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register result = ToRegister(instr->result());
+  __ movp(result, ContextOperand(context, instr->slot_index()));
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+    } else {
+      Label is_not_hole;
+      __ j(not_equal, &is_not_hole, Label::kNear);
+      __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+      __ bind(&is_not_hole);
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register value = ToRegister(instr->value());
+
+  Operand target = ContextOperand(context, instr->slot_index());
+
+  Label skip_assignment;
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+    } else {
+      __ j(not_equal, &skip_assignment);
+    }
+  }
+  __ movp(target, value);
+
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed =
+      instr->hydrogen()->value()->type().IsHeapObject()
+          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    int offset = Context::SlotOffset(instr->slot_index());
+    Register scratch = ToRegister(instr->temp());
+    __ RecordWriteContextSlot(context,
+                              offset,
+                              value,
+                              scratch,
+                              kSaveFPRegs,
+                              EMIT_REMEMBERED_SET,
+                              check_needed);
+  }
+
+  __ bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+
+  if (access.IsExternalMemory()) {
+    Register result = ToRegister(instr->result());
+    if (instr->object()->IsConstantOperand()) {
+      DCHECK(result.is(rax));
+      __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
+    } else {
+      Register object = ToRegister(instr->object());
+      __ Load(result, MemOperand(object, offset), access.representation());
+    }
+    return;
+  }
+
+  Register object = ToRegister(instr->object());
+  if (instr->hydrogen()->representation().IsDouble()) {
+    DCHECK(access.IsInobject());
+    XMMRegister result = ToDoubleRegister(instr->result());
+    __ Movsd(result, FieldOperand(object, offset));
+    return;
+  }
+
+  Register result = ToRegister(instr->result());
+  if (!access.IsInobject()) {
+    __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
+    object = result;
+  }
+
+  Representation representation = access.representation();
+  if (representation.IsSmi() && SmiValuesAre32Bits() &&
+      instr->hydrogen()->representation().IsInteger32()) {
+    if (FLAG_debug_code) {
+      Register scratch = kScratchRegister;
+      __ Load(scratch, FieldOperand(object, offset), representation);
+      __ AssertSmi(scratch);
+    }
+
+    // Read int value directly from upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    DCHECK(kSmiTagSize + kSmiShiftSize == 32);
+    offset += kPointerSize / 2;
+    representation = Representation::Integer32();
+  }
+  __ Load(result, FieldOperand(object, offset), representation);
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  __ Move(LoadDescriptor::NameRegister(), instr->name());
+  EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+  Handle<Code> ic =
+      CodeFactory::LoadICInOptimizedCode(
+          isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
+          instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+
+  // Get the prototype or initial map from the function.
+  __ movp(result,
+         FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Check that the function has a prototype or an initial map.
+  __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+  DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
+  __ j(not_equal, &done, Label::kNear);
+
+  // Get the prototype from the initial map.
+  __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
+
+  // All done.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+  Register arguments = ToRegister(instr->arguments());
+  Register result = ToRegister(instr->result());
+
+  if (instr->length()->IsConstantOperand() &&
+      instr->index()->IsConstantOperand()) {
+    int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+    if (const_index >= 0 && const_index < const_length) {
+      StackArgumentsAccessor args(arguments, const_length,
+                                  ARGUMENTS_DONT_CONTAIN_RECEIVER);
+      __ movp(result, args.GetArgumentOperand(const_index));
+    } else if (FLAG_debug_code) {
+      __ int3();
+    }
+  } else {
+    Register length = ToRegister(instr->length());
+    // There are two words between the frame pointer and the last argument.
+    // Subtracting from length accounts for one of them add one more.
+    if (instr->index()->IsRegister()) {
+      __ subl(length, ToRegister(instr->index()));
+    } else {
+      __ subl(length, ToOperand(instr->index()));
+    }
+    StackArgumentsAccessor args(arguments, length,
+                                ARGUMENTS_DONT_CONTAIN_RECEIVER);
+    __ movp(result, args.GetArgumentOperand(0));
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+  ElementsKind elements_kind = instr->elements_kind();
+  LOperand* key = instr->key();
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
+    Register key_reg = ToRegister(key);
+    Representation key_representation =
+        instr->hydrogen()->key()->representation();
+    if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
+      __ SmiToInteger64(key_reg, key_reg);
+    } else if (instr->hydrogen()->IsDehoisted()) {
+      // Sign extend key because it could be a 32 bit negative value
+      // and the dehoisted address computation happens in 64 bits
+      __ movsxlq(key_reg, key_reg);
+    }
+  }
+  Operand operand(BuildFastArrayOperand(
+      instr->elements(),
+      key,
+      instr->hydrogen()->key()->representation(),
+      elements_kind,
+      instr->base_offset()));
+
+  if (elements_kind == FLOAT32_ELEMENTS) {
+    XMMRegister result(ToDoubleRegister(instr->result()));
+    __ Cvtss2sd(result, operand);
+  } else if (elements_kind == FLOAT64_ELEMENTS) {
+    __ Movsd(ToDoubleRegister(instr->result()), operand);
+  } else {
+    Register result(ToRegister(instr->result()));
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+        __ movsxbl(result, operand);
+        break;
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ movzxbl(result, operand);
+        break;
+      case INT16_ELEMENTS:
+        __ movsxwl(result, operand);
+        break;
+      case UINT16_ELEMENTS:
+        __ movzxwl(result, operand);
+        break;
+      case INT32_ELEMENTS:
+        __ movl(result, operand);
+        break;
+      case UINT32_ELEMENTS:
+        __ movl(result, operand);
+        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+          __ testl(result, result);
+          DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+  XMMRegister result(ToDoubleRegister(instr->result()));
+  LOperand* key = instr->key();
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
+      instr->hydrogen()->IsDehoisted()) {
+    // Sign extend key because it could be a 32 bit negative value
+    // and the dehoisted address computation happens in 64 bits
+    __ movsxlq(ToRegister(key), ToRegister(key));
+  }
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    Operand hole_check_operand = BuildFastArrayOperand(
+        instr->elements(),
+        key,
+        instr->hydrogen()->key()->representation(),
+        FAST_DOUBLE_ELEMENTS,
+        instr->base_offset() + sizeof(kHoleNanLower32));
+    __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
+    DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+  }
+
+  Operand double_load_operand = BuildFastArrayOperand(
+      instr->elements(),
+      key,
+      instr->hydrogen()->key()->representation(),
+      FAST_DOUBLE_ELEMENTS,
+      instr->base_offset());
+  __ Movsd(result, double_load_operand);
+}
+
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+  HLoadKeyed* hinstr = instr->hydrogen();
+  Register result = ToRegister(instr->result());
+  LOperand* key = instr->key();
+  bool requires_hole_check = hinstr->RequiresHoleCheck();
+  Representation representation = hinstr->representation();
+  int offset = instr->base_offset();
+
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
+      instr->hydrogen()->IsDehoisted()) {
+    // Sign extend key because it could be a 32 bit negative value
+    // and the dehoisted address computation happens in 64 bits
+    __ movsxlq(ToRegister(key), ToRegister(key));
+  }
+  if (representation.IsInteger32() && SmiValuesAre32Bits() &&
+      hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
+    DCHECK(!requires_hole_check);
+    if (FLAG_debug_code) {
+      Register scratch = kScratchRegister;
+      __ Load(scratch,
+              BuildFastArrayOperand(instr->elements(),
+                                    key,
+                                    instr->hydrogen()->key()->representation(),
+                                    FAST_ELEMENTS,
+                                    offset),
+              Representation::Smi());
+      __ AssertSmi(scratch);
+    }
+    // Read int value directly from upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    DCHECK(kSmiTagSize + kSmiShiftSize == 32);
+    offset += kPointerSize / 2;
+  }
+
+  __ Load(result,
+          BuildFastArrayOperand(instr->elements(), key,
+                                instr->hydrogen()->key()->representation(),
+                                FAST_ELEMENTS, offset),
+          representation);
+
+  // Check for the hole value.
+  if (requires_hole_check) {
+    if (IsFastSmiElementsKind(hinstr->elements_kind())) {
+      Condition smi = __ CheckSmi(result);
+      DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi);
+    } else {
+      __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+      DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+    }
+  } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+    DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
+    Label done;
+    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+    __ j(not_equal, &done);
+    if (info()->IsStub()) {
+      // A stub can safely convert the hole to undefined only if the array
+      // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+      // it needs to bail out.
+      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
+      __ Cmp(FieldOperand(result, Cell::kValueOffset),
+             Smi::FromInt(Isolate::kArrayProtectorValid));
+      DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
+    }
+    __ Move(result, isolate()->factory()->undefined_value());
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+  if (instr->is_fixed_typed_array()) {
+    DoLoadKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->representation().IsDouble()) {
+    DoLoadKeyedFixedDoubleArray(instr);
+  } else {
+    DoLoadKeyedFixedArray(instr);
+  }
+}
+
+
+Operand LCodeGen::BuildFastArrayOperand(
+    LOperand* elements_pointer,
+    LOperand* key,
+    Representation key_representation,
+    ElementsKind elements_kind,
+    uint32_t offset) {
+  Register elements_pointer_reg = ToRegister(elements_pointer);
+  int shift_size = ElementsKindToShiftSize(elements_kind);
+  if (key->IsConstantOperand()) {
+    int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
+    if (constant_value & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+    return Operand(elements_pointer_reg,
+                   (constant_value << shift_size) + offset);
+  } else {
+    // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
+    DCHECK(key_representation.IsInteger32());
+
+    ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
+    return Operand(elements_pointer_reg,
+                   ToRegister(key),
+                   scale_factor,
+                   offset);
+  }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+                        isolate(), instr->hydrogen()->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->from_inlined()) {
+    __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
+  } else {
+    // Check for arguments adapter frame.
+    Label done, adapted;
+    __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+    __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
+           Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+    __ j(equal, &adapted, Label::kNear);
+
+    // No arguments adaptor frame.
+    __ movp(result, rbp);
+    __ jmp(&done, Label::kNear);
+
+    // Arguments adaptor frame present.
+    __ bind(&adapted);
+    __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+
+    // Result is the frame pointer for the frame if not adapted and for the real
+    // frame below the adaptor frame if adapted.
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+  Register result = ToRegister(instr->result());
+
+  Label done;
+
+  // If no arguments adaptor frame the number of arguments is fixed.
+  if (instr->elements()->IsRegister()) {
+    __ cmpp(rbp, ToRegister(instr->elements()));
+  } else {
+    __ cmpp(rbp, ToOperand(instr->elements()));
+  }
+  __ movl(result, Immediate(scope()->num_parameters()));
+  __ j(equal, &done, Label::kNear);
+
+  // Arguments adaptor frame present. Get argument length from there.
+  __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+  __ SmiToInteger32(result,
+                    Operand(result,
+                            ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+  // Argument length is in result register.
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+
+  // If the receiver is null or undefined, we have to pass the global
+  // object as a receiver to normal functions. Values have to be
+  // passed unchanged to builtins and strict-mode functions.
+  Label global_object, receiver_ok;
+  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
+
+  if (!instr->hydrogen()->known_function()) {
+    // Do not transform the receiver to object for strict mode
+    // functions.
+    __ movp(kScratchRegister,
+            FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
+    __ testb(FieldOperand(kScratchRegister,
+                          SharedFunctionInfo::kStrictModeByteOffset),
+             Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
+    __ j(not_equal, &receiver_ok, dist);
+
+    // Do not transform the receiver to object for builtins.
+    __ testb(FieldOperand(kScratchRegister,
+                          SharedFunctionInfo::kNativeByteOffset),
+             Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
+    __ j(not_equal, &receiver_ok, dist);
+  }
+
+  // Normal function. Replace undefined or null with global receiver.
+  __ CompareRoot(receiver, Heap::kNullValueRootIndex);
+  __ j(equal, &global_object, Label::kNear);
+  __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
+  __ j(equal, &global_object, Label::kNear);
+
+  // The receiver should be a JS object.
+  Condition is_smi = __ CheckSmi(receiver);
+  DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
+  __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
+  DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
+
+  __ jmp(&receiver_ok, Label::kNear);
+  __ bind(&global_object);
+  __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
+  __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
+  __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
+
+  __ bind(&receiver_ok);
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register length = ToRegister(instr->length());
+  Register elements = ToRegister(instr->elements());
+  DCHECK(receiver.is(rax));  // Used for parameter count.
+  DCHECK(function.is(rdi));  // Required by InvokeFunction.
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  // Copy the arguments to this function possibly from the
+  // adaptor frame below it.
+  const uint32_t kArgumentsLimit = 1 * KB;
+  __ cmpp(length, Immediate(kArgumentsLimit));
+  DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
+
+  __ Push(receiver);
+  __ movp(receiver, length);
+
+  // Loop through the arguments pushing them onto the execution
+  // stack.
+  Label invoke, loop;
+  // length is a small non-negative integer, due to the test above.
+  __ testl(length, length);
+  __ j(zero, &invoke, Label::kNear);
+  __ bind(&loop);
+  StackArgumentsAccessor args(elements, length,
+                              ARGUMENTS_DONT_CONTAIN_RECEIVER);
+  __ Push(args.GetArgumentOperand(0));
+  __ decl(length);
+  __ j(not_zero, &loop);
+
+  // Invoke the function.
+  __ bind(&invoke);
+  DCHECK(instr->HasPointerMap());
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator safepoint_generator(
+      this, pointers, Safepoint::kLazyDeopt);
+  ParameterCount actual(rax);
+  __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
+                    safepoint_generator);
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+  LOperand* argument = instr->value();
+  EmitPushTaggedOperand(argument);
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+  __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+  Register result = ToRegister(instr->result());
+  __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+  Register result = ToRegister(instr->result());
+  if (info()->IsOptimizing()) {
+    __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
+  } else {
+    // If there is no frame, the context must be in rsi.
+    DCHECK(result.is(rsi));
+  }
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  __ Push(instr->hydrogen()->pairs());
+  __ Push(Smi::FromInt(instr->hydrogen()->flags()));
+  CallRuntime(Runtime::kDeclareGlobals, instr);
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+                                 int formal_parameter_count, int arity,
+                                 LInstruction* instr) {
+  bool dont_adapt_arguments =
+      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+  bool can_invoke_directly =
+      dont_adapt_arguments || formal_parameter_count == arity;
+
+  Register function_reg = rdi;
+  LPointerMap* pointers = instr->pointer_map();
+
+  if (can_invoke_directly) {
+    // Change context.
+    __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
+
+    // Always initialize new target and number of actual arguments.
+    __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
+    __ Set(rax, arity);
+
+    // Invoke function.
+    if (function.is_identical_to(info()->closure())) {
+      __ CallSelf();
+    } else {
+      __ Call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset));
+    }
+
+    // Set up deoptimization.
+    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
+  } else {
+    // We need to adapt arguments.
+    SafepointGenerator generator(
+        this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(arity);
+    ParameterCount expected(formal_parameter_count);
+    __ InvokeFunction(function_reg, no_reg, expected, count, CALL_FUNCTION,
+                      generator);
+  }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  if (instr->hydrogen()->IsTailCall()) {
+    if (NeedsEagerFrame()) __ leave();
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      __ jmp(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
+      __ jmp(target);
+    }
+  } else {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      generator.BeforeCall(__ CallSize(code));
+      __ call(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      generator.BeforeCall(__ CallSize(target));
+      __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
+      __ call(target);
+    }
+    generator.AfterCall();
+  }
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+  DCHECK(ToRegister(instr->function()).is(rdi));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  // Change context.
+  __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
+
+  // Always initialize new target and number of actual arguments.
+  __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
+  __ Set(rax, instr->arity());
+
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+  bool is_self_call = false;
+  if (instr->hydrogen()->function()->IsConstant()) {
+    Handle<JSFunction> jsfun = Handle<JSFunction>::null();
+    HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
+    jsfun = Handle<JSFunction>::cast(fun_const->handle(isolate()));
+    is_self_call = jsfun.is_identical_to(info()->closure());
+  }
+
+  if (is_self_call) {
+    __ CallSelf();
+  } else {
+    Operand target = FieldOperand(rdi, JSFunction::kCodeEntryOffset);
+    generator.BeforeCall(__ CallSize(target));
+    __ Call(target);
+  }
+  generator.AfterCall();
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+  Register input_reg = ToRegister(instr->value());
+  __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
+                 Heap::kHeapNumberMapRootIndex);
+  DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+
+  Label slow, allocated, done;
+  Register tmp = input_reg.is(rax) ? rcx : rax;
+  Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
+
+  // Preserve the value of all registers.
+  PushSafepointRegistersScope scope(this);
+
+  __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+  // Check the sign of the argument. If the argument is positive, just
+  // return it. We do not need to patch the stack since |input| and
+  // |result| are the same register and |input| will be restored
+  // unchanged by popping safepoint registers.
+  __ testl(tmp, Immediate(HeapNumber::kSignMask));
+  __ j(zero, &done);
+
+  __ AllocateHeapNumber(tmp, tmp2, &slow);
+  __ jmp(&allocated, Label::kNear);
+
+  // Slow case: Call the runtime system to do the number allocation.
+  __ bind(&slow);
+  CallRuntimeFromDeferred(
+      Runtime::kAllocateHeapNumber, 0, instr, instr->context());
+  // Set the pointer to the new heap number in tmp.
+  if (!tmp.is(rax)) __ movp(tmp, rax);
+  // Restore input_reg after call to runtime.
+  __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
+
+  __ bind(&allocated);
+  __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
+  __ shlq(tmp2, Immediate(1));
+  __ shrq(tmp2, Immediate(1));
+  __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
+  __ StoreToSafepointRegisterSlot(input_reg, tmp);
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
+  Register input_reg = ToRegister(instr->value());
+  __ testl(input_reg, input_reg);
+  Label is_positive;
+  __ j(not_sign, &is_positive, Label::kNear);
+  __ negl(input_reg);  // Sets flags.
+  DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
+  __ bind(&is_positive);
+}
+
+
+void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
+  Register input_reg = ToRegister(instr->value());
+  __ testp(input_reg, input_reg);
+  Label is_positive;
+  __ j(not_sign, &is_positive, Label::kNear);
+  __ negp(input_reg);  // Sets flags.
+  DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
+  __ bind(&is_positive);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+  // Class for deferred case.
+  class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
+   public:
+    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMathAbs* instr_;
+  };
+
+  DCHECK(instr->value()->Equals(instr->result()));
+  Representation r = instr->hydrogen()->value()->representation();
+
+  if (r.IsDouble()) {
+    XMMRegister scratch = double_scratch0();
+    XMMRegister input_reg = ToDoubleRegister(instr->value());
+    __ Xorpd(scratch, scratch);
+    __ Subsd(scratch, input_reg);
+    __ Andpd(input_reg, scratch);
+  } else if (r.IsInteger32()) {
+    EmitIntegerMathAbs(instr);
+  } else if (r.IsSmi()) {
+    EmitSmiMathAbs(instr);
+  } else {  // Tagged case.
+    DeferredMathAbsTaggedHeapNumber* deferred =
+        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
+    Register input_reg = ToRegister(instr->value());
+    // Smi check.
+    __ JumpIfNotSmi(input_reg, deferred->entry());
+    EmitSmiMathAbs(instr);
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+  XMMRegister xmm_scratch = double_scratch0();
+  Register output_reg = ToRegister(instr->result());
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+
+  if (CpuFeatures::IsSupported(SSE4_1)) {
+    CpuFeatureScope scope(masm(), SSE4_1);
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      // Deoptimize if minus zero.
+      __ Movq(output_reg, input_reg);
+      __ subq(output_reg, Immediate(1));
+      DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero);
+    }
+    __ Roundsd(xmm_scratch, input_reg, kRoundDown);
+    __ Cvttsd2si(output_reg, xmm_scratch);
+    __ cmpl(output_reg, Immediate(0x1));
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  } else {
+    Label negative_sign, done;
+    // Deoptimize on unordered.
+    __ Xorpd(xmm_scratch, xmm_scratch);  // Zero the register.
+    __ Ucomisd(input_reg, xmm_scratch);
+    DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
+    __ j(below, &negative_sign, Label::kNear);
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      // Check for negative zero.
+      Label positive_sign;
+      __ j(above, &positive_sign, Label::kNear);
+      __ Movmskpd(output_reg, input_reg);
+      __ testl(output_reg, Immediate(1));
+      DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+      __ Set(output_reg, 0);
+      __ jmp(&done);
+      __ bind(&positive_sign);
+    }
+
+    // Use truncating instruction (OK because input is positive).
+    __ Cvttsd2si(output_reg, input_reg);
+    // Overflow is signalled with minint.
+    __ cmpl(output_reg, Immediate(0x1));
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+    __ jmp(&done, Label::kNear);
+
+    // Non-zero negative reaches here.
+    __ bind(&negative_sign);
+    // Truncate, then compare and compensate.
+    __ Cvttsd2si(output_reg, input_reg);
+    __ Cvtlsi2sd(xmm_scratch, output_reg);
+    __ Ucomisd(input_reg, xmm_scratch);
+    __ j(equal, &done, Label::kNear);
+    __ subl(output_reg, Immediate(1));
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+  const XMMRegister xmm_scratch = double_scratch0();
+  Register output_reg = ToRegister(instr->result());
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+  XMMRegister input_temp = ToDoubleRegister(instr->temp());
+  static int64_t one_half = V8_INT64_C(0x3FE0000000000000);  // 0.5
+  static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000);  // -0.5
+
+  Label done, round_to_zero, below_one_half;
+  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
+  __ movq(kScratchRegister, one_half);
+  __ Movq(xmm_scratch, kScratchRegister);
+  __ Ucomisd(xmm_scratch, input_reg);
+  __ j(above, &below_one_half, Label::kNear);
+
+  // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
+  __ Addsd(xmm_scratch, input_reg);
+  __ Cvttsd2si(output_reg, xmm_scratch);
+  // Overflow is signalled with minint.
+  __ cmpl(output_reg, Immediate(0x1));
+  DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  __ jmp(&done, dist);
+
+  __ bind(&below_one_half);
+  __ movq(kScratchRegister, minus_one_half);
+  __ Movq(xmm_scratch, kScratchRegister);
+  __ Ucomisd(xmm_scratch, input_reg);
+  __ j(below_equal, &round_to_zero, Label::kNear);
+
+  // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
+  // compare and compensate.
+  __ Movapd(input_temp, input_reg);  // Do not alter input_reg.
+  __ Subsd(input_temp, xmm_scratch);
+  __ Cvttsd2si(output_reg, input_temp);
+  // Catch minint due to overflow, and to prevent overflow when compensating.
+  __ cmpl(output_reg, Immediate(0x1));
+  DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+
+  __ Cvtlsi2sd(xmm_scratch, output_reg);
+  __ Ucomisd(xmm_scratch, input_temp);
+  __ j(equal, &done, dist);
+  __ subl(output_reg, Immediate(1));
+  // No overflow because we already ruled out minint.
+  __ jmp(&done, dist);
+
+  __ bind(&round_to_zero);
+  // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
+  // we can ignore the difference between a result of -0 and +0.
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ Movq(output_reg, input_reg);
+    __ testq(output_reg, output_reg);
+    DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero);
+  }
+  __ Set(output_reg, 0);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+  XMMRegister output_reg = ToDoubleRegister(instr->result());
+  __ Cvtsd2ss(output_reg, input_reg);
+  __ Cvtss2sd(output_reg, output_reg);
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+  XMMRegister output = ToDoubleRegister(instr->result());
+  if (instr->value()->IsDoubleRegister()) {
+    XMMRegister input = ToDoubleRegister(instr->value());
+    __ Sqrtsd(output, input);
+  } else {
+    Operand input = ToOperand(instr->value());
+    __ Sqrtsd(output, input);
+  }
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+  XMMRegister xmm_scratch = double_scratch0();
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+  DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
+
+  // Note that according to ECMA-262 15.8.2.13:
+  // Math.pow(-Infinity, 0.5) == Infinity
+  // Math.sqrt(-Infinity) == NaN
+  Label done, sqrt;
+  // Check base for -Infinity.  According to IEEE-754, double-precision
+  // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
+  __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
+  __ Movq(xmm_scratch, kScratchRegister);
+  __ Ucomisd(xmm_scratch, input_reg);
+  // Comparing -Infinity with NaN results in "unordered", which sets the
+  // zero flag as if both were equal.  However, it also sets the carry flag.
+  __ j(not_equal, &sqrt, Label::kNear);
+  __ j(carry, &sqrt, Label::kNear);
+  // If input is -Infinity, return Infinity.
+  __ Xorpd(input_reg, input_reg);
+  __ Subsd(input_reg, xmm_scratch);
+  __ jmp(&done, Label::kNear);
+
+  // Square root.
+  __ bind(&sqrt);
+  __ Xorpd(xmm_scratch, xmm_scratch);
+  __ Addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
+  __ Sqrtsd(input_reg, input_reg);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+  Representation exponent_type = instr->hydrogen()->right()->representation();
+  // Having marked this as a call, we can use any registers.
+  // Just make sure that the input/output registers are the expected ones.
+
+  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
+  DCHECK(!instr->right()->IsRegister() ||
+         ToRegister(instr->right()).is(tagged_exponent));
+  DCHECK(!instr->right()->IsDoubleRegister() ||
+         ToDoubleRegister(instr->right()).is(xmm1));
+  DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
+  DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
+
+  if (exponent_type.IsSmi()) {
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsTagged()) {
+    Label no_deopt;
+    __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
+    __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
+    DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+    __ bind(&no_deopt);
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsInteger32()) {
+    MathPowStub stub(isolate(), MathPowStub::INTEGER);
+    __ CallStub(&stub);
+  } else {
+    DCHECK(exponent_type.IsDouble());
+    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+    __ CallStub(&stub);
+  }
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+  XMMRegister input = ToDoubleRegister(instr->value());
+  XMMRegister result = ToDoubleRegister(instr->result());
+  XMMRegister temp0 = double_scratch0();
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+  DCHECK(instr->value()->Equals(instr->result()));
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+  XMMRegister xmm_scratch = double_scratch0();
+  Label positive, done, zero;
+  __ Xorpd(xmm_scratch, xmm_scratch);
+  __ Ucomisd(input_reg, xmm_scratch);
+  __ j(above, &positive, Label::kNear);
+  __ j(not_carry, &zero, Label::kNear);
+  __ Pcmpeqd(input_reg, input_reg);
+  __ jmp(&done, Label::kNear);
+  __ bind(&zero);
+  ExternalReference ninf =
+      ExternalReference::address_of_negative_infinity();
+  Operand ninf_operand = masm()->ExternalOperand(ninf);
+  __ Movsd(input_reg, ninf_operand);
+  __ jmp(&done, Label::kNear);
+  __ bind(&positive);
+  __ fldln2();
+  __ subp(rsp, Immediate(kDoubleSize));
+  __ Movsd(Operand(rsp, 0), input_reg);
+  __ fld_d(Operand(rsp, 0));
+  __ fyl2x();
+  __ fstp_d(Operand(rsp, 0));
+  __ Movsd(input_reg, Operand(rsp, 0));
+  __ addp(rsp, Immediate(kDoubleSize));
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ Lzcntl(result, input);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->function()).is(rdi));
+  DCHECK(instr->HasPointerMap());
+
+  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+  if (known_function.is_null()) {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount count(instr->arity());
+    __ InvokeFunction(rdi, no_reg, count, CALL_FUNCTION, generator);
+  } else {
+    CallKnownFunction(known_function,
+                      instr->hydrogen()->formal_parameter_count(),
+                      instr->arity(), instr);
+  }
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->function()).is(rdi));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  int arity = instr->arity();
+  ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    Register slot_register = ToRegister(instr->temp_slot());
+    Register vector_register = ToRegister(instr->temp_vector());
+    DCHECK(slot_register.is(rdx));
+    DCHECK(vector_register.is(rbx));
+
+    AllowDeferredHandleDereference vector_structure_check;
+    Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+    int index = vector->GetIndex(instr->hydrogen()->slot());
+
+    __ Move(vector_register, vector);
+    __ Move(slot_register, Smi::FromInt(index));
+
+    Handle<Code> ic =
+        CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
+    CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  } else {
+    __ Set(rax, arity);
+    CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->constructor()).is(rdi));
+  DCHECK(ToRegister(instr->result()).is(rax));
+
+  __ Set(rax, instr->arity());
+  if (instr->arity() == 1) {
+    // We only need the allocation site for the case we have a length argument.
+    // The case may bail out to the runtime, which will determine the correct
+    // elements kind with the site.
