Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/regexp/OWNERS b/src/regexp/OWNERS
new file mode 100644
index 0000000..d9d588d
--- /dev/null
+++ b/src/regexp/OWNERS
@@ -0,0 +1,6 @@
+set noparent
+
+jochen@chromium.org
+marja@chromium.org
+ulan@chromium.org
+yangguo@chromium.org
diff --git a/src/regexp/arm/OWNERS b/src/regexp/arm/OWNERS
new file mode 100644
index 0000000..906a5ce
--- /dev/null
+++ b/src/regexp/arm/OWNERS
@@ -0,0 +1 @@
+rmcilroy@chromium.org
diff --git a/src/regexp/arm/regexp-macro-assembler-arm.cc b/src/regexp/arm/regexp-macro-assembler-arm.cc
new file mode 100644
index 0000000..6fafdfb
--- /dev/null
+++ b/src/regexp/arm/regexp-macro-assembler-arm.cc
@@ -0,0 +1,1242 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_ARM
+
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - r4 : Temporarily stores the index of capture start after a matching pass
+ *        for a global regexp.
+ * - r5 : Pointer to current code object (Code*) including heap object tag.
+ * - r6 : Current position in input, as negative offset from end of string.
+ *        Please notice that this is the byte offset, not the character offset!
+ * - r7 : Currently loaded character. Must be loaded using
+ *        LoadCurrentCharacter before using any of the dispatch methods.
+ * - r8 : Points to tip of backtrack stack
+ * - r9 : Unused, might be used by C code and expected unchanged.
+ * - r10 : End of input (points to byte after last character in input).
+ * - r11 : Frame pointer. Used to access arguments, local variables and
+ *         RegExp registers.
+ * - r12 : IP register, used by assembler. Very volatile.
+ * - r13/sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *  - fp[56]  Isolate* isolate   (address of the current isolate)
+ *  - fp[52]  direct_call        (if 1, direct call from JavaScript code,
+ *                                if 0, call through the runtime system).
+ *  - fp[48]  stack_area_base    (high end of the memory area to use as
+ *                                backtracking stack).
+ *  - fp[44]  capture array size (may fit multiple sets of matches)
+ *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
+ *  - fp[36]  secondary link/return address used by native call.
+ *  --- sp when called ---
+ *  - fp[32]  return address     (lr).
+ *  - fp[28]  old frame pointer  (r11).
+ *  - fp[0..24]  backup of registers r4..r10.
+ *  --- frame pointer ----
+ *  - fp[-4]  end of input       (address of end of string).
+ *  - fp[-8]  start of input     (address of first character in string).
+ *  - fp[-12] start index        (character index of start).
+ *  - fp[-16] void* input_string (location of a handle containing the string).
+ *  - fp[-20] success counter    (only for global regexps to count matches).
+ *  - fp[-24] Offset of location before start of input (effectively character
+ *            string start - 1). Used to initialize capture registers to a
+ *            non-position.
+ *  - fp[-28] At start (if 1, we are starting at the start of the
+ *    string, otherwise 0)
+ *  - fp[-32] register 0         (Only positions must be stored in the first
+ *  -         register 1          num_saved_registers_ registers)
+ *  -         ...
+ *  -         register num_registers-1
+ *  --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              Address secondary_return_address,  // Only used by native call.
+ *              int* capture_output_array,
+ *              byte* stack_area_base,
+ *              bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in arm/simulator-arm.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone,
+                                                 Mode mode,
+                                                 int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code later.
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerARM::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ add(current_input_offset(),
+           current_input_offset(), Operand(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ ldr(r0, register_location(reg));
+    __ add(r0, r0, Operand(by));
+    __ str(r0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerARM::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(r0);
+  __ add(pc, r0, Operand(code_pointer()));
+}
+
+
+void RegExpMacroAssemblerARM::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
+  __ cmp(current_character(), Operand(c));
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  __ cmp(current_character(), Operand(limit));
+  BranchOrBacktrack(gt, on_greater);
+}
+
+
+void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
+  __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ add(r0, current_input_offset(), Operand(-char_size()));
+  __ cmp(r0, r1);
+  BranchOrBacktrack(eq, on_at_start);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotAtStart(int cp_offset,
+                                              Label* on_not_at_start) {
+  __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ add(r0, current_input_offset(),
+         Operand(-char_size() + cp_offset * char_size()));
+  __ cmp(r0, r1);
+  BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
+  __ cmp(current_character(), Operand(limit));
+  BranchOrBacktrack(lt, on_less);
+}
+
+
+void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
+  __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
+  __ cmp(current_input_offset(), r0);
+  __ add(backtrack_stackpointer(),
+         backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ ldr(r0, register_location(start_reg));  // Index of start of capture
+  __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
+  __ sub(r1, r1, r0, SetCC);  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ b(eq, &fallthrough);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ add(r3, r3, r1);
+    __ cmp(current_input_offset(), r3);
+    BranchOrBacktrack(le, on_no_match);
+  } else {
+    __ cmn(r1, Operand(current_input_offset()));
+    BranchOrBacktrack(gt, on_no_match);
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_check;
+
+    // r0 - offset of start of capture
+    // r1 - length of capture
+    __ add(r0, r0, end_of_input_address());
+    __ add(r2, end_of_input_address(), current_input_offset());
+    if (read_backward) {
+      __ sub(r2, r2, r1);  // Offset by length when matching backwards.
+    }
+    __ add(r1, r0, r1);
+
+    // r0 - Address of start of capture.
+    // r1 - Address of end of capture
+    // r2 - Address of current input position.
+
+    Label loop;
+    __ bind(&loop);
+    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
+    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
+    __ cmp(r4, r3);
+    __ b(eq, &loop_check);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ orr(r3, r3, Operand(0x20));  // Convert capture character to lower-case.
+    __ orr(r4, r4, Operand(0x20));  // Also convert input character.
+    __ cmp(r4, r3);
+    __ b(ne, &fail);
+    __ sub(r3, r3, Operand('a'));
+    __ cmp(r3, Operand('z' - 'a'));  // Is r3 a lowercase letter?
+    __ b(ls, &loop_check);  // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ sub(r3, r3, Operand(224 - 'a'));
+    __ cmp(r3, Operand(254 - 224));
+    __ b(hi, &fail);  // Weren't Latin-1 letters.
+    __ cmp(r3, Operand(247 - 224));  // Check for 247.
+    __ b(eq, &fail);
+
+    __ bind(&loop_check);
+    __ cmp(r0, r1);
+    __ b(lt, &loop);
+    __ jmp(&success);
+
+    __ bind(&fail);
+    BranchOrBacktrack(al, on_no_match);
+
+    __ bind(&success);
+    // Compute new value of character position after the matched part.
+    __ sub(current_input_offset(), r2, end_of_input_address());
+    if (read_backward) {
+      __ ldr(r0, register_location(start_reg));  // Index of start of capture
+      __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
+      __ add(current_input_offset(), current_input_offset(), r0);
+      __ sub(current_input_offset(), current_input_offset(), r1);
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, r2);
+
+    // r0 - offset of start of capture
+    // r1 - length of capture
+
+    // Put arguments into arguments registers.
+    // Parameters are
+    //   r0: Address byte_offset1 - Address captured substring's start.
+    //   r1: Address byte_offset2 - Address of current character position.
+    //   r2: size_t byte_length - length of capture in bytes(!)
+    //   r3: Isolate* isolate
+
+    // Address of start of capture.
+    __ add(r0, r0, Operand(end_of_input_address()));
+    // Length of capture.
+    __ mov(r2, Operand(r1));
+    // Save length in callee-save register for use on return.
+    __ mov(r4, Operand(r1));
+    // Address of current input position.
+    __ add(r1, current_input_offset(), end_of_input_address());
+    if (read_backward) {
+      __ sub(r1, r1, r4);
+    }
+    // Isolate.
+    __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference function =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(function, argument_count);
+    }
+
+    // Check if function returned non-zero for success or zero for failure.
+    __ cmp(r0, Operand::Zero());
+    BranchOrBacktrack(eq, on_no_match);
+
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ sub(current_input_offset(), current_input_offset(), r4);
+    } else {
+      __ add(current_input_offset(), current_input_offset(), r4);
+    }
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotBackReference(int start_reg,
+                                                    bool read_backward,
+                                                    Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+
+  // Find length of back-referenced capture.
+  __ ldr(r0, register_location(start_reg));
+  __ ldr(r1, register_location(start_reg + 1));
+  __ sub(r1, r1, r0, SetCC);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ b(eq, &fallthrough);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ add(r3, r3, r1);
+    __ cmp(current_input_offset(), r3);
+    BranchOrBacktrack(lt, on_no_match);
+  } else {
+    __ cmn(r1, Operand(current_input_offset()));
+    BranchOrBacktrack(gt, on_no_match);
+  }
+
+  // r0 - offset of start of capture
+  // r1 - length of capture
+  __ add(r0, r0, end_of_input_address());
+  __ add(r2, end_of_input_address(), current_input_offset());
+  if (read_backward) {
+    __ sub(r2, r2, r1);  // Offset by length when matching backwards.
+  }
+  __ add(r1, r0, r1);
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
+    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
+    __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
+  }
+  __ cmp(r3, r4);
+  BranchOrBacktrack(ne, on_no_match);
+  __ cmp(r0, r1);
+  __ b(lt, &loop);
+
+  // Move current character position to position after match.
+  __ sub(current_input_offset(), r2, end_of_input_address());
+  if (read_backward) {
+    __ ldr(r0, register_location(start_reg));      // Index of start of capture
+    __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
+    __ add(current_input_offset(), current_input_offset(), r0);
+    __ sub(current_input_offset(), current_input_offset(), r1);
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
+                                                Label* on_not_equal) {
+  __ cmp(current_character(), Operand(c));
+  BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
+                                                     uint32_t mask,
+                                                     Label* on_equal) {
+  if (c == 0) {
+    __ tst(current_character(), Operand(mask));
+  } else {
+    __ and_(r0, current_character(), Operand(mask));
+    __ cmp(r0, Operand(c));
+  }
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
+                                                        unsigned mask,
+                                                        Label* on_not_equal) {
+  if (c == 0) {
+    __ tst(current_character(), Operand(mask));
+  } else {
+    __ and_(r0, current_character(), Operand(mask));
+    __ cmp(r0, Operand(c));
+  }
+  BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ sub(r0, current_character(), Operand(minus));
+  __ and_(r0, r0, Operand(mask));
+  __ cmp(r0, Operand(c));
+  BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ sub(r0, current_character(), Operand(from));
+  __ cmp(r0, Operand(to - from));
+  BranchOrBacktrack(ls, on_in_range);  // Unsigned lower-or-same condition.
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ sub(r0, current_character(), Operand(from));
+  __ cmp(r0, Operand(to - from));
+  BranchOrBacktrack(hi, on_not_in_range);  // Unsigned higher condition.
+}
+
+
+void RegExpMacroAssemblerARM::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ mov(r0, Operand(table));
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ and_(r1, current_character(), Operand(kTableSize - 1));
+    __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+  } else {
+    __ add(r1,
+           current_character(),
+           Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+  }
+  __ ldrb(r0, MemOperand(r0, r1));
+  __ cmp(r0, Operand::Zero());
+  BranchOrBacktrack(ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
+                                                         Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check
+  switch (type) {
+  case 's':
+    // Match space-characters
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ cmp(current_character(), Operand(' '));
+      __ b(eq, &success);
+      // Check range 0x09..0x0d
+      __ sub(r0, current_character(), Operand('\t'));
+      __ cmp(r0, Operand('\r' - '\t'));
+      __ b(ls, &success);
+      // \u00a0 (NBSP).
+      __ cmp(r0, Operand(0x00a0 - '\t'));
+      BranchOrBacktrack(ne, on_no_match);
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match ASCII digits ('0'..'9')
+    __ sub(r0, current_character(), Operand('0'));
+    __ cmp(r0, Operand('9' - '0'));
+    BranchOrBacktrack(hi, on_no_match);
+    return true;
+  case 'D':
+    // Match non ASCII-digits
+    __ sub(r0, current_character(), Operand('0'));
+    __ cmp(r0, Operand('9' - '0'));
+    BranchOrBacktrack(ls, on_no_match);
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ eor(r0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(r0, r0, Operand(0x0b));
+    __ cmp(r0, Operand(0x0c - 0x0b));
+    BranchOrBacktrack(ls, on_no_match);
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(r0, r0, Operand(0x2028 - 0x0b));
+      __ cmp(r0, Operand(1));
+      BranchOrBacktrack(ls, on_no_match);
+    }
+    return true;
+  }
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ eor(r0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(r0, r0, Operand(0x0b));
+    __ cmp(r0, Operand(0x0c - 0x0b));
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(hi, on_no_match);
+    } else {
+      Label done;
+      __ b(ls, &done);
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(r0, r0, Operand(0x2028 - 0x0b));
+      __ cmp(r0, Operand(1));
+      BranchOrBacktrack(hi, on_no_match);
+      __ bind(&done);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Operand('z'));
+      BranchOrBacktrack(hi, on_no_match);
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ mov(r0, Operand(map));
+    __ ldrb(r0, MemOperand(r0, current_character()));
+    __ cmp(r0, Operand::Zero());
+    BranchOrBacktrack(eq, on_no_match);
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Operand('z'));
+      __ b(hi, &done);
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ mov(r0, Operand(map));
+    __ ldrb(r0, MemOperand(r0, current_character()));
+    __ cmp(r0, Operand::Zero());
+    BranchOrBacktrack(ne, on_no_match);
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+  case '*':
+    // Match any character.
+    return true;
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerARM::Fail() {
+  __ mov(r0, Operand(FAILURE));
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
+  Label return_r0;
+  // Finalize code - write the entry point code now we know how many
+  // registers we need.
+
+  // Entry code:
+  __ bind(&entry_label_);
+
+  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
+  // is generated.
+  FrameScope scope(masm_, StackFrame::MANUAL);
+
+  // Actually emit code to start a new stack frame.
+  // Push arguments
+  // Save callee-save registers.
+  // Start new stack frame.
+  // Store link register in existing stack-cell.
+  // Order here should correspond to order of offset constants in header file.
+  RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
+      r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
+  RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
+  __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
+  // Set frame pointer in space for it if this is not a direct call
+  // from generated code.
+  __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
+  __ mov(r0, Operand::Zero());
+  __ push(r0);  // Make room for success counter and initialize it to 0.
+  __ push(r0);  // Make room for "string start - 1" constant.
+  // Check if we have space on the stack for registers.
+  Label stack_limit_hit;
+  Label stack_ok;
+
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ mov(r0, Operand(stack_limit));
+  __ ldr(r0, MemOperand(r0));
+  __ sub(r0, sp, r0, SetCC);
+  // Handle it if the stack pointer is already below the stack limit.
+  __ b(ls, &stack_limit_hit);
+  // Check if there is room for the variable number of registers above
+  // the stack limit.
+  __ cmp(r0, Operand(num_registers_ * kPointerSize));
+  __ b(hs, &stack_ok);
+  // Exit with OutOfMemory exception. There is not enough space on the stack
+  // for our working registers.
+  __ mov(r0, Operand(EXCEPTION));
+  __ jmp(&return_r0);
+
+  __ bind(&stack_limit_hit);
+  CallCheckStackGuardState(r0);
+  __ cmp(r0, Operand::Zero());
+  // If returned value is non-zero, we exit with the returned value as result.
+  __ b(ne, &return_r0);
+
+  __ bind(&stack_ok);
+
+  // Allocate space on stack for registers.
+  __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
+  // Load string end.
+  __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+  // Load input start.
+  __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
+  // Find negative length (offset of start relative to end).
+  __ sub(current_input_offset(), r0, end_of_input_address());
+  // Set r0 to address of char before start of the input string
+  // (effectively string position -1).
+  __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
+  __ sub(r0, current_input_offset(), Operand(char_size()));
+  __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
+  // Store this value in a local variable, for use when clearing
+  // position registers.
+  __ str(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+  // Initialize code pointer register
+  __ mov(code_pointer(), Operand(masm_->CodeObject()));
+
+  Label load_char_start_regexp, start_regexp;
+  // Load newline if index is at start, previous character otherwise.
+  __ cmp(r1, Operand::Zero());
+  __ b(ne, &load_char_start_regexp);
+  __ mov(current_character(), Operand('\n'), LeaveCC, eq);
+  __ jmp(&start_regexp);
+
+  // Global regexp restarts matching here.
+  __ bind(&load_char_start_regexp);
+  // Load previous char as initial value of current character register.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&start_regexp);
+
+  // Initialize on-stack registers.
+  if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+    // Fill saved registers with initial value = start offset - 1
+    if (num_saved_registers_ > 8) {
+      // Address of register 0.
+      __ add(r1, frame_pointer(), Operand(kRegisterZero));
+      __ mov(r2, Operand(num_saved_registers_));
+      Label init_loop;
+      __ bind(&init_loop);
+      __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
+      __ sub(r2, r2, Operand(1), SetCC);
+      __ b(ne, &init_loop);
+    } else {
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ str(r0, register_location(i));
+      }
+    }
+  }
+
+  // Initialize backtrack stack pointer.
+  __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+  __ jmp(&start_label_);
+
+  // Exit code:
+  if (success_label_.is_linked()) {
+    // Save captures when successful.
+    __ bind(&success_label_);
+    if (num_saved_registers_ > 0) {
+      // copy captures to output
+      __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
+      __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
+      __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
+      __ sub(r1, end_of_input_address(), r1);
+      // r1 is length of input in bytes.
