Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/full-codegen/ppc/OWNERS b/src/full-codegen/ppc/OWNERS
new file mode 100644
index 0000000..eb007cb
--- /dev/null
+++ b/src/full-codegen/ppc/OWNERS
@@ -0,0 +1,5 @@
+jyan@ca.ibm.com
+dstence@us.ibm.com
+joransiu@ca.ibm.com
+mbrandy@us.ibm.com
+michael_dawson@ca.ibm.com
diff --git a/src/full-codegen/ppc/full-codegen-ppc.cc b/src/full-codegen/ppc/full-codegen-ppc.cc
new file mode 100644
index 0000000..d9c324c
--- /dev/null
+++ b/src/full-codegen/ppc/full-codegen-ppc.cc
@@ -0,0 +1,4828 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/ast/scopes.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/debug/debug.h"
+#include "src/full-codegen/full-codegen.h"
+#include "src/ic/ic.h"
+#include "src/parsing/parser.h"
+
+#include "src/ppc/code-stubs-ppc.h"
+#include "src/ppc/macro-assembler-ppc.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
+// immediate value is used) is the delta from the pc to the first instruction of
+// the patchable code.
+// See PatchInlinedSmiCode in ic-ppc.cc for the code that patches it
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+    info_emitted_ = false;
+#endif
+  }
+
+  ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); }
+
+  // When initially emitting this ensure that a jump is always generated to skip
+  // the inlined smi code.
+  void EmitJumpIfNotSmi(Register reg, Label* target) {
+    DCHECK(!patch_site_.is_bound() && !info_emitted_);
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    __ bind(&patch_site_);
+    __ cmp(reg, reg, cr0);
+    __ beq(target, cr0);  // Always taken before patched.
+  }
+
+  // When initially emitting this ensure that a jump is never generated to skip
+  // the inlined smi code.
+  void EmitJumpIfSmi(Register reg, Label* target) {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    DCHECK(!patch_site_.is_bound() && !info_emitted_);
+    __ bind(&patch_site_);
+    __ cmp(reg, reg, cr0);
+    __ bne(target, cr0);  // Never taken before patched.
+  }
+
+  void EmitPatchInfo() {
+    if (patch_site_.is_bound()) {
+      int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+      Register reg;
+      // I believe this is using reg as the high bits of of the offset
+      reg.set_code(delta_to_patch_site / kOff16Mask);
+      __ cmpi(reg, Operand(delta_to_patch_site % kOff16Mask));
+#ifdef DEBUG
+      info_emitted_ = true;
+#endif
+    } else {
+      __ nop();  // Signals no inlined code.
+    }
+  }
+
+ private:
+  MacroAssembler* masm_;
+  Label patch_site_;
+#ifdef DEBUG
+  bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function.  On entry to the function the receiver
+// and arguments have been pushed on the stack left to right.  The actual
+// argument count matches the formal parameter count expected by the
+// function.
+//
+// The live registers are:
+//   o r4: the JS function object being called (i.e., ourselves)
+//   o r6: the new target value
+//   o cp: our context
+//   o fp: our caller's frame pointer (aka r31)
+//   o sp: stack pointer
+//   o lr: return address
+//   o ip: our own function entry (required by the prologue)
+//
+// The function builds a JS frame.  Please see JavaScriptFrameConstants in
+// frames-ppc.h for its layout.
+void FullCodeGenerator::Generate() {
+  CompilationInfo* info = info_;
+  profiling_counter_ = isolate()->factory()->NewCell(
+      Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
+  SetFunctionPosition(literal());
+  Comment cmnt(masm_, "[ function compiled by full code generator");
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+  if (strlen(FLAG_stop_at) > 0 &&
+      info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+    __ stop("stop-at");
+  }
+#endif
+
+  if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
+    int receiver_offset = info->scope()->num_parameters() * kPointerSize;
+    __ LoadP(r5, MemOperand(sp, receiver_offset), r0);
+    __ AssertNotSmi(r5);
+    __ CompareObjectType(r5, r5, no_reg, FIRST_JS_RECEIVER_TYPE);
+    __ Assert(ge, kSloppyFunctionExpectsJSReceiverReceiver);
+  }
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // MANUAL indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done below).
+  FrameScope frame_scope(masm_, StackFrame::MANUAL);
+  int prologue_offset = masm_->pc_offset();
+
+  if (prologue_offset) {
+    // Prologue logic requires it's starting address in ip and the
+    // corresponding offset from the function entry.
+    prologue_offset += Instruction::kInstrSize;
+    __ addi(ip, ip, Operand(prologue_offset));
+  }
+  info->set_prologue_offset(prologue_offset);
+  __ Prologue(info->GeneratePreagedPrologue(), ip, prologue_offset);
+
+  {
+    Comment cmnt(masm_, "[ Allocate locals");
+    int locals_count = info->scope()->num_stack_slots();
+    // Generators allocate locals, if any, in context slots.
+    DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
+    if (locals_count > 0) {
+      if (locals_count >= 128) {
+        Label ok;
+        __ Add(ip, sp, -(locals_count * kPointerSize), r0);
+        __ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
+        __ cmpl(ip, r5);
+        __ bc_short(ge, &ok);
+        __ CallRuntime(Runtime::kThrowStackOverflow);
+        __ bind(&ok);
+      }
+      __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+      int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
+      if (locals_count >= kMaxPushes) {
+        int loop_iterations = locals_count / kMaxPushes;
+        __ mov(r5, Operand(loop_iterations));
+        __ mtctr(r5);
+        Label loop_header;
+        __ bind(&loop_header);
+        // Do pushes.
+        for (int i = 0; i < kMaxPushes; i++) {
+          __ push(ip);
+        }
+        // Continue loop if not done.
+        __ bdnz(&loop_header);
+      }
+      int remaining = locals_count % kMaxPushes;
+      // Emit the remaining pushes.
+      for (int i = 0; i < remaining; i++) {
+        __ push(ip);
+      }
+    }
+  }
+
+  bool function_in_register_r4 = true;
+
+  // Possibly allocate a local context.
+  if (info->scope()->num_heap_slots() > 0) {
+    // Argument to NewContext is the function, which is still in r4.
+    Comment cmnt(masm_, "[ Allocate context");
+    bool need_write_barrier = true;
+    int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    if (info->scope()->is_script_scope()) {
+      __ push(r4);
+      __ Push(info->scope()->GetScopeInfo(info->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
+      // The new target value is not used, clobbering is safe.
+      DCHECK_NULL(info->scope()->new_target_var());
+    } else {
+      if (info->scope()->new_target_var() != nullptr) {
+        __ push(r6);  // Preserve new target.
+      }
+      if (slots <= FastNewContextStub::kMaximumSlots) {
+        FastNewContextStub stub(isolate(), slots);
+        __ CallStub(&stub);
+        // Result of FastNewContextStub is always in new space.
+        need_write_barrier = false;
+      } else {
+        __ push(r4);
+        __ CallRuntime(Runtime::kNewFunctionContext);
+      }
+      if (info->scope()->new_target_var() != nullptr) {
+        __ pop(r6);  // Preserve new target.
+      }
+    }
+    function_in_register_r4 = false;
+    // Context is returned in r3.  It replaces the context passed to us.
+    // It's saved in the stack and kept live in cp.
+    __ mr(cp, r3);
+    __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = info->scope()->num_parameters();
+    int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+                               (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ LoadP(r3, MemOperand(fp, parameter_offset), r0);
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ StoreP(r3, target, r0);
+
+        // Update the write barrier.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(cp, target.offset(), r3, r5,
+                                    kLRHasBeenSaved, kDontSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, r3, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+  }
+
+  // Register holding this function and new target are both trashed in case we
+  // bailout here. But since that can happen only when new target is not used
+  // and we allocate a context, the value of |function_in_register| is correct.
+  PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
+
+  // Possibly set up a local binding to the this function which is used in
+  // derived constructors with super calls.
+  Variable* this_function_var = scope()->this_function_var();
+  if (this_function_var != nullptr) {
+    Comment cmnt(masm_, "[ This function");
+    if (!function_in_register_r4) {
+      __ LoadP(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+      // The write barrier clobbers register again, keep it marked as such.
+    }
+    SetVar(this_function_var, r4, r3, r5);
+  }
+
+  // Possibly set up a local binding to the new target value.
+  Variable* new_target_var = scope()->new_target_var();
+  if (new_target_var != nullptr) {
+    Comment cmnt(masm_, "[ new.target");
+    SetVar(new_target_var, r6, r3, r5);
+  }
+
+  // Possibly allocate RestParameters
+  int rest_index;
+  Variable* rest_param = scope()->rest_parameter(&rest_index);
+  if (rest_param) {
+    Comment cmnt(masm_, "[ Allocate rest parameter array");
+
+    int num_parameters = info->scope()->num_parameters();
+    int offset = num_parameters * kPointerSize;
+
+    __ LoadSmiLiteral(RestParamAccessDescriptor::parameter_count(),
+                      Smi::FromInt(num_parameters));
+    __ addi(RestParamAccessDescriptor::parameter_pointer(), fp,
+            Operand(StandardFrameConstants::kCallerSPOffset + offset));
+    __ LoadSmiLiteral(RestParamAccessDescriptor::rest_parameter_index(),
+                      Smi::FromInt(rest_index));
+    function_in_register_r4 = false;
+
+    RestParamAccessStub stub(isolate());
+    __ CallStub(&stub);
+
+    SetVar(rest_param, r3, r4, r5);
+  }
+
+  Variable* arguments = scope()->arguments();
+  if (arguments != NULL) {
+    // Function uses arguments object.
+    Comment cmnt(masm_, "[ Allocate arguments object");
+    DCHECK(r4.is(ArgumentsAccessNewDescriptor::function()));
+    if (!function_in_register_r4) {
+      // Load this again, if it's used by the local context below.
+      __ LoadP(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+    }
+    // Receiver is just before the parameters on the caller's stack.
+    int num_parameters = info->scope()->num_parameters();
+    int offset = num_parameters * kPointerSize;
+    __ LoadSmiLiteral(ArgumentsAccessNewDescriptor::parameter_count(),
+                      Smi::FromInt(num_parameters));
+    __ addi(ArgumentsAccessNewDescriptor::parameter_pointer(), fp,
+            Operand(StandardFrameConstants::kCallerSPOffset + offset));
+
+    // Arguments to ArgumentsAccessStub:
+    //   function, parameter pointer, parameter count.
+    // The stub will rewrite parameter pointer and parameter count if the
+    // previous stack frame was an arguments adapter frame.
+    bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
+    ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
+        is_unmapped, literal()->has_duplicate_parameters());
+    ArgumentsAccessStub stub(isolate(), type);
+    __ CallStub(&stub);
+
+    SetVar(arguments, r3, r4, r5);
+  }
+
+  if (FLAG_trace) {
+    __ CallRuntime(Runtime::kTraceEnter);
+  }
+
+  // Visit the declarations and body unless there is an illegal
+  // redeclaration.
+  if (scope()->HasIllegalRedeclaration()) {
+    Comment cmnt(masm_, "[ Declarations");
+    VisitForEffect(scope()->GetIllegalRedeclaration());
+
+  } else {
+    PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
+    {
+      Comment cmnt(masm_, "[ Declarations");
+      VisitDeclarations(scope()->declarations());
+    }
+
+    // Assert that the declarations do not use ICs. Otherwise the debugger
+    // won't be able to redirect a PC at an IC to the correct IC in newly
+    // recompiled code.
+    DCHECK_EQ(0, ic_total_count_);
+
+    {
+      Comment cmnt(masm_, "[ Stack check");
+      PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
+      Label ok;
+      __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+      __ cmpl(sp, ip);
+      __ bc_short(ge, &ok);
+      __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
+      __ bind(&ok);
+    }
+
+    {
+      Comment cmnt(masm_, "[ Body");
+      DCHECK(loop_depth() == 0);
+      VisitStatements(literal()->body());
+      DCHECK(loop_depth() == 0);
+    }
+  }
+
+  // Always emit a 'return undefined' in case control fell off the end of
+  // the body.
+  {
+    Comment cmnt(masm_, "[ return <undefined>;");
+    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+  }
+  EmitReturnSequence();
+
+  if (HasStackOverflow()) {
+    masm_->AbortConstantPoolBuilding();
+  }
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+  __ LoadSmiLiteral(r3, Smi::FromInt(0));
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
+  __ mov(r5, Operand(profiling_counter_));
+  __ LoadP(r6, FieldMemOperand(r5, Cell::kValueOffset));
+  __ SubSmiLiteral(r6, r6, Smi::FromInt(delta), r0);
+  __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterReset() {
+  int reset_value = FLAG_interrupt_budget;
+  __ mov(r5, Operand(profiling_counter_));
+  __ LoadSmiLiteral(r6, Smi::FromInt(reset_value));
+  __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
+}
+
+
+void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
+                                                Label* back_edge_target) {
+  Comment cmnt(masm_, "[ Back edge bookkeeping");
+  Label ok;
+
+  DCHECK(back_edge_target->is_bound());
+  int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target) +
+                 kCodeSizeMultiplier / 2;
+  int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
+  EmitProfilingCounterDecrement(weight);
+  {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    Assembler::BlockConstantPoolEntrySharingScope prevent_entry_sharing(masm_);
+    // BackEdgeTable::PatchAt manipulates this sequence.
+    __ cmpi(r6, Operand::Zero());
+    __ bc_short(ge, &ok);
+    __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+
+    // Record a mapping of this PC offset to the OSR id.  This is used to find
+    // the AST id from the unoptimized code in order to use it as a key into
+    // the deoptimization input data found in the optimized code.
+    RecordBackEdge(stmt->OsrEntryId());
+  }
+  EmitProfilingCounterReset();
+
+  __ bind(&ok);
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+  // Record a mapping of the OSR id to this PC.  This is used if the OSR
+  // entry becomes the target of a bailout.  We don't expect it to be, but
+  // we want it to work if it is.
+  PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::EmitReturnSequence() {
+  Comment cmnt(masm_, "[ Return sequence");
+  if (return_label_.is_bound()) {
+    __ b(&return_label_);
+  } else {
+    __ bind(&return_label_);
+    if (FLAG_trace) {
+      // Push the return value on the stack as the parameter.
+      // Runtime::TraceExit returns its parameter in r3
+      __ push(r3);
+      __ CallRuntime(Runtime::kTraceExit);
+    }
+    // Pretend that the exit is a backwards jump to the entry.
+    int weight = 1;
+    if (info_->ShouldSelfOptimize()) {
+      weight = FLAG_interrupt_budget / FLAG_self_opt_count;
+    } else {
+      int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
+      weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
+    }
+    EmitProfilingCounterDecrement(weight);
+    Label ok;
+    __ cmpi(r6, Operand::Zero());
+    __ bge(&ok);
+    __ push(r3);
+    __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+    __ pop(r3);
+    EmitProfilingCounterReset();
+    __ bind(&ok);
+
+    // Make sure that the constant pool is not emitted inside of the return
+    // sequence.
+    {
+      Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+      int32_t arg_count = info_->scope()->num_parameters() + 1;
+      int32_t sp_delta = arg_count * kPointerSize;
+      SetReturnPosition(literal());
+      __ LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
+      __ blr();
+    }
+  }
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
+  DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+  codegen()->GetVar(result_register(), var);
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Heap::RootListIndex index) const {
+  __ LoadRoot(result_register(), index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+    Heap::RootListIndex index) const {
+  __ LoadRoot(result_register(), index);
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+                                          false_label_);
+  if (index == Heap::kUndefinedValueRootIndex ||
+      index == Heap::kNullValueRootIndex ||
+      index == Heap::kFalseValueRootIndex) {
+    if (false_label_ != fall_through_) __ b(false_label_);
+  } else if (index == Heap::kTrueValueRootIndex) {
+    if (true_label_ != fall_through_) __ b(true_label_);
+  } else {
+    __ LoadRoot(result_register(), index);
+    codegen()->DoTest(this);
+  }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Handle<Object> lit) const {
+  __ mov(result_register(), Operand(lit));
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+  // Immediates cannot be pushed directly.
+  __ mov(result_register(), Operand(lit));
+  __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+                                          false_label_);
+  DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
+  if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+    if (false_label_ != fall_through_) __ b(false_label_);
+  } else if (lit->IsTrue() || lit->IsJSObject()) {
+    if (true_label_ != fall_through_) __ b(true_label_);
+  } else if (lit->IsString()) {
+    if (String::cast(*lit)->length() == 0) {
+      if (false_label_ != fall_through_) __ b(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ b(true_label_);
+    }
+  } else if (lit->IsSmi()) {
+    if (Smi::cast(*lit)->value() == 0) {
+      if (false_label_ != fall_through_) __ b(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ b(true_label_);
+    }
+  } else {
+    // For simplicity we always test the accumulator register.