+    __ Move(rbx, instr->hydrogen()->site());
+  } else {
+    __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
+  }
+
+  ElementsKind kind = instr->hydrogen()->elements_kind();
+  AllocationSiteOverrideMode override_mode =
+      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+          ? DISABLE_ALLOCATION_SITES
+          : DONT_OVERRIDE;
+
+  if (instr->arity() == 0) {
+    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  } else if (instr->arity() == 1) {
+    Label done;
+    if (IsFastPackedElementsKind(kind)) {
+      Label packed_case;
+      // We might need a change here
+      // look at the first argument
+      __ movp(rcx, Operand(rsp, 0));
+      __ testp(rcx, rcx);
+      __ j(zero, &packed_case, Label::kNear);
+
+      ElementsKind holey_kind = GetHoleyElementsKind(kind);
+      ArraySingleArgumentConstructorStub stub(isolate(),
+                                              holey_kind,
+                                              override_mode);
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      __ jmp(&done, Label::kNear);
+      __ bind(&packed_case);
+    }
+
+    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+    __ bind(&done);
+  } else {
+    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+  Register function = ToRegister(instr->function());
+  Register code_object = ToRegister(instr->code_object());
+  __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
+  __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+  Register result = ToRegister(instr->result());
+  Register base = ToRegister(instr->base_object());
+  if (instr->offset()->IsConstantOperand()) {
+    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+    __ leap(result, Operand(base, ToInteger32(offset)));
+  } else {
+    Register offset = ToRegister(instr->offset());
+    __ leap(result, Operand(base, offset, times_1, 0));
+  }
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+  HStoreNamedField* hinstr = instr->hydrogen();
+  Representation representation = instr->representation();
+
+  HObjectAccess access = hinstr->access();
+  int offset = access.offset();
+
+  if (access.IsExternalMemory()) {
+    DCHECK(!hinstr->NeedsWriteBarrier());
+    Register value = ToRegister(instr->value());
+    if (instr->object()->IsConstantOperand()) {
+      DCHECK(value.is(rax));
+      LConstantOperand* object = LConstantOperand::cast(instr->object());
+      __ store_rax(ToExternalReference(object));
+    } else {
+      Register object = ToRegister(instr->object());
+      __ Store(MemOperand(object, offset), value, representation);
+    }
+    return;
+  }
+
+  Register object = ToRegister(instr->object());
+  __ AssertNotSmi(object);
+
+  DCHECK(!representation.IsSmi() ||
+         !instr->value()->IsConstantOperand() ||
+         IsInteger32Constant(LConstantOperand::cast(instr->value())));
+  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DCHECK(!hinstr->has_transition());
+    DCHECK(!hinstr->NeedsWriteBarrier());
+    XMMRegister value = ToDoubleRegister(instr->value());
+    __ Movsd(FieldOperand(object, offset), value);
+    return;
+  }
+
+  if (hinstr->has_transition()) {
+    Handle<Map> transition = hinstr->transition_map();
+    AddDeprecationDependency(transition);
+    if (!hinstr->NeedsWriteBarrierForMap()) {
+      __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
+    } else {
+      Register temp = ToRegister(instr->temp());
+      __ Move(kScratchRegister, transition);
+      __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
+      // Update the write barrier for the map field.
+      __ RecordWriteForMap(object,
+                           kScratchRegister,
+                           temp,
+                           kSaveFPRegs);
+    }
+  }
+
+  // Do the store.
+  Register write_register = object;
+  if (!access.IsInobject()) {
+    write_register = ToRegister(instr->temp());
+    __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
+  }
+
+  if (representation.IsSmi() && SmiValuesAre32Bits() &&
+      hinstr->value()->representation().IsInteger32()) {
+    DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+    if (FLAG_debug_code) {
+      Register scratch = kScratchRegister;
+      __ Load(scratch, FieldOperand(write_register, offset), representation);
+      __ AssertSmi(scratch);
+    }
+    // Store int value directly to upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    DCHECK(kSmiTagSize + kSmiShiftSize == 32);
+    offset += kPointerSize / 2;
+    representation = Representation::Integer32();
+  }
+
+  Operand operand = FieldOperand(write_register, offset);
+
+  if (FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    XMMRegister value = ToDoubleRegister(instr->value());
+    __ Movsd(operand, value);
+
+  } else if (instr->value()->IsRegister()) {
+    Register value = ToRegister(instr->value());
+    __ Store(operand, value, representation);
+  } else {
+    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
+    if (IsInteger32Constant(operand_value)) {
+      DCHECK(!hinstr->NeedsWriteBarrier());
+      int32_t value = ToInteger32(operand_value);
+      if (representation.IsSmi()) {
+        __ Move(operand, Smi::FromInt(value));
+
+      } else {
+        __ movl(operand, Immediate(value));
+      }
+
+    } else if (IsExternalConstant(operand_value)) {
+      DCHECK(!hinstr->NeedsWriteBarrier());
+      ExternalReference ptr = ToExternalReference(operand_value);
+      __ Move(kScratchRegister, ptr);
+      __ movp(operand, kScratchRegister);
+    } else {
+      Handle<Object> handle_value = ToHandle(operand_value);
+      DCHECK(!hinstr->NeedsWriteBarrier());
+      __ Move(operand, handle_value);
+    }
+  }
+
+  if (hinstr->NeedsWriteBarrier()) {
+    Register value = ToRegister(instr->value());
+    Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
+    // Update the write barrier for the object for in-object properties.
+    __ RecordWriteField(write_register,
+                        offset,
+                        value,
+                        temp,
+                        kSaveFPRegs,
+                        EMIT_REMEMBERED_SET,
+                        hinstr->SmiCheckForWriteBarrier(),
+                        hinstr->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+  }
+
+  __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name());
+  Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+  Representation representation = instr->hydrogen()->length()->representation();
+  DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
+  DCHECK(representation.IsSmiOrInteger32());
+
+  Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
+  if (instr->length()->IsConstantOperand()) {
+    int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
+    Register index = ToRegister(instr->index());
+    if (representation.IsSmi()) {
+      __ Cmp(index, Smi::FromInt(length));
+    } else {
+      __ cmpl(index, Immediate(length));
+    }
+    cc = CommuteCondition(cc);
+  } else if (instr->index()->IsConstantOperand()) {
+    int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
+    if (instr->length()->IsRegister()) {
+      Register length = ToRegister(instr->length());
+      if (representation.IsSmi()) {
+        __ Cmp(length, Smi::FromInt(index));
+      } else {
+        __ cmpl(length, Immediate(index));
+      }
+    } else {
+      Operand length = ToOperand(instr->length());
+      if (representation.IsSmi()) {
+        __ Cmp(length, Smi::FromInt(index));
+      } else {
+        __ cmpl(length, Immediate(index));
+      }
+    }
+  } else {
+    Register index = ToRegister(instr->index());
+    if (instr->length()->IsRegister()) {
+      Register length = ToRegister(instr->length());
+      if (representation.IsSmi()) {
+        __ cmpp(length, index);
+      } else {
+        __ cmpl(length, index);
+      }
+    } else {
+      Operand length = ToOperand(instr->length());
+      if (representation.IsSmi()) {
+        __ cmpp(length, index);
+      } else {
+        __ cmpl(length, index);
+      }
+    }
+  }
+  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+    Label done;
+    __ j(NegateCondition(cc), &done, Label::kNear);
+    __ int3();
+    __ bind(&done);
+  } else {
+    DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+  ElementsKind elements_kind = instr->elements_kind();
+  LOperand* key = instr->key();
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
+    Register key_reg = ToRegister(key);
+    Representation key_representation =
+        instr->hydrogen()->key()->representation();
+    if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
+      __ SmiToInteger64(key_reg, key_reg);
+    } else if (instr->hydrogen()->IsDehoisted()) {
+      // Sign extend key because it could be a 32 bit negative value
+      // and the dehoisted address computation happens in 64 bits
+      __ movsxlq(key_reg, key_reg);
+    }
+  }
+  Operand operand(BuildFastArrayOperand(
+      instr->elements(),
+      key,
+      instr->hydrogen()->key()->representation(),
+      elements_kind,
+      instr->base_offset()));
+
+  if (elements_kind == FLOAT32_ELEMENTS) {
+    XMMRegister value(ToDoubleRegister(instr->value()));
+    __ Cvtsd2ss(value, value);
+    __ Movss(operand, value);
+  } else if (elements_kind == FLOAT64_ELEMENTS) {
+    __ Movsd(operand, ToDoubleRegister(instr->value()));
+  } else {
+    Register value(ToRegister(instr->value()));
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ movb(operand, value);
+        break;
+      case INT16_ELEMENTS:
+      case UINT16_ELEMENTS:
+        __ movw(operand, value);
+        break;
+      case INT32_ELEMENTS:
+      case UINT32_ELEMENTS:
+        __ movl(operand, value);
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+  XMMRegister value = ToDoubleRegister(instr->value());
+  LOperand* key = instr->key();
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
+      instr->hydrogen()->IsDehoisted()) {
+    // Sign extend key because it could be a 32 bit negative value
+    // and the dehoisted address computation happens in 64 bits
+    __ movsxlq(ToRegister(key), ToRegister(key));
+  }
+  if (instr->NeedsCanonicalization()) {
+    XMMRegister xmm_scratch = double_scratch0();
+    // Turn potential sNaN value into qNaN.
+    __ Xorpd(xmm_scratch, xmm_scratch);
+    __ Subsd(value, xmm_scratch);
+  }
+
+  Operand double_store_operand = BuildFastArrayOperand(
+      instr->elements(),
+      key,
+      instr->hydrogen()->key()->representation(),
+      FAST_DOUBLE_ELEMENTS,
+      instr->base_offset());
+
+  __ Movsd(double_store_operand, value);
+}
+
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+  HStoreKeyed* hinstr = instr->hydrogen();
+  LOperand* key = instr->key();
+  int offset = instr->base_offset();
+  Representation representation = hinstr->value()->representation();
+
+  if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
+      instr->hydrogen()->IsDehoisted()) {
+    // Sign extend key because it could be a 32 bit negative value
+    // and the dehoisted address computation happens in 64 bits
+    __ movsxlq(ToRegister(key), ToRegister(key));
+  }
+  if (representation.IsInteger32() && SmiValuesAre32Bits()) {
+    DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+    DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
+    if (FLAG_debug_code) {
+      Register scratch = kScratchRegister;
+      __ Load(scratch,
+              BuildFastArrayOperand(instr->elements(),
+                                    key,
+                                    instr->hydrogen()->key()->representation(),
+                                    FAST_ELEMENTS,
+                                    offset),
+              Representation::Smi());
+      __ AssertSmi(scratch);
+    }
+    // Store int value directly to upper half of the smi.
+    STATIC_ASSERT(kSmiTag == 0);
+    DCHECK(kSmiTagSize + kSmiShiftSize == 32);
+    offset += kPointerSize / 2;
+  }
+
+  Operand operand =
+      BuildFastArrayOperand(instr->elements(),
+                            key,
+                            instr->hydrogen()->key()->representation(),
+                            FAST_ELEMENTS,
+                            offset);
+  if (instr->value()->IsRegister()) {
+    __ Store(operand, ToRegister(instr->value()), representation);
+  } else {
+    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
+    if (IsInteger32Constant(operand_value)) {
+      int32_t value = ToInteger32(operand_value);
+      if (representation.IsSmi()) {
+        __ Move(operand, Smi::FromInt(value));
+
+      } else {
+        __ movl(operand, Immediate(value));
+      }
+    } else {
+      Handle<Object> handle_value = ToHandle(operand_value);
+      __ Move(operand, handle_value);
+    }
+  }
+
+  if (hinstr->NeedsWriteBarrier()) {
+    Register elements = ToRegister(instr->elements());
+    DCHECK(instr->value()->IsRegister());
+    Register value = ToRegister(instr->value());
+    DCHECK(!key->IsConstantOperand());
+    SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
+            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+    // Compute address of modified element and store it into key register.
+    Register key_reg(ToRegister(key));
+    __ leap(key_reg, operand);
+    __ RecordWrite(elements,
+                   key_reg,
+                   value,
+                   kSaveFPRegs,
+                   EMIT_REMEMBERED_SET,
+                   check_needed,
+                   hinstr->PointersToHereCheckForValue());
+  }
+}
+
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+  if (instr->is_fixed_typed_array()) {
+    DoStoreKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+    DoStoreKeyedFixedDoubleArray(instr);
+  } else {
+    DoStoreKeyedFixedArray(instr);
+  }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state()).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+  class DeferredMaybeGrowElements final : public LDeferredCode {
+   public:
+    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMaybeGrowElements* instr_;
+  };
+
+  Register result = rax;
+  DeferredMaybeGrowElements* deferred =
+      new (zone()) DeferredMaybeGrowElements(this, instr);
+  LOperand* key = instr->key();
+  LOperand* current_capacity = instr->current_capacity();
+
+  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+  DCHECK(key->IsConstantOperand() || key->IsRegister());
+  DCHECK(current_capacity->IsConstantOperand() ||
+         current_capacity->IsRegister());
+
+  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    if (constant_key >= constant_capacity) {
+      // Deferred case.
+      __ jmp(deferred->entry());
+    }
+  } else if (key->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
+    __ j(less_equal, deferred->entry());
+  } else if (current_capacity->IsConstantOperand()) {
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    __ cmpl(ToRegister(key), Immediate(constant_capacity));
+    __ j(greater_equal, deferred->entry());
+  } else {
+    __ cmpl(ToRegister(key), ToRegister(current_capacity));
+    __ j(greater_equal, deferred->entry());
+  }
+
+  if (instr->elements()->IsRegister()) {
+    __ movp(result, ToRegister(instr->elements()));
+  } else {
+    __ movp(result, ToOperand(instr->elements()));
+  }
+
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = rax;
+  __ Move(result, Smi::FromInt(0));
+
+  // We have to call a stub.
+  {
+    PushSafepointRegistersScope scope(this);
+    if (instr->object()->IsConstantOperand()) {
+      LConstantOperand* constant_object =
+          LConstantOperand::cast(instr->object());
+      if (IsSmiConstant(constant_object)) {
+        Smi* immediate = ToSmi(constant_object);
+        __ Move(result, immediate);
+      } else {
+        Handle<Object> handle_value = ToHandle(constant_object);
+        __ Move(result, handle_value);
+      }
+    } else if (instr->object()->IsRegister()) {
+      __ Move(result, ToRegister(instr->object()));
+    } else {
+      __ movp(result, ToOperand(instr->object()));
+    }
+
+    LOperand* key = instr->key();
+    if (key->IsConstantOperand()) {
+      __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
+    } else {
+      __ Move(rbx, ToRegister(key));
+      __ Integer32ToSmi(rbx, rbx);
+    }
+
+    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+                               instr->hydrogen()->kind());
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
+    __ StoreToSafepointRegisterSlot(result, result);
+  }
+
+  // Deopt on smi, which means the elements array changed to dictionary mode.
+  Condition is_smi = __ CheckSmi(result);
+  DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+  Register object_reg = ToRegister(instr->object());
+
+  Handle<Map> from_map = instr->original_map();
+  Handle<Map> to_map = instr->transitioned_map();
+  ElementsKind from_kind = instr->from_kind();
+  ElementsKind to_kind = instr->to_kind();
+
+  Label not_applicable;
+  __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
+  __ j(not_equal, &not_applicable);
+  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+    Register new_map_reg = ToRegister(instr->new_map_temp());
+    __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
+    __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
+    // Write barrier.
+    __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
+                         kDontSaveFPRegs);
+  } else {
+    DCHECK(object_reg.is(rax));
+    DCHECK(ToRegister(instr->context()).is(rsi));
+    PushSafepointRegistersScope scope(this);
+    __ Move(rbx, to_map);
+    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
+  }
+  __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+  Register object = ToRegister(instr->object());
+  Register temp = ToRegister(instr->temp());
+  Label no_memento_found;
+  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
+  DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
+  __ bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->left()).is(rdx));
+  DCHECK(ToRegister(instr->right()).is(rax));
+  StringAddStub stub(isolate(),
+                     instr->hydrogen()->flags(),
+                     instr->hydrogen()->pretenure_flag());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+  class DeferredStringCharCodeAt final : public LDeferredCode {
+   public:
+    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharCodeAt* instr_;
+  };
+
+  DeferredStringCharCodeAt* deferred =
+      new(zone()) DeferredStringCharCodeAt(this, instr);
+
+  StringCharLoadGenerator::Generate(masm(),
+                                    ToRegister(instr->string()),
+                                    ToRegister(instr->index()),
+                                    ToRegister(instr->result()),
+                                    deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Set(result, 0);
+
+  PushSafepointRegistersScope scope(this);
+  __ Push(string);
+  // Push the index as a smi. This is safe because of the checks in
+  // DoStringCharCodeAt above.
+  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
+  if (instr->index()->IsConstantOperand()) {
+    int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    __ Push(Smi::FromInt(const_index));
+  } else {
+    Register index = ToRegister(instr->index());
+    __ Integer32ToSmi(index, index);
+    __ Push(index);
+  }
+  CallRuntimeFromDeferred(
+      Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
+  __ AssertSmi(rax);
+  __ SmiToInteger32(rax, rax);
+  __ StoreToSafepointRegisterSlot(result, rax);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+  class DeferredStringCharFromCode final : public LDeferredCode {
+   public:
+    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredStringCharFromCode(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharFromCode* instr_;
+  };
+
+  DeferredStringCharFromCode* deferred =
+      new(zone()) DeferredStringCharFromCode(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+  DCHECK(!char_code.is(result));
+
+  __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
+  __ j(above, deferred->entry());
+  __ movsxlq(char_code, char_code);
+  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+  __ movp(result, FieldOperand(result,
+                               char_code, times_pointer_size,
+                               FixedArray::kHeaderSize));
+  __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
+  __ j(equal, deferred->entry());
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Set(result, 0);
+
+  PushSafepointRegistersScope scope(this);
+  __ Integer32ToSmi(char_code, char_code);
+  __ Push(char_code);
+  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(result, rax);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() || input->IsStackSlot());
+  LOperand* output = instr->result();
+  DCHECK(output->IsDoubleRegister());
+  if (input->IsRegister()) {
+    __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
+  } else {
+    __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
+  }
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+  LOperand* input = instr->value();
+  LOperand* output = instr->result();
+
+  __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
+}
+
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+  class DeferredNumberTagI final : public LDeferredCode {
+   public:
+    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
+                                       instr_->temp2(), SIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagI* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() && input->Equals(instr->result()));
+  Register reg = ToRegister(input);
+
+  if (SmiValuesAre32Bits()) {
+    __ Integer32ToSmi(reg, reg);
+  } else {
+    DCHECK(SmiValuesAre31Bits());
+    DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
+    __ Integer32ToSmi(reg, reg);
+    __ j(overflow, deferred->entry());
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+  class DeferredNumberTagU final : public LDeferredCode {
+   public:
+    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
+                                       instr_->temp2(), UNSIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagU* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() && input->Equals(instr->result()));
+  Register reg = ToRegister(input);
+
+  DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+  __ cmpl(reg, Immediate(Smi::kMaxValue));
+  __ j(above, deferred->entry());
+  __ Integer32ToSmi(reg, reg);
+  __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+                                     LOperand* value,
+                                     LOperand* temp1,
+                                     LOperand* temp2,
+                                     IntegerSignedness signedness) {
+  Label done, slow;
+  Register reg = ToRegister(value);
+  Register tmp = ToRegister(temp1);
+  XMMRegister temp_xmm = ToDoubleRegister(temp2);
+
+  // Load value into temp_xmm which will be preserved across potential call to
+  // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
+  // XMM registers on x64).
+  if (signedness == SIGNED_INT32) {
+    DCHECK(SmiValuesAre31Bits());
+    // There was overflow, so bits 30 and 31 of the original integer
+    // disagree. Try to allocate a heap number in new space and store
+    // the value in there. If that fails, call the runtime system.
+    __ SmiToInteger32(reg, reg);
+    __ xorl(reg, Immediate(0x80000000));
+    __ Cvtlsi2sd(temp_xmm, reg);
+  } else {
+    DCHECK(signedness == UNSIGNED_INT32);
+    __ LoadUint32(temp_xmm, reg);
+  }
+
+  if (FLAG_inline_new) {
+    __ AllocateHeapNumber(reg, tmp, &slow);
+    __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
+  }
+
+  // Slow case: Call the runtime system to do the number allocation.
+  __ bind(&slow);
+  {
+    // Put a valid pointer value in the stack slot where the result
+    // register is stored, as this register is in the pointer map, but contains
+    // an integer value.
+    __ Set(reg, 0);
+
+    // Preserve the value of all registers.
+    PushSafepointRegistersScope scope(this);
+
+    // NumberTagIU uses the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(reg, rax);
+  }
+
+  // Done. Put the value in temp_xmm into the value of the allocated heap
+  // number.
+  __ bind(&done);
+  __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+  class DeferredNumberTagD final : public LDeferredCode {
+   public:
+    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagD* instr_;
+  };
+
+  XMMRegister input_reg = ToDoubleRegister(instr->value());
+  Register reg = ToRegister(instr->result());
+  Register tmp = ToRegister(instr->temp());
+
+  DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+  if (FLAG_inline_new) {
+    __ AllocateHeapNumber(reg, tmp, deferred->entry());
+  } else {
+    __ jmp(deferred->entry());
+  }
+  __ bind(deferred->exit());
+  __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register reg = ToRegister(instr->result());
+  __ Move(reg, Smi::FromInt(0));
+
+  {
+    PushSafepointRegistersScope scope(this);
+    // NumberTagD uses the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+    __ movp(kScratchRegister, rax);
+  }
+  __ movp(reg, kScratchRegister);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+  HChange* hchange = instr->hydrogen();
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      hchange->value()->CheckFlag(HValue::kUint32)) {
+    Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
+    DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow);
+  }
+  __ Integer32ToSmi(output, input);
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      !hchange->value()->CheckFlag(HValue::kUint32)) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  }
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+  DCHECK(instr->value()->Equals(instr->result()));
+  Register input = ToRegister(instr->value());
+  if (instr->needs_check()) {
+    Condition is_smi = __ CheckSmi(input);
+    DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi);
+  } else {
+    __ AssertSmi(input);
+  }
+  __ SmiToInteger32(input, input);
+}
+
+
+void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
+                                XMMRegister result_reg, NumberUntagDMode mode) {
+  bool can_convert_undefined_to_nan =
+      instr->hydrogen()->can_convert_undefined_to_nan();
+  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
+
+  Label convert, load_smi, done;
+
+  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+    // Smi check.
+    __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
+
+    // Heap number map check.
+    __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
+                   Heap::kHeapNumberMapRootIndex);
+
+    // On x64 it is safe to load at heap number offset before evaluating the map
+    // check, since all heap objects are at least two words long.
+    __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
+
+    if (can_convert_undefined_to_nan) {
+      __ j(not_equal, &convert, Label::kNear);
+    } else {
+      DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+    }
+
+    if (deoptimize_on_minus_zero) {
+      XMMRegister xmm_scratch = double_scratch0();
+      __ Xorpd(xmm_scratch, xmm_scratch);
+      __ Ucomisd(xmm_scratch, result_reg);
+      __ j(not_equal, &done, Label::kNear);
+      __ Movmskpd(kScratchRegister, result_reg);
+      __ testl(kScratchRegister, Immediate(1));
+      DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+    }
+    __ jmp(&done, Label::kNear);
+
+    if (can_convert_undefined_to_nan) {
+      __ bind(&convert);
+
+      // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
+      __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
+      DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
+
+      __ Pcmpeqd(result_reg, result_reg);
+      __ jmp(&done, Label::kNear);
+    }
+  } else {
+    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+  }
+
+  // Smi to XMM conversion
+  __ bind(&load_smi);
+  __ SmiToInteger32(kScratchRegister, input_reg);
+  __ Cvtlsi2sd(result_reg, kScratchRegister);
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
+  Register input_reg = ToRegister(instr->value());
+
+  if (instr->truncating()) {
+    Label no_heap_number, check_bools, check_false;
+
+    // Heap number map check.
+    __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
+                   Heap::kHeapNumberMapRootIndex);
+    __ j(not_equal, &no_heap_number, Label::kNear);
+    __ TruncateHeapNumberToI(input_reg, input_reg);
+    __ jmp(done);
+
+    __ bind(&no_heap_number);
+    // Check for Oddballs. Undefined/False is converted to zero and True to one
+    // for truncating conversions.
+    __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
+    __ j(not_equal, &check_bools, Label::kNear);
+    __ Set(input_reg, 0);
+    __ jmp(done);
+
+    __ bind(&check_bools);
+    __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
+    __ j(not_equal, &check_false, Label::kNear);
+    __ Set(input_reg, 1);
+    __ jmp(done);
+
+    __ bind(&check_false);
+    __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
+    DeoptimizeIf(not_equal, instr,
+                 Deoptimizer::kNotAHeapNumberUndefinedBoolean);
+    __ Set(input_reg, 0);
+  } else {
+    XMMRegister scratch = ToDoubleRegister(instr->temp());
+    DCHECK(!scratch.is(xmm0));
+    __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
+                   Heap::kHeapNumberMapRootIndex);
+    DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+    __ Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
+    __ Cvttsd2si(input_reg, xmm0);
+    __ Cvtlsi2sd(scratch, input_reg);
+    __ Ucomisd(xmm0, scratch);
+    DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
+    DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
+    if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
+      __ testl(input_reg, input_reg);
+      __ j(not_zero, done);
+      __ Movmskpd(input_reg, xmm0);
+      __ andl(input_reg, Immediate(1));
+      DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+    }
+  }
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+  class DeferredTaggedToI final : public LDeferredCode {
+   public:
+    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LTaggedToI* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  DCHECK(input->Equals(instr->result()));
+  Register input_reg = ToRegister(input);
+
+  if (instr->hydrogen()->value()->representation().IsSmi()) {
+    __ SmiToInteger32(input_reg, input_reg);
+  } else {
+    DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+    __ JumpIfNotSmi(input_reg, deferred->entry());
+    __ SmiToInteger32(input_reg, input_reg);
+    __ bind(deferred->exit());
+  }
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsDoubleRegister());
+
+  Register input_reg = ToRegister(input);
+  XMMRegister result_reg = ToDoubleRegister(result);
+
+  HValue* value = instr->hydrogen()->value();
+  NumberUntagDMode mode = value->representation().IsSmi()
+      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+  EmitNumberUntagD(instr, input_reg, result_reg, mode);
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsDoubleRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsRegister());
+
+  XMMRegister input_reg = ToDoubleRegister(input);
+  Register result_reg = ToRegister(result);
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, input_reg);
+  } else {
+    Label lost_precision, is_nan, minus_zero, done;
+    XMMRegister xmm_scratch = double_scratch0();
+    Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
+    __ DoubleToI(result_reg, input_reg, xmm_scratch,
+                 instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
+                 &is_nan, &minus_zero, dist);
+    __ jmp(&done, dist);
+    __ bind(&lost_precision);
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
+    __ bind(&is_nan);
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
+    __ bind(&minus_zero);
+    DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+    __ bind(&done);
+  }
+}
+
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsDoubleRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsRegister());
+
+  XMMRegister input_reg = ToDoubleRegister(input);
+  Register result_reg = ToRegister(result);
+
+  Label lost_precision, is_nan, minus_zero, done;
+  XMMRegister xmm_scratch = double_scratch0();
+  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
+  __ DoubleToI(result_reg, input_reg, xmm_scratch,
+               instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
+               &minus_zero, dist);
+  __ jmp(&done, dist);
+  __ bind(&lost_precision);
+  DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
+  __ bind(&is_nan);
+  DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
+  __ bind(&minus_zero);
+  DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+  __ bind(&done);
+  __ Integer32ToSmi(result_reg, result_reg);
+  DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+  LOperand* input = instr->value();
+  Condition cc = masm()->CheckSmi(ToRegister(input));
+  DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi);
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    LOperand* input = instr->value();
+    Condition cc = masm()->CheckSmi(ToRegister(input));
+    DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
+  }
+}
+
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+    LCheckArrayBufferNotNeutered* instr) {
+  Register view = ToRegister(instr->view());
+
+  __ movp(kScratchRegister,
+          FieldOperand(view, JSArrayBufferView::kBufferOffset));
+  __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
+           Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
+  DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+  Register input = ToRegister(instr->value());
+
+  __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
+
+  if (instr->hydrogen()->is_interval_check()) {
+    InstanceType first;
+    InstanceType last;
+    instr->hydrogen()->GetCheckInterval(&first, &last);
+
+    __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
+            Immediate(static_cast<int8_t>(first)));
+
+    // If there is only one type in the interval check for equality.
+    if (first == last) {
+      DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
+      // Omit check for the last type.
+      if (last != LAST_TYPE) {
+        __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
+                Immediate(static_cast<int8_t>(last)));
+        DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
+      }
+    }
+  } else {
+    uint8_t mask;
+    uint8_t tag;
+    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+    if (base::bits::IsPowerOfTwo32(mask)) {
+      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
+      __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
+               Immediate(mask));
+      DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
+                   Deoptimizer::kWrongInstanceType);
+    } else {
+      __ movzxbl(kScratchRegister,
+                 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
+      __ andb(kScratchRegister, Immediate(mask));
+      __ cmpb(kScratchRegister, Immediate(tag));
+      DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
+    }
+  }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+  Register reg = ToRegister(instr->value());
+  __ Cmp(reg, instr->hydrogen()->object().handle());
+  DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+  {
+    PushSafepointRegistersScope scope(this);
+    __ Push(object);
+    __ Set(rsi, 0);
+    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+    RecordSafepointWithRegisters(
+        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+
+    __ testp(rax, Immediate(kSmiTagMask));
+  }
+  DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+  class DeferredCheckMaps final : public LDeferredCode {
+   public:
+    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+        : LDeferredCode(codegen), instr_(instr), object_(object) {
+      SetExit(check_maps());
+    }
+    void Generate() override {
+      codegen()->DoDeferredInstanceMigration(instr_, object_);
+    }
+    Label* check_maps() { return &check_maps_; }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LCheckMaps* instr_;
+    Label check_maps_;
+    Register object_;
+  };
+
+  if (instr->hydrogen()->IsStabilityCheck()) {
+    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+    for (int i = 0; i < maps->size(); ++i) {
+      AddStabilityDependency(maps->at(i).handle());
+    }
+    return;
+  }
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  Register reg = ToRegister(input);
+
+  DeferredCheckMaps* deferred = NULL;
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
+    __ bind(deferred->check_maps());
+  }
+
+  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+  Label success;
+  for (int i = 0; i < maps->size() - 1; i++) {
+    Handle<Map> map = maps->at(i).handle();
+    __ CompareMap(reg, map);
+    __ j(equal, &success, Label::kNear);
+  }
+
+  Handle<Map> map = maps->at(maps->size() - 1).handle();
+  __ CompareMap(reg, map);
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    __ j(not_equal, deferred->entry());
+  } else {
+    DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+  }
+
+  __ bind(&success);
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+  XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
+  XMMRegister xmm_scratch = double_scratch0();
+  Register result_reg = ToRegister(instr->result());
+  __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+  DCHECK(instr->unclamped()->Equals(instr->result()));
+  Register value_reg = ToRegister(instr->result());
+  __ ClampUint8(value_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+  DCHECK(instr->unclamped()->Equals(instr->result()));
+  Register input_reg = ToRegister(instr->unclamped());
+  XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
+  XMMRegister xmm_scratch = double_scratch0();
+  Label is_smi, done, heap_number;
+  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
+  __ JumpIfSmi(input_reg, &is_smi, dist);
+
+  // Check for heap number
+  __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+         factory()->heap_number_map());
+  __ j(equal, &heap_number, Label::kNear);
+
+  // Check for undefined. Undefined is converted to zero for clamping
+  // conversions.