+      if (mode_ == UC16) {
+        __ mov(r1, Operand(r1, LSR, 1));
+      }
+      // r1 is length of input in characters.
+      __ add(r1, r1, Operand(r2));
+      // r1 is length of string in characters.
+
+      DCHECK_EQ(0, num_saved_registers_ % 2);
+      // Always an even number of capture registers. This allows us to
+      // unroll the loop once to add an operation between a load of a register
+      // and the following use of that register.
+      for (int i = 0; i < num_saved_registers_; i += 2) {
+        __ ldr(r2, register_location(i));
+        __ ldr(r3, register_location(i + 1));
+        if (i == 0 && global_with_zero_length_check()) {
+          // Keep capture start in r4 for the zero-length check later.
+          __ mov(r4, r2);
+        }
+        if (mode_ == UC16) {
+          __ add(r2, r1, Operand(r2, ASR, 1));
+          __ add(r3, r1, Operand(r3, ASR, 1));
+        } else {
+          __ add(r2, r1, Operand(r2));
+          __ add(r3, r1, Operand(r3));
+        }
+        __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
+        __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
+      }
+    }
+
+    if (global()) {
+      // Restart matching if the regular expression is flagged as global.
+      __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+      __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
+      __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
+      // Increment success counter.
+      __ add(r0, r0, Operand(1));
+      __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+      // Capture results have been stored, so the number of remaining global
+      // output registers is reduced by the number of stored captures.
+      __ sub(r1, r1, Operand(num_saved_registers_));
+      // Check whether we have enough room for another set of capture results.
+      __ cmp(r1, Operand(num_saved_registers_));
+      __ b(lt, &return_r0);
+
+      __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
+      // Advance the location for output.
+      __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
+      __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
+
+      // Prepare r0 to initialize registers with its value in the next run.
+      __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+      if (global_with_zero_length_check()) {
+        // Special case for zero-length matches.
+        // r4: capture start index
+        __ cmp(current_input_offset(), r4);
+        // Not a zero-length match, restart.
+        __ b(ne, &load_char_start_regexp);
+        // Offset from the end is zero if we already reached the end.
+        __ cmp(current_input_offset(), Operand::Zero());
+        __ b(eq, &exit_label_);
+        // Advance current position after a zero-length match.
+        __ add(current_input_offset(),
+               current_input_offset(),
+               Operand((mode_ == UC16) ? 2 : 1));
+      }
+
+      __ b(&load_char_start_regexp);
+    } else {
+      __ mov(r0, Operand(SUCCESS));
+    }
+  }
+
+  // Exit and return r0
+  __ bind(&exit_label_);
+  if (global()) {
+    __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+  }
+
+  __ bind(&return_r0);
+  // Skip sp past regexp registers and local variables..
+  __ mov(sp, frame_pointer());
+  // Restore registers r4..r11 and return (restoring lr to pc).
+  __ ldm(ia_w, sp, registers_to_retain | pc.bit());
+
+  // Backtrack code (branch target for conditional backtracks).
+  if (backtrack_label_.is_linked()) {
+    __ bind(&backtrack_label_);
+    Backtrack();
+  }
+
+  Label exit_with_exception;
+
+  // Preempt-code
+  if (check_preempt_label_.is_linked()) {
+    SafeCallTarget(&check_preempt_label_);
+
+    CallCheckStackGuardState(r0);
+    __ cmp(r0, Operand::Zero());
+    // If returning non-zero, we should end execution with the given
+    // result as return value.
+    __ b(ne, &return_r0);
+
+    // String might have moved: Reload end of string from frame.
+    __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+    SafeReturn();
+  }
+
+  // Backtrack stack overflow code.
+  if (stack_overflow_label_.is_linked()) {
+    SafeCallTarget(&stack_overflow_label_);
+    // Reached if the backtrack-stack limit has been hit.
+    Label grow_failed;
+
+    // Call GrowStack(backtrack_stackpointer(), &stack_base)
+    static const int num_arguments = 3;
+    __ PrepareCallCFunction(num_arguments, r0);
+    __ mov(r0, backtrack_stackpointer());
+    __ add(r1, frame_pointer(), Operand(kStackHighEnd));
+    __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
+    ExternalReference grow_stack =
+        ExternalReference::re_grow_stack(isolate());
+    __ CallCFunction(grow_stack, num_arguments);
+    // If return NULL, we have failed to grow the stack, and
+    // must exit with a stack-overflow exception.
+    __ cmp(r0, Operand::Zero());
+    __ b(eq, &exit_with_exception);
+    // Otherwise use return value as new stack pointer.
+    __ mov(backtrack_stackpointer(), r0);
+    // Restore saved registers and continue.
+    SafeReturn();
+  }
+
+  if (exit_with_exception.is_linked()) {
+    // If any of the code above needed to exit with an exception.
+    __ bind(&exit_with_exception);
+    // Exit with Result EXCEPTION(-1) to signal thrown exception.
+    __ mov(r0, Operand(EXCEPTION));
+    __ jmp(&return_r0);
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code = isolate()->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerARM::GoTo(Label* to) {
+  BranchOrBacktrack(al, to);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
+                                           int comparand,
+                                           Label* if_ge) {
+  __ ldr(r0, register_location(reg));
+  __ cmp(r0, Operand(comparand));
+  BranchOrBacktrack(ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
+                                           int comparand,
+                                           Label* if_lt) {
+  __ ldr(r0, register_location(reg));
+  __ cmp(r0, Operand(comparand));
+  BranchOrBacktrack(lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
+                                              Label* if_eq) {
+  __ ldr(r0, register_location(reg));
+  __ cmp(r0, Operand(current_input_offset()));
+  BranchOrBacktrack(eq, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerARM::Implementation() {
+  return kARMImplementation;
+}
+
+
+void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
+                                                   Label* on_end_of_input,
+                                                   bool check_bounds,
+                                                   int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerARM::PopCurrentPosition() {
+  Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM::PopRegister(int register_index) {
+  Pop(r0);
+  __ str(r0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
+  __ mov_label_offset(r0, label);
+  Push(r0);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM::PushCurrentPosition() {
+  Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM::PushRegister(int register_index,
+                                           StackCheckFlag check_stack_limit) {
+  __ ldr(r0, register_location(register_index));
+  Push(r0);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
+  __ ldr(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
+  __ ldr(backtrack_stackpointer(), register_location(reg));
+  __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
+  __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
+}
+
+
+void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ cmp(current_input_offset(), Operand(-by * char_size()));
+  __ b(ge, &after_position);
+  __ mov(current_input_offset(), Operand(-by * char_size()));
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ mov(r0, Operand(to));
+  __ str(r0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerARM::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
+                                                             int cp_offset) {
+  if (cp_offset == 0) {
+    __ str(current_input_offset(), register_location(reg));
+  } else {
+    __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
+    __ str(r0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ str(r0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
+  __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
+  __ sub(r0, backtrack_stackpointer(), r1);
+  __ str(r0, register_location(reg));
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
+  __ PrepareCallCFunction(3, scratch);
+
+  // RegExp code frame pointer.
+  __ mov(r2, frame_pointer());
+  // Code* of self.
+  __ mov(r1, Operand(masm_->CodeObject()));
+
+  // We need to make room for the return address on the stack.
+  int stack_alignment = base::OS::ActivationFrameAlignment();
+  DCHECK(IsAligned(stack_alignment, kPointerSize));
+  __ sub(sp, sp, Operand(stack_alignment));
+
+  // r0 will point to the return address, placed by DirectCEntry.
+  __ mov(r0, sp);
+
+  ExternalReference stack_guard_check =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ mov(ip, Operand(stack_guard_check));
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm_, ip);
+
+  // Drop the return address from the stack.
+  __ add(sp, sp, Operand(stack_alignment));
+
+  DCHECK(stack_alignment != 0);
+  __ ldr(sp, MemOperand(sp, 0));
+
+  __ mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
+                                                  Code* re_code,
+                                                  Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<int>(re_frame, kStartIndex),
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return MemOperand(frame_pointer(),
+                    kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
+                                            Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
+    BranchOrBacktrack(ge, on_outside_input);
+  } else {
+    __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
+    __ cmp(r0, r1);
+    BranchOrBacktrack(le, on_outside_input);
+  }
+}
+
+
+void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
+                                                Label* to) {
+  if (condition == al) {  // Unconditional.
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ b(condition, &backtrack_label_);
+    return;
+  }
+  __ b(condition, to);
+}
+
+
+void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
+  __ bl(to, cond);
+}
+
+
+void RegExpMacroAssemblerARM::SafeReturn() {
+  __ pop(lr);
+  __ add(pc, lr, Operand(masm_->CodeObject()));
+}
+
+
+void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
+  __ bind(name);
+  __ sub(lr, lr, Operand(masm_->CodeObject()));
+  __ push(lr);
+}
+
+
+void RegExpMacroAssemblerARM::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  __ str(source,
+         MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
+}
+
+
+void RegExpMacroAssemblerARM::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ ldr(target,
+         MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
+}
+
+
+void RegExpMacroAssemblerARM::CheckPreemption() {
+  // Check for preemption.
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ mov(r0, Operand(stack_limit));
+  __ ldr(r0, MemOperand(r0));
+  __ cmp(sp, r0);
+  SafeCall(&check_preempt_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM::CheckStackLimit() {
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ mov(r0, Operand(stack_limit));
+  __ ldr(r0, MemOperand(r0));
+  __ cmp(backtrack_stackpointer(), Operand(r0));
+  SafeCall(&stack_overflow_label_, ls);
+}
+
+
+bool RegExpMacroAssemblerARM::CanReadUnaligned() {
+  return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
+}
+
+
+void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                            int characters) {
+  Register offset = current_input_offset();
+  if (cp_offset != 0) {
+    // r4 is not being used to store the capture start index at this point.
+    __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
+    offset = r4;
+  }
+  // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
+  // and the operating system running on the target allow it.
+  // If unaligned load/stores are not supported then this function must only
+  // be used to load a single character at a time.
+  if (!CanReadUnaligned()) {
+    DCHECK(characters == 1);
+  }
+
+  if (mode_ == LATIN1) {
+    if (characters == 4) {
+      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
+    } else if (characters == 2) {
+      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
+    } else {
+      DCHECK(characters == 1);
+      __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    if (characters == 2) {
+      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
+    } else {
+      DCHECK(characters == 1);
+      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
+    }
+  }
+}
+
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_ARM
diff --git a/src/regexp/arm/regexp-macro-assembler-arm.h b/src/regexp/arm/regexp-macro-assembler-arm.h
new file mode 100644
index 0000000..233a98f
--- /dev/null
+++ b/src/regexp/arm/regexp-macro-assembler-arm.h
@@ -0,0 +1,222 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
+#define V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
+
+#include "src/arm/assembler-arm.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerARM: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone, Mode mode,
+                          int registers_to_save);
+  virtual ~RegExpMacroAssemblerARM();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(unsigned c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(unsigned c,
+                                      unsigned mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(unsigned c,
+                                         unsigned mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual bool CanReadUnaligned();
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from frame_pointer() of function parameters and stored registers.
+  static const int kFramePointer = 0;
+
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Register 4..11.
+  static const int kStoredRegisters = kFramePointer;
+  // Return address (stored from link register, read into pc on return).
+  static const int kReturnAddress = kStoredRegisters + 8 * kPointerSize;
+  static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+  // Stack parameters placed by caller.
+  static const int kRegisterOutput = kSecondaryReturnAddress + kPointerSize;
+  static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+  static const int kDirectCall = kStackHighEnd + kPointerSize;
+  static const int kIsolate = kDirectCall + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kInputEnd = kFramePointer - kPointerSize;
+  static const int kInputStart = kInputEnd - kPointerSize;
+  static const int kStartIndex = kInputStart - kPointerSize;
+  static const int kInputString = kStartIndex - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessfulCaptures = kInputString - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  static const int kBacktrackConstantPoolSize = 4;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  MemOperand register_location(int register_index);
+
+  // Register holding the current input position as negative offset from
+  // the end of the string.
+  inline Register current_input_offset() { return r6; }
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return r7; }
+
+  // Register holding address of the end of the input string.
+  inline Register end_of_input_address() { return r10; }
+
+  // Register holding the frame address. Local variables, parameters and
+  // regexp registers are addressed relative to this.
+  inline Register frame_pointer() { return fp; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return r8; }
+
+  // Register holding pointer to the current code object.
+  inline Register code_pointer() { return r5; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to, Condition cond = al);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (Latin1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
diff --git a/src/regexp/arm64/OWNERS b/src/regexp/arm64/OWNERS
new file mode 100644
index 0000000..906a5ce
--- /dev/null
+++ b/src/regexp/arm64/OWNERS
@@ -0,0 +1 @@
+rmcilroy@chromium.org
diff --git a/src/regexp/arm64/regexp-macro-assembler-arm64.cc b/src/regexp/arm64/regexp-macro-assembler-arm64.cc
new file mode 100644
index 0000000..9948597
--- /dev/null
+++ b/src/regexp/arm64/regexp-macro-assembler-arm64.cc
@@ -0,0 +1,1660 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_ARM64
+
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention:
+ * - w19     : Used to temporarely store a value before a call to C code.
+ *             See CheckNotBackReferenceIgnoreCase.
+ * - x20     : Pointer to the current code object (Code*),
+ *             it includes the heap object tag.
+ * - w21     : Current position in input, as negative offset from
+ *             the end of the string. Please notice that this is
+ *             the byte offset, not the character offset!
+ * - w22     : Currently loaded character. Must be loaded using
+ *             LoadCurrentCharacter before using any of the dispatch methods.
+ * - x23     : Points to tip of backtrack stack.
+ * - w24     : Position of the first character minus one: non_position_value.
+ *             Used to initialize capture registers.
+ * - x25     : Address at the end of the input string: input_end.
+ *             Points to byte after last character in input.
+ * - x26     : Address at the start of the input string: input_start.
+ * - w27     : Where to start in the input string.
+ * - x28     : Output array pointer.
+ * - x29/fp  : Frame pointer. Used to access arguments, local variables and
+ *             RegExp registers.
+ * - x16/x17 : IP registers, used by assembler. Very volatile.
+ * - csp     : Points to tip of C stack.
+ *
+ * - x0-x7   : Used as a cache to store 32 bit capture registers. These
+ *             registers need to be retained every time a call to C code
+ *             is done.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *
+ *  Location    Name               Description
+ *              (as referred to in
+ *              the code)
+ *
+ *  - fp[104]   isolate            Address of the current isolate.
+ *  - fp[96]    return_address     Secondary link/return address
+ *                                 used by an exit frame if this is a
+ *                                 native call.
+ *  ^^^ csp when called ^^^
+ *  - fp[88]    lr                 Return from the RegExp code.
+ *  - fp[80]    r29                Old frame pointer (CalleeSaved).
+ *  - fp[0..72] r19-r28            Backup of CalleeSaved registers.
+ *  - fp[-8]    direct_call        1 => Direct call from JavaScript code.
+ *                                 0 => Call through the runtime system.
+ *  - fp[-16]   stack_base         High end of the memory area to use as
+ *                                 the backtracking stack.
+ *  - fp[-24]   output_size        Output may fit multiple sets of matches.
+ *  - fp[-32]   input              Handle containing the input string.
+ *  - fp[-40]   success_counter
+ *  ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^
+ *  - fp[-44]   register N         Capture registers initialized with
+ *  - fp[-48]   register N + 1     non_position_value.
+ *              ...                The first kNumCachedRegisters (N) registers
+ *              ...                are cached in x0 to x7.
+ *              ...                Only positions must be stored in the first
+ *  -           ...                num_saved_registers_ registers.
+ *  -           ...
+ *  -           register N + num_registers - 1
+ *  ^^^^^^^^^ csp ^^^^^^^^^
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input,
+ *              int start_offset,
+ *              Address input_start,
+ *              Address input_end,
+ *              int* output,
+ *              int output_size,
+ *              Address stack_base,
+ *              bool direct_call = false,
+ *              Address secondary_return_address,  // Only used by native call.
+ *              Isolate* isolate)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in arm64/simulator-arm64.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerARM64::RegExpMacroAssemblerARM64(Isolate* isolate,
+                                                     Zone* zone, Mode mode,
+                                                     int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_() {
+  __ SetStackPointer(csp);
+  DCHECK_EQ(0, registers_to_save % 2);
+  // We can cache at most 16 W registers in x0-x7.
+  STATIC_ASSERT(kNumCachedRegisters <= 16);
+  STATIC_ASSERT((kNumCachedRegisters % 2) == 0);
+  __ B(&entry_label_);   // We'll write the entry code later.