+    __ mov(result_register(), Operand(lit));
+    codegen()->DoTest(this);
+  }
+}
+
+
+void FullCodeGenerator::EffectContext::DropAndPlug(int count,
+                                                   Register reg) const {
+  DCHECK(count > 0);
+  __ Drop(count);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
+    int count, Register reg) const {
+  DCHECK(count > 0);
+  __ Drop(count);
+  __ Move(result_register(), reg);
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+                                                       Register reg) const {
+  DCHECK(count > 0);
+  if (count > 1) __ Drop(count - 1);
+  __ StoreP(reg, MemOperand(sp, 0));
+}
+
+
+void FullCodeGenerator::TestContext::DropAndPlug(int count,
+                                                 Register reg) const {
+  DCHECK(count > 0);
+  // For simplicity we always test the accumulator register.
+  __ Drop(count);
+  __ Move(result_register(), reg);
+  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
+  codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+                                            Label* materialize_false) const {
+  DCHECK(materialize_true == materialize_false);
+  __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+    Label* materialize_true, Label* materialize_false) const {
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+  __ b(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+  __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+    Label* materialize_true, Label* materialize_false) const {
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+  __ b(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+  __ bind(&done);
+  __ push(ip);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+                                          Label* materialize_false) const {
+  DCHECK(materialize_true == true_label_);
+  DCHECK(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(result_register(), value_root_index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(ip, value_root_index);
+  __ push(ip);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+                                          false_label_);
+  if (flag) {
+    if (true_label_ != fall_through_) __ b(true_label_);
+  } else {
+    if (false_label_ != fall_through_) __ b(false_label_);
+  }
+}
+
+
+void FullCodeGenerator::DoTest(Expression* condition, Label* if_true,
+                               Label* if_false, Label* fall_through) {
+  Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
+  CallIC(ic, condition->test_id());
+  __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
+  Split(eq, if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false,
+                              Label* fall_through, CRegister cr) {
+  if (if_false == fall_through) {
+    __ b(cond, if_true, cr);
+  } else if (if_true == fall_through) {
+    __ b(NegateCondition(cond), if_false, cr);
+  } else {
+    __ b(cond, if_true, cr);
+    __ b(if_false);
+  }
+}
+
+
+MemOperand FullCodeGenerator::StackOperand(Variable* var) {
+  DCHECK(var->IsStackAllocated());
+  // Offset is negative because higher indexes are at lower addresses.
+  int offset = -var->index() * kPointerSize;
+  // Adjust by a (parameter or local) base offset.
+  if (var->IsParameter()) {
+    offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
+  } else {
+    offset += JavaScriptFrameConstants::kLocal0Offset;
+  }
+  return MemOperand(fp, offset);
+}
+
+
+MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
+  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+  if (var->IsContextSlot()) {
+    int context_chain_length = scope()->ContextChainLength(var->scope());
+    __ LoadContext(scratch, context_chain_length);
+    return ContextMemOperand(scratch, var->index());
+  } else {
+    return StackOperand(var);
+  }
+}
+
+
+void FullCodeGenerator::GetVar(Register dest, Variable* var) {
+  // Use destination as scratch.
+  MemOperand location = VarOperand(var, dest);
+  __ LoadP(dest, location, r0);
+}
+
+
+void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0,
+                               Register scratch1) {
+  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+  DCHECK(!scratch0.is(src));
+  DCHECK(!scratch0.is(scratch1));
+  DCHECK(!scratch1.is(src));
+  MemOperand location = VarOperand(var, scratch0);
+  __ StoreP(src, location, r0);
+
+  // Emit the write barrier code if the location is in the heap.
+  if (var->IsContextSlot()) {
+    __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1,
+                              kLRHasBeenSaved, kDontSaveFPRegs);
+  }
+}
+
+
+void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
+                                                     bool should_normalize,
+                                                     Label* if_true,
+                                                     Label* if_false) {
+  // Only prepare for bailouts before splits if we're in a test
+  // context. Otherwise, we let the Visit function deal with the
+  // preparation to avoid preparing with the same AST id twice.
+  if (!context()->IsTest()) return;
+
+  Label skip;
+  if (should_normalize) __ b(&skip);
+  PrepareForBailout(expr, TOS_REG);
+  if (should_normalize) {
+    __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+    __ cmp(r3, ip);
+    Split(eq, if_true, if_false, NULL);
+    __ bind(&skip);
+  }
+}
+
+
+void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
+  // The variable in the declaration always resides in the current function
+  // context.
+  DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
+  if (generate_debug_code_) {
+    // Check that we're not inside a with or catch context.
+    __ LoadP(r4, FieldMemOperand(cp, HeapObject::kMapOffset));
+    __ CompareRoot(r4, Heap::kWithContextMapRootIndex);
+    __ Check(ne, kDeclarationInWithContext);
+    __ CompareRoot(r4, Heap::kCatchContextMapRootIndex);
+    __ Check(ne, kDeclarationInCatchContext);
+  }
+}
+
+
+void FullCodeGenerator::VisitVariableDeclaration(
+    VariableDeclaration* declaration) {
+  // If it was not possible to allocate the variable at compile time, we
+  // need to "declare" it at runtime to make sure it actually exists in the
+  // local context.
+  VariableProxy* proxy = declaration->proxy();
+  VariableMode mode = declaration->mode();
+  Variable* variable = proxy->var();
+  bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
+  switch (variable->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED:
+      globals_->Add(variable->name(), zone());
+      globals_->Add(variable->binding_needs_init()
+                        ? isolate()->factory()->the_hole_value()
+                        : isolate()->factory()->undefined_value(),
+                    zone());
+      break;
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL:
+      if (hole_init) {
+        Comment cmnt(masm_, "[ VariableDeclaration");
+        __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+        __ StoreP(ip, StackOperand(variable));
+      }
+      break;
+
+    case VariableLocation::CONTEXT:
+      if (hole_init) {
+        Comment cmnt(masm_, "[ VariableDeclaration");
+        EmitDebugCheckDeclarationContext(variable);
+        __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+        __ StoreP(ip, ContextMemOperand(cp, variable->index()), r0);
+        // No write barrier since the_hole_value is in old space.
+        PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+      }
+      break;
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ VariableDeclaration");
+      __ mov(r5, Operand(variable->name()));
+      // Declaration nodes are always introduced in one of four modes.
+      DCHECK(IsDeclaredVariableMode(mode));
+      // Push initial value, if any.
+      // Note: For variables we must not push an initial value (such as
+      // 'undefined') because we may have a (legal) redeclaration and we
+      // must not destroy the current value.
+      if (hole_init) {
+        __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
+      } else {
+        __ LoadSmiLiteral(r3, Smi::FromInt(0));  // Indicates no initial value.
+      }
+      __ Push(r5, r3);
+      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
+      __ CallRuntime(Runtime::kDeclareLookupSlot);
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitFunctionDeclaration(
+    FunctionDeclaration* declaration) {
+  VariableProxy* proxy = declaration->proxy();
+  Variable* variable = proxy->var();
+  switch (variable->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED: {
+      globals_->Add(variable->name(), zone());
+      Handle<SharedFunctionInfo> function =
+          Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
+      // Check for stack-overflow exception.
+      if (function.is_null()) return SetStackOverflow();
+      globals_->Add(function, zone());
+      break;
+    }
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      VisitForAccumulatorValue(declaration->fun());
+      __ StoreP(result_register(), StackOperand(variable));
+      break;
+    }
+
+    case VariableLocation::CONTEXT: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      EmitDebugCheckDeclarationContext(variable);
+      VisitForAccumulatorValue(declaration->fun());
+      __ StoreP(result_register(), ContextMemOperand(cp, variable->index()),
+                r0);
+      int offset = Context::SlotOffset(variable->index());
+      // We know that we have written a function, which is not a smi.
+      __ RecordWriteContextSlot(cp, offset, result_register(), r5,
+                                kLRHasBeenSaved, kDontSaveFPRegs,
+                                EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+      PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+      break;
+    }
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ FunctionDeclaration");
+      __ mov(r5, Operand(variable->name()));
+      __ Push(r5);
+      // Push initial value for function declaration.
+      VisitForStackValue(declaration->fun());
+      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
+      __ CallRuntime(Runtime::kDeclareLookupSlot);
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+  // Call the runtime to declare the globals.
+  __ mov(r4, Operand(pairs));
+  __ LoadSmiLiteral(r3, Smi::FromInt(DeclareGlobalsFlags()));
+  __ Push(r4, r3);
+  __ CallRuntime(Runtime::kDeclareGlobals);
+  // Return value is ignored.
+}
+
+
+void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
+  // Call the runtime to declare the modules.
+  __ Push(descriptions);
+  __ CallRuntime(Runtime::kDeclareModules);
+  // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+  Comment cmnt(masm_, "[ SwitchStatement");
+  Breakable nested_statement(this, stmt);
+  SetStatementPosition(stmt);
+
+  // Keep the switch value on the stack until a case matches.
+  VisitForStackValue(stmt->tag());
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+  ZoneList<CaseClause*>* clauses = stmt->cases();
+  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
+
+  Label next_test;  // Recycled for each test.
+  // Compile all the tests with branches to their bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    CaseClause* clause = clauses->at(i);
+    clause->body_target()->Unuse();
+
+    // The default is not a test, but remember it as final fall through.
+    if (clause->is_default()) {
+      default_clause = clause;
+      continue;
+    }
+
+    Comment cmnt(masm_, "[ Case comparison");
+    __ bind(&next_test);
+    next_test.Unuse();
+
+    // Compile the label expression.
+    VisitForAccumulatorValue(clause->label());
+
+    // Perform the comparison as if via '==='.
+    __ LoadP(r4, MemOperand(sp, 0));  // Switch value.
+    bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+    JumpPatchSite patch_site(masm_);
+    if (inline_smi_code) {
+      Label slow_case;
+      __ orx(r5, r4, r3);
+      patch_site.EmitJumpIfNotSmi(r5, &slow_case);
+
+      __ cmp(r4, r3);
+      __ bne(&next_test);
+      __ Drop(1);  // Switch value is no longer needed.
+      __ b(clause->body_target());
+      __ bind(&slow_case);
+    }
+
+    // Record position before stub call for type feedback.
+    SetExpressionPosition(clause);
+    Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
+                                             strength(language_mode())).code();
+    CallIC(ic, clause->CompareId());
+    patch_site.EmitPatchInfo();
+
+    Label skip;
+    __ b(&skip);
+    PrepareForBailout(clause, TOS_REG);
+    __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+    __ cmp(r3, ip);
+    __ bne(&next_test);
+    __ Drop(1);
+    __ b(clause->body_target());
+    __ bind(&skip);
+
+    __ cmpi(r3, Operand::Zero());
+    __ bne(&next_test);
+    __ Drop(1);  // Switch value is no longer needed.
+    __ b(clause->body_target());
+  }
+
+  // Discard the test value and jump to the default if present, otherwise to
+  // the end of the statement.
+  __ bind(&next_test);
+  __ Drop(1);  // Switch value is no longer needed.
+  if (default_clause == NULL) {
+    __ b(nested_statement.break_label());
+  } else {
+    __ b(default_clause->body_target());
+  }
+
+  // Compile all the case bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    Comment cmnt(masm_, "[ Case body");
+    CaseClause* clause = clauses->at(i);
+    __ bind(clause->body_target());
+    PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+    VisitStatements(clause->statements());
+  }
+
+  __ bind(nested_statement.break_label());
+  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+  Comment cmnt(masm_, "[ ForInStatement");
+  SetStatementPosition(stmt, SKIP_BREAK);
+
+  FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
+
+  Label loop, exit;
+  ForIn loop_statement(this, stmt);
+  increment_loop_depth();
+
+  // Get the object to enumerate over. If the object is null or undefined, skip
+  // over the loop.  See ECMA-262 version 5, section 12.6.4.
+  SetExpressionAsStatementPosition(stmt->enumerable());
+  VisitForAccumulatorValue(stmt->enumerable());
+  __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+  __ cmp(r3, ip);
+  __ beq(&exit);
+  Register null_value = r7;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ cmp(r3, null_value);
+  __ beq(&exit);
+
+  PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
+
+  // Convert the object to a JS object.
+  Label convert, done_convert;
+  __ JumpIfSmi(r3, &convert);
+  __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
+  __ bge(&done_convert);
+  __ bind(&convert);
+  ToObjectStub stub(isolate());
+  __ CallStub(&stub);
+  __ bind(&done_convert);
+  PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
+  __ push(r3);
+
+  // Check for proxies.
+  Label call_runtime;
+  __ CompareObjectType(r3, r4, r4, JS_PROXY_TYPE);
+  __ beq(&call_runtime);
+
+  // Check cache validity in generated code. This is a fast case for
+  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+  // guarantee cache validity, call the runtime system to check cache
+  // validity or get the property names in a fixed array.
+  __ CheckEnumCache(null_value, &call_runtime);
+
+  // The enum cache is valid.  Load the map of the object being
+  // iterated over and use the cache for the iteration.
+  Label use_cache;
+  __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ b(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(r3);  // Duplicate the enumerable object on the stack.
+  __ CallRuntime(Runtime::kGetPropertyNamesFast);
+  PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
+
+  // If we got a map from the runtime call, we can do a fast
+  // modification check. Otherwise, we got a fixed array, and we have
+  // to do a slow check.
+  Label fixed_array;
+  __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ LoadRoot(ip, Heap::kMetaMapRootIndex);
+  __ cmp(r5, ip);
+  __ bne(&fixed_array);
+
+  // We got a map in register r3. Get the enumeration cache from it.
+  Label no_descriptors;
+  __ bind(&use_cache);
+
+  __ EnumLength(r4, r3);
+  __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+  __ beq(&no_descriptors);
+
+  __ LoadInstanceDescriptors(r3, r5);
+  __ LoadP(r5, FieldMemOperand(r5, DescriptorArray::kEnumCacheOffset));
+  __ LoadP(r5,
+           FieldMemOperand(r5, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+  // Set up the four remaining stack slots.
+  __ push(r3);  // Map.
+  __ LoadSmiLiteral(r3, Smi::FromInt(0));
+  // Push enumeration cache, enumeration cache length (as smi) and zero.
+  __ Push(r5, r4, r3);
+  __ b(&loop);
+
+  __ bind(&no_descriptors);
+  __ Drop(1);
+  __ b(&exit);
+
+  // We got a fixed array in register r3. Iterate through that.
+  __ bind(&fixed_array);
+
+  __ EmitLoadTypeFeedbackVector(r4);
+  __ mov(r5, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
+  int vector_index = SmiFromSlot(slot)->value();
+  __ StoreP(
+      r5, FieldMemOperand(r4, FixedArray::OffsetOfElementAt(vector_index)), r0);
+  __ LoadSmiLiteral(r4, Smi::FromInt(1));  // Smi(1) indicates slow check
+  __ Push(r4, r3);  // Smi and array
+  __ LoadP(r4, FieldMemOperand(r3, FixedArray::kLengthOffset));
+  __ LoadSmiLiteral(r3, Smi::FromInt(0));
+  __ Push(r4, r3);  // Fixed array length (as smi) and initial index.
+
+  // Generate code for doing the condition check.
+  __ bind(&loop);
+  SetExpressionAsStatementPosition(stmt->each());
+
+  // Load the current count to r3, load the length to r4.
+  __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
+  __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
+  __ cmpl(r3, r4);  // Compare to the array length.
+  __ bge(loop_statement.break_label());
+
+  // Get the current entry of the array into register r6.
+  __ LoadP(r5, MemOperand(sp, 2 * kPointerSize));
+  __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ SmiToPtrArrayOffset(r6, r3);
+  __ LoadPX(r6, MemOperand(r6, r5));
+
+  // Get the expected map from the stack or a smi in the
+  // permanent slow case into register r5.
+  __ LoadP(r5, MemOperand(sp, 3 * kPointerSize));
+
+  // Check if the expected map still matches that of the enumerable.
+  // If not, we may have to filter the key.
+  Label update_each;
+  __ LoadP(r4, MemOperand(sp, 4 * kPointerSize));
+  __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
+  __ cmp(r7, r5);
+  __ beq(&update_each);
+
+  // Convert the entry to a string or (smi) 0 if it isn't a property
+  // any more. If the property has been removed while iterating, we
+  // just skip it.
+  __ Push(r4, r6);  // Enumerable and current entry.