+  __ Cmp(input_reg, factory()->undefined_value());
+  DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
+  __ xorl(input_reg, input_reg);
+  __ jmp(&done, Label::kNear);
+
+  // Heap number
+  __ bind(&heap_number);
+  __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
+  __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
+  __ jmp(&done, Label::kNear);
+
+  // smi
+  __ bind(&is_smi);
+  __ SmiToInteger32(input_reg, input_reg);
+  __ ClampUint8(input_reg);
+
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+  XMMRegister value_reg = ToDoubleRegister(instr->value());
+  Register result_reg = ToRegister(instr->result());
+  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+    __ Movq(result_reg, value_reg);
+    __ shrq(result_reg, Immediate(32));
+  } else {
+    __ Movd(result_reg, value_reg);
+  }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+  Register hi_reg = ToRegister(instr->hi());
+  Register lo_reg = ToRegister(instr->lo());
+  XMMRegister result_reg = ToDoubleRegister(instr->result());
+  __ movl(kScratchRegister, hi_reg);
+  __ shlq(kScratchRegister, Immediate(32));
+  __ orq(kScratchRegister, lo_reg);
+  __ Movq(result_reg, kScratchRegister);
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+  class DeferredAllocate final : public LDeferredCode {
+   public:
+    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredAllocate(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LAllocate* instr_;
+  };
+
+  DeferredAllocate* deferred =
+      new(zone()) DeferredAllocate(this, instr);
+
+  Register result = ToRegister(instr->result());
+  Register temp = ToRegister(instr->temp());
+
+  // Allocate memory for the object.
+  AllocationFlags flags = TAG_OBJECT;
+  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+  }
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = static_cast<AllocationFlags>(flags | PRETENURE);
+  }
+
+  if (instr->size()->IsConstantOperand()) {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    CHECK(size <= Page::kMaxRegularHeapObjectSize);
+    __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
+  } else {
+    Register size = ToRegister(instr->size());
+    __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
+  }
+
+  __ bind(deferred->exit());
+
+  if (instr->hydrogen()->MustPrefillWithFiller()) {
+    if (instr->size()->IsConstantOperand()) {
+      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+      __ movl(temp, Immediate((size / kPointerSize) - 1));
+    } else {
+      temp = ToRegister(instr->size());
+      __ sarp(temp, Immediate(kPointerSizeLog2));
+      __ decl(temp);
+    }
+    Label loop;
+    __ bind(&loop);
+    __ Move(FieldOperand(result, temp, times_pointer_size, 0),
+        isolate()->factory()->one_pointer_filler_map());
+    __ decl(temp);
+    __ j(not_zero, &loop);
+  }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ Move(result, Smi::FromInt(0));
+
+  PushSafepointRegistersScope scope(this);
+  if (instr->size()->IsRegister()) {
+    Register size = ToRegister(instr->size());
+    DCHECK(!size.is(result));
+    __ Integer32ToSmi(size, size);
+    __ Push(size);
+  } else {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    __ Push(Smi::FromInt(size));
+  }
+
+  int flags = 0;
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+  } else {
+    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+  }
+  __ Push(Smi::FromInt(flags));
+
+  CallRuntimeFromDeferred(
+      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+  __ StoreToSafepointRegisterSlot(result, rax);
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+  DCHECK(ToRegister(instr->value()).is(rax));
+  __ Push(rax);
+  CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+  DCHECK(ToRegister(instr->value()).is(rbx));
+  Label end, do_call;
+  Register value_register = ToRegister(instr->value());
+  __ JumpIfNotSmi(value_register, &do_call);
+  __ Move(rax, isolate()->factory()->number_string());
+  __ jmp(&end);
+  __ bind(&do_call);
+  TypeofStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  __ bind(&end);
+}
+
+
+void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
+  DCHECK(!operand->IsDoubleRegister());
+  if (operand->IsConstantOperand()) {
+    __ Push(ToHandle(LConstantOperand::cast(operand)));
+  } else if (operand->IsRegister()) {
+    __ Push(ToRegister(operand));
+  } else {
+    __ Push(ToOperand(operand));
+  }
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Condition final_branch_condition = EmitTypeofIs(instr, input);
+  if (final_branch_condition != no_condition) {
+    EmitBranch(instr, final_branch_condition);
+  }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
+  Label* true_label = instr->TrueLabel(chunk_);
+  Label* false_label = instr->FalseLabel(chunk_);
+  Handle<String> type_name = instr->type_literal();
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+  int next_block = GetNextEmittedBlock();
+
+  Label::Distance true_distance = left_block == next_block ? Label::kNear
+                                                           : Label::kFar;
+  Label::Distance false_distance = right_block == next_block ? Label::kNear
+                                                             : Label::kFar;
+  Condition final_branch_condition = no_condition;
+  Factory* factory = isolate()->factory();
+  if (String::Equals(type_name, factory->number_string())) {
+    __ JumpIfSmi(input, true_label, true_distance);
+    __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
+                   Heap::kHeapNumberMapRootIndex);
+
+    final_branch_condition = equal;
+
+  } else if (String::Equals(type_name, factory->string_string())) {
+    __ JumpIfSmi(input, false_label, false_distance);
+    __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
+    final_branch_condition = below;
+
+  } else if (String::Equals(type_name, factory->symbol_string())) {
+    __ JumpIfSmi(input, false_label, false_distance);
+    __ CmpObjectType(input, SYMBOL_TYPE, input);
+    final_branch_condition = equal;
+
+  } else if (String::Equals(type_name, factory->boolean_string())) {
+    __ CompareRoot(input, Heap::kTrueValueRootIndex);
+    __ j(equal, true_label, true_distance);
+    __ CompareRoot(input, Heap::kFalseValueRootIndex);
+    final_branch_condition = equal;
+
+  } else if (String::Equals(type_name, factory->undefined_string())) {
+    __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
+    __ j(equal, true_label, true_distance);
+    __ JumpIfSmi(input, false_label, false_distance);
+    // Check for undetectable objects => true.
+    __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
+    __ testb(FieldOperand(input, Map::kBitFieldOffset),
+             Immediate(1 << Map::kIsUndetectable));
+    final_branch_condition = not_zero;
+
+  } else if (String::Equals(type_name, factory->function_string())) {
+    __ JumpIfSmi(input, false_label, false_distance);
+    // Check for callable and not undetectable objects => true.
+    __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
+    __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
+    __ andb(input,
+            Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    __ cmpb(input, Immediate(1 << Map::kIsCallable));
+    final_branch_condition = equal;
+
+  } else if (String::Equals(type_name, factory->object_string())) {
+    __ JumpIfSmi(input, false_label, false_distance);
+    __ CompareRoot(input, Heap::kNullValueRootIndex);
+    __ j(equal, true_label, true_distance);
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
+    __ j(below, false_label, false_distance);
+    // Check for callable or undetectable objects => false.
+    __ testb(FieldOperand(input, Map::kBitFieldOffset),
+             Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    final_branch_condition = zero;
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
+  } else if (String::Equals(type_name, factory->type##_string())) { \
+    __ JumpIfSmi(input, false_label, false_distance);               \
+    __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),     \
+                   Heap::k##Type##MapRootIndex);                    \
+    final_branch_condition = equal;
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+
+  } else {
+    __ jmp(false_label, false_distance);
+  }
+
+  return final_branch_condition;
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+    // Ensure that we have enough space after the previous lazy-bailout
+    // instruction for patching the code here.
+    int current_pc = masm()->pc_offset();
+    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+      __ Nop(padding_size);
+    }
+  }
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+  Deoptimizer::BailoutType type = instr->hydrogen()->type();
+  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+  // needed return address), even though the implementation of LAZY and EAGER is
+  // now identical. When LAZY is eventually completely folded into EAGER, remove
+  // the special case below.
+  if (info()->IsStub() && type == Deoptimizer::EAGER) {
+    type = Deoptimizer::LAZY;
+  }
+  DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+  // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+  PushSafepointRegistersScope scope(this);
+  __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
+  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+  RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+  class DeferredStackCheck final : public LDeferredCode {
+   public:
+    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+        : LDeferredCode(codegen), instr_(instr) { }
+    void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStackCheck* instr_;
+  };
+
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  // There is no LLazyBailout instruction for stack-checks. We have to
+  // prepare for lazy deoptimization explicitly here.
+  if (instr->hydrogen()->is_function_entry()) {
+    // Perform stack overflow check.
+    Label done;
+    __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
+    __ j(above_equal, &done, Label::kNear);
+
+    DCHECK(instr->context()->IsRegister());
+    DCHECK(ToRegister(instr->context()).is(rsi));
+    CallCode(isolate()->builtins()->StackCheck(),
+             RelocInfo::CODE_TARGET,
+             instr);
+    __ bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->is_backwards_branch());
+    // Perform stack overflow check if this goto needs it before jumping.
+    DeferredStackCheck* deferred_stack_check =
+        new(zone()) DeferredStackCheck(this, instr);
+    __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
+    __ j(below, deferred_stack_check->entry());
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+    __ bind(instr->done_label());
+    deferred_stack_check->SetExit(instr->done_label());
+    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+    // Don't record a deoptimization index for the safepoint here.
+    // This will be done explicitly when emitting call and the safepoint in
+    // the deferred code.
+  }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+  // This is a pseudo-instruction that ensures that the environment here is
+  // properly registered for deoptimization and records the assembler's PC
+  // offset.
+  LEnvironment* environment = instr->environment();
+
+  // If the environment were already registered, we would have no way of
+  // backpatching it with the spill slot operands.
+  DCHECK(!environment->HasBeenRegistered());
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+  GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+  DCHECK(ToRegister(instr->context()).is(rsi));
+
+  Condition cc = masm()->CheckSmi(rax);
+  DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
+
+  STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
+  __ CmpObjectType(rax, JS_PROXY_TYPE, rcx);
+  DeoptimizeIf(below_equal, instr, Deoptimizer::kWrongInstanceType);
+
+  Label use_cache, call_runtime;
+  Register null_value = rdi;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ CheckEnumCache(null_value, &call_runtime);
+
+  __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
+  __ jmp(&use_cache, Label::kNear);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ Push(rax);
+  CallRuntime(Runtime::kGetPropertyNamesFast, instr);
+
+  __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
+                 Heap::kMetaMapRootIndex);
+  DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+  __ bind(&use_cache);
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+  Register map = ToRegister(instr->map());
+  Register result = ToRegister(instr->result());
+  Label load_cache, done;
+  __ EnumLength(result, map);
+  __ Cmp(result, Smi::FromInt(0));
+  __ j(not_equal, &load_cache, Label::kNear);
+  __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
+  __ jmp(&done, Label::kNear);
+  __ bind(&load_cache);
+  __ LoadInstanceDescriptors(map, result);
+  __ movp(result,
+          FieldOperand(result, DescriptorArray::kEnumCacheOffset));
+  __ movp(result,
+          FieldOperand(result, FixedArray::SizeFor(instr->idx())));
+  __ bind(&done);
+  Condition cc = masm()->CheckSmi(result);
+  DeoptimizeIf(cc, instr, Deoptimizer::kNoCache);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+  Register object = ToRegister(instr->value());
+  __ cmpp(ToRegister(instr->map()),
+          FieldOperand(object, HeapObject::kMapOffset));
+  DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                           Register object,
+                                           Register index) {
+  PushSafepointRegistersScope scope(this);
+  __ Push(object);
+  __ Push(index);
+  __ xorp(rsi, rsi);
+  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+  RecordSafepointWithRegisters(
+      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(object, rax);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+  class DeferredLoadMutableDouble final : public LDeferredCode {
+   public:
+    DeferredLoadMutableDouble(LCodeGen* codegen,
+                              LLoadFieldByIndex* instr,
+                              Register object,
+                              Register index)
+        : LDeferredCode(codegen),
+          instr_(instr),
+          object_(object),
+          index_(index) {
+    }
+    void Generate() override {
+      codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LLoadFieldByIndex* instr_;
+    Register object_;
+    Register index_;
+  };
+
+  Register object = ToRegister(instr->object());
+  Register index = ToRegister(instr->index());
+
+  DeferredLoadMutableDouble* deferred;
+  deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
+
+  Label out_of_object, done;
+  __ Move(kScratchRegister, Smi::FromInt(1));
+  __ testp(index, kScratchRegister);
+  __ j(not_zero, deferred->entry());
+
+  __ sarp(index, Immediate(1));
+
+  __ SmiToInteger32(index, index);
+  __ cmpl(index, Immediate(0));
+  __ j(less, &out_of_object, Label::kNear);
+  __ movp(object, FieldOperand(object,
+                               index,
+                               times_pointer_size,
+                               JSObject::kHeaderSize));
+  __ jmp(&done, Label::kNear);
+
+  __ bind(&out_of_object);
+  __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
+  __ negl(index);
+  // Index is now equal to out of object property index plus 1.
+  __ movp(object, FieldOperand(object,
+                               index,
+                               times_pointer_size,
+                               FixedArray::kHeaderSize - kPointerSize));
+  __ bind(deferred->exit());
+  __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+  Register context = ToRegister(instr->context());
+  __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), context);
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+  Handle<ScopeInfo> scope_info = instr->scope_info();
+  __ Push(scope_info);
+  __ Push(ToRegister(instr->function()));
+  CallRuntime(Runtime::kPushBlockContext, instr);
+  RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_X64
diff --git a/src/crankshaft/x64/lithium-codegen-x64.h b/src/crankshaft/x64/lithium-codegen-x64.h
new file mode 100644
index 0000000..6fb918b
--- /dev/null
+++ b/src/crankshaft/x64/lithium-codegen-x64.h
@@ -0,0 +1,383 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_X64_LITHIUM_CODEGEN_X64_H_
+#define V8_CRANKSHAFT_X64_LITHIUM_CODEGEN_X64_H_
+
+
+#include "src/ast/scopes.h"
+#include "src/base/logging.h"
+#include "src/crankshaft/lithium-codegen.h"
+#include "src/crankshaft/x64/lithium-gap-resolver-x64.h"
+#include "src/crankshaft/x64/lithium-x64.h"
+#include "src/deoptimizer.h"
+#include "src/safepoint-table.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declarations.
+class LDeferredCode;
+class SafepointGenerator;
+
+class LCodeGen: public LCodeGenBase {
+ public:
+  LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info)
+      : LCodeGenBase(chunk, assembler, info),
+        jump_table_(4, info->zone()),
+        scope_(info->scope()),
+        deferred_(8, info->zone()),
+        frame_is_built_(false),
+        safepoints_(info->zone()),
+        resolver_(this),
+        expected_safepoint_kind_(Safepoint::kSimple) {
+    PopulateDeoptimizationLiteralsWithInlinedFunctions();
+  }
+
+  int LookupDestination(int block_id) const {
+    return chunk()->LookupDestination(block_id);
+  }
+
+  bool IsNextEmittedBlock(int block_id) const {
+    return LookupDestination(block_id) == GetNextEmittedBlock();
+  }
+
+  bool NeedsEagerFrame() const {
+    return GetStackSlotCount() > 0 ||
+        info()->is_non_deferred_calling() ||
+        !info()->IsStub() ||
+        info()->requires_frame();
+  }
+  bool NeedsDeferredFrame() const {
+    return !NeedsEagerFrame() && info()->is_deferred_calling();
+  }
+
+  // Support for converting LOperands to assembler types.
+  Register ToRegister(LOperand* op) const;
+  XMMRegister ToDoubleRegister(LOperand* op) const;
+  bool IsInteger32Constant(LConstantOperand* op) const;
+  bool IsExternalConstant(LConstantOperand* op) const;
+  bool IsDehoistedKeyConstant(LConstantOperand* op) const;
+  bool IsSmiConstant(LConstantOperand* op) const;
+  int32_t ToRepresentation(LConstantOperand* op, const Representation& r) const;
+  int32_t ToInteger32(LConstantOperand* op) const;
+  Smi* ToSmi(LConstantOperand* op) const;
+  double ToDouble(LConstantOperand* op) const;
+  ExternalReference ToExternalReference(LConstantOperand* op) const;
+  Handle<Object> ToHandle(LConstantOperand* op) const;
+  Operand ToOperand(LOperand* op) const;
+
+  // Try to generate code for the entire chunk, but it may fail if the
+  // chunk contains constructs we cannot handle. Returns true if the
+  // code generation attempt succeeded.
+  bool GenerateCode();
+
+  // Finish the code by setting stack height, safepoint, and bailout
+  // information on it.
+  void FinishCode(Handle<Code> code);
+
+  // Deferred code support.
+  void DoDeferredNumberTagD(LNumberTagD* instr);
+
+  enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 };
+  void DoDeferredNumberTagIU(LInstruction* instr,
+                             LOperand* value,
+                             LOperand* temp1,
+                             LOperand* temp2,
+                             IntegerSignedness signedness);
+
+  void DoDeferredTaggedToI(LTaggedToI* instr, Label* done);
+  void DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr);
+  void DoDeferredStackCheck(LStackCheck* instr);
+  void DoDeferredMaybeGrowElements(LMaybeGrowElements* instr);
+  void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr);
+  void DoDeferredStringCharFromCode(LStringCharFromCode* instr);
+  void DoDeferredAllocate(LAllocate* instr);
+  void DoDeferredInstanceMigration(LCheckMaps* instr, Register object);
+  void DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                   Register object,
+                                   Register index);
+
+// Parallel move support.
+  void DoParallelMove(LParallelMove* move);
+  void DoGap(LGap* instr);
+
+  // Emit frame translation commands for an environment.
+  void WriteTranslation(LEnvironment* environment, Translation* translation);
+
+  // Declare methods that deal with the individual node types.
+#define DECLARE_DO(type) void Do##type(L##type* node);
+  LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
+#undef DECLARE_DO
+
+ private:
+  LanguageMode language_mode() const { return info()->language_mode(); }
+
+  LPlatformChunk* chunk() const { return chunk_; }
+  Scope* scope() const { return scope_; }
+  HGraph* graph() const { return chunk()->graph(); }
+
+  XMMRegister double_scratch0() const { return xmm0; }
+
+  void EmitClassOfTest(Label* if_true,
+                       Label* if_false,
+                       Handle<String> class_name,
+                       Register input,
+                       Register temporary,
+                       Register scratch);
+
+  int GetStackSlotCount() const { return chunk()->spill_slot_count(); }
+
+  void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); }
+
+
+  void SaveCallerDoubles();
+  void RestoreCallerDoubles();
+
+  // Code generation passes.  Returns true if code generation should
+  // continue.
+  void GenerateBodyInstructionPre(LInstruction* instr) override;
+  void GenerateBodyInstructionPost(LInstruction* instr) override;
+  bool GeneratePrologue();
+  bool GenerateDeferredCode();
+  bool GenerateJumpTable();
+  bool GenerateSafepointTable();
+
+  // Generates the custom OSR entrypoint and sets the osr_pc_offset.
+  void GenerateOsrPrologue();
+
+  enum SafepointMode {
+    RECORD_SIMPLE_SAFEPOINT,
+    RECORD_SAFEPOINT_WITH_REGISTERS
+  };
+
+  void CallCodeGeneric(Handle<Code> code,
+                       RelocInfo::Mode mode,
+                       LInstruction* instr,
+                       SafepointMode safepoint_mode,
+                       int argc);
+
+
+  void CallCode(Handle<Code> code,
+                RelocInfo::Mode mode,
+                LInstruction* instr);
+
+  void CallRuntime(const Runtime::Function* function,
+                   int num_arguments,
+                   LInstruction* instr,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+
+  void CallRuntime(Runtime::FunctionId id,
+                   int num_arguments,
+                   LInstruction* instr) {
+    const Runtime::Function* function = Runtime::FunctionForId(id);
+    CallRuntime(function, num_arguments, instr);
+  }
+
+  void CallRuntime(Runtime::FunctionId id, LInstruction* instr) {
+    const Runtime::Function* function = Runtime::FunctionForId(id);
+    CallRuntime(function, function->nargs, instr);
+  }
+
+  void CallRuntimeFromDeferred(Runtime::FunctionId id,
+                               int argc,
+                               LInstruction* instr,
+                               LOperand* context);
+
+  void LoadContextFromDeferred(LOperand* context);
+
+  // Generate a direct call to a known function.  Expects the function
+  // to be in rdi.
+  void CallKnownFunction(Handle<JSFunction> function,
+                         int formal_parameter_count, int arity,
+                         LInstruction* instr);
+
+  void RecordSafepointWithLazyDeopt(LInstruction* instr,
+                                    SafepointMode safepoint_mode,
+                                    int argc);
+  void RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                            Safepoint::DeoptMode mode);
+  void DeoptimizeIf(Condition cc, LInstruction* instr,
+                    Deoptimizer::DeoptReason deopt_reason,
+                    Deoptimizer::BailoutType bailout_type);
+  void DeoptimizeIf(Condition cc, LInstruction* instr,
+                    Deoptimizer::DeoptReason deopt_reason);
+
+  bool DeoptEveryNTimes() {
+    return FLAG_deopt_every_n_times != 0 && !info()->IsStub();
+  }
+
+  void AddToTranslation(LEnvironment* environment,
+                        Translation* translation,
+                        LOperand* op,
+                        bool is_tagged,
+                        bool is_uint32,
+                        int* object_index_pointer,
+                        int* dematerialized_index_pointer);
+
+  Register ToRegister(int index) const;
+  XMMRegister ToDoubleRegister(int index) const;
+  Operand BuildFastArrayOperand(
+      LOperand* elements_pointer,
+      LOperand* key,
+      Representation key_representation,
+      ElementsKind elements_kind,
+      uint32_t base_offset);
+
+  Operand BuildSeqStringOperand(Register string,
+                                LOperand* index,
+                                String::Encoding encoding);
+
+  void EmitIntegerMathAbs(LMathAbs* instr);
+  void EmitSmiMathAbs(LMathAbs* instr);
+
+  // Support for recording safepoint and position information.
+  void RecordSafepoint(LPointerMap* pointers,
+                       Safepoint::Kind kind,
+                       int arguments,
+                       Safepoint::DeoptMode mode);
+  void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode);
+  void RecordSafepoint(Safepoint::DeoptMode mode);
+  void RecordSafepointWithRegisters(LPointerMap* pointers,
+                                    int arguments,
+                                    Safepoint::DeoptMode mode);
+  void RecordAndWritePosition(int position) override;
+
+  static Condition TokenToCondition(Token::Value op, bool is_unsigned);
+  void EmitGoto(int block);
+
+  // EmitBranch expects to be the last instruction of a block.
+  template<class InstrType>
+  void EmitBranch(InstrType instr, Condition cc);
+  template <class InstrType>
+  void EmitTrueBranch(InstrType instr, Condition cc);
+  template <class InstrType>
+  void EmitFalseBranch(InstrType instr, Condition cc);
+  void EmitNumberUntagD(LNumberUntagD* instr, Register input,
+                        XMMRegister result, NumberUntagDMode mode);
+
+  // Emits optimized code for typeof x == "y".  Modifies input register.
+  // Returns the condition on which a final split to
+  // true and false label should be made, to optimize fallthrough.
+  Condition EmitTypeofIs(LTypeofIsAndBranch* instr, Register input);
+
+  // Emits optimized code for %_IsString(x).  Preserves input register.
+  // Returns the condition on which a final split to
+  // true and false label should be made, to optimize fallthrough.
+  Condition EmitIsString(Register input,
+                         Register temp1,
+                         Label* is_not_string,
+                         SmiCheck check_needed);
+
+  // Emits code for pushing either a tagged constant, a (non-double)
+  // register, or a stack slot operand.
+  void EmitPushTaggedOperand(LOperand* operand);
+
+  // Emits optimized code to deep-copy the contents of statically known
+  // object graphs (e.g. object literal boilerplate).
+  void EmitDeepCopy(Handle<JSObject> object,
+                    Register result,
+                    Register source,
+                    int* offset,
+                    AllocationSiteMode mode);
+
+  void EnsureSpaceForLazyDeopt(int space_needed) override;
+  void DoLoadKeyedExternalArray(LLoadKeyed* instr);
+  void DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr);
+  void DoLoadKeyedFixedArray(LLoadKeyed* instr);
+  void DoStoreKeyedExternalArray(LStoreKeyed* instr);
+  void DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr);
+  void DoStoreKeyedFixedArray(LStoreKeyed* instr);
+
+  template <class T>
+  void EmitVectorLoadICRegisters(T* instr);
+  template <class T>
+  void EmitVectorStoreICRegisters(T* instr);
+
+#ifdef _MSC_VER
+  // On windows, you may not access the stack more than one page below
+  // the most recently mapped page. To make the allocated area randomly
+  // accessible, we write an arbitrary value to each page in range
+  // rsp + offset - page_size .. rsp in turn.
+  void MakeSureStackPagesMapped(int offset);
+#endif
+
+  ZoneList<Deoptimizer::JumpTableEntry> jump_table_;
+  Scope* const scope_;
+  ZoneList<LDeferredCode*> deferred_;
+  bool frame_is_built_;
+
+  // Builder that keeps track of safepoints in the code. The table
+  // itself is emitted at the end of the generated code.
+  SafepointTableBuilder safepoints_;
+
+  // Compiler from a set of parallel moves to a sequential list of moves.
+  LGapResolver resolver_;
+
+  Safepoint::Kind expected_safepoint_kind_;
+
+  class PushSafepointRegistersScope final BASE_EMBEDDED {
+   public:
+    explicit PushSafepointRegistersScope(LCodeGen* codegen)
+        : codegen_(codegen) {
+      DCHECK(codegen_->info()->is_calling());
+      DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
+      codegen_->masm_->PushSafepointRegisters();
+      codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
+    }
+
+    ~PushSafepointRegistersScope() {
+      DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
+      codegen_->masm_->PopSafepointRegisters();
+      codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
+    }
+
+   private:
+    LCodeGen* codegen_;
+  };
+
+  friend class LDeferredCode;
+  friend class LEnvironment;
+  friend class SafepointGenerator;
+  DISALLOW_COPY_AND_ASSIGN(LCodeGen);
+};
+
+
+class LDeferredCode: public ZoneObject {
+ public:
+  explicit LDeferredCode(LCodeGen* codegen)
+      : codegen_(codegen),
+        external_exit_(NULL),
+        instruction_index_(codegen->current_instruction_) {
+    codegen->AddDeferredCode(this);
+  }
+
+  virtual ~LDeferredCode() {}
+  virtual void Generate() = 0;
+  virtual LInstruction* instr() = 0;
+
+  void SetExit(Label* exit) { external_exit_ = exit; }
+  Label* entry() { return &entry_; }
+  Label* exit() { return external_exit_ != NULL ? external_exit_ : &exit_; }
+  Label* done() { return codegen_->NeedsDeferredFrame() ? &done_ : exit(); }
+  int instruction_index() const { return instruction_index_; }
+
+ protected:
+  LCodeGen* codegen() const { return codegen_; }
+  MacroAssembler* masm() const { return codegen_->masm(); }
+
+ private:
+  LCodeGen* codegen_;
+  Label entry_;
+  Label exit_;
+  Label done_;
+  Label* external_exit_;
+  int instruction_index_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_X64_LITHIUM_CODEGEN_X64_H_
diff --git a/src/crankshaft/x64/lithium-gap-resolver-x64.cc b/src/crankshaft/x64/lithium-gap-resolver-x64.cc
new file mode 100644
index 0000000..3808c37
--- /dev/null
+++ b/src/crankshaft/x64/lithium-gap-resolver-x64.cc
@@ -0,0 +1,321 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X64
+
+#include "src/crankshaft/x64/lithium-gap-resolver-x64.h"
+
+#include "src/crankshaft/x64/lithium-codegen-x64.h"
+
+namespace v8 {
+namespace internal {
+
+LGapResolver::LGapResolver(LCodeGen* owner)
+    : cgen_(owner), moves_(32, owner->zone()) {}
+
+
+void LGapResolver::Resolve(LParallelMove* parallel_move) {
+  DCHECK(moves_.is_empty());
+  // Build up a worklist of moves.
