Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/full-codegen/mips64/full-codegen-mips64.cc b/src/full-codegen/mips64/full-codegen-mips64.cc
new file mode 100644
index 0000000..44dd791
--- /dev/null
+++ b/src/full-codegen/mips64/full-codegen-mips64.cc
@@ -0,0 +1,4854 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_MIPS64
+
+// Note on Mips implementation:
+//
+// The result_register() for mips is the 'v0' register, which is defined
+// by the ABI to contain function return values. However, the first
+// parameter to a function is defined to be 'a0'. So there are many
+// places where we have to move a previous result in v0 to a0 for the
+// next call: mov(a0, v0). This is not needed on the other architectures.
+
+#include "src/ast/scopes.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/debug/debug.h"
+#include "src/full-codegen/full-codegen.h"
+#include "src/ic/ic.h"
+#include "src/parsing/parser.h"
+
+#include "src/mips64/code-stubs-mips64.h"
+#include "src/mips64/macro-assembler-mips64.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
+// (raw 16 bit immediate value is used) is the delta from the pc to the first
+// instruction of the patchable code.
+// The marker instruction is effectively a NOP (dest is zero_reg) and will
+// never be emitted by normal code.
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+    info_emitted_ = false;
+#endif
+  }
+
+  ~JumpPatchSite() {
+    DCHECK(patch_site_.is_bound() == info_emitted_);
+  }
+
+  // When initially emitting this ensure that a jump is always generated to skip
+  // the inlined smi code.
+  void EmitJumpIfNotSmi(Register reg, Label* target) {
+    DCHECK(!patch_site_.is_bound() && !info_emitted_);
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    __ bind(&patch_site_);
+    __ andi(at, reg, 0);
+    // Always taken before patched.
+    __ BranchShort(target, eq, at, Operand(zero_reg));
+  }
+
+  // When initially emitting this ensure that a jump is never generated to skip
+  // the inlined smi code.
+  void EmitJumpIfSmi(Register reg, Label* target) {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    DCHECK(!patch_site_.is_bound() && !info_emitted_);
+    __ bind(&patch_site_);
+    __ andi(at, reg, 0);
+    // Never taken before patched.
+    __ BranchShort(target, ne, at, Operand(zero_reg));
+  }
+
+  void EmitPatchInfo() {
+    if (patch_site_.is_bound()) {
+      int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+      Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
+      __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
+#ifdef DEBUG
+      info_emitted_ = true;
+#endif
+    } else {
+      __ nop();  // Signals no inlined code.
+    }
+  }
+
+ private:
+  MacroAssembler* masm_;
+  Label patch_site_;
+#ifdef DEBUG
+  bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function.  On entry to the function the receiver
+// and arguments have been pushed on the stack left to right.  The actual
+// argument count matches the formal parameter count expected by the
+// function.
+//
+// The live registers are:
+//   o a1: the JS function object being called (i.e. ourselves)
+//   o a3: the new target value
+//   o cp: our context
+//   o fp: our caller's frame pointer
+//   o sp: stack pointer
+//   o ra: return address
+//
+// The function builds a JS frame.  Please see JavaScriptFrameConstants in
+// frames-mips.h for its layout.
+void FullCodeGenerator::Generate() {
+  CompilationInfo* info = info_;
+  profiling_counter_ = isolate()->factory()->NewCell(
+      Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
+  SetFunctionPosition(literal());
+  Comment cmnt(masm_, "[ function compiled by full code generator");
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+  if (strlen(FLAG_stop_at) > 0 &&
+      info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+    __ stop("stop-at");
+  }
+#endif
+
+  if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
+    int receiver_offset = info->scope()->num_parameters() * kPointerSize;
+    __ ld(a2, MemOperand(sp, receiver_offset));
+    __ AssertNotSmi(a2);
+    __ GetObjectType(a2, a2, a2);
+    __ Check(ge, kSloppyFunctionExpectsJSReceiverReceiver, a2,
+             Operand(FIRST_JS_RECEIVER_TYPE));
+  }
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // MANUAL indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done below).
+  FrameScope frame_scope(masm_, StackFrame::MANUAL);
+  info->set_prologue_offset(masm_->pc_offset());
+  __ Prologue(info->GeneratePreagedPrologue());
+
+  { Comment cmnt(masm_, "[ Allocate locals");
+    int locals_count = info->scope()->num_stack_slots();
+    // Generators allocate locals, if any, in context slots.
+    DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
+    if (locals_count > 0) {
+      if (locals_count >= 128) {
+        Label ok;
+        __ Dsubu(t1, sp, Operand(locals_count * kPointerSize));
+        __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
+        __ Branch(&ok, hs, t1, Operand(a2));
+        __ CallRuntime(Runtime::kThrowStackOverflow);
+        __ bind(&ok);
+      }
+      __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
+      int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
+      if (locals_count >= kMaxPushes) {
+        int loop_iterations = locals_count / kMaxPushes;
+        __ li(a2, Operand(loop_iterations));
+        Label loop_header;
+        __ bind(&loop_header);
+        // Do pushes.
+        __ Dsubu(sp, sp, Operand(kMaxPushes * kPointerSize));
+        for (int i = 0; i < kMaxPushes; i++) {
+          __ sd(t1, MemOperand(sp, i * kPointerSize));
+        }
+        // Continue loop if not done.
+        __ Dsubu(a2, a2, Operand(1));
+        __ Branch(&loop_header, ne, a2, Operand(zero_reg));
+      }
+      int remaining = locals_count % kMaxPushes;
+      // Emit the remaining pushes.
+      __ Dsubu(sp, sp, Operand(remaining * kPointerSize));
+      for (int i  = 0; i < remaining; i++) {
+        __ sd(t1, MemOperand(sp, i * kPointerSize));
+      }
+    }
+  }
+
+  bool function_in_register_a1 = true;
+
+  // Possibly allocate a local context.
+  if (info->scope()->num_heap_slots() > 0) {
+    Comment cmnt(masm_, "[ Allocate context");
+    // Argument to NewContext is the function, which is still in a1.
+    bool need_write_barrier = true;
+    int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    if (info->scope()->is_script_scope()) {
+      __ push(a1);
+      __ Push(info->scope()->GetScopeInfo(info->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
+      // The new target value is not used, clobbering is safe.
+      DCHECK_NULL(info->scope()->new_target_var());
+    } else {
+      if (info->scope()->new_target_var() != nullptr) {
+        __ push(a3);  // Preserve new target.
+      }
+      if (slots <= FastNewContextStub::kMaximumSlots) {
+        FastNewContextStub stub(isolate(), slots);
+        __ CallStub(&stub);
+        // Result of FastNewContextStub is always in new space.
+        need_write_barrier = false;
+      } else {
+        __ push(a1);
+        __ CallRuntime(Runtime::kNewFunctionContext);
+      }
+      if (info->scope()->new_target_var() != nullptr) {
+        __ pop(a3);  // Restore new target.
+      }
+    }
+    function_in_register_a1 = false;
+    // Context is returned in v0. It replaces the context passed to us.
+    // It's saved in the stack and kept live in cp.
+    __ mov(cp, v0);
+    __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = info->scope()->num_parameters();
+    int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+                                 (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ ld(a0, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ sd(a0, target);
+
+        // Update the write barrier.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(cp, target.offset(), a0, a2,
+                                    kRAHasBeenSaved, kDontSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, a0, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+  }
+
+  // Register holding this function and new target are both trashed in case we
+  // bailout here. But since that can happen only when new target is not used
+  // and we allocate a context, the value of |function_in_register| is correct.
+  PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
+
+  // Possibly set up a local binding to the this function which is used in
+  // derived constructors with super calls.
+  Variable* this_function_var = scope()->this_function_var();
+  if (this_function_var != nullptr) {
+    Comment cmnt(masm_, "[ This function");
+    if (!function_in_register_a1) {
+      __ ld(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+      // The write barrier clobbers register again, keep it marked as such.
+    }
+    SetVar(this_function_var, a1, a0, a2);
+  }
+
+  Variable* new_target_var = scope()->new_target_var();
+  if (new_target_var != nullptr) {
+    Comment cmnt(masm_, "[ new.target");
+    SetVar(new_target_var, a3, a0, a2);
+  }
+
+  // Possibly allocate RestParameters
+  int rest_index;
+  Variable* rest_param = scope()->rest_parameter(&rest_index);
+  if (rest_param) {
+    Comment cmnt(masm_, "[ Allocate rest parameter array");
+
+    int num_parameters = info->scope()->num_parameters();
+    int offset = num_parameters * kPointerSize;
+
+    __ li(RestParamAccessDescriptor::parameter_count(),
+          Operand(Smi::FromInt(num_parameters)));
+    __ Daddu(RestParamAccessDescriptor::parameter_pointer(), fp,
+             Operand(StandardFrameConstants::kCallerSPOffset + offset));
+    __ li(RestParamAccessDescriptor::rest_parameter_index(),
+          Operand(Smi::FromInt(rest_index)));
+    function_in_register_a1 = false;
+
+    RestParamAccessStub stub(isolate());
+    __ CallStub(&stub);
+
+    SetVar(rest_param, v0, a1, a2);
+  }
+
+  Variable* arguments = scope()->arguments();
+  if (arguments != NULL) {
+    // Function uses arguments object.
+    Comment cmnt(masm_, "[ Allocate arguments object");
+    DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
+    if (!function_in_register_a1) {
+      // Load this again, if it's used by the local context below.
+      __ ld(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+    }
+    // Receiver is just before the parameters on the caller's stack.
+    int num_parameters = info->scope()->num_parameters();
+    int offset = num_parameters * kPointerSize;
+    __ li(ArgumentsAccessNewDescriptor::parameter_count(),
+          Operand(Smi::FromInt(num_parameters)));
+    __ Daddu(ArgumentsAccessNewDescriptor::parameter_pointer(), fp,
+             Operand(StandardFrameConstants::kCallerSPOffset + offset));
+
+    // Arguments to ArgumentsAccessStub:
+    //   function, parameter pointer, parameter count.
+    // The stub will rewrite parameter pointer and parameter count if the
+    // previous stack frame was an arguments adapter frame.
+    bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
+    ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
+        is_unmapped, literal()->has_duplicate_parameters());
+    ArgumentsAccessStub stub(isolate(), type);
+    __ CallStub(&stub);
+
+    SetVar(arguments, v0, a1, a2);
+  }
+
+  if (FLAG_trace) {
+    __ CallRuntime(Runtime::kTraceEnter);
+  }
+
+  // Visit the declarations and body unless there is an illegal
+  // redeclaration.
+  if (scope()->HasIllegalRedeclaration()) {
+    Comment cmnt(masm_, "[ Declarations");
+    VisitForEffect(scope()->GetIllegalRedeclaration());
+
+  } else {
+    PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
+    { Comment cmnt(masm_, "[ Declarations");
+      VisitDeclarations(scope()->declarations());
+    }
+
+    // Assert that the declarations do not use ICs. Otherwise the debugger
+    // won't be able to redirect a PC at an IC to the correct IC in newly
+    // recompiled code.
+    DCHECK_EQ(0, ic_total_count_);
+
+    { Comment cmnt(masm_, "[ Stack check");
+      PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
+      Label ok;
+      __ LoadRoot(at, Heap::kStackLimitRootIndex);
+      __ Branch(&ok, hs, sp, Operand(at));
+      Handle<Code> stack_check = isolate()->builtins()->StackCheck();
+      PredictableCodeSizeScope predictable(masm_,
+          masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
+      __ Call(stack_check, RelocInfo::CODE_TARGET);
+      __ bind(&ok);
+    }
+
+    { Comment cmnt(masm_, "[ Body");
+      DCHECK(loop_depth() == 0);
+
+      VisitStatements(literal()->body());
+
+      DCHECK(loop_depth() == 0);
+    }
+  }
+
+  // Always emit a 'return undefined' in case control fell off the end of
+  // the body.
+  { Comment cmnt(masm_, "[ return <undefined>;");
+    __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  }
+  EmitReturnSequence();
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+  DCHECK(Smi::FromInt(0) == 0);
+  __ mov(v0, zero_reg);
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
+  __ li(a2, Operand(profiling_counter_));
+  __ ld(a3, FieldMemOperand(a2, Cell::kValueOffset));
+  __ Dsubu(a3, a3, Operand(Smi::FromInt(delta)));
+  __ sd(a3, FieldMemOperand(a2, Cell::kValueOffset));
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterReset() {
+  int reset_value = FLAG_interrupt_budget;
+  if (info_->is_debug()) {
+    // Detect debug break requests as soon as possible.
+    reset_value = FLAG_interrupt_budget >> 4;
+  }
+  __ li(a2, Operand(profiling_counter_));
+  __ li(a3, Operand(Smi::FromInt(reset_value)));
+  __ sd(a3, FieldMemOperand(a2, Cell::kValueOffset));
+}
+
+
+void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
+                                                Label* back_edge_target) {
+  // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
+  // to make sure it is constant. Branch may emit a skip-or-jump sequence
+  // instead of the normal Branch. It seems that the "skip" part of that
+  // sequence is about as long as this Branch would be so it is safe to ignore
+  // that.
+  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+  Comment cmnt(masm_, "[ Back edge bookkeeping");
+  Label ok;
+  DCHECK(back_edge_target->is_bound());
+  int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
+  int weight = Min(kMaxBackEdgeWeight,
+                   Max(1, distance / kCodeSizeMultiplier));
+  EmitProfilingCounterDecrement(weight);
+  __ slt(at, a3, zero_reg);
+  __ beq(at, zero_reg, &ok);
+  // Call will emit a li t9 first, so it is safe to use the delay slot.
+  __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+  // Record a mapping of this PC offset to the OSR id.  This is used to find
+  // the AST id from the unoptimized code in order to use it as a key into
+  // the deoptimization input data found in the optimized code.
+  RecordBackEdge(stmt->OsrEntryId());
+  EmitProfilingCounterReset();
+
+  __ bind(&ok);
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+  // Record a mapping of the OSR id to this PC.  This is used if the OSR
+  // entry becomes the target of a bailout.  We don't expect it to be, but
+  // we want it to work if it is.
+  PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::EmitReturnSequence() {
+  Comment cmnt(masm_, "[ Return sequence");
+  if (return_label_.is_bound()) {
+    __ Branch(&return_label_);
+  } else {
+    __ bind(&return_label_);
+    if (FLAG_trace) {
+      // Push the return value on the stack as the parameter.
+      // Runtime::TraceExit returns its parameter in v0.
+      __ push(v0);
+      __ CallRuntime(Runtime::kTraceExit);
+    }
+    // Pretend that the exit is a backwards jump to the entry.
+    int weight = 1;
+    if (info_->ShouldSelfOptimize()) {
+      weight = FLAG_interrupt_budget / FLAG_self_opt_count;
+    } else {
+      int distance = masm_->pc_offset();
+      weight = Min(kMaxBackEdgeWeight,
+                   Max(1, distance / kCodeSizeMultiplier));
+    }
+    EmitProfilingCounterDecrement(weight);
+    Label ok;
+    __ Branch(&ok, ge, a3, Operand(zero_reg));
+    __ push(v0);
+    __ Call(isolate()->builtins()->InterruptCheck(),
+            RelocInfo::CODE_TARGET);
+    __ pop(v0);
+    EmitProfilingCounterReset();
+    __ bind(&ok);
+
+    // Make sure that the constant pool is not emitted inside of the return
+    // sequence.
+    { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+      // Here we use masm_-> instead of the __ macro to avoid the code coverage
+      // tool from instrumenting as we rely on the code size here.
+      int32_t arg_count = info_->scope()->num_parameters() + 1;
+      int32_t sp_delta = arg_count * kPointerSize;
+      SetReturnPosition(literal());
+      masm_->mov(sp, fp);
+      masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
+      masm_->Daddu(sp, sp, Operand(sp_delta));
+      masm_->Jump(ra);
+    }
+  }
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
+  DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+  codegen()->GetVar(result_register(), var);
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Heap::RootListIndex index) const {
+  __ LoadRoot(result_register(), index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+    Heap::RootListIndex index) const {
+  __ LoadRoot(result_register(), index);
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(),
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  if (index == Heap::kUndefinedValueRootIndex ||
+      index == Heap::kNullValueRootIndex ||
+      index == Heap::kFalseValueRootIndex) {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  } else if (index == Heap::kTrueValueRootIndex) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else {
+    __ LoadRoot(result_register(), index);
+    codegen()->DoTest(this);
+  }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Handle<Object> lit) const {
+  __ li(result_register(), Operand(lit));
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+  // Immediates cannot be pushed directly.