+  __ CallRuntime(Runtime::kForInFilter);
+  PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
+  __ mr(r6, r3);
+  __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+  __ cmp(r3, r0);
+  __ beq(loop_statement.continue_label());
+
+  // Update the 'each' property or variable from the possibly filtered
+  // entry in register r6.
+  __ bind(&update_each);
+  __ mr(result_register(), r6);
+  // Perform the assignment as if via '='.
+  {
+    EffectContext context(this);
+    EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
+    PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
+  }
+
+  // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
+  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
+  // Generate code for the body of the loop.
+  Visit(stmt->body());
+
+  // Generate code for the going to the next element by incrementing
+  // the index (smi) stored on top of the stack.
+  __ bind(loop_statement.continue_label());
+  __ pop(r3);
+  __ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0);
+  __ push(r3);
+
+  EmitBackEdgeBookkeeping(stmt, &loop);
+  __ b(&loop);
+
+  // Remove the pointers stored on the stack.
+  __ bind(loop_statement.break_label());
+  __ Drop(5);
+
+  // Exit and decrement the loop depth.
+  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+  __ bind(&exit);
+  decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
+                                       bool pretenure) {
+  // Use the fast case closure allocation code that allocates in new
+  // space for nested functions that don't need literals cloning. If
+  // we're running with the --always-opt or the --prepare-always-opt
+  // flag, we need to use the runtime function so that the new function
+  // we are creating here gets a chance to have its code optimized and
+  // doesn't just get a copy of the existing unoptimized code.
+  if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure &&
+      scope()->is_function_scope() && info->num_literals() == 0) {
+    FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
+    __ mov(r5, Operand(info));
+    __ CallStub(&stub);
+  } else {
+    __ Push(info);
+    __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
+                             : Runtime::kNewClosure);
+  }
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
+                                          FeedbackVectorSlot slot) {
+  DCHECK(NeedsHomeObject(initializer));
+  __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
+  __ mov(StoreDescriptor::NameRegister(),
+         Operand(isolate()->factory()->home_object_symbol()));
+  __ LoadP(StoreDescriptor::ValueRegister(),
+           MemOperand(sp, offset * kPointerSize));
+  EmitLoadStoreICSlot(slot);
+  CallStoreIC();
+}
+
+
+void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
+                                                     int offset,
+                                                     FeedbackVectorSlot slot) {
+  DCHECK(NeedsHomeObject(initializer));
+  __ Move(StoreDescriptor::ReceiverRegister(), r3);
+  __ mov(StoreDescriptor::NameRegister(),
+         Operand(isolate()->factory()->home_object_symbol()));
+  __ LoadP(StoreDescriptor::ValueRegister(),
+           MemOperand(sp, offset * kPointerSize));
+  EmitLoadStoreICSlot(slot);
+  CallStoreIC();
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
+                                                      TypeofMode typeof_mode,
+                                                      Label* slow) {
+  Register current = cp;
+  Register next = r4;
+  Register temp = r5;
+
+  Scope* s = scope();
+  while (s != NULL) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_sloppy_eval()) {
+        // Check that extension is "the hole".
+        __ LoadP(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
+        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+      }
+      // Load next context in chain.
+      __ LoadP(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
+      // Walk the rest of the chain without clobbering cp.
+      current = next;
+    }
+    // If no outer scope calls eval, we do not need to check more
+    // context extensions.
+    if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
+    s = s->outer_scope();
+  }
+
+  if (s->is_eval_scope()) {
+    Label loop, fast;
+    if (!current.is(next)) {
+      __ Move(next, current);
+    }
+    __ bind(&loop);
+    // Terminate at native context.
+    __ LoadP(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+    __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
+    __ cmp(temp, ip);
+    __ beq(&fast);
+    // Check that extension is "the hole".
+    __ LoadP(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
+    __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+    // Load next context in chain.
+    __ LoadP(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
+    __ b(&loop);
+    __ bind(&fast);
+  }
+
+  // All extension objects were empty and it is safe to use a normal global
+  // load machinery.
+  EmitGlobalVariableLoad(proxy, typeof_mode);
+}
+
+
+MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
+                                                                Label* slow) {
+  DCHECK(var->IsContextSlot());
+  Register context = cp;
+  Register next = r6;
+  Register temp = r7;
+
+  for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_sloppy_eval()) {
+        // Check that extension is "the hole".
+        __ LoadP(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
+        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+      }
+      __ LoadP(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
+      // Walk the rest of the chain without clobbering cp.
+      context = next;
+    }
+  }
+  // Check that last extension is "the hole".
+  __ LoadP(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
+  __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
+
+  // This function is used only for loads, not stores, so it's safe to
+  // return an cp-based operand (the write barrier cannot be allowed to
+  // destroy the cp register).
+  return ContextMemOperand(context, var->index());
+}
+
+
+void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
+                                                  TypeofMode typeof_mode,
+                                                  Label* slow, Label* done) {
+  // Generate fast-case code for variables that might be shadowed by
+  // eval-introduced variables.  Eval is used a lot without
+  // introducing variables.  In those cases, we do not want to
+  // perform a runtime call for all variables in the scope
+  // containing the eval.
+  Variable* var = proxy->var();
+  if (var->mode() == DYNAMIC_GLOBAL) {
+    EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
+    __ b(done);
+  } else if (var->mode() == DYNAMIC_LOCAL) {
+    Variable* local = var->local_if_not_shadowed();
+    __ LoadP(r3, ContextSlotOperandCheckExtensions(local, slow));
+    if (local->mode() == LET || local->mode() == CONST ||
+        local->mode() == CONST_LEGACY) {
+      __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+      __ bne(done);
+      if (local->mode() == CONST_LEGACY) {
+        __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+      } else {  // LET || CONST
+        __ mov(r3, Operand(var->name()));
+        __ push(r3);
+        __ CallRuntime(Runtime::kThrowReferenceError);
+      }
+    }
+    __ b(done);
+  }
+}
+
+
+void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
+                                               TypeofMode typeof_mode) {
+  Variable* var = proxy->var();
+  DCHECK(var->IsUnallocatedOrGlobalSlot() ||
+         (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
+  __ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
+  __ mov(LoadDescriptor::NameRegister(), Operand(var->name()));
+  __ mov(LoadDescriptor::SlotRegister(),
+         Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
+  CallLoadIC(typeof_mode);
+}
+
+
+void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
+                                         TypeofMode typeof_mode) {
+  // Record position before possible IC call.
+  SetExpressionPosition(proxy);
+  PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
+  Variable* var = proxy->var();
+
+  // Three cases: global variables, lookup variables, and all other types of
+  // variables.
+  switch (var->location()) {
+    case VariableLocation::GLOBAL:
+    case VariableLocation::UNALLOCATED: {
+      Comment cmnt(masm_, "[ Global variable");
+      EmitGlobalVariableLoad(proxy, typeof_mode);
+      context()->Plug(r3);
+      break;
+    }
+
+    case VariableLocation::PARAMETER:
+    case VariableLocation::LOCAL:
+    case VariableLocation::CONTEXT: {
+      DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
+      Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
+                                               : "[ Stack variable");
+      if (NeedsHoleCheckForLoad(proxy)) {
+        Label done;
+        // Let and const need a read barrier.
+        GetVar(r3, var);
+        __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+        __ bne(&done);
+        if (var->mode() == LET || var->mode() == CONST) {
+          // Throw a reference error when using an uninitialized let/const
+          // binding in harmony mode.
+          __ mov(r3, Operand(var->name()));
+          __ push(r3);
+          __ CallRuntime(Runtime::kThrowReferenceError);
+        } else {
+          // Uninitialized legacy const bindings are unholed.
+          DCHECK(var->mode() == CONST_LEGACY);
+          __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+        }
+        __ bind(&done);
+        context()->Plug(r3);
+        break;
+      }
+      context()->Plug(var);
+      break;
+    }
+
+    case VariableLocation::LOOKUP: {
+      Comment cmnt(masm_, "[ Lookup variable");
+      Label done, slow;
+      // Generate code for loading from variables potentially shadowed
+      // by eval-introduced variables.
+      EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
+      __ bind(&slow);
+      __ mov(r4, Operand(var->name()));
+      __ Push(cp, r4);  // Context and name.
+      Runtime::FunctionId function_id =
+          typeof_mode == NOT_INSIDE_TYPEOF
+              ? Runtime::kLoadLookupSlot
+              : Runtime::kLoadLookupSlotNoReferenceError;
+      __ CallRuntime(function_id);
+      __ bind(&done);
+      context()->Plug(r3);
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
+  Comment cmnt(masm_, "[ RegExpLiteral");
+  __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
+  __ mov(r4, Operand(expr->pattern()));
+  __ LoadSmiLiteral(r3, Smi::FromInt(expr->flags()));
+  FastCloneRegExpStub stub(isolate());
+  __ CallStub(&stub);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
+  Expression* expression = (property == NULL) ? NULL : property->value();
+  if (expression == NULL) {
+    __ LoadRoot(r4, Heap::kNullValueRootIndex);
+    __ push(r4);
+  } else {
+    VisitForStackValue(expression);
+    if (NeedsHomeObject(expression)) {
+      DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
+             property->kind() == ObjectLiteral::Property::SETTER);
+      int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
+      EmitSetHomeObject(expression, offset, property->GetSlot());
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+  Comment cmnt(masm_, "[ ObjectLiteral");
+
+  Handle<FixedArray> constant_properties = expr->constant_properties();
+  __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
+  __ mov(r4, Operand(constant_properties));
+  int flags = expr->ComputeFlags();
+  __ LoadSmiLiteral(r3, Smi::FromInt(flags));
+  if (MustCreateObjectLiteralWithRuntime(expr)) {
+    __ Push(r6, r5, r4, r3);
+    __ CallRuntime(Runtime::kCreateObjectLiteral);
+  } else {
+    FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
+    __ CallStub(&stub);
+  }
+  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
+
+  // If result_saved is true the result is on top of the stack.  If
+  // result_saved is false the result is in r3.
+  bool result_saved = false;
+
+  AccessorTable accessor_table(zone());
+  int property_index = 0;
+  for (; property_index < expr->properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = expr->properties()->at(property_index);
+    if (property->is_computed_name()) break;
+    if (property->IsCompileTimeValue()) continue;
+
+    Literal* key = property->key()->AsLiteral();
+    Expression* value = property->value();
+    if (!result_saved) {
+      __ push(r3);  // Save result on stack
+      result_saved = true;
+    }
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+        UNREACHABLE();
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+        DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
+      // Fall through.
+      case ObjectLiteral::Property::COMPUTED:
+        // It is safe to use [[Put]] here because the boilerplate already
+        // contains computed properties with an uninitialized value.
+        if (key->value()->IsInternalizedString()) {
+          if (property->emit_store()) {
+            VisitForAccumulatorValue(value);
+            DCHECK(StoreDescriptor::ValueRegister().is(r3));
+            __ mov(StoreDescriptor::NameRegister(), Operand(key->value()));
+            __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
+            EmitLoadStoreICSlot(property->GetSlot(0));
+            CallStoreIC();
+            PrepareForBailoutForId(key->id(), NO_REGISTERS);
+
+            if (NeedsHomeObject(value)) {
+              EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
+            }
+          } else {
+            VisitForEffect(value);
+          }
+          break;
+        }
+        // Duplicate receiver on stack.
+        __ LoadP(r3, MemOperand(sp));
+        __ push(r3);
+        VisitForStackValue(key);
+        VisitForStackValue(value);
+        if (property->emit_store()) {
+          if (NeedsHomeObject(value)) {
+            EmitSetHomeObject(value, 2, property->GetSlot());
+          }
+          __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY));  // PropertyAttributes
+          __ push(r3);
+          __ CallRuntime(Runtime::kSetProperty);
+        } else {
+          __ Drop(3);
+        }
+        break;
+      case ObjectLiteral::Property::PROTOTYPE:
+        // Duplicate receiver on stack.
+        __ LoadP(r3, MemOperand(sp));
+        __ push(r3);
+        VisitForStackValue(value);
+        DCHECK(property->emit_store());
+        __ CallRuntime(Runtime::kInternalSetPrototype);
+        PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
+                               NO_REGISTERS);
+        break;
+      case ObjectLiteral::Property::GETTER:
+        if (property->emit_store()) {
+          accessor_table.lookup(key)->second->getter = property;
+        }
+        break;
+      case ObjectLiteral::Property::SETTER:
+        if (property->emit_store()) {
+          accessor_table.lookup(key)->second->setter = property;
+        }
+        break;
+    }
+  }
+
+  // Emit code to define accessors, using only a single call to the runtime for
+  // each pair of corresponding getters and setters.
+  for (AccessorTable::Iterator it = accessor_table.begin();
+       it != accessor_table.end(); ++it) {
+    __ LoadP(r3, MemOperand(sp));  // Duplicate receiver.
+    __ push(r3);
+    VisitForStackValue(it->first);
+    EmitAccessor(it->second->getter);
+    EmitAccessor(it->second->setter);
+    __ LoadSmiLiteral(r3, Smi::FromInt(NONE));
+    __ push(r3);
+    __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
+  }
+
+  // Object literals have two parts. The "static" part on the left contains no
+  // computed property names, and so we can compute its map ahead of time; see
+  // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
+  // starts with the first computed property name, and continues with all
+  // properties to its right.  All the code from above initializes the static
+  // component of the object literal, and arranges for the map of the result to
+  // reflect the static order in which the keys appear. For the dynamic
+  // properties, we compile them into a series of "SetOwnProperty" runtime
+  // calls. This will preserve insertion order.
+  for (; property_index < expr->properties()->length(); property_index++) {
+    ObjectLiteral::Property* property = expr->properties()->at(property_index);
+
+    Expression* value = property->value();
+    if (!result_saved) {
+      __ push(r3);  // Save result on the stack
+      result_saved = true;
+    }
+
+    __ LoadP(r3, MemOperand(sp));  // Duplicate receiver.
+    __ push(r3);
+
+    if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
+      DCHECK(!property->is_computed_name());
+      VisitForStackValue(value);
+      DCHECK(property->emit_store());
+      __ CallRuntime(Runtime::kInternalSetPrototype);
+      PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
+                             NO_REGISTERS);
+    } else {
+      EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
+      VisitForStackValue(value);
+      if (NeedsHomeObject(value)) {
+        EmitSetHomeObject(value, 2, property->GetSlot());
+      }
+
+      switch (property->kind()) {
+        case ObjectLiteral::Property::CONSTANT:
+        case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+        case ObjectLiteral::Property::COMPUTED:
+          if (property->emit_store()) {
+            __ LoadSmiLiteral(r3, Smi::FromInt(NONE));
+            __ push(r3);
+            __ CallRuntime(Runtime::kDefineDataPropertyUnchecked);
+          } else {
+            __ Drop(3);
+          }
+          break;
+
+        case ObjectLiteral::Property::PROTOTYPE:
+          UNREACHABLE();
+          break;
+
+        case ObjectLiteral::Property::GETTER:
+          __ mov(r3, Operand(Smi::FromInt(NONE)));
+          __ push(r3);
+          __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
+          break;
+
+        case ObjectLiteral::Property::SETTER:
+          __ mov(r3, Operand(Smi::FromInt(NONE)));
+          __ push(r3);
+          __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
+          break;
+      }
+    }
+  }
+
+  if (expr->has_function()) {
+    DCHECK(result_saved);
+    __ LoadP(r3, MemOperand(sp));
+    __ push(r3);
+    __ CallRuntime(Runtime::kToFastProperties);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(r3);
+  }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+  Comment cmnt(masm_, "[ ArrayLiteral");
+
+  Handle<FixedArray> constant_elements = expr->constant_elements();
+  bool has_fast_elements =
+      IsFastObjectElementsKind(expr->constant_elements_kind());
+  Handle<FixedArrayBase> constant_elements_values(
+      FixedArrayBase::cast(constant_elements->get(1)));
+
+  AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
+  if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
+    // If the only customer of allocation sites is transitioning, then
+    // we can turn it off if we don't have anywhere else to transition to.
+    allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
+  }
+
+  __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
+  __ mov(r4, Operand(constant_elements));
+  if (MustCreateArrayLiteralWithRuntime(expr)) {
+    __ LoadSmiLiteral(r3, Smi::FromInt(expr->ComputeFlags()));
+    __ Push(r6, r5, r4, r3);
+    __ CallRuntime(Runtime::kCreateArrayLiteral);
+  } else {
+    FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
+    __ CallStub(&stub);
+  }
+  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
+
+  bool result_saved = false;  // Is the result saved to the stack?
+  ZoneList<Expression*>* subexprs = expr->values();
+  int length = subexprs->length();
+
+  // Emit code to evaluate all the non-constant subexpressions and to store
+  // them into the newly cloned array.