+  BuildInitialMoveList(parallel_move);
+
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands move = moves_[i];
+    // Skip constants to perform them last.  They don't block other moves
+    // and skipping such moves with register destinations keeps those
+    // registers free for the whole algorithm.
+    if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
+      PerformMove(i);
+    }
+  }
+
+  // Perform the moves with constant sources.
+  for (int i = 0; i < moves_.length(); ++i) {
+    if (!moves_[i].IsEliminated()) {
+      DCHECK(moves_[i].source()->IsConstantOperand());
+      EmitMove(i);
+    }
+  }
+
+  moves_.Rewind(0);
+}
+
+
+void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
+  // Perform a linear sweep of the moves to add them to the initial list of
+  // moves to perform, ignoring any move that is redundant (the source is
+  // the same as the destination, the destination is ignored and
+  // unallocated, or the move was already eliminated).
+  const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
+  for (int i = 0; i < moves->length(); ++i) {
+    LMoveOperands move = moves->at(i);
+    if (!move.IsRedundant()) moves_.Add(move, cgen_->zone());
+  }
+  Verify();
+}
+
+
+void LGapResolver::PerformMove(int index) {
+  // Each call to this function performs a move and deletes it from the move
+  // graph.  We first recursively perform any move blocking this one.  We
+  // mark a move as "pending" on entry to PerformMove in order to detect
+  // cycles in the move graph.  We use operand swaps to resolve cycles,
+  // which means that a call to PerformMove could change any source operand
+  // in the move graph.
+
+  DCHECK(!moves_[index].IsPending());
+  DCHECK(!moves_[index].IsRedundant());
+
+  // Clear this move's destination to indicate a pending move.  The actual
+  // destination is saved in a stack-allocated local.  Recursion may allow
+  // multiple moves to be pending.
+  DCHECK(moves_[index].source() != NULL);  // Or else it will look eliminated.
+  LOperand* destination = moves_[index].destination();
+  moves_[index].set_destination(NULL);
+
+  // Perform a depth-first traversal of the move graph to resolve
+  // dependencies.  Any unperformed, unpending move with a source the same
+  // as this one's destination blocks this one so recursively perform all
+  // such moves.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands other_move = moves_[i];
+    if (other_move.Blocks(destination) && !other_move.IsPending()) {
+      // Though PerformMove can change any source operand in the move graph,
+      // this call cannot create a blocking move via a swap (this loop does
+      // not miss any).  Assume there is a non-blocking move with source A
+      // and this move is blocked on source B and there is a swap of A and
+      // B.  Then A and B must be involved in the same cycle (or they would
+      // not be swapped).  Since this move's destination is B and there is
+      // only a single incoming edge to an operand, this move must also be
+      // involved in the same cycle.  In that case, the blocking move will
+      // be created but will be "pending" when we return from PerformMove.
+      PerformMove(i);
+    }
+  }
+
+  // We are about to resolve this move and don't need it marked as
+  // pending, so restore its destination.
+  moves_[index].set_destination(destination);
+
+  // This move's source may have changed due to swaps to resolve cycles and
+  // so it may now be the last move in the cycle.  If so remove it.
+  if (moves_[index].source()->Equals(destination)) {
+    moves_[index].Eliminate();
+    return;
+  }
+
+  // The move may be blocked on a (at most one) pending move, in which case
+  // we have a cycle.  Search for such a blocking move and perform a swap to
+  // resolve it.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands other_move = moves_[i];
+    if (other_move.Blocks(destination)) {
+      DCHECK(other_move.IsPending());
+      EmitSwap(index);
+      return;
+    }
+  }
+
+  // This move is not blocked.
+  EmitMove(index);
+}
+
+
+void LGapResolver::Verify() {
+#ifdef ENABLE_SLOW_DCHECKS
+  // No operand should be the destination for more than one move.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LOperand* destination = moves_[i].destination();
+    for (int j = i + 1; j < moves_.length(); ++j) {
+      SLOW_DCHECK(!destination->Equals(moves_[j].destination()));
+    }
+  }
+#endif
+}
+
+
+#define __ ACCESS_MASM(cgen_->masm())
+
+
+void LGapResolver::EmitMove(int index) {
+  LOperand* source = moves_[index].source();
+  LOperand* destination = moves_[index].destination();
+
+  // Dispatch on the source and destination operand kinds.  Not all
+  // combinations are possible.
+  if (source->IsRegister()) {
+    Register src = cgen_->ToRegister(source);
+    if (destination->IsRegister()) {
+      Register dst = cgen_->ToRegister(destination);
+      __ movp(dst, src);
+    } else {
+      DCHECK(destination->IsStackSlot());
+      Operand dst = cgen_->ToOperand(destination);
+      __ movp(dst, src);
+    }
+
+  } else if (source->IsStackSlot()) {
+    Operand src = cgen_->ToOperand(source);
+    if (destination->IsRegister()) {
+      Register dst = cgen_->ToRegister(destination);
+      __ movp(dst, src);
+    } else {
+      DCHECK(destination->IsStackSlot());
+      Operand dst = cgen_->ToOperand(destination);
+      __ movp(kScratchRegister, src);
+      __ movp(dst, kScratchRegister);
+    }
+
+  } else if (source->IsConstantOperand()) {
+    LConstantOperand* constant_source = LConstantOperand::cast(source);
+    if (destination->IsRegister()) {
+      Register dst = cgen_->ToRegister(destination);
+      if (cgen_->IsSmiConstant(constant_source)) {
+        __ Move(dst, cgen_->ToSmi(constant_source));
+      } else if (cgen_->IsInteger32Constant(constant_source)) {
+        int32_t constant = cgen_->ToInteger32(constant_source);
+        // Do sign extension only for constant used as de-hoisted array key.
+        // Others only need zero extension, which saves 2 bytes.
+        if (cgen_->IsDehoistedKeyConstant(constant_source)) {
+          __ Set(dst, constant);
+        } else {
+          __ Set(dst, static_cast<uint32_t>(constant));
+        }
+      } else {
+        __ Move(dst, cgen_->ToHandle(constant_source));
+      }
+    } else if (destination->IsDoubleRegister()) {
+      double v = cgen_->ToDouble(constant_source);
+      uint64_t int_val = bit_cast<uint64_t, double>(v);
+      XMMRegister dst = cgen_->ToDoubleRegister(destination);
+      if (int_val == 0) {
+        __ Xorpd(dst, dst);
+      } else {
+        __ Set(kScratchRegister, int_val);
+        __ Movq(dst, kScratchRegister);
+      }
+    } else {
+      DCHECK(destination->IsStackSlot());
+      Operand dst = cgen_->ToOperand(destination);
+      if (cgen_->IsSmiConstant(constant_source)) {
+        __ Move(dst, cgen_->ToSmi(constant_source));
+      } else if (cgen_->IsInteger32Constant(constant_source)) {
+        // Do sign extension to 64 bits when stored into stack slot.
+        __ movp(dst, Immediate(cgen_->ToInteger32(constant_source)));
+      } else {
+        __ Move(kScratchRegister, cgen_->ToHandle(constant_source));
+        __ movp(dst, kScratchRegister);
+      }
+    }
+
+  } else if (source->IsDoubleRegister()) {
+    XMMRegister src = cgen_->ToDoubleRegister(source);
+    if (destination->IsDoubleRegister()) {
+      __ Movapd(cgen_->ToDoubleRegister(destination), src);
+    } else {
+      DCHECK(destination->IsDoubleStackSlot());
+      __ Movsd(cgen_->ToOperand(destination), src);
+    }
+  } else if (source->IsDoubleStackSlot()) {
+    Operand src = cgen_->ToOperand(source);
+    if (destination->IsDoubleRegister()) {
+      __ Movsd(cgen_->ToDoubleRegister(destination), src);
+    } else {
+      DCHECK(destination->IsDoubleStackSlot());
+      __ Movsd(xmm0, src);
+      __ Movsd(cgen_->ToOperand(destination), xmm0);
+    }
+  } else {
+    UNREACHABLE();
+  }
+
+  moves_[index].Eliminate();
+}
+
+
+void LGapResolver::EmitSwap(int index) {
+  LOperand* source = moves_[index].source();
+  LOperand* destination = moves_[index].destination();
+
+  // Dispatch on the source and destination operand kinds.  Not all
+  // combinations are possible.
+  if (source->IsRegister() && destination->IsRegister()) {
+    // Swap two general-purpose registers.
+    Register src = cgen_->ToRegister(source);
+    Register dst = cgen_->ToRegister(destination);
+    __ movp(kScratchRegister, src);
+    __ movp(src, dst);
+    __ movp(dst, kScratchRegister);
+
+  } else if ((source->IsRegister() && destination->IsStackSlot()) ||
+             (source->IsStackSlot() && destination->IsRegister())) {
+    // Swap a general-purpose register and a stack slot.
+    Register reg =
+        cgen_->ToRegister(source->IsRegister() ? source : destination);
+    Operand mem =
+        cgen_->ToOperand(source->IsRegister() ? destination : source);
+    __ movp(kScratchRegister, mem);
+    __ movp(mem, reg);
+    __ movp(reg, kScratchRegister);
+
+  } else if ((source->IsStackSlot() && destination->IsStackSlot()) ||
+      (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot())) {
+    // Swap two stack slots or two double stack slots.
+    Operand src = cgen_->ToOperand(source);
+    Operand dst = cgen_->ToOperand(destination);
+    __ Movsd(xmm0, src);
+    __ movp(kScratchRegister, dst);
+    __ Movsd(dst, xmm0);
+    __ movp(src, kScratchRegister);
+
+  } else if (source->IsDoubleRegister() && destination->IsDoubleRegister()) {
+    // Swap two double registers.
+    XMMRegister source_reg = cgen_->ToDoubleRegister(source);
+    XMMRegister destination_reg = cgen_->ToDoubleRegister(destination);
+    __ Movapd(xmm0, source_reg);
+    __ Movapd(source_reg, destination_reg);
+    __ Movapd(destination_reg, xmm0);
+
+  } else if (source->IsDoubleRegister() || destination->IsDoubleRegister()) {
+    // Swap a double register and a double stack slot.
+    DCHECK((source->IsDoubleRegister() && destination->IsDoubleStackSlot()) ||
+           (source->IsDoubleStackSlot() && destination->IsDoubleRegister()));
+    XMMRegister reg = cgen_->ToDoubleRegister(source->IsDoubleRegister()
+                                                  ? source
+                                                  : destination);
+    LOperand* other = source->IsDoubleRegister() ? destination : source;
+    DCHECK(other->IsDoubleStackSlot());
+    Operand other_operand = cgen_->ToOperand(other);
+    __ Movapd(xmm0, reg);
+    __ Movsd(reg, other_operand);
+    __ Movsd(other_operand, xmm0);
+
+  } else {
+    // No other combinations are possible.
+    UNREACHABLE();
+  }
+
+  // The swap of source and destination has executed a move from source to
+  // destination.
+  moves_[index].Eliminate();
+
+  // Any unperformed (including pending) move with a source of either
+  // this move's source or destination needs to have their source
+  // changed to reflect the state of affairs after the swap.
+  for (int i = 0; i < moves_.length(); ++i) {
+    LMoveOperands other_move = moves_[i];
+    if (other_move.Blocks(source)) {
+      moves_[i].set_source(destination);
+    } else if (other_move.Blocks(destination)) {
+      moves_[i].set_source(source);
+    }
+  }
+}
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_X64
diff --git a/src/crankshaft/x64/lithium-gap-resolver-x64.h b/src/crankshaft/x64/lithium-gap-resolver-x64.h
new file mode 100644
index 0000000..641f0ee
--- /dev/null
+++ b/src/crankshaft/x64/lithium-gap-resolver-x64.h
@@ -0,0 +1,50 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_X64_LITHIUM_GAP_RESOLVER_X64_H_
+#define V8_CRANKSHAFT_X64_LITHIUM_GAP_RESOLVER_X64_H_
+
+#include "src/crankshaft/lithium.h"
+
+namespace v8 {
+namespace internal {
+
+class LCodeGen;
+class LGapResolver;
+
+class LGapResolver final BASE_EMBEDDED {
+ public:
+  explicit LGapResolver(LCodeGen* owner);
+
+  // Resolve a set of parallel moves, emitting assembler instructions.
+  void Resolve(LParallelMove* parallel_move);
+
+ private:
+  // Build the initial list of moves.
+  void BuildInitialMoveList(LParallelMove* parallel_move);
+
+  // Perform the move at the moves_ index in question (possibly requiring
+  // other moves to satisfy dependencies).
+  void PerformMove(int index);
+
+  // Emit a move and remove it from the move graph.
+  void EmitMove(int index);
+
+  // Execute a move by emitting a swap of two operands.  The move from
+  // source to destination is removed from the move graph.
+  void EmitSwap(int index);
+
+  // Verify the move list before performing moves.
+  void Verify();
+
+  LCodeGen* cgen_;
+
+  // List of moves not yet resolved.
+  ZoneList<LMoveOperands> moves_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_X64_LITHIUM_GAP_RESOLVER_X64_H_
diff --git a/src/crankshaft/x64/lithium-x64.cc b/src/crankshaft/x64/lithium-x64.cc
new file mode 100644
index 0000000..3c932a2
--- /dev/null
+++ b/src/crankshaft/x64/lithium-x64.cc
@@ -0,0 +1,2685 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/x64/lithium-x64.h"
+
+#include <sstream>
+
+#if V8_TARGET_ARCH_X64
+
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/crankshaft/lithium-inl.h"
+#include "src/crankshaft/x64/lithium-codegen-x64.h"
+
+namespace v8 {
+namespace internal {
+
+#define DEFINE_COMPILE(type)                            \
+  void L##type::CompileToNative(LCodeGen* generator) {  \
+    generator->Do##type(this);                          \
+  }
+LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
+#undef DEFINE_COMPILE
+
+
+#ifdef DEBUG
+void LInstruction::VerifyCall() {
+  // Call instructions can use only fixed registers as temporaries and
+  // outputs because all registers are blocked by the calling convention.
+  // Inputs operands must use a fixed register or use-at-start policy or
+  // a non-register policy.
+  DCHECK(Output() == NULL ||
+         LUnallocated::cast(Output())->HasFixedPolicy() ||
+         !LUnallocated::cast(Output())->HasRegisterPolicy());
+  for (UseIterator it(this); !it.Done(); it.Advance()) {
+    LUnallocated* operand = LUnallocated::cast(it.Current());
+    DCHECK(operand->HasFixedPolicy() ||
+           operand->IsUsedAtStart());
+  }
+  for (TempIterator it(this); !it.Done(); it.Advance()) {
+    LUnallocated* operand = LUnallocated::cast(it.Current());
+    DCHECK(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy());
+  }
+}
+#endif
+
+
+void LInstruction::PrintTo(StringStream* stream) {
+  stream->Add("%s ", this->Mnemonic());
+
+  PrintOutputOperandTo(stream);
+
+  PrintDataTo(stream);
+
+  if (HasEnvironment()) {
+    stream->Add(" ");
+    environment()->PrintTo(stream);
+  }
+
+  if (HasPointerMap()) {
+    stream->Add(" ");
+    pointer_map()->PrintTo(stream);
+  }
+}
+
+
+void LInstruction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  for (int i = 0; i < InputCount(); i++) {
+    if (i > 0) stream->Add(" ");
+    if (InputAt(i) == NULL) {
+      stream->Add("NULL");
+    } else {
+      InputAt(i)->PrintTo(stream);
+    }
+  }
+}
+
+
+void LInstruction::PrintOutputOperandTo(StringStream* stream) {
+  if (HasResult()) result()->PrintTo(stream);
+}
+
+
+void LLabel::PrintDataTo(StringStream* stream) {
+  LGap::PrintDataTo(stream);
+  LLabel* rep = replacement();
+  if (rep != NULL) {
+    stream->Add(" Dead block replaced with B%d", rep->block_id());
+  }
+}
+
+
+bool LGap::IsRedundant() const {
+  for (int i = 0; i < 4; i++) {
+    if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
+      return false;
+    }
+  }
+
+  return true;
+}
+
+
+void LGap::PrintDataTo(StringStream* stream) {
+  for (int i = 0; i < 4; i++) {
+    stream->Add("(");
+    if (parallel_moves_[i] != NULL) {
+      parallel_moves_[i]->PrintDataTo(stream);
+    }
+    stream->Add(") ");
+  }
+}
+
+
+const char* LArithmeticD::Mnemonic() const {
+  switch (op()) {
+    case Token::ADD: return "add-d";
+    case Token::SUB: return "sub-d";
+    case Token::MUL: return "mul-d";
+    case Token::DIV: return "div-d";
+    case Token::MOD: return "mod-d";
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+const char* LArithmeticT::Mnemonic() const {
+  switch (op()) {
+    case Token::ADD: return "add-t";
+    case Token::SUB: return "sub-t";
+    case Token::MUL: return "mul-t";
+    case Token::MOD: return "mod-t";
+    case Token::DIV: return "div-t";
+    case Token::BIT_AND: return "bit-and-t";
+    case Token::BIT_OR: return "bit-or-t";
+    case Token::BIT_XOR: return "bit-xor-t";
+    case Token::ROR: return "ror-t";
+    case Token::SHL: return "sal-t";
+    case Token::SAR: return "sar-t";
+    case Token::SHR: return "shr-t";
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+bool LGoto::HasInterestingComment(LCodeGen* gen) const {
+  return !gen->IsNextEmittedBlock(block_id());
+}
+
+
+template<int R>
+bool LTemplateResultInstruction<R>::MustSignExtendResult(
+    LPlatformChunk* chunk) const {
+  HValue* hvalue = this->hydrogen_value();
+  return hvalue != NULL &&
+      hvalue->representation().IsInteger32() &&
+      chunk->GetDehoistedKeyIds()->Contains(hvalue->id());
+}
+
+
+void LGoto::PrintDataTo(StringStream* stream) {
+  stream->Add("B%d", block_id());
+}
+
+
+void LBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
+  value()->PrintTo(stream);
+}
+
+
+void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if ");
+  left()->PrintTo(stream);
+  stream->Add(" %s ", Token::String(op()));
+  right()->PrintTo(stream);
+  stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsStringAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_string(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_smi(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if is_undetectable(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LStringCompareAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if string_compare(");
+  left()->PrintTo(stream);
+  right()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if has_instance_type(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if has_cached_array_index(");
+  value()->PrintTo(stream);
+  stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
+}
+
+
+void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if class_of_test(");
+  value()->PrintTo(stream);
+  stream->Add(", \"%o\") then B%d else B%d",
+              *hydrogen()->class_name(),
+              true_block_id(),
+              false_block_id());
+}
+
+
+void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
+  stream->Add("if typeof ");
+  value()->PrintTo(stream);
+  stream->Add(" == \"%s\" then B%d else B%d",
+              hydrogen()->type_literal()->ToCString().get(),
+              true_block_id(), false_block_id());
+}
+
+
+void LStoreCodeEntry::PrintDataTo(StringStream* stream) {
+  stream->Add(" = ");
+  function()->PrintTo(stream);
+  stream->Add(".code_entry = ");
+  code_object()->PrintTo(stream);
+}
+
+
+void LInnerAllocatedObject::PrintDataTo(StringStream* stream) {
+  stream->Add(" = ");
+  base_object()->PrintTo(stream);
+  stream->Add(" + ");
+  offset()->PrintTo(stream);
+}
+
+
+void LCallFunction::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add(" ");
+  function()->PrintTo(stream);
+  if (hydrogen()->HasVectorAndSlot()) {
+    stream->Add(" (type-feedback-vector ");
+    temp_vector()->PrintTo(stream);
+    stream->Add(" ");
+    temp_slot()->PrintTo(stream);
+    stream->Add(")");
+  }
+}
+
+
+void LCallJSFunction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  function()->PrintTo(stream);
+  stream->Add("#%d / ", arity());
+}
+
+
+void LCallWithDescriptor::PrintDataTo(StringStream* stream) {
+  for (int i = 0; i < InputCount(); i++) {
+    InputAt(i)->PrintTo(stream);
+    stream->Add(" ");
+  }
+  stream->Add("#%d / ", arity());
+}
+
+
+void LLoadContextSlot::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add("[%d]", slot_index());
+}
+
+
+void LStoreContextSlot::PrintDataTo(StringStream* stream) {
+  context()->PrintTo(stream);
+  stream->Add("[%d] <- ", slot_index());
+  value()->PrintTo(stream);
+}
+
+
+void LInvokeFunction::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  function()->PrintTo(stream);
+  stream->Add(" #%d / ", arity());
+}
+
+
+void LCallNewArray::PrintDataTo(StringStream* stream) {
+  stream->Add("= ");
+  constructor()->PrintTo(stream);
+  stream->Add(" #%d / ", arity());
+  ElementsKind kind = hydrogen()->elements_kind();
+  stream->Add(" (%s) ", ElementsKindToString(kind));
+}
+
+
+void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
+  arguments()->PrintTo(stream);
+
+  stream->Add(" length ");
+  length()->PrintTo(stream);
+
+  stream->Add(" index ");
+  index()->PrintTo(stream);
+}
+
+
+int LPlatformChunk::GetNextSpillIndex(RegisterKind kind) {
+  if (kind == DOUBLE_REGISTERS && kDoubleSize == 2 * kPointerSize) {
+    // Skip a slot if for a double-width slot for x32 port.
+    spill_slot_count_++;
+    // The spill slot's address is at rbp - (index + 1) * kPointerSize -
+    // StandardFrameConstants::kFixedFrameSizeFromFp. kFixedFrameSizeFromFp is
+    // 2 * kPointerSize, if rbp is aligned at 8-byte boundary, the below "|= 1"
+    // will make sure the spilled doubles are aligned at 8-byte boundary.
+    // TODO(haitao): make sure rbp is aligned at 8-byte boundary for x32 port.
+    spill_slot_count_ |= 1;
+  }
+  return spill_slot_count_++;
+}
+
+
+LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind) {
+  // All stack slots are Double stack slots on x64.
+  // Alternatively, at some point, start using half-size
+  // stack slots for int32 values.
+  int index = GetNextSpillIndex(kind);
+  if (kind == DOUBLE_REGISTERS) {
+    return LDoubleStackSlot::Create(index, zone());
+  } else {
+    DCHECK(kind == GENERAL_REGISTERS);
+    return LStackSlot::Create(index, zone());
+  }
+}
+
+
+void LStoreNamedField::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  std::ostringstream os;
+  os << hydrogen()->access() << " <- ";
+  stream->Add(os.str().c_str());
+  value()->PrintTo(stream);
+}
+
+
+void LStoreNamedGeneric::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add(".");
+  stream->Add(String::cast(*name())->ToCString().get());
+  stream->Add(" <- ");
+  value()->PrintTo(stream);
+}
+
+
+void LLoadKeyed::PrintDataTo(StringStream* stream) {
+  elements()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  if (hydrogen()->IsDehoisted()) {
+    stream->Add(" + %d]", base_offset());
+  } else {
+    stream->Add("]");
+  }
+}
+
+
+void LStoreKeyed::PrintDataTo(StringStream* stream) {
+  elements()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  if (hydrogen()->IsDehoisted()) {
+    stream->Add(" + %d] <-", base_offset());
+  } else {
+    stream->Add("] <- ");
+  }
+
+  if (value() == NULL) {
+    DCHECK(hydrogen()->IsConstantHoleStore() &&
+           hydrogen()->value()->representation().IsDouble());
+    stream->Add("<the hole(nan)>");
+  } else {
+    value()->PrintTo(stream);
+  }
+}
+
+
+void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add("[");
+  key()->PrintTo(stream);
+  stream->Add("] <- ");
+  value()->PrintTo(stream);
+}
+
+
+void LTransitionElementsKind::PrintDataTo(StringStream* stream) {
+  object()->PrintTo(stream);
+  stream->Add(" %p -> %p", *original_map(), *transitioned_map());
+}
+
+
+LPlatformChunk* LChunkBuilder::Build() {
+  DCHECK(is_unused());
+  chunk_ = new(zone()) LPlatformChunk(info(), graph());
+  LPhase phase("L_Building chunk", chunk_);
+  status_ = BUILDING;
+
+  // If compiling for OSR, reserve space for the unoptimized frame,
+  // which will be subsumed into this frame.
+  if (graph()->has_osr()) {
+    for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) {
+      chunk_->GetNextSpillIndex(GENERAL_REGISTERS);
+    }
+  }
+
+  const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
+  for (int i = 0; i < blocks->length(); i++) {
+    HBasicBlock* next = NULL;
+    if (i < blocks->length() - 1) next = blocks->at(i + 1);
+    DoBasicBlock(blocks->at(i), next);
+    if (is_aborted()) return NULL;
+  }
+  status_ = DONE;
+  return chunk_;
+}
+
+
+LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
+  return new (zone()) LUnallocated(LUnallocated::FIXED_REGISTER, reg.code());
+}
+
+
+LUnallocated* LChunkBuilder::ToUnallocated(XMMRegister reg) {
+  return new (zone())
+      LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, reg.code());
+}
+
+
+LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
+  return Use(value, ToUnallocated(fixed_register));
+}
+
+
+LOperand* LChunkBuilder::UseFixedDouble(HValue* value, XMMRegister reg) {
+  return Use(value, ToUnallocated(reg));
+}
+
+
+LOperand* LChunkBuilder::UseRegister(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
+}
+
+
+LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
+  return Use(value,
+             new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
+                              LUnallocated::USED_AT_START));
+}
+
+
+LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER));
+}
+
+
+LOperand* LChunkBuilder::UseTempRegisterOrConstant(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseTempRegister(value);
+}
+
+
+LOperand* LChunkBuilder::Use(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::NONE));
+}
+
+
+LOperand* LChunkBuilder::UseAtStart(HValue* value) {
+  return Use(value, new(zone()) LUnallocated(LUnallocated::NONE,
+                                     LUnallocated::USED_AT_START));
+}
+
+
+LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : Use(value);
+}
+
+
+LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseAtStart(value);
+}
+
+
+LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseRegister(value);
+}
+
+
+LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      : UseRegisterAtStart(value);
+}
+
+
+LOperand* LChunkBuilder::UseConstant(HValue* value) {
+  return chunk_->DefineConstantOperand(HConstant::cast(value));
+}
+
+
+LOperand* LChunkBuilder::UseAny(HValue* value) {
+  return value->IsConstant()
+      ? chunk_->DefineConstantOperand(HConstant::cast(value))
+      :  Use(value, new(zone()) LUnallocated(LUnallocated::ANY));
+}
+
+
+LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
+  if (value->EmitAtUses()) {
+    HInstruction* instr = HInstruction::cast(value);
+    VisitInstruction(instr);
+  }
+  operand->set_virtual_register(value->id());
+  return operand;
+}
+
+
+LInstruction* LChunkBuilder::Define(LTemplateResultInstruction<1>* instr,
+                                    LUnallocated* result) {
+  result->set_virtual_register(current_instruction_->id());
+  instr->set_result(result);
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::DefineAsRegister(
+    LTemplateResultInstruction<1>* instr) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
+}
+
+
+LInstruction* LChunkBuilder::DefineAsSpilled(
+    LTemplateResultInstruction<1>* instr,
+    int index) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index));
+}
+
+
+LInstruction* LChunkBuilder::DefineSameAsFirst(
+    LTemplateResultInstruction<1>* instr) {
+  return Define(instr,
+                new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
+}
+
+
+LInstruction* LChunkBuilder::DefineFixed(LTemplateResultInstruction<1>* instr,
+                                         Register reg) {
+  return Define(instr, ToUnallocated(reg));
+}
+
+
+LInstruction* LChunkBuilder::DefineFixedDouble(
+    LTemplateResultInstruction<1>* instr,
+    XMMRegister reg) {
+  return Define(instr, ToUnallocated(reg));
+}
+
+
+LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
+  HEnvironment* hydrogen_env = current_block_->last_environment();
+  int argument_index_accumulator = 0;
+  ZoneList<HValue*> objects_to_materialize(0, zone());
+  instr->set_environment(CreateEnvironment(
+      hydrogen_env, &argument_index_accumulator, &objects_to_materialize));
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
+                                        HInstruction* hinstr,
+                                        CanDeoptimize can_deoptimize) {
+  info()->MarkAsNonDeferredCalling();
+
+#ifdef DEBUG
+  instr->VerifyCall();
+#endif
+  instr->MarkAsCall();
+  instr = AssignPointerMap(instr);
+
+  // If instruction does not have side-effects lazy deoptimization
+  // after the call will try to deoptimize to the point before the call.
+  // Thus we still need to attach environment to this call even if
+  // call sequence can not deoptimize eagerly.
+  bool needs_environment =
+      (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) ||
+      !hinstr->HasObservableSideEffects();
+  if (needs_environment && !instr->HasEnvironment()) {
+    instr = AssignEnvironment(instr);
+    // We can't really figure out if the environment is needed or not.