+  __ li(result_register(), Operand(lit));
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(),
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
+  if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  } else if (lit->IsTrue() || lit->IsJSObject()) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else if (lit->IsString()) {
+    if (String::cast(*lit)->length() == 0) {
+      if (false_label_ != fall_through_) __ Branch(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ Branch(true_label_);
+    }
+  } else if (lit->IsSmi()) {
+    if (Smi::cast(*lit)->value() == 0) {
+      if (false_label_ != fall_through_) __ Branch(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ Branch(true_label_);
+    }
+  } else {
+    // For simplicity we always test the accumulator register.
+    __ li(result_register(), Operand(lit));
+    codegen()->DoTest(this);
+  }
+}
+
+
+void FullCodeGenerator::EffectContext::DropAndPlug(int count,
+                                                   Register reg) const {
+  DCHECK(count > 0);
+  __ Drop(count);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
+    int count,
+    Register reg) const {
+  DCHECK(count > 0);
+  __ Drop(count);
+  __ Move(result_register(), reg);
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+                                                       Register reg) const {
+  DCHECK(count > 0);
+  if (count > 1) __ Drop(count - 1);
+  __ sd(reg, MemOperand(sp, 0));
+}
+
+
+void FullCodeGenerator::TestContext::DropAndPlug(int count,
+                                                 Register reg) const {
+  DCHECK(count > 0);
+  // For simplicity we always test the accumulator register.
+  __ Drop(count);
+  __ Move(result_register(), reg);
+  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
+  codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+                                            Label* materialize_false) const {
+  DCHECK(materialize_true == materialize_false);
+  __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Label* materialize_true,
+    Label* materialize_false) const {
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+  __ Branch(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+  __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+    Label* materialize_true,
+    Label* materialize_false) const {
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(at, Heap::kTrueValueRootIndex);
+  // Push the value as the following branch can clobber at in long branch mode.
+  __ push(at);
+  __ Branch(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(at, Heap::kFalseValueRootIndex);
+  __ push(at);
+  __ bind(&done);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+                                          Label* materialize_false) const {
+  DCHECK(materialize_true == true_label_);
+  DCHECK(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(result_register(), value_root_index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(at, value_root_index);
+  __ push(at);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(),
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  if (flag) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  }
+}
+
+
+void FullCodeGenerator::DoTest(Expression* condition,
+                               Label* if_true,
+                               Label* if_false,
+                               Label* fall_through) {
+  __ mov(a0, result_register());
+  Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
+  CallIC(ic, condition->test_id());
+  __ LoadRoot(at, Heap::kTrueValueRootIndex);
+  Split(eq, result_register(), Operand(at), if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cc,
+                              Register lhs,
+                              const Operand&  rhs,
+                              Label* if_true,
+                              Label* if_false,
+                              Label* fall_through) {
+  if (if_false == fall_through) {
+    __ Branch(if_true, cc, lhs, rhs);
+  } else if (if_true == fall_through) {
+    __ Branch(if_false, NegateCondition(cc), lhs, rhs);
+  } else {
+    __ Branch(if_true, cc, lhs, rhs);
+    __ Branch(if_false);
+  }
+}
+
+
+MemOperand FullCodeGenerator::StackOperand(Variable* var) {
+  DCHECK(var->IsStackAllocated());
+  // Offset is negative because higher indexes are at lower addresses.
+  int offset = -var->index() * kPointerSize;
+  // Adjust by a (parameter or local) base offset.
+  if (var->IsParameter()) {
+    offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
+  } else {
+    offset += JavaScriptFrameConstants::kLocal0Offset;
+  }
+  return MemOperand(fp, offset);
+}
+
+
+MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
+  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+  if (var->IsContextSlot()) {
+    int context_chain_length = scope()->ContextChainLength(var->scope());
+    __ LoadContext(scratch, context_chain_length);
+    return ContextMemOperand(scratch, var->index());
+  } else {
+    return StackOperand(var);
+  }
+}
+
+
+void FullCodeGenerator::GetVar(Register dest, Variable* var) {
+  // Use destination as scratch.
+  MemOperand location = VarOperand(var, dest);
+  __ ld(dest, location);
+}
+
+
+void FullCodeGenerator::SetVar(Variable* var,
+                               Register src,
+                               Register scratch0,
+                               Register scratch1) {
+  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+  DCHECK(!scratch0.is(src));
+  DCHECK(!scratch0.is(scratch1));
+  DCHECK(!scratch1.is(src));
+  MemOperand location = VarOperand(var, scratch0);
+  __ sd(src, location);
+  // Emit the write barrier code if the location is in the heap.
+  if (var->IsContextSlot()) {
+    __ RecordWriteContextSlot(scratch0,
+                              location.offset(),
+                              src,
+                              scratch1,
+                              kRAHasBeenSaved,
+                              kDontSaveFPRegs);
+  }
+}
+
+
+void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
+                                                     bool should_normalize,
+                                                     Label* if_true,
+                                                     Label* if_false) {
+  // Only prepare for bailouts before splits if we're in a test
+  // context. Otherwise, we let the Visit function deal with the
+  // preparation to avoid preparing with the same AST id twice.
+  if (!context()->IsTest()) return;
+
+  Label skip;
+  if (should_normalize) __ Branch(&skip);
+  PrepareForBailout(expr, TOS_REG);
+  if (should_normalize) {
+    __ LoadRoot(a4, Heap::kTrueValueRootIndex);
+    Split(eq, a0, Operand(a4), if_true, if_false, NULL);
+    __ bind(&skip);
+  }
+}
+
+
+void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
+  // The variable in the declaration always resides in the current function
+  // context.
+  DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
+  if (generate_debug_code_) {
+    // Check that we're not inside a with or catch context.
+    __ ld(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
+    __ LoadRoot(a4, Heap::kWithContextMapRootIndex);
+    __ Check(ne, kDeclarationInWithContext,
+        a1, Operand(a4));
+    __ LoadRoot(a4, Heap::kCatchContextMapRootIndex);
+    __ Check(ne, kDeclarationInCatchContext,
+        a1, Operand(a4));
+  }
+}
+
+
+void FullCodeGenerator::VisitVariableDeclaration(
+    VariableDeclaration* declaration) {
+  // If it was not possible to allocate the variable at compile time, we
+  // need to "declare" it at runtime to make sure it actually exists in the
+  // local context.
+  VariableProxy* proxy = declaration->proxy();
+  VariableMode mode = declaration->mode();
+  Variable* variable = proxy->var();
+  bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
+  switch (variable->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED:
+      globals_->Add(variable->name(), zone());
+      globals_->Add(variable->binding_needs_init()
+                        ? isolate()->factory()->the_hole_value()
+                        : isolate()->factory()->undefined_value(),
+                    zone());
+      break;
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL:
+      if (hole_init) {
+        Comment cmnt(masm_, "[ VariableDeclaration");
+        __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+        __ sd(a4, StackOperand(variable));
+      }
+      break;
+
+    case VariableLocation::CONTEXT:
+      if (hole_init) {
+        Comment cmnt(masm_, "[ VariableDeclaration");
+        EmitDebugCheckDeclarationContext(variable);
+          __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+          __ sd(at, ContextMemOperand(cp, variable->index()));
+          // No write barrier since the_hole_value is in old space.
+          PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+      }
+      break;
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ VariableDeclaration");
+      __ li(a2, Operand(variable->name()));
+      // Declaration nodes are always introduced in one of four modes.
+      DCHECK(IsDeclaredVariableMode(mode));
+      // Push initial value, if any.
+      // Note: For variables we must not push an initial value (such as
+      // 'undefined') because we may have a (legal) redeclaration and we
+      // must not destroy the current value.
+      if (hole_init) {
+        __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
+      } else {
+        DCHECK(Smi::FromInt(0) == 0);
+        __ mov(a0, zero_reg);  // Smi::FromInt(0) indicates no initial value.
+      }
+      __ Push(a2, a0);
+      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
+      __ CallRuntime(Runtime::kDeclareLookupSlot);
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitFunctionDeclaration(
+    FunctionDeclaration* declaration) {
+  VariableProxy* proxy = declaration->proxy();
+  Variable* variable = proxy->var();
+  switch (variable->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED: {
+      globals_->Add(variable->name(), zone());
+      Handle<SharedFunctionInfo> function =
+          Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
+      // Check for stack-overflow exception.
+      if (function.is_null()) return SetStackOverflow();
+      globals_->Add(function, zone());
+      break;
+    }
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      VisitForAccumulatorValue(declaration->fun());
+      __ sd(result_register(), StackOperand(variable));
+      break;
+    }
+
+    case VariableLocation::CONTEXT: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      EmitDebugCheckDeclarationContext(variable);
+      VisitForAccumulatorValue(declaration->fun());
+      __ sd(result_register(), ContextMemOperand(cp, variable->index()));
+      int offset = Context::SlotOffset(variable->index());
+      // We know that we have written a function, which is not a smi.
+      __ RecordWriteContextSlot(cp,
+                                offset,
+                                result_register(),
+                                a2,
+                                kRAHasBeenSaved,
+                                kDontSaveFPRegs,
+                                EMIT_REMEMBERED_SET,
+                                OMIT_SMI_CHECK);
+      PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+      break;
+    }
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      __ li(a2, Operand(variable->name()));
+      __ Push(a2);
+      // Push initial value for function declaration.
+      VisitForStackValue(declaration->fun());
+      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
+      __ CallRuntime(Runtime::kDeclareLookupSlot);
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+  // Call the runtime to declare the globals.
+  __ li(a1, Operand(pairs));
+  __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
+  __ Push(a1, a0);
+  __ CallRuntime(Runtime::kDeclareGlobals);
+  // Return value is ignored.
+}
+
+
+void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
+  // Call the runtime to declare the modules.
+  __ Push(descriptions);
+  __ CallRuntime(Runtime::kDeclareModules);
+  // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+  Comment cmnt(masm_, "[ SwitchStatement");
+  Breakable nested_statement(this, stmt);
+  SetStatementPosition(stmt);
+
+  // Keep the switch value on the stack until a case matches.
+  VisitForStackValue(stmt->tag());
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+  ZoneList<CaseClause*>* clauses = stmt->cases();
+  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
+
+  Label next_test;  // Recycled for each test.
+  // Compile all the tests with branches to their bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    CaseClause* clause = clauses->at(i);
+    clause->body_target()->Unuse();
+
+    // The default is not a test, but remember it as final fall through.
+    if (clause->is_default()) {
+      default_clause = clause;
+      continue;
+    }
+
+    Comment cmnt(masm_, "[ Case comparison");
+    __ bind(&next_test);
+    next_test.Unuse();
+
+    // Compile the label expression.
+    VisitForAccumulatorValue(clause->label());
+    __ mov(a0, result_register());  // CompareStub requires args in a0, a1.
+
+    // Perform the comparison as if via '==='.
+    __ ld(a1, MemOperand(sp, 0));  // Switch value.
+    bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+    JumpPatchSite patch_site(masm_);
+    if (inline_smi_code) {
+      Label slow_case;
+      __ or_(a2, a1, a0);
+      patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+
+      __ Branch(&next_test, ne, a1, Operand(a0));
+      __ Drop(1);  // Switch value is no longer needed.
+      __ Branch(clause->body_target());
+
+      __ bind(&slow_case);
+    }
+
+    // Record position before stub call for type feedback.
+    SetExpressionPosition(clause);
+    Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
+                                             strength(language_mode())).code();
+    CallIC(ic, clause->CompareId());
+    patch_site.EmitPatchInfo();
+
+    Label skip;
+    __ Branch(&skip);
+    PrepareForBailout(clause, TOS_REG);
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(&next_test, ne, v0, Operand(at));
+    __ Drop(1);
+    __ Branch(clause->body_target());
+    __ bind(&skip);
+
+    __ Branch(&next_test, ne, v0, Operand(zero_reg));
+    __ Drop(1);  // Switch value is no longer needed.
+    __ Branch(clause->body_target());
+  }
+
+  // Discard the test value and jump to the default if present, otherwise to
+  // the end of the statement.
+  __ bind(&next_test);
+  __ Drop(1);  // Switch value is no longer needed.
+  if (default_clause == NULL) {
+    __ Branch(nested_statement.break_label());
+  } else {
+    __ Branch(default_clause->body_target());
+  }
+
+  // Compile all the case bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    Comment cmnt(masm_, "[ Case body");
+    CaseClause* clause = clauses->at(i);
+    __ bind(clause->body_target());
+    PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+    VisitStatements(clause->statements());
+  }
+
+  __ bind(nested_statement.break_label());
+  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+  Comment cmnt(masm_, "[ ForInStatement");
+  SetStatementPosition(stmt, SKIP_BREAK);
+
+  FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
+
+  Label loop, exit;
+  ForIn loop_statement(this, stmt);
+  increment_loop_depth();
+
+  // Get the object to enumerate over. If the object is null or undefined, skip
+  // over the loop.  See ECMA-262 version 5, section 12.6.4.
+  SetExpressionAsStatementPosition(stmt->enumerable());
+  VisitForAccumulatorValue(stmt->enumerable());
+  __ mov(a0, result_register());  // Result as param to InvokeBuiltin below.
+  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+  __ Branch(&exit, eq, a0, Operand(at));
+  Register null_value = a5;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ Branch(&exit, eq, a0, Operand(null_value));
+  PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
+  __ mov(a0, v0);
+  // Convert the object to a JS object.
+  Label convert, done_convert;
+  __ JumpIfSmi(a0, &convert);
+  __ GetObjectType(a0, a1, a1);
+  __ Branch(&done_convert, ge, a1, Operand(FIRST_JS_RECEIVER_TYPE));
+  __ bind(&convert);
+  ToObjectStub stub(isolate());
+  __ CallStub(&stub);
+  __ mov(a0, v0);
+  __ bind(&done_convert);
+  PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
+  __ push(a0);
+
+  // Check for proxies.
+  Label call_runtime;
+  __ GetObjectType(a0, a1, a1);
+  __ Branch(&call_runtime, eq, a1, Operand(JS_PROXY_TYPE));
+
+  // Check cache validity in generated code. This is a fast case for
+  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+  // guarantee cache validity, call the runtime system to check cache
+  // validity or get the property names in a fixed array.
+  __ CheckEnumCache(null_value, &call_runtime);
+
+  // The enum cache is valid.  Load the map of the object being
+  // iterated over and use the cache for the iteration.
+  Label use_cache;
+  __ ld(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
+  __ Branch(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(a0);  // Duplicate the enumerable object on the stack.
+  __ CallRuntime(Runtime::kGetPropertyNamesFast);
+  PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
+
+  // If we got a map from the runtime call, we can do a fast
+  // modification check. Otherwise, we got a fixed array, and we have
+  // to do a slow check.
+  Label fixed_array;
+  __ ld(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ LoadRoot(at, Heap::kMetaMapRootIndex);
+  __ Branch(&fixed_array, ne, a2, Operand(at));
+
+  // We got a map in register v0. Get the enumeration cache from it.
+  Label no_descriptors;
+  __ bind(&use_cache);
+
+  __ EnumLength(a1, v0);
+  __ Branch(&no_descriptors, eq, a1, Operand(Smi::FromInt(0)));
+
+  __ LoadInstanceDescriptors(v0, a2);
+  __ ld(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset));
+  __ ld(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+  // Set up the four remaining stack slots.
+  __ li(a0, Operand(Smi::FromInt(0)));
+  // Push map, enumeration cache, enumeration cache length (as smi) and zero.
+  __ Push(v0, a2, a1, a0);
+  __ jmp(&loop);
+
+  __ bind(&no_descriptors);
+  __ Drop(1);
+  __ jmp(&exit);
+
+  // We got a fixed array in register v0. Iterate through that.
+  __ bind(&fixed_array);
+
+  __ EmitLoadTypeFeedbackVector(a1);
+  __ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
+  int vector_index = SmiFromSlot(slot)->value();
+  __ sd(a2, FieldMemOperand(a1, FixedArray::OffsetOfElementAt(vector_index)));
+
+  __ li(a1, Operand(Smi::FromInt(1)));  // Smi(1) indicates slow check
+  __ Push(a1, v0);  // Smi and array
+  __ ld(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
+  __ li(a0, Operand(Smi::FromInt(0)));
+  __ Push(a1, a0);  // Fixed array length (as smi) and initial index.
+
+  // Generate code for doing the condition check.
+  __ bind(&loop);
+  SetExpressionAsStatementPosition(stmt->each());
+
+  // Load the current count to a0, load the length to a1.