+  __ Bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerARM64::~RegExpMacroAssemblerARM64() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+}
+
+int RegExpMacroAssemblerARM64::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerARM64::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ Add(current_input_offset(),
+           current_input_offset(), by * char_size());
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::AdvanceRegister(int reg, int by) {
+  DCHECK((reg >= 0) && (reg < num_registers_));
+  if (by != 0) {
+    Register to_advance;
+    RegisterState register_state = GetRegisterState(reg);
+    switch (register_state) {
+      case STACKED:
+        __ Ldr(w10, register_location(reg));
+        __ Add(w10, w10, by);
+        __ Str(w10, register_location(reg));
+        break;
+      case CACHED_LSW:
+        to_advance = GetCachedRegister(reg);
+        __ Add(to_advance, to_advance, by);
+        break;
+      case CACHED_MSW:
+        to_advance = GetCachedRegister(reg);
+        __ Add(to_advance, to_advance,
+               static_cast<int64_t>(by) << kWRegSizeInBits);
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::Backtrack() {
+  CheckPreemption();
+  Pop(w10);
+  __ Add(x10, code_pointer(), Operand(w10, UXTW));
+  __ Br(x10);
+}
+
+
+void RegExpMacroAssemblerARM64::Bind(Label* label) {
+  __ Bind(label);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) {
+  CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit,
+                                                 Label* on_greater) {
+  CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckAtStart(Label* on_at_start) {
+  __ Add(w10, current_input_offset(), Operand(-char_size()));
+  __ Cmp(w10, string_start_minus_one());
+  BranchOrBacktrack(eq, on_at_start);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotAtStart(int cp_offset,
+                                                Label* on_not_at_start) {
+  __ Add(w10, current_input_offset(),
+         Operand(-char_size() + cp_offset * char_size()));
+  __ Cmp(w10, string_start_minus_one());
+  BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) {
+  CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacters(Vector<const uc16> str,
+                                              int cp_offset,
+                                              Label* on_failure,
+                                              bool check_end_of_string) {
+  // This method is only ever called from the cctests.
+
+  if (check_end_of_string) {
+    // Is last character of required match inside string.
+    CheckPosition(cp_offset + str.length() - 1, on_failure);
+  }
+
+  Register characters_address = x11;
+
+  __ Add(characters_address,
+         input_end(),
+         Operand(current_input_offset(), SXTW));
+  if (cp_offset != 0) {
+    __ Add(characters_address, characters_address, cp_offset * char_size());
+  }
+
+  for (int i = 0; i < str.length(); i++) {
+    if (mode_ == LATIN1) {
+      __ Ldrb(w10, MemOperand(characters_address, 1, PostIndex));
+      DCHECK(str[i] <= String::kMaxOneByteCharCode);
+    } else {
+      __ Ldrh(w10, MemOperand(characters_address, 2, PostIndex));
+    }
+    CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure);
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::CheckGreedyLoop(Label* on_equal) {
+  __ Ldr(w10, MemOperand(backtrack_stackpointer()));
+  __ Cmp(current_input_offset(), w10);
+  __ Cset(x11, eq);
+  __ Add(backtrack_stackpointer(),
+         backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2));
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+
+  Register capture_start_offset = w10;
+  // Save the capture length in a callee-saved register so it will
+  // be preserved if we call a C helper.
+  Register capture_length = w19;
+  DCHECK(kCalleeSaved.IncludesAliasOf(capture_length));
+
+  // Find length of back-referenced capture.
+  DCHECK((start_reg % 2) == 0);
+  if (start_reg < kNumCachedRegisters) {
+    __ Mov(capture_start_offset.X(), GetCachedRegister(start_reg));
+    __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
+  } else {
+    __ Ldp(w11, capture_start_offset, capture_location(start_reg, x10));
+  }
+  __ Sub(capture_length, w11, capture_start_offset);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ CompareAndBranch(capture_length, Operand(0), eq, &fallthrough);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ Add(w12, string_start_minus_one(), capture_length);
+    __ Cmp(current_input_offset(), w12);
+    BranchOrBacktrack(le, on_no_match);
+  } else {
+    __ Cmn(capture_length, current_input_offset());
+    BranchOrBacktrack(gt, on_no_match);
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_check;
+
+    Register capture_start_address = x12;
+    Register capture_end_addresss = x13;
+    Register current_position_address = x14;
+
+    __ Add(capture_start_address,
+           input_end(),
+           Operand(capture_start_offset, SXTW));
+    __ Add(capture_end_addresss,
+           capture_start_address,
+           Operand(capture_length, SXTW));
+    __ Add(current_position_address,
+           input_end(),
+           Operand(current_input_offset(), SXTW));
+    if (read_backward) {
+      // Offset by length when matching backwards.
+      __ Sub(current_position_address, current_position_address,
+             Operand(capture_length, SXTW));
+    }
+
+    Label loop;
+    __ Bind(&loop);
+    __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
+    __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
+    __ Cmp(w10, w11);
+    __ B(eq, &loop_check);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ Orr(w10, w10, 0x20);  // Convert capture character to lower-case.
+    __ Orr(w11, w11, 0x20);  // Also convert input character.
+    __ Cmp(w11, w10);
+    __ B(ne, &fail);
+    __ Sub(w10, w10, 'a');
+    __ Cmp(w10, 'z' - 'a');  // Is w10 a lowercase letter?
+    __ B(ls, &loop_check);  // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ Sub(w10, w10, 224 - 'a');
+    __ Cmp(w10, 254 - 224);
+    __ Ccmp(w10, 247 - 224, ZFlag, ls);  // Check for 247.
+    __ B(eq, &fail);  // Weren't Latin-1 letters.
+
+    __ Bind(&loop_check);
+    __ Cmp(capture_start_address, capture_end_addresss);
+    __ B(lt, &loop);
+    __ B(&success);
+
+    __ Bind(&fail);
+    BranchOrBacktrack(al, on_no_match);
+
+    __ Bind(&success);
+    // Compute new value of character position after the matched part.
+    __ Sub(current_input_offset().X(), current_position_address, input_end());
+    if (read_backward) {
+      __ Sub(current_input_offset().X(), current_input_offset().X(),
+             Operand(capture_length, SXTW));
+    }
+    if (masm_->emit_debug_code()) {
+      __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
+      __ Ccmp(current_input_offset(), 0, NoFlag, eq);
+      // The current input offset should be <= 0, and fit in a W register.
+      __ Check(le, kOffsetOutOfRange);
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    int argument_count = 4;
+
+    // The cached registers need to be retained.
+    CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
+    DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
+    __ PushCPURegList(cached_registers);
+
+    // Put arguments into arguments registers.
+    // Parameters are
+    //   x0: Address byte_offset1 - Address captured substring's start.
+    //   x1: Address byte_offset2 - Address of current character position.
+    //   w2: size_t byte_length - length of capture in bytes(!)
+    //   x3: Isolate* isolate
+
+    // Address of start of capture.
+    __ Add(x0, input_end(), Operand(capture_start_offset, SXTW));
+    // Length of capture.
+    __ Mov(w2, capture_length);
+    // Address of current input position.
+    __ Add(x1, input_end(), Operand(current_input_offset(), SXTW));
+    if (read_backward) {
+      __ Sub(x1, x1, Operand(capture_length, SXTW));
+    }
+    // Isolate.
+    __ Mov(x3, ExternalReference::isolate_address(isolate()));
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference function =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(function, argument_count);
+    }
+
+    // Check if function returned non-zero for success or zero for failure.
+    // x0 is one of the registers used as a cache so it must be tested before
+    // the cache is restored.
+    __ Cmp(x0, 0);
+    __ PopCPURegList(cached_registers);
+    BranchOrBacktrack(eq, on_no_match);
+
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ Sub(current_input_offset(), current_input_offset(), capture_length);
+    } else {
+      __ Add(current_input_offset(), current_input_offset(), capture_length);
+    }
+  }
+
+  __ Bind(&fallthrough);
+}
+
+void RegExpMacroAssemblerARM64::CheckNotBackReference(int start_reg,
+                                                      bool read_backward,
+                                                      Label* on_no_match) {
+  Label fallthrough;
+
+  Register capture_start_address = x12;
+  Register capture_end_address = x13;
+  Register current_position_address = x14;
+  Register capture_length = w15;
+
+  // Find length of back-referenced capture.
+  DCHECK((start_reg % 2) == 0);
+  if (start_reg < kNumCachedRegisters) {
+    __ Mov(x10, GetCachedRegister(start_reg));
+    __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
+  } else {
+    __ Ldp(w11, w10, capture_location(start_reg, x10));
+  }
+  __ Sub(capture_length, w11, w10);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ CompareAndBranch(capture_length, Operand(0), eq, &fallthrough);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ Add(w12, string_start_minus_one(), capture_length);
+    __ Cmp(current_input_offset(), w12);
+    BranchOrBacktrack(le, on_no_match);
+  } else {
+    __ Cmn(capture_length, current_input_offset());
+    BranchOrBacktrack(gt, on_no_match);
+  }
+
+  // Compute pointers to match string and capture string
+  __ Add(capture_start_address, input_end(), Operand(w10, SXTW));
+  __ Add(capture_end_address,
+         capture_start_address,
+         Operand(capture_length, SXTW));
+  __ Add(current_position_address,
+         input_end(),
+         Operand(current_input_offset(), SXTW));
+  if (read_backward) {
+    // Offset by length when matching backwards.
+    __ Sub(current_position_address, current_position_address,
+           Operand(capture_length, SXTW));
+  }
+
+  Label loop;
+  __ Bind(&loop);
+  if (mode_ == LATIN1) {
+    __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
+    __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex));
+    __ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex));
+  }
+  __ Cmp(w10, w11);
+  BranchOrBacktrack(ne, on_no_match);
+  __ Cmp(capture_start_address, capture_end_address);
+  __ B(lt, &loop);
+
+  // Move current character position to position after match.
+  __ Sub(current_input_offset().X(), current_position_address, input_end());
+  if (read_backward) {
+    __ Sub(current_input_offset().X(), current_input_offset().X(),
+           Operand(capture_length, SXTW));
+  }
+
+  if (masm_->emit_debug_code()) {
+    __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
+    __ Ccmp(current_input_offset(), 0, NoFlag, eq);
+    // The current input offset should be <= 0, and fit in a W register.
+    __ Check(le, kOffsetOutOfRange);
+  }
+  __ Bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacter(unsigned c,
+                                                  Label* on_not_equal) {
+  CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterAfterAnd(uint32_t c,
+                                                       uint32_t mask,
+                                                       Label* on_equal) {
+  __ And(w10, current_character(), mask);
+  CompareAndBranchOrBacktrack(w10, c, eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c,
+                                                          unsigned mask,
+                                                          Label* on_not_equal) {
+  __ And(w10, current_character(), mask);
+  CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ Sub(w10, current_character(), minus);
+  __ And(w10, w10, mask);
+  CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ Sub(w10, current_character(), from);
+  // Unsigned lower-or-same condition.
+  CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ Sub(w10, current_character(), from);
+  // Unsigned higher condition.
+  CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ Mov(x11, Operand(table));
+  if ((mode_ != LATIN1) || (kTableMask != String::kMaxOneByteCharCode)) {
+    __ And(w10, current_character(), kTableMask);
+    __ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag);
+  } else {
+    __ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag);
+  }
+  __ Ldrb(w11, MemOperand(x11, w10, UXTW));
+  CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
+                                                           Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check
+  switch (type) {
+  case 's':
+    // Match space-characters
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      // Check for ' ' or 0x00a0.
+      __ Cmp(current_character(), ' ');
+      __ Ccmp(current_character(), 0x00a0, ZFlag, ne);
+      __ B(eq, &success);
+      // Check range 0x09..0x0d.
+      __ Sub(w10, current_character(), '\t');
+      CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match);
+      __ Bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match ASCII digits ('0'..'9').
+    __ Sub(w10, current_character(), '0');
+    CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match);
+    return true;
+  case 'D':
+    // Match ASCII non-digits.
+    __ Sub(w10, current_character(), '0');
+    CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match);
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    // Here we emit the conditional branch only once at the end to make branch
+    // prediction more efficient, even though we could branch out of here
+    // as soon as a character matches.
+    __ Cmp(current_character(), 0x0a);
+    __ Ccmp(current_character(), 0x0d, ZFlag, ne);
+    if (mode_ == UC16) {
+      __ Sub(w10, current_character(), 0x2028);
+      // If the Z flag was set we clear the flags to force a branch.
+      __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
+      // ls -> !((C==1) && (Z==0))
+      BranchOrBacktrack(ls, on_no_match);
+    } else {
+      BranchOrBacktrack(eq, on_no_match);
+    }
+    return true;
+  }
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    // We have to check all 4 newline characters before emitting
+    // the conditional branch.
+    __ Cmp(current_character(), 0x0a);
+    __ Ccmp(current_character(), 0x0d, ZFlag, ne);
+    if (mode_ == UC16) {
+      __ Sub(w10, current_character(), 0x2028);
+      // If the Z flag was set we clear the flags to force a fall-through.
+      __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
+      // hi -> (C==1) && (Z==0)
+      BranchOrBacktrack(hi, on_no_match);
+    } else {
+      BranchOrBacktrack(ne, on_no_match);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match);
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ Mov(x10, map);
+    __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
+    CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match);
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ Cmp(current_character(), 'z');
+      __ B(hi, &done);
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ Mov(x10, map);
+    __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
+    CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match);
+    __ Bind(&done);
+    return true;
+  }
+  case '*':
+    // Match any character.
+    return true;
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::Fail() {
+  __ Mov(w0, FAILURE);
+  __ B(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) {
+  Label return_w0;
+  // Finalize code - write the entry point code now we know how many
+  // registers we need.
+
+  // Entry code:
+  __ Bind(&entry_label_);
+
+  // Arguments on entry:
+  // x0:  String*  input
+  // x1:  int      start_offset
+  // x2:  byte*    input_start
+  // x3:  byte*    input_end
+  // x4:  int*     output array
+  // x5:  int      output array size
+  // x6:  Address  stack_base
+  // x7:  int      direct_call
+
+  // The stack pointer should be csp on entry.
+  //  csp[8]:  address of the current isolate
+  //  csp[0]:  secondary link/return address used by native call
+
+  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
+  // code is generated.
+  FrameScope scope(masm_, StackFrame::MANUAL);
+
+  // Push registers on the stack, only push the argument registers that we need.
+  CPURegList argument_registers(x0, x5, x6, x7);
+
+  CPURegList registers_to_retain = kCalleeSaved;
+  DCHECK(kCalleeSaved.Count() == 11);
+  registers_to_retain.Combine(lr);
+
+  DCHECK(csp.Is(__ StackPointer()));
+  __ PushCPURegList(registers_to_retain);
+  __ PushCPURegList(argument_registers);
+
+  // Set frame pointer in place.
+  __ Add(frame_pointer(), csp, argument_registers.Count() * kPointerSize);
+
+  // Initialize callee-saved registers.
+  __ Mov(start_offset(), w1);
+  __ Mov(input_start(), x2);
+  __ Mov(input_end(), x3);
+  __ Mov(output_array(), x4);
+
+  // Set the number of registers we will need to allocate, that is:
+  //   - success_counter (X register)
+  //   - (num_registers_ - kNumCachedRegisters) (W registers)
+  int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters;
+  // Do not allocate registers on the stack if they can all be cached.
+  if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; }
+  // Make room for the success_counter.
+  num_wreg_to_allocate += 2;
+
+  // Make sure the stack alignment will be respected.
+  int alignment = masm_->ActivationFrameAlignment();
+  DCHECK_EQ(alignment % 16, 0);
+  int align_mask = (alignment / kWRegSize) - 1;
+  num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask;
+
+  // Check if we have space on the stack.
+  Label stack_limit_hit;
+  Label stack_ok;
+
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ Mov(x10, stack_limit);
+  __ Ldr(x10, MemOperand(x10));
+  __ Subs(x10, csp, x10);
+
+  // Handle it if the stack pointer is already below the stack limit.
+  __ B(ls, &stack_limit_hit);
+
+  // Check if there is room for the variable number of registers above
+  // the stack limit.
+  __ Cmp(x10, num_wreg_to_allocate * kWRegSize);
+  __ B(hs, &stack_ok);
+
+  // Exit with OutOfMemory exception. There is not enough space on the stack
+  // for our working registers.
+  __ Mov(w0, EXCEPTION);
+  __ B(&return_w0);
+
+  __ Bind(&stack_limit_hit);
+  CallCheckStackGuardState(x10);
+  // If returned value is non-zero, we exit with the returned value as result.
+  __ Cbnz(w0, &return_w0);
+
+  __ Bind(&stack_ok);
+
+  // Allocate space on stack.
+  __ Claim(num_wreg_to_allocate, kWRegSize);
+
+  // Initialize success_counter with 0.
+  __ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter));
+
+  // Find negative length (offset of start relative to end).
+  __ Sub(x10, input_start(), input_end());
+  if (masm_->emit_debug_code()) {
+    // Check that the input string length is < 2^30.
+    __ Neg(x11, x10);
+    __ Cmp(x11, (1<<30) - 1);
+    __ Check(ls, kInputStringTooLong);
+  }
+  __ Mov(current_input_offset(), w10);
+
+  // The non-position value is used as a clearing value for the
+  // capture registers, it corresponds to the position of the first character
+  // minus one.
+  __ Sub(string_start_minus_one(), current_input_offset(), char_size());
+  __ Sub(string_start_minus_one(), string_start_minus_one(),
+         Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0));
+  // We can store this value twice in an X register for initializing
+  // on-stack registers later.
+  __ Orr(twice_non_position_value(), string_start_minus_one().X(),
+         Operand(string_start_minus_one().X(), LSL, kWRegSizeInBits));
+
+  // Initialize code pointer register.
+  __ Mov(code_pointer(), Operand(masm_->CodeObject()));
+
+  Label load_char_start_regexp, start_regexp;
+  // Load newline if index is at start, previous character otherwise.
+  __ Cbnz(start_offset(), &load_char_start_regexp);
+  __ Mov(current_character(), '\n');
+  __ B(&start_regexp);
+
+  // Global regexp restarts matching here.