+    instr->environment()->set_has_been_used();
+  }
+
+  return instr;
+}
+
+
+LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
+  DCHECK(!instr->HasPointerMap());
+  instr->set_pointer_map(new(zone()) LPointerMap(zone()));
+  return instr;
+}
+
+
+LUnallocated* LChunkBuilder::TempRegister() {
+  LUnallocated* operand =
+      new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
+  int vreg = allocator_->GetVirtualRegister();
+  if (!allocator_->AllocationOk()) {
+    Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
+    vreg = 0;
+  }
+  operand->set_virtual_register(vreg);
+  return operand;
+}
+
+
+LOperand* LChunkBuilder::FixedTemp(Register reg) {
+  LUnallocated* operand = ToUnallocated(reg);
+  DCHECK(operand->HasFixedPolicy());
+  return operand;
+}
+
+
+LOperand* LChunkBuilder::FixedTemp(XMMRegister reg) {
+  LUnallocated* operand = ToUnallocated(reg);
+  DCHECK(operand->HasFixedPolicy());
+  return operand;
+}
+
+
+LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
+  return new(zone()) LLabel(instr->block());
+}
+
+
+LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) {
+  return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value())));
+}
+
+
+LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) {
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
+  return AssignEnvironment(new(zone()) LDeoptimize);
+}
+
+
+LInstruction* LChunkBuilder::DoShift(Token::Value op,
+                                     HBitwiseBinaryOperation* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->left());
+
+    HValue* right_value = instr->right();
+    LOperand* right = NULL;
+    int constant_value = 0;
+    bool does_deopt = false;
+    if (right_value->IsConstant()) {
+      HConstant* constant = HConstant::cast(right_value);
+      right = chunk_->DefineConstantOperand(constant);
+      constant_value = constant->Integer32Value() & 0x1f;
+      if (SmiValuesAre31Bits() && instr->representation().IsSmi() &&
+          constant_value > 0) {
+        // Left shift can deoptimize if we shift by > 0 and the result
+        // cannot be truncated to smi.
+        does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
+      }
+    } else {
+      right = UseFixed(right_value, rcx);
+    }
+
+    // Shift operations can only deoptimize if we do a logical shift by 0 and
+    // the result cannot be truncated to int32.
+    if (op == Token::SHR && constant_value == 0) {
+      does_deopt = !instr->CheckFlag(HInstruction::kUint32);
+    }
+
+    LInstruction* result =
+        DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
+    return does_deopt ? AssignEnvironment(result) : result;
+  } else {
+    return DoArithmeticT(op, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
+                                           HArithmeticBinaryOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->left()->representation().IsDouble());
+  DCHECK(instr->right()->representation().IsDouble());
+  if (op == Token::MOD) {
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right = UseFixedDouble(instr->BetterRightOperand(), xmm1);
+    LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
+    return MarkAsCall(DefineSameAsFirst(result), instr);
+  } else {
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right = UseRegisterAtStart(instr->BetterRightOperand());
+    LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
+    return CpuFeatures::IsSupported(AVX) ? DefineAsRegister(result)
+                                         : DefineSameAsFirst(result);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
+                                           HBinaryOperation* instr) {
+  HValue* left = instr->left();
+  HValue* right = instr->right();
+  DCHECK(left->representation().IsTagged());
+  DCHECK(right->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* left_operand = UseFixed(left, rdx);
+  LOperand* right_operand = UseFixed(right, rax);
+  LArithmeticT* result =
+      new(zone()) LArithmeticT(op, context, left_operand, right_operand);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
+  DCHECK(is_building());
+  current_block_ = block;
+  next_block_ = next_block;
+  if (block->IsStartBlock()) {
+    block->UpdateEnvironment(graph_->start_environment());
+    argument_count_ = 0;
+  } else if (block->predecessors()->length() == 1) {
+    // We have a single predecessor => copy environment and outgoing
+    // argument count from the predecessor.
+    DCHECK(block->phis()->length() == 0);
+    HBasicBlock* pred = block->predecessors()->at(0);
+    HEnvironment* last_environment = pred->last_environment();
+    DCHECK(last_environment != NULL);
+    // Only copy the environment, if it is later used again.
+    if (pred->end()->SecondSuccessor() == NULL) {
+      DCHECK(pred->end()->FirstSuccessor() == block);
+    } else {
+      if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
+          pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
+        last_environment = last_environment->Copy();
+      }
+    }
+    block->UpdateEnvironment(last_environment);
+    DCHECK(pred->argument_count() >= 0);
+    argument_count_ = pred->argument_count();
+  } else {
+    // We are at a state join => process phis.
+    HBasicBlock* pred = block->predecessors()->at(0);
+    // No need to copy the environment, it cannot be used later.
+    HEnvironment* last_environment = pred->last_environment();
+    for (int i = 0; i < block->phis()->length(); ++i) {
+      HPhi* phi = block->phis()->at(i);
+      if (phi->HasMergedIndex()) {
+        last_environment->SetValueAt(phi->merged_index(), phi);
+      }
+    }
+    for (int i = 0; i < block->deleted_phis()->length(); ++i) {
+      if (block->deleted_phis()->at(i) < last_environment->length()) {
+        last_environment->SetValueAt(block->deleted_phis()->at(i),
+                                     graph_->GetConstantUndefined());
+      }
+    }
+    block->UpdateEnvironment(last_environment);
+    // Pick up the outgoing argument count of one of the predecessors.
+    argument_count_ = pred->argument_count();
+  }
+  HInstruction* current = block->first();
+  int start = chunk_->instructions()->length();
+  while (current != NULL && !is_aborted()) {
+    // Code for constants in registers is generated lazily.
+    if (!current->EmitAtUses()) {
+      VisitInstruction(current);
+    }
+    current = current->next();
+  }
+  int end = chunk_->instructions()->length() - 1;
+  if (end >= start) {
+    block->set_first_instruction_index(start);
+    block->set_last_instruction_index(end);
+  }
+  block->set_argument_count(argument_count_);
+  next_block_ = NULL;
+  current_block_ = NULL;
+}
+
+
+void LChunkBuilder::VisitInstruction(HInstruction* current) {
+  HInstruction* old_current = current_instruction_;
+  current_instruction_ = current;
+
+  LInstruction* instr = NULL;
+  if (current->CanReplaceWithDummyUses()) {
+    if (current->OperandCount() == 0) {
+      instr = DefineAsRegister(new(zone()) LDummy());
+    } else {
+      DCHECK(!current->OperandAt(0)->IsControlInstruction());
+      instr = DefineAsRegister(new(zone())
+          LDummyUse(UseAny(current->OperandAt(0))));
+    }
+    for (int i = 1; i < current->OperandCount(); ++i) {
+      if (current->OperandAt(i)->IsControlInstruction()) continue;
+      LInstruction* dummy =
+          new(zone()) LDummyUse(UseAny(current->OperandAt(i)));
+      dummy->set_hydrogen_value(current);
+      chunk_->AddInstruction(dummy, current_block_);
+    }
+  } else {
+    HBasicBlock* successor;
+    if (current->IsControlInstruction() &&
+        HControlInstruction::cast(current)->KnownSuccessorBlock(&successor) &&
+        successor != NULL) {
+      instr = new(zone()) LGoto(successor);
+    } else {
+      instr = current->CompileToLithium(this);
+    }
+  }
+
+  argument_count_ += current->argument_delta();
+  DCHECK(argument_count_ >= 0);
+
+  if (instr != NULL) {
+    AddInstruction(instr, current);
+  }
+
+  current_instruction_ = old_current;
+}
+
+
+void LChunkBuilder::AddInstruction(LInstruction* instr,
+                                   HInstruction* hydrogen_val) {
+  // Associate the hydrogen instruction first, since we may need it for
+  // the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
+  instr->set_hydrogen_value(hydrogen_val);
+
+#if DEBUG
+  // Make sure that the lithium instruction has either no fixed register
+  // constraints in temps or the result OR no uses that are only used at
+  // start. If this invariant doesn't hold, the register allocator can decide
+  // to insert a split of a range immediately before the instruction due to an
+  // already allocated register needing to be used for the instruction's fixed
+  // register constraint. In this case, The register allocator won't see an
+  // interference between the split child and the use-at-start (it would if
+  // the it was just a plain use), so it is free to move the split child into
+  // the same register that is used for the use-at-start.
+  // See https://code.google.com/p/chromium/issues/detail?id=201590
+  if (!(instr->ClobbersRegisters() &&
+        instr->ClobbersDoubleRegisters(isolate()))) {
+    int fixed = 0;
+    int used_at_start = 0;
+    for (UseIterator it(instr); !it.Done(); it.Advance()) {
+      LUnallocated* operand = LUnallocated::cast(it.Current());
+      if (operand->IsUsedAtStart()) ++used_at_start;
+    }
+    if (instr->Output() != NULL) {
+      if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
+    }
+    for (TempIterator it(instr); !it.Done(); it.Advance()) {
+      LUnallocated* operand = LUnallocated::cast(it.Current());
+      if (operand->HasFixedPolicy()) ++fixed;
+    }
+    DCHECK(fixed == 0 || used_at_start == 0);
+  }
+#endif
+
+  if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
+    instr = AssignPointerMap(instr);
+  }
+  if (FLAG_stress_environments && !instr->HasEnvironment()) {
+    instr = AssignEnvironment(instr);
+  }
+  chunk_->AddInstruction(instr, current_block_);
+
+  if (instr->IsCall() || instr->IsPrologue()) {
+    HValue* hydrogen_value_for_lazy_bailout = hydrogen_val;
+    if (hydrogen_val->HasObservableSideEffects()) {
+      HSimulate* sim = HSimulate::cast(hydrogen_val->next());
+      sim->ReplayEnvironment(current_block_->last_environment());
+      hydrogen_value_for_lazy_bailout = sim;
+    }
+    LInstruction* bailout = AssignEnvironment(new(zone()) LLazyBailout());
+    bailout->set_hydrogen_value(hydrogen_value_for_lazy_bailout);
+    chunk_->AddInstruction(bailout, current_block_);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
+  return new(zone()) LGoto(instr->FirstSuccessor());
+}
+
+
+LInstruction* LChunkBuilder::DoPrologue(HPrologue* instr) {
+  return new (zone()) LPrologue();
+}
+
+
+LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) {
+  return new(zone()) LDebugBreak();
+}
+
+
+LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
+  HValue* value = instr->value();
+  Representation r = value->representation();
+  HType type = value->type();
+  ToBooleanStub::Types expected = instr->expected_input_types();
+  if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+  bool easy_case = !r.IsTagged() || type.IsBoolean() || type.IsSmi() ||
+      type.IsJSArray() || type.IsHeapNumber() || type.IsString();
+  LInstruction* branch = new(zone()) LBranch(UseRegister(value));
+  if (!easy_case &&
+      ((!expected.Contains(ToBooleanStub::SMI) && expected.NeedsMap()) ||
+       !expected.IsGeneric())) {
+    branch = AssignEnvironment(branch);
+  }
+  return branch;
+}
+
+
+LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LCmpMapAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
+  info()->MarkAsRequiresFrame();
+  return DefineAsRegister(new(zone()) LArgumentsLength(Use(length->value())));
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
+  info()->MarkAsRequiresFrame();
+  return DefineAsRegister(new(zone()) LArgumentsElements);
+}
+
+
+LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
+  LOperand* left =
+      UseFixed(instr->left(), InstanceOfDescriptor::LeftRegister());
+  LOperand* right =
+      UseFixed(instr->right(), InstanceOfDescriptor::RightRegister());
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LInstanceOf* result = new (zone()) LInstanceOf(context, left, right);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoHasInPrototypeChainAndBranch(
+    HHasInPrototypeChainAndBranch* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* prototype = UseRegister(instr->prototype());
+  LHasInPrototypeChainAndBranch* result =
+      new (zone()) LHasInPrototypeChainAndBranch(object, prototype);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) {
+  LOperand* receiver = UseRegister(instr->receiver());
+  LOperand* function = UseRegisterAtStart(instr->function());
+  LWrapReceiver* result = new(zone()) LWrapReceiver(receiver, function);
+  return AssignEnvironment(DefineSameAsFirst(result));
+}
+
+
+LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
+  LOperand* function = UseFixed(instr->function(), rdi);
+  LOperand* receiver = UseFixed(instr->receiver(), rax);
+  LOperand* length = UseFixed(instr->length(), rbx);
+  LOperand* elements = UseFixed(instr->elements(), rcx);
+  LApplyArguments* result = new(zone()) LApplyArguments(function,
+                                                receiver,
+                                                length,
+                                                elements);
+  return MarkAsCall(DefineFixed(result, rax), instr, CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoPushArguments(HPushArguments* instr) {
+  int argc = instr->OperandCount();
+  for (int i = 0; i < argc; ++i) {
+    LOperand* argument = UseOrConstant(instr->argument(i));
+    AddInstruction(new(zone()) LPushArgument(argument), instr);
+  }
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoStoreCodeEntry(
+    HStoreCodeEntry* store_code_entry) {
+  LOperand* function = UseRegister(store_code_entry->function());
+  LOperand* code_object = UseTempRegister(store_code_entry->code_object());
+  return new(zone()) LStoreCodeEntry(function, code_object);
+}
+
+
+LInstruction* LChunkBuilder::DoInnerAllocatedObject(
+    HInnerAllocatedObject* instr) {
+  LOperand* base_object = UseRegisterAtStart(instr->base_object());
+  LOperand* offset = UseRegisterOrConstantAtStart(instr->offset());
+  return DefineAsRegister(
+      new(zone()) LInnerAllocatedObject(base_object, offset));
+}
+
+
+LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) {
+  return instr->HasNoUses()
+      ? NULL
+      : DefineAsRegister(new(zone()) LThisFunction);
+}
+
+
+LInstruction* LChunkBuilder::DoContext(HContext* instr) {
+  if (instr->HasNoUses()) return NULL;
+
+  if (info()->IsStub()) {
+    return DefineFixed(new(zone()) LContext, rsi);
+  }
+
+  return DefineAsRegister(new(zone()) LContext);
+}
+
+
+LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  return MarkAsCall(new(zone()) LDeclareGlobals(context), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallJSFunction(
+    HCallJSFunction* instr) {
+  LOperand* function = UseFixed(instr->function(), rdi);
+
+  LCallJSFunction* result = new(zone()) LCallJSFunction(function);
+
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallWithDescriptor(
+    HCallWithDescriptor* instr) {
+  CallInterfaceDescriptor descriptor = instr->descriptor();
+
+  LOperand* target = UseRegisterOrConstantAtStart(instr->target());
+  ZoneList<LOperand*> ops(instr->OperandCount(), zone());
+  // Target
+  ops.Add(target, zone());
+  // Context
+  LOperand* op = UseFixed(instr->OperandAt(1), rsi);
+  ops.Add(op, zone());
+  // Other register parameters
+  for (int i = LCallWithDescriptor::kImplicitRegisterParameterCount;
+       i < instr->OperandCount(); i++) {
+    op =
+        UseFixed(instr->OperandAt(i),
+                 descriptor.GetRegisterParameter(
+                     i - LCallWithDescriptor::kImplicitRegisterParameterCount));
+    ops.Add(op, zone());
+  }
+
+  LCallWithDescriptor* result = new(zone()) LCallWithDescriptor(
+      descriptor, ops, zone());
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* function = UseFixed(instr->function(), rdi);
+  LInvokeFunction* result = new(zone()) LInvokeFunction(context, function);
+  return MarkAsCall(DefineFixed(result, rax), instr, CANNOT_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
+  switch (instr->op()) {
+    case kMathFloor:
+      return DoMathFloor(instr);
+    case kMathRound:
+      return DoMathRound(instr);
+    case kMathFround:
+      return DoMathFround(instr);
+    case kMathAbs:
+      return DoMathAbs(instr);
+    case kMathLog:
+      return DoMathLog(instr);
+    case kMathExp:
+      return DoMathExp(instr);
+    case kMathSqrt:
+      return DoMathSqrt(instr);
+    case kMathPowHalf:
+      return DoMathPowHalf(instr);
+    case kMathClz32:
+      return DoMathClz32(instr);
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloor(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegisterAtStart(instr->value());
+  LMathFloor* result = new(zone()) LMathFloor(input);
+  return AssignEnvironment(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoMathRound(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LOperand* temp = FixedTemp(xmm4);
+  LMathRound* result = new(zone()) LMathRound(input, temp);
+  return AssignEnvironment(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoMathFround(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegister(instr->value());
+  LMathFround* result = new (zone()) LMathFround(input);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathAbs(HUnaryMathOperation* instr) {
+  LOperand* context = UseAny(instr->context());
+  LOperand* input = UseRegisterAtStart(instr->value());
+  LInstruction* result =
+      DefineSameAsFirst(new(zone()) LMathAbs(context, input));
+  Representation r = instr->value()->representation();
+  if (!r.IsDouble() && !r.IsSmiOrInteger32()) result = AssignPointerMap(result);
+  if (!r.IsDouble()) result = AssignEnvironment(result);
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMathLog(HUnaryMathOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->value()->representation().IsDouble());
+  LOperand* input = UseRegisterAtStart(instr->value());
+  return MarkAsCall(DefineSameAsFirst(new(zone()) LMathLog(input)), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoMathClz32(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegisterAtStart(instr->value());
+  LMathClz32* result = new(zone()) LMathClz32(input);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathExp(HUnaryMathOperation* instr) {
+  DCHECK(instr->representation().IsDouble());
+  DCHECK(instr->value()->representation().IsDouble());
+  LOperand* value = UseTempRegister(instr->value());
+  LOperand* temp1 = TempRegister();
+  LOperand* temp2 = TempRegister();
+  LMathExp* result = new(zone()) LMathExp(value, temp1, temp2);
+  return DefineAsRegister(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathSqrt(HUnaryMathOperation* instr) {
+  LOperand* input = UseAtStart(instr->value());
+  return DefineAsRegister(new(zone()) LMathSqrt(input));
+}
+
+
+LInstruction* LChunkBuilder::DoMathPowHalf(HUnaryMathOperation* instr) {
+  LOperand* input = UseRegisterAtStart(instr->value());
+  LMathPowHalf* result = new(zone()) LMathPowHalf(input);
+  return DefineSameAsFirst(result);
+}
+
+
+LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* constructor = UseFixed(instr->constructor(), rdi);
+  LCallNewArray* result = new(zone()) LCallNewArray(context, constructor);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* function = UseFixed(instr->function(), rdi);
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(rdx);
+    vector = FixedTemp(rbx);
+  }
+  LCallFunction* call =
+      new (zone()) LCallFunction(context, function, slot, vector);
+  return MarkAsCall(DefineFixed(call, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LCallRuntime* result = new(zone()) LCallRuntime(context);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoRor(HRor* instr) {
+  return DoShift(Token::ROR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoShr(HShr* instr) {
+  return DoShift(Token::SHR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoSar(HSar* instr) {
+  return DoShift(Token::SAR, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoShl(HShl* instr) {
+  return DoShift(Token::SHL, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    DCHECK(instr->CheckFlag(HValue::kTruncatingToInt32));
+
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right;
+    if (SmiValuesAre32Bits() && instr->representation().IsSmi()) {
+      // We don't support tagged immediates, so we request it in a register.
+      right = UseRegisterAtStart(instr->BetterRightOperand());
+    } else {
+      right = UseOrConstantAtStart(instr->BetterRightOperand());
+    }
+    return DefineSameAsFirst(new(zone()) LBitI(left, right));
+  } else {
+    return DoArithmeticT(instr->op(), instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineAsRegister(new(zone()) LDivByPowerOf2I(
+          dividend, divisor));
+  if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      (instr->CheckFlag(HValue::kCanOverflow) && divisor == -1) ||
+      (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+       divisor != 1 && divisor != -1)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivByConstI(HDiv* instr) {
+  DCHECK(instr->representation().IsInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LOperand* temp1 = FixedTemp(rax);
+  LOperand* temp2 = FixedTemp(rdx);
+  LInstruction* result = DefineFixed(new(zone()) LDivByConstI(
+          dividend, divisor, temp1, temp2), rdx);
+  if (divisor == 0 ||
+      (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      !instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseFixed(instr->left(), rax);
+  LOperand* divisor = UseRegister(instr->right());
+  LOperand* temp = FixedTemp(rdx);
+  LInstruction* result = DefineFixed(new(zone()) LDivI(
+          dividend, divisor, temp), rax);
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
+      instr->CheckFlag(HValue::kCanOverflow) ||
+      !instr->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    if (instr->RightIsPowerOf2()) {
+      return DoDivByPowerOf2I(instr);
+    } else if (instr->right()->IsConstant()) {
+      return DoDivByConstI(instr);
+    } else {
+      return DoDivI(instr);
+    }
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::DIV, instr);
+  } else {
+    return DoArithmeticT(Token::DIV, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+  LOperand* dividend = UseRegisterAtStart(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineSameAsFirst(new(zone()) LFlooringDivByPowerOf2I(
+          dividend, divisor));
+  if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+      (instr->CheckFlag(HValue::kLeftCanBeMinInt) && divisor == -1)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
+  DCHECK(instr->representation().IsInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LOperand* temp1 = FixedTemp(rax);
+  LOperand* temp2 = FixedTemp(rdx);
+  LOperand* temp3 =
+      ((divisor > 0 && !instr->CheckFlag(HValue::kLeftCanBeNegative)) ||
+       (divisor < 0 && !instr->CheckFlag(HValue::kLeftCanBePositive))) ?
+      NULL : TempRegister();
+  LInstruction* result =
+      DefineFixed(new(zone()) LFlooringDivByConstI(dividend,
+                                                   divisor,
+                                                   temp1,
+                                                   temp2,
+                                                   temp3),
+                  rdx);
+  if (divisor == 0 ||
+      (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivI(HMathFloorOfDiv* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseFixed(instr->left(), rax);
+  LOperand* divisor = UseRegister(instr->right());
+  LOperand* temp = FixedTemp(rdx);
+  LInstruction* result = DefineFixed(new(zone()) LFlooringDivI(
+          dividend, divisor, temp), rax);
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
+      instr->CheckFlag(HValue::kCanOverflow)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
+  if (instr->RightIsPowerOf2()) {
+    return DoFlooringDivByPowerOf2I(instr);
+  } else if (instr->right()->IsConstant()) {
+    return DoFlooringDivByConstI(instr);
+  } else {
+    return DoFlooringDivI(instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegisterAtStart(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LInstruction* result = DefineSameAsFirst(new(zone()) LModByPowerOf2I(
+          dividend, divisor));
+  if (instr->CheckFlag(HValue::kLeftCanBeNegative) &&
+      instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoModByConstI(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseRegister(instr->left());
+  int32_t divisor = instr->right()->GetInteger32Constant();
+  LOperand* temp1 = FixedTemp(rax);
+  LOperand* temp2 = FixedTemp(rdx);
+  LInstruction* result = DefineFixed(new(zone()) LModByConstI(
+          dividend, divisor, temp1, temp2), rax);
+  if (divisor == 0 || instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+  DCHECK(instr->representation().IsSmiOrInteger32());
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  LOperand* dividend = UseFixed(instr->left(), rax);
+  LOperand* divisor = UseRegister(instr->right());
+  LOperand* temp = FixedTemp(rdx);
+  LInstruction* result = DefineFixed(new(zone()) LModI(
+          dividend, divisor, temp), rdx);
+  if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
+      instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    if (instr->RightIsPowerOf2()) {
+      return DoModByPowerOf2I(instr);
+    } else if (instr->right()->IsConstant()) {
+      return DoModByConstI(instr);
+    } else {
+      return DoModI(instr);
+    }
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::MOD, instr);
+  } else {
+    return DoArithmeticT(Token::MOD, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoMul(HMul* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    LOperand* right = UseOrConstant(instr->BetterRightOperand());
+    LMulI* mul = new(zone()) LMulI(left, right);
+    if (instr->CheckFlag(HValue::kCanOverflow) ||
+        instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      AssignEnvironment(mul);
+    }
+    return DefineSameAsFirst(mul);
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::MUL, instr);
+  } else {
+    return DoArithmeticT(Token::MUL, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoSub(HSub* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->left());
+    LOperand* right;
+    if (SmiValuesAre32Bits() && instr->representation().IsSmi()) {
+      // We don't support tagged immediates, so we request it in a register.
+      right = UseRegisterAtStart(instr->right());
+    } else {
+      right = UseOrConstantAtStart(instr->right());
+    }
+    LSubI* sub = new(zone()) LSubI(left, right);
+    LInstruction* result = DefineSameAsFirst(sub);
+    if (instr->CheckFlag(HValue::kCanOverflow)) {
+      result = AssignEnvironment(result);
+    }
+    return result;
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::SUB, instr);
+  } else {
+    return DoArithmeticT(Token::SUB, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
+  if (instr->representation().IsSmiOrInteger32()) {
+    // Check to see if it would be advantageous to use an lea instruction rather
+    // than an add. This is the case when no overflow check is needed and there
+    // are multiple uses of the add's inputs, so using a 3-register add will
+    // preserve all input values for later uses.
+    bool use_lea = LAddI::UseLea(instr);
+    DCHECK(instr->left()->representation().Equals(instr->representation()));
+    DCHECK(instr->right()->representation().Equals(instr->representation()));
+    LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
+    HValue* right_candidate = instr->BetterRightOperand();
+    LOperand* right;
+    if (SmiValuesAre32Bits() && instr->representation().IsSmi()) {
+      // We cannot add a tagged immediate to a tagged value,
+      // so we request it in a register.
+      right = UseRegisterAtStart(right_candidate);
+    } else {
+      right = use_lea ? UseRegisterOrConstantAtStart(right_candidate)
+                      : UseOrConstantAtStart(right_candidate);
+    }
+    LAddI* add = new(zone()) LAddI(left, right);
+    bool can_overflow = instr->CheckFlag(HValue::kCanOverflow);
+    LInstruction* result = use_lea ? DefineAsRegister(add)
+                                   : DefineSameAsFirst(add);
+    if (can_overflow) {
+      result = AssignEnvironment(result);
+    }
+    return result;
+  } else if (instr->representation().IsExternal()) {
+    DCHECK(instr->IsConsistentExternalRepresentation());
+    DCHECK(!instr->CheckFlag(HValue::kCanOverflow));
+    bool use_lea = LAddI::UseLea(instr);
+    LOperand* left = UseRegisterAtStart(instr->left());
+    HValue* right_candidate = instr->right();
+    LOperand* right = use_lea
+        ? UseRegisterOrConstantAtStart(right_candidate)
+        : UseOrConstantAtStart(right_candidate);
+    LAddI* add = new(zone()) LAddI(left, right);
+    LInstruction* result = use_lea
+        ? DefineAsRegister(add)
+        : DefineSameAsFirst(add);
+    return result;
+  } else if (instr->representation().IsDouble()) {
+    return DoArithmeticD(Token::ADD, instr);
+  } else {
+    return DoArithmeticT(Token::ADD, instr);
+  }
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
+  LOperand* left = NULL;
+  LOperand* right = NULL;
+  DCHECK(instr->left()->representation().Equals(instr->representation()));
+  DCHECK(instr->right()->representation().Equals(instr->representation()));
+  if (instr->representation().IsSmi()) {
+    left = UseRegisterAtStart(instr->BetterLeftOperand());
+    right = UseAtStart(instr->BetterRightOperand());
+  } else if (instr->representation().IsInteger32()) {
+    left = UseRegisterAtStart(instr->BetterLeftOperand());
+    right = UseOrConstantAtStart(instr->BetterRightOperand());
+  } else {
+    DCHECK(instr->representation().IsDouble());
+    left = UseRegisterAtStart(instr->left());
+    right = UseRegisterAtStart(instr->right());
+  }
+  LMathMinMax* minmax = new(zone()) LMathMinMax(left, right);
+  return DefineSameAsFirst(minmax);
+}
+
+
+LInstruction* LChunkBuilder::DoPower(HPower* instr) {
+  DCHECK(instr->representation().IsDouble());
+  // We call a C function for double power. It can't trigger a GC.
+  // We need to use fixed result register for the call.