+  int array_index = 0;
+  for (; array_index < length; array_index++) {
+    Expression* subexpr = subexprs->at(array_index);
+    if (subexpr->IsSpread()) break;
+    // If the subexpression is a literal or a simple materialized literal it
+    // is already set in the cloned array.
+    if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
+
+    if (!result_saved) {
+      __ push(r3);
+      result_saved = true;
+    }
+    VisitForAccumulatorValue(subexpr);
+
+    __ LoadSmiLiteral(StoreDescriptor::NameRegister(),
+                      Smi::FromInt(array_index));
+    __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+    EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
+    Handle<Code> ic =
+        CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+    CallIC(ic);
+
+    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
+  }
+
+  // In case the array literal contains spread expressions it has two parts. The
+  // first part is  the "static" array which has a literal index is  handled
+  // above. The second part is the part after the first spread expression
+  // (inclusive) and these elements gets appended to the array. Note that the
+  // number elements an iterable produces is unknown ahead of time.
+  if (array_index < length && result_saved) {
+    __ Pop(r3);
+    result_saved = false;
+  }
+  for (; array_index < length; array_index++) {
+    Expression* subexpr = subexprs->at(array_index);
+
+    __ Push(r3);
+    if (subexpr->IsSpread()) {
+      VisitForStackValue(subexpr->AsSpread()->expression());
+      __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
+                       CALL_FUNCTION);
+    } else {
+      VisitForStackValue(subexpr);
+      __ CallRuntime(Runtime::kAppendElement);
+    }
+
+    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(r3);
+  }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+  DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
+
+  Comment cmnt(masm_, "[ Assignment");
+  SetExpressionPosition(expr, INSERT_BREAK);
+
+  Property* property = expr->target()->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(property);
+
+  // Evaluate LHS expression.
+  switch (assign_type) {
+    case VARIABLE:
+      // Nothing to do here.
+      break;
+    case NAMED_PROPERTY:
+      if (expr->is_compound()) {
+        // We need the receiver both on the stack and in the register.
+        VisitForStackValue(property->obj());
+        __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+      } else {
+        VisitForStackValue(property->obj());
+      }
+      break;
+    case NAMED_SUPER_PROPERTY:
+      VisitForStackValue(
+          property->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          property->obj()->AsSuperPropertyReference()->home_object());
+      __ Push(result_register());
+      if (expr->is_compound()) {
+        const Register scratch = r4;
+        __ LoadP(scratch, MemOperand(sp, kPointerSize));
+        __ Push(scratch, result_register());
+      }
+      break;
+    case KEYED_SUPER_PROPERTY: {
+      const Register scratch = r4;
+      VisitForStackValue(
+          property->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          property->obj()->AsSuperPropertyReference()->home_object());
+      __ mr(scratch, result_register());
+      VisitForAccumulatorValue(property->key());
+      __ Push(scratch, result_register());
+      if (expr->is_compound()) {
+        const Register scratch1 = r5;
+        __ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
+        __ Push(scratch1, scratch, result_register());
+      }
+      break;
+    }
+    case KEYED_PROPERTY:
+      if (expr->is_compound()) {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+        __ LoadP(LoadDescriptor::ReceiverRegister(),
+                 MemOperand(sp, 1 * kPointerSize));
+        __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+      } else {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+      }
+      break;
+  }
+
+  // For compound assignments we need another deoptimization point after the
+  // variable/property load.
+  if (expr->is_compound()) {
+    {
+      AccumulatorValueContext context(this);
+      switch (assign_type) {
+        case VARIABLE:
+          EmitVariableLoad(expr->target()->AsVariableProxy());
+          PrepareForBailout(expr->target(), TOS_REG);
+          break;
+        case NAMED_PROPERTY:
+          EmitNamedPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case NAMED_SUPER_PROPERTY:
+          EmitNamedSuperPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case KEYED_SUPER_PROPERTY:
+          EmitKeyedSuperPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+        case KEYED_PROPERTY:
+          EmitKeyedPropertyLoad(property);
+          PrepareForBailoutForId(property->LoadId(), TOS_REG);
+          break;
+      }
+    }
+
+    Token::Value op = expr->binary_op();
+    __ push(r3);  // Left operand goes on the stack.
+    VisitForAccumulatorValue(expr->value());
+
+    AccumulatorValueContext context(this);
+    if (ShouldInlineSmiCase(op)) {
+      EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(),
+                            expr->value());
+    } else {
+      EmitBinaryOp(expr->binary_operation(), op);
+    }
+
+    // Deoptimization point in case the binary operation may have side effects.
+    PrepareForBailout(expr->binary_operation(), TOS_REG);
+  } else {
+    VisitForAccumulatorValue(expr->value());
+  }
+
+  SetExpressionPosition(expr);
+
+  // Store the value.
+  switch (assign_type) {
+    case VARIABLE:
+      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+                             expr->op(), expr->AssignmentSlot());
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      context()->Plug(r3);
+      break;
+    case NAMED_PROPERTY:
+      EmitNamedPropertyAssignment(expr);
+      break;
+    case NAMED_SUPER_PROPERTY:
+      EmitNamedSuperPropertyStore(property);
+      context()->Plug(r3);
+      break;
+    case KEYED_SUPER_PROPERTY:
+      EmitKeyedSuperPropertyStore(property);
+      context()->Plug(r3);
+      break;
+    case KEYED_PROPERTY:
+      EmitKeyedPropertyAssignment(expr);
+      break;
+  }
+}
+
+
+void FullCodeGenerator::VisitYield(Yield* expr) {
+  Comment cmnt(masm_, "[ Yield");
+  SetExpressionPosition(expr);
+
+  // Evaluate yielded value first; the initial iterator definition depends on
+  // this.  It stays on the stack while we update the iterator.
+  VisitForStackValue(expr->expression());
+
+  switch (expr->yield_kind()) {
+    case Yield::kSuspend:
+      // Pop value from top-of-stack slot; box result into result register.
+      EmitCreateIteratorResult(false);
+      __ push(result_register());
+    // Fall through.
+    case Yield::kInitial: {
+      Label suspend, continuation, post_runtime, resume;
+
+      __ b(&suspend);
+      __ bind(&continuation);
+      __ RecordGeneratorContinuation();
+      __ b(&resume);
+
+      __ bind(&suspend);
+      VisitForAccumulatorValue(expr->generator_object());
+      DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
+      __ LoadSmiLiteral(r4, Smi::FromInt(continuation.pos()));
+      __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
+                r0);
+      __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
+      __ mr(r4, cp);
+      __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
+                          kLRHasBeenSaved, kDontSaveFPRegs);
+      __ addi(r4, fp, Operand(StandardFrameConstants::kExpressionsOffset));
+      __ cmp(sp, r4);
+      __ beq(&post_runtime);
+      __ push(r3);  // generator object
+      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
+      __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ bind(&post_runtime);
+      __ pop(result_register());
+      EmitReturnSequence();
+
+      __ bind(&resume);
+      context()->Plug(result_register());
+      break;
+    }
+
+    case Yield::kFinal: {
+      VisitForAccumulatorValue(expr->generator_object());
+      __ LoadSmiLiteral(r4, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
+      __ StoreP(r4, FieldMemOperand(result_register(),
+                                    JSGeneratorObject::kContinuationOffset),
+                r0);
+      // Pop value from top-of-stack slot, box result into result register.
+      EmitCreateIteratorResult(true);
+      EmitUnwindBeforeReturn();
+      EmitReturnSequence();
+      break;
+    }
+
+    case Yield::kDelegating: {
+      VisitForStackValue(expr->generator_object());
+
+      // Initial stack layout is as follows:
+      // [sp + 1 * kPointerSize] iter
+      // [sp + 0 * kPointerSize] g
+
+      Label l_catch, l_try, l_suspend, l_continuation, l_resume;
+      Label l_next, l_call;
+      Register load_receiver = LoadDescriptor::ReceiverRegister();
+      Register load_name = LoadDescriptor::NameRegister();
+
+      // Initial send value is undefined.
+      __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+      __ b(&l_next);
+
+      // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
+      __ bind(&l_catch);
+      __ LoadRoot(load_name, Heap::kthrow_stringRootIndex);  // "throw"
+      __ LoadP(r6, MemOperand(sp, 1 * kPointerSize));        // iter
+      __ Push(load_name, r6, r3);  // "throw", iter, except
+      __ b(&l_call);
+
+      // try { received = %yield result }
+      // Shuffle the received result above a try handler and yield it without
+      // re-boxing.
+      __ bind(&l_try);
+      __ pop(r3);  // result
+      int handler_index = NewHandlerTableEntry();
+      EnterTryBlock(handler_index, &l_catch);
+      const int try_block_size = TryCatch::kElementCount * kPointerSize;
+      __ push(r3);  // result
+
+      __ b(&l_suspend);
+      __ bind(&l_continuation);
+      __ RecordGeneratorContinuation();
+      __ b(&l_resume);
+
+      __ bind(&l_suspend);
+      const int generator_object_depth = kPointerSize + try_block_size;
+      __ LoadP(r3, MemOperand(sp, generator_object_depth));
+      __ push(r3);  // g
+      __ Push(Smi::FromInt(handler_index));  // handler-index
+      DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
+      __ LoadSmiLiteral(r4, Smi::FromInt(l_continuation.pos()));
+      __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
+                r0);
+      __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
+      __ mr(r4, cp);
+      __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
+                          kLRHasBeenSaved, kDontSaveFPRegs);
+      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
+      __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ pop(r3);  // result
+      EmitReturnSequence();
+      __ bind(&l_resume);  // received in r3
+      ExitTryBlock(handler_index);
+
+      // receiver = iter; f = 'next'; arg = received;
+      __ bind(&l_next);
+
+      __ LoadRoot(load_name, Heap::knext_stringRootIndex);  // "next"
+      __ LoadP(r6, MemOperand(sp, 1 * kPointerSize));       // iter
+      __ Push(load_name, r6, r3);  // "next", iter, received
+
+      // result = receiver[f](arg);
+      __ bind(&l_call);
+      __ LoadP(load_receiver, MemOperand(sp, kPointerSize));
+      __ LoadP(load_name, MemOperand(sp, 2 * kPointerSize));
+      __ mov(LoadDescriptor::SlotRegister(),
+             Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
+      Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
+      CallIC(ic, TypeFeedbackId::None());
+      __ mr(r4, r3);
+      __ StoreP(r4, MemOperand(sp, 2 * kPointerSize));
+      SetCallPosition(expr);
+      __ li(r3, Operand(1));
+      __ Call(
+          isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
+          RelocInfo::CODE_TARGET);
+
+      __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+      __ Drop(1);  // The function is still on the stack; drop it.
+
+      // if (!result.done) goto l_try;
+      __ Move(load_receiver, r3);
+
+      __ push(load_receiver);                               // save result
+      __ LoadRoot(load_name, Heap::kdone_stringRootIndex);  // "done"
+      __ mov(LoadDescriptor::SlotRegister(),
+             Operand(SmiFromSlot(expr->DoneFeedbackSlot())));
+      CallLoadIC(NOT_INSIDE_TYPEOF);  // r0=result.done
+      Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
+      CallIC(bool_ic);
+      __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
+      __ bne(&l_try);
+
+      // result.value
+      __ pop(load_receiver);                                 // result
+      __ LoadRoot(load_name, Heap::kvalue_stringRootIndex);  // "value"
+      __ mov(LoadDescriptor::SlotRegister(),
+             Operand(SmiFromSlot(expr->ValueFeedbackSlot())));
+      CallLoadIC(NOT_INSIDE_TYPEOF);  // r3=result.value
+      context()->DropAndPlug(2, r3);  // drop iter and g
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::EmitGeneratorResume(
+    Expression* generator, Expression* value,
+    JSGeneratorObject::ResumeMode resume_mode) {
+  // The value stays in r3, and is ultimately read by the resumed generator, as
+  // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
+  // is read to throw the value when the resumed generator is already closed.
+  // r4 will hold the generator object until the activation has been resumed.
+  VisitForStackValue(generator);
+  VisitForAccumulatorValue(value);
+  __ pop(r4);
+
+  // Load suspended function and context.
+  __ LoadP(cp, FieldMemOperand(r4, JSGeneratorObject::kContextOffset));
+  __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
+
+  // Load receiver and store as the first argument.
+  __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
+  __ push(r5);
+
+  // Push holes for the rest of the arguments to the generator function.
+  __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
+  __ LoadWordArith(
+      r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
+  __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
+  Label argument_loop, push_frame;
+#if V8_TARGET_ARCH_PPC64
+  __ cmpi(r6, Operand::Zero());
+  __ beq(&push_frame);
+#else
+  __ SmiUntag(r6, SetRC);
+  __ beq(&push_frame, cr0);
+#endif
+  __ mtctr(r6);
+  __ bind(&argument_loop);
+  __ push(r5);
+  __ bdnz(&argument_loop);
+
+  // Enter a new JavaScript frame, and initialize its slots as they were when
+  // the generator was suspended.
+  Label resume_frame, done;
+  __ bind(&push_frame);
+  __ b(&resume_frame, SetLK);
+  __ b(&done);
+  __ bind(&resume_frame);
+  // lr = return address.
+  // fp = caller's frame pointer.
+  // cp = callee's context,
+  // r7 = callee's JS function.
+  __ PushFixedFrame(r7);
+  // Adjust FP to point to saved FP.
+  __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+
+  // Load the operand stack size.
+  __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kOperandStackOffset));
+  __ LoadP(r6, FieldMemOperand(r6, FixedArray::kLengthOffset));
+  __ SmiUntag(r6, SetRC);
+
+  // If we are sending a value and there is no operand stack, we can jump back
+  // in directly.
+  Label call_resume;
+  if (resume_mode == JSGeneratorObject::NEXT) {
+    Label slow_resume;
+    __ bne(&slow_resume, cr0);
+    __ LoadP(ip, FieldMemOperand(r7, JSFunction::kCodeEntryOffset));
+    {
+      ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
+      if (FLAG_enable_embedded_constant_pool) {
+        __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(ip);
+      }
+      __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
+      __ SmiUntag(r5);
+      __ add(ip, ip, r5);
+      __ LoadSmiLiteral(r5,
+                        Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
+      __ StoreP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset),
+                r0);
+      __ Jump(ip);
+      __ bind(&slow_resume);
+    }
+  } else {
+    __ beq(&call_resume, cr0);
+  }
+
+  // Otherwise, we push holes for the operand stack and call the runtime to fix
+  // up the stack and the handlers.
+  Label operand_loop;
+  __ mtctr(r6);
+  __ bind(&operand_loop);
+  __ push(r5);
+  __ bdnz(&operand_loop);
+
+  __ bind(&call_resume);
+  DCHECK(!result_register().is(r4));
+  __ Push(r4, result_register());
+  __ Push(Smi::FromInt(resume_mode));
+  __ CallRuntime(Runtime::kResumeJSGeneratorObject);
+  // Not reached: the runtime call returns elsewhere.
+  __ stop("not-reached");
+
+  __ bind(&done);
+  context()->Plug(result_register());
+}
+
+
+void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
+  Label allocate, done_allocate;
+
+  __ Allocate(JSIteratorResult::kSize, r3, r5, r6, &allocate, TAG_OBJECT);
+  __ b(&done_allocate);
+
+  __ bind(&allocate);
+  __ Push(Smi::FromInt(JSIteratorResult::kSize));
+  __ CallRuntime(Runtime::kAllocateInNewSpace);
+
+  __ bind(&done_allocate);
+  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, r4);
+  __ pop(r5);
+  __ LoadRoot(r6,
+              done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
+  __ LoadRoot(r7, Heap::kEmptyFixedArrayRootIndex);
+  __ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+  __ StoreP(r5, FieldMemOperand(r3, JSIteratorResult::kValueOffset), r0);
+  __ StoreP(r6, FieldMemOperand(r3, JSIteratorResult::kDoneOffset), r0);
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
+  SetExpressionPosition(prop);
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!prop->IsSuperAccess());
+
+  __ mov(LoadDescriptor::NameRegister(), Operand(key->value()));
+  __ mov(LoadDescriptor::SlotRegister(),
+         Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+  CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
+  // Stack: receiver, home_object.
+  SetExpressionPosition(prop);
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!key->value()->IsSmi());
+  DCHECK(prop->IsSuperAccess());
+
+  __ Push(key->value());
+  __ Push(Smi::FromInt(language_mode()));
+  __ CallRuntime(Runtime::kLoadFromSuper);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
+  SetExpressionPosition(prop);
+  Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
+  __ mov(LoadDescriptor::SlotRegister(),
+         Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+  CallIC(ic);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
+  // Stack: receiver, home_object, key.