+  __ Bind(&load_char_start_regexp);
+  // Load previous char as initial value of current character register.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ Bind(&start_regexp);
+  // Initialize on-stack registers.
+  if (num_saved_registers_ > 0) {
+    ClearRegisters(0, num_saved_registers_ - 1);
+  }
+
+  // Initialize backtrack stack pointer.
+  __ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase));
+
+  // Execute
+  __ B(&start_label_);
+
+  if (backtrack_label_.is_linked()) {
+    __ Bind(&backtrack_label_);
+    Backtrack();
+  }
+
+  if (success_label_.is_linked()) {
+    Register first_capture_start = w15;
+
+    // Save captures when successful.
+    __ Bind(&success_label_);
+
+    if (num_saved_registers_ > 0) {
+      // V8 expects the output to be an int32_t array.
+      Register capture_start = w12;
+      Register capture_end = w13;
+      Register input_length = w14;
+
+      // Copy captures to output.
+
+      // Get string length.
+      __ Sub(x10, input_end(), input_start());
+      if (masm_->emit_debug_code()) {
+        // Check that the input string length is < 2^30.
+        __ Cmp(x10, (1<<30) - 1);
+        __ Check(ls, kInputStringTooLong);
+      }
+      // input_start has a start_offset offset on entry. We need to include
+      // it when computing the length of the whole string.
+      if (mode_ == UC16) {
+        __ Add(input_length, start_offset(), Operand(w10, LSR, 1));
+      } else {
+        __ Add(input_length, start_offset(), w10);
+      }
+
+      // Copy the results to the output array from the cached registers first.
+      for (int i = 0;
+           (i < num_saved_registers_) && (i < kNumCachedRegisters);
+           i += 2) {
+        __ Mov(capture_start.X(), GetCachedRegister(i));
+        __ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits);
+        if ((i == 0) && global_with_zero_length_check()) {
+          // Keep capture start for the zero-length check later.
+          __ Mov(first_capture_start, capture_start);
+        }
+        // Offsets need to be relative to the start of the string.
+        if (mode_ == UC16) {
+          __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
+          __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+        } else {
+          __ Add(capture_start, input_length, capture_start);
+          __ Add(capture_end, input_length, capture_end);
+        }
+        // The output pointer advances for a possible global match.
+        __ Stp(capture_start,
+               capture_end,
+               MemOperand(output_array(), kPointerSize, PostIndex));
+      }
+
+      // Only carry on if there are more than kNumCachedRegisters capture
+      // registers.
+      int num_registers_left_on_stack =
+          num_saved_registers_ - kNumCachedRegisters;
+      if (num_registers_left_on_stack > 0) {
+        Register base = x10;
+        // There are always an even number of capture registers. A couple of
+        // registers determine one match with two offsets.
+        DCHECK_EQ(0, num_registers_left_on_stack % 2);
+        __ Add(base, frame_pointer(), kFirstCaptureOnStack);
+
+        // We can unroll the loop here, we should not unroll for less than 2
+        // registers.
+        STATIC_ASSERT(kNumRegistersToUnroll > 2);
+        if (num_registers_left_on_stack <= kNumRegistersToUnroll) {
+          for (int i = 0; i < num_registers_left_on_stack / 2; i++) {
+            __ Ldp(capture_end,
+                   capture_start,
+                   MemOperand(base, -kPointerSize, PostIndex));
+            if ((i == 0) && global_with_zero_length_check()) {
+              // Keep capture start for the zero-length check later.
+              __ Mov(first_capture_start, capture_start);
+            }
+            // Offsets need to be relative to the start of the string.
+            if (mode_ == UC16) {
+              __ Add(capture_start,
+                     input_length,
+                     Operand(capture_start, ASR, 1));
+              __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+            } else {
+              __ Add(capture_start, input_length, capture_start);
+              __ Add(capture_end, input_length, capture_end);
+            }
+            // The output pointer advances for a possible global match.
+            __ Stp(capture_start,
+                   capture_end,
+                   MemOperand(output_array(), kPointerSize, PostIndex));
+          }
+        } else {
+          Label loop, start;
+          __ Mov(x11, num_registers_left_on_stack);
+
+          __ Ldp(capture_end,
+                 capture_start,
+                 MemOperand(base, -kPointerSize, PostIndex));
+          if (global_with_zero_length_check()) {
+            __ Mov(first_capture_start, capture_start);
+          }
+          __ B(&start);
+
+          __ Bind(&loop);
+          __ Ldp(capture_end,
+                 capture_start,
+                 MemOperand(base, -kPointerSize, PostIndex));
+          __ Bind(&start);
+          if (mode_ == UC16) {
+            __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
+            __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+          } else {
+            __ Add(capture_start, input_length, capture_start);
+            __ Add(capture_end, input_length, capture_end);
+          }
+          // The output pointer advances for a possible global match.
+          __ Stp(capture_start,
+                 capture_end,
+                 MemOperand(output_array(), kPointerSize, PostIndex));
+          __ Sub(x11, x11, 2);
+          __ Cbnz(x11, &loop);
+        }
+      }
+    }
+
+    if (global()) {
+      Register success_counter = w0;
+      Register output_size = x10;
+      // Restart matching if the regular expression is flagged as global.
+
+      // Increment success counter.
+      __ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
+      __ Add(success_counter, success_counter, 1);
+      __ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
+
+      // Capture results have been stored, so the number of remaining global
+      // output registers is reduced by the number of stored captures.
+      __ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize));
+      __ Sub(output_size, output_size, num_saved_registers_);
+      // Check whether we have enough room for another set of capture results.
+      __ Cmp(output_size, num_saved_registers_);
+      __ B(lt, &return_w0);
+
+      // The output pointer is already set to the next field in the output
+      // array.
+      // Update output size on the frame before we restart matching.
+      __ Str(output_size, MemOperand(frame_pointer(), kOutputSize));
+
+      if (global_with_zero_length_check()) {
+        // Special case for zero-length matches.
+        __ Cmp(current_input_offset(), first_capture_start);
+        // Not a zero-length match, restart.
+        __ B(ne, &load_char_start_regexp);
+        // Offset from the end is zero if we already reached the end.
+        __ Cbz(current_input_offset(), &return_w0);
+        // Advance current position after a zero-length match.
+        __ Add(current_input_offset(),
+               current_input_offset(),
+               Operand((mode_ == UC16) ? 2 : 1));
+      }
+
+      __ B(&load_char_start_regexp);
+    } else {
+      __ Mov(w0, SUCCESS);
+    }
+  }
+
+  if (exit_label_.is_linked()) {
+    // Exit and return w0
+    __ Bind(&exit_label_);
+    if (global()) {
+      __ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter));
+    }
+  }
+
+  __ Bind(&return_w0);
+
+  // Set stack pointer back to first register to retain
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Mov(csp, fp);
+  __ AssertStackConsistency();
+
+  // Restore registers.
+  __ PopCPURegList(registers_to_retain);
+
+  __ Ret();
+
+  Label exit_with_exception;
+  // Registers x0 to x7 are used to store the first captures, they need to be
+  // retained over calls to C++ code.
+  CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
+  DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
+
+  if (check_preempt_label_.is_linked()) {
+    __ Bind(&check_preempt_label_);
+    SaveLinkRegister();
+    // The cached registers need to be retained.
+    __ PushCPURegList(cached_registers);
+    CallCheckStackGuardState(x10);
+    // Returning from the regexp code restores the stack (csp <- fp)
+    // so we don't need to drop the link register from it before exiting.
+    __ Cbnz(w0, &return_w0);
+    // Reset the cached registers.
+    __ PopCPURegList(cached_registers);
+    RestoreLinkRegister();
+    __ Ret();
+  }
+
+  if (stack_overflow_label_.is_linked()) {
+    __ Bind(&stack_overflow_label_);
+    SaveLinkRegister();
+    // The cached registers need to be retained.
+    __ PushCPURegList(cached_registers);
+    // Call GrowStack(backtrack_stackpointer(), &stack_base)
+    __ Mov(x2, ExternalReference::isolate_address(isolate()));
+    __ Add(x1, frame_pointer(), kStackBase);
+    __ Mov(x0, backtrack_stackpointer());
+    ExternalReference grow_stack =
+        ExternalReference::re_grow_stack(isolate());
+    __ CallCFunction(grow_stack, 3);
+    // If return NULL, we have failed to grow the stack, and
+    // must exit with a stack-overflow exception.
+    // Returning from the regexp code restores the stack (csp <- fp)
+    // so we don't need to drop the link register from it before exiting.
+    __ Cbz(w0, &exit_with_exception);
+    // Otherwise use return value as new stack pointer.
+    __ Mov(backtrack_stackpointer(), x0);
+    // Reset the cached registers.
+    __ PopCPURegList(cached_registers);
+    RestoreLinkRegister();
+    __ Ret();
+  }
+
+  if (exit_with_exception.is_linked()) {
+    __ Bind(&exit_with_exception);
+    __ Mov(w0, EXCEPTION);
+    __ B(&return_w0);
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code = isolate()->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerARM64::GoTo(Label* to) {
+  BranchOrBacktrack(al, to);
+}
+
+void RegExpMacroAssemblerARM64::IfRegisterGE(int reg, int comparand,
+                                             Label* if_ge) {
+  Register to_compare = GetRegister(reg, w10);
+  CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerARM64::IfRegisterLT(int reg, int comparand,
+                                             Label* if_lt) {
+  Register to_compare = GetRegister(reg, w10);
+  CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerARM64::IfRegisterEqPos(int reg, Label* if_eq) {
+  Register to_compare = GetRegister(reg, w10);
+  __ Cmp(to_compare, current_input_offset());
+  BranchOrBacktrack(eq, if_eq);
+}
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerARM64::Implementation() {
+  return kARM64Implementation;
+}
+
+
+void RegExpMacroAssemblerARM64::LoadCurrentCharacter(int cp_offset,
+                                                     Label* on_end_of_input,
+                                                     bool check_bounds,
+                                                     int characters) {
+  // TODO(pielan): Make sure long strings are caught before this, and not
+  // just asserted in debug mode.
+  // Be sane! (And ensure that an int32_t can be used to index the string)
+  DCHECK(cp_offset < (1<<30));
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerARM64::PopCurrentPosition() {
+  Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM64::PopRegister(int register_index) {
+  Pop(w10);
+  StoreRegister(register_index, w10);
+}
+
+
+void RegExpMacroAssemblerARM64::PushBacktrack(Label* label) {
+  if (label->is_bound()) {
+    int target = label->pos();
+    __ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag);
+  } else {
+    __ Adr(x10, label, MacroAssembler::kAdrFar);
+    __ Sub(x10, x10, code_pointer());
+    if (masm_->emit_debug_code()) {
+      __ Cmp(x10, kWRegMask);
+      // The code offset has to fit in a W register.
+      __ Check(ls, kOffsetOutOfRange);
+    }
+  }
+  Push(w10);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM64::PushCurrentPosition() {
+  Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM64::PushRegister(int register_index,
+                                             StackCheckFlag check_stack_limit) {
+  Register to_push = GetRegister(register_index, w10);
+  Push(to_push);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM64::ReadCurrentPositionFromRegister(int reg) {
+  Register cached_register;
+  RegisterState register_state = GetRegisterState(reg);
+  switch (register_state) {
+    case STACKED:
+      __ Ldr(current_input_offset(), register_location(reg));
+      break;
+    case CACHED_LSW:
+      cached_register = GetCachedRegister(reg);
+      __ Mov(current_input_offset(), cached_register.W());
+      break;
+    case CACHED_MSW:
+      cached_register = GetCachedRegister(reg);
+      __ Lsr(current_input_offset().X(), cached_register, kWRegSizeInBits);
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::ReadStackPointerFromRegister(int reg) {
+  Register read_from = GetRegister(reg, w10);
+  __ Ldr(x11, MemOperand(frame_pointer(), kStackBase));
+  __ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW));
+}
+
+
+void RegExpMacroAssemblerARM64::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ Cmp(current_input_offset(), -by * char_size());
+  __ B(ge, &after_position);
+  __ Mov(current_input_offset(), -by * char_size());
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ Bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerARM64::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  Register set_to = wzr;
+  if (to != 0) {
+    set_to = w10;
+    __ Mov(set_to, to);
+  }
+  StoreRegister(register_index, set_to);
+}
+
+
+bool RegExpMacroAssemblerARM64::Succeed() {
+  __ B(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerARM64::WriteCurrentPositionToRegister(int reg,
+                                                               int cp_offset) {
+  Register position = current_input_offset();
+  if (cp_offset != 0) {
+    position = w10;
+    __ Add(position, current_input_offset(), cp_offset * char_size());
+  }
+  StoreRegister(reg, position);
+}
+
+
+void RegExpMacroAssemblerARM64::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  int num_registers = reg_to - reg_from + 1;
+
+  // If the first capture register is cached in a hardware register but not
+  // aligned on a 64-bit one, we need to clear the first one specifically.
+  if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) {
+    StoreRegister(reg_from, string_start_minus_one());
+    num_registers--;
+    reg_from++;
+  }
+
+  // Clear cached registers in pairs as far as possible.
+  while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) {
+    DCHECK(GetRegisterState(reg_from) == CACHED_LSW);
+    __ Mov(GetCachedRegister(reg_from), twice_non_position_value());
+    reg_from += 2;
+    num_registers -= 2;
+  }
+
+  if ((num_registers % 2) == 1) {
+    StoreRegister(reg_from, string_start_minus_one());
+    num_registers--;
+    reg_from++;
+  }
+
+  if (num_registers > 0) {
+    // If there are some remaining registers, they are stored on the stack.
+    DCHECK(reg_from >= kNumCachedRegisters);
+
+    // Move down the indexes of the registers on stack to get the correct offset
+    // in memory.
+    reg_from -= kNumCachedRegisters;
+    reg_to -= kNumCachedRegisters;
+    // We should not unroll the loop for less than 2 registers.
+    STATIC_ASSERT(kNumRegistersToUnroll > 2);
+    // We position the base pointer to (reg_from + 1).
+    int base_offset = kFirstRegisterOnStack -
+        kWRegSize - (kWRegSize * reg_from);
+    if (num_registers > kNumRegistersToUnroll) {
+      Register base = x10;
+      __ Add(base, frame_pointer(), base_offset);
+
+      Label loop;
+      __ Mov(x11, num_registers);
+      __ Bind(&loop);
+      __ Str(twice_non_position_value(),
+             MemOperand(base, -kPointerSize, PostIndex));
+      __ Sub(x11, x11, 2);
+      __ Cbnz(x11, &loop);
+    } else {
+      for (int i = reg_from; i <= reg_to; i += 2) {
+        __ Str(twice_non_position_value(),
+               MemOperand(frame_pointer(), base_offset));
+        base_offset -= kWRegSize * 2;
+      }
+    }
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::WriteStackPointerToRegister(int reg) {
+  __ Ldr(x10, MemOperand(frame_pointer(), kStackBase));
+  __ Sub(x10, backtrack_stackpointer(), x10);
+  if (masm_->emit_debug_code()) {
+    __ Cmp(x10, Operand(w10, SXTW));
+    // The stack offset needs to fit in a W register.
+    __ Check(eq, kOffsetOutOfRange);
+  }
+  StoreRegister(reg, w10);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return *reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerARM64::CheckStackGuardState(
+    Address* return_address, Code* re_code, Address re_frame, int start_index,
+    const byte** input_start, const byte** input_end) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate), start_index,
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInput), input_start, input_end);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckPosition(int cp_offset,
+                                              Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    CompareAndBranchOrBacktrack(current_input_offset(),
+                                -cp_offset * char_size(), ge, on_outside_input);
+  } else {
+    __ Add(w12, current_input_offset(), Operand(cp_offset * char_size()));
+    __ Cmp(w12, string_start_minus_one());
+    BranchOrBacktrack(le, on_outside_input);
+  }
+}
+
+
+bool RegExpMacroAssemblerARM64::CanReadUnaligned() {
+  // TODO(pielan): See whether or not we should disable unaligned accesses.
+  return !slow_safe();
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerARM64::CallCheckStackGuardState(Register scratch) {
+  // Allocate space on the stack to store the return address. The
+  // CheckStackGuardState C++ function will override it if the code
+  // moved. Allocate extra space for 2 arguments passed by pointers.
+  // AAPCS64 requires the stack to be 16 byte aligned.
+  int alignment = masm_->ActivationFrameAlignment();
+  DCHECK_EQ(alignment % 16, 0);
+  int align_mask = (alignment / kXRegSize) - 1;
+  int xreg_to_claim = (3 + align_mask) & ~align_mask;
+
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Claim(xreg_to_claim);
+
+  // CheckStackGuardState needs the end and start addresses of the input string.
+  __ Poke(input_end(), 2 * kPointerSize);
+  __ Add(x5, csp, 2 * kPointerSize);
+  __ Poke(input_start(), kPointerSize);
+  __ Add(x4, csp, kPointerSize);
+
+  __ Mov(w3, start_offset());
+  // RegExp code frame pointer.
+  __ Mov(x2, frame_pointer());
+  // Code* of self.
+  __ Mov(x1, Operand(masm_->CodeObject()));
+
+  // We need to pass a pointer to the return address as first argument.
+  // The DirectCEntry stub will place the return address on the stack before
+  // calling so the stack pointer will point to it.
+  __ Mov(x0, csp);
+
+  ExternalReference check_stack_guard_state =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ Mov(scratch, check_stack_guard_state);
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm_, scratch);
+
+  // The input string may have been moved in memory, we need to reload it.