+  Representation exponent_type = instr->right()->representation();
+  DCHECK(instr->left()->representation().IsDouble());
+  LOperand* left = UseFixedDouble(instr->left(), xmm2);
+  LOperand* right =
+      exponent_type.IsDouble()
+          ? UseFixedDouble(instr->right(), xmm1)
+          : UseFixed(instr->right(), MathPowTaggedDescriptor::exponent());
+  LPower* result = new(zone()) LPower(left, right);
+  return MarkAsCall(DefineFixedDouble(result, xmm3), instr,
+                    CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) {
+  DCHECK(instr->left()->representation().IsTagged());
+  DCHECK(instr->right()->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* left = UseFixed(instr->left(), rdx);
+  LOperand* right = UseFixed(instr->right(), rax);
+  LCmpT* result = new(zone()) LCmpT(context, left, right);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareNumericAndBranch(
+    HCompareNumericAndBranch* instr) {
+  Representation r = instr->representation();
+  if (r.IsSmiOrInteger32()) {
+    DCHECK(instr->left()->representation().Equals(r));
+    DCHECK(instr->right()->representation().Equals(r));
+    LOperand* left = UseRegisterOrConstantAtStart(instr->left());
+    LOperand* right = UseOrConstantAtStart(instr->right());
+    return new(zone()) LCompareNumericAndBranch(left, right);
+  } else {
+    DCHECK(r.IsDouble());
+    DCHECK(instr->left()->representation().IsDouble());
+    DCHECK(instr->right()->representation().IsDouble());
+    LOperand* left;
+    LOperand* right;
+    if (instr->left()->IsConstant() && instr->right()->IsConstant()) {
+      left = UseRegisterOrConstantAtStart(instr->left());
+      right = UseRegisterOrConstantAtStart(instr->right());
+    } else {
+      left = UseRegisterAtStart(instr->left());
+      right = UseRegisterAtStart(instr->right());
+    }
+    return new(zone()) LCompareNumericAndBranch(left, right);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch(
+    HCompareObjectEqAndBranch* instr) {
+  LOperand* left = UseRegisterAtStart(instr->left());
+  LOperand* right = UseRegisterOrConstantAtStart(instr->right());
+  return new(zone()) LCmpObjectEqAndBranch(left, right);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareHoleAndBranch(
+    HCompareHoleAndBranch* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LCmpHoleAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoCompareMinusZeroAndBranch(
+    HCompareMinusZeroAndBranch* instr) {
+  LOperand* value = UseRegister(instr->value());
+  return new(zone()) LCompareMinusZeroAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* temp = TempRegister();
+  return new(zone()) LIsStringAndBranch(value, temp);
+}
+
+
+LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  return new(zone()) LIsSmiAndBranch(Use(instr->value()));
+}
+
+
+LInstruction* LChunkBuilder::DoIsUndetectableAndBranch(
+    HIsUndetectableAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* temp = TempRegister();
+  return new(zone()) LIsUndetectableAndBranch(value, temp);
+}
+
+
+LInstruction* LChunkBuilder::DoStringCompareAndBranch(
+    HStringCompareAndBranch* instr) {
+
+  DCHECK(instr->left()->representation().IsTagged());
+  DCHECK(instr->right()->representation().IsTagged());
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* left = UseFixed(instr->left(), rdx);
+  LOperand* right = UseFixed(instr->right(), rax);
+  LStringCompareAndBranch* result =
+      new(zone()) LStringCompareAndBranch(context, left, right);
+
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch(
+    HHasInstanceTypeAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LHasInstanceTypeAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoGetCachedArrayIndex(
+    HGetCachedArrayIndex* instr)  {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+
+  return DefineAsRegister(new(zone()) LGetCachedArrayIndex(value));
+}
+
+
+LInstruction* LChunkBuilder::DoHasCachedArrayIndexAndBranch(
+    HHasCachedArrayIndexAndBranch* instr) {
+  DCHECK(instr->value()->representation().IsTagged());
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return new(zone()) LHasCachedArrayIndexAndBranch(value);
+}
+
+
+LInstruction* LChunkBuilder::DoClassOfTestAndBranch(
+    HClassOfTestAndBranch* instr) {
+  LOperand* value = UseRegister(instr->value());
+  return new(zone()) LClassOfTestAndBranch(value,
+                                           TempRegister(),
+                                           TempRegister());
+}
+
+
+LInstruction* LChunkBuilder::DoMapEnumLength(HMapEnumLength* instr) {
+  LOperand* map = UseRegisterAtStart(instr->value());
+  return DefineAsRegister(new(zone()) LMapEnumLength(map));
+}
+
+
+LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) {
+  LOperand* string = UseRegisterAtStart(instr->string());
+  LOperand* index = UseRegisterOrConstantAtStart(instr->index());
+  return DefineAsRegister(new(zone()) LSeqStringGetChar(string, index));
+}
+
+
+LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) {
+  LOperand* string = UseRegisterAtStart(instr->string());
+  LOperand* index = FLAG_debug_code
+      ? UseRegisterAtStart(instr->index())
+      : UseRegisterOrConstantAtStart(instr->index());
+  LOperand* value = FLAG_debug_code
+      ? UseRegisterAtStart(instr->value())
+      : UseRegisterOrConstantAtStart(instr->value());
+  LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), rsi) : NULL;
+  LInstruction* result = new(zone()) LSeqStringSetChar(context, string,
+                                                       index, value);
+  if (FLAG_debug_code) {
+    result = MarkAsCall(result, instr);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
+  if (!FLAG_debug_code && instr->skip_check()) return NULL;
+  LOperand* index = UseRegisterOrConstantAtStart(instr->index());
+  LOperand* length = !index->IsConstantOperand()
+      ? UseOrConstantAtStart(instr->length())
+      : UseAtStart(instr->length());
+  LInstruction* result = new(zone()) LBoundsCheck(index, length);
+  if (!FLAG_debug_code || !instr->skip_check()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoBoundsCheckBaseIndexInformation(
+    HBoundsCheckBaseIndexInformation* instr) {
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) {
+  // The control instruction marking the end of a block that completed
+  // abruptly (e.g., threw an exception).  There is nothing specific to do.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) {
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) {
+  // All HForceRepresentation instructions should be eliminated in the
+  // representation change phase of Hydrogen.
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoChange(HChange* instr) {
+  Representation from = instr->from();
+  Representation to = instr->to();
+  HValue* val = instr->value();
+  if (from.IsSmi()) {
+    if (to.IsTagged()) {
+      LOperand* value = UseRegister(val);
+      return DefineSameAsFirst(new(zone()) LDummyUse(value));
+    }
+    from = Representation::Tagged();
+  }
+  if (from.IsTagged()) {
+    if (to.IsDouble()) {
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LNumberUntagD(value));
+      if (!val->representation().IsSmi()) result = AssignEnvironment(result);
+      return result;
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      if (val->type().IsSmi()) {
+        return DefineSameAsFirst(new(zone()) LDummyUse(value));
+      }
+      return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value)));
+    } else {
+      DCHECK(to.IsInteger32());
+      if (val->type().IsSmi() || val->representation().IsSmi()) {
+        LOperand* value = UseRegister(val);
+        return DefineSameAsFirst(new(zone()) LSmiUntag(value, false));
+      } else {
+        LOperand* value = UseRegister(val);
+        bool truncating = instr->CanTruncateToInt32();
+        LOperand* xmm_temp = truncating ? NULL : FixedTemp(xmm1);
+        LInstruction* result =
+            DefineSameAsFirst(new(zone()) LTaggedToI(value, xmm_temp));
+        if (!val->representation().IsSmi()) result = AssignEnvironment(result);
+        return result;
+      }
+    }
+  } else if (from.IsDouble()) {
+    if (to.IsTagged()) {
+      info()->MarkAsDeferredCalling();
+      LOperand* value = UseRegister(val);
+      LOperand* temp = TempRegister();
+      LUnallocated* result_temp = TempRegister();
+      LNumberTagD* result = new(zone()) LNumberTagD(value, temp);
+      return AssignPointerMap(Define(result, result_temp));
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      return AssignEnvironment(
+          DefineAsRegister(new(zone()) LDoubleToSmi(value)));
+    } else {
+      DCHECK(to.IsInteger32());
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LDoubleToI(value));
+      if (!instr->CanTruncateToInt32()) result = AssignEnvironment(result);
+      return result;
+    }
+  } else if (from.IsInteger32()) {
+    info()->MarkAsDeferredCalling();
+    if (to.IsTagged()) {
+      if (!instr->CheckFlag(HValue::kCanOverflow)) {
+        LOperand* value = UseRegister(val);
+        return DefineAsRegister(new(zone()) LSmiTag(value));
+      } else if (val->CheckFlag(HInstruction::kUint32)) {
+        LOperand* value = UseRegister(val);
+        LOperand* temp1 = TempRegister();
+        LOperand* temp2 = FixedTemp(xmm1);
+        LNumberTagU* result = new(zone()) LNumberTagU(value, temp1, temp2);
+        return AssignPointerMap(DefineSameAsFirst(result));
+      } else {
+        LOperand* value = UseRegister(val);
+        LOperand* temp1 = SmiValuesAre32Bits() ? NULL : TempRegister();
+        LOperand* temp2 = SmiValuesAre32Bits() ? NULL : FixedTemp(xmm1);
+        LNumberTagI* result = new(zone()) LNumberTagI(value, temp1, temp2);
+        return AssignPointerMap(DefineSameAsFirst(result));
+      }
+    } else if (to.IsSmi()) {
+      LOperand* value = UseRegister(val);
+      LInstruction* result = DefineAsRegister(new(zone()) LSmiTag(value));
+      if (instr->CheckFlag(HValue::kCanOverflow)) {
+        result = AssignEnvironment(result);
+      }
+      return result;
+    } else {
+      DCHECK(to.IsDouble());
+      if (val->CheckFlag(HInstruction::kUint32)) {
+        return DefineAsRegister(new(zone()) LUint32ToDouble(UseRegister(val)));
+      } else {
+        LOperand* value = Use(val);
+        return DefineAsRegister(new(zone()) LInteger32ToDouble(value));
+      }
+    }
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LInstruction* result = new(zone()) LCheckNonSmi(value);
+  if (!instr->value()->type().IsHeapObject()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return AssignEnvironment(new(zone()) LCheckSmi(value));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckArrayBufferNotNeutered(
+    HCheckArrayBufferNotNeutered* instr) {
+  LOperand* view = UseRegisterAtStart(instr->value());
+  LCheckArrayBufferNotNeutered* result =
+      new (zone()) LCheckArrayBufferNotNeutered(view);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LCheckInstanceType* result = new(zone()) LCheckInstanceType(value);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  return AssignEnvironment(new(zone()) LCheckValue(value));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) {
+  if (instr->IsStabilityCheck()) return new(zone()) LCheckMaps;
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LInstruction* result = AssignEnvironment(new(zone()) LCheckMaps(value));
+  if (instr->HasMigrationTarget()) {
+    info()->MarkAsDeferredCalling();
+    result = AssignPointerMap(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) {
+  HValue* value = instr->value();
+  Representation input_rep = value->representation();
+  LOperand* reg = UseRegister(value);
+  if (input_rep.IsDouble()) {
+    return DefineAsRegister(new(zone()) LClampDToUint8(reg));
+  } else if (input_rep.IsInteger32()) {
+    return DefineSameAsFirst(new(zone()) LClampIToUint8(reg));
+  } else {
+    DCHECK(input_rep.IsSmiOrTagged());
+    // Register allocator doesn't (yet) support allocation of double
+    // temps. Reserve xmm1 explicitly.
+    LClampTToUint8* result = new(zone()) LClampTToUint8(reg,
+                                                        FixedTemp(xmm1));
+    return AssignEnvironment(DefineSameAsFirst(result));
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoDoubleBits(HDoubleBits* instr) {
+  HValue* value = instr->value();
+  DCHECK(value->representation().IsDouble());
+  return DefineAsRegister(new(zone()) LDoubleBits(UseRegister(value)));
+}
+
+
+LInstruction* LChunkBuilder::DoConstructDouble(HConstructDouble* instr) {
+  LOperand* lo = UseRegister(instr->lo());
+  LOperand* hi = UseRegister(instr->hi());
+  return DefineAsRegister(new(zone()) LConstructDouble(hi, lo));
+}
+
+
+LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
+  LOperand* context = info()->IsStub() ? UseFixed(instr->context(), rsi) : NULL;
+  LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count());
+  return new(zone()) LReturn(
+      UseFixed(instr->value(), rax), context, parameter_count);
+}
+
+
+LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
+  Representation r = instr->representation();
+  if (r.IsSmi()) {
+    return DefineAsRegister(new(zone()) LConstantS);
+  } else if (r.IsInteger32()) {
+    return DefineAsRegister(new(zone()) LConstantI);
+  } else if (r.IsDouble()) {
+    return DefineAsRegister(new (zone()) LConstantD);
+  } else if (r.IsExternal()) {
+    return DefineAsRegister(new(zone()) LConstantE);
+  } else if (r.IsTagged()) {
+    return DefineAsRegister(new(zone()) LConstantT);
+  } else {
+    UNREACHABLE();
+    return NULL;
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* global_object =
+      UseFixed(instr->global_object(), LoadDescriptor::ReceiverRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+
+  LLoadGlobalGeneric* result =
+      new(zone()) LLoadGlobalGeneric(context, global_object, vector);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
+  LOperand* context = UseRegisterAtStart(instr->value());
+  LInstruction* result =
+      DefineAsRegister(new(zone()) LLoadContextSlot(context));
+  if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) {
+  LOperand* context;
+  LOperand* value;
+  LOperand* temp;
+  context = UseRegister(instr->context());
+  if (instr->NeedsWriteBarrier()) {
+    value = UseTempRegister(instr->value());
+    temp = TempRegister();
+  } else {
+    value = UseRegister(instr->value());
+    temp = NULL;
+  }
+  LInstruction* result = new(zone()) LStoreContextSlot(context, value, temp);
+  if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
+  // Use the special mov rax, moffs64 encoding for external
+  // memory accesses with 64-bit word-sized values.
+  if (instr->access().IsExternalMemory() &&
+      instr->access().offset() == 0 &&
+      (instr->access().representation().IsSmi() ||
+       instr->access().representation().IsTagged() ||
+       instr->access().representation().IsHeapObject() ||
+       instr->access().representation().IsExternal())) {
+    LOperand* obj = UseRegisterOrConstantAtStart(instr->object());
+    return DefineFixed(new(zone()) LLoadNamedField(obj), rax);
+  }
+  LOperand* obj = UseRegisterAtStart(instr->object());
+  return DefineAsRegister(new(zone()) LLoadNamedField(obj));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object =
+      UseFixed(instr->object(), LoadDescriptor::ReceiverRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+  LLoadNamedGeneric* result = new(zone()) LLoadNamedGeneric(
+      context, object, vector);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
+    HLoadFunctionPrototype* instr) {
+  return AssignEnvironment(DefineAsRegister(
+      new(zone()) LLoadFunctionPrototype(UseRegister(instr->function()))));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) {
+  return DefineAsRegister(new(zone()) LLoadRoot);
+}
+
+
+void LChunkBuilder::FindDehoistedKeyDefinitions(HValue* candidate) {
+  // We sign extend the dehoisted key at the definition point when the pointer
+  // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
+  // points and should not invoke this function. We can't use STATIC_ASSERT
+  // here as the pointer size is 32-bit for x32.
+  DCHECK(kPointerSize == kInt64Size);
+  BitVector* dehoisted_key_ids = chunk_->GetDehoistedKeyIds();
+  if (dehoisted_key_ids->Contains(candidate->id())) return;
+  dehoisted_key_ids->Add(candidate->id());
+  if (!candidate->IsPhi()) return;
+  for (int i = 0; i < candidate->OperandCount(); ++i) {
+    FindDehoistedKeyDefinitions(candidate->OperandAt(i));
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) {
+  DCHECK((kPointerSize == kInt64Size &&
+          instr->key()->representation().IsInteger32()) ||
+         (kPointerSize == kInt32Size &&
+          instr->key()->representation().IsSmiOrInteger32()));
+  ElementsKind elements_kind = instr->elements_kind();
+  LOperand* key = NULL;
+  LInstruction* result = NULL;
+
+  if (kPointerSize == kInt64Size) {
+    key = UseRegisterOrConstantAtStart(instr->key());
+  } else {
+    bool clobbers_key = ExternalArrayOpRequiresTemp(
+        instr->key()->representation(), elements_kind);
+    key = clobbers_key
+        ? UseTempRegister(instr->key())
+        : UseRegisterOrConstantAtStart(instr->key());
+  }
+
+  if ((kPointerSize == kInt64Size) && instr->IsDehoisted()) {
+    FindDehoistedKeyDefinitions(instr->key());
+  }
+
+  if (!instr->is_fixed_typed_array()) {
+    LOperand* obj = UseRegisterAtStart(instr->elements());
+    result = DefineAsRegister(new (zone()) LLoadKeyed(obj, key, nullptr));
+  } else {
+    DCHECK(
+        (instr->representation().IsInteger32() &&
+         !(IsDoubleOrFloatElementsKind(elements_kind))) ||
+        (instr->representation().IsDouble() &&
+         (IsDoubleOrFloatElementsKind(elements_kind))));
+    LOperand* backing_store = UseRegister(instr->elements());
+    LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
+    result = DefineAsRegister(
+        new (zone()) LLoadKeyed(backing_store, key, backing_store_owner));
+  }
+
+  bool needs_environment;
+  if (instr->is_fixed_typed_array()) {
+    // see LCodeGen::DoLoadKeyedExternalArray
+    needs_environment = elements_kind == UINT32_ELEMENTS &&
+                        !instr->CheckFlag(HInstruction::kUint32);
+  } else {
+    // see LCodeGen::DoLoadKeyedFixedDoubleArray and
+    // LCodeGen::DoLoadKeyedFixedArray
+    needs_environment =
+        instr->RequiresHoleCheck() ||
+        (instr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED && info()->IsStub());
+  }
+
+  if (needs_environment) {
+    result = AssignEnvironment(result);
+  }
+  return result;
+}
+
+
+LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object =
+      UseFixed(instr->object(), LoadDescriptor::ReceiverRegister());
+  LOperand* key = UseFixed(instr->key(), LoadDescriptor::NameRegister());
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    vector = FixedTemp(LoadWithVectorDescriptor::VectorRegister());
+  }
+
+  LLoadKeyedGeneric* result =
+      new(zone()) LLoadKeyedGeneric(context, object, key, vector);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) {
+  ElementsKind elements_kind = instr->elements_kind();
+
+  if ((kPointerSize == kInt64Size) && instr->IsDehoisted()) {
+    FindDehoistedKeyDefinitions(instr->key());
+  }
+
+  if (!instr->is_fixed_typed_array()) {
+    DCHECK(instr->elements()->representation().IsTagged());
+    bool needs_write_barrier = instr->NeedsWriteBarrier();
+    LOperand* object = NULL;
+    LOperand* key = NULL;
+    LOperand* val = NULL;
+
+    Representation value_representation = instr->value()->representation();
+    if (value_representation.IsDouble()) {
+      object = UseRegisterAtStart(instr->elements());
+      val = UseRegisterAtStart(instr->value());
+      key = UseRegisterOrConstantAtStart(instr->key());
+    } else {
+      DCHECK(value_representation.IsSmiOrTagged() ||
+             value_representation.IsInteger32());
+      if (needs_write_barrier) {
+        object = UseTempRegister(instr->elements());
+        val = UseTempRegister(instr->value());
+        key = UseTempRegister(instr->key());
+      } else {
+        object = UseRegisterAtStart(instr->elements());
+        val = UseRegisterOrConstantAtStart(instr->value());
+        key = UseRegisterOrConstantAtStart(instr->key());
+      }
+    }
+
+    return new (zone()) LStoreKeyed(object, key, val, nullptr);
+  }
+
+  DCHECK(
+       (instr->value()->representation().IsInteger32() &&
+       !IsDoubleOrFloatElementsKind(elements_kind)) ||
+       (instr->value()->representation().IsDouble() &&
+       IsDoubleOrFloatElementsKind(elements_kind)));
+  DCHECK(instr->elements()->representation().IsExternal());
+  bool val_is_temp_register = elements_kind == UINT8_CLAMPED_ELEMENTS ||
+                              elements_kind == FLOAT32_ELEMENTS;
+  LOperand* val = val_is_temp_register ? UseTempRegister(instr->value())
+      : UseRegister(instr->value());
+  LOperand* key = NULL;
+  if (kPointerSize == kInt64Size) {
+    key = UseRegisterOrConstantAtStart(instr->key());
+  } else {
+    bool clobbers_key = ExternalArrayOpRequiresTemp(
+        instr->key()->representation(), elements_kind);
+    key = clobbers_key
+        ? UseTempRegister(instr->key())
+        : UseRegisterOrConstantAtStart(instr->key());
+  }
+  LOperand* backing_store = UseRegister(instr->elements());
+  LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
+  return new (zone()) LStoreKeyed(backing_store, key, val, backing_store_owner);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object =
+      UseFixed(instr->object(), StoreDescriptor::ReceiverRegister());
+  LOperand* key = UseFixed(instr->key(), StoreDescriptor::NameRegister());
+  LOperand* value = UseFixed(instr->value(), StoreDescriptor::ValueRegister());
+
+  DCHECK(instr->object()->representation().IsTagged());
+  DCHECK(instr->key()->representation().IsTagged());
+  DCHECK(instr->value()->representation().IsTagged());
+
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(VectorStoreICDescriptor::SlotRegister());
+    vector = FixedTemp(VectorStoreICDescriptor::VectorRegister());
+  }
+
+  LStoreKeyedGeneric* result = new (zone())
+      LStoreKeyedGeneric(context, object, key, value, slot, vector);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTransitionElementsKind(
+    HTransitionElementsKind* instr) {
+  if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) {
+    LOperand* object = UseRegister(instr->object());
+    LOperand* new_map_reg = TempRegister();
+    LOperand* temp_reg = TempRegister();
+    LTransitionElementsKind* result = new(zone()) LTransitionElementsKind(
+        object, NULL, new_map_reg, temp_reg);
+    return result;
+  } else {
+    LOperand* object = UseFixed(instr->object(), rax);
+    LOperand* context = UseFixed(instr->context(), rsi);
+    LTransitionElementsKind* result =
+        new(zone()) LTransitionElementsKind(object, context, NULL, NULL);
+    return MarkAsCall(result, instr);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoTrapAllocationMemento(
+    HTrapAllocationMemento* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* temp = TempRegister();
+  LTrapAllocationMemento* result =
+      new(zone()) LTrapAllocationMemento(object, temp);
+  return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMaybeGrowElements(HMaybeGrowElements* instr) {
+  info()->MarkAsDeferredCalling();
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object = Use(instr->object());
+  LOperand* elements = Use(instr->elements());
+  LOperand* key = UseRegisterOrConstant(instr->key());
+  LOperand* current_capacity = UseRegisterOrConstant(instr->current_capacity());
+
+  LMaybeGrowElements* result = new (zone())
+      LMaybeGrowElements(context, object, elements, key, current_capacity);
+  DefineFixed(result, rax);
+  return AssignPointerMap(AssignEnvironment(result));
+}
+
+
+LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
+  bool is_in_object = instr->access().IsInobject();
+  bool is_external_location = instr->access().IsExternalMemory() &&
+      instr->access().offset() == 0;
+  bool needs_write_barrier = instr->NeedsWriteBarrier();
+  bool needs_write_barrier_for_map = instr->has_transition() &&
+      instr->NeedsWriteBarrierForMap();
+
+  LOperand* obj;
+  if (needs_write_barrier) {
+    obj = is_in_object
+        ? UseRegister(instr->object())
+        : UseTempRegister(instr->object());
+  } else if (is_external_location) {
+    DCHECK(!is_in_object);
+    DCHECK(!needs_write_barrier);
+    DCHECK(!needs_write_barrier_for_map);
+    obj = UseRegisterOrConstant(instr->object());
+  } else {
+    obj = needs_write_barrier_for_map
+        ? UseRegister(instr->object())
+        : UseRegisterAtStart(instr->object());
+  }
+
+  bool can_be_constant = instr->value()->IsConstant() &&
+      HConstant::cast(instr->value())->NotInNewSpace() &&
+      !instr->field_representation().IsDouble();
+
+  LOperand* val;
+  if (needs_write_barrier) {
+    val = UseTempRegister(instr->value());
+  } else if (is_external_location) {
+    val = UseFixed(instr->value(), rax);
+  } else if (can_be_constant) {
+    val = UseRegisterOrConstant(instr->value());
+  } else if (instr->field_representation().IsDouble()) {
+    val = UseRegisterAtStart(instr->value());
+  } else {
+    val = UseRegister(instr->value());
+  }
+
+  // We only need a scratch register if we have a write barrier or we
+  // have a store into the properties array (not in-object-property).
+  LOperand* temp = (!is_in_object || needs_write_barrier ||
+      needs_write_barrier_for_map) ? TempRegister() : NULL;
+
+  return new(zone()) LStoreNamedField(obj, val, temp);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object =
+      UseFixed(instr->object(), StoreDescriptor::ReceiverRegister());
+  LOperand* value = UseFixed(instr->value(), StoreDescriptor::ValueRegister());
+  LOperand* slot = NULL;
+  LOperand* vector = NULL;
+  if (instr->HasVectorAndSlot()) {
+    slot = FixedTemp(VectorStoreICDescriptor::SlotRegister());
+    vector = FixedTemp(VectorStoreICDescriptor::VectorRegister());
+  }
+
+  LStoreNamedGeneric* result =
+      new (zone()) LStoreNamedGeneric(context, object, value, slot, vector);
+  return MarkAsCall(result, instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* left = UseFixed(instr->left(), rdx);
+  LOperand* right = UseFixed(instr->right(), rax);
+  return MarkAsCall(
+      DefineFixed(new(zone()) LStringAdd(context, left, right), rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) {
+  LOperand* string = UseTempRegister(instr->string());
+  LOperand* index = UseTempRegister(instr->index());
+  LOperand* context = UseAny(instr->context());
+  LStringCharCodeAt* result =
+      new(zone()) LStringCharCodeAt(context, string, index);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) {
+  LOperand* char_code = UseRegister(instr->value());
+  LOperand* context = UseAny(instr->context());
+  LStringCharFromCode* result =
+      new(zone()) LStringCharFromCode(context, char_code);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoAllocate(HAllocate* instr) {
+  info()->MarkAsDeferredCalling();
+  LOperand* context = UseAny(instr->context());
+  LOperand* size = instr->size()->IsConstant()
+      ? UseConstant(instr->size())
+      : UseTempRegister(instr->size());
+  LOperand* temp = TempRegister();
+  LAllocate* result = new(zone()) LAllocate(context, size, temp);
+  return AssignPointerMap(DefineAsRegister(result));
+}
+
+
+LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
+  DCHECK(argument_count_ == 0);
+  allocator_->MarkAsOsrEntry();
+  current_block_->last_environment()->set_ast_id(instr->ast_id());
+  return AssignEnvironment(new(zone()) LOsrEntry);
+}
+
+
+LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
+  LParameter* result = new(zone()) LParameter;
+  if (instr->kind() == HParameter::STACK_PARAMETER) {
+    int spill_index = chunk()->GetParameterStackSlot(instr->index());
+    return DefineAsSpilled(result, spill_index);
+  } else {
+    DCHECK(info()->IsStub());
+    CallInterfaceDescriptor descriptor =
+        info()->code_stub()->GetCallInterfaceDescriptor();
+    int index = static_cast<int>(instr->index());
+    Register reg = descriptor.GetRegisterParameter(index);
+    return DefineFixed(result, reg);
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
+  // Use an index that corresponds to the location in the unoptimized frame,
+  // which the optimized frame will subsume.
+  int env_index = instr->index();
+  int spill_index = 0;
+  if (instr->environment()->is_parameter_index(env_index)) {
+    spill_index = chunk()->GetParameterStackSlot(env_index);
+  } else {
+    spill_index = env_index - instr->environment()->first_local_index();
+    if (spill_index > LUnallocated::kMaxFixedSlotIndex) {
+      Retry(kTooManySpillSlotsNeededForOSR);
+      spill_index = 0;
+    }
+  }
+  return DefineAsSpilled(new(zone()) LUnknownOSRValue, spill_index);
+}
+
+
+LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LCallStub* result = new(zone()) LCallStub(context);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
+  // There are no real uses of the arguments object.
+  // arguments.length and element access are supported directly on
+  // stack arguments, and any real arguments object use causes a bailout.
+  // So this value is never used.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoCapturedObject(HCapturedObject* instr) {
+  instr->ReplayEnvironment(current_block_->last_environment());
+
+  // There are no real uses of a captured object.
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
+  info()->MarkAsRequiresFrame();
+  LOperand* args = UseRegister(instr->arguments());
+  LOperand* length;
+  LOperand* index;
+  if (instr->length()->IsConstant() && instr->index()->IsConstant()) {
+    length = UseRegisterOrConstant(instr->length());
+    index = UseOrConstant(instr->index());
+  } else {
+    length = UseTempRegister(instr->length());
+    index = Use(instr->index());
+  }
+  return DefineAsRegister(new(zone()) LAccessArgumentsAt(args, length, index));
+}
+
+
+LInstruction* LChunkBuilder::DoToFastProperties(HToFastProperties* instr) {
+  LOperand* object = UseFixed(instr->value(), rax);
+  LToFastProperties* result = new(zone()) LToFastProperties(object);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* value = UseFixed(instr->value(), rbx);
+  LTypeof* result = new(zone()) LTypeof(context, value);
+  return MarkAsCall(DefineFixed(result, rax), instr);
+}
+
+
+LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) {
+  return new(zone()) LTypeofIsAndBranch(UseTempRegister(instr->value()));
+}
+
+
+LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
+  instr->ReplayEnvironment(current_block_->last_environment());
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
+  info()->MarkAsDeferredCalling();
+  if (instr->is_function_entry()) {
+    LOperand* context = UseFixed(instr->context(), rsi);
+    return MarkAsCall(new(zone()) LStackCheck(context), instr);
+  } else {
+    DCHECK(instr->is_backwards_branch());
+    LOperand* context = UseAny(instr->context());
+    return AssignEnvironment(
+        AssignPointerMap(new(zone()) LStackCheck(context)));
+  }
+}
+
+
+LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
+  HEnvironment* outer = current_block_->last_environment();
+  outer->set_ast_id(instr->ReturnId());
+  HConstant* undefined = graph()->GetConstantUndefined();
+  HEnvironment* inner = outer->CopyForInlining(instr->closure(),
+                                               instr->arguments_count(),
+                                               instr->function(),
+                                               undefined,
+                                               instr->inlining_kind());
+  // Only replay binding of arguments object if it wasn't removed from graph.