+  __ ld(a0, MemOperand(sp, 0 * kPointerSize));
+  __ ld(a1, MemOperand(sp, 1 * kPointerSize));
+  __ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
+
+  // Get the current entry of the array into register a3.
+  __ ld(a2, MemOperand(sp, 2 * kPointerSize));
+  __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ SmiScale(a4, a0, kPointerSizeLog2);
+  __ daddu(a4, a2, a4);  // Array base + scaled (smi) index.
+  __ ld(a3, MemOperand(a4));  // Current entry.
+
+  // Get the expected map from the stack or a smi in the
+  // permanent slow case into register a2.
+  __ ld(a2, MemOperand(sp, 3 * kPointerSize));
+
+  // Check if the expected map still matches that of the enumerable.
+  // If not, we may have to filter the key.
+  Label update_each;
+  __ ld(a1, MemOperand(sp, 4 * kPointerSize));
+  __ ld(a4, FieldMemOperand(a1, HeapObject::kMapOffset));
+  __ Branch(&update_each, eq, a4, Operand(a2));
+
+  // Convert the entry to a string or (smi) 0 if it isn't a property
+  // any more. If the property has been removed while iterating, we
+  // just skip it.
+  __ Push(a1, a3);  // Enumerable and current entry.
+  __ CallRuntime(Runtime::kForInFilter);
+  PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
+  __ mov(a3, result_register());
+  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+  __ Branch(loop_statement.continue_label(), eq, a3, Operand(at));
+
+  // Update the 'each' property or variable from the possibly filtered
+  // entry in register a3.
+  __ bind(&update_each);
+  __ mov(result_register(), a3);
+  // Perform the assignment as if via '='.
+  { EffectContext context(this);
+    EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
+    PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
+  }
+
+  // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
+  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
+  // Generate code for the body of the loop.
+  Visit(stmt->body());
+
+  // Generate code for the going to the next element by incrementing
+  // the index (smi) stored on top of the stack.
+  __ bind(loop_statement.continue_label());
+  __ pop(a0);
+  __ Daddu(a0, a0, Operand(Smi::FromInt(1)));
+  __ push(a0);
+
+  EmitBackEdgeBookkeeping(stmt, &loop);
+  __ Branch(&loop);
+
+  // Remove the pointers stored on the stack.
+  __ bind(loop_statement.break_label());
+  __ Drop(5);
+
+  // Exit and decrement the loop depth.
+  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+  __ bind(&exit);
+  decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
+                                       bool pretenure) {
+  // Use the fast case closure allocation code that allocates in new
+  // space for nested functions that don't need literals cloning. If
+  // we're running with the --always-opt or the --prepare-always-opt
+  // flag, we need to use the runtime function so that the new function
+  // we are creating here gets a chance to have its code optimized and
+  // doesn't just get a copy of the existing unoptimized code.
+  if (!FLAG_always_opt &&
+      !FLAG_prepare_always_opt &&
+      !pretenure &&
+      scope()->is_function_scope() &&
+      info->num_literals() == 0) {
+    FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
+    __ li(a2, Operand(info));
+    __ CallStub(&stub);
+  } else {
+    __ Push(info);
+    __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
+                             : Runtime::kNewClosure);
+  }
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
+                                          FeedbackVectorSlot slot) {
+  DCHECK(NeedsHomeObject(initializer));
+  __ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
+  __ li(StoreDescriptor::NameRegister(),
+        Operand(isolate()->factory()->home_object_symbol()));
+  __ ld(StoreDescriptor::ValueRegister(),
+        MemOperand(sp, offset * kPointerSize));
+  EmitLoadStoreICSlot(slot);
+  CallStoreIC();
+}
+
+
+void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
+                                                     int offset,
+                                                     FeedbackVectorSlot slot) {
+  DCHECK(NeedsHomeObject(initializer));
+  __ Move(StoreDescriptor::ReceiverRegister(), v0);
+  __ li(StoreDescriptor::NameRegister(),
+        Operand(isolate()->factory()->home_object_symbol()));
+  __ ld(StoreDescriptor::ValueRegister(),
+        MemOperand(sp, offset * kPointerSize));
+  EmitLoadStoreICSlot(slot);
+  CallStoreIC();
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
+                                                      TypeofMode typeof_mode,
+                                                      Label* slow) {
+  Register current = cp;
+  Register next = a1;
+  Register temp = a2;
+
+  Scope* s = scope();
+  while (s != NULL) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_sloppy_eval()) {
+        // Check that extension is "the hole".
+        __ ld(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
+        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+      }
+      // Load next context in chain.
+      __ ld(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
+      // Walk the rest of the chain without clobbering cp.
+      current = next;
+    }
+    // If no outer scope calls eval, we do not need to check more
+    // context extensions.
+    if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
+    s = s->outer_scope();
+  }
+
+  if (s->is_eval_scope()) {
+    Label loop, fast;
+    if (!current.is(next)) {
+      __ Move(next, current);
+    }
+    __ bind(&loop);
+    // Terminate at native context.
+    __ ld(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+    __ LoadRoot(a4, Heap::kNativeContextMapRootIndex);
+    __ Branch(&fast, eq, temp, Operand(a4));
+    // Check that extension is "the hole".
+    __ ld(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
+    __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+    // Load next context in chain.
+    __ ld(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
+    __ Branch(&loop);
+    __ bind(&fast);
+  }
+
+  // All extension objects were empty and it is safe to use a normal global
+  // load machinery.
+  EmitGlobalVariableLoad(proxy, typeof_mode);
+}
+
+
+MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
+                                                                Label* slow) {
+  DCHECK(var->IsContextSlot());
+  Register context = cp;
+  Register next = a3;
+  Register temp = a4;
+
+  for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_sloppy_eval()) {
+        // Check that extension is "the hole".
+        __ ld(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
+        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+      }
+      __ ld(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
+      // Walk the rest of the chain without clobbering cp.
+      context = next;
+    }
+  }
+  // Check that last extension is "the hole".
+  __ ld(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
+  __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+
+  // This function is used only for loads, not stores, so it's safe to
+  // return an cp-based operand (the write barrier cannot be allowed to
+  // destroy the cp register).
+  return ContextMemOperand(context, var->index());
+}
+
+
+void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
+                                                  TypeofMode typeof_mode,
+                                                  Label* slow, Label* done) {
+  // Generate fast-case code for variables that might be shadowed by
+  // eval-introduced variables.  Eval is used a lot without
+  // introducing variables.  In those cases, we do not want to
+  // perform a runtime call for all variables in the scope
+  // containing the eval.
+  Variable* var = proxy->var();
+  if (var->mode() == DYNAMIC_GLOBAL) {
+    EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
+    __ Branch(done);
+  } else if (var->mode() == DYNAMIC_LOCAL) {
+    Variable* local = var->local_if_not_shadowed();
+    __ ld(v0, ContextSlotOperandCheckExtensions(local, slow));
+    if (local->mode() == LET || local->mode() == CONST ||
+        local->mode() == CONST_LEGACY) {
+      __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+      __ dsubu(at, v0, at);  // Sub as compare: at == 0 on eq.
+      if (local->mode() == CONST_LEGACY) {
+        __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+        __ Movz(v0, a0, at);  // Conditional move: return Undefined if TheHole.
+      } else {  // LET || CONST
+        __ Branch(done, ne, at, Operand(zero_reg));
+        __ li(a0, Operand(var->name()));
+        __ push(a0);
+        __ CallRuntime(Runtime::kThrowReferenceError);
+      }
+    }
+    __ Branch(done);
+  }
+}
+
+
+void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
+                                               TypeofMode typeof_mode) {
+  Variable* var = proxy->var();
+  DCHECK(var->IsUnallocatedOrGlobalSlot() ||
+         (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
+  __ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
+  __ li(LoadDescriptor::NameRegister(), Operand(var->name()));
+  __ li(LoadDescriptor::SlotRegister(),
+        Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
+  CallLoadIC(typeof_mode);
+}
+
+
+void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
+                                         TypeofMode typeof_mode) {
+  // Record position before possible IC call.
+  SetExpressionPosition(proxy);
+  PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
+  Variable* var = proxy->var();
+
+  // Three cases: global variables, lookup variables, and all other types of
+  // variables.
+  switch (var->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED: {
+      Comment cmnt(masm_, "[ Global variable");
+      EmitGlobalVariableLoad(proxy, typeof_mode);
+      context()->Plug(v0);
+      break;
+    }
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL:
+    case VariableLocation::CONTEXT: {
+      DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
+      Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
+                                               : "[ Stack variable");
+      if (NeedsHoleCheckForLoad(proxy)) {
+        // Let and const need a read barrier.
+        GetVar(v0, var);
+        __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+        __ dsubu(at, v0, at);  // Sub as compare: at == 0 on eq.
+        if (var->mode() == LET || var->mode() == CONST) {
+          // Throw a reference error when using an uninitialized let/const
+          // binding in harmony mode.
+          Label done;
+          __ Branch(&done, ne, at, Operand(zero_reg));
+          __ li(a0, Operand(var->name()));
+          __ push(a0);
+          __ CallRuntime(Runtime::kThrowReferenceError);
+          __ bind(&done);
+        } else {
+          // Uninitialized legacy const bindings are unholed.
+          DCHECK(var->mode() == CONST_LEGACY);
+          __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+          __ Movz(v0, a0, at);  // Conditional move: Undefined if TheHole.
+        }
+        context()->Plug(v0);
+        break;
+      }
+      context()->Plug(var);
+      break;
+    }
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ Lookup variable");
+      Label done, slow;
+      // Generate code for loading from variables potentially shadowed
+      // by eval-introduced variables.
+      EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
+      __ bind(&slow);
+      __ li(a1, Operand(var->name()));
+      __ Push(cp, a1);  // Context and name.
+      Runtime::FunctionId function_id =
+          typeof_mode == NOT_INSIDE_TYPEOF
+              ? Runtime::kLoadLookupSlot
+              : Runtime::kLoadLookupSlotNoReferenceError;
+      __ CallRuntime(function_id);
+      __ bind(&done);
+      context()->Plug(v0);
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
+  Comment cmnt(masm_, "[ RegExpLiteral");
+  __ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a1, Operand(expr->pattern()));
+  __ li(a0, Operand(Smi::FromInt(expr->flags())));
+  FastCloneRegExpStub stub(isolate());
+  __ CallStub(&stub);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
+  Expression* expression = (property == NULL) ? NULL : property->value();
+  if (expression == NULL) {
+    __ LoadRoot(a1, Heap::kNullValueRootIndex);
+    __ push(a1);
+  } else {
+    VisitForStackValue(expression);
+    if (NeedsHomeObject(expression)) {
+      DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
+             property->kind() == ObjectLiteral::Property::SETTER);
+      int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
+      EmitSetHomeObject(expression, offset, property->GetSlot());
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+  Comment cmnt(masm_, "[ ObjectLiteral");
+
+  Handle<FixedArray> constant_properties = expr->constant_properties();
+  __ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a1, Operand(constant_properties));
+  __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags())));
+  if (MustCreateObjectLiteralWithRuntime(expr)) {
+    __ Push(a3, a2, a1, a0);
+    __ CallRuntime(Runtime::kCreateObjectLiteral);
+  } else {
+    FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
+    __ CallStub(&stub);
+  }
+  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
+
+  // If result_saved is true the result is on top of the stack.  If
+  // result_saved is false the result is in v0.
+  bool result_saved = false;
+
+  AccessorTable accessor_table(zone());
+  int property_index = 0;
+  for (; property_index < expr->properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = expr->properties()->at(property_index);
+    if (property->is_computed_name()) break;
+    if (property->IsCompileTimeValue()) continue;
+
+    Literal* key = property->key()->AsLiteral();
+    Expression* value = property->value();
+    if (!result_saved) {
+      __ push(v0);  // Save result on stack.
+      result_saved = true;
+    }
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+        UNREACHABLE();
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+        DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
+        // Fall through.
+      case ObjectLiteral::Property::COMPUTED:
+        // It is safe to use [[Put]] here because the boilerplate already
+        // contains computed properties with an uninitialized value.
+        if (key->value()->IsInternalizedString()) {
+          if (property->emit_store()) {
+            VisitForAccumulatorValue(value);
+            __ mov(StoreDescriptor::ValueRegister(), result_register());
+            DCHECK(StoreDescriptor::ValueRegister().is(a0));
+            __ li(StoreDescriptor::NameRegister(), Operand(key->value()));
+            __ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
+            EmitLoadStoreICSlot(property->GetSlot(0));
+            CallStoreIC();
+            PrepareForBailoutForId(key->id(), NO_REGISTERS);
+
+            if (NeedsHomeObject(value)) {
+              EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
+            }
+          } else {
+            VisitForEffect(value);
+          }
+          break;
+        }
+        // Duplicate receiver on stack.
+        __ ld(a0, MemOperand(sp));
+        __ push(a0);
+        VisitForStackValue(key);
+        VisitForStackValue(value);
+        if (property->emit_store()) {
+          if (NeedsHomeObject(value)) {
+            EmitSetHomeObject(value, 2, property->GetSlot());
+          }
+          __ li(a0, Operand(Smi::FromInt(SLOPPY)));  // PropertyAttributes.
+          __ push(a0);
+          __ CallRuntime(Runtime::kSetProperty);
+        } else {
+          __ Drop(3);
+        }
+        break;
+      case ObjectLiteral::Property::PROTOTYPE:
+        // Duplicate receiver on stack.
+        __ ld(a0, MemOperand(sp));
+        __ push(a0);
+        VisitForStackValue(value);
+        DCHECK(property->emit_store());
+        __ CallRuntime(Runtime::kInternalSetPrototype);
+        PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
+                               NO_REGISTERS);
+        break;
+      case ObjectLiteral::Property::GETTER:
+        if (property->emit_store()) {
+          accessor_table.lookup(key)->second->getter = property;
+        }
+        break;
+      case ObjectLiteral::Property::SETTER:
+        if (property->emit_store()) {
+          accessor_table.lookup(key)->second->setter = property;
+        }
+        break;
+    }
+  }
+
+  // Emit code to define accessors, using only a single call to the runtime for
+  // each pair of corresponding getters and setters.
+  for (AccessorTable::Iterator it = accessor_table.begin();
+       it != accessor_table.end();
+       ++it) {
+    __ ld(a0, MemOperand(sp));  // Duplicate receiver.
+    __ push(a0);
+    VisitForStackValue(it->first);
+    EmitAccessor(it->second->getter);
+    EmitAccessor(it->second->setter);
+    __ li(a0, Operand(Smi::FromInt(NONE)));
+    __ push(a0);
+    __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
+  }
+
+  // Object literals have two parts. The "static" part on the left contains no
+  // computed property names, and so we can compute its map ahead of time; see
+  // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
+  // starts with the first computed property name, and continues with all
+  // properties to its right.  All the code from above initializes the static
+  // component of the object literal, and arranges for the map of the result to
+  // reflect the static order in which the keys appear. For the dynamic
+  // properties, we compile them into a series of "SetOwnProperty" runtime
+  // calls. This will preserve insertion order.
+  for (; property_index < expr->properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = expr->properties()->at(property_index);
+
+    Expression* value = property->value();
+    if (!result_saved) {
+      __ push(v0);  // Save result on the stack
+      result_saved = true;
+    }
+
+    __ ld(a0, MemOperand(sp));  // Duplicate receiver.
+    __ push(a0);
+
+    if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
+      DCHECK(!property->is_computed_name());
+      VisitForStackValue(value);
+      DCHECK(property->emit_store());
+      __ CallRuntime(Runtime::kInternalSetPrototype);
+      PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
+                             NO_REGISTERS);
+    } else {
+      EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
+      VisitForStackValue(value);
+      if (NeedsHomeObject(value)) {
+        EmitSetHomeObject(value, 2, property->GetSlot());
+      }
+
+      switch (property->kind()) {
+        case ObjectLiteral::Property::CONSTANT:
+        case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+        case ObjectLiteral::Property::COMPUTED:
+          if (property->emit_store()) {
+            __ li(a0, Operand(Smi::FromInt(NONE)));
+            __ push(a0);
+            __ CallRuntime(Runtime::kDefineDataPropertyUnchecked);
+          } else {
+            __ Drop(3);
+          }
+          break;
+
+        case ObjectLiteral::Property::PROTOTYPE:
+          UNREACHABLE();
+          break;
+
+        case ObjectLiteral::Property::GETTER:
+          __ li(a0, Operand(Smi::FromInt(NONE)));
+          __ push(a0);
+          __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
+          break;
+
+        case ObjectLiteral::Property::SETTER:
+          __ li(a0, Operand(Smi::FromInt(NONE)));
+          __ push(a0);
+          __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
+          break;
+      }
+    }
+  }
+
+  if (expr->has_function()) {
+    DCHECK(result_saved);
+    __ ld(a0, MemOperand(sp));
+    __ push(a0);
+    __ CallRuntime(Runtime::kToFastProperties);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(v0);
+  }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+  Comment cmnt(masm_, "[ ArrayLiteral");
+
+  Handle<FixedArray> constant_elements = expr->constant_elements();
+  bool has_fast_elements =
+      IsFastObjectElementsKind(expr->constant_elements_kind());
+
+  AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
+  if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
+    // If the only customer of allocation sites is transitioning, then
+    // we can turn it off if we don't have anywhere else to transition to.