+  __ Peek(input_start(), kPointerSize);
+  __ Peek(input_end(), 2 * kPointerSize);
+
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Drop(xreg_to_claim);
+
+  // Reload the Code pointer.
+  __ Mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+void RegExpMacroAssemblerARM64::BranchOrBacktrack(Condition condition,
+                                                  Label* to) {
+  if (condition == al) {  // Unconditional.
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ B(to);
+    return;
+  }
+  if (to == NULL) {
+    to = &backtrack_label_;
+  }
+  __ B(condition, to);
+}
+
+void RegExpMacroAssemblerARM64::CompareAndBranchOrBacktrack(Register reg,
+                                                            int immediate,
+                                                            Condition condition,
+                                                            Label* to) {
+  if ((immediate == 0) && ((condition == eq) || (condition == ne))) {
+    if (to == NULL) {
+      to = &backtrack_label_;
+    }
+    if (condition == eq) {
+      __ Cbz(reg, to);
+    } else {
+      __ Cbnz(reg, to);
+    }
+  } else {
+    __ Cmp(reg, immediate);
+    BranchOrBacktrack(condition, to);
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::CheckPreemption() {
+  // Check for preemption.
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ Mov(x10, stack_limit);
+  __ Ldr(x10, MemOperand(x10));
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Cmp(csp, x10);
+  CallIf(&check_preempt_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckStackLimit() {
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ Mov(x10, stack_limit);
+  __ Ldr(x10, MemOperand(x10));
+  __ Cmp(backtrack_stackpointer(), x10);
+  CallIf(&stack_overflow_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM64::Push(Register source) {
+  DCHECK(source.Is32Bits());
+  DCHECK(!source.is(backtrack_stackpointer()));
+  __ Str(source,
+         MemOperand(backtrack_stackpointer(),
+                    -static_cast<int>(kWRegSize),
+                    PreIndex));
+}
+
+
+void RegExpMacroAssemblerARM64::Pop(Register target) {
+  DCHECK(target.Is32Bits());
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ Ldr(target,
+         MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex));
+}
+
+
+Register RegExpMacroAssemblerARM64::GetCachedRegister(int register_index) {
+  DCHECK(register_index < kNumCachedRegisters);
+  return Register::Create(register_index / 2, kXRegSizeInBits);
+}
+
+
+Register RegExpMacroAssemblerARM64::GetRegister(int register_index,
+                                                Register maybe_result) {
+  DCHECK(maybe_result.Is32Bits());
+  DCHECK(register_index >= 0);
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  Register result;
+  RegisterState register_state = GetRegisterState(register_index);
+  switch (register_state) {
+    case STACKED:
+      __ Ldr(maybe_result, register_location(register_index));
+      result = maybe_result;
+      break;
+    case CACHED_LSW:
+      result = GetCachedRegister(register_index).W();
+      break;
+    case CACHED_MSW:
+      __ Lsr(maybe_result.X(), GetCachedRegister(register_index),
+             kWRegSizeInBits);
+      result = maybe_result;
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+  DCHECK(result.Is32Bits());
+  return result;
+}
+
+
+void RegExpMacroAssemblerARM64::StoreRegister(int register_index,
+                                              Register source) {
+  DCHECK(source.Is32Bits());
+  DCHECK(register_index >= 0);
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+
+  Register cached_register;
+  RegisterState register_state = GetRegisterState(register_index);
+  switch (register_state) {
+    case STACKED:
+      __ Str(source, register_location(register_index));
+      break;
+    case CACHED_LSW:
+      cached_register = GetCachedRegister(register_index);
+      if (!source.Is(cached_register.W())) {
+        __ Bfi(cached_register, source.X(), 0, kWRegSizeInBits);
+      }
+      break;
+    case CACHED_MSW:
+      cached_register = GetCachedRegister(register_index);
+      __ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits);
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+void RegExpMacroAssemblerARM64::CallIf(Label* to, Condition condition) {
+  Label skip_call;
+  if (condition != al) __ B(&skip_call, NegateCondition(condition));
+  __ Bl(to);
+  __ Bind(&skip_call);
+}
+
+
+void RegExpMacroAssemblerARM64::RestoreLinkRegister() {
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Pop(lr, xzr);
+  __ Add(lr, lr, Operand(masm_->CodeObject()));
+}
+
+
+void RegExpMacroAssemblerARM64::SaveLinkRegister() {
+  DCHECK(csp.Is(__ StackPointer()));
+  __ Sub(lr, lr, Operand(masm_->CodeObject()));
+  __ Push(xzr, lr);
+}
+
+
+MemOperand RegExpMacroAssemblerARM64::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  DCHECK(register_index >= kNumCachedRegisters);
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  register_index -= kNumCachedRegisters;
+  int offset = kFirstRegisterOnStack - register_index * kWRegSize;
+  return MemOperand(frame_pointer(), offset);
+}
+
+MemOperand RegExpMacroAssemblerARM64::capture_location(int register_index,
+                                                     Register scratch) {
+  DCHECK(register_index < (1<<30));
+  DCHECK(register_index < num_saved_registers_);
+  DCHECK(register_index >= kNumCachedRegisters);
+  DCHECK_EQ(register_index % 2, 0);
+  register_index -= kNumCachedRegisters;
+  int offset = kFirstCaptureOnStack - register_index * kWRegSize;
+  // capture_location is used with Stp instructions to load/store 2 registers.
+  // The immediate field in the encoding is limited to 7 bits (signed).
+  if (is_int7(offset)) {
+    return MemOperand(frame_pointer(), offset);
+  } else {
+    __ Add(scratch, frame_pointer(), offset);
+    return MemOperand(scratch);
+  }
+}
+
+void RegExpMacroAssemblerARM64::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                              int characters) {
+  Register offset = current_input_offset();
+
+  // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
+  // and the operating system running on the target allow it.
+  // If unaligned load/stores are not supported then this function must only
+  // be used to load a single character at a time.
+
+  // ARMv8 supports unaligned accesses but V8 or the kernel can decide to
+  // disable it.
+  // TODO(pielan): See whether or not we should disable unaligned accesses.
+  if (!CanReadUnaligned()) {
+    DCHECK(characters == 1);
+  }
+
+  if (cp_offset != 0) {
+    if (masm_->emit_debug_code()) {
+      __ Mov(x10, cp_offset * char_size());
+      __ Add(x10, x10, Operand(current_input_offset(), SXTW));
+      __ Cmp(x10, Operand(w10, SXTW));
+      // The offset needs to fit in a W register.
+      __ Check(eq, kOffsetOutOfRange);
+    } else {
+      __ Add(w10, current_input_offset(), cp_offset * char_size());
+    }
+    offset = w10;
+  }
+
+  if (mode_ == LATIN1) {
+    if (characters == 4) {
+      __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
+    } else if (characters == 2) {
+      __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
+    } else {
+      DCHECK(characters == 1);
+      __ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    if (characters == 2) {
+      __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
+    } else {
+      DCHECK(characters == 1);
+      __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
+    }
+  }
+}
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_ARM64
diff --git a/src/regexp/arm64/regexp-macro-assembler-arm64.h b/src/regexp/arm64/regexp-macro-assembler-arm64.h
new file mode 100644
index 0000000..d71f063
--- /dev/null
+++ b/src/regexp/arm64/regexp-macro-assembler-arm64.h
@@ -0,0 +1,297 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
+#define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
+
+#include "src/arm64/assembler-arm64.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
+                            int registers_to_save);
+  virtual ~RegExpMacroAssemblerARM64();
+  virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(unsigned c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(unsigned c,
+                                      unsigned mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  virtual void CheckCharacters(Vector<const uc16> str,
+                               int cp_offset,
+                               Label* on_failure,
+                               bool check_end_of_string);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(unsigned c,
+                                         unsigned mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual bool CanReadUnaligned();
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame,
+                                  int start_offset,
+                                  const byte** input_start,
+                                  const byte** input_end);
+
+ private:
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Callee-saved registers x19-x29, where x29 is the old frame pointer.
+  static const int kCalleeSavedRegisters = 0;
+  // Return address.
+  // It is placed above the 11 callee-saved registers.
+  static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
+  static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+  // Stack parameter placed by caller.
+  static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
+  static const int kStackBase = kDirectCall - kPointerSize;
+  static const int kOutputSize = kStackBase - kPointerSize;
+  static const int kInput = kOutputSize - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessCounter = kInput - kPointerSize;
+  // First position register address on the stack. Following positions are
+  // below it. A position is a 32 bit value.
+  static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
+  // A capture is a 64 bit value holding two position.
+  static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // When initializing registers to a non-position value we can unroll
+  // the loop. Set the limit of registers to unroll.
+  static const int kNumRegistersToUnroll = 16;
+
+  // We are using x0 to x7 as a register cache. Each hardware register must
+  // contain one capture, that is two 32 bit registers. We can cache at most
+  // 16 registers.
+  static const int kNumCachedRegisters = 16;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // Location of a 32 bit position register.
+  MemOperand register_location(int register_index);
+
+  // Location of a 64 bit capture, combining two position registers.
+  MemOperand capture_location(int register_index, Register scratch);
+
+  // Register holding the current input position as negative offset from
+  // the end of the string.
+  Register current_input_offset() { return w21; }
+
+  // The register containing the current character after LoadCurrentCharacter.
+  Register current_character() { return w22; }
+
+  // Register holding address of the end of the input string.
+  Register input_end() { return x25; }
+
+  // Register holding address of the start of the input string.
+  Register input_start() { return x26; }
+
+  // Register holding the offset from the start of the string where we should
+  // start matching.
+  Register start_offset() { return w27; }
+
+  // Pointer to the output array's first element.
+  Register output_array() { return x28; }
+
+  // Register holding the frame address. Local variables, parameters and
+  // regexp registers are addressed relative to this.
+  Register frame_pointer() { return fp; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  Register backtrack_stackpointer() { return x23; }
+
+  // Register holding pointer to the current code object.
+  Register code_pointer() { return x20; }
+
+  // Register holding the value used for clearing capture registers.
+  Register string_start_minus_one() { return w24; }
+  // The top 32 bit of this register is used to store this value
+  // twice. This is used for clearing more than one register at a time.
+  Register twice_non_position_value() { return x24; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to);
+
+  // Compares reg against immmediate before calling BranchOrBacktrack.
+  // It makes use of the Cbz and Cbnz instructions.
+  void CompareAndBranchOrBacktrack(Register reg,
+                                   int immediate,
+                                   Condition condition,
+                                   Label* to);
+
+  inline void CallIf(Label* to, Condition condition);
+
+  // Save and restore the link register on the stack in a way that
+  // is GC-safe.
+  inline void SaveLinkRegister();
+  inline void RestoreLinkRegister();
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // and increments it by a word size.
+  inline void Pop(Register target);
+
+  // This state indicates where the register actually is.
+  enum RegisterState {
+    STACKED,     // Resides in memory.
+    CACHED_LSW,  // Least Significant Word of a 64 bit hardware register.
+    CACHED_MSW   // Most Significant Word of a 64 bit hardware register.
+  };
+
+  RegisterState GetRegisterState(int register_index) {
+    DCHECK(register_index >= 0);
+    if (register_index >= kNumCachedRegisters) {
+      return STACKED;
+    } else {
+      if ((register_index % 2) == 0) {
+        return CACHED_LSW;
+      } else {
+        return CACHED_MSW;
+      }
+    }
+  }
+
+  // Store helper that takes the state of the register into account.
+  inline void StoreRegister(int register_index, Register source);
+
+  // Returns a hardware W register that holds the value of the capture
+  // register.
+  //
+  // This function will try to use an existing cache register (w0-w7) for the
+  // result. Otherwise, it will load the value into maybe_result.
+  //
+  // If the returned register is anything other than maybe_result, calling code
+  // must not write to it.
+  inline Register GetRegister(int register_index, Register maybe_result);
+
+  // Returns the harware register (x0-x7) holding the value of the capture
+  // register.
+  // This assumes that the state of the register is not STACKED.
+  inline Register GetCachedRegister(int register_index);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (LATIN1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
diff --git a/src/regexp/bytecodes-irregexp.h b/src/regexp/bytecodes-irregexp.h
new file mode 100644
index 0000000..2dbfbc0
--- /dev/null
+++ b/src/regexp/bytecodes-irregexp.h
@@ -0,0 +1,85 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#ifndef V8_REGEXP_BYTECODES_IRREGEXP_H_
+#define V8_REGEXP_BYTECODES_IRREGEXP_H_
+
+namespace v8 {
+namespace internal {
+
+
+const int BYTECODE_MASK = 0xff;
+// The first argument is packed in with the byte code in one word, but so it
+// has 24 bits, but it can be positive and negative so only use 23 bits for
+// positive values.
+const unsigned int MAX_FIRST_ARG = 0x7fffffu;
+const int BYTECODE_SHIFT = 8;
+
+#define BYTECODE_ITERATOR(V)                                                   \
+V(BREAK,              0, 4)   /* bc8                                        */ \
+V(PUSH_CP,            1, 4)   /* bc8 pad24                                  */ \
+V(PUSH_BT,            2, 8)   /* bc8 pad24 offset32                         */ \
+V(PUSH_REGISTER,      3, 4)   /* bc8 reg_idx24                              */ \
+V(SET_REGISTER_TO_CP, 4, 8)   /* bc8 reg_idx24 offset32                     */ \
+V(SET_CP_TO_REGISTER, 5, 4)   /* bc8 reg_idx24                              */ \
+V(SET_REGISTER_TO_SP, 6, 4)   /* bc8 reg_idx24                              */ \
+V(SET_SP_TO_REGISTER, 7, 4)   /* bc8 reg_idx24                              */ \
+V(SET_REGISTER,       8, 8)   /* bc8 reg_idx24 value32                      */ \
+V(ADVANCE_REGISTER,   9, 8)   /* bc8 reg_idx24 value32                      */ \
+V(POP_CP,            10, 4)   /* bc8 pad24                                  */ \
+V(POP_BT,            11, 4)   /* bc8 pad24                                  */ \
+V(POP_REGISTER,      12, 4)   /* bc8 reg_idx24                              */ \
+V(FAIL,              13, 4)   /* bc8 pad24                                  */ \
+V(SUCCEED,           14, 4)   /* bc8 pad24                                  */ \
+V(ADVANCE_CP,        15, 4)   /* bc8 offset24                               */ \
+V(GOTO,              16, 8)   /* bc8 pad24 addr32                           */ \
+V(LOAD_CURRENT_CHAR, 17, 8)   /* bc8 offset24 addr32                        */ \
+V(LOAD_CURRENT_CHAR_UNCHECKED, 18, 4) /* bc8 offset24                       */ \
+V(LOAD_2_CURRENT_CHARS, 19, 8) /* bc8 offset24 addr32                       */ \
+V(LOAD_2_CURRENT_CHARS_UNCHECKED, 20, 4) /* bc8 offset24                    */ \
+V(LOAD_4_CURRENT_CHARS, 21, 8) /* bc8 offset24 addr32                       */ \
+V(LOAD_4_CURRENT_CHARS_UNCHECKED, 22, 4) /* bc8 offset24                    */ \
+V(CHECK_4_CHARS,     23, 12)  /* bc8 pad24 uint32 addr32                    */ \
+V(CHECK_CHAR,        24, 8)   /* bc8 pad8 uint16 addr32                     */ \
+V(CHECK_NOT_4_CHARS, 25, 12)  /* bc8 pad24 uint32 addr32                    */ \
+V(CHECK_NOT_CHAR,    26, 8)   /* bc8 pad8 uint16 addr32                     */ \
+V(AND_CHECK_4_CHARS, 27, 16)  /* bc8 pad24 uint32 uint32 addr32             */ \
+V(AND_CHECK_CHAR,    28, 12)  /* bc8 pad8 uint16 uint32 addr32              */ \
+V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32          */ \
+V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32              */ \
+V(MINUS_AND_CHECK_NOT_CHAR, 31, 12) /* bc8 pad8 uc16 uc16 uc16 addr32       */ \
+V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 uc16 uc16 addr32                */ \
+V(CHECK_CHAR_NOT_IN_RANGE, 33, 12) /* bc8 pad24 uc16 uc16 addr32            */ \
+V(CHECK_BIT_IN_TABLE, 34, 24) /* bc8 pad24 addr32 bits128                   */ \
+V(CHECK_LT,          35, 8)   /* bc8 pad8 uc16 addr32                       */ \
+V(CHECK_GT,          36, 8)   /* bc8 pad8 uc16 addr32                       */ \
+V(CHECK_NOT_BACK_REF, 37, 8)  /* bc8 reg_idx24 addr32                       */ \
+V(CHECK_NOT_BACK_REF_NO_CASE, 38, 8) /* bc8 reg_idx24 addr32                */ \
+V(CHECK_NOT_BACK_REF_BACKWARD, 39, 8)         /* bc8 reg_idx24 addr32       */ \
+V(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD, 40, 8) /* bc8 reg_idx24 addr32       */ \
+V(CHECK_NOT_REGS_EQUAL, 41, 12) /* bc8 regidx24 reg_idx32 addr32            */ \
+V(CHECK_REGISTER_LT, 42, 12)  /* bc8 reg_idx24 value32 addr32               */ \
+V(CHECK_REGISTER_GE, 43, 12)  /* bc8 reg_idx24 value32 addr32               */ \
+V(CHECK_REGISTER_EQ_POS, 44, 8) /* bc8 reg_idx24 addr32                     */ \
+V(CHECK_AT_START,    45, 8)   /* bc8 pad24 addr32                           */ \
+V(CHECK_NOT_AT_START, 46, 8)  /* bc8 offset24 addr32                        */ \
+V(CHECK_GREEDY,      47, 8)   /* bc8 pad24 addr32                           */ \
+V(ADVANCE_CP_AND_GOTO, 48, 8) /* bc8 offset24 addr32                        */ \
+V(SET_CURRENT_POSITION_FROM_END, 49, 4) /* bc8 idx24                        */
+
+#define DECLARE_BYTECODES(name, code, length) \
+  static const int BC_##name = code;
+BYTECODE_ITERATOR(DECLARE_BYTECODES)
+#undef DECLARE_BYTECODES
+
+#define DECLARE_BYTECODE_LENGTH(name, code, length) \
+  static const int BC_##name##_LENGTH = length;
+BYTECODE_ITERATOR(DECLARE_BYTECODE_LENGTH)
+#undef DECLARE_BYTECODE_LENGTH
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_BYTECODES_IRREGEXP_H_
diff --git a/src/regexp/ia32/regexp-macro-assembler-ia32.cc b/src/regexp/ia32/regexp-macro-assembler-ia32.cc
new file mode 100644
index 0000000..6ef0f5f
--- /dev/null
+++ b/src/regexp/ia32/regexp-macro-assembler-ia32.cc
@@ -0,0 +1,1263 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_IA32
+
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
+
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - edx : Current character.  Must be loaded using LoadCurrentCharacter
+ *         before using any of the dispatch methods.  Temporarily stores the
+ *         index of capture start after a matching pass for a global regexp.