+  SetExpressionPosition(prop);
+  __ Push(Smi::FromInt(language_mode()));
+  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
+}
+
+
+void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
+                                              Token::Value op,
+                                              Expression* left_expr,
+                                              Expression* right_expr) {
+  Label done, smi_case, stub_call;
+
+  Register scratch1 = r5;
+  Register scratch2 = r6;
+
+  // Get the arguments.
+  Register left = r4;
+  Register right = r3;
+  __ pop(left);
+
+  // Perform combined smi check on both operands.
+  __ orx(scratch1, left, right);
+  STATIC_ASSERT(kSmiTag == 0);
+  JumpPatchSite patch_site(masm_);
+  patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+  __ bind(&stub_call);
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
+  CallIC(code, expr->BinaryOperationFeedbackId());
+  patch_site.EmitPatchInfo();
+  __ b(&done);
+
+  __ bind(&smi_case);
+  // Smi case. This code works the same way as the smi-smi case in the type
+  // recording binary operation stub.
+  switch (op) {
+    case Token::SAR:
+      __ GetLeastBitsFromSmi(scratch1, right, 5);
+      __ ShiftRightArith(right, left, scratch1);
+      __ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
+      break;
+    case Token::SHL: {
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+#if V8_TARGET_ARCH_PPC64
+      __ ShiftLeft_(right, left, scratch2);
+#else
+      __ SmiUntag(scratch1, left);
+      __ ShiftLeft_(scratch1, scratch1, scratch2);
+      // Check that the *signed* result fits in a smi
+      __ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
+      __ SmiTag(right, scratch1);
+#endif
+      break;
+    }
+    case Token::SHR: {
+      __ SmiUntag(scratch1, left);
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+      __ srw(scratch1, scratch1, scratch2);
+      // Unsigned shift is not allowed to produce a negative number.
+      __ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
+      __ SmiTag(right, scratch1);
+      break;
+    }
+    case Token::ADD: {
+      __ AddAndCheckForOverflow(scratch1, left, right, scratch2, r0);
+      __ BranchOnOverflow(&stub_call);
+      __ mr(right, scratch1);
+      break;
+    }
+    case Token::SUB: {
+      __ SubAndCheckForOverflow(scratch1, left, right, scratch2, r0);
+      __ BranchOnOverflow(&stub_call);
+      __ mr(right, scratch1);
+      break;
+    }
+    case Token::MUL: {
+      Label mul_zero;
+#if V8_TARGET_ARCH_PPC64
+      // Remove tag from both operands.
+      __ SmiUntag(ip, right);
+      __ SmiUntag(r0, left);
+      __ Mul(scratch1, r0, ip);
+      // Check for overflowing the smi range - no overflow if higher 33 bits of
+      // the result are identical.
+      __ TestIfInt32(scratch1, r0);
+      __ bne(&stub_call);
+#else
+      __ SmiUntag(ip, right);
+      __ mullw(scratch1, left, ip);
+      __ mulhw(scratch2, left, ip);
+      // Check for overflowing the smi range - no overflow if higher 33 bits of
+      // the result are identical.
+      __ TestIfInt32(scratch2, scratch1, ip);
+      __ bne(&stub_call);
+#endif
+      // Go slow on zero result to handle -0.
+      __ cmpi(scratch1, Operand::Zero());
+      __ beq(&mul_zero);
+#if V8_TARGET_ARCH_PPC64
+      __ SmiTag(right, scratch1);
+#else
+      __ mr(right, scratch1);
+#endif
+      __ b(&done);
+      // We need -0 if we were multiplying a negative number with 0 to get 0.
+      // We know one of them was zero.
+      __ bind(&mul_zero);
+      __ add(scratch2, right, left);
+      __ cmpi(scratch2, Operand::Zero());
+      __ blt(&stub_call);
+      __ LoadSmiLiteral(right, Smi::FromInt(0));
+      break;
+    }
+    case Token::BIT_OR:
+      __ orx(right, left, right);
+      break;
+    case Token::BIT_AND:
+      __ and_(right, left, right);
+      break;
+    case Token::BIT_XOR:
+      __ xor_(right, left, right);
+      break;
+    default:
+      UNREACHABLE();
+  }
+
+  __ bind(&done);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
+  // Constructor is in r3.
+  DCHECK(lit != NULL);
+  __ push(r3);
+
+  // No access check is needed here since the constructor is created by the
+  // class literal.
+  Register scratch = r4;
+  __ LoadP(scratch,
+           FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
+  __ push(scratch);
+
+  for (int i = 0; i < lit->properties()->length(); i++) {
+    ObjectLiteral::Property* property = lit->properties()->at(i);
+    Expression* value = property->value();
+
+    if (property->is_static()) {
+      __ LoadP(scratch, MemOperand(sp, kPointerSize));  // constructor
+    } else {
+      __ LoadP(scratch, MemOperand(sp, 0));  // prototype
+    }
+    __ push(scratch);
+    EmitPropertyKey(property, lit->GetIdForProperty(i));
+
+    // The static prototype property is read only. We handle the non computed
+    // property name case in the parser. Since this is the only case where we
+    // need to check for an own read only property we special case this so we do
+    // not need to do this for every property.
+    if (property->is_static() && property->is_computed_name()) {
+      __ CallRuntime(Runtime::kThrowIfStaticPrototype);
+      __ push(r3);
+    }
+
+    VisitForStackValue(value);
+    if (NeedsHomeObject(value)) {
+      EmitSetHomeObject(value, 2, property->GetSlot());
+    }
+
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+      case ObjectLiteral::Property::PROTOTYPE:
+        UNREACHABLE();
+      case ObjectLiteral::Property::COMPUTED:
+        __ CallRuntime(Runtime::kDefineClassMethod);
+        break;
+
+      case ObjectLiteral::Property::GETTER:
+        __ mov(r3, Operand(Smi::FromInt(DONT_ENUM)));
+        __ push(r3);
+        __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
+        break;
+
+      case ObjectLiteral::Property::SETTER:
+        __ mov(r3, Operand(Smi::FromInt(DONT_ENUM)));
+        __ push(r3);
+        __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
+        break;
+
+      default:
+        UNREACHABLE();
+    }
+  }
+
+  // Set both the prototype and constructor to have fast properties, and also
+  // freeze them in strong mode.
+  __ CallRuntime(Runtime::kFinalizeClassDefinition);
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
+  __ pop(r4);
+  Handle<Code> code =
+      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
+  JumpPatchSite patch_site(masm_);  // unbound, signals no inlined smi code.
+  CallIC(code, expr->BinaryOperationFeedbackId());
+  patch_site.EmitPatchInfo();
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitAssignment(Expression* expr,
+                                       FeedbackVectorSlot slot) {
+  DCHECK(expr->IsValidReferenceExpressionOrThis());
+
+  Property* prop = expr->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(prop);
+
+  switch (assign_type) {
+    case VARIABLE: {
+      Variable* var = expr->AsVariableProxy()->var();
+      EffectContext context(this);
+      EmitVariableAssignment(var, Token::ASSIGN, slot);
+      break;
+    }
+    case NAMED_PROPERTY: {
+      __ push(r3);  // Preserve value.
+      VisitForAccumulatorValue(prop->obj());
+      __ Move(StoreDescriptor::ReceiverRegister(), r3);
+      __ pop(StoreDescriptor::ValueRegister());  // Restore value.
+      __ mov(StoreDescriptor::NameRegister(),
+             Operand(prop->key()->AsLiteral()->value()));
+      EmitLoadStoreICSlot(slot);
+      CallStoreIC();
+      break;
+    }
+    case NAMED_SUPER_PROPERTY: {
+      __ Push(r3);
+      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+      VisitForAccumulatorValue(
+          prop->obj()->AsSuperPropertyReference()->home_object());
+      // stack: value, this; r3: home_object
+      Register scratch = r5;
+      Register scratch2 = r6;
+      __ mr(scratch, result_register());                  // home_object
+      __ LoadP(r3, MemOperand(sp, kPointerSize));         // value
+      __ LoadP(scratch2, MemOperand(sp, 0));              // this
+      __ StoreP(scratch2, MemOperand(sp, kPointerSize));  // this
+      __ StoreP(scratch, MemOperand(sp, 0));              // home_object
+      // stack: this, home_object; r3: value
+      EmitNamedSuperPropertyStore(prop);
+      break;
+    }
+    case KEYED_SUPER_PROPERTY: {
+      __ Push(r3);
+      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          prop->obj()->AsSuperPropertyReference()->home_object());
+      VisitForAccumulatorValue(prop->key());
+      Register scratch = r5;
+      Register scratch2 = r6;
+      __ LoadP(scratch2, MemOperand(sp, 2 * kPointerSize));  // value
+      // stack: value, this, home_object; r3: key, r6: value
+      __ LoadP(scratch, MemOperand(sp, kPointerSize));  // this
+      __ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
+      __ LoadP(scratch, MemOperand(sp, 0));  // home_object
+      __ StoreP(scratch, MemOperand(sp, kPointerSize));
+      __ StoreP(r3, MemOperand(sp, 0));
+      __ Move(r3, scratch2);
+      // stack: this, home_object, key; r3: value.
+      EmitKeyedSuperPropertyStore(prop);
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ push(r3);  // Preserve value.
+      VisitForStackValue(prop->obj());
+      VisitForAccumulatorValue(prop->key());
+      __ Move(StoreDescriptor::NameRegister(), r3);
+      __ Pop(StoreDescriptor::ValueRegister(),
+             StoreDescriptor::ReceiverRegister());
+      EmitLoadStoreICSlot(slot);
+      Handle<Code> ic =
+          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+      CallIC(ic);
+      break;
+    }
+  }
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
+    Variable* var, MemOperand location) {
+  __ StoreP(result_register(), location, r0);
+  if (var->IsContextSlot()) {
+    // RecordWrite may destroy all its register arguments.
+    __ mr(r6, result_register());
+    int offset = Context::SlotOffset(var->index());
+    __ RecordWriteContextSlot(r4, offset, r6, r5, kLRHasBeenSaved,
+                              kDontSaveFPRegs);
+  }
+}
+
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
+                                               FeedbackVectorSlot slot) {
+  if (var->IsUnallocated()) {
+    // Global var, const, or let.
+    __ mov(StoreDescriptor::NameRegister(), Operand(var->name()));
+    __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
+    EmitLoadStoreICSlot(slot);
+    CallStoreIC();
+
+  } else if (var->mode() == LET && op != Token::INIT) {
+    // Non-initializing assignment to let variable needs a write barrier.
+    DCHECK(!var->IsLookupSlot());
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label assign;
+    MemOperand location = VarOperand(var, r4);
+    __ LoadP(r6, location);
+    __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
+    __ bne(&assign);
+    __ mov(r6, Operand(var->name()));
+    __ push(r6);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    // Perform the assignment.
+    __ bind(&assign);
+    EmitStoreToStackLocalOrContextSlot(var, location);
+
+  } else if (var->mode() == CONST && op != Token::INIT) {
+    // Assignment to const variable needs a write barrier.
+    DCHECK(!var->IsLookupSlot());
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label const_error;
+    MemOperand location = VarOperand(var, r4);
+    __ LoadP(r6, location);
+    __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
+    __ bne(&const_error);
+    __ mov(r6, Operand(var->name()));
+    __ push(r6);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    __ bind(&const_error);
+    __ CallRuntime(Runtime::kThrowConstAssignError);
+
+  } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
+    // Initializing assignment to const {this} needs a write barrier.
+    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+    Label uninitialized_this;
+    MemOperand location = VarOperand(var, r4);
+    __ LoadP(r6, location);
+    __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
+    __ beq(&uninitialized_this);
+    __ mov(r4, Operand(var->name()));
+    __ push(r4);
+    __ CallRuntime(Runtime::kThrowReferenceError);
+    __ bind(&uninitialized_this);
+    EmitStoreToStackLocalOrContextSlot(var, location);
+
+  } else if (!var->is_const_mode() ||
+             (var->mode() == CONST && op == Token::INIT)) {
+    if (var->IsLookupSlot()) {
+      // Assignment to var.
+      __ push(r3);  // Value.
+      __ mov(r4, Operand(var->name()));
+      __ mov(r3, Operand(Smi::FromInt(language_mode())));
+      __ Push(cp, r4, r3);  // Context, name, language mode.
+      __ CallRuntime(Runtime::kStoreLookupSlot);
+    } else {
+      // Assignment to var or initializing assignment to let/const in harmony
+      // mode.
+      DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
+      MemOperand location = VarOperand(var, r4);
+      if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) {
+        // Check for an uninitialized let binding.
+        __ LoadP(r5, location);
+        __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
+        __ Check(eq, kLetBindingReInitialization);
+      }
+      EmitStoreToStackLocalOrContextSlot(var, location);
+    }
+  } else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
+    // Const initializers need a write barrier.
+    DCHECK(!var->IsParameter());  // No const parameters.
+    if (var->IsLookupSlot()) {
+      __ push(r3);
+      __ mov(r3, Operand(var->name()));
+      __ Push(cp, r3);  // Context and name.
+      __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
+    } else {
+      DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+      Label skip;
+      MemOperand location = VarOperand(var, r4);
+      __ LoadP(r5, location);
+      __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
+      __ bne(&skip);
+      EmitStoreToStackLocalOrContextSlot(var, location);
+      __ bind(&skip);
+    }
+
+  } else {
+    DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
+    if (is_strict(language_mode())) {
+      __ CallRuntime(Runtime::kThrowConstAssignError);
+    }
+    // Silently ignore store in sloppy mode.
+  }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+  // Assignment to a property, using a named store IC.
+  Property* prop = expr->target()->AsProperty();
+  DCHECK(prop != NULL);
+  DCHECK(prop->key()->IsLiteral());
+
+  __ mov(StoreDescriptor::NameRegister(),
+         Operand(prop->key()->AsLiteral()->value()));
+  __ pop(StoreDescriptor::ReceiverRegister());
+  EmitLoadStoreICSlot(expr->AssignmentSlot());
+  CallStoreIC();
+
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
+  // Assignment to named property of super.
+  // r3 : value
+  // stack : receiver ('this'), home_object
+  DCHECK(prop != NULL);
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(key != NULL);
+
+  __ Push(key->value());
+  __ Push(r3);
+  __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
+                                             : Runtime::kStoreToSuper_Sloppy));
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
+  // Assignment to named property of super.
+  // r3 : value
+  // stack : receiver ('this'), home_object, key
+  DCHECK(prop != NULL);
+
+  __ Push(r3);
+  __ CallRuntime((is_strict(language_mode())
+                      ? Runtime::kStoreKeyedToSuper_Strict
+                      : Runtime::kStoreKeyedToSuper_Sloppy));
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+  // Assignment to a property, using a keyed store IC.
+  __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
+  DCHECK(StoreDescriptor::ValueRegister().is(r3));
+
+  Handle<Code> ic =
+      CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+  EmitLoadStoreICSlot(expr->AssignmentSlot());
+  CallIC(ic);
+
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::VisitProperty(Property* expr) {
+  Comment cmnt(masm_, "[ Property");
+  SetExpressionPosition(expr);
+
+  Expression* key = expr->key();
+
+  if (key->IsPropertyName()) {
+    if (!expr->IsSuperAccess()) {
+      VisitForAccumulatorValue(expr->obj());
+      __ Move(LoadDescriptor::ReceiverRegister(), r3);
+      EmitNamedPropertyLoad(expr);
+    } else {
+      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          expr->obj()->AsSuperPropertyReference()->home_object());
+      EmitNamedSuperPropertyLoad(expr);
+    }
+  } else {
+    if (!expr->IsSuperAccess()) {
+      VisitForStackValue(expr->obj());
+      VisitForAccumulatorValue(expr->key());
+      __ Move(LoadDescriptor::NameRegister(), r3);
+      __ pop(LoadDescriptor::ReceiverRegister());
+      EmitKeyedPropertyLoad(expr);
+    } else {
+      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
+      VisitForStackValue(
+          expr->obj()->AsSuperPropertyReference()->home_object());
+      VisitForStackValue(expr->key());
+      EmitKeyedSuperPropertyLoad(expr);
+    }
+  }
+  PrepareForBailoutForId(expr->LoadId(), TOS_REG);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::CallIC(Handle<Code> code, TypeFeedbackId ast_id) {
+  ic_total_count_++;
+  __ Call(code, RelocInfo::CODE_TARGET, ast_id);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
+  Expression* callee = expr->expression();
+
+  // Get the target function.