+    allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
+  }
+
+  __ mov(a0, result_register());
+  __ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a1, Operand(constant_elements));
+  if (MustCreateArrayLiteralWithRuntime(expr)) {
+    __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags())));
+    __ Push(a3, a2, a1, a0);
+    __ CallRuntime(Runtime::kCreateArrayLiteral);
+  } else {
+    FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
+    __ CallStub(&stub);
+  }
+  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
+
+  bool result_saved = false;  // Is the result saved to the stack?
+  ZoneList<Expression*>* subexprs = expr->values();
+  int length = subexprs->length();
+
+  // Emit code to evaluate all the non-constant subexpressions and to store
+  // them into the newly cloned array.
+  int array_index = 0;
+  for (; array_index < length; array_index++) {
+    Expression* subexpr = subexprs->at(array_index);
+    if (subexpr->IsSpread()) break;
+
+    // If the subexpression is a literal or a simple materialized literal it
+    // is already set in the cloned array.
+    if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
+
+    if (!result_saved) {
+      __ push(v0);  // array literal
+      result_saved = true;
+    }
+
+    VisitForAccumulatorValue(subexpr);
+
+    __ li(StoreDescriptor::NameRegister(), Operand(Smi::FromInt(array_index)));
+    __ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+    __ mov(StoreDescriptor::ValueRegister(), result_register());
+    EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
+    Handle<Code> ic =
+        CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+    CallIC(ic);
+
+    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
+  }
+
+  // In case the array literal contains spread expressions it has two parts. The
+  // first part is  the "static" array which has a literal index is  handled
+  // above. The second part is the part after the first spread expression
+  // (inclusive) and these elements gets appended to the array. Note that the
+  // number elements an iterable produces is unknown ahead of time.
+  if (array_index < length && result_saved) {
+    __ Pop(v0);
+    result_saved = false;
+  }
+  for (; array_index < length; array_index++) {
+    Expression* subexpr = subexprs->at(array_index);
+
+    __ Push(v0);
+    if (subexpr->IsSpread()) {
+      VisitForStackValue(subexpr->AsSpread()->expression());
+      __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
+                       CALL_FUNCTION);
+    } else {
+      VisitForStackValue(subexpr);
+      __ CallRuntime(Runtime::kAppendElement);
+    }
+
+    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(v0);
+  }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+  DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
+
+  Comment cmnt(masm_, "[ Assignment");
+  SetExpressionPosition(expr, INSERT_BREAK);
+
+  Property* property = expr->target()->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(property);
+
+  // Evaluate LHS expression.
+  switch (assign_type) {
+    case VARIABLE:
+      // Nothing to do here.
+      break;
+    case NAMED_PROPERTY:
+      if (expr->is_compound()) {
+        // We need the receiver both on the stack and in the register.
+        VisitForStackValue(property->obj());
+        __ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+      } else {
+        VisitForStackValue(property->obj());
+      }
+      break;
+    case NAMED_SUPER_PROPERTY:
+      VisitForStackValue(
+          property->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          property->obj()->AsSuperPropertyReference()->home_object());
+      __ Push(result_register());
+      if (expr->is_compound()) {
+        const Register scratch = a1;
+        __ ld(scratch, MemOperand(sp, kPointerSize));
+        __ Push(scratch, result_register());
+      }
+      break;
+    case KEYED_SUPER_PROPERTY: {
+      const Register scratch = a1;
+      VisitForStackValue(
+          property->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          property->obj()->AsSuperPropertyReference()->home_object());
+      __ Move(scratch, result_register());
+      VisitForAccumulatorValue(property->key());
+      __ Push(scratch, result_register());
+      if (expr->is_compound()) {
+        const Register scratch1 = a4;
+        __ ld(scratch1, MemOperand(sp, 2 * kPointerSize));
+        __ Push(scratch1, scratch, result_register());
+      }
+      break;
+    }
+    case KEYED_PROPERTY:
+      // We need the key and receiver on both the stack and in v0 and a1.
+      if (expr->is_compound()) {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+        __ ld(LoadDescriptor::ReceiverRegister(),
+              MemOperand(sp, 1 * kPointerSize));
+        __ ld(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+      } else {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+      }
+      break;
+  }
+
+  // For compound assignments we need another deoptimization point after the
+  // variable/property load.
+  if (expr->is_compound()) {
+    { AccumulatorValueContext context(this);
+      switch (assign_type) {
+        case VARIABLE:
+          EmitVariableLoad(expr->target()->AsVariableProxy());
+          PrepareForBailout(expr->target(), TOS_REG);
+          break;
+        case NAMED_PROPERTY:
+          EmitNamedPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case NAMED_SUPER_PROPERTY:
+          EmitNamedSuperPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case KEYED_SUPER_PROPERTY:
+          EmitKeyedSuperPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case KEYED_PROPERTY:
+          EmitKeyedPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+      }
+    }
+
+    Token::Value op = expr->binary_op();
+    __ push(v0);  // Left operand goes on the stack.
+    VisitForAccumulatorValue(expr->value());
+
+    AccumulatorValueContext context(this);
+    if (ShouldInlineSmiCase(op)) {
+      EmitInlineSmiBinaryOp(expr->binary_operation(),
+                            op,
+                            expr->target(),
+                            expr->value());
+    } else {
+      EmitBinaryOp(expr->binary_operation(), op);
+    }
+
+    // Deoptimization point in case the binary operation may have side effects.
+    PrepareForBailout(expr->binary_operation(), TOS_REG);
+  } else {
+    VisitForAccumulatorValue(expr->value());
+  }
+
+  SetExpressionPosition(expr);
+
+  // Store the value.
+  switch (assign_type) {
+    case VARIABLE:
+      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+                             expr->op(), expr->AssignmentSlot());
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      context()->Plug(v0);
+      break;
+    case NAMED_PROPERTY:
+      EmitNamedPropertyAssignment(expr);
+      break;
+    case NAMED_SUPER_PROPERTY:
+      EmitNamedSuperPropertyStore(property);
+      context()->Plug(v0);
+      break;
+    case KEYED_SUPER_PROPERTY:
+      EmitKeyedSuperPropertyStore(property);
+      context()->Plug(v0);
+      break;
+    case KEYED_PROPERTY:
+      EmitKeyedPropertyAssignment(expr);
+      break;
+  }
+}
+
+
+void FullCodeGenerator::VisitYield(Yield* expr) {
+  Comment cmnt(masm_, "[ Yield");
+  SetExpressionPosition(expr);
+
+  // Evaluate yielded value first; the initial iterator definition depends on
+  // this.  It stays on the stack while we update the iterator.
+  VisitForStackValue(expr->expression());
+
+  switch (expr->yield_kind()) {
+    case Yield::kSuspend:
+      // Pop value from top-of-stack slot; box result into result register.
+      EmitCreateIteratorResult(false);
+      __ push(result_register());
+      // Fall through.
+    case Yield::kInitial: {
+      Label suspend, continuation, post_runtime, resume;
+
+      __ jmp(&suspend);
+      __ bind(&continuation);
+      __ RecordGeneratorContinuation();
+      __ jmp(&resume);
+
+      __ bind(&suspend);
+      VisitForAccumulatorValue(expr->generator_object());
+      DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
+      __ li(a1, Operand(Smi::FromInt(continuation.pos())));
+      __ sd(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset));
+      __ sd(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset));
+      __ mov(a1, cp);
+      __ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2,
+                          kRAHasBeenSaved, kDontSaveFPRegs);
+      __ Daddu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
+      __ Branch(&post_runtime, eq, sp, Operand(a1));
+      __ push(v0);  // generator object
+      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
+      __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ bind(&post_runtime);
+      __ pop(result_register());
+      EmitReturnSequence();
+
+      __ bind(&resume);
+      context()->Plug(result_register());
+      break;
+    }
+
+    case Yield::kFinal: {
+      VisitForAccumulatorValue(expr->generator_object());
+      __ li(a1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
+      __ sd(a1, FieldMemOperand(result_register(),
+                                JSGeneratorObject::kContinuationOffset));
+      // Pop value from top-of-stack slot, box result into result register.
+      EmitCreateIteratorResult(true);
+      EmitUnwindBeforeReturn();
+      EmitReturnSequence();
+      break;
+    }
+
+    case Yield::kDelegating: {
+      VisitForStackValue(expr->generator_object());
+
+      // Initial stack layout is as follows:
+      // [sp + 1 * kPointerSize] iter
+      // [sp + 0 * kPointerSize] g
+
+      Label l_catch, l_try, l_suspend, l_continuation, l_resume;
+      Label l_next, l_call;
+      Register load_receiver = LoadDescriptor::ReceiverRegister();
+      Register load_name = LoadDescriptor::NameRegister();
+      // Initial send value is undefined.
+      __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+      __ Branch(&l_next);
+
+      // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
+      __ bind(&l_catch);
+      __ mov(a0, v0);
+      __ LoadRoot(a2, Heap::kthrow_stringRootIndex);  // "throw"
+      __ ld(a3, MemOperand(sp, 1 * kPointerSize));    // iter
+      __ Push(a2, a3, a0);                            // "throw", iter, except
+      __ jmp(&l_call);
+
+      // try { received = %yield result }
+      // Shuffle the received result above a try handler and yield it without
+      // re-boxing.
+      __ bind(&l_try);
+      __ pop(a0);                                        // result
+      int handler_index = NewHandlerTableEntry();
+      EnterTryBlock(handler_index, &l_catch);
+      const int try_block_size = TryCatch::kElementCount * kPointerSize;
+      __ push(a0);                                       // result
+
+      __ jmp(&l_suspend);
+      __ bind(&l_continuation);
+      __ RecordGeneratorContinuation();
+      __ mov(a0, v0);
+      __ jmp(&l_resume);
+
+      __ bind(&l_suspend);
+      const int generator_object_depth = kPointerSize + try_block_size;
+      __ ld(a0, MemOperand(sp, generator_object_depth));
+      __ push(a0);                                       // g
+      __ Push(Smi::FromInt(handler_index));              // handler-index
+      DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
+      __ li(a1, Operand(Smi::FromInt(l_continuation.pos())));
+      __ sd(a1, FieldMemOperand(a0, JSGeneratorObject::kContinuationOffset));
+      __ sd(cp, FieldMemOperand(a0, JSGeneratorObject::kContextOffset));
+      __ mov(a1, cp);
+      __ RecordWriteField(a0, JSGeneratorObject::kContextOffset, a1, a2,
+                          kRAHasBeenSaved, kDontSaveFPRegs);
+      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
+      __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ pop(v0);                                      // result
+      EmitReturnSequence();
+      __ mov(a0, v0);
+      __ bind(&l_resume);                              // received in a0
+      ExitTryBlock(handler_index);
+
+      // receiver = iter; f = 'next'; arg = received;
+      __ bind(&l_next);
+      __ LoadRoot(load_name, Heap::knext_stringRootIndex);  // "next"
+      __ ld(a3, MemOperand(sp, 1 * kPointerSize));          // iter
+      __ Push(load_name, a3, a0);                      // "next", iter, received
+
+      // result = receiver[f](arg);
+      __ bind(&l_call);
+      __ ld(load_receiver, MemOperand(sp, kPointerSize));
+      __ ld(load_name, MemOperand(sp, 2 * kPointerSize));
+      __ li(LoadDescriptor::SlotRegister(),
+            Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
+      Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
+      CallIC(ic, TypeFeedbackId::None());
+      __ mov(a0, v0);
+      __ mov(a1, a0);
+      __ sd(a1, MemOperand(sp, 2 * kPointerSize));
+      SetCallPosition(expr);
+      __ li(a0, Operand(1));
+      __ Call(
+          isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
+          RelocInfo::CODE_TARGET);
+
+      __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ Drop(1);  // The function is still on the stack; drop it.
+
+      // if (!result.done) goto l_try;
+      __ Move(load_receiver, v0);
+
+      __ push(load_receiver);                               // save result
+      __ LoadRoot(load_name, Heap::kdone_stringRootIndex);  // "done"
+      __ li(LoadDescriptor::SlotRegister(),
+            Operand(SmiFromSlot(expr->DoneFeedbackSlot())));
+      CallLoadIC(NOT_INSIDE_TYPEOF);  // v0=result.done
+      __ mov(a0, v0);
+      Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
+      CallIC(bool_ic);
+      __ LoadRoot(at, Heap::kTrueValueRootIndex);
+      __ Branch(&l_try, ne, result_register(), Operand(at));
+
+      // result.value
+      __ pop(load_receiver);                                 // result
+      __ LoadRoot(load_name, Heap::kvalue_stringRootIndex);  // "value"
+      __ li(LoadDescriptor::SlotRegister(),
+            Operand(SmiFromSlot(expr->ValueFeedbackSlot())));
+      CallLoadIC(NOT_INSIDE_TYPEOF);                         // v0=result.value
+      context()->DropAndPlug(2, v0);                         // drop iter and g
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
+    Expression *value,
+    JSGeneratorObject::ResumeMode resume_mode) {
+  // The value stays in a0, and is ultimately read by the resumed generator, as
+  // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
+  // is read to throw the value when the resumed generator is already closed.
+  // a1 will hold the generator object until the activation has been resumed.
+  VisitForStackValue(generator);
+  VisitForAccumulatorValue(value);
+  __ pop(a1);
+
+  // Load suspended function and context.
+  __ ld(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset));
+  __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
+
+  // Load receiver and store as the first argument.
+  __ ld(a2, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
+  __ push(a2);
+
+  // Push holes for the rest of the arguments to the generator function.
+  __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
+  // The argument count is stored as int32_t on 64-bit platforms.
+  // TODO(plind): Smi on 32-bit platforms.
+  __ lw(a3,
+        FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
+  __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
+  Label push_argument_holes, push_frame;
+  __ bind(&push_argument_holes);
+  __ Dsubu(a3, a3, Operand(1));
+  __ Branch(&push_frame, lt, a3, Operand(zero_reg));
+  __ push(a2);
+  __ jmp(&push_argument_holes);
+
+  // Enter a new JavaScript frame, and initialize its slots as they were when
+  // the generator was suspended.
+  Label resume_frame, done;
+  __ bind(&push_frame);
+  __ Call(&resume_frame);
+  __ jmp(&done);
+  __ bind(&resume_frame);
+  // ra = return address.
+  // fp = caller's frame pointer.
+  // cp = callee's context,
+  // a4 = callee's JS function.
+  __ Push(ra, fp, cp, a4);
+  // Adjust FP to point to saved FP.
+  __ Daddu(fp, sp, 2 * kPointerSize);
+
+  // Load the operand stack size.
+  __ ld(a3, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset));
+  __ ld(a3, FieldMemOperand(a3, FixedArray::kLengthOffset));
+  __ SmiUntag(a3);
+
+  // If we are sending a value and there is no operand stack, we can jump back
+  // in directly.
+  if (resume_mode == JSGeneratorObject::NEXT) {
+    Label slow_resume;
+    __ Branch(&slow_resume, ne, a3, Operand(zero_reg));
+    __ ld(a3, FieldMemOperand(a4, JSFunction::kCodeEntryOffset));
+    __ ld(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
+    __ SmiUntag(a2);
+    __ Daddu(a3, a3, Operand(a2));
+    __ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
+    __ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
+    __ Jump(a3);
+    __ bind(&slow_resume);
+  }
+
+  // Otherwise, we push holes for the operand stack and call the runtime to fix
+  // up the stack and the handlers.
+  Label push_operand_holes, call_resume;
+  __ bind(&push_operand_holes);
+  __ Dsubu(a3, a3, Operand(1));
+  __ Branch(&call_resume, lt, a3, Operand(zero_reg));
+  __ push(a2);
+  __ Branch(&push_operand_holes);
+  __ bind(&call_resume);
+  DCHECK(!result_register().is(a1));
+  __ Push(a1, result_register());
+  __ Push(Smi::FromInt(resume_mode));
+  __ CallRuntime(Runtime::kResumeJSGeneratorObject);
+  // Not reached: the runtime call returns elsewhere.