+ * - edi : Current position in input, as negative offset from end of string.
+ *         Please notice that this is the byte offset, not the character offset!
+ * - esi : end of input (points to byte after last character in input).
+ * - ebp : Frame pointer.  Used to access arguments, local variables and
+ *         RegExp registers.
+ * - esp : Points to tip of C stack.
+ * - ecx : Points to tip of backtrack stack
+ *
+ * The registers eax and ebx are free to use for computations.
+ *
+ * Each call to a public method should retain this convention.
+ * The stack will have the following structure:
+ *       - Isolate* isolate     (address of the current isolate)
+ *       - direct_call          (if 1, direct call from JavaScript code, if 0
+ *                               call through the runtime system)
+ *       - stack_area_base      (high end of the memory area to use as
+ *                               backtracking stack)
+ *       - capture array size   (may fit multiple sets of matches)
+ *       - int* capture_array   (int[num_saved_registers_], for output).
+ *       - end of input         (address of end of string)
+ *       - start of input       (address of first character in string)
+ *       - start index          (character index of start)
+ *       - String* input_string (location of a handle containing the string)
+ *       --- frame alignment (if applicable) ---
+ *       - return address
+ * ebp-> - old ebp
+ *       - backup of caller esi
+ *       - backup of caller edi
+ *       - backup of caller ebx
+ *       - success counter      (only for global regexps to count matches).
+ *       - Offset of location before start of input (effectively character
+ *         string start - 1). Used to initialize capture registers to a
+ *         non-position.
+ *       - register 0  ebp[-4]  (only positions must be stored in the first
+ *       - register 1  ebp[-8]   num_saved_registers_ registers)
+ *       - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code, by calling the code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              int* capture_output_array,
+ *              bool at_start,
+ *              byte* stack_area_base,
+ *              bool direct_call)
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerIA32::RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone,
+                                                   Mode mode,
+                                                   int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code later.
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerIA32::~RegExpMacroAssemblerIA32() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerIA32::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerIA32::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ add(edi, Immediate(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ add(register_location(reg), Immediate(by));
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(ebx);
+  __ add(ebx, Immediate(masm_->CodeObject()));
+  __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerIA32::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) {
+  __ cmp(current_character(), c);
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  __ cmp(current_character(), limit);
+  BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckAtStart(Label* on_at_start) {
+  __ lea(eax, Operand(edi, -char_size()));
+  __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+  BranchOrBacktrack(equal, on_at_start);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotAtStart(int cp_offset,
+                                               Label* on_not_at_start) {
+  __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
+  __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+  BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) {
+  __ cmp(current_character(), limit);
+  BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) {
+  Label fallthrough;
+  __ cmp(edi, Operand(backtrack_stackpointer(), 0));
+  __ j(not_equal, &fallthrough);
+  __ add(backtrack_stackpointer(), Immediate(kPointerSize));  // Pop.
+  BranchOrBacktrack(no_condition, on_equal);
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ mov(edx, register_location(start_reg));  // Index of start of capture
+  __ mov(ebx, register_location(start_reg + 1));  // Index of end of capture
+  __ sub(ebx, edx);  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ mov(eax, Operand(ebp, kStringStartMinusOne));
+    __ add(eax, ebx);
+    __ cmp(edi, eax);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ mov(eax, edi);
+    __ add(eax, ebx);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_increment;
+    // Save register contents to make the registers available below.
+    __ push(edi);
+    __ push(backtrack_stackpointer());
+    // After this, the eax, ecx, and edi registers are available.
+
+    __ add(edx, esi);  // Start of capture
+    __ add(edi, esi);  // Start of text to match against capture.
+    if (read_backward) {
+      __ sub(edi, ebx);  // Offset by length when matching backwards.
+    }
+    __ add(ebx, edi);  // End of text to match against capture.
+
+    Label loop;
+    __ bind(&loop);
+    __ movzx_b(eax, Operand(edi, 0));
+    __ cmpb_al(Operand(edx, 0));
+    __ j(equal, &loop_increment);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ or_(eax, 0x20);  // Convert match character to lower-case.
+    __ lea(ecx, Operand(eax, -'a'));
+    __ cmp(ecx, static_cast<int32_t>('z' - 'a'));  // Is eax a lowercase letter?
+    Label convert_capture;
+    __ j(below_equal, &convert_capture);  // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ sub(ecx, Immediate(224 - 'a'));
+    __ cmp(ecx, Immediate(254 - 224));
+    __ j(above, &fail);  // Weren't Latin-1 letters.
+    __ cmp(ecx, Immediate(247 - 224));  // Check for 247.
+    __ j(equal, &fail);
+    __ bind(&convert_capture);
+    // Also convert capture character.
+    __ movzx_b(ecx, Operand(edx, 0));
+    __ or_(ecx, 0x20);
+
+    __ cmp(eax, ecx);
+    __ j(not_equal, &fail);
+
+    __ bind(&loop_increment);
+    // Increment pointers into match and capture strings.
+    __ add(edx, Immediate(1));
+    __ add(edi, Immediate(1));
+    // Compare to end of match, and loop if not done.
+    __ cmp(edi, ebx);
+    __ j(below, &loop);
+    __ jmp(&success);
+
+    __ bind(&fail);
+    // Restore original values before failing.
+    __ pop(backtrack_stackpointer());
+    __ pop(edi);
+    BranchOrBacktrack(no_condition, on_no_match);
+
+    __ bind(&success);
+    // Restore original value before continuing.
+    __ pop(backtrack_stackpointer());
+    // Drop original value of character position.
+    __ add(esp, Immediate(kPointerSize));
+    // Compute new value of character position after the matched part.
+    __ sub(edi, esi);
+    if (read_backward) {
+      // Subtract match length if we matched backward.
+      __ add(edi, register_location(start_reg));
+      __ sub(edi, register_location(start_reg + 1));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    // Save registers before calling C function.
+    __ push(esi);
+    __ push(edi);
+    __ push(backtrack_stackpointer());
+    __ push(ebx);
+
+    static const int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, ecx);
+    // Put arguments into allocated stack area, last argument highest on stack.
+    // Parameters are
+    //   Address byte_offset1 - Address captured substring's start.
+    //   Address byte_offset2 - Address of current character position.
+    //   size_t byte_length - length of capture in bytes(!)
+    //   Isolate* isolate
+
+    // Set isolate.
+    __ mov(Operand(esp, 3 * kPointerSize),
+           Immediate(ExternalReference::isolate_address(isolate())));
+    // Set byte_length.
+    __ mov(Operand(esp, 2 * kPointerSize), ebx);
+    // Set byte_offset2.
+    // Found by adding negative string-end offset of current position (edi)
+    // to end of string.
+    __ add(edi, esi);
+    if (read_backward) {
+      __ sub(edi, ebx);  // Offset by length when matching backwards.
+    }
+    __ mov(Operand(esp, 1 * kPointerSize), edi);
+    // Set byte_offset1.
+    // Start of capture, where edx already holds string-end negative offset.
+    __ add(edx, esi);
+    __ mov(Operand(esp, 0 * kPointerSize), edx);
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference compare =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(compare, argument_count);
+    }
+    // Pop original values before reacting on result value.
+    __ pop(ebx);
+    __ pop(backtrack_stackpointer());
+    __ pop(edi);
+    __ pop(esi);
+
+    // Check if function returned non-zero for success or zero for failure.
+    __ or_(eax, eax);
+    BranchOrBacktrack(zero, on_no_match);
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ sub(edi, ebx);
+    } else {
+      __ add(edi, ebx);
+    }
+  }
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotBackReference(int start_reg,
+                                                     bool read_backward,
+                                                     Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+  Label fail;
+
+  // Find length of back-referenced capture.
+  __ mov(edx, register_location(start_reg));
+  __ mov(eax, register_location(start_reg + 1));
+  __ sub(eax, edx);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ mov(ebx, Operand(ebp, kStringStartMinusOne));
+    __ add(ebx, eax);
+    __ cmp(edi, ebx);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ mov(ebx, edi);
+    __ add(ebx, eax);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  // Save register to make it available below.
+  __ push(backtrack_stackpointer());
+
+  // Compute pointers to match string and capture string
+  __ add(edx, esi);  // Start of capture.
+  __ lea(ebx, Operand(esi, edi, times_1, 0));  // Start of match.
+  if (read_backward) {
+    __ sub(ebx, eax);  // Offset by length when matching backwards.
+  }
+  __ lea(ecx, Operand(eax, ebx, times_1, 0));  // End of match
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ movzx_b(eax, Operand(edx, 0));
+    __ cmpb_al(Operand(ebx, 0));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ movzx_w(eax, Operand(edx, 0));
+    __ cmpw_ax(Operand(ebx, 0));
+  }
+  __ j(not_equal, &fail);
+  // Increment pointers into capture and match string.
+  __ add(edx, Immediate(char_size()));
+  __ add(ebx, Immediate(char_size()));
+  // Check if we have reached end of match area.
+  __ cmp(ebx, ecx);
+  __ j(below, &loop);
+  __ jmp(&success);
+
+  __ bind(&fail);
+  // Restore backtrack stackpointer.
+  __ pop(backtrack_stackpointer());
+  BranchOrBacktrack(no_condition, on_no_match);
+
+  __ bind(&success);
+  // Move current character position to position after match.
+  __ mov(edi, ecx);
+  __ sub(edi, esi);
+  if (read_backward) {
+    // Subtract match length if we matched backward.
+    __ add(edi, register_location(start_reg));
+    __ sub(edi, register_location(start_reg + 1));
+  }
+  // Restore backtrack stackpointer.
+  __ pop(backtrack_stackpointer());
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacter(uint32_t c,
+                                                 Label* on_not_equal) {
+  __ cmp(current_character(), c);
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterAfterAnd(uint32_t c,
+                                                      uint32_t mask,
+                                                      Label* on_equal) {
+  if (c == 0) {
+    __ test(current_character(), Immediate(mask));
+  } else {
+    __ mov(eax, mask);
+    __ and_(eax, current_character());
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c,
+                                                         uint32_t mask,
+                                                         Label* on_not_equal) {
+  if (c == 0) {
+    __ test(current_character(), Immediate(mask));
+  } else {
+    __ mov(eax, mask);
+    __ and_(eax, current_character());
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ lea(eax, Operand(current_character(), -minus));
+  if (c == 0) {
+    __ test(eax, Immediate(mask));
+  } else {
+    __ and_(eax, mask);
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ lea(eax, Operand(current_character(), -from));
+  __ cmp(eax, to - from);
+  BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ lea(eax, Operand(current_character(), -from));
+  __ cmp(eax, to - from);
+  BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ mov(eax, Immediate(table));
+  Register index = current_character();
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ mov(ebx, kTableSize - 1);
+    __ and_(ebx, current_character());
+    index = ebx;
+  }
+  __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
+  BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
+                                                          Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check
+  switch (type) {
+  case 's':
+    // Match space-characters
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ cmp(current_character(), ' ');
+      __ j(equal, &success, Label::kNear);
+      // Check range 0x09..0x0d
+      __ lea(eax, Operand(current_character(), -'\t'));
+      __ cmp(eax, '\r' - '\t');
+      __ j(below_equal, &success, Label::kNear);
+      // \u00a0 (NBSP).
+      __ cmp(eax, 0x00a0 - '\t');
+      BranchOrBacktrack(not_equal, on_no_match);
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match ASCII digits ('0'..'9')
+    __ lea(eax, Operand(current_character(), -'0'));
+    __ cmp(eax, '9' - '0');
+    BranchOrBacktrack(above, on_no_match);
+    return true;
+  case 'D':
+    // Match non ASCII-digits
+    __ lea(eax, Operand(current_character(), -'0'));
+    __ cmp(eax, '9' - '0');
+    BranchOrBacktrack(below_equal, on_no_match);
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ mov(eax, current_character());
+    __ xor_(eax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(eax, Immediate(0x0b));
+    __ cmp(eax, 0x0c - 0x0b);
+    BranchOrBacktrack(below_equal, on_no_match);
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(eax, Immediate(0x2028 - 0x0b));
+      __ cmp(eax, 0x2029 - 0x2028);
+      BranchOrBacktrack(below_equal, on_no_match);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Immediate('z'));
+      BranchOrBacktrack(above, on_no_match);
+    }
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    ExternalReference word_map = ExternalReference::re_word_character_map();
+    __ test_b(current_character(),
+              Operand::StaticArray(current_character(), times_1, word_map));
+    BranchOrBacktrack(zero, on_no_match);
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Immediate('z'));
+      __ j(above, &done);
+    }
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    ExternalReference word_map = ExternalReference::re_word_character_map();
+    __ test_b(current_character(),
+              Operand::StaticArray(current_character(), times_1, word_map));
+    BranchOrBacktrack(not_zero, on_no_match);
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+  // Non-standard classes (with no syntactic shorthand) used internally.
+  case '*':
+    // Match any character.
+    return true;
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
+    // The opposite of '.'.
+    __ mov(eax, current_character());
+    __ xor_(eax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(eax, Immediate(0x0b));
+    __ cmp(eax, 0x0c - 0x0b);
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(above, on_no_match);
+    } else {
+      Label done;
+      BranchOrBacktrack(below_equal, &done);
+      DCHECK_EQ(UC16, mode_);
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(eax, Immediate(0x2028 - 0x0b));
+      __ cmp(eax, 1);
+      BranchOrBacktrack(above, on_no_match);
+      __ bind(&done);
+    }
+    return true;
+  }
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::Fail() {
+  STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
+  if (!global()) {
+    __ Move(eax, Immediate(FAILURE));
+  }
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerIA32::GetCode(Handle<String> source) {
+  Label return_eax;
+  // Finalize code - write the entry point code now we know how many
+  // registers we need.
+
+  // Entry code:
+  __ bind(&entry_label_);
+
+  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
+  // code is generated.
+  FrameScope scope(masm_, StackFrame::MANUAL);
+
+  // Actually emit code to start a new stack frame.
+  __ push(ebp);
+  __ mov(ebp, esp);
+  // Save callee-save registers. Order here should correspond to order of
+  // kBackup_ebx etc.
+  __ push(esi);
+  __ push(edi);
+  __ push(ebx);  // Callee-save on MacOS.
+  __ push(Immediate(0));  // Number of successful matches in a global regexp.
+  __ push(Immediate(0));  // Make room for "string start - 1" constant.
+
+  // Check if we have space on the stack for registers.
+  Label stack_limit_hit;
+  Label stack_ok;
+
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ mov(ecx, esp);
+  __ sub(ecx, Operand::StaticVariable(stack_limit));
+  // Handle it if the stack pointer is already below the stack limit.
+  __ j(below_equal, &stack_limit_hit);
+  // Check if there is room for the variable number of registers above
+  // the stack limit.
+  __ cmp(ecx, num_registers_ * kPointerSize);
+  __ j(above_equal, &stack_ok);
+  // Exit with OutOfMemory exception. There is not enough space on the stack
+  // for our working registers.
+  __ mov(eax, EXCEPTION);
+  __ jmp(&return_eax);
+
+  __ bind(&stack_limit_hit);
+  CallCheckStackGuardState(ebx);
+  __ or_(eax, eax);
+  // If returned value is non-zero, we exit with the returned value as result.
+  __ j(not_zero, &return_eax);
+
+  __ bind(&stack_ok);
+  // Load start index for later use.
+  __ mov(ebx, Operand(ebp, kStartIndex));
+
+  // Allocate space on stack for registers.
+  __ sub(esp, Immediate(num_registers_ * kPointerSize));
+  // Load string length.
+  __ mov(esi, Operand(ebp, kInputEnd));
+  // Load input position.
+  __ mov(edi, Operand(ebp, kInputStart));
+  // Set up edi to be negative offset from string end.