+  ConvertReceiverMode convert_mode;
+  if (callee->IsVariableProxy()) {
+    {
+      StackValueContext context(this);
+      EmitVariableLoad(callee->AsVariableProxy());
+      PrepareForBailout(callee, NO_REGISTERS);
+    }
+    // Push undefined as receiver. This is patched in the method prologue if it
+    // is a sloppy mode method.
+    __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+    __ push(r0);
+    convert_mode = ConvertReceiverMode::kNullOrUndefined;
+  } else {
+    // Load the function from the receiver.
+    DCHECK(callee->IsProperty());
+    DCHECK(!callee->AsProperty()->IsSuperAccess());
+    __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+    EmitNamedPropertyLoad(callee->AsProperty());
+    PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+    // Push the target function under the receiver.
+    __ LoadP(r0, MemOperand(sp, 0));
+    __ push(r0);
+    __ StoreP(r3, MemOperand(sp, kPointerSize));
+    convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
+  }
+
+  EmitCall(expr, convert_mode);
+}
+
+
+void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
+  Expression* callee = expr->expression();
+  DCHECK(callee->IsProperty());
+  Property* prop = callee->AsProperty();
+  DCHECK(prop->IsSuperAccess());
+  SetExpressionPosition(prop);
+
+  Literal* key = prop->key()->AsLiteral();
+  DCHECK(!key->value()->IsSmi());
+  // Load the function from the receiver.
+  const Register scratch = r4;
+  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
+  VisitForAccumulatorValue(super_ref->home_object());
+  __ mr(scratch, r3);
+  VisitForAccumulatorValue(super_ref->this_var());
+  __ Push(scratch, r3, r3, scratch);
+  __ Push(key->value());
+  __ Push(Smi::FromInt(language_mode()));
+
+  // Stack here:
+  //  - home_object
+  //  - this (receiver)
+  //  - this (receiver) <-- LoadFromSuper will pop here and below.
+  //  - home_object
+  //  - key
+  //  - language_mode
+  __ CallRuntime(Runtime::kLoadFromSuper);
+
+  // Replace home_object with target function.
+  __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+  // Stack here:
+  // - target function
+  // - this (receiver)
+  EmitCall(expr);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) {
+  // Load the key.
+  VisitForAccumulatorValue(key);
+
+  Expression* callee = expr->expression();
+
+  // Load the function from the receiver.
+  DCHECK(callee->IsProperty());
+  __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+  __ Move(LoadDescriptor::NameRegister(), r3);
+  EmitKeyedPropertyLoad(callee->AsProperty());
+  PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+
+  // Push the target function under the receiver.
+  __ LoadP(ip, MemOperand(sp, 0));
+  __ push(ip);
+  __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+  EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
+  Expression* callee = expr->expression();
+  DCHECK(callee->IsProperty());
+  Property* prop = callee->AsProperty();
+  DCHECK(prop->IsSuperAccess());
+
+  SetExpressionPosition(prop);
+  // Load the function from the receiver.
+  const Register scratch = r4;
+  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
+  VisitForAccumulatorValue(super_ref->home_object());
+  __ mr(scratch, r3);
+  VisitForAccumulatorValue(super_ref->this_var());
+  __ Push(scratch, r3, r3, scratch);
+  VisitForStackValue(prop->key());
+  __ Push(Smi::FromInt(language_mode()));
+
+  // Stack here:
+  //  - home_object
+  //  - this (receiver)
+  //  - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
+  //  - home_object
+  //  - key
+  //  - language_mode
+  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
+
+  // Replace home_object with target function.
+  __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+  // Stack here:
+  // - target function
+  // - this (receiver)
+  EmitCall(expr);
+}
+
+
+void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
+  // Load the arguments.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+  SetCallPosition(expr);
+  Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
+  __ LoadSmiLiteral(r6, SmiFromSlot(expr->CallFeedbackICSlot()));
+  __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+  // Don't assign a type feedback id to the IC, since type feedback is provided
+  // by the vector above.
+  CallIC(ic);
+
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, r3);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
+  // r7: copy of the first argument or undefined if it doesn't exist.
+  if (arg_count > 0) {
+    __ LoadP(r7, MemOperand(sp, arg_count * kPointerSize), r0);
+  } else {
+    __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
+  }
+
+  // r6: the receiver of the enclosing function.
+  __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+
+  // r5: language mode.
+  __ LoadSmiLiteral(r5, Smi::FromInt(language_mode()));
+
+  // r4: the start position of the scope the calls resides in.
+  __ LoadSmiLiteral(r4, Smi::FromInt(scope()->start_position()));
+
+  // Do the runtime call.
+  __ Push(r7, r6, r5, r4);
+  __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
+}
+
+
+// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
+void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
+  VariableProxy* callee = expr->expression()->AsVariableProxy();
+  if (callee->var()->IsLookupSlot()) {
+    Label slow, done;
+    SetExpressionPosition(callee);
+    // Generate code for loading from variables potentially shadowed by
+    // eval-introduced variables.
+    EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
+
+    __ bind(&slow);
+    // Call the runtime to find the function to call (returned in r3) and
+    // the object holding it (returned in r4).
+    DCHECK(!context_register().is(r5));
+    __ mov(r5, Operand(callee->name()));
+    __ Push(context_register(), r5);
+    __ CallRuntime(Runtime::kLoadLookupSlot);
+    __ Push(r3, r4);  // Function, receiver.
+    PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
+
+    // If fast case code has been generated, emit code to push the function
+    // and receiver and have the slow path jump around this code.
+    if (done.is_linked()) {
+      Label call;
+      __ b(&call);
+      __ bind(&done);
+      // Push function.
+      __ push(r3);
+      // Pass undefined as the receiver, which is the WithBaseObject of a
+      // non-object environment record.  If the callee is sloppy, it will patch
+      // it up to be the global receiver.
+      __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
+      __ push(r4);
+      __ bind(&call);
+    }
+  } else {
+    VisitForStackValue(callee);
+    // refEnv.WithBaseObject()
+    __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+    __ push(r5);  // Reserved receiver slot.
+  }
+}
+
+
+void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
+  // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
+  // to resolve the function we need to call.  Then we call the resolved
+  // function using the given arguments.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+
+  PushCalleeAndWithBaseObject(expr);
+
+  // Push the arguments.
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Push a copy of the function (found below the arguments) and
+  // resolve eval.
+  __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+  __ push(r4);
+  EmitResolvePossiblyDirectEval(arg_count);
+
+  // Touch up the stack with the resolved function.
+  __ StoreP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+
+  PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
+
+  // Record source position for debugger.
+  SetCallPosition(expr);
+  __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+  __ mov(r3, Operand(arg_count));
+  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, r3);
+}
+
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+  Comment cmnt(masm_, "[ CallNew");
+  // According to ECMA-262, section 11.2.2, page 44, the function
+  // expression in new calls must be evaluated before the
+  // arguments.
+
+  // Push constructor on the stack.  If it's not a function it's used as
+  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+  // ignored.
+  DCHECK(!expr->expression()->IsSuperPropertyReference());
+  VisitForStackValue(expr->expression());
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  SetConstructCallPosition(expr);
+
+  // Load function and argument count into r4 and r3.
+  __ mov(r3, Operand(arg_count));
+  __ LoadP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
+
+  // Record call targets in unoptimized code.
+  __ EmitLoadTypeFeedbackVector(r5);
+  __ LoadSmiLiteral(r6, SmiFromSlot(expr->CallNewFeedbackSlot()));
+
+  CallConstructStub stub(isolate());
+  __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
+  PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
+  // Restore context register.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
+  SuperCallReference* super_call_ref =
+      expr->expression()->AsSuperCallReference();
+  DCHECK_NOT_NULL(super_call_ref);
+
+  // Push the super constructor target on the stack (may be null,
+  // but the Construct builtin can deal with that properly).
+  VisitForAccumulatorValue(super_call_ref->this_function_var());
+  __ AssertFunction(result_register());
+  __ LoadP(result_register(),
+           FieldMemOperand(result_register(), HeapObject::kMapOffset));
+  __ LoadP(result_register(),
+           FieldMemOperand(result_register(), Map::kPrototypeOffset));
+  __ Push(result_register());
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  SetConstructCallPosition(expr);
+
+  // Load new target into r6.
+  VisitForAccumulatorValue(super_call_ref->new_target_var());
+  __ mr(r6, result_register());
+
+  // Load function and argument count into r1 and r0.
+  __ mov(r3, Operand(arg_count));
+  __ LoadP(r4, MemOperand(sp, arg_count * kPointerSize));
+
+  __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+
+  RecordJSReturnSite(expr);
+
+  // Restore context register.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  __ TestIfSmi(r3, r0);
+  Split(eq, if_true, if_false, fall_through, cr0);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(ge, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, SIMD128_VALUE_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r5, FIRST_FUNCTION_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(ge, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
+#if V8_TARGET_ARCH_PPC64
+  __ LoadP(r4, FieldMemOperand(r3, HeapNumber::kValueOffset));
+  __ li(r5, Operand(1));
+  __ rotrdi(r5, r5, 1);  // r5 = 0x80000000_00000000
+  __ cmp(r4, r5);
+#else
+  __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
+  __ lwz(r4, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
+  Label skip;
+  __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
+  __ cmp(r5, r0);
+  __ bne(&skip);
+  __ cmpi(r4, Operand::Zero());
+  __ bind(&skip);
+#endif
+
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, JS_ARRAY_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, JS_TYPED_ARRAY_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, JS_PROXY_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+
+  // Load the two objects into registers and perform the comparison.
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ pop(r4);
+  __ cmp(r3, r4);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+
+  // ArgumentsAccessStub expects the key in r4 and the formal
+  // parameter count in r3.
+  VisitForAccumulatorValue(args->at(0));
+  __ mr(r4, r3);
+  __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
+  ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
+  __ CallStub(&stub);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
+  DCHECK(expr->arguments()->length() == 0);
+  Label exit;
+  // Get the number of formal parameters.
+  __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
+
+  // Check if the calling frame is an arguments adaptor frame.
+  __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+  __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ bne(&exit);
+
+  // Arguments adaptor case: Read the arguments length from the
+  // adaptor frame.
+  __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+  __ bind(&exit);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  Label done, null, function, non_function_constructor;
+
+  VisitForAccumulatorValue(args->at(0));
+
+  // If the object is not a JSReceiver, we return null.
+  __ JumpIfSmi(r3, &null);
+  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+  __ CompareObjectType(r3, r3, r4, FIRST_JS_RECEIVER_TYPE);
+  // Map is now in r3.
+  __ blt(&null);
+
+  // Return 'Function' for JSFunction objects.
+  __ cmpi(r4, Operand(JS_FUNCTION_TYPE));
+  __ beq(&function);
+
+  // Check if the constructor in the map is a JS function.
+  Register instance_type = r5;
+  __ GetMapConstructor(r3, r3, r4, instance_type);
+  __ cmpi(instance_type, Operand(JS_FUNCTION_TYPE));
+  __ bne(&non_function_constructor);
+
+  // r3 now contains the constructor function. Grab the
+  // instance class name from there.
+  __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
+  __ LoadP(r3,
+           FieldMemOperand(r3, SharedFunctionInfo::kInstanceClassNameOffset));
+  __ b(&done);
+
+  // Functions have class 'Function'.
+  __ bind(&function);
+  __ LoadRoot(r3, Heap::kFunction_stringRootIndex);
+  __ b(&done);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ bind(&non_function_constructor);
+  __ LoadRoot(r3, Heap::kObject_stringRootIndex);
+  __ b(&done);
+
+  // Non-JS objects have class null.
+  __ bind(&null);
+  __ LoadRoot(r3, Heap::kNullValueRootIndex);
+
+  // All done.
+  __ bind(&done);
+
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  VisitForAccumulatorValue(args->at(0));  // Load the object.
+
+  Label done;
+  // If the object is a smi return the object.
+  __ JumpIfSmi(r3, &done);
+  // If the object is not a value type, return the object.
+  __ CompareObjectType(r3, r4, r4, JS_VALUE_TYPE);
+  __ bne(&done);
+  __ LoadP(r3, FieldMemOperand(r3, JSValue::kValueOffset));
+
+  __ bind(&done);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = nullptr;
+  Label* if_false = nullptr;
+  Label* fall_through = nullptr;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ JumpIfSmi(r3, if_false);
+  __ CompareObjectType(r3, r4, r4, JS_DATE_TYPE);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(3, args->length());
+
+  Register string = r3;
+  Register index = r4;
+  Register value = r5;
+
+  VisitForStackValue(args->at(0));        // index
+  VisitForStackValue(args->at(1));        // value
+  VisitForAccumulatorValue(args->at(2));  // string
+  __ Pop(index, value);
+
+  if (FLAG_debug_code) {
+    __ TestIfSmi(value, r0);
+    __ Check(eq, kNonSmiValue, cr0);
+    __ TestIfSmi(index, r0);
+    __ Check(eq, kNonSmiIndex, cr0);
+    __ SmiUntag(index, index);
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
+    __ SmiTag(index, index);
+  }
+
+  __ SmiUntag(value);
+  __ addi(ip, string, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ SmiToByteArrayOffset(r0, index);
+  __ stbx(value, MemOperand(ip, r0));
+  context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(3, args->length());
+
+  Register string = r3;
+  Register index = r4;
+  Register value = r5;
+
+  VisitForStackValue(args->at(0));        // index
+  VisitForStackValue(args->at(1));        // value
+  VisitForAccumulatorValue(args->at(2));  // string
+  __ Pop(index, value);
+
+  if (FLAG_debug_code) {
+    __ TestIfSmi(value, r0);
+    __ Check(eq, kNonSmiValue, cr0);
+    __ TestIfSmi(index, r0);
+    __ Check(eq, kNonSmiIndex, cr0);
+    __ SmiUntag(index, index);
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
+    __ SmiTag(index, index);
+  }
+
+  __ SmiUntag(value);
+  __ addi(ip, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  __ SmiToShortArrayOffset(r0, index);
+  __ sthx(value, MemOperand(ip, r0));
+  context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+  VisitForStackValue(args->at(0));        // Load the object.
+  VisitForAccumulatorValue(args->at(1));  // Load the value.
+  __ pop(r4);                             // r3 = value. r4 = object.
+
+  Label done;
+  // If the object is a smi, return the value.
+  __ JumpIfSmi(r4, &done);
+
+  // If the object is not a value type, return the value.
+  __ CompareObjectType(r4, r5, r5, JS_VALUE_TYPE);
+  __ bne(&done);
+
+  // Store the value.
+  __ StoreP(r3, FieldMemOperand(r4, JSValue::kValueOffset), r0);
+  // Update the write barrier.  Save the value as it will be
+  // overwritten by the write barrier code and is needed afterward.
+  __ mr(r5, r3);
+  __ RecordWriteField(r4, JSValue::kValueOffset, r5, r6, kLRHasBeenSaved,
+                      kDontSaveFPRegs);
+
+  __ bind(&done);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  // Load the argument into r3 and convert it.
+  VisitForAccumulatorValue(args->at(0));
+
+  // Convert the object to an integer.
+  Label done_convert;
+  __ JumpIfSmi(r3, &done_convert);
+  __ Push(r3);
+  __ CallRuntime(Runtime::kToInteger);
+  __ bind(&done_convert);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitToName(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+
+  // Load the argument into r3 and convert it.
+  VisitForAccumulatorValue(args->at(0));
+
+  Label convert, done_convert;
+  __ JumpIfSmi(r3, &convert);
+  STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
+  __ CompareObjectType(r3, r4, r4, LAST_NAME_TYPE);
+  __ ble(&done_convert);
+  __ bind(&convert);
+  __ Push(r3);
+  __ CallRuntime(Runtime::kToName);
+  __ bind(&done_convert);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  VisitForAccumulatorValue(args->at(0));
+
+  Label done;
+  StringCharFromCodeGenerator generator(r3, r4);
+  generator.GenerateFast(masm_);
+  __ b(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, call_helper);
+
+  __ bind(&done);
+  context()->Plug(r4);
+}
+
+
+void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+
+  Register object = r4;
+  Register index = r3;
+  Register result = r6;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
+                                      &need_conversion, &index_out_of_range,
+                                      STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ b(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // NaN.
+  __ LoadRoot(result, Heap::kNanValueRootIndex);
+  __ b(&done);
+
+  __ bind(&need_conversion);
+  // Load the undefined value into the result register, which will
+  // trigger conversion.
+  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+  __ b(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+
+  Register object = r4;
+  Register index = r3;
+  Register scratch = r6;
+  Register result = r3;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharAtGenerator generator(object, index, scratch, result,
+                                  &need_conversion, &need_conversion,
+                                  &index_out_of_range, STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ b(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // the empty string.