+  __ stop("not-reached");
+
+  __ bind(&done);
+  context()->Plug(result_register());
+}
+
+
+void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
+  Label allocate, done_allocate;
+
+  __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &allocate, TAG_OBJECT);
+  __ jmp(&done_allocate);
+
+  __ bind(&allocate);
+  __ Push(Smi::FromInt(JSIteratorResult::kSize));
+  __ CallRuntime(Runtime::kAllocateInNewSpace);
+
+  __ bind(&done_allocate);
+  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1);
+  __ pop(a2);
+  __ LoadRoot(a3,
+              done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
+  __ LoadRoot(a4, Heap::kEmptyFixedArrayRootIndex);
+  __ sd(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ sd(a4, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+  __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
+  __ sd(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset));
+  __ sd(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset));
+  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
+  SetExpressionPosition(prop);
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!prop->IsSuperAccess());
+
+  __ li(LoadDescriptor::NameRegister(), Operand(key->value()));
+  __ li(LoadDescriptor::SlotRegister(),
+        Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+  CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
+  // Stack: receiver, home_object.
+  SetExpressionPosition(prop);
+
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!key->value()->IsSmi());
+  DCHECK(prop->IsSuperAccess());
+
+  __ Push(key->value());
+  __ Push(Smi::FromInt(language_mode()));
+  __ CallRuntime(Runtime::kLoadFromSuper);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
+  // Call keyed load IC. It has register arguments receiver and key.
+  SetExpressionPosition(prop);
+
+  Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
+  __ li(LoadDescriptor::SlotRegister(),
+        Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+  CallIC(ic);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
+  // Stack: receiver, home_object, key.
+  SetExpressionPosition(prop);
+  __ Push(Smi::FromInt(language_mode()));
+  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
+}
+
+
+void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
+                                              Token::Value op,
+                                              Expression* left_expr,
+                                              Expression* right_expr) {
+  Label done, smi_case, stub_call;
+
+  Register scratch1 = a2;
+  Register scratch2 = a3;
+
+  // Get the arguments.
+  Register left = a1;
+  Register right = a0;
+  __ pop(left);
+  __ mov(a0, result_register());
+
+  // Perform combined smi check on both operands.
+  __ Or(scratch1, left, Operand(right));
+  STATIC_ASSERT(kSmiTag == 0);
+  JumpPatchSite patch_site(masm_);
+  patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+  __ bind(&stub_call);
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
+  CallIC(code, expr->BinaryOperationFeedbackId());
+  patch_site.EmitPatchInfo();
+  __ jmp(&done);
+
+  __ bind(&smi_case);
+  // Smi case. This code works the same way as the smi-smi case in the type
+  // recording binary operation stub, see
+  switch (op) {
+    case Token::SAR:
+      __ GetLeastBitsFromSmi(scratch1, right, 5);
+      __ dsrav(right, left, scratch1);
+      __ And(v0, right, Operand(0xffffffff00000000L));
+      break;
+    case Token::SHL: {
+      __ SmiUntag(scratch1, left);
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+      __ dsllv(scratch1, scratch1, scratch2);
+      __ SmiTag(v0, scratch1);
+      break;
+    }
+    case Token::SHR: {
+      __ SmiUntag(scratch1, left);
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+      __ dsrlv(scratch1, scratch1, scratch2);
+      __ And(scratch2, scratch1, 0x80000000);
+      __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
+      __ SmiTag(v0, scratch1);
+      break;
+    }
+    case Token::ADD:
+      __ DadduAndCheckForOverflow(v0, left, right, scratch1);
+      __ BranchOnOverflow(&stub_call, scratch1);
+      break;
+    case Token::SUB:
+      __ DsubuAndCheckForOverflow(v0, left, right, scratch1);
+      __ BranchOnOverflow(&stub_call, scratch1);
+      break;
+    case Token::MUL: {
+      __ Dmulh(v0, left, right);
+      __ dsra32(scratch2, v0, 0);
+      __ sra(scratch1, v0, 31);
+      __ Branch(USE_DELAY_SLOT, &stub_call, ne, scratch2, Operand(scratch1));
+      __ SmiTag(v0);
+      __ Branch(USE_DELAY_SLOT, &done, ne, v0, Operand(zero_reg));
+      __ Daddu(scratch2, right, left);
+      __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
+      DCHECK(Smi::FromInt(0) == 0);
+      __ mov(v0, zero_reg);
+      break;
+    }
+    case Token::BIT_OR:
+      __ Or(v0, left, Operand(right));
+      break;
+    case Token::BIT_AND:
+      __ And(v0, left, Operand(right));
+      break;
+    case Token::BIT_XOR:
+      __ Xor(v0, left, Operand(right));
+      break;
+    default:
+      UNREACHABLE();
+  }
+
+  __ bind(&done);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
+  // Constructor is in v0.
+  DCHECK(lit != NULL);
+  __ push(v0);
+
+  // No access check is needed here since the constructor is created by the
+  // class literal.
+  Register scratch = a1;
+  __ ld(scratch,
+        FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
+  __ push(scratch);
+
+  for (int i = 0; i < lit->properties()->length(); i++) {
+    ObjectLiteral::Property* property = lit->properties()->at(i);
+    Expression* value = property->value();
+
+    if (property->is_static()) {
+      __ ld(scratch, MemOperand(sp, kPointerSize));  // constructor
+    } else {
+      __ ld(scratch, MemOperand(sp, 0));  // prototype
+    }
+    __ push(scratch);
+    EmitPropertyKey(property, lit->GetIdForProperty(i));
+
+    // The static prototype property is read only. We handle the non computed
+    // property name case in the parser. Since this is the only case where we
+    // need to check for an own read only property we special case this so we do
+    // not need to do this for every property.
+    if (property->is_static() && property->is_computed_name()) {
+      __ CallRuntime(Runtime::kThrowIfStaticPrototype);
+      __ push(v0);
+    }
+
+    VisitForStackValue(value);
+    if (NeedsHomeObject(value)) {
+      EmitSetHomeObject(value, 2, property->GetSlot());
+    }
+
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+      case ObjectLiteral::Property::PROTOTYPE:
+        UNREACHABLE();
+      case ObjectLiteral::Property::COMPUTED:
+        __ CallRuntime(Runtime::kDefineClassMethod);
+        break;
+
+      case ObjectLiteral::Property::GETTER:
+        __ li(a0, Operand(Smi::FromInt(DONT_ENUM)));
+        __ push(a0);
+        __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
+        break;
+
+      case ObjectLiteral::Property::SETTER:
+        __ li(a0, Operand(Smi::FromInt(DONT_ENUM)));
+        __ push(a0);
+        __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
+        break;
+
+      default:
+        UNREACHABLE();
+    }
+  }
+
+  // Set both the prototype and constructor to have fast properties, and also
+  // freeze them in strong mode.
+  __ CallRuntime(Runtime::kFinalizeClassDefinition);
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
+  __ mov(a0, result_register());
+  __ pop(a1);
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
+  JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
+  CallIC(code, expr->BinaryOperationFeedbackId());
+  patch_site.EmitPatchInfo();
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitAssignment(Expression* expr,
+                                       FeedbackVectorSlot slot) {
+  DCHECK(expr->IsValidReferenceExpressionOrThis());
+
+  Property* prop = expr->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(prop);
+
+  switch (assign_type) {
+    case VARIABLE: {
+      Variable* var = expr->AsVariableProxy()->var();
+      EffectContext context(this);
+      EmitVariableAssignment(var, Token::ASSIGN, slot);
+      break;
+    }
+    case NAMED_PROPERTY: {
+      __ push(result_register());  // Preserve value.
+      VisitForAccumulatorValue(prop->obj());
+      __ mov(StoreDescriptor::ReceiverRegister(), result_register());
+      __ pop(StoreDescriptor::ValueRegister());  // Restore value.
+      __ li(StoreDescriptor::NameRegister(),
+            Operand(prop->key()->AsLiteral()->value()));
+      EmitLoadStoreICSlot(slot);
+      CallStoreIC();
+      break;
+    }
+    case NAMED_SUPER_PROPERTY: {
+      __ Push(v0);
+      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          prop->obj()->AsSuperPropertyReference()->home_object());
+      // stack: value, this; v0: home_object
+      Register scratch = a2;
+      Register scratch2 = a3;
+      __ mov(scratch, result_register());             // home_object
+      __ ld(v0, MemOperand(sp, kPointerSize));        // value
+      __ ld(scratch2, MemOperand(sp, 0));             // this
+      __ sd(scratch2, MemOperand(sp, kPointerSize));  // this
+      __ sd(scratch, MemOperand(sp, 0));              // home_object
+      // stack: this, home_object; v0: value
+      EmitNamedSuperPropertyStore(prop);
+      break;
+    }
+    case KEYED_SUPER_PROPERTY: {
+      __ Push(v0);
+      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          prop->obj()->AsSuperPropertyReference()->home_object());
+      VisitForAccumulatorValue(prop->key());
+      Register scratch = a2;
+      Register scratch2 = a3;
+      __ ld(scratch2, MemOperand(sp, 2 * kPointerSize));  // value
+      // stack: value, this, home_object; v0: key, a3: value
+      __ ld(scratch, MemOperand(sp, kPointerSize));  // this
+      __ sd(scratch, MemOperand(sp, 2 * kPointerSize));
+      __ ld(scratch, MemOperand(sp, 0));  // home_object
+      __ sd(scratch, MemOperand(sp, kPointerSize));
+      __ sd(v0, MemOperand(sp, 0));
+      __ Move(v0, scratch2);
+      // stack: this, home_object, key; v0: value.
+      EmitKeyedSuperPropertyStore(prop);
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ push(result_register());  // Preserve value.
+      VisitForStackValue(prop->obj());
+      VisitForAccumulatorValue(prop->key());
+      __ Move(StoreDescriptor::NameRegister(), result_register());
+      __ Pop(StoreDescriptor::ValueRegister(),
+             StoreDescriptor::ReceiverRegister());
+      EmitLoadStoreICSlot(slot);
+      Handle<Code> ic =
+          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+      CallIC(ic);
+      break;
+    }
+  }
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
+    Variable* var, MemOperand location) {
+  __ sd(result_register(), location);
+  if (var->IsContextSlot()) {
+    // RecordWrite may destroy all its register arguments.
+    __ Move(a3, result_register());
+    int offset = Context::SlotOffset(var->index());
+    __ RecordWriteContextSlot(
+        a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
+  }
+}
+
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
+                                               FeedbackVectorSlot slot) {
+  if (var->IsUnallocated()) {
+    // Global var, const, or let.
+    __ mov(StoreDescriptor::ValueRegister(), result_register());
+    __ li(StoreDescriptor::NameRegister(), Operand(var->name()));
+    __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
+    EmitLoadStoreICSlot(slot);
+    CallStoreIC();
+
+  } else if (var->mode() == LET && op != Token::INIT) {
+    // Non-initializing assignment to let variable needs a write barrier.
+    DCHECK(!var->IsLookupSlot());
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label assign;
+    MemOperand location = VarOperand(var, a1);
+    __ ld(a3, location);
+    __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+    __ Branch(&assign, ne, a3, Operand(a4));
+    __ li(a3, Operand(var->name()));
+    __ push(a3);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    // Perform the assignment.
+    __ bind(&assign);
+    EmitStoreToStackLocalOrContextSlot(var, location);
+
+  } else if (var->mode() == CONST && op != Token::INIT) {
+    // Assignment to const variable needs a write barrier.
+    DCHECK(!var->IsLookupSlot());
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label const_error;
+    MemOperand location = VarOperand(var, a1);
+    __ ld(a3, location);
+    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+    __ Branch(&const_error, ne, a3, Operand(at));
+    __ li(a3, Operand(var->name()));
+    __ push(a3);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    __ bind(&const_error);
+    __ CallRuntime(Runtime::kThrowConstAssignError);
+
+  } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
+    // Initializing assignment to const {this} needs a write barrier.
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label uninitialized_this;
+    MemOperand location = VarOperand(var, a1);
+    __ ld(a3, location);
+    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+    __ Branch(&uninitialized_this, eq, a3, Operand(at));
+    __ li(a0, Operand(var->name()));
+    __ Push(a0);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    __ bind(&uninitialized_this);
+    EmitStoreToStackLocalOrContextSlot(var, location);
+
+  } else if (!var->is_const_mode() ||
+             (var->mode() == CONST && op == Token::INIT)) {
+    if (var->IsLookupSlot()) {
+      // Assignment to var.
+      __ li(a4, Operand(var->name()));
+      __ li(a3, Operand(Smi::FromInt(language_mode())));
+      // jssp[0]  : language mode.
+      // jssp[8]  : name.
+      // jssp[16] : context.
+      // jssp[24] : value.
+      __ Push(v0, cp, a4, a3);
+      __ CallRuntime(Runtime::kStoreLookupSlot);
+    } else {
+      // Assignment to var or initializing assignment to let/const in harmony
+      // mode.
+      DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
+      MemOperand location = VarOperand(var, a1);
+      if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) {
+        // Check for an uninitialized let binding.
+        __ ld(a2, location);
+        __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+        __ Check(eq, kLetBindingReInitialization, a2, Operand(a4));
+      }
+      EmitStoreToStackLocalOrContextSlot(var, location);
+    }
+
+  } else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
+    // Const initializers need a write barrier.
+    DCHECK(!var->IsParameter());  // No const parameters.
+    if (var->IsLookupSlot()) {
+      __ li(a0, Operand(var->name()));
+      __ Push(v0, cp, a0);  // Context and name.
+      __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
+    } else {
+      DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+      Label skip;
+      MemOperand location = VarOperand(var, a1);
+      __ ld(a2, location);
+      __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+      __ Branch(&skip, ne, a2, Operand(at));
+      EmitStoreToStackLocalOrContextSlot(var, location);
+      __ bind(&skip);
+    }
+
+  } else {
+    DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
+    if (is_strict(language_mode())) {
+      __ CallRuntime(Runtime::kThrowConstAssignError);
+    }
+    // Silently ignore store in sloppy mode.
+  }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+  // Assignment to a property, using a named store IC.
+  Property* prop = expr->target()->AsProperty();
+  DCHECK(prop != NULL);
+  DCHECK(prop->key()->IsLiteral());
+
+  __ mov(StoreDescriptor::ValueRegister(), result_register());
+  __ li(StoreDescriptor::NameRegister(),
+        Operand(prop->key()->AsLiteral()->value()));
+  __ pop(StoreDescriptor::ReceiverRegister());
+  EmitLoadStoreICSlot(expr->AssignmentSlot());
+  CallStoreIC();
+
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
+  // Assignment to named property of super.
+  // v0 : value
+  // stack : receiver ('this'), home_object
+  DCHECK(prop != NULL);
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(key != NULL);
+
+  __ Push(key->value());
+  __ Push(v0);
+  __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
+                                             : Runtime::kStoreToSuper_Sloppy));
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
+  // Assignment to named property of super.
+  // v0 : value
+  // stack : receiver ('this'), home_object, key
+  DCHECK(prop != NULL);
+
+  __ Push(v0);
+  __ CallRuntime((is_strict(language_mode())
+                      ? Runtime::kStoreKeyedToSuper_Strict
+                      : Runtime::kStoreKeyedToSuper_Sloppy));
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+  // Assignment to a property, using a keyed store IC.
+  // Call keyed store IC.
+  // The arguments are:
+  // - a0 is the value,
+  // - a1 is the key,
+  // - a2 is the receiver.
+  __ mov(StoreDescriptor::ValueRegister(), result_register());
+  __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
+  DCHECK(StoreDescriptor::ValueRegister().is(a0));
+
+  Handle<Code> ic =
+      CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+  EmitLoadStoreICSlot(expr->AssignmentSlot());
+  CallIC(ic);
+
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitProperty(Property* expr) {
+  Comment cmnt(masm_, "[ Property");
+  SetExpressionPosition(expr);
+
+  Expression* key = expr->key();
+
+  if (key->IsPropertyName()) {
+    if (!expr->IsSuperAccess()) {
+      VisitForAccumulatorValue(expr->obj());
+      __ Move(LoadDescriptor::ReceiverRegister(), v0);
+      EmitNamedPropertyLoad(expr);
+    } else {
+      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          expr->obj()->AsSuperPropertyReference()->home_object());
+      EmitNamedSuperPropertyLoad(expr);
+    }
+  } else {
+    if (!expr->IsSuperAccess()) {
+      VisitForStackValue(expr->obj());
+      VisitForAccumulatorValue(expr->key());
+      __ Move(LoadDescriptor::NameRegister(), v0);
+      __ pop(LoadDescriptor::ReceiverRegister());
+      EmitKeyedPropertyLoad(expr);
+    } else {
+      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          expr->obj()->AsSuperPropertyReference()->home_object());
+      VisitForStackValue(expr->key());
+      EmitKeyedSuperPropertyLoad(expr);
+    }
+  }
+  PrepareForBailoutForId(expr->LoadId(), TOS_REG);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::CallIC(Handle<Code> code,
+                               TypeFeedbackId id) {
+  ic_total_count_++;
+  __ Call(code, RelocInfo::CODE_TARGET, id);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
+  Expression* callee = expr->expression();
+
+  // Get the target function.