+  __ sub(edi, esi);
+
+  // Set eax to address of char before start of the string.
+  // (effectively string position -1).
+  __ neg(ebx);
+  if (mode_ == UC16) {
+    __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
+  } else {
+    __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
+  }
+  // Store this value in a local variable, for use when clearing
+  // position registers.
+  __ mov(Operand(ebp, kStringStartMinusOne), eax);
+
+#if V8_OS_WIN
+  // Ensure that we write to each stack page, in order. Skipping a page
+  // on Windows can cause segmentation faults. Assuming page size is 4k.
+  const int kPageSize = 4096;
+  const int kRegistersPerPage = kPageSize / kPointerSize;
+  for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+      i < num_registers_;
+      i += kRegistersPerPage) {
+    __ mov(register_location(i), eax);  // One write every page.
+  }
+#endif  // V8_OS_WIN
+
+  Label load_char_start_regexp, start_regexp;
+  // Load newline if index is at start, previous character otherwise.
+  __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+  __ j(not_equal, &load_char_start_regexp, Label::kNear);
+  __ mov(current_character(), '\n');
+  __ jmp(&start_regexp, Label::kNear);
+
+  // Global regexp restarts matching here.
+  __ bind(&load_char_start_regexp);
+  // Load previous char as initial value of current character register.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&start_regexp);
+
+  // Initialize on-stack registers.
+  if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+    // Fill saved registers with initial value = start offset - 1
+    // Fill in stack push order, to avoid accessing across an unwritten
+    // page (a problem on Windows).
+    if (num_saved_registers_ > 8) {
+      __ mov(ecx, kRegisterZero);
+      Label init_loop;
+      __ bind(&init_loop);
+      __ mov(Operand(ebp, ecx, times_1, 0), eax);
+      __ sub(ecx, Immediate(kPointerSize));
+      __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
+      __ j(greater, &init_loop);
+    } else {  // Unroll the loop.
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ mov(register_location(i), eax);
+      }
+    }
+  }
+
+  // Initialize backtrack stack pointer.
+  __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+
+  __ jmp(&start_label_);
+
+  // Exit code:
+  if (success_label_.is_linked()) {
+    // Save captures when successful.
+    __ bind(&success_label_);
+    if (num_saved_registers_ > 0) {
+      // copy captures to output
+      __ mov(ebx, Operand(ebp, kRegisterOutput));
+      __ mov(ecx, Operand(ebp, kInputEnd));
+      __ mov(edx, Operand(ebp, kStartIndex));
+      __ sub(ecx, Operand(ebp, kInputStart));
+      if (mode_ == UC16) {
+        __ lea(ecx, Operand(ecx, edx, times_2, 0));
+      } else {
+        __ add(ecx, edx);
+      }
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ mov(eax, register_location(i));
+        if (i == 0 && global_with_zero_length_check()) {
+          // Keep capture start in edx for the zero-length check later.
+          __ mov(edx, eax);
+        }
+        // Convert to index from start of string, not end.
+        __ add(eax, ecx);
+        if (mode_ == UC16) {
+          __ sar(eax, 1);  // Convert byte index to character index.
+        }
+        __ mov(Operand(ebx, i * kPointerSize), eax);
+      }
+    }
+
+    if (global()) {
+      // Restart matching if the regular expression is flagged as global.
+      // Increment success counter.
+      __ inc(Operand(ebp, kSuccessfulCaptures));
+      // Capture results have been stored, so the number of remaining global
+      // output registers is reduced by the number of stored captures.
+      __ mov(ecx, Operand(ebp, kNumOutputRegisters));
+      __ sub(ecx, Immediate(num_saved_registers_));
+      // Check whether we have enough room for another set of capture results.
+      __ cmp(ecx, Immediate(num_saved_registers_));
+      __ j(less, &exit_label_);
+
+      __ mov(Operand(ebp, kNumOutputRegisters), ecx);
+      // Advance the location for output.
+      __ add(Operand(ebp, kRegisterOutput),
+             Immediate(num_saved_registers_ * kPointerSize));
+
+      // Prepare eax to initialize registers with its value in the next run.
+      __ mov(eax, Operand(ebp, kStringStartMinusOne));
+
+      if (global_with_zero_length_check()) {
+        // Special case for zero-length matches.
+        // edx: capture start index
+        __ cmp(edi, edx);
+        // Not a zero-length match, restart.
+        __ j(not_equal, &load_char_start_regexp);
+        // edi (offset from the end) is zero if we already reached the end.
+        __ test(edi, edi);
+        __ j(zero, &exit_label_, Label::kNear);
+        // Advance current position after a zero-length match.
+        if (mode_ == UC16) {
+          __ add(edi, Immediate(2));
+        } else {
+          __ inc(edi);
+        }
+      }
+
+      __ jmp(&load_char_start_regexp);
+    } else {
+      __ mov(eax, Immediate(SUCCESS));
+    }
+  }
+
+  __ bind(&exit_label_);
+  if (global()) {
+    // Return the number of successful captures.
+    __ mov(eax, Operand(ebp, kSuccessfulCaptures));
+  }
+
+  __ bind(&return_eax);
+  // Skip esp past regexp registers.
+  __ lea(esp, Operand(ebp, kBackup_ebx));
+  // Restore callee-save registers.
+  __ pop(ebx);
+  __ pop(edi);
+  __ pop(esi);
+  // Exit function frame, restore previous one.
+  __ pop(ebp);
+  __ ret(0);
+
+  // Backtrack code (branch target for conditional backtracks).
+  if (backtrack_label_.is_linked()) {
+    __ bind(&backtrack_label_);
+    Backtrack();
+  }
+
+  Label exit_with_exception;
+
+  // Preempt-code
+  if (check_preempt_label_.is_linked()) {
+    SafeCallTarget(&check_preempt_label_);
+
+    __ push(backtrack_stackpointer());
+    __ push(edi);
+
+    CallCheckStackGuardState(ebx);
+    __ or_(eax, eax);
+    // If returning non-zero, we should end execution with the given
+    // result as return value.
+    __ j(not_zero, &return_eax);
+
+    __ pop(edi);
+    __ pop(backtrack_stackpointer());
+    // String might have moved: Reload esi from frame.
+    __ mov(esi, Operand(ebp, kInputEnd));
+    SafeReturn();
+  }
+
+  // Backtrack stack overflow code.
+  if (stack_overflow_label_.is_linked()) {
+    SafeCallTarget(&stack_overflow_label_);
+    // Reached if the backtrack-stack limit has been hit.
+
+    Label grow_failed;
+    // Save registers before calling C function
+    __ push(esi);
+    __ push(edi);
+
+    // Call GrowStack(backtrack_stackpointer())
+    static const int num_arguments = 3;
+    __ PrepareCallCFunction(num_arguments, ebx);
+    __ mov(Operand(esp, 2 * kPointerSize),
+           Immediate(ExternalReference::isolate_address(isolate())));
+    __ lea(eax, Operand(ebp, kStackHighEnd));
+    __ mov(Operand(esp, 1 * kPointerSize), eax);
+    __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
+    ExternalReference grow_stack =
+        ExternalReference::re_grow_stack(isolate());
+    __ CallCFunction(grow_stack, num_arguments);
+    // If return NULL, we have failed to grow the stack, and
+    // must exit with a stack-overflow exception.
+    __ or_(eax, eax);
+    __ j(equal, &exit_with_exception);
+    // Otherwise use return value as new stack pointer.
+    __ mov(backtrack_stackpointer(), eax);
+    // Restore saved registers and continue.
+    __ pop(edi);
+    __ pop(esi);
+    SafeReturn();
+  }
+
+  if (exit_with_exception.is_linked()) {
+    // If any of the code above needed to exit with an exception.
+    __ bind(&exit_with_exception);
+    // Exit with Result EXCEPTION(-1) to signal thrown exception.
+    __ mov(eax, EXCEPTION);
+    __ jmp(&return_eax);
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code =
+      isolate()->factory()->NewCode(code_desc,
+                                    Code::ComputeFlags(Code::REGEXP),
+                                    masm_->CodeObject());
+  PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerIA32::GoTo(Label* to) {
+  BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterGE(int reg,
+                                            int comparand,
+                                            Label* if_ge) {
+  __ cmp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterLT(int reg,
+                                            int comparand,
+                                            Label* if_lt) {
+  __ cmp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterEqPos(int reg,
+                                               Label* if_eq) {
+  __ cmp(edi, register_location(reg));
+  BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerIA32::Implementation() {
+  return kIA32Implementation;
+}
+
+
+void RegExpMacroAssemblerIA32::LoadCurrentCharacter(int cp_offset,
+                                                    Label* on_end_of_input,
+                                                    bool check_bounds,
+                                                    int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerIA32::PopCurrentPosition() {
+  Pop(edi);
+}
+
+
+void RegExpMacroAssemblerIA32::PopRegister(int register_index) {
+  Pop(eax);
+  __ mov(register_location(register_index), eax);
+}
+
+
+void RegExpMacroAssemblerIA32::PushBacktrack(Label* label) {
+  Push(Immediate::CodeRelativeOffset(label));
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerIA32::PushCurrentPosition() {
+  Push(edi);
+}
+
+
+void RegExpMacroAssemblerIA32::PushRegister(int register_index,
+                                            StackCheckFlag check_stack_limit) {
+  __ mov(eax, register_location(register_index));
+  Push(eax);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerIA32::ReadCurrentPositionFromRegister(int reg) {
+  __ mov(edi, register_location(reg));
+}
+
+
+void RegExpMacroAssemblerIA32::ReadStackPointerFromRegister(int reg) {
+  __ mov(backtrack_stackpointer(), register_location(reg));
+  __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+}
+
+void RegExpMacroAssemblerIA32::SetCurrentPositionFromEnd(int by)  {
+  Label after_position;
+  __ cmp(edi, -by * char_size());
+  __ j(greater_equal, &after_position, Label::kNear);
+  __ mov(edi, -by * char_size());
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerIA32::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ mov(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerIA32::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerIA32::WriteCurrentPositionToRegister(int reg,
+                                                              int cp_offset) {
+  if (cp_offset == 0) {
+    __ mov(register_location(reg), edi);
+  } else {
+    __ lea(eax, Operand(edi, cp_offset * char_size()));
+    __ mov(register_location(reg), eax);
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ mov(eax, Operand(ebp, kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ mov(register_location(reg), eax);
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::WriteStackPointerToRegister(int reg) {
+  __ mov(eax, backtrack_stackpointer());
+  __ sub(eax, Operand(ebp, kStackHighEnd));
+  __ mov(register_location(reg), eax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerIA32::CallCheckStackGuardState(Register scratch) {
+  static const int num_arguments = 3;
+  __ PrepareCallCFunction(num_arguments, scratch);
+  // RegExp code frame pointer.
+  __ mov(Operand(esp, 2 * kPointerSize), ebp);
+  // Code* of self.
+  __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
+  // Next address on the stack (will be address of return address).
+  __ lea(eax, Operand(esp, -kPointerSize));
+  __ mov(Operand(esp, 0 * kPointerSize), eax);
+  ExternalReference check_stack_guard =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ CallCFunction(check_stack_guard, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address,
+                                                   Code* re_code,
+                                                   Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<int>(re_frame, kStartIndex),
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerIA32::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return Operand(ebp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckPosition(int cp_offset,
+                                             Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    __ cmp(edi, -cp_offset * char_size());
+    BranchOrBacktrack(greater_equal, on_outside_input);
+  } else {
+    __ lea(eax, Operand(edi, cp_offset * char_size()));
+    __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+    BranchOrBacktrack(less_equal, on_outside_input);
+  }
+}
+
+
+void RegExpMacroAssemblerIA32::BranchOrBacktrack(Condition condition,
+                                                 Label* to) {
+  if (condition < 0) {  // No condition
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ j(condition, &backtrack_label_);
+    return;
+  }
+  __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeCall(Label* to) {
+  Label return_to;
+  __ push(Immediate::CodeRelativeOffset(&return_to));
+  __ jmp(to);
+  __ bind(&return_to);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeReturn() {
+  __ pop(ebx);
+  __ add(ebx, Immediate(masm_->CodeObject()));
+  __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeCallTarget(Label* name) {
+  __ bind(name);
+}
+
+
+void RegExpMacroAssemblerIA32::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  // Notice: This updates flags, unlike normal Push.
+  __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+  __ mov(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerIA32::Push(Immediate value) {
+  // Notice: This updates flags, unlike normal Push.
+  __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+  __ mov(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerIA32::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ mov(target, Operand(backtrack_stackpointer(), 0));
+  // Notice: This updates flags, unlike normal Pop.
+  __ add(backtrack_stackpointer(), Immediate(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerIA32::CheckPreemption() {
+  // Check for preemption.
+  Label no_preempt;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ cmp(esp, Operand::StaticVariable(stack_limit));
+  __ j(above, &no_preempt);
+
+  SafeCall(&check_preempt_label_);
+
+  __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckStackLimit() {
+  Label no_stack_overflow;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
+  __ j(above, &no_stack_overflow);
+
+  SafeCall(&stack_overflow_label_);
+
+  __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                             int characters) {
+  if (mode_ == LATIN1) {
+    if (characters == 4) {
+      __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
+    } else if (characters == 2) {
+      __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
+    } else {
+      DCHECK(characters == 1);
+      __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    if (characters == 2) {
+      __ mov(current_character(),
+             Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+    } else {
+      DCHECK(characters == 1);
+      __ movzx_w(current_character(),
+                 Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+    }
+  }
+}
+
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_IA32
diff --git a/src/regexp/ia32/regexp-macro-assembler-ia32.h b/src/regexp/ia32/regexp-macro-assembler-ia32.h
new file mode 100644
index 0000000..1ef87ee
--- /dev/null
+++ b/src/regexp/ia32/regexp-macro-assembler-ia32.h
@@ -0,0 +1,204 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
+#define V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
+
+#include "src/ia32/assembler-ia32.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerIA32: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone, Mode mode,
+                           int registers_to_save);
+  virtual ~RegExpMacroAssemblerIA32();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(uint32_t c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(uint32_t c,
+                                      uint32_t mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(uint32_t c,
+                                         uint32_t mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from ebp of function parameters and stored registers.
+  static const int kFramePointer = 0;
+  // Above the frame pointer - function parameters and return address.
+  static const int kReturn_eip = kFramePointer + kPointerSize;
+  static const int kFrameAlign = kReturn_eip + kPointerSize;
+  // Parameters.
+  static const int kInputString = kFrameAlign;
+  static const int kStartIndex = kInputString + kPointerSize;
+  static const int kInputStart = kStartIndex + kPointerSize;
+  static const int kInputEnd = kInputStart + kPointerSize;
+  static const int kRegisterOutput = kInputEnd + kPointerSize;
+  // For the case of global regular expression, we have room to store at least
+  // one set of capture results.  For the case of non-global regexp, we ignore
+  // this value.
+  static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+  static const int kDirectCall = kStackHighEnd + kPointerSize;
+  static const int kIsolate = kDirectCall + kPointerSize;
+  // Below the frame pointer - local stack variables.
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kBackup_esi = kFramePointer - kPointerSize;
+  static const int kBackup_edi = kBackup_esi - kPointerSize;
+  static const int kBackup_ebx = kBackup_edi - kPointerSize;
+  static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  Operand register_location(int register_index);
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return edx; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return ecx; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer (ecx) by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
+  // by a word size and stores the value there.
+  inline void Push(Immediate value);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // (ecx) and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (LATIN1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+};
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
diff --git a/src/regexp/interpreter-irregexp.cc b/src/regexp/interpreter-irregexp.cc
new file mode 100644
index 0000000..ea748e4
--- /dev/null
+++ b/src/regexp/interpreter-irregexp.cc
@@ -0,0 +1,621 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// A simple interpreter for the Irregexp byte code.
+
+#include "src/regexp/interpreter-irregexp.h"
+
+#include "src/ast/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/unicode.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+
+typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize;
+
+static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
+                                 int from,
+                                 int current,
+                                 int len,
+                                 Vector<const uc16> subject) {
+  for (int i = 0; i < len; i++) {
+    unibrow::uchar old_char = subject[from++];
+    unibrow::uchar new_char = subject[current++];
+    if (old_char == new_char) continue;
+    unibrow::uchar old_string[1] = { old_char };
+    unibrow::uchar new_string[1] = { new_char };
+    interp_canonicalize->get(old_char, '\0', old_string);
+    interp_canonicalize->get(new_char, '\0', new_string);
+    if (old_string[0] != new_string[0]) {
+      return false;
+    }
+  }
+  return true;
+}
+
+
+static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
+                                 int from,
+                                 int current,
+                                 int len,
+                                 Vector<const uint8_t> subject) {
+  for (int i = 0; i < len; i++) {
+    unsigned int old_char = subject[from++];
+    unsigned int new_char = subject[current++];
+    if (old_char == new_char) continue;
+    // Convert both characters to lower case.
+    old_char |= 0x20;
+    new_char |= 0x20;
+    if (old_char != new_char) return false;
+    // Not letters in the ASCII range and Latin-1 range.
+    if (!(old_char - 'a' <= 'z' - 'a') &&
+        !(old_char - 224 <= 254 - 224 && old_char != 247)) {
+      return false;
+    }
+  }
+  return true;
+}
+
+
+#ifdef DEBUG
+static void TraceInterpreter(const byte* code_base,
+                             const byte* pc,
+                             int stack_depth,
+                             int current_position,
+                             uint32_t current_char,
+                             int bytecode_length,
+                             const char* bytecode_name) {
+  if (FLAG_trace_regexp_bytecodes) {
+    bool printable = (current_char < 127 && current_char >= 32);
+    const char* format =
+        printable ?