+  __ LoadRoot(result, Heap::kempty_stringRootIndex);
+  __ b(&done);
+
+  __ bind(&need_conversion);
+  // Move smi zero into the result register, which will trigger
+  // conversion.
+  __ LoadSmiLiteral(result, Smi::FromInt(0));
+  __ b(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitCall(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_LE(2, args->length());
+  // Push target, receiver and arguments onto the stack.
+  for (Expression* const arg : *args) {
+    VisitForStackValue(arg);
+  }
+  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+  // Move target to r4.
+  int const argc = args->length() - 2;
+  __ LoadP(r4, MemOperand(sp, (argc + 1) * kPointerSize));
+  // Call the target.
+  __ mov(r3, Operand(argc));
+  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+  // Restore context register.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  // Discard the function left on TOS.
+  context()->DropAndPlug(1, r3);
+}
+
+
+void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
+  // PPC - assume ip is free
+  __ mov(ip, Operand(String::kContainsCachedArrayIndexMask));
+  __ and_(r0, r3, ip, SetRC);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  Split(eq, if_true, if_false, fall_through, cr0);
+
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 1);
+  VisitForAccumulatorValue(args->at(0));
+
+  __ AssertString(r3);
+
+  __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
+  __ IndexFromHash(r3, r3);
+
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(1, args->length());
+  VisitForAccumulatorValue(args->at(0));
+  __ AssertFunction(r3);
+  __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ LoadP(r3, FieldMemOperand(r3, Map::kPrototypeOffset));
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
+  Label bailout, done, one_char_separator, long_separator, non_trivial_array,
+      not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
+      one_char_separator_loop_entry, long_separator_loop;
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK(args->length() == 2);
+  VisitForStackValue(args->at(1));
+  VisitForAccumulatorValue(args->at(0));
+
+  // All aliases of the same register have disjoint lifetimes.
+  Register array = r3;
+  Register elements = no_reg;  // Will be r3.
+  Register result = no_reg;    // Will be r3.
+  Register separator = r4;
+  Register array_length = r5;
+  Register result_pos = no_reg;  // Will be r5
+  Register string_length = r6;
+  Register string = r7;
+  Register element = r8;
+  Register elements_end = r9;
+  Register scratch1 = r10;
+  Register scratch2 = r11;
+
+  // Separator operand is on the stack.
+  __ pop(separator);
+
+  // Check that the array is a JSArray.
+  __ JumpIfSmi(array, &bailout);
+  __ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
+  __ bne(&bailout);
+
+  // Check that the array has fast elements.
+  __ CheckFastElements(scratch1, scratch2, &bailout);
+
+  // If the array has length zero, return the empty string.
+  __ LoadP(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+  __ SmiUntag(array_length);
+  __ cmpi(array_length, Operand::Zero());
+  __ bne(&non_trivial_array);
+  __ LoadRoot(r3, Heap::kempty_stringRootIndex);
+  __ b(&done);
+
+  __ bind(&non_trivial_array);
+
+  // Get the FixedArray containing array's elements.
+  elements = array;
+  __ LoadP(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+  array = no_reg;  // End of array's live range.
+
+  // Check that all array elements are sequential one-byte strings, and
+  // accumulate the sum of their lengths, as a smi-encoded value.
+  __ li(string_length, Operand::Zero());
+  __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
+  __ add(elements_end, element, elements_end);
+  // Loop condition: while (element < elements_end).
+  // Live values in registers:
+  //   elements: Fixed array of strings.
+  //   array_length: Length of the fixed array of strings (not smi)
+  //   separator: Separator string
+  //   string_length: Accumulated sum of string lengths (smi).
+  //   element: Current array element.
+  //   elements_end: Array end.
+  if (generate_debug_code_) {
+    __ cmpi(array_length, Operand::Zero());
+    __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
+  }
+  __ bind(&loop);
+  __ LoadP(string, MemOperand(element));
+  __ addi(element, element, Operand(kPointerSize));
+  __ JumpIfSmi(string, &bailout);
+  __ LoadP(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+  __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+  __ LoadP(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
+
+  __ AddAndCheckForOverflow(string_length, string_length, scratch1, scratch2,
+                            r0);
+  __ BranchOnOverflow(&bailout);
+
+  __ cmp(element, elements_end);
+  __ blt(&loop);
+
+  // If array_length is 1, return elements[0], a string.
+  __ cmpi(array_length, Operand(1));
+  __ bne(&not_size_one_array);
+  __ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize));
+  __ b(&done);
+
+  __ bind(&not_size_one_array);
+
+  // Live values in registers:
+  //   separator: Separator string
+  //   array_length: Length of the array.
+  //   string_length: Sum of string lengths (smi).
+  //   elements: FixedArray of strings.
+
+  // Check that the separator is a flat one-byte string.
+  __ JumpIfSmi(separator, &bailout);
+  __ LoadP(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+  __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+
+  // Add (separator length times array_length) - separator length to the
+  // string_length to get the length of the result string.
+  __ LoadP(scratch1,
+           FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+  __ sub(string_length, string_length, scratch1);
+#if V8_TARGET_ARCH_PPC64
+  __ SmiUntag(scratch1, scratch1);
+  __ Mul(scratch2, array_length, scratch1);
+  // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+  // zero.
+  __ ShiftRightImm(ip, scratch2, Operand(31), SetRC);
+  __ bne(&bailout, cr0);
+  __ SmiTag(scratch2, scratch2);
+#else
+  // array_length is not smi but the other values are, so the result is a smi
+  __ mullw(scratch2, array_length, scratch1);
+  __ mulhw(ip, array_length, scratch1);
+  // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+  // zero.
+  __ cmpi(ip, Operand::Zero());
+  __ bne(&bailout);
+  __ cmpwi(scratch2, Operand::Zero());
+  __ blt(&bailout);
+#endif
+
+  __ AddAndCheckForOverflow(string_length, string_length, scratch2, scratch1,
+                            r0);
+  __ BranchOnOverflow(&bailout);
+  __ SmiUntag(string_length);
+
+  // Bailout for large object allocations.
+  __ Cmpi(string_length, Operand(Page::kMaxRegularHeapObjectSize), r0);
+  __ bgt(&bailout);
+
+  // Get first element in the array to free up the elements register to be used
+  // for the result.
+  __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  result = elements;  // End of live range for elements.
+  elements = no_reg;
+  // Live values in registers:
+  //   element: First array element
+  //   separator: Separator string
+  //   string_length: Length of result string (not smi)
+  //   array_length: Length of the array.
+  __ AllocateOneByteString(result, string_length, scratch1, scratch2,
+                           elements_end, &bailout);
+  // Prepare for looping. Set up elements_end to end of the array. Set
+  // result_pos to the position of the result where to write the first
+  // character.
+  __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
+  __ add(elements_end, element, elements_end);
+  result_pos = array_length;  // End of live range for array_length.
+  array_length = no_reg;
+  __ addi(result_pos, result,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+  // Check the length of the separator.
+  __ LoadP(scratch1,
+           FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+  __ CmpSmiLiteral(scratch1, Smi::FromInt(1), r0);
+  __ beq(&one_char_separator);
+  __ bgt(&long_separator);
+
+  // Empty separator case
+  __ bind(&empty_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+
+  // Copy next array element to the result.
+  __ LoadP(string, MemOperand(element));
+  __ addi(element, element, Operand(kPointerSize));
+  __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ addi(string, string,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  __ cmp(element, elements_end);
+  __ blt(&empty_separator_loop);  // End while (element < elements_end).
+  DCHECK(result.is(r3));
+  __ b(&done);
+
+  // One-character separator case
+  __ bind(&one_char_separator);
+  // Replace separator with its one-byte character value.
+  __ lbz(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
+  // Jump into the loop after the code that copies the separator, so the first
+  // element is not preceded by a separator
+  __ b(&one_char_separator_loop_entry);
+
+  __ bind(&one_char_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Single separator one-byte char (in lower byte).
+
+  // Copy the separator character to the result.
+  __ stb(separator, MemOperand(result_pos));
+  __ addi(result_pos, result_pos, Operand(1));
+
+  // Copy next array element to the result.
+  __ bind(&one_char_separator_loop_entry);
+  __ LoadP(string, MemOperand(element));
+  __ addi(element, element, Operand(kPointerSize));
+  __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ addi(string, string,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  __ cmpl(element, elements_end);
+  __ blt(&one_char_separator_loop);  // End while (element < elements_end).
+  DCHECK(result.is(r3));
+  __ b(&done);
+
+  // Long separator case (separator is more than one character). Entry is at the
+  // label long_separator below.
+  __ bind(&long_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Separator string.
+
+  // Copy the separator to the result.
+  __ LoadP(string_length, FieldMemOperand(separator, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ addi(string, separator,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+
+  __ bind(&long_separator);
+  __ LoadP(string, MemOperand(element));
+  __ addi(element, element, Operand(kPointerSize));
+  __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ addi(string, string,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  __ cmpl(element, elements_end);
+  __ blt(&long_separator_loop);  // End while (element < elements_end).
+  DCHECK(result.is(r3));
+  __ b(&done);
+
+  __ bind(&bailout);
+  __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+  __ bind(&done);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
+  DCHECK(expr->arguments()->length() == 0);
+  ExternalReference debug_is_active =
+      ExternalReference::debug_is_active_address(isolate());
+  __ mov(ip, Operand(debug_is_active));
+  __ lbz(r3, MemOperand(ip));
+  __ SmiTag(r3);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  DCHECK_EQ(2, args->length());
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+
+  Label runtime, done;
+
+  __ Allocate(JSIteratorResult::kSize, r3, r5, r6, &runtime, TAG_OBJECT);
+  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, r4);
+  __ Pop(r5, r6);
+  __ LoadRoot(r7, Heap::kEmptyFixedArrayRootIndex);
+  __ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+  __ StoreP(r5, FieldMemOperand(r3, JSIteratorResult::kValueOffset), r0);
+  __ StoreP(r6, FieldMemOperand(r3, JSIteratorResult::kDoneOffset), r0);
+  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
+  __ b(&done);
+
+  __ bind(&runtime);
+  __ CallRuntime(Runtime::kCreateIterResultObject);
+
+  __ bind(&done);
+  context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
+  // Push undefined as the receiver.
+  __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+  __ push(r3);
+
+  __ LoadNativeContextSlot(expr->context_index(), r3);
+}
+
+
+void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+
+  SetCallPosition(expr);
+  __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+  __ mov(r3, Operand(arg_count));
+  __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
+          RelocInfo::CODE_TARGET);
+}
+
+
+void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+
+  if (expr->is_jsruntime()) {
+    Comment cmnt(masm_, "[ CallRuntime");
+    EmitLoadJSRuntimeFunction(expr);
+
+    // Push the target function under the receiver.
+    __ LoadP(ip, MemOperand(sp, 0));
+    __ push(ip);
+    __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+    // Push the arguments ("left-to-right").
+    for (int i = 0; i < arg_count; i++) {
+      VisitForStackValue(args->at(i));
+    }
+
+    PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+    EmitCallJSRuntimeFunction(expr);
+
+    // Restore context register.
+    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+    context()->DropAndPlug(1, r3);
+
+  } else {
+    const Runtime::Function* function = expr->function();
+    switch (function->function_id) {
+#define CALL_INTRINSIC_GENERATOR(Name)     \
+  case Runtime::kInline##Name: {           \
+    Comment cmnt(masm_, "[ Inline" #Name); \
+    return Emit##Name(expr);               \
+  }
+      FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
+#undef CALL_INTRINSIC_GENERATOR
+      default: {
+        Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
+        // Push the arguments ("left-to-right").
+        for (int i = 0; i < arg_count; i++) {
+          VisitForStackValue(args->at(i));
+        }
+
+        // Call the C runtime function.
+        PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
+        __ CallRuntime(expr->function(), arg_count);
+        context()->Plug(r3);
+      }
+    }
+  }
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+  switch (expr->op()) {
+    case Token::DELETE: {
+      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+      Property* property = expr->expression()->AsProperty();
+      VariableProxy* proxy = expr->expression()->AsVariableProxy();
+
+      if (property != NULL) {
+        VisitForStackValue(property->obj());
+        VisitForStackValue(property->key());
+        __ CallRuntime(is_strict(language_mode())
+                           ? Runtime::kDeleteProperty_Strict
+                           : Runtime::kDeleteProperty_Sloppy);
+        context()->Plug(r3);
+      } else if (proxy != NULL) {
+        Variable* var = proxy->var();
+        // Delete of an unqualified identifier is disallowed in strict mode but
+        // "delete this" is allowed.
+        bool is_this = var->HasThisName(isolate());
+        DCHECK(is_sloppy(language_mode()) || is_this);
+        if (var->IsUnallocatedOrGlobalSlot()) {
+          __ LoadGlobalObject(r5);
+          __ mov(r4, Operand(var->name()));
+          __ Push(r5, r4);
+          __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
+          context()->Plug(r3);
+        } else if (var->IsStackAllocated() || var->IsContextSlot()) {
+          // Result of deleting non-global, non-dynamic variables is false.
+          // The subexpression does not have side effects.
+          context()->Plug(is_this);
+        } else {
+          // Non-global variable.  Call the runtime to try to delete from the
+          // context where the variable was introduced.
+          DCHECK(!context_register().is(r5));
+          __ mov(r5, Operand(var->name()));
+          __ Push(context_register(), r5);
+          __ CallRuntime(Runtime::kDeleteLookupSlot);
+          context()->Plug(r3);
+        }
+      } else {
+        // Result of deleting non-property, non-variable reference is true.
+        // The subexpression may have side effects.
+        VisitForEffect(expr->expression());
+        context()->Plug(true);
+      }
+      break;
+    }
+
+    case Token::VOID: {
+      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+      VisitForEffect(expr->expression());
+      context()->Plug(Heap::kUndefinedValueRootIndex);
+      break;
+    }
+
+    case Token::NOT: {
+      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+      if (context()->IsEffect()) {
+        // Unary NOT has no side effects so it's only necessary to visit the
+        // subexpression.  Match the optimizing compiler by not branching.
+        VisitForEffect(expr->expression());
+      } else if (context()->IsTest()) {
+        const TestContext* test = TestContext::cast(context());
+        // The labels are swapped for the recursive call.
+        VisitForControl(expr->expression(), test->false_label(),
+                        test->true_label(), test->fall_through());
+        context()->Plug(test->true_label(), test->false_label());
+      } else {
+        // We handle value contexts explicitly rather than simply visiting
+        // for control and plugging the control flow into the context,
+        // because we need to prepare a pair of extra administrative AST ids
+        // for the optimizing compiler.
+        DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
+        Label materialize_true, materialize_false, done;
+        VisitForControl(expr->expression(), &materialize_false,
+                        &materialize_true, &materialize_true);
+        __ bind(&materialize_true);
+        PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
+        __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+        if (context()->IsStackValue()) __ push(r3);
+        __ b(&done);
+        __ bind(&materialize_false);
+        PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
+        __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+        if (context()->IsStackValue()) __ push(r3);
+        __ bind(&done);
+      }
+      break;
+    }
+
+    case Token::TYPEOF: {
+      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+      {
+        AccumulatorValueContext context(this);
+        VisitForTypeofValue(expr->expression());
+      }
+      __ mr(r6, r3);
+      TypeofStub typeof_stub(isolate());
+      __ CallStub(&typeof_stub);
+      context()->Plug(r3);
+      break;
+    }
+
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+  DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
+
+  Comment cmnt(masm_, "[ CountOperation");
+
+  Property* prop = expr->expression()->AsProperty();
+  LhsKind assign_type = Property::GetAssignType(prop);
+
+  // Evaluate expression and get value.
+  if (assign_type == VARIABLE) {
+    DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
+    AccumulatorValueContext context(this);
+    EmitVariableLoad(expr->expression()->AsVariableProxy());
+  } else {
+    // Reserve space for result of postfix operation.
+    if (expr->is_postfix() && !context()->IsEffect()) {
+      __ LoadSmiLiteral(ip, Smi::FromInt(0));
+      __ push(ip);
+    }
+    switch (assign_type) {
+      case NAMED_PROPERTY: {
+        // Put the object both on the stack and in the register.