+  ConvertReceiverMode convert_mode;
+  if (callee->IsVariableProxy()) {
+    { StackValueContext context(this);
+      EmitVariableLoad(callee->AsVariableProxy());
+      PrepareForBailout(callee, NO_REGISTERS);
+    }
+    // Push undefined as receiver. This is patched in the method prologue if it
+    // is a sloppy mode method.
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ push(at);
+    convert_mode = ConvertReceiverMode::kNullOrUndefined;
+  } else {
+    // Load the function from the receiver.
+    DCHECK(callee->IsProperty());
+    DCHECK(!callee->AsProperty()->IsSuperAccess());
+    __ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+    EmitNamedPropertyLoad(callee->AsProperty());
+    PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+    // Push the target function under the receiver.
+    __ ld(at, MemOperand(sp, 0));
+    __ push(at);
+    __ sd(v0, MemOperand(sp, kPointerSize));
+    convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
+  }
+
+  EmitCall(expr, convert_mode);
+}
+
+
+void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
+  SetExpressionPosition(expr);
+  Expression* callee = expr->expression();
+  DCHECK(callee->IsProperty());
+  Property* prop = callee->AsProperty();
+  DCHECK(prop->IsSuperAccess());
+
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!key->value()->IsSmi());
+  // Load the function from the receiver.
+  const Register scratch = a1;
+  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
+  VisitForAccumulatorValue(super_ref->home_object());
+  __ mov(scratch, v0);
+  VisitForAccumulatorValue(super_ref->this_var());
+  __ Push(scratch, v0, v0, scratch);
+  __ Push(key->value());
+  __ Push(Smi::FromInt(language_mode()));
+
+  // Stack here:
+  //  - home_object
+  //  - this (receiver)
+  //  - this (receiver) <-- LoadFromSuper will pop here and below.
+  //  - home_object
+  //  - key
+  //  - language_mode
+  __ CallRuntime(Runtime::kLoadFromSuper);
+
+  // Replace home_object with target function.
+  __ sd(v0, MemOperand(sp, kPointerSize));
+
+  // Stack here:
+  // - target function
+  // - this (receiver)
+  EmitCall(expr);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
+                                                Expression* key) {
+  // Load the key.
+  VisitForAccumulatorValue(key);
+
+  Expression* callee = expr->expression();
+
+  // Load the function from the receiver.
+  DCHECK(callee->IsProperty());
+  __ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+  __ Move(LoadDescriptor::NameRegister(), v0);
+  EmitKeyedPropertyLoad(callee->AsProperty());
+  PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+
+  // Push the target function under the receiver.
+  __ ld(at, MemOperand(sp, 0));
+  __ push(at);
+  __ sd(v0, MemOperand(sp, kPointerSize));
+
+  EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
+  Expression* callee = expr->expression();
+  DCHECK(callee->IsProperty());
+  Property* prop = callee->AsProperty();
+  DCHECK(prop->IsSuperAccess());
+
+  SetExpressionPosition(prop);
+  // Load the function from the receiver.
+  const Register scratch = a1;
+  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
+  VisitForAccumulatorValue(super_ref->home_object());
+  __ Move(scratch, v0);
+  VisitForAccumulatorValue(super_ref->this_var());
+  __ Push(scratch, v0, v0, scratch);
+  VisitForStackValue(prop->key());
+  __ Push(Smi::FromInt(language_mode()));
+
+  // Stack here:
+  //  - home_object
+  //  - this (receiver)
+  //  - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
+  //  - home_object
+  //  - key
+  //  - language_mode
+  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
+
+  // Replace home_object with target function.
+  __ sd(v0, MemOperand(sp, kPointerSize));
+
+  // Stack here:
+  // - target function
+  // - this (receiver)
+  EmitCall(expr);
+}
+
+
+void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
+  // Load the arguments.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+  // Record source position of the IC call.
+  SetCallPosition(expr);
+  Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
+  __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot())));
+  __ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+  // Don't assign a type feedback id to the IC, since type feedback is provided
+  // by the vector above.
+  CallIC(ic);
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, v0);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
+  // a6: copy of the first argument or undefined if it doesn't exist.
+  if (arg_count > 0) {
+    __ ld(a6, MemOperand(sp, arg_count * kPointerSize));
+  } else {
+    __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
+  }
+
+  // a5: the receiver of the enclosing function.
+  __ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+
+  // a4: the language mode.
+  __ li(a4, Operand(Smi::FromInt(language_mode())));
+
+  // a1: the start position of the scope the calls resides in.
+  __ li(a1, Operand(Smi::FromInt(scope()->start_position())));
+
+  // Do the runtime call.
+  __ Push(a6, a5, a4, a1);
+  __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
+}
+
+
+// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
+void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
+  VariableProxy* callee = expr->expression()->AsVariableProxy();
+  if (callee->var()->IsLookupSlot()) {
+    Label slow, done;
+
+    SetExpressionPosition(callee);
+    // Generate code for loading from variables potentially shadowed by
+    // eval-introduced variables.
+    EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
+
+    __ bind(&slow);
+    // Call the runtime to find the function to call (returned in v0)
+    // and the object holding it (returned in v1).
+    DCHECK(!context_register().is(a2));
+    __ li(a2, Operand(callee->name()));
+    __ Push(context_register(), a2);
+    __ CallRuntime(Runtime::kLoadLookupSlot);
+    __ Push(v0, v1);  // Function, receiver.
+    PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
+
+    // If fast case code has been generated, emit code to push the
+    // function and receiver and have the slow path jump around this
+    // code.
+    if (done.is_linked()) {
+      Label call;
+      __ Branch(&call);
+      __ bind(&done);
+      // Push function.
+      __ push(v0);
+      // The receiver is implicitly the global receiver. Indicate this
+      // by passing the hole to the call function stub.
+      __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
+      __ push(a1);
+      __ bind(&call);
+    }
+  } else {
+    VisitForStackValue(callee);
+    // refEnv.WithBaseObject()
+    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+    __ push(a2);  // Reserved receiver slot.
+  }
+}
+
+
+void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
+  // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
+  // to resolve the function we need to call.  Then we call the resolved
+  // function using the given arguments.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  PushCalleeAndWithBaseObject(expr);
+
+  // Push the arguments.
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Push a copy of the function (found below the arguments) and
+  // resolve eval.
+  __ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+  __ push(a1);
+  EmitResolvePossiblyDirectEval(arg_count);
+
+  // Touch up the stack with the resolved function.
+  __ sd(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
+
+  PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
+  // Record source position for debugger.
+  SetCallPosition(expr);
+  __ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+  __ li(a0, Operand(arg_count));
+  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, v0);
+}
+
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+  Comment cmnt(masm_, "[ CallNew");
+  // According to ECMA-262, section 11.2.2, page 44, the function
+  // expression in new calls must be evaluated before the
+  // arguments.
+
+  // Push constructor on the stack.  If it's not a function it's used as
+  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+  // ignored.
+  DCHECK(!expr->expression()->IsSuperPropertyReference());
+  VisitForStackValue(expr->expression());
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  SetConstructCallPosition(expr);
+
+  // Load function and argument count into a1 and a0.
+  __ li(a0, Operand(arg_count));
+  __ ld(a1, MemOperand(sp, arg_count * kPointerSize));
+
+  // Record call targets in unoptimized code.
+  __ EmitLoadTypeFeedbackVector(a2);
+  __ li(a3, Operand(SmiFromSlot(expr->CallNewFeedbackSlot())));
+
+  CallConstructStub stub(isolate());
+  __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
+  PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
+  // Restore context register.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
+  SuperCallReference* super_call_ref =
+      expr->expression()->AsSuperCallReference();
+  DCHECK_NOT_NULL(super_call_ref);
+
+  // Push the super constructor target on the stack (may be null,
+  // but the Construct builtin can deal with that properly).
+  VisitForAccumulatorValue(super_call_ref->this_function_var());
+  __ AssertFunction(result_register());
+  __ ld(result_register(),
+        FieldMemOperand(result_register(), HeapObject::kMapOffset));
+  __ ld(result_register(),
+        FieldMemOperand(result_register(), Map::kPrototypeOffset));
+  __ Push(result_register());
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  SetConstructCallPosition(expr);
+
+  // Load new target into a3.
+  VisitForAccumulatorValue(super_call_ref->new_target_var());
+  __ mov(a3, result_register());
+
+  // Load function and argument count into a1 and a0.
+  __ li(a0, Operand(arg_count));
+  __ ld(a1, MemOperand(sp, arg_count * kPointerSize));
+
+  __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+
+  RecordJSReturnSite(expr);
+
+  // Restore context register.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  __ SmiTst(v0, a4);
+  Split(eq, a4, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(ge, a1, Operand(FIRST_JS_RECEIVER_TYPE),
+        if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(SIMD128_VALUE_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a2);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  __ Branch(if_true, hs, a2, Operand(FIRST_FUNCTION_TYPE));
+  __ Branch(if_false);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
+  __ lwu(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset));
+  __ lwu(a1, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
+  __ li(a4, 0x80000000);
+  Label not_nan;
+  __ Branch(&not_nan, ne, a2, Operand(a4));
+  __ mov(a4, zero_reg);
+  __ mov(a2, a1);
+  __ bind(&not_nan);
+
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a2, Operand(a4), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_ARRAY_TYPE),
+        if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_TYPED_ARRAY_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_PROXY_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+
+  // Load the two objects into registers and perform the comparison.
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ pop(a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  // ArgumentsAccessStub expects the key in a1 and the formal
+  // parameter count in a0.
+  VisitForAccumulatorValue(args->at(0));
+  __ mov(a1, v0);
+  __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
+  ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
+  __ CallStub(&stub);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
+  DCHECK(expr->arguments()->length() == 0);
+  Label exit;
+  // Get the number of formal parameters.
+  __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
+
+  // Check if the calling frame is an arguments adaptor frame.
+  __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+  __ Branch(&exit, ne, a3,
+            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+  // Arguments adaptor case: Read the arguments length from the
+  // adaptor frame.
+  __ ld(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+  __ bind(&exit);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  Label done, null, function, non_function_constructor;
+
+  VisitForAccumulatorValue(args->at(0));
+
+  // If the object is not a JSReceiver, we return null.
+  __ JumpIfSmi(v0, &null);
+  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+  __ GetObjectType(v0, v0, a1);  // Map is now in v0.
+  __ Branch(&null, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE));
+
+  // Return 'Function' for JSFunction objects.
+  __ Branch(&function, eq, a1, Operand(JS_FUNCTION_TYPE));
+
+  // Check if the constructor in the map is a JS function.
+  Register instance_type = a2;
+  __ GetMapConstructor(v0, v0, a1, instance_type);
+  __ Branch(&non_function_constructor, ne, instance_type,
+            Operand(JS_FUNCTION_TYPE));
+
+  // v0 now contains the constructor function. Grab the
+  // instance class name from there.
+  __ ld(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
+  __ ld(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
+  __ Branch(&done);
+
+  // Functions have class 'Function'.
+  __ bind(&function);
+  __ LoadRoot(v0, Heap::kFunction_stringRootIndex);
+  __ jmp(&done);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ bind(&non_function_constructor);
+  __ LoadRoot(v0, Heap::kObject_stringRootIndex);
+  __ jmp(&done);
+
+  // Non-JS objects have class null.
+  __ bind(&null);
+  __ LoadRoot(v0, Heap::kNullValueRootIndex);
+
+  // All done.
+  __ bind(&done);
+
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));  // Load the object.
+
+  Label done;
+  // If the object is a smi return the object.
+  __ JumpIfSmi(v0, &done);
+  // If the object is not a value type, return the object.
+  __ GetObjectType(v0, a1, a1);
+  __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
+
+  __ ld(v0, FieldMemOperand(v0, JSValue::kValueOffset));
+
+  __ bind(&done);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = nullptr;
+  Label* if_false = nullptr;
+  Label* fall_through = nullptr;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_DATE_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(3, args->length());
+
+  Register string = v0;
+  Register index = a1;
+  Register value = a2;
+
+  VisitForStackValue(args->at(0));        // index
+  VisitForStackValue(args->at(1));        // value
+  VisitForAccumulatorValue(args->at(2));  // string
+  __ Pop(index, value);
+
+  if (FLAG_debug_code) {
+    __ SmiTst(value, at);
+    __ Check(eq, kNonSmiValue, at, Operand(zero_reg));
+    __ SmiTst(index, at);
+    __ Check(eq, kNonSmiIndex, at, Operand(zero_reg));
+    __ SmiUntag(index, index);
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    Register scratch = t1;
+    __ EmitSeqStringSetCharCheck(
+        string, index, value, scratch, one_byte_seq_type);
+    __ SmiTag(index, index);
+  }
+
+  __ SmiUntag(value, value);
+  __ Daddu(at,
+          string,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ SmiUntag(index);
+  __ Daddu(at, at, index);
+  __ sb(value, MemOperand(at));
+  context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(3, args->length());
+
+  Register string = v0;
+  Register index = a1;
+  Register value = a2;
+
+  VisitForStackValue(args->at(0));        // index
+  VisitForStackValue(args->at(1));        // value
+  VisitForAccumulatorValue(args->at(2));  // string
+  __ Pop(index, value);
+
+  if (FLAG_debug_code) {
+    __ SmiTst(value, at);
+    __ Check(eq, kNonSmiValue, at, Operand(zero_reg));
+    __ SmiTst(index, at);
+    __ Check(eq, kNonSmiIndex, at, Operand(zero_reg));
+    __ SmiUntag(index, index);
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    Register scratch = t1;
+    __ EmitSeqStringSetCharCheck(
+        string, index, value, scratch, two_byte_seq_type);
+    __ SmiTag(index, index);
+  }
+
+  __ SmiUntag(value, value);
+  __ Daddu(at,
+          string,
+          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  __ dsra(index, index, 32 - 1);
+  __ Daddu(at, at, index);
+  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+  __ sh(value, MemOperand(at));
+    context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+
+  VisitForStackValue(args->at(0));  // Load the object.
+  VisitForAccumulatorValue(args->at(1));  // Load the value.
+  __ pop(a1);  // v0 = value. a1 = object.
+
+  Label done;
+  // If the object is a smi, return the value.
+  __ JumpIfSmi(a1, &done);
+
+  // If the object is not a value type, return the value.
+  __ GetObjectType(a1, a2, a2);
+  __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
+
+  // Store the value.
+  __ sd(v0, FieldMemOperand(a1, JSValue::kValueOffset));
+  // Update the write barrier.  Save the value as it will be
+  // overwritten by the write barrier code and is needed afterward.
+  __ mov(a2, v0);
+  __ RecordWriteField(
+      a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
+
+  __ bind(&done);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  // Load the argument into v0 and convert it.
+  VisitForAccumulatorValue(args->at(0));
+
+  // Convert the object to an integer.
+  Label done_convert;
+  __ JumpIfSmi(v0, &done_convert);
+  __ Push(v0);
+  __ CallRuntime(Runtime::kToInteger);
+  __ bind(&done_convert);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitToName(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  // Load the argument into v0 and convert it.
+  VisitForAccumulatorValue(args->at(0));
+
+  Label convert, done_convert;
+  __ JumpIfSmi(v0, &convert);
+  STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
+  __ GetObjectType(v0, a1, a1);
+  __ Branch(&done_convert, le, a1, Operand(LAST_NAME_TYPE));
+  __ bind(&convert);
+  __ Push(v0);
+  __ CallRuntime(Runtime::kToName);
+  __ bind(&done_convert);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label done;
+  StringCharFromCodeGenerator generator(v0, a1);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, call_helper);
+
+  __ bind(&done);
+  context()->Plug(a1);
+}
+
+
+void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+  __ mov(a0, result_register());
+
+  Register object = a1;
+  Register index = a0;
+  Register result = v0;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharCodeAtGenerator generator(object,
+                                      index,
+                                      result,
+                                      &need_conversion,
+                                      &need_conversion,
+                                      &index_out_of_range,
+                                      STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // NaN.