+  if (instr->arguments_var() != NULL && instr->arguments_object()->IsLinked()) {
+    inner->Bind(instr->arguments_var(), instr->arguments_object());
+  }
+  inner->BindContext(instr->closure_context());
+  inner->set_entry(instr);
+  current_block_->UpdateEnvironment(inner);
+  chunk_->AddInlinedFunction(instr->shared());
+  return NULL;
+}
+
+
+LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
+  LInstruction* pop = NULL;
+
+  HEnvironment* env = current_block_->last_environment();
+
+  if (env->entry()->arguments_pushed()) {
+    int argument_count = env->arguments_environment()->parameter_count();
+    pop = new(zone()) LDrop(argument_count);
+    DCHECK(instr->argument_delta() == -argument_count);
+  }
+
+  HEnvironment* outer = current_block_->last_environment()->
+      DiscardInlined(false);
+  current_block_->UpdateEnvironment(outer);
+
+  return pop;
+}
+
+
+LInstruction* LChunkBuilder::DoForInPrepareMap(HForInPrepareMap* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* object = UseFixed(instr->enumerable(), rax);
+  LForInPrepareMap* result = new(zone()) LForInPrepareMap(context, object);
+  return MarkAsCall(DefineFixed(result, rax), instr, CAN_DEOPTIMIZE_EAGERLY);
+}
+
+
+LInstruction* LChunkBuilder::DoForInCacheArray(HForInCacheArray* instr) {
+  LOperand* map = UseRegister(instr->map());
+  return AssignEnvironment(DefineAsRegister(
+      new(zone()) LForInCacheArray(map)));
+}
+
+
+LInstruction* LChunkBuilder::DoCheckMapValue(HCheckMapValue* instr) {
+  LOperand* value = UseRegisterAtStart(instr->value());
+  LOperand* map = UseRegisterAtStart(instr->map());
+  return AssignEnvironment(new(zone()) LCheckMapValue(value, map));
+}
+
+
+LInstruction* LChunkBuilder::DoLoadFieldByIndex(HLoadFieldByIndex* instr) {
+  LOperand* object = UseRegister(instr->object());
+  LOperand* index = UseTempRegister(instr->index());
+  LLoadFieldByIndex* load = new(zone()) LLoadFieldByIndex(object, index);
+  LInstruction* result = DefineSameAsFirst(load);
+  return AssignPointerMap(result);
+}
+
+
+LInstruction* LChunkBuilder::DoStoreFrameContext(HStoreFrameContext* instr) {
+  LOperand* context = UseRegisterAtStart(instr->context());
+  return new(zone()) LStoreFrameContext(context);
+}
+
+
+LInstruction* LChunkBuilder::DoAllocateBlockContext(
+    HAllocateBlockContext* instr) {
+  LOperand* context = UseFixed(instr->context(), rsi);
+  LOperand* function = UseRegisterAtStart(instr->function());
+  LAllocateBlockContext* result =
+      new(zone()) LAllocateBlockContext(context, function);
+  return MarkAsCall(DefineFixed(result, rsi), instr);
+}
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_X64
diff --git a/src/crankshaft/x64/lithium-x64.h b/src/crankshaft/x64/lithium-x64.h
new file mode 100644
index 0000000..ebe1ef9
--- /dev/null
+++ b/src/crankshaft/x64/lithium-x64.h
@@ -0,0 +1,2768 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CRANKSHAFT_X64_LITHIUM_X64_H_
+#define V8_CRANKSHAFT_X64_LITHIUM_X64_H_
+
+#include "src/crankshaft/hydrogen.h"
+#include "src/crankshaft/lithium.h"
+#include "src/crankshaft/lithium-allocator.h"
+#include "src/safepoint-table.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declarations.
+class LCodeGen;
+
+#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
+  V(AccessArgumentsAt)                       \
+  V(AddI)                                    \
+  V(Allocate)                                \
+  V(AllocateBlockContext)                    \
+  V(ApplyArguments)                          \
+  V(ArgumentsElements)                       \
+  V(ArgumentsLength)                         \
+  V(ArithmeticD)                             \
+  V(ArithmeticT)                             \
+  V(BitI)                                    \
+  V(BoundsCheck)                             \
+  V(Branch)                                  \
+  V(CallJSFunction)                          \
+  V(CallWithDescriptor)                      \
+  V(CallFunction)                            \
+  V(CallNewArray)                            \
+  V(CallRuntime)                             \
+  V(CallStub)                                \
+  V(CheckArrayBufferNotNeutered)             \
+  V(CheckInstanceType)                       \
+  V(CheckMaps)                               \
+  V(CheckMapValue)                           \
+  V(CheckNonSmi)                             \
+  V(CheckSmi)                                \
+  V(CheckValue)                              \
+  V(ClampDToUint8)                           \
+  V(ClampIToUint8)                           \
+  V(ClampTToUint8)                           \
+  V(ClassOfTestAndBranch)                    \
+  V(CompareMinusZeroAndBranch)               \
+  V(CompareNumericAndBranch)                 \
+  V(CmpObjectEqAndBranch)                    \
+  V(CmpHoleAndBranch)                        \
+  V(CmpMapAndBranch)                         \
+  V(CmpT)                                    \
+  V(ConstantD)                               \
+  V(ConstantE)                               \
+  V(ConstantI)                               \
+  V(ConstantS)                               \
+  V(ConstantT)                               \
+  V(ConstructDouble)                         \
+  V(Context)                                 \
+  V(DebugBreak)                              \
+  V(DeclareGlobals)                          \
+  V(Deoptimize)                              \
+  V(DivByConstI)                             \
+  V(DivByPowerOf2I)                          \
+  V(DivI)                                    \
+  V(DoubleBits)                              \
+  V(DoubleToI)                               \
+  V(DoubleToSmi)                             \
+  V(Drop)                                    \
+  V(DummyUse)                                \
+  V(Dummy)                                   \
+  V(FlooringDivByConstI)                     \
+  V(FlooringDivByPowerOf2I)                  \
+  V(FlooringDivI)                            \
+  V(ForInCacheArray)                         \
+  V(ForInPrepareMap)                         \
+  V(GetCachedArrayIndex)                     \
+  V(Goto)                                    \
+  V(HasCachedArrayIndexAndBranch)            \
+  V(HasInPrototypeChainAndBranch)            \
+  V(HasInstanceTypeAndBranch)                \
+  V(InnerAllocatedObject)                    \
+  V(InstanceOf)                              \
+  V(InstructionGap)                          \
+  V(Integer32ToDouble)                       \
+  V(InvokeFunction)                          \
+  V(IsStringAndBranch)                       \
+  V(IsSmiAndBranch)                          \
+  V(IsUndetectableAndBranch)                 \
+  V(Label)                                   \
+  V(LazyBailout)                             \
+  V(LoadContextSlot)                         \
+  V(LoadRoot)                                \
+  V(LoadFieldByIndex)                        \
+  V(LoadFunctionPrototype)                   \
+  V(LoadGlobalGeneric)                       \
+  V(LoadKeyed)                               \
+  V(LoadKeyedGeneric)                        \
+  V(LoadNamedField)                          \
+  V(LoadNamedGeneric)                        \
+  V(MapEnumLength)                           \
+  V(MathAbs)                                 \
+  V(MathClz32)                               \
+  V(MathExp)                                 \
+  V(MathFloor)                               \
+  V(MathFround)                              \
+  V(MathLog)                                 \
+  V(MathMinMax)                              \
+  V(MathPowHalf)                             \
+  V(MathRound)                               \
+  V(MathSqrt)                                \
+  V(MaybeGrowElements)                       \
+  V(ModByConstI)                             \
+  V(ModByPowerOf2I)                          \
+  V(ModI)                                    \
+  V(MulI)                                    \
+  V(NumberTagD)                              \
+  V(NumberTagI)                              \
+  V(NumberTagU)                              \
+  V(NumberUntagD)                            \
+  V(OsrEntry)                                \
+  V(Parameter)                               \
+  V(Power)                                   \
+  V(Prologue)                                \
+  V(PushArgument)                            \
+  V(Return)                                  \
+  V(SeqStringGetChar)                        \
+  V(SeqStringSetChar)                        \
+  V(ShiftI)                                  \
+  V(SmiTag)                                  \
+  V(SmiUntag)                                \
+  V(StackCheck)                              \
+  V(StoreCodeEntry)                          \
+  V(StoreContextSlot)                        \
+  V(StoreFrameContext)                       \
+  V(StoreKeyed)                              \
+  V(StoreKeyedGeneric)                       \
+  V(StoreNamedField)                         \
+  V(StoreNamedGeneric)                       \
+  V(StringAdd)                               \
+  V(StringCharCodeAt)                        \
+  V(StringCharFromCode)                      \
+  V(StringCompareAndBranch)                  \
+  V(SubI)                                    \
+  V(TaggedToI)                               \
+  V(ThisFunction)                            \
+  V(ToFastProperties)                        \
+  V(TransitionElementsKind)                  \
+  V(TrapAllocationMemento)                   \
+  V(Typeof)                                  \
+  V(TypeofIsAndBranch)                       \
+  V(Uint32ToDouble)                          \
+  V(UnknownOSRValue)                         \
+  V(WrapReceiver)
+
+
+#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic)            \
+  Opcode opcode() const final { return LInstruction::k##type; } \
+  void CompileToNative(LCodeGen* generator) final;              \
+  const char* Mnemonic() const final { return mnemonic; }       \
+  static L##type* cast(LInstruction* instr) {                   \
+    DCHECK(instr->Is##type());                                  \
+    return reinterpret_cast<L##type*>(instr);                   \
+  }
+
+
+#define DECLARE_HYDROGEN_ACCESSOR(type)     \
+  H##type* hydrogen() const {               \
+    return H##type::cast(hydrogen_value()); \
+  }
+
+
+class LInstruction : public ZoneObject {
+ public:
+  LInstruction()
+      : environment_(NULL),
+        hydrogen_value_(NULL),
+        bit_field_(IsCallBits::encode(false)) {
+  }
+
+  virtual ~LInstruction() {}
+
+  virtual void CompileToNative(LCodeGen* generator) = 0;
+  virtual const char* Mnemonic() const = 0;
+  virtual void PrintTo(StringStream* stream);
+  virtual void PrintDataTo(StringStream* stream);
+  virtual void PrintOutputOperandTo(StringStream* stream);
+
+  enum Opcode {
+    // Declare a unique enum value for each instruction.
+#define DECLARE_OPCODE(type) k##type,
+    LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
+    kNumberOfInstructions
+#undef DECLARE_OPCODE
+  };
+
+  virtual Opcode opcode() const = 0;
+
+  // Declare non-virtual type testers for all leaf IR classes.
+#define DECLARE_PREDICATE(type) \
+  bool Is##type() const { return opcode() == k##type; }
+  LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
+#undef DECLARE_PREDICATE
+
+  // Declare virtual predicates for instructions that don't have
+  // an opcode.
+  virtual bool IsGap() const { return false; }
+
+  virtual bool IsControl() const { return false; }
+
+  // Try deleting this instruction if possible.
+  virtual bool TryDelete() { return false; }
+
+  void set_environment(LEnvironment* env) { environment_ = env; }
+  LEnvironment* environment() const { return environment_; }
+  bool HasEnvironment() const { return environment_ != NULL; }
+
+  void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
+  LPointerMap* pointer_map() const { return pointer_map_.get(); }
+  bool HasPointerMap() const { return pointer_map_.is_set(); }
+
+  void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
+  HValue* hydrogen_value() const { return hydrogen_value_; }
+
+  void MarkAsCall() { bit_field_ = IsCallBits::update(bit_field_, true); }
+  bool IsCall() const { return IsCallBits::decode(bit_field_); }
+
+  // Interface to the register allocator and iterators.
+  bool ClobbersTemps() const { return IsCall(); }
+  bool ClobbersRegisters() const { return IsCall(); }
+  virtual bool ClobbersDoubleRegisters(Isolate* isolate) const {
+    return IsCall();
+  }
+
+  // Interface to the register allocator and iterators.
+  bool IsMarkedAsCall() const { return IsCall(); }
+
+  virtual bool HasResult() const = 0;
+  virtual LOperand* result() const = 0;
+
+  LOperand* FirstInput() { return InputAt(0); }
+  LOperand* Output() { return HasResult() ? result() : NULL; }
+
+  virtual bool HasInterestingComment(LCodeGen* gen) const { return true; }
+
+  virtual bool MustSignExtendResult(LPlatformChunk* chunk) const {
+    return false;
+  }
+
+#ifdef DEBUG
+  void VerifyCall();
+#endif
+
+  virtual int InputCount() = 0;
+  virtual LOperand* InputAt(int i) = 0;
+
+ private:
+  // Iterator support.
+  friend class InputIterator;
+
+  friend class TempIterator;
+  virtual int TempCount() = 0;
+  virtual LOperand* TempAt(int i) = 0;
+
+  class IsCallBits: public BitField<bool, 0, 1> {};
+
+  LEnvironment* environment_;
+  SetOncePointer<LPointerMap> pointer_map_;
+  HValue* hydrogen_value_;
+  int bit_field_;
+};
+
+
+// R = number of result operands (0 or 1).
+template<int R>
+class LTemplateResultInstruction : public LInstruction {
+ public:
+  // Allow 0 or 1 output operands.
+  STATIC_ASSERT(R == 0 || R == 1);
+  bool HasResult() const final { return R != 0 && result() != NULL; }
+  void set_result(LOperand* operand) { results_[0] = operand; }
+  LOperand* result() const override { return results_[0]; }
+
+  bool MustSignExtendResult(LPlatformChunk* chunk) const final;
+
+ protected:
+  EmbeddedContainer<LOperand*, R> results_;
+};
+
+
+// R = number of result operands (0 or 1).
+// I = number of input operands.
+// T = number of temporary operands.
+template<int R, int I, int T>
+class LTemplateInstruction : public LTemplateResultInstruction<R> {
+ protected:
+  EmbeddedContainer<LOperand*, I> inputs_;
+  EmbeddedContainer<LOperand*, T> temps_;
+
+ private:
+  // Iterator support.
+  int InputCount() final { return I; }
+  LOperand* InputAt(int i) final { return inputs_[i]; }
+
+  int TempCount() final { return T; }
+  LOperand* TempAt(int i) final { return temps_[i]; }
+};
+
+
+class LGap : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LGap(HBasicBlock* block)
+      : block_(block) {
+    parallel_moves_[BEFORE] = NULL;
+    parallel_moves_[START] = NULL;
+    parallel_moves_[END] = NULL;
+    parallel_moves_[AFTER] = NULL;
+  }
+
+  // Can't use the DECLARE-macro here because of sub-classes.
+  bool IsGap() const final { return true; }
+  void PrintDataTo(StringStream* stream) override;
+  static LGap* cast(LInstruction* instr) {
+    DCHECK(instr->IsGap());
+    return reinterpret_cast<LGap*>(instr);
+  }
+
+  bool IsRedundant() const;
+
+  HBasicBlock* block() const { return block_; }
+
+  enum InnerPosition {
+    BEFORE,
+    START,
+    END,
+    AFTER,
+    FIRST_INNER_POSITION = BEFORE,
+    LAST_INNER_POSITION = AFTER
+  };
+
+  LParallelMove* GetOrCreateParallelMove(InnerPosition pos,
+                                         Zone* zone)  {
+    if (parallel_moves_[pos] == NULL) {
+      parallel_moves_[pos] = new(zone) LParallelMove(zone);
+    }
+    return parallel_moves_[pos];
+  }
+
+  LParallelMove* GetParallelMove(InnerPosition pos)  {
+    return parallel_moves_[pos];
+  }
+
+ private:
+  LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
+  HBasicBlock* block_;
+};
+
+
+class LInstructionGap final : public LGap {
+ public:
+  explicit LInstructionGap(HBasicBlock* block) : LGap(block) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override {
+    return !IsRedundant();
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap")
+};
+
+
+class LGoto final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LGoto(HBasicBlock* block) : block_(block) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override;
+  DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
+  void PrintDataTo(StringStream* stream) override;
+  bool IsControl() const override { return true; }
+
+  int block_id() const { return block_->block_id(); }
+
+ private:
+  HBasicBlock* block_;
+};
+
+
+class LPrologue final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(Prologue, "prologue")
+};
+
+
+class LLazyBailout final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  LLazyBailout() : gap_instructions_size_(0) { }
+
+  DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
+
+  void set_gap_instructions_size(int gap_instructions_size) {
+    gap_instructions_size_ = gap_instructions_size;
+  }
+  int gap_instructions_size() { return gap_instructions_size_; }
+
+ private:
+  int gap_instructions_size_;
+};
+
+
+class LDummy final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  LDummy() {}
+  DECLARE_CONCRETE_INSTRUCTION(Dummy, "dummy")
+};
+
+
+class LDummyUse final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDummyUse(LOperand* value) {
+    inputs_[0] = value;
+  }
+  DECLARE_CONCRETE_INSTRUCTION(DummyUse, "dummy-use")
+};
+
+
+class LDeoptimize final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  bool IsControl() const override { return true; }
+  DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
+  DECLARE_HYDROGEN_ACCESSOR(Deoptimize)
+};
+
+
+class LLabel final : public LGap {
+ public:
+  explicit LLabel(HBasicBlock* block)
+      : LGap(block), replacement_(NULL) { }
+
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(Label, "label")
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int block_id() const { return block()->block_id(); }
+  bool is_loop_header() const { return block()->IsLoopHeader(); }
+  bool is_osr_entry() const { return block()->is_osr_entry(); }
+  Label* label() { return &label_; }
+  LLabel* replacement() const { return replacement_; }
+  void set_replacement(LLabel* label) { replacement_ = label; }
+  bool HasReplacement() const { return replacement_ != NULL; }
+
+ private:
+  Label label_;
+  LLabel* replacement_;
+};
+
+
+class LParameter final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
+};
+
+
+class LCallStub final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallStub(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
+  DECLARE_HYDROGEN_ACCESSOR(CallStub)
+};
+
+
+class LUnknownOSRValue final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
+};
+
+
+template<int I, int T>
+class LControlInstruction : public LTemplateInstruction<0, I, T> {
+ public:
+  LControlInstruction() : false_label_(NULL), true_label_(NULL) { }
+
+  bool IsControl() const final { return true; }
+
+  int SuccessorCount() { return hydrogen()->SuccessorCount(); }
+  HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); }
+
+  int TrueDestination(LChunk* chunk) {
+    return chunk->LookupDestination(true_block_id());
+  }
+  int FalseDestination(LChunk* chunk) {
+    return chunk->LookupDestination(false_block_id());
+  }
+
+  Label* TrueLabel(LChunk* chunk) {
+    if (true_label_ == NULL) {
+      true_label_ = chunk->GetAssemblyLabel(TrueDestination(chunk));
+    }
+    return true_label_;
+  }
+  Label* FalseLabel(LChunk* chunk) {
+    if (false_label_ == NULL) {
+      false_label_ = chunk->GetAssemblyLabel(FalseDestination(chunk));
+    }
+    return false_label_;
+  }
+
+ protected:
+  int true_block_id() { return SuccessorAt(0)->block_id(); }
+  int false_block_id() { return SuccessorAt(1)->block_id(); }
+
+ private:
+  HControlInstruction* hydrogen() {
+    return HControlInstruction::cast(this->hydrogen_value());
+  }
+
+  Label* false_label_;
+  Label* true_label_;
+};
+
+
+class LWrapReceiver final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LWrapReceiver(LOperand* receiver, LOperand* function) {
+    inputs_[0] = receiver;
+    inputs_[1] = function;
+  }
+
+  LOperand* receiver() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver")
+  DECLARE_HYDROGEN_ACCESSOR(WrapReceiver)
+};
+
+
+class LApplyArguments final : public LTemplateInstruction<1, 4, 0> {
+ public:
+  LApplyArguments(LOperand* function,
+                  LOperand* receiver,
+                  LOperand* length,
+                  LOperand* elements) {
+    inputs_[0] = function;
+    inputs_[1] = receiver;
+    inputs_[2] = length;
+    inputs_[3] = elements;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+  LOperand* receiver() { return inputs_[1]; }
+  LOperand* length() { return inputs_[2]; }
+  LOperand* elements() { return inputs_[3]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
+};
+
+
+class LAccessArgumentsAt final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
+    inputs_[0] = arguments;
+    inputs_[1] = length;
+    inputs_[2] = index;
+  }
+
+  LOperand* arguments() { return inputs_[0]; }
+  LOperand* length() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LArgumentsLength final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LArgumentsLength(LOperand* elements) {
+    inputs_[0] = elements;
+  }
+
+  LOperand* elements() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
+};
+
+
+class LArgumentsElements final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
+  DECLARE_HYDROGEN_ACCESSOR(ArgumentsElements)
+};
+
+
+class LModByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LModByConstI final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LModByConstI(LOperand* dividend,
+               int32_t divisor,
+               LOperand* temp1,
+               LOperand* temp2) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModByConstI, "mod-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LModI final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LModI(LOperand* left, LOperand* right, LOperand* temp) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+    temps_[0] = temp;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mod)
+};
+
+
+class LDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LDivByConstI final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LDivByConstI(LOperand* dividend,
+               int32_t divisor,
+               LOperand* temp1,
+               LOperand* temp2) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivByConstI, "div-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LDivI final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
+    inputs_[0] = dividend;
+    inputs_[1] = divisor;
+    temps_[0] = temp;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  LOperand* divisor() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
+  DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
+};
+
+
+class LFlooringDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+                               "flooring-div-by-power-of-2-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LFlooringDivByConstI final : public LTemplateInstruction<1, 1, 3> {
+ public:
+  LFlooringDivByConstI(LOperand* dividend,
+                       int32_t divisor,
+                       LOperand* temp1,
+                       LOperand* temp2,
+                       LOperand* temp3) {
+    inputs_[0] = dividend;
+    divisor_ = divisor;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+    temps_[2] = temp3;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  int32_t divisor() const { return divisor_; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+  LOperand* temp3() { return temps_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+  int32_t divisor_;
+};
+
+
+class LFlooringDivI final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LFlooringDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
+    inputs_[0] = dividend;
+    inputs_[1] = divisor;
+    temps_[0] = temp;
+  }
+
+  LOperand* dividend() { return inputs_[0]; }
+  LOperand* divisor() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i")
+  DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+};
+
+
+class LMulI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMulI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
+  DECLARE_HYDROGEN_ACCESSOR(Mul)
+};
+
+
+class LCompareNumericAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LCompareNumericAndBranch(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch,
+                               "compare-numeric-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareNumericAndBranch)
+
+  Token::Value op() const { return hydrogen()->token(); }
+  bool is_double() const {
+    return hydrogen()->representation().IsDouble();
+  }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LMathFloor final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathFloor(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathFloor, "math-floor")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathRound final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LMathRound(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathRound, "math-round")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathFround final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathFround(LOperand* value) { inputs_[0] = value; }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathFround, "math-fround")
+};
+
+
+class LMathAbs final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  explicit LMathAbs(LOperand* context, LOperand* value) {
+    inputs_[1] = context;
+    inputs_[0] = value;
+  }
+
+  LOperand* context() { return inputs_[1]; }
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathAbs, "math-abs")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
+};
+
+
+class LMathLog final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathLog(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathLog, "math-log")
+};
+
+
+class LMathClz32 final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathClz32(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathClz32, "math-clz32")
+};
+
+
+class LMathExp final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LMathExp(LOperand* value, LOperand* temp1, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+    ExternalReference::InitializeMathExpData();
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathExp, "math-exp")
+};
+
+
+class LMathSqrt final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathSqrt(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathSqrt, "math-sqrt")
+};
+
+
+class LMathPowHalf final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMathPowHalf(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathPowHalf, "math-pow-half")
+};
+
+
+class LCmpObjectEqAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LCmpObjectEqAndBranch(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch")
+};
+
+
+class LCmpHoleAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LCmpHoleAndBranch(LOperand* object) {
+    inputs_[0] = object;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranch, "cmp-hole-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch)
+};
+
+
+class LCompareMinusZeroAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LCompareMinusZeroAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CompareMinusZeroAndBranch,
+                               "cmp-minus-zero-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareMinusZeroAndBranch)
+};
+
+
+class LIsStringAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  explicit LIsStringAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LIsSmiAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LIsSmiAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LIsUndetectableAndBranch final : public LControlInstruction<1, 1> {
+ public:
+  explicit LIsUndetectableAndBranch(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch,
+                               "is-undetectable-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LStringCompareAndBranch final : public LControlInstruction<3, 0> {
+ public:
+  explicit LStringCompareAndBranch(LOperand* context,
+                                   LOperand* left,
+                                   LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch,
+                               "string-compare-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Token::Value op() const { return hydrogen()->token(); }
+};
+
+
+class LHasInstanceTypeAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LHasInstanceTypeAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
+                               "has-instance-type-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LGetCachedArrayIndex final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LGetCachedArrayIndex(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex, "get-cached-array-index")
+  DECLARE_HYDROGEN_ACCESSOR(GetCachedArrayIndex)
+};
+
+
+class LHasCachedArrayIndexAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LHasCachedArrayIndexAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
+                               "has-cached-array-index-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndexAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LClassOfTestAndBranch final : public LControlInstruction<1, 2> {
+ public:
+  LClassOfTestAndBranch(LOperand* value, LOperand* temp, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
+                               "class-of-test-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LCmpT final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LCmpT(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
+  DECLARE_HYDROGEN_ACCESSOR(CompareGeneric)
+
+  Strength strength() { return hydrogen()->strength(); }
+
+  Token::Value op() const { return hydrogen()->token(); }
+};
+
+
+class LInstanceOf final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LInstanceOf(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
+};
+
+
+class LHasInPrototypeChainAndBranch final : public LControlInstruction<2, 0> {
+ public:
+  LHasInPrototypeChainAndBranch(LOperand* object, LOperand* prototype) {
+    inputs_[0] = object;
+    inputs_[1] = prototype;
+  }
+
+  LOperand* object() const { return inputs_[0]; }
+  LOperand* prototype() const { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(HasInPrototypeChainAndBranch,
+                               "has-in-prototype-chain-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(HasInPrototypeChainAndBranch)
+};
+
+
+class LBoundsCheck final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LBoundsCheck(LOperand* index, LOperand* length) {
+    inputs_[0] = index;
+    inputs_[1] = length;
+  }
+
+  LOperand* index() { return inputs_[0]; }
+  LOperand* length() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
+  DECLARE_HYDROGEN_ACCESSOR(BoundsCheck)
+};
+
+
+class LBitI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LBitI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  Token::Value op() const { return hydrogen()->op(); }
+  bool IsInteger32() const {
+    return hydrogen()->representation().IsInteger32();
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
+  DECLARE_HYDROGEN_ACCESSOR(Bitwise)
+};
+
+
+class LShiftI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
+      : op_(op), can_deopt_(can_deopt) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  Token::Value op() const { return op_; }
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+  bool can_deopt() const { return can_deopt_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
+
+ private:
+  Token::Value op_;
+  bool can_deopt_;
+};
+
+
+class LSubI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LSubI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
+  DECLARE_HYDROGEN_ACCESSOR(Sub)
+};
+
+
+class LConstantI final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  int32_t value() const { return hydrogen()->Integer32Value(); }
+};
+
+
+class LConstantS final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantS, "constant-s")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  Smi* value() const { return Smi::FromInt(hydrogen()->Integer32Value()); }
+};
+
+
+class LConstantD final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  uint64_t bits() const { return hydrogen()->DoubleValueAsBits(); }
+};
+
+
+class LConstantE final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantE, "constant-e")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  ExternalReference value() const {
+    return hydrogen()->ExternalReferenceValue();
+  }
+};
+
+
+class LConstantT final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
+  DECLARE_HYDROGEN_ACCESSOR(Constant)
+
+  Handle<Object> value(Isolate* isolate) const {
+    return hydrogen()->handle(isolate);
+  }
+};
+
+
+class LBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
+  DECLARE_HYDROGEN_ACCESSOR(Branch)
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LDebugBreak final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(DebugBreak, "break")
+};
+
+
+class LCmpMapAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LCmpMapAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(CompareMap)
+
+  Handle<Map> map() const { return hydrogen()->map().handle(); }
+};
+
+
+class LMapEnumLength final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LMapEnumLength(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MapEnumLength, "map-enum-length")
+};
+
+
+class LSeqStringGetChar final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LSeqStringGetChar(LOperand* string, LOperand* index) {
+    inputs_[0] = string;
+    inputs_[1] = index;
+  }
+
+  LOperand* string() const { return inputs_[0]; }
+  LOperand* index() const { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SeqStringGetChar, "seq-string-get-char")
+  DECLARE_HYDROGEN_ACCESSOR(SeqStringGetChar)
+};
+
+
+class LSeqStringSetChar final : public LTemplateInstruction<1, 4, 0> {
+ public:
+  LSeqStringSetChar(LOperand* context,
+                    LOperand* string,
+                    LOperand* index,
+                    LOperand* value) {
+    inputs_[0] = context;
+    inputs_[1] = string;
+    inputs_[2] = index;
+    inputs_[3] = value;
+  }
+
+  LOperand* string() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+  LOperand* value() { return inputs_[3]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar, "seq-string-set-char")
+  DECLARE_HYDROGEN_ACCESSOR(SeqStringSetChar)
+};
+
+
+class LAddI final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAddI(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  static bool UseLea(HAdd* add) {
+    return !add->CheckFlag(HValue::kCanOverflow) &&
+        add->BetterLeftOperand()->UseCount() > 1;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
+  DECLARE_HYDROGEN_ACCESSOR(Add)
+};
+
+
+class LMathMinMax final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LMathMinMax(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "math-min-max")
+  DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
+};
+
+
+class LPower final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LPower(LOperand* left, LOperand* right) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Power, "power")
+  DECLARE_HYDROGEN_ACCESSOR(Power)
+};
+
+
+class LArithmeticD final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
+      : op_(op) {
+    inputs_[0] = left;
+    inputs_[1] = right;
+  }
+
+  Token::Value op() const { return op_; }
+  LOperand* left() { return inputs_[0]; }
+  LOperand* right() { return inputs_[1]; }
+
+  Opcode opcode() const override { return LInstruction::kArithmeticD; }
+  void CompileToNative(LCodeGen* generator) override;
+  const char* Mnemonic() const override;
+
+ private:
+  Token::Value op_;
+};
+
+
+class LArithmeticT final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LArithmeticT(Token::Value op,
+               LOperand* context,
+               LOperand* left,
+               LOperand* right)
+      : op_(op) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  Token::Value op() const { return op_; }
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  Opcode opcode() const override { return LInstruction::kArithmeticT; }
+  void CompileToNative(LCodeGen* generator) override;
+  const char* Mnemonic() const override;
+
+  DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
+
+  Strength strength() { return hydrogen()->strength(); }
+
+ private:
+  Token::Value op_;
+};
+
+
+class LReturn final : public LTemplateInstruction<0, 3, 0> {
+ public:
+  explicit LReturn(LOperand* value,
+                   LOperand* context,
+                   LOperand* parameter_count) {
+    inputs_[0] = value;
+    inputs_[1] = context;
+    inputs_[2] = parameter_count;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* context() { return inputs_[1]; }
+
+  bool has_constant_parameter_count() {
+    return parameter_count()->IsConstantOperand();
+  }
+  LConstantOperand* constant_parameter_count() {
+    DCHECK(has_constant_parameter_count());
+    return LConstantOperand::cast(parameter_count());
+  }
+  LOperand* parameter_count() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Return, "return")
+  DECLARE_HYDROGEN_ACCESSOR(Return)
+};
+
+
+class LLoadNamedField final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadNamedField(LOperand* object) {
+    inputs_[0] = object;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
+  DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
+};
+
+
+class LLoadNamedGeneric final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  explicit LLoadNamedGeneric(LOperand* context, LOperand* object,
+                             LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    temps_[0] = vector;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* temp_vector() { return temps_[0]; }
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+};
+
+
+class LLoadFunctionPrototype final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadFunctionPrototype(LOperand* function) {
+    inputs_[0] = function;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
+  DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
+
+  LOperand* function() { return inputs_[0]; }
+};
+
+
+class LLoadRoot final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(LoadRoot, "load-root")
+  DECLARE_HYDROGEN_ACCESSOR(LoadRoot)
+
+  Heap::RootListIndex index() const { return hydrogen()->index(); }
+};
+
+
+inline static bool ExternalArrayOpRequiresTemp(
+    Representation key_representation,
+    ElementsKind elements_kind) {
+  // Operations that require the key to be divided by two to be converted into
+  // an index cannot fold the scale operation into a load and need an extra
+  // temp register to do the work.