+        VisitForStackValue(prop->obj());
+        __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+        EmitNamedPropertyLoad(prop);
+        break;
+      }
+
+      case NAMED_SUPER_PROPERTY: {
+        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+        VisitForAccumulatorValue(
+            prop->obj()->AsSuperPropertyReference()->home_object());
+        __ Push(result_register());
+        const Register scratch = r4;
+        __ LoadP(scratch, MemOperand(sp, kPointerSize));
+        __ Push(scratch, result_register());
+        EmitNamedSuperPropertyLoad(prop);
+        break;
+      }
+
+      case KEYED_SUPER_PROPERTY: {
+        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
+        VisitForAccumulatorValue(
+            prop->obj()->AsSuperPropertyReference()->home_object());
+        const Register scratch = r4;
+        const Register scratch1 = r5;
+        __ mr(scratch, result_register());
+        VisitForAccumulatorValue(prop->key());
+        __ Push(scratch, result_register());
+        __ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
+        __ Push(scratch1, scratch, result_register());
+        EmitKeyedSuperPropertyLoad(prop);
+        break;
+      }
+
+      case KEYED_PROPERTY: {
+        VisitForStackValue(prop->obj());
+        VisitForStackValue(prop->key());
+        __ LoadP(LoadDescriptor::ReceiverRegister(),
+                 MemOperand(sp, 1 * kPointerSize));
+        __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+        EmitKeyedPropertyLoad(prop);
+        break;
+      }
+
+      case VARIABLE:
+        UNREACHABLE();
+    }
+  }
+
+  // We need a second deoptimization point after loading the value
+  // in case evaluating the property load my have a side effect.
+  if (assign_type == VARIABLE) {
+    PrepareForBailout(expr->expression(), TOS_REG);
+  } else {
+    PrepareForBailoutForId(prop->LoadId(), TOS_REG);
+  }
+
+  // Inline smi case if we are in a loop.
+  Label stub_call, done;
+  JumpPatchSite patch_site(masm_);
+
+  int count_value = expr->op() == Token::INC ? 1 : -1;
+  if (ShouldInlineSmiCase(expr->op())) {
+    Label slow;
+    patch_site.EmitJumpIfNotSmi(r3, &slow);
+
+    // Save result for postfix expressions.
+    if (expr->is_postfix()) {
+      if (!context()->IsEffect()) {
+        // Save the result on the stack. If we have a named or keyed property
+        // we store the result under the receiver that is currently on top
+        // of the stack.
+        switch (assign_type) {
+          case VARIABLE:
+            __ push(r3);
+            break;
+          case NAMED_PROPERTY:
+            __ StoreP(r3, MemOperand(sp, kPointerSize));
+            break;
+          case NAMED_SUPER_PROPERTY:
+            __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+            break;
+          case KEYED_PROPERTY:
+            __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+            break;
+          case KEYED_SUPER_PROPERTY:
+            __ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
+            break;
+        }
+      }
+    }
+
+    Register scratch1 = r4;
+    Register scratch2 = r5;
+    __ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
+    __ AddAndCheckForOverflow(r3, r3, scratch1, scratch2, r0);
+    __ BranchOnNoOverflow(&done);
+    // Call stub. Undo operation first.
+    __ sub(r3, r3, scratch1);
+    __ b(&stub_call);
+    __ bind(&slow);
+  }
+  if (!is_strong(language_mode())) {
+    ToNumberStub convert_stub(isolate());
+    __ CallStub(&convert_stub);
+    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
+  }
+
+  // Save result for postfix expressions.
+  if (expr->is_postfix()) {
+    if (!context()->IsEffect()) {
+      // Save the result on the stack. If we have a named or keyed property
+      // we store the result under the receiver that is currently on top
+      // of the stack.
+      switch (assign_type) {
+        case VARIABLE:
+          __ push(r3);
+          break;
+        case NAMED_PROPERTY:
+          __ StoreP(r3, MemOperand(sp, kPointerSize));
+          break;
+        case NAMED_SUPER_PROPERTY:
+          __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+          break;
+        case KEYED_PROPERTY:
+          __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+          break;
+        case KEYED_SUPER_PROPERTY:
+          __ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
+          break;
+      }
+    }
+  }
+
+  __ bind(&stub_call);
+  __ mr(r4, r3);
+  __ LoadSmiLiteral(r3, Smi::FromInt(count_value));
+
+  SetExpressionPosition(expr);
+
+  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD,
+                                              strength(language_mode())).code();
+  CallIC(code, expr->CountBinOpFeedbackId());
+  patch_site.EmitPatchInfo();
+  __ bind(&done);
+
+  if (is_strong(language_mode())) {
+    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
+  }
+  // Store the value returned in r3.
+  switch (assign_type) {
+    case VARIABLE:
+      if (expr->is_postfix()) {
+        {
+          EffectContext context(this);
+          EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                                 Token::ASSIGN, expr->CountSlot());
+          PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+          context.Plug(r3);
+        }
+        // For all contexts except EffectConstant We have the result on
+        // top of the stack.
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                               Token::ASSIGN, expr->CountSlot());
+        PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+        context()->Plug(r3);
+      }
+      break;
+    case NAMED_PROPERTY: {
+      __ mov(StoreDescriptor::NameRegister(),
+             Operand(prop->key()->AsLiteral()->value()));
+      __ pop(StoreDescriptor::ReceiverRegister());
+      EmitLoadStoreICSlot(expr->CountSlot());
+      CallStoreIC();
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(r3);
+      }
+      break;
+    }
+    case NAMED_SUPER_PROPERTY: {
+      EmitNamedSuperPropertyStore(prop);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(r3);
+      }
+      break;
+    }
+    case KEYED_SUPER_PROPERTY: {
+      EmitKeyedSuperPropertyStore(prop);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(r3);
+      }
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ Pop(StoreDescriptor::ReceiverRegister(),
+             StoreDescriptor::NameRegister());
+      Handle<Code> ic =
+          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
+      EmitLoadStoreICSlot(expr->CountSlot());
+      CallIC(ic);
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(r3);
+      }
+      break;
+    }
+  }
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
+                                                 Expression* sub_expr,
+                                                 Handle<String> check) {
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  {
+    AccumulatorValueContext context(this);
+    VisitForTypeofValue(sub_expr);
+  }
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+
+  Factory* factory = isolate()->factory();
+  if (String::Equals(check, factory->number_string())) {
+    __ JumpIfSmi(r3, if_true);
+    __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+    __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+    __ cmp(r3, ip);
+    Split(eq, if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->string_string())) {
+    __ JumpIfSmi(r3, if_false);
+    __ CompareObjectType(r3, r3, r4, FIRST_NONSTRING_TYPE);
+    Split(lt, if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->symbol_string())) {
+    __ JumpIfSmi(r3, if_false);
+    __ CompareObjectType(r3, r3, r4, SYMBOL_TYPE);
+    Split(eq, if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->boolean_string())) {
+    __ CompareRoot(r3, Heap::kTrueValueRootIndex);
+    __ beq(if_true);
+    __ CompareRoot(r3, Heap::kFalseValueRootIndex);
+    Split(eq, if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->undefined_string())) {
+    __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
+    __ beq(if_true);
+    __ JumpIfSmi(r3, if_false);
+    // Check for undetectable objects => true.
+    __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+    __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+    __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+    Split(ne, if_true, if_false, fall_through, cr0);
+
+  } else if (String::Equals(check, factory->function_string())) {
+    __ JumpIfSmi(r3, if_false);
+    __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+    __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+    __ andi(r4, r4,
+            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    __ cmpi(r4, Operand(1 << Map::kIsCallable));
+    Split(eq, if_true, if_false, fall_through);
+  } else if (String::Equals(check, factory->object_string())) {
+    __ JumpIfSmi(r3, if_false);
+    __ CompareRoot(r3, Heap::kNullValueRootIndex);
+    __ beq(if_true);
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ CompareObjectType(r3, r3, r4, FIRST_JS_RECEIVER_TYPE);
+    __ blt(if_false);
+    // Check for callable or undetectable objects => false.
+    __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+    __ andi(r0, r4,
+            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    Split(eq, if_true, if_false, fall_through, cr0);
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)   \
+  } else if (String::Equals(check, factory->type##_string())) { \
+    __ JumpIfSmi(r3, if_false);                                 \
+    __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));    \
+    __ CompareRoot(r3, Heap::k##Type##MapRootIndex);            \
+    Split(eq, if_true, if_false, fall_through);
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+  } else {
+    if (if_false != fall_through) __ b(if_false);
+  }
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+  Comment cmnt(masm_, "[ CompareOperation");
+  SetExpressionPosition(expr);
+
+  // First we try a fast inlined version of the compare when one of
+  // the operands is a literal.
+  if (TryLiteralCompare(expr)) return;
+
+  // Always perform the comparison for its control flow.  Pack the result
+  // into the expression's context after the comparison is performed.
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  Token::Value op = expr->op();
+  VisitForStackValue(expr->left());
+  switch (op) {
+    case Token::IN:
+      VisitForStackValue(expr->right());
+      __ CallRuntime(Runtime::kHasProperty);
+      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
+      __ CompareRoot(r3, Heap::kTrueValueRootIndex);
+      Split(eq, if_true, if_false, fall_through);
+      break;
+
+    case Token::INSTANCEOF: {
+      VisitForAccumulatorValue(expr->right());
+      __ pop(r4);
+      InstanceOfStub stub(isolate());
+      __ CallStub(&stub);
+      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
+      __ CompareRoot(r3, Heap::kTrueValueRootIndex);
+      Split(eq, if_true, if_false, fall_through);
+      break;
+    }
+
+    default: {
+      VisitForAccumulatorValue(expr->right());
+      Condition cond = CompareIC::ComputeCondition(op);
+      __ pop(r4);
+
+      bool inline_smi_code = ShouldInlineSmiCase(op);
+      JumpPatchSite patch_site(masm_);
+      if (inline_smi_code) {
+        Label slow_case;
+        __ orx(r5, r3, r4);
+        patch_site.EmitJumpIfNotSmi(r5, &slow_case);
+        __ cmp(r4, r3);
+        Split(cond, if_true, if_false, NULL);
+        __ bind(&slow_case);
+      }
+
+      Handle<Code> ic = CodeFactory::CompareIC(
+                            isolate(), op, strength(language_mode())).code();
+      CallIC(ic, expr->CompareOperationFeedbackId());
+      patch_site.EmitPatchInfo();
+      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+      __ cmpi(r3, Operand::Zero());
+      Split(cond, if_true, if_false, fall_through);
+    }
+  }
+
+  // Convert the result of the comparison into one expected for this
+  // expression's context.
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
+                                              Expression* sub_expr,
+                                              NilValue nil) {
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+                         &if_false, &fall_through);
+
+  VisitForAccumulatorValue(sub_expr);
+  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+  if (expr->op() == Token::EQ_STRICT) {
+    Heap::RootListIndex nil_value = nil == kNullValue
+                                        ? Heap::kNullValueRootIndex
+                                        : Heap::kUndefinedValueRootIndex;
+    __ LoadRoot(r4, nil_value);
+    __ cmp(r3, r4);
+    Split(eq, if_true, if_false, fall_through);
+  } else {
+    Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
+    CallIC(ic, expr->CompareOperationFeedbackId());
+    __ CompareRoot(r3, Heap::kTrueValueRootIndex);
+    Split(eq, if_true, if_false, fall_through);
+  }
+  context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
+  __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  context()->Plug(r3);
+}
+
+
+Register FullCodeGenerator::result_register() { return r3; }
+
+
+Register FullCodeGenerator::context_register() { return cp; }
+
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+  DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
+  __ StoreP(value, MemOperand(fp, frame_offset), r0);
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+  __ LoadP(dst, ContextMemOperand(cp, context_index), r0);
+}
+
+
+void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
+  Scope* closure_scope = scope()->ClosureScope();
+  if (closure_scope->is_script_scope() ||
+      closure_scope->is_module_scope()) {
+    // Contexts nested in the native context have a canonical empty function
+    // as their closure, not the anonymous closure containing the global
+    // code.
+    __ LoadNativeContextSlot(Context::CLOSURE_INDEX, ip);
+  } else if (closure_scope->is_eval_scope()) {
+    // Contexts created by a call to eval have the same closure as the
+    // context calling eval, not the anonymous closure containing the eval
+    // code.  Fetch it from the context.
+    __ LoadP(ip, ContextMemOperand(cp, Context::CLOSURE_INDEX));
+  } else {
+    DCHECK(closure_scope->is_function_scope());
+    __ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  }
+  __ push(ip);
+}
+
+
+// ----------------------------------------------------------------------------
+// Non-local control flow support.
+
+void FullCodeGenerator::EnterFinallyBlock() {
+  DCHECK(!result_register().is(r4));
+  // Store result register while executing finally block.
+  __ push(result_register());
+  // Cook return address in link register to stack (smi encoded Code* delta)
+  __ mflr(r4);
+  __ mov(ip, Operand(masm_->CodeObject()));
+  __ sub(r4, r4, ip);
+  __ SmiTag(r4);
+
+  // Store result register while executing finally block.
+  __ push(r4);
+
+  // Store pending message while executing finally block.
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ mov(ip, Operand(pending_message_obj));
+  __ LoadP(r4, MemOperand(ip));
+  __ push(r4);
+
+  ClearPendingMessage();
+}
+
+
+void FullCodeGenerator::ExitFinallyBlock() {
+  DCHECK(!result_register().is(r4));
+  // Restore pending message from stack.
+  __ pop(r4);
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ mov(ip, Operand(pending_message_obj));
+  __ StoreP(r4, MemOperand(ip));
+
+  // Restore result register from stack.
+  __ pop(r4);
+
+  // Uncook return address and return.
+  __ pop(result_register());
+  __ SmiUntag(r4);
+  __ mov(ip, Operand(masm_->CodeObject()));
+  __ add(ip, ip, r4);
+  __ mtctr(ip);
+  __ bctr();
+}
+
+
+void FullCodeGenerator::ClearPendingMessage() {
+  DCHECK(!result_register().is(r4));
+  ExternalReference pending_message_obj =
+      ExternalReference::address_of_pending_message_obj(isolate());
+  __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
+  __ mov(ip, Operand(pending_message_obj));
+  __ StoreP(r4, MemOperand(ip));
+}
+
+
+void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
+  DCHECK(!slot.IsInvalid());
+  __ mov(VectorStoreICTrampolineDescriptor::SlotRegister(),
+         Operand(SmiFromSlot(slot)));
+}
+
+
+#undef __
+
+
+void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc,
+                            BackEdgeState target_state,
+                            Code* replacement_code) {
+  Address mov_address = Assembler::target_address_from_return_address(pc);
+  Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
+  Isolate* isolate = unoptimized_code->GetIsolate();
+  CodePatcher patcher(isolate, cmp_address, 1);
+
+  switch (target_state) {
+    case INTERRUPT: {
+      //  <decrement profiling counter>
+      //         cmpi    r6, 0
+      //         bge     <ok>            ;; not changed
+      //         mov     r12, <interrupt stub address>
+      //         mtlr    r12
+      //         blrl
+      //  <reset profiling counter>
+      //  ok-label
+      patcher.masm()->cmpi(r6, Operand::Zero());
+      break;
+    }
+    case ON_STACK_REPLACEMENT:
+    case OSR_AFTER_STACK_CHECK:
+      //  <decrement profiling counter>
+      //         crset
+      //         bge     <ok>            ;; not changed
+      //         mov     r12, <on-stack replacement address>
+      //         mtlr    r12
+      //         blrl
+      //  <reset profiling counter>
+      //  ok-label ----- pc_after points here
+
+      // Set the LT bit such that bge is a NOP
+      patcher.masm()->crset(Assembler::encode_crbit(cr7, CR_LT));
+      break;
+  }
+
+  // Replace the stack check address in the mov sequence with the
+  // entry address of the replacement code.
+  Assembler::set_target_address_at(isolate, mov_address, unoptimized_code,
+                                   replacement_code->entry());
+
+  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
+      unoptimized_code, mov_address, replacement_code);
+}
+
+
+BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
+    Isolate* isolate, Code* unoptimized_code, Address pc) {
+  Address mov_address = Assembler::target_address_from_return_address(pc);
+  Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
+  Address interrupt_address =
+      Assembler::target_address_at(mov_address, unoptimized_code);
+
+  if (Assembler::IsCmpImmediate(Assembler::instr_at(cmp_address))) {
+    DCHECK(interrupt_address == isolate->builtins()->InterruptCheck()->entry());
+    return INTERRUPT;
+  }
+
+  DCHECK(Assembler::IsCrSet(Assembler::instr_at(cmp_address)));
+
+  if (interrupt_address == isolate->builtins()->OnStackReplacement()->entry()) {
+    return ON_STACK_REPLACEMENT;
+  }
+
+  DCHECK(interrupt_address ==
+         isolate->builtins()->OsrAfterStackCheck()->entry());
+  return OSR_AFTER_STACK_CHECK;
+}
+}  // namespace internal
+}  // namespace v8
+#endif  // V8_TARGET_ARCH_PPC