+  __ LoadRoot(result, Heap::kNanValueRootIndex);
+  __ jmp(&done);
+
+  __ bind(&need_conversion);
+  // Load the undefined value into the result register, which will
+  // trigger conversion.
+  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+  __ mov(a0, result_register());
+
+  Register object = a1;
+  Register index = a0;
+  Register scratch = a3;
+  Register result = v0;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharAtGenerator generator(object,
+                                  index,
+                                  scratch,
+                                  result,
+                                  &need_conversion,
+                                  &need_conversion,
+                                  &index_out_of_range,
+                                  STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // the empty string.
+  __ LoadRoot(result, Heap::kempty_stringRootIndex);
+  __ jmp(&done);
+
+  __ bind(&need_conversion);
+  // Move smi zero into the result register, which will trigger
+  // conversion.
+  __ li(result, Operand(Smi::FromInt(0)));
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitCall(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_LE(2, args->length());
+  // Push target, receiver and arguments onto the stack.
+  for (Expression* const arg : *args) {
+    VisitForStackValue(arg);
+  }
+  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+  // Move target to a1.
+  int const argc = args->length() - 2;
+  __ ld(a1, MemOperand(sp, (argc + 1) * kPointerSize));
+  // Call the target.
+  __ li(a0, Operand(argc));
+  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+  // Restore context register.
+  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  // Discard the function left on TOS.
+  context()->DropAndPlug(1, v0);
+}
+
+
+void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ lwu(a0, FieldMemOperand(v0, String::kHashFieldOffset));
+  __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
+
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  VisitForAccumulatorValue(args->at(0));
+
+  __ AssertString(v0);
+
+  __ lwu(v0, FieldMemOperand(v0, String::kHashFieldOffset));
+  __ IndexFromHash(v0, v0);
+
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+  VisitForAccumulatorValue(args->at(0));
+  __ AssertFunction(v0);
+  __ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ ld(v0, FieldMemOperand(v0, Map::kPrototypeOffset));
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
+  Label bailout, done, one_char_separator, long_separator,
+      non_trivial_array, not_size_one_array, loop,
+      empty_separator_loop, one_char_separator_loop,
+      one_char_separator_loop_entry, long_separator_loop;
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+  VisitForStackValue(args->at(1));
+  VisitForAccumulatorValue(args->at(0));
+
+  // All aliases of the same register have disjoint lifetimes.
+  Register array = v0;
+  Register elements = no_reg;  // Will be v0.
+  Register result = no_reg;  // Will be v0.
+  Register separator = a1;
+  Register array_length = a2;
+  Register result_pos = no_reg;  // Will be a2.
+  Register string_length = a3;
+  Register string = a4;
+  Register element = a5;
+  Register elements_end = a6;
+  Register scratch1 = a7;
+  Register scratch2 = t1;
+  Register scratch3 = t0;
+
+  // Separator operand is on the stack.
+  __ pop(separator);
+
+  // Check that the array is a JSArray.
+  __ JumpIfSmi(array, &bailout);
+  __ GetObjectType(array, scratch1, scratch2);
+  __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
+
+  // Check that the array has fast elements.
+  __ CheckFastElements(scratch1, scratch2, &bailout);
+
+  // If the array has length zero, return the empty string.
+  __ ld(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+  __ SmiUntag(array_length);
+  __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
+  __ LoadRoot(v0, Heap::kempty_stringRootIndex);
+  __ Branch(&done);
+
+  __ bind(&non_trivial_array);
+
+  // Get the FixedArray containing array's elements.
+  elements = array;
+  __ ld(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+  array = no_reg;  // End of array's live range.
+
+  // Check that all array elements are sequential one-byte strings, and
+  // accumulate the sum of their lengths, as a smi-encoded value.
+  __ mov(string_length, zero_reg);
+  __ Daddu(element,
+          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ dsll(elements_end, array_length, kPointerSizeLog2);
+  __ Daddu(elements_end, element, elements_end);
+  // Loop condition: while (element < elements_end).
+  // Live values in registers:
+  //   elements: Fixed array of strings.
+  //   array_length: Length of the fixed array of strings (not smi)
+  //   separator: Separator string
+  //   string_length: Accumulated sum of string lengths (smi).
+  //   element: Current array element.
+  //   elements_end: Array end.
+  if (generate_debug_code_) {
+    __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin, array_length,
+              Operand(zero_reg));
+  }
+  __ bind(&loop);
+  __ ld(string, MemOperand(element));
+  __ Daddu(element, element, kPointerSize);
+  __ JumpIfSmi(string, &bailout);
+  __ ld(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+  __ ld(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
+  __ DadduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
+  __ BranchOnOverflow(&bailout, scratch3);
+  __ Branch(&loop, lt, element, Operand(elements_end));
+
+  // If array_length is 1, return elements[0], a string.
+  __ Branch(&not_size_one_array, ne, array_length, Operand(1));
+  __ ld(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
+  __ Branch(&done);
+
+  __ bind(&not_size_one_array);
+
+  // Live values in registers:
+  //   separator: Separator string
+  //   array_length: Length of the array.
+  //   string_length: Sum of string lengths (smi).
+  //   elements: FixedArray of strings.
+
+  // Check that the separator is a flat one-byte string.
+  __ JumpIfSmi(separator, &bailout);
+  __ ld(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+
+  // Add (separator length times array_length) - separator length to the
+  // string_length to get the length of the result string. array_length is not
+  // smi but the other values are, so the result is a smi.
+  __ ld(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+  __ Dsubu(string_length, string_length, Operand(scratch1));
+  __ SmiUntag(scratch1);
+  __ Dmul(scratch2, array_length, scratch1);
+  // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+  // zero.
+  __ dsra32(scratch1, scratch2, 0);
+  __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
+  __ SmiUntag(string_length);
+  __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
+  __ BranchOnOverflow(&bailout, scratch3);
+
+  // Bailout for large object allocations.
+  __ Branch(&bailout, gt, string_length,
+            Operand(Page::kMaxRegularHeapObjectSize));
+
+  // Get first element in the array to free up the elements register to be used
+  // for the result.
+  __ Daddu(element,
+          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  result = elements;  // End of live range for elements.
+  elements = no_reg;
+  // Live values in registers:
+  //   element: First array element
+  //   separator: Separator string
+  //   string_length: Length of result string (not smi)
+  //   array_length: Length of the array.
+  __ AllocateOneByteString(result, string_length, scratch1, scratch2,
+                           elements_end, &bailout);
+  // Prepare for looping. Set up elements_end to end of the array. Set
+  // result_pos to the position of the result where to write the first
+  // character.
+  __ dsll(elements_end, array_length, kPointerSizeLog2);
+  __ Daddu(elements_end, element, elements_end);
+  result_pos = array_length;  // End of live range for array_length.
+  array_length = no_reg;
+  __ Daddu(result_pos,
+          result,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+  // Check the length of the separator.
+  __ ld(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+  __ li(at, Operand(Smi::FromInt(1)));
+  __ Branch(&one_char_separator, eq, scratch1, Operand(at));
+  __ Branch(&long_separator, gt, scratch1, Operand(at));
+
+  // Empty separator case.
+  __ bind(&empty_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+
+  // Copy next array element to the result.
+  __ ld(string, MemOperand(element));
+  __ Daddu(element, element, kPointerSize);
+  __ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
+  DCHECK(result.is(v0));
+  __ Branch(&done);
+
+  // One-character separator case.
+  __ bind(&one_char_separator);
+  // Replace separator with its one-byte character value.
+  __ lbu(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
+  // Jump into the loop after the code that copies the separator, so the first
+  // element is not preceded by a separator.
+  __ jmp(&one_char_separator_loop_entry);
+
+  __ bind(&one_char_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Single separator one-byte char (in lower byte).
+
+  // Copy the separator character to the result.
+  __ sb(separator, MemOperand(result_pos));
+  __ Daddu(result_pos, result_pos, 1);
+
+  // Copy next array element to the result.
+  __ bind(&one_char_separator_loop_entry);
+  __ ld(string, MemOperand(element));
+  __ Daddu(element, element, kPointerSize);
+  __ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
+  DCHECK(result.is(v0));
+  __ Branch(&done);
+
+  // Long separator case (separator is more than one character). Entry is at the
+  // label long_separator below.
+  __ bind(&long_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Separator string.
+
+  // Copy the separator to the result.
+  __ ld(string_length, FieldMemOperand(separator, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Daddu(string,
+          separator,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+
+  __ bind(&long_separator);
+  __ ld(string, MemOperand(element));
+  __ Daddu(element, element, kPointerSize);
+  __ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
+  DCHECK(result.is(v0));
+  __ Branch(&done);
+
+  __ bind(&bailout);
+  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  __ bind(&done);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
+  DCHECK(expr->arguments()->length() == 0);
+  ExternalReference debug_is_active =
+      ExternalReference::debug_is_active_address(isolate());
+  __ li(at, Operand(debug_is_active));
+  __ lbu(v0, MemOperand(at));
+  __ SmiTag(v0);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(2, args->length());
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+
+  Label runtime, done;
+
+  __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &runtime, TAG_OBJECT);
+  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1);
+  __ Pop(a2, a3);
+  __ LoadRoot(a4, Heap::kEmptyFixedArrayRootIndex);
+  __ sd(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ sd(a4, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+  __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
+  __ sd(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset));
+  __ sd(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset));
+  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
+  __ jmp(&done);
+
+  __ bind(&runtime);
+  __ CallRuntime(Runtime::kCreateIterResultObject);
+
+  __ bind(&done);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
+  // Push undefined as the receiver.
+  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  __ push(v0);
+
+  __ LoadNativeContextSlot(expr->context_index(), v0);
+}
+
+
+void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+
+  SetCallPosition(expr);
+  __ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+  __ li(a0, Operand(arg_count));
+  __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
+          RelocInfo::CODE_TARGET);
+}
+
+
+void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+
+  if (expr->is_jsruntime()) {
+    Comment cmnt(masm_, "[ CallRuntime");
+    EmitLoadJSRuntimeFunction(expr);
+
+    // Push the target function under the receiver.
+    __ ld(at, MemOperand(sp, 0));
+    __ push(at);
+    __ sd(v0, MemOperand(sp, kPointerSize));
+
+    // Push the arguments ("left-to-right").
+    for (int i = 0; i < arg_count; i++) {
+      VisitForStackValue(args->at(i));
+    }
+
+    PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+    EmitCallJSRuntimeFunction(expr);
+
+    // Restore context register.
+    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+    context()->DropAndPlug(1, v0);
+  } else {
+    const Runtime::Function* function = expr->function();
+    switch (function->function_id) {
+#define CALL_INTRINSIC_GENERATOR(Name)     \
+  case Runtime::kInline##Name: {           \
+    Comment cmnt(masm_, "[ Inline" #Name); \
+    return Emit##Name(expr);               \
+  }
+      FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
+#undef CALL_INTRINSIC_GENERATOR
+      default: {
+        Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
+        // Push the arguments ("left-to-right").
+        for (int i = 0; i < arg_count; i++) {
+          VisitForStackValue(args->at(i));
+        }
+
+        // Call the C runtime function.
+        PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+        __ CallRuntime(expr->function(), arg_count);
+        context()->Plug(v0);
+      }
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+  switch (expr->op()) {
+    case Token::DELETE: {
+      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+      Property* property = expr->expression()->AsProperty();
+      VariableProxy* proxy = expr->expression()->AsVariableProxy();
+
+      if (property != NULL) {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+        __ CallRuntime(is_strict(language_mode())
+                           ? Runtime::kDeleteProperty_Strict
+                           : Runtime::kDeleteProperty_Sloppy);
+        context()->Plug(v0);
+      } else if (proxy != NULL) {
+        Variable* var = proxy->var();
+        // Delete of an unqualified identifier is disallowed in strict mode but
+        // "delete this" is allowed.
+        bool is_this = var->HasThisName(isolate());
+        DCHECK(is_sloppy(language_mode()) || is_this);
+        if (var->IsUnallocatedOrGlobalSlot()) {
+          __ LoadGlobalObject(a2);
+          __ li(a1, Operand(var->name()));
+          __ Push(a2, a1);
+          __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
+          context()->Plug(v0);
+        } else if (var->IsStackAllocated() || var->IsContextSlot()) {
+          // Result of deleting non-global, non-dynamic variables is false.
+          // The subexpression does not have side effects.
+          context()->Plug(is_this);
+        } else {
+          // Non-global variable.  Call the runtime to try to delete from the
+          // context where the variable was introduced.
+          DCHECK(!context_register().is(a2));
+          __ li(a2, Operand(var->name()));
+          __ Push(context_register(), a2);
+          __ CallRuntime(Runtime::kDeleteLookupSlot);
+          context()->Plug(v0);
+        }
+      } else {
+        // Result of deleting non-property, non-variable reference is true.
+        // The subexpression may have side effects.
+        VisitForEffect(expr->expression());
+        context()->Plug(true);
+      }
+      break;
+    }
+
+    case Token::VOID: {
+      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+      VisitForEffect(expr->expression());
+      context()->Plug(Heap::kUndefinedValueRootIndex);
+      break;
+    }
+
+    case Token::NOT: {
+      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+      if (context()->IsEffect()) {
+        // Unary NOT has no side effects so it's only necessary to visit the
+        // subexpression.  Match the optimizing compiler by not branching.
+        VisitForEffect(expr->expression());
+      } else if (context()->IsTest()) {
+        const TestContext* test = TestContext::cast(context());
+        // The labels are swapped for the recursive call.
+        VisitForControl(expr->expression(),
+                        test->false_label(),
+                        test->true_label(),
+                        test->fall_through());
+        context()->Plug(test->true_label(), test->false_label());
+      } else {
+        // We handle value contexts explicitly rather than simply visiting
+        // for control and plugging the control flow into the context,
+        // because we need to prepare a pair of extra administrative AST ids
+        // for the optimizing compiler.
+        DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
+        Label materialize_true, materialize_false, done;
+        VisitForControl(expr->expression(),
+                        &materialize_false,
+                        &materialize_true,
+                        &materialize_true);
+        __ bind(&materialize_true);
+        PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
+        __ LoadRoot(v0, Heap::kTrueValueRootIndex);
+        if (context()->IsStackValue()) __ push(v0);
+        __ jmp(&done);
+        __ bind(&materialize_false);
+        PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
+        __ LoadRoot(v0, Heap::kFalseValueRootIndex);
+        if (context()->IsStackValue()) __ push(v0);
+        __ bind(&done);
+      }
+      break;
+    }
+
+    case Token::TYPEOF: {
+      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+      {
+        AccumulatorValueContext context(this);
+        VisitForTypeofValue(expr->expression());
+      }
+      __ mov(a3, v0);
+      TypeofStub typeof_stub(isolate());
+      __ CallStub(&typeof_stub);
+      context()->Plug(v0);
+      break;
+    }
+
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+  DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
+
+  Comment cmnt(masm_, "[ CountOperation");
+
+  Property* prop = expr->expression()->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(prop);
+
+  // Evaluate expression and get value.
+  if (assign_type == VARIABLE) {
+    DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
+    AccumulatorValueContext context(this);
+    EmitVariableLoad(expr->expression()->AsVariableProxy());
+  } else {
+    // Reserve space for result of postfix operation.
+    if (expr->is_postfix() && !context()->IsEffect()) {
+      __ li(at, Operand(Smi::FromInt(0)));
+      __ push(at);
+    }
+    switch (assign_type) {
+      case NAMED_PROPERTY: {
+        // Put the object both on the stack and in the register.
+        VisitForStackValue(prop->obj());
+        __ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+        EmitNamedPropertyLoad(prop);
+        break;
+      }
+
+      case NAMED_SUPER_PROPERTY: {
+        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+        VisitForAccumulatorValue(
+            prop->obj()->AsSuperPropertyReference()->home_object());
+        __ Push(result_register());
+        const Register scratch = a1;
+        __ ld(scratch, MemOperand(sp, kPointerSize));
+        __ Push(scratch, result_register());
+        EmitNamedSuperPropertyLoad(prop);
+        break;
+      }
+
+      case KEYED_SUPER_PROPERTY: {
+        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+        VisitForAccumulatorValue(
+            prop->obj()->AsSuperPropertyReference()->home_object());
+        const Register scratch = a1;
+        const Register scratch1 = a4;
+        __ Move(scratch, result_register());
+        VisitForAccumulatorValue(prop->key());
+        __ Push(scratch, result_register());
+        __ ld(scratch1, MemOperand(sp, 2 * kPointerSize));
+        __ Push(scratch1, scratch, result_register());
+        EmitKeyedSuperPropertyLoad(prop);
+        break;
+      }
+
+      case KEYED_PROPERTY: {
+        VisitForStackValue(prop->obj());
+        VisitForStackValue(prop->key());
+        __ ld(LoadDescriptor::ReceiverRegister(),
+              MemOperand(sp, 1 * kPointerSize));
+        __ ld(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+        EmitKeyedPropertyLoad(prop);
+        break;
+      }
+
+      case VARIABLE:
+        UNREACHABLE();
+    }
+  }
+
+  // We need a second deoptimization point after loading the value
+  // in case evaluating the property load my have a side effect.