+  return SmiValuesAre31Bits() && key_representation.IsSmi() &&
+         (elements_kind == UINT8_ELEMENTS || elements_kind == INT8_ELEMENTS ||
+          elements_kind == UINT8_CLAMPED_ELEMENTS);
+}
+
+
+class LLoadKeyed final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LLoadKeyed(LOperand* elements, LOperand* key, LOperand* backing_store_owner) {
+    inputs_[0] = elements;
+    inputs_[1] = key;
+    inputs_[2] = backing_store_owner;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadKeyed, "load-keyed")
+  DECLARE_HYDROGEN_ACCESSOR(LoadKeyed)
+
+  bool is_fixed_typed_array() const {
+    return hydrogen()->is_fixed_typed_array();
+  }
+  LOperand* elements() { return inputs_[0]; }
+  LOperand* key() { return inputs_[1]; }
+  LOperand* backing_store_owner() { return inputs_[2]; }
+  void PrintDataTo(StringStream* stream) override;
+  uint32_t base_offset() const { return hydrogen()->base_offset(); }
+  ElementsKind elements_kind() const {
+    return hydrogen()->elements_kind();
+  }
+};
+
+
+class LLoadKeyedGeneric final : public LTemplateInstruction<1, 3, 1> {
+ public:
+  LLoadKeyedGeneric(LOperand* context, LOperand* obj, LOperand* key,
+                    LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = obj;
+    inputs_[2] = key;
+    temps_[0] = vector;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadKeyedGeneric)
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* key() { return inputs_[2]; }
+  LOperand* temp_vector() { return temps_[0]; }
+};
+
+
+class LLoadGlobalGeneric final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  explicit LLoadGlobalGeneric(LOperand* context, LOperand* global_object,
+                              LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = global_object;
+    temps_[0] = vector;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric, "load-global-generic")
+  DECLARE_HYDROGEN_ACCESSOR(LoadGlobalGeneric)
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* global_object() { return inputs_[1]; }
+  LOperand* temp_vector() { return temps_[0]; }
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+  TypeofMode typeof_mode() const { return hydrogen()->typeof_mode(); }
+};
+
+
+class LLoadContextSlot final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LLoadContextSlot(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
+  DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
+
+  int slot_index() { return hydrogen()->slot_index(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LStoreContextSlot final : public LTemplateInstruction<0, 2, 1> {
+ public:
+  LStoreContextSlot(LOperand* context, LOperand* value, LOperand* temp) {
+    inputs_[0] = context;
+    inputs_[1] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot")
+  DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot)
+
+  int slot_index() { return hydrogen()->slot_index(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LPushArgument final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LPushArgument(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
+};
+
+
+class LDrop final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  explicit LDrop(int count) : count_(count) { }
+
+  int count() const { return count_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Drop, "drop")
+
+ private:
+  int count_;
+};
+
+
+class LStoreCodeEntry final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LStoreCodeEntry(LOperand* function, LOperand* code_object) {
+    inputs_[0] = function;
+    inputs_[1] = code_object;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+  LOperand* code_object() { return inputs_[1]; }
+
+  void PrintDataTo(StringStream* stream) override;
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreCodeEntry, "store-code-entry")
+  DECLARE_HYDROGEN_ACCESSOR(StoreCodeEntry)
+};
+
+
+class LInnerAllocatedObject final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LInnerAllocatedObject(LOperand* base_object, LOperand* offset) {
+    inputs_[0] = base_object;
+    inputs_[1] = offset;
+  }
+
+  LOperand* base_object() const { return inputs_[0]; }
+  LOperand* offset() const { return inputs_[1]; }
+
+  void PrintDataTo(StringStream* stream) override;
+
+  DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject, "inner-allocated-object")
+};
+
+
+class LThisFunction final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function")
+  DECLARE_HYDROGEN_ACCESSOR(ThisFunction)
+};
+
+
+class LContext final : public LTemplateInstruction<1, 0, 0> {
+ public:
+  DECLARE_CONCRETE_INSTRUCTION(Context, "context")
+  DECLARE_HYDROGEN_ACCESSOR(Context)
+};
+
+
+class LDeclareGlobals final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LDeclareGlobals(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals")
+  DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals)
+};
+
+
+class LCallJSFunction final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallJSFunction(LOperand* function) {
+    inputs_[0] = function;
+  }
+
+  LOperand* function() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallJSFunction, "call-js-function")
+  DECLARE_HYDROGEN_ACCESSOR(CallJSFunction)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallWithDescriptor final : public LTemplateResultInstruction<1> {
+ public:
+  LCallWithDescriptor(CallInterfaceDescriptor descriptor,
+                      const ZoneList<LOperand*>& operands, Zone* zone)
+      : inputs_(descriptor.GetRegisterParameterCount() +
+                    kImplicitRegisterParameterCount,
+                zone) {
+    DCHECK(descriptor.GetRegisterParameterCount() +
+               kImplicitRegisterParameterCount ==
+           operands.length());
+    inputs_.AddAll(operands, zone);
+  }
+
+  LOperand* target() const { return inputs_[0]; }
+
+  DECLARE_HYDROGEN_ACCESSOR(CallWithDescriptor)
+
+  // The target and context are passed as implicit parameters that are not
+  // explicitly listed in the descriptor.
+  static const int kImplicitRegisterParameterCount = 2;
+
+ private:
+  DECLARE_CONCRETE_INSTRUCTION(CallWithDescriptor, "call-with-descriptor")
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+
+  ZoneList<LOperand*> inputs_;
+
+  // Iterator support.
+  int InputCount() final { return inputs_.length(); }
+  LOperand* InputAt(int i) final { return inputs_[i]; }
+
+  int TempCount() final { return 0; }
+  LOperand* TempAt(int i) final { return NULL; }
+};
+
+
+class LInvokeFunction final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LInvokeFunction(LOperand* context, LOperand* function) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function")
+  DECLARE_HYDROGEN_ACCESSOR(InvokeFunction)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallFunction final : public LTemplateInstruction<1, 2, 2> {
+ public:
+  LCallFunction(LOperand* context, LOperand* function, LOperand* slot,
+                LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
+  DECLARE_HYDROGEN_ACCESSOR(CallFunction)
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+  int arity() const { return hydrogen()->argument_count() - 1; }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LCallNewArray final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LCallNewArray(LOperand* context, LOperand* constructor) {
+    inputs_[0] = context;
+    inputs_[1] = constructor;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* constructor() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallNewArray, "call-new-array")
+  DECLARE_HYDROGEN_ACCESSOR(CallNewArray)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  int arity() const { return hydrogen()->argument_count() - 1; }
+};
+
+
+class LCallRuntime final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCallRuntime(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
+  DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
+
+  bool ClobbersDoubleRegisters(Isolate* isolate) const override {
+    return save_doubles() == kDontSaveFPRegs;
+  }
+
+  const Runtime::Function* function() const { return hydrogen()->function(); }
+  int arity() const { return hydrogen()->argument_count(); }
+  SaveFPRegsMode save_doubles() const { return hydrogen()->save_doubles(); }
+};
+
+
+class LInteger32ToDouble final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LInteger32ToDouble(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
+};
+
+
+class LUint32ToDouble final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LUint32ToDouble(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Uint32ToDouble, "uint32-to-double")
+};
+
+
+class LNumberTagI final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LNumberTagI(LOperand* value, LOperand* temp1, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i")
+};
+
+
+class LNumberTagU final : public LTemplateInstruction<1, 1, 2> {
+ public:
+  LNumberTagU(LOperand* value, LOperand* temp1, LOperand* temp2) {
+    inputs_[0] = value;
+    temps_[0] = temp1;
+    temps_[1] = temp2;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp1() { return temps_[0]; }
+  LOperand* temp2() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberTagU, "number-tag-u")
+};
+
+
+class LNumberTagD final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  explicit LNumberTagD(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+};
+
+
+// Sometimes truncating conversion from a tagged value to an int32.
+class LDoubleToI final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleToI(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
+
+  bool truncating() { return hydrogen()->CanTruncateToInt32(); }
+};
+
+
+class LDoubleToSmi final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleToSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleToSmi, "double-to-smi")
+  DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
+};
+
+
+// Truncating conversion from a tagged value to an int32.
+class LTaggedToI final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LTaggedToI(LOperand* value, LOperand* temp) {
+    inputs_[0] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+
+  bool truncating() { return hydrogen()->CanTruncateToInt32(); }
+};
+
+
+class LSmiTag final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LSmiTag(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
+  DECLARE_HYDROGEN_ACCESSOR(Change)
+};
+
+
+class LNumberUntagD final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LNumberUntagD(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
+  DECLARE_HYDROGEN_ACCESSOR(Change);
+};
+
+
+class LSmiUntag final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  LSmiUntag(LOperand* value, bool needs_check)
+      : needs_check_(needs_check) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  bool needs_check() const { return needs_check_; }
+
+  DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
+
+ private:
+  bool needs_check_;
+};
+
+
+class LStoreNamedField final : public LTemplateInstruction<0, 2, 1> {
+ public:
+  LStoreNamedField(LOperand* object, LOperand* value, LOperand* temp) {
+    inputs_[0] = object;
+    inputs_[1] = value;
+    temps_[0] = temp;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
+  DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Representation representation() const {
+    return hydrogen()->field_representation();
+  }
+};
+
+
+class LStoreNamedGeneric final : public LTemplateInstruction<0, 3, 2> {
+ public:
+  LStoreNamedGeneric(LOperand* context, LOperand* object, LOperand* value,
+                     LOperand* slot, LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = value;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* value() { return inputs_[2]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic")
+  DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Handle<Object> name() const { return hydrogen()->name(); }
+  LanguageMode language_mode() { return hydrogen()->language_mode(); }
+};
+
+
+class LStoreKeyed final : public LTemplateInstruction<0, 4, 0> {
+ public:
+  LStoreKeyed(LOperand* object, LOperand* key, LOperand* value,
+              LOperand* backing_store_owner) {
+    inputs_[0] = object;
+    inputs_[1] = key;
+    inputs_[2] = value;
+    inputs_[3] = backing_store_owner;
+  }
+
+  bool is_fixed_typed_array() const {
+    return hydrogen()->is_fixed_typed_array();
+  }
+  LOperand* elements() { return inputs_[0]; }
+  LOperand* key() { return inputs_[1]; }
+  LOperand* value() { return inputs_[2]; }
+  LOperand* backing_store_owner() { return inputs_[3]; }
+  ElementsKind elements_kind() const { return hydrogen()->elements_kind(); }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreKeyed, "store-keyed")
+  DECLARE_HYDROGEN_ACCESSOR(StoreKeyed)
+
+  void PrintDataTo(StringStream* stream) override;
+  bool NeedsCanonicalization() { return hydrogen()->NeedsCanonicalization(); }
+  uint32_t base_offset() const { return hydrogen()->base_offset(); }
+};
+
+
+class LStoreKeyedGeneric final : public LTemplateInstruction<0, 4, 2> {
+ public:
+  LStoreKeyedGeneric(LOperand* context, LOperand* object, LOperand* key,
+                     LOperand* value, LOperand* slot, LOperand* vector) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = key;
+    inputs_[3] = value;
+    temps_[0] = slot;
+    temps_[1] = vector;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* key() { return inputs_[2]; }
+  LOperand* value() { return inputs_[3]; }
+  LOperand* temp_slot() { return temps_[0]; }
+  LOperand* temp_vector() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic")
+  DECLARE_HYDROGEN_ACCESSOR(StoreKeyedGeneric)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  LanguageMode language_mode() { return hydrogen()->language_mode(); }
+};
+
+
+class LTransitionElementsKind final : public LTemplateInstruction<0, 2, 2> {
+ public:
+  LTransitionElementsKind(LOperand* object,
+                          LOperand* context,
+                          LOperand* new_map_temp,
+                          LOperand* temp) {
+    inputs_[0] = object;
+    inputs_[1] = context;
+    temps_[0] = new_map_temp;
+    temps_[1] = temp;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* context() { return inputs_[1]; }
+  LOperand* new_map_temp() { return temps_[0]; }
+  LOperand* temp() { return temps_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind,
+                               "transition-elements-kind")
+  DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind)
+
+  void PrintDataTo(StringStream* stream) override;
+
+  Handle<Map> original_map() { return hydrogen()->original_map().handle(); }
+  Handle<Map> transitioned_map() {
+    return hydrogen()->transitioned_map().handle();
+  }
+  ElementsKind from_kind() { return hydrogen()->from_kind(); }
+  ElementsKind to_kind() { return hydrogen()->to_kind(); }
+};
+
+
+class LTrapAllocationMemento final : public LTemplateInstruction<0, 1, 1> {
+ public:
+  LTrapAllocationMemento(LOperand* object,
+                         LOperand* temp) {
+    inputs_[0] = object;
+    temps_[0] = temp;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento,
+                               "trap-allocation-memento")
+};
+
+
+class LMaybeGrowElements final : public LTemplateInstruction<1, 5, 0> {
+ public:
+  LMaybeGrowElements(LOperand* context, LOperand* object, LOperand* elements,
+                     LOperand* key, LOperand* current_capacity) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+    inputs_[2] = elements;
+    inputs_[3] = key;
+    inputs_[4] = current_capacity;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+  LOperand* elements() { return inputs_[2]; }
+  LOperand* key() { return inputs_[3]; }
+  LOperand* current_capacity() { return inputs_[4]; }
+
+  DECLARE_HYDROGEN_ACCESSOR(MaybeGrowElements)
+  DECLARE_CONCRETE_INSTRUCTION(MaybeGrowElements, "maybe-grow-elements")
+};
+
+
+class LStringAdd final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LStringAdd(LOperand* context, LOperand* left, LOperand* right) {
+    inputs_[0] = context;
+    inputs_[1] = left;
+    inputs_[2] = right;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* left() { return inputs_[1]; }
+  LOperand* right() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add")
+  DECLARE_HYDROGEN_ACCESSOR(StringAdd)
+};
+
+
+class LStringCharCodeAt final : public LTemplateInstruction<1, 3, 0> {
+ public:
+  LStringCharCodeAt(LOperand* context, LOperand* string, LOperand* index) {
+    inputs_[0] = context;
+    inputs_[1] = string;
+    inputs_[2] = index;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* string() { return inputs_[1]; }
+  LOperand* index() { return inputs_[2]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
+  DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
+};
+
+
+class LStringCharFromCode final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  explicit LStringCharFromCode(LOperand* context, LOperand* char_code) {
+    inputs_[0] = context;
+    inputs_[1] = char_code;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* char_code() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code")
+  DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode)
+};
+
+
+class LCheckValue final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckValue(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckValue, "check-value")
+  DECLARE_HYDROGEN_ACCESSOR(CheckValue)
+};
+
+
+class LCheckArrayBufferNotNeutered final
+    : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckArrayBufferNotNeutered(LOperand* view) { inputs_[0] = view; }
+
+  LOperand* view() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckArrayBufferNotNeutered,
+                               "check-array-buffer-not-neutered")
+  DECLARE_HYDROGEN_ACCESSOR(CheckArrayBufferNotNeutered)
+};
+
+
+class LCheckInstanceType final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckInstanceType(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
+  DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
+};
+
+
+class LCheckMaps final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckMaps(LOperand* value = NULL) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckMaps, "check-maps")
+  DECLARE_HYDROGEN_ACCESSOR(CheckMaps)
+};
+
+
+class LCheckSmi final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LCheckSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi")
+};
+
+
+class LClampDToUint8 final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LClampDToUint8(LOperand* unclamped) {
+    inputs_[0] = unclamped;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8")
+};
+
+
+class LClampIToUint8 final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LClampIToUint8(LOperand* unclamped) {
+    inputs_[0] = unclamped;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8")
+};
+
+
+class LClampTToUint8 final : public LTemplateInstruction<1, 1, 1> {
+ public:
+  LClampTToUint8(LOperand* unclamped,
+                 LOperand* temp_xmm) {
+    inputs_[0] = unclamped;
+    temps_[0] = temp_xmm;
+  }
+
+  LOperand* unclamped() { return inputs_[0]; }
+  LOperand* temp_xmm() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8, "clamp-t-to-uint8")
+};
+
+
+class LCheckNonSmi final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LCheckNonSmi(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi")
+  DECLARE_HYDROGEN_ACCESSOR(CheckHeapObject)
+};
+
+
+class LDoubleBits final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LDoubleBits(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(DoubleBits, "double-bits")
+  DECLARE_HYDROGEN_ACCESSOR(DoubleBits)
+};
+
+
+class LConstructDouble final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LConstructDouble(LOperand* hi, LOperand* lo) {
+    inputs_[0] = hi;
+    inputs_[1] = lo;
+  }
+
+  LOperand* hi() { return inputs_[0]; }
+  LOperand* lo() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ConstructDouble, "construct-double")
+};
+
+
+class LAllocate final : public LTemplateInstruction<1, 2, 1> {
+ public:
+  LAllocate(LOperand* context, LOperand* size, LOperand* temp) {
+    inputs_[0] = context;
+    inputs_[1] = size;
+    temps_[0] = temp;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* size() { return inputs_[1]; }
+  LOperand* temp() { return temps_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Allocate, "allocate")
+  DECLARE_HYDROGEN_ACCESSOR(Allocate)
+};
+
+
+class LToFastProperties final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LToFastProperties(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ToFastProperties, "to-fast-properties")
+  DECLARE_HYDROGEN_ACCESSOR(ToFastProperties)
+};
+
+
+class LTypeof final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LTypeof(LOperand* context, LOperand* value) {
+    inputs_[0] = context;
+    inputs_[1] = value;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* value() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
+};
+
+
+class LTypeofIsAndBranch final : public LControlInstruction<1, 0> {
+ public:
+  explicit LTypeofIsAndBranch(LOperand* value) {
+    inputs_[0] = value;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
+  DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch)
+
+  Handle<String> type_literal() { return hydrogen()->type_literal(); }
+
+  void PrintDataTo(StringStream* stream) override;
+};
+
+
+class LOsrEntry final : public LTemplateInstruction<0, 0, 0> {
+ public:
+  LOsrEntry() {}
+
+  bool HasInterestingComment(LCodeGen* gen) const override { return false; }
+  DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
+};
+
+
+class LStackCheck final : public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LStackCheck(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
+  DECLARE_HYDROGEN_ACCESSOR(StackCheck)
+
+  Label* done_label() { return &done_label_; }
+
+ private:
+  Label done_label_;
+};
+
+
+class LForInPrepareMap final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LForInPrepareMap(LOperand* context, LOperand* object) {
+    inputs_[0] = context;
+    inputs_[1] = object;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* object() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map")
+};
+
+
+class LForInCacheArray final : public LTemplateInstruction<1, 1, 0> {
+ public:
+  explicit LForInCacheArray(LOperand* map) {
+    inputs_[0] = map;
+  }
+
+  LOperand* map() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array")
+
+  int idx() {
+    return HForInCacheArray::cast(this->hydrogen_value())->idx();
+  }
+};
+
+
+class LCheckMapValue final : public LTemplateInstruction<0, 2, 0> {
+ public:
+  LCheckMapValue(LOperand* value, LOperand* map) {
+    inputs_[0] = value;
+    inputs_[1] = map;
+  }
+
+  LOperand* value() { return inputs_[0]; }
+  LOperand* map() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value")
+};
+
+
+class LLoadFieldByIndex final : public LTemplateInstruction<1, 2, 0> {
+ public:
+  LLoadFieldByIndex(LOperand* object, LOperand* index) {
+    inputs_[0] = object;
+    inputs_[1] = index;
+  }
+
+  LOperand* object() { return inputs_[0]; }
+  LOperand* index() { return inputs_[1]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index")
+};
+
+
+class LStoreFrameContext: public LTemplateInstruction<0, 1, 0> {
+ public:
+  explicit LStoreFrameContext(LOperand* context) {
+    inputs_[0] = context;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+
+  DECLARE_CONCRETE_INSTRUCTION(StoreFrameContext, "store-frame-context")
+};
+
+
+class LAllocateBlockContext: public LTemplateInstruction<1, 2, 0> {
+ public:
+  LAllocateBlockContext(LOperand* context, LOperand* function) {
+    inputs_[0] = context;
+    inputs_[1] = function;
+  }
+
+  LOperand* context() { return inputs_[0]; }
+  LOperand* function() { return inputs_[1]; }
+
+  Handle<ScopeInfo> scope_info() { return hydrogen()->scope_info(); }
+
+  DECLARE_CONCRETE_INSTRUCTION(AllocateBlockContext, "allocate-block-context")
+  DECLARE_HYDROGEN_ACCESSOR(AllocateBlockContext)
+};
+
+
+class LChunkBuilder;
+class LPlatformChunk final : public LChunk {
+ public:
+  LPlatformChunk(CompilationInfo* info, HGraph* graph)
+      : LChunk(info, graph),
+        dehoisted_key_ids_(graph->GetMaximumValueID(), graph->zone()) { }
+
+  int GetNextSpillIndex(RegisterKind kind);
+  LOperand* GetNextSpillSlot(RegisterKind kind);
+  BitVector* GetDehoistedKeyIds() { return &dehoisted_key_ids_; }
+  bool IsDehoistedKey(HValue* value) {
+    return dehoisted_key_ids_.Contains(value->id());
+  }
+
+ private:
+  BitVector dehoisted_key_ids_;
+};
+
+
+class LChunkBuilder final : public LChunkBuilderBase {
+ public:
+  LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator)
+      : LChunkBuilderBase(info, graph),
+        current_instruction_(NULL),
+        current_block_(NULL),
+        next_block_(NULL),
+        allocator_(allocator) {}
+
+  // Build the sequence for the graph.
+  LPlatformChunk* Build();
+
+  // Declare methods that deal with the individual node types.
+#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
+  HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
+#undef DECLARE_DO
+
+  LInstruction* DoMathFloor(HUnaryMathOperation* instr);
+  LInstruction* DoMathRound(HUnaryMathOperation* instr);
+  LInstruction* DoMathFround(HUnaryMathOperation* instr);
+  LInstruction* DoMathAbs(HUnaryMathOperation* instr);
+  LInstruction* DoMathLog(HUnaryMathOperation* instr);
+  LInstruction* DoMathExp(HUnaryMathOperation* instr);
+  LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
+  LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
+  LInstruction* DoMathClz32(HUnaryMathOperation* instr);
+  LInstruction* DoDivByPowerOf2I(HDiv* instr);
+  LInstruction* DoDivByConstI(HDiv* instr);
+  LInstruction* DoDivI(HDiv* instr);
+  LInstruction* DoModByPowerOf2I(HMod* instr);
+  LInstruction* DoModByConstI(HMod* instr);
+  LInstruction* DoModI(HMod* instr);
+  LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+  LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
+  LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr);
+
+ private:
+  // Methods for getting operands for Use / Define / Temp.
+  LUnallocated* ToUnallocated(Register reg);
+  LUnallocated* ToUnallocated(XMMRegister reg);
+
+  // Methods for setting up define-use relationships.
+  MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
+  MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
+  MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
+                                           XMMRegister fixed_register);
+
+  // A value that is guaranteed to be allocated to a register.
+  // Operand created by UseRegister is guaranteed to be live until the end of
+  // instruction. This means that register allocator will not reuse it's
+  // register for any other operand inside instruction.
+  // Operand created by UseRegisterAtStart is guaranteed to be live only at
+  // instruction start. Register allocator is free to assign the same register
+  // to some other operand used inside instruction (i.e. temporary or
+  // output).
+  MUST_USE_RESULT LOperand* UseRegister(HValue* value);
+  MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
+
+  // An input operand in a register that may be trashed.
+  MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
+
+  // An input operand in a register that may be trashed or a constant operand.
+  MUST_USE_RESULT LOperand* UseTempRegisterOrConstant(HValue* value);
+
+  // An input operand in a register or stack slot.
+  MUST_USE_RESULT LOperand* Use(HValue* value);
+  MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
+
+  // An input operand in a register, stack slot or a constant operand.
+  MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
+  MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
+
+  // An input operand in a register or a constant operand.
+  MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
+  MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
+
+  // An input operand in a constant operand.
+  MUST_USE_RESULT LOperand* UseConstant(HValue* value);
+
+  // An input operand in register, stack slot or a constant operand.
+  // Will not be moved to a register even if one is freely available.
+  MUST_USE_RESULT LOperand* UseAny(HValue* value) override;
+
+  // Temporary operand that must be in a register.
+  MUST_USE_RESULT LUnallocated* TempRegister();
+  MUST_USE_RESULT LOperand* FixedTemp(Register reg);
+  MUST_USE_RESULT LOperand* FixedTemp(XMMRegister reg);
+
+  // Methods for setting up define-use relationships.
+  // Return the same instruction that they are passed.
+  LInstruction* Define(LTemplateResultInstruction<1>* instr,
+                       LUnallocated* result);
+  LInstruction* DefineAsRegister(LTemplateResultInstruction<1>* instr);
+  LInstruction* DefineAsSpilled(LTemplateResultInstruction<1>* instr,
+                                int index);
+  LInstruction* DefineSameAsFirst(LTemplateResultInstruction<1>* instr);
+  LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr,
+                            Register reg);
+  LInstruction* DefineFixedDouble(LTemplateResultInstruction<1>* instr,
+                                  XMMRegister reg);
+  // Assigns an environment to an instruction.  An instruction which can
+  // deoptimize must have an environment.
+  LInstruction* AssignEnvironment(LInstruction* instr);
+  // Assigns a pointer map to an instruction.  An instruction which can
+  // trigger a GC or a lazy deoptimization must have a pointer map.
+  LInstruction* AssignPointerMap(LInstruction* instr);
+
+  enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
+
+  // Marks a call for the register allocator.  Assigns a pointer map to
+  // support GC and lazy deoptimization.  Assigns an environment to support
+  // eager deoptimization if CAN_DEOPTIMIZE_EAGERLY.
+  LInstruction* MarkAsCall(
+      LInstruction* instr,
+      HInstruction* hinstr,
+      CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
+
+  void VisitInstruction(HInstruction* current);
+  void AddInstruction(LInstruction* instr, HInstruction* current);
+
+  void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
+  LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
+  LInstruction* DoArithmeticD(Token::Value op,
+                              HArithmeticBinaryOperation* instr);
+  LInstruction* DoArithmeticT(Token::Value op,
+                              HBinaryOperation* instr);
+  void FindDehoistedKeyDefinitions(HValue* candidate);
+
+  HInstruction* current_instruction_;
+  HBasicBlock* current_block_;
+  HBasicBlock* next_block_;
+  LAllocator* allocator_;
+
+  DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
+};
+
+#undef DECLARE_HYDROGEN_ACCESSOR
+#undef DECLARE_CONCRETE_INSTRUCTION
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_CRANKSHAFT_X64_LITHIUM_X64_H_