+  if (assign_type == VARIABLE) {
+    PrepareForBailout(expr->expression(), TOS_REG);
+  } else {
+    PrepareForBailoutForId(prop->LoadId(), TOS_REG);
+  }
+
+  // Inline smi case if we are in a loop.
+  Label stub_call, done;
+  JumpPatchSite patch_site(masm_);
+
+  int count_value = expr->op() == Token::INC ? 1 : -1;
+  __ mov(a0, v0);
+  if (ShouldInlineSmiCase(expr->op())) {
+    Label slow;
+    patch_site.EmitJumpIfNotSmi(v0, &slow);
+
+    // Save result for postfix expressions.
+    if (expr->is_postfix()) {
+      if (!context()->IsEffect()) {
+        // Save the result on the stack. If we have a named or keyed property
+        // we store the result under the receiver that is currently on top
+        // of the stack.
+        switch (assign_type) {
+          case VARIABLE:
+            __ push(v0);
+            break;
+          case NAMED_PROPERTY:
+            __ sd(v0, MemOperand(sp, kPointerSize));
+            break;
+          case NAMED_SUPER_PROPERTY:
+            __ sd(v0, MemOperand(sp, 2 * kPointerSize));
+            break;
+          case KEYED_PROPERTY:
+            __ sd(v0, MemOperand(sp, 2 * kPointerSize));
+            break;
+          case KEYED_SUPER_PROPERTY:
+            __ sd(v0, MemOperand(sp, 3 * kPointerSize));
+            break;
+        }
+      }
+    }
+
+    Register scratch1 = a1;
+    Register scratch2 = a4;
+    __ li(scratch1, Operand(Smi::FromInt(count_value)));
+    __ DadduAndCheckForOverflow(v0, v0, scratch1, scratch2);
+    __ BranchOnNoOverflow(&done, scratch2);
+    // Call stub. Undo operation first.
+    __ Move(v0, a0);
+    __ jmp(&stub_call);
+    __ bind(&slow);
+  }
+  if (!is_strong(language_mode())) {
+    ToNumberStub convert_stub(isolate());
+    __ CallStub(&convert_stub);
+    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
+  }
+
+  // Save result for postfix expressions.
+  if (expr->is_postfix()) {
+    if (!context()->IsEffect()) {
+      // Save the result on the stack. If we have a named or keyed property
+      // we store the result under the receiver that is currently on top
+      // of the stack.
+      switch (assign_type) {
+        case VARIABLE:
+          __ push(v0);
+          break;
+        case NAMED_PROPERTY:
+          __ sd(v0, MemOperand(sp, kPointerSize));
+          break;
+        case NAMED_SUPER_PROPERTY:
+          __ sd(v0, MemOperand(sp, 2 * kPointerSize));
+          break;
+        case KEYED_PROPERTY:
+          __ sd(v0, MemOperand(sp, 2 * kPointerSize));
+          break;
+        case KEYED_SUPER_PROPERTY:
+          __ sd(v0, MemOperand(sp, 3 * kPointerSize));
+          break;
+      }
+    }
+  }
+
+  __ bind(&stub_call);
+  __ mov(a1, v0);
+  __ li(a0, Operand(Smi::FromInt(count_value)));
+
+  SetExpressionPosition(expr);
+
+
+  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD,
+                                              strength(language_mode())).code();
+  CallIC(code, expr->CountBinOpFeedbackId());
+  patch_site.EmitPatchInfo();
+  __ bind(&done);
+
+  if (is_strong(language_mode())) {
+    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
+  }
+  // Store the value returned in v0.
+  switch (assign_type) {
+    case VARIABLE:
+      if (expr->is_postfix()) {
+        { EffectContext context(this);
+          EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                                 Token::ASSIGN, expr->CountSlot());
+          PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+          context.Plug(v0);
+        }
+        // For all contexts except EffectConstant we have the result on
+        // top of the stack.
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                               Token::ASSIGN, expr->CountSlot());
+        PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+        context()->Plug(v0);
+      }
+      break;
+    case NAMED_PROPERTY: {
+      __ mov(StoreDescriptor::ValueRegister(), result_register());
+      __ li(StoreDescriptor::NameRegister(),
+            Operand(prop->key()->AsLiteral()->value()));
+      __ pop(StoreDescriptor::ReceiverRegister());
+      EmitLoadStoreICSlot(expr->CountSlot());
+      CallStoreIC();
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+    case NAMED_SUPER_PROPERTY: {
+      EmitNamedSuperPropertyStore(prop);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+    case KEYED_SUPER_PROPERTY: {
+      EmitKeyedSuperPropertyStore(prop);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ mov(StoreDescriptor::ValueRegister(), result_register());
+      __ Pop(StoreDescriptor::ReceiverRegister(),
+             StoreDescriptor::NameRegister());
+      Handle<Code> ic =
+          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+      EmitLoadStoreICSlot(expr->CountSlot());
+      CallIC(ic);
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
+                                                 Expression* sub_expr,
+                                                 Handle<String> check) {
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  { AccumulatorValueContext context(this);
+    VisitForTypeofValue(sub_expr);
+  }
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+
+  Factory* factory = isolate()->factory();
+  if (String::Equals(check, factory->number_string())) {
+    __ JumpIfSmi(v0, if_true);
+    __ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->string_string())) {
+    __ JumpIfSmi(v0, if_false);
+    __ GetObjectType(v0, v0, a1);
+    Split(lt, a1, Operand(FIRST_NONSTRING_TYPE), if_true, if_false,
+          fall_through);
+  } else if (String::Equals(check, factory->symbol_string())) {
+    __ JumpIfSmi(v0, if_false);
+    __ GetObjectType(v0, v0, a1);
+    Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->boolean_string())) {
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->undefined_string())) {
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    __ JumpIfSmi(v0, if_false);
+    // Check for undetectable objects => true.
+    __ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+    Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->function_string())) {
+    __ JumpIfSmi(v0, if_false);
+    __ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1,
+           Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    Split(eq, a1, Operand(1 << Map::kIsCallable), if_true, if_false,
+          fall_through);
+  } else if (String::Equals(check, factory->object_string())) {
+    __ JumpIfSmi(v0, if_false);
+    __ LoadRoot(at, Heap::kNullValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ GetObjectType(v0, v0, a1);
+    __ Branch(if_false, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE));
+    // Check for callable or undetectable objects => false.
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1,
+           Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)    \
+  } else if (String::Equals(check, factory->type##_string())) {  \
+    __ JumpIfSmi(v0, if_false);                                  \
+    __ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));      \
+    __ LoadRoot(at, Heap::k##Type##MapRootIndex);                \
+    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+  } else {
+    if (if_false != fall_through) __ jmp(if_false);
+  }
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+  Comment cmnt(masm_, "[ CompareOperation");
+  SetExpressionPosition(expr);
+
+  // First we try a fast inlined version of the compare when one of
+  // the operands is a literal.
+  if (TryLiteralCompare(expr)) return;
+
+  // Always perform the comparison for its control flow.  Pack the result
+  // into the expression's context after the comparison is performed.
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  Token::Value op = expr->op();
+  VisitForStackValue(expr->left());
+  switch (op) {
+    case Token::IN:
+      VisitForStackValue(expr->right());
+      __ CallRuntime(Runtime::kHasProperty);
+      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
+      __ LoadRoot(a4, Heap::kTrueValueRootIndex);
+      Split(eq, v0, Operand(a4), if_true, if_false, fall_through);
+      break;
+
+    case Token::INSTANCEOF: {
+      VisitForAccumulatorValue(expr->right());
+      __ mov(a0, result_register());
+      __ pop(a1);
+      InstanceOfStub stub(isolate());
+      __ CallStub(&stub);
+      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
+      __ LoadRoot(a4, Heap::kTrueValueRootIndex);
+      Split(eq, v0, Operand(a4), if_true, if_false, fall_through);
+      break;
+    }
+
+    default: {
+      VisitForAccumulatorValue(expr->right());
+      Condition cc = CompareIC::ComputeCondition(op);
+      __ mov(a0, result_register());
+      __ pop(a1);
+
+      bool inline_smi_code = ShouldInlineSmiCase(op);
+      JumpPatchSite patch_site(masm_);
+      if (inline_smi_code) {
+        Label slow_case;
+        __ Or(a2, a0, Operand(a1));
+        patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+        Split(cc, a1, Operand(a0), if_true, if_false, NULL);
+        __ bind(&slow_case);
+      }
+
+      Handle<Code> ic = CodeFactory::CompareIC(
+                            isolate(), op, strength(language_mode())).code();
+      CallIC(ic, expr->CompareOperationFeedbackId());
+      patch_site.EmitPatchInfo();
+      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+      Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
+    }
+  }
+
+  // Convert the result of the comparison into one expected for this
+  // expression's context.
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
+                                              Expression* sub_expr,
+                                              NilValue nil) {
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  VisitForAccumulatorValue(sub_expr);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  __ mov(a0, result_register());
+  if (expr->op() == Token::EQ_STRICT) {
+    Heap::RootListIndex nil_value = nil == kNullValue ?
+        Heap::kNullValueRootIndex :
+        Heap::kUndefinedValueRootIndex;
+    __ LoadRoot(a1, nil_value);
+    Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
+  } else {
+    Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
+    CallIC(ic, expr->CompareOperationFeedbackId());
+    __ LoadRoot(a1, Heap::kTrueValueRootIndex);
+    Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
+  }
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
+  __ ld(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  context()->Plug(v0);
+}
+
+
+Register FullCodeGenerator::result_register() {
+  return v0;
+}
+
+
+Register FullCodeGenerator::context_register() {
+  return cp;
+}
+
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+  // DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+  DCHECK(IsAligned(frame_offset, kPointerSize));
+  //  __ sw(value, MemOperand(fp, frame_offset));
+  __ sd(value, MemOperand(fp, frame_offset));
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+  __ ld(dst, ContextMemOperand(cp, context_index));
+}
+
+
+void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
+  Scope* closure_scope = scope()->ClosureScope();
+  if (closure_scope->is_script_scope() ||
+      closure_scope->is_module_scope()) {
+    // Contexts nested in the native context have a canonical empty function
+    // as their closure, not the anonymous closure containing the global
+    // code.
+    __ LoadNativeContextSlot(Context::CLOSURE_INDEX, at);
+  } else if (closure_scope->is_eval_scope()) {
+    // Contexts created by a call to eval have the same closure as the
+    // context calling eval, not the anonymous closure containing the eval
+    // code.  Fetch it from the context.
+    __ ld(at, ContextMemOperand(cp, Context::CLOSURE_INDEX));
+  } else {
+    DCHECK(closure_scope->is_function_scope());
+    __ ld(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  }
+  __ push(at);
+}
+
+
+// ----------------------------------------------------------------------------
+// Non-local control flow support.
+
+void FullCodeGenerator::EnterFinallyBlock() {
+  DCHECK(!result_register().is(a1));
+  // Store result register while executing finally block.
+  __ push(result_register());
+  // Cook return address in link register to stack (smi encoded Code* delta).
+  __ Dsubu(a1, ra, Operand(masm_->CodeObject()));
+  __ SmiTag(a1);
+
+  // Store result register while executing finally block.
+  __ push(a1);
+
+  // Store pending message while executing finally block.
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ li(at, Operand(pending_message_obj));
+  __ ld(a1, MemOperand(at));
+  __ push(a1);
+
+  ClearPendingMessage();
+}
+
+
+void FullCodeGenerator::ExitFinallyBlock() {
+  DCHECK(!result_register().is(a1));
+  // Restore pending message from stack.
+  __ pop(a1);
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ li(at, Operand(pending_message_obj));
+  __ sd(a1, MemOperand(at));
+
+  // Restore result register from stack.
+  __ pop(a1);
+
+  // Uncook return address and return.
+  __ pop(result_register());
+
+  __ SmiUntag(a1);
+  __ Daddu(at, a1, Operand(masm_->CodeObject()));
+  __ Jump(at);
+}
+
+
+void FullCodeGenerator::ClearPendingMessage() {
+  DCHECK(!result_register().is(a1));
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
+  __ li(at, Operand(pending_message_obj));
+  __ sd(a1, MemOperand(at));
+}
+
+
+void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
+  DCHECK(!slot.IsInvalid());
+  __ li(VectorStoreICTrampolineDescriptor::SlotRegister(),
+        Operand(SmiFromSlot(slot)));
+}
+
+
+#undef __
+
+
+void BackEdgeTable::PatchAt(Code* unoptimized_code,
+                            Address pc,
+                            BackEdgeState target_state,
+                            Code* replacement_code) {
+  static const int kInstrSize = Assembler::kInstrSize;
+  Address branch_address = pc - 8 * kInstrSize;
+  Isolate* isolate = unoptimized_code->GetIsolate();
+  CodePatcher patcher(isolate, branch_address, 1);
+
+  switch (target_state) {
+    case INTERRUPT:
+      // slt  at, a3, zero_reg (in case of count based interrupts)
+      // beq  at, zero_reg, ok
+      // lui  t9, <interrupt stub address> upper
+      // ori  t9, <interrupt stub address> u-middle
+      // dsll t9, t9, 16
+      // ori  t9, <interrupt stub address> lower
+      // jalr t9
+      // nop
+      // ok-label ----- pc_after points here
+      patcher.masm()->slt(at, a3, zero_reg);
+      break;
+    case ON_STACK_REPLACEMENT:
+    case OSR_AFTER_STACK_CHECK:
+      // addiu at, zero_reg, 1
+      // beq  at, zero_reg, ok  ;; Not changed
+      // lui  t9, <on-stack replacement address> upper
+      // ori  t9, <on-stack replacement address> middle
+      // dsll t9, t9, 16
+      // ori  t9, <on-stack replacement address> lower
+      // jalr t9  ;; Not changed
+      // nop  ;; Not changed
+      // ok-label ----- pc_after points here
+      patcher.masm()->daddiu(at, zero_reg, 1);
+      break;
+  }
+  Address pc_immediate_load_address = pc - 6 * kInstrSize;
+  // Replace the stack check address in the load-immediate (6-instr sequence)
+  // with the entry address of the replacement code.
+  Assembler::set_target_address_at(isolate, pc_immediate_load_address,
+                                   replacement_code->entry());
+
+  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
+      unoptimized_code, pc_immediate_load_address, replacement_code);
+}
+
+
+BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
+    Isolate* isolate,
+    Code* unoptimized_code,
+    Address pc) {
+  static const int kInstrSize = Assembler::kInstrSize;
+  Address branch_address = pc - 8 * kInstrSize;
+  Address pc_immediate_load_address = pc - 6 * kInstrSize;
+
+  DCHECK(Assembler::IsBeq(Assembler::instr_at(pc - 7 * kInstrSize)));
+  if (!Assembler::IsAddImmediate(Assembler::instr_at(branch_address))) {
+    DCHECK(reinterpret_cast<uint64_t>(
+        Assembler::target_address_at(pc_immediate_load_address)) ==
+           reinterpret_cast<uint64_t>(
+               isolate->builtins()->InterruptCheck()->entry()));
+    return INTERRUPT;
+  }
+
+  DCHECK(Assembler::IsAddImmediate(Assembler::instr_at(branch_address)));
+
+  if (reinterpret_cast<uint64_t>(
+      Assembler::target_address_at(pc_immediate_load_address)) ==
+          reinterpret_cast<uint64_t>(
+              isolate->builtins()->OnStackReplacement()->entry())) {
+    return ON_STACK_REPLACEMENT;
+  }
+
+  DCHECK(reinterpret_cast<uint64_t>(
+      Assembler::target_address_at(pc_immediate_load_address)) ==
+         reinterpret_cast<uint64_t>(
+             isolate->builtins()->OsrAfterStackCheck()->entry()));
+  return OSR_AFTER_STACK_CHECK;
+}
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_MIPS64