+        "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" :
+        "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
+    PrintF(format,
+           pc - code_base,
+           stack_depth,
+           current_position,
+           current_char,
+           printable ? current_char : '.',
+           bytecode_name);
+    for (int i = 0; i < bytecode_length; i++) {
+      printf(", %02x", pc[i]);
+    }
+    printf(" ");
+    for (int i = 1; i < bytecode_length; i++) {
+      unsigned char b = pc[i];
+      if (b < 127 && b >= 32) {
+        printf("%c", b);
+      } else {
+        printf(".");
+      }
+    }
+    printf("\n");
+  }
+}
+
+
+#define BYTECODE(name)                                                      \
+  case BC_##name:                                                           \
+    TraceInterpreter(code_base,                                             \
+                     pc,                                                    \
+                     static_cast<int>(backtrack_sp - backtrack_stack_base), \
+                     current,                                               \
+                     current_char,                                          \
+                     BC_##name##_LENGTH,                                    \
+                     #name);
+#else
+#define BYTECODE(name)                                                      \
+  case BC_##name:
+#endif
+
+
+static int32_t Load32Aligned(const byte* pc) {
+  DCHECK((reinterpret_cast<intptr_t>(pc) & 3) == 0);
+  return *reinterpret_cast<const int32_t *>(pc);
+}
+
+
+static int32_t Load16Aligned(const byte* pc) {
+  DCHECK((reinterpret_cast<intptr_t>(pc) & 1) == 0);
+  return *reinterpret_cast<const uint16_t *>(pc);
+}
+
+
+// A simple abstraction over the backtracking stack used by the interpreter.
+// This backtracking stack does not grow automatically, but it ensures that the
+// the memory held by the stack is released or remembered in a cache if the
+// matching terminates.
+class BacktrackStack {
+ public:
+  BacktrackStack() { data_ = NewArray<int>(kBacktrackStackSize); }
+
+  ~BacktrackStack() {
+    DeleteArray(data_);
+  }
+
+  int* data() const { return data_; }
+
+  int max_size() const { return kBacktrackStackSize; }
+
+ private:
+  static const int kBacktrackStackSize = 10000;
+
+  int* data_;
+
+  DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
+};
+
+
+template <typename Char>
+static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate,
+                                           const byte* code_base,
+                                           Vector<const Char> subject,
+                                           int* registers,
+                                           int current,
+                                           uint32_t current_char) {
+  const byte* pc = code_base;
+  // BacktrackStack ensures that the memory allocated for the backtracking stack
+  // is returned to the system or cached if there is no stack being cached at
+  // the moment.
+  BacktrackStack backtrack_stack;
+  int* backtrack_stack_base = backtrack_stack.data();
+  int* backtrack_sp = backtrack_stack_base;
+  int backtrack_stack_space = backtrack_stack.max_size();
+#ifdef DEBUG
+  if (FLAG_trace_regexp_bytecodes) {
+    PrintF("\n\nStart bytecode interpreter\n\n");
+  }
+#endif
+  while (true) {
+    int32_t insn = Load32Aligned(pc);
+    switch (insn & BYTECODE_MASK) {
+      BYTECODE(BREAK)
+        UNREACHABLE();
+        return RegExpImpl::RE_FAILURE;
+      BYTECODE(PUSH_CP)
+        if (--backtrack_stack_space < 0) {
+          return RegExpImpl::RE_EXCEPTION;
+        }
+        *backtrack_sp++ = current;
+        pc += BC_PUSH_CP_LENGTH;
+        break;
+      BYTECODE(PUSH_BT)
+        if (--backtrack_stack_space < 0) {
+          return RegExpImpl::RE_EXCEPTION;
+        }
+        *backtrack_sp++ = Load32Aligned(pc + 4);
+        pc += BC_PUSH_BT_LENGTH;
+        break;
+      BYTECODE(PUSH_REGISTER)
+        if (--backtrack_stack_space < 0) {
+          return RegExpImpl::RE_EXCEPTION;
+        }
+        *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
+        pc += BC_PUSH_REGISTER_LENGTH;
+        break;
+      BYTECODE(SET_REGISTER)
+        registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
+        pc += BC_SET_REGISTER_LENGTH;
+        break;
+      BYTECODE(ADVANCE_REGISTER)
+        registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
+        pc += BC_ADVANCE_REGISTER_LENGTH;
+        break;
+      BYTECODE(SET_REGISTER_TO_CP)
+        registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
+        pc += BC_SET_REGISTER_TO_CP_LENGTH;
+        break;
+      BYTECODE(SET_CP_TO_REGISTER)
+        current = registers[insn >> BYTECODE_SHIFT];
+        pc += BC_SET_CP_TO_REGISTER_LENGTH;
+        break;
+      BYTECODE(SET_REGISTER_TO_SP)
+        registers[insn >> BYTECODE_SHIFT] =
+            static_cast<int>(backtrack_sp - backtrack_stack_base);
+        pc += BC_SET_REGISTER_TO_SP_LENGTH;
+        break;
+      BYTECODE(SET_SP_TO_REGISTER)
+        backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
+        backtrack_stack_space = backtrack_stack.max_size() -
+            static_cast<int>(backtrack_sp - backtrack_stack_base);
+        pc += BC_SET_SP_TO_REGISTER_LENGTH;
+        break;
+      BYTECODE(POP_CP)
+        backtrack_stack_space++;
+        --backtrack_sp;
+        current = *backtrack_sp;
+        pc += BC_POP_CP_LENGTH;
+        break;
+      BYTECODE(POP_BT)
+        backtrack_stack_space++;
+        --backtrack_sp;
+        pc = code_base + *backtrack_sp;
+        break;
+      BYTECODE(POP_REGISTER)
+        backtrack_stack_space++;
+        --backtrack_sp;
+        registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
+        pc += BC_POP_REGISTER_LENGTH;
+        break;
+      BYTECODE(FAIL)
+        return RegExpImpl::RE_FAILURE;
+      BYTECODE(SUCCEED)
+        return RegExpImpl::RE_SUCCESS;
+      BYTECODE(ADVANCE_CP)
+        current += insn >> BYTECODE_SHIFT;
+        pc += BC_ADVANCE_CP_LENGTH;
+        break;
+      BYTECODE(GOTO)
+        pc = code_base + Load32Aligned(pc + 4);
+        break;
+      BYTECODE(ADVANCE_CP_AND_GOTO)
+        current += insn >> BYTECODE_SHIFT;
+        pc = code_base + Load32Aligned(pc + 4);
+        break;
+      BYTECODE(CHECK_GREEDY)
+        if (current == backtrack_sp[-1]) {
+          backtrack_sp--;
+          backtrack_stack_space++;
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_GREEDY_LENGTH;
+        }
+        break;
+      BYTECODE(LOAD_CURRENT_CHAR) {
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        if (pos >= subject.length() || pos < 0) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          current_char = subject[pos];
+          pc += BC_LOAD_CURRENT_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        current_char = subject[pos];
+        pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
+        break;
+      }
+      BYTECODE(LOAD_2_CURRENT_CHARS) {
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        if (pos + 2 > subject.length() || pos < 0) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          Char next = subject[pos + 1];
+          current_char =
+              (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
+          pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        Char next = subject[pos + 1];
+        current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
+        pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
+        break;
+      }
+      BYTECODE(LOAD_4_CURRENT_CHARS) {
+        DCHECK(sizeof(Char) == 1);
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        if (pos + 4 > subject.length() || pos < 0) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          Char next1 = subject[pos + 1];
+          Char next2 = subject[pos + 2];
+          Char next3 = subject[pos + 3];
+          current_char = (subject[pos] |
+                          (next1 << 8) |
+                          (next2 << 16) |
+                          (next3 << 24));
+          pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
+        DCHECK(sizeof(Char) == 1);
+        int pos = current + (insn >> BYTECODE_SHIFT);
+        Char next1 = subject[pos + 1];
+        Char next2 = subject[pos + 2];
+        Char next3 = subject[pos + 3];
+        current_char = (subject[pos] |
+                        (next1 << 8) |
+                        (next2 << 16) |
+                        (next3 << 24));
+        pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
+        break;
+      }
+      BYTECODE(CHECK_4_CHARS) {
+        uint32_t c = Load32Aligned(pc + 4);
+        if (c == current_char) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_4_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_CHAR) {
+        uint32_t c = (insn >> BYTECODE_SHIFT);
+        if (c == current_char) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_NOT_4_CHARS) {
+        uint32_t c = Load32Aligned(pc + 4);
+        if (c != current_char) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_NOT_4_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_NOT_CHAR) {
+        uint32_t c = (insn >> BYTECODE_SHIFT);
+        if (c != current_char) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_NOT_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(AND_CHECK_4_CHARS) {
+        uint32_t c = Load32Aligned(pc + 4);
+        if (c == (current_char & Load32Aligned(pc + 8))) {
+          pc = code_base + Load32Aligned(pc + 12);
+        } else {
+          pc += BC_AND_CHECK_4_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(AND_CHECK_CHAR) {
+        uint32_t c = (insn >> BYTECODE_SHIFT);
+        if (c == (current_char & Load32Aligned(pc + 4))) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_AND_CHECK_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(AND_CHECK_NOT_4_CHARS) {
+        uint32_t c = Load32Aligned(pc + 4);
+        if (c != (current_char & Load32Aligned(pc + 8))) {
+          pc = code_base + Load32Aligned(pc + 12);
+        } else {
+          pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(AND_CHECK_NOT_CHAR) {
+        uint32_t c = (insn >> BYTECODE_SHIFT);
+        if (c != (current_char & Load32Aligned(pc + 4))) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
+        uint32_t c = (insn >> BYTECODE_SHIFT);
+        uint32_t minus = Load16Aligned(pc + 4);
+        uint32_t mask = Load16Aligned(pc + 6);
+        if (c != ((current_char - minus) & mask)) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_CHAR_IN_RANGE) {
+        uint32_t from = Load16Aligned(pc + 4);
+        uint32_t to = Load16Aligned(pc + 6);
+        if (from <= current_char && current_char <= to) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
+        uint32_t from = Load16Aligned(pc + 4);
+        uint32_t to = Load16Aligned(pc + 6);
+        if (from > current_char || current_char > to) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_BIT_IN_TABLE) {
+        int mask = RegExpMacroAssembler::kTableMask;
+        byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
+        int bit = (current_char & (kBitsPerByte - 1));
+        if ((b & (1 << bit)) != 0) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_LT) {
+        uint32_t limit = (insn >> BYTECODE_SHIFT);
+        if (current_char < limit) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_LT_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_GT) {
+        uint32_t limit = (insn >> BYTECODE_SHIFT);
+        if (current_char > limit) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_GT_LENGTH;
+        }
+        break;
+      }
+      BYTECODE(CHECK_REGISTER_LT)
+        if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_REGISTER_LT_LENGTH;
+        }
+        break;
+      BYTECODE(CHECK_REGISTER_GE)
+        if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
+          pc = code_base + Load32Aligned(pc + 8);
+        } else {
+          pc += BC_CHECK_REGISTER_GE_LENGTH;
+        }
+        break;
+      BYTECODE(CHECK_REGISTER_EQ_POS)
+        if (registers[insn >> BYTECODE_SHIFT] == current) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
+        }
+        break;
+      BYTECODE(CHECK_NOT_REGS_EQUAL)
+        if (registers[insn >> BYTECODE_SHIFT] ==
+            registers[Load32Aligned(pc + 4)]) {
+          pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
+        } else {
+          pc = code_base + Load32Aligned(pc + 8);
+        }
+        break;
+      BYTECODE(CHECK_NOT_BACK_REF) {
+        int from = registers[insn >> BYTECODE_SHIFT];
+        int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+        if (from >= 0 && len > 0) {
+          if (current + len > subject.length() ||
+              CompareChars(&subject[from], &subject[current], len) != 0) {
+            pc = code_base + Load32Aligned(pc + 4);
+            break;
+          }
+          current += len;
+        }
+        pc += BC_CHECK_NOT_BACK_REF_LENGTH;
+        break;
+      }
+      BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
+        int from = registers[insn >> BYTECODE_SHIFT];
+        int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+        if (from >= 0 && len > 0) {
+          if (current - len < 0 ||
+              CompareChars(&subject[from], &subject[current - len], len) != 0) {
+            pc = code_base + Load32Aligned(pc + 4);
+            break;
+          }
+          current -= len;
+        }
+        pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
+        break;
+      }
+      BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
+        int from = registers[insn >> BYTECODE_SHIFT];
+        int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+        if (from >= 0 && len > 0) {
+          if (current + len > subject.length() ||
+              !BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(),
+                                    from, current, len, subject)) {
+            pc = code_base + Load32Aligned(pc + 4);
+            break;
+          }
+          current += len;
+        }
+        pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
+        break;
+      }
+      BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
+        int from = registers[insn >> BYTECODE_SHIFT];
+        int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+        if (from >= 0 && len > 0) {
+          if (current - len < 0 ||
+              !BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(),
+                                    from, current - len, len, subject)) {
+            pc = code_base + Load32Aligned(pc + 4);
+            break;
+          }
+          current -= len;
+        }
+        pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
+        break;
+      }
+      BYTECODE(CHECK_AT_START)
+        if (current == 0) {
+          pc = code_base + Load32Aligned(pc + 4);
+        } else {
+          pc += BC_CHECK_AT_START_LENGTH;
+        }
+        break;
+      BYTECODE(CHECK_NOT_AT_START)
+        if (current + (insn >> BYTECODE_SHIFT) == 0) {
+          pc += BC_CHECK_NOT_AT_START_LENGTH;
+        } else {
+          pc = code_base + Load32Aligned(pc + 4);
+        }
+        break;
+      BYTECODE(SET_CURRENT_POSITION_FROM_END) {
+        int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
+        if (subject.length() - current > by) {
+          current = subject.length() - by;
+          current_char = subject[current - 1];
+        }
+        pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
+        break;
+      }
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+
+RegExpImpl::IrregexpResult IrregexpInterpreter::Match(
+    Isolate* isolate,
+    Handle<ByteArray> code_array,
+    Handle<String> subject,
+    int* registers,
+    int start_position) {
+  DCHECK(subject->IsFlat());
+
+  DisallowHeapAllocation no_gc;
+  const byte* code_base = code_array->GetDataStartAddress();
+  uc16 previous_char = '\n';
+  String::FlatContent subject_content = subject->GetFlatContent();
+  if (subject_content.IsOneByte()) {
+    Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
+    if (start_position != 0) previous_char = subject_vector[start_position - 1];
+    return RawMatch(isolate,
+                    code_base,
+                    subject_vector,
+                    registers,
+                    start_position,
+                    previous_char);
+  } else {
+    DCHECK(subject_content.IsTwoByte());
+    Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
+    if (start_position != 0) previous_char = subject_vector[start_position - 1];
+    return RawMatch(isolate,
+                    code_base,
+                    subject_vector,
+                    registers,
+                    start_position,
+                    previous_char);
+  }
+}
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/interpreter-irregexp.h b/src/regexp/interpreter-irregexp.h
new file mode 100644
index 0000000..244af99
--- /dev/null
+++ b/src/regexp/interpreter-irregexp.h
@@ -0,0 +1,29 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// A simple interpreter for the Irregexp byte code.
+
+#ifndef V8_REGEXP_INTERPRETER_IRREGEXP_H_
+#define V8_REGEXP_INTERPRETER_IRREGEXP_H_
+
+#include "src/regexp/jsregexp.h"
+
+namespace v8 {
+namespace internal {
+
+
+class IrregexpInterpreter {
+ public:
+  static RegExpImpl::IrregexpResult Match(Isolate* isolate,
+                                          Handle<ByteArray> code,
+                                          Handle<String> subject,
+                                          int* captures,
+                                          int start_position);
+};
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_INTERPRETER_IRREGEXP_H_
diff --git a/src/regexp/jsregexp-inl.h b/src/regexp/jsregexp-inl.h
new file mode 100644
index 0000000..3eb7c3c
--- /dev/null
+++ b/src/regexp/jsregexp-inl.h
@@ -0,0 +1,84 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#ifndef V8_REGEXP_JSREGEXP_INL_H_
+#define V8_REGEXP_JSREGEXP_INL_H_
+
+#include "src/allocation.h"
+#include "src/handles.h"
+#include "src/heap/heap.h"
+#include "src/objects.h"
+#include "src/regexp/jsregexp.h"
+
+namespace v8 {
+namespace internal {
+
+
+RegExpImpl::GlobalCache::~GlobalCache() {
+  // Deallocate the register array if we allocated it in the constructor
+  // (as opposed to using the existing jsregexp_static_offsets_vector).
+  if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+    DeleteArray(register_array_);
+  }
+}
+
+
+int32_t* RegExpImpl::GlobalCache::FetchNext() {
+  current_match_index_++;
+  if (current_match_index_ >= num_matches_) {
+    // Current batch of results exhausted.
+    // Fail if last batch was not even fully filled.
+    if (num_matches_ < max_matches_) {
+      num_matches_ = 0;  // Signal failed match.
+      return NULL;
+    }
+
+    int32_t* last_match =
+        &register_array_[(current_match_index_ - 1) * registers_per_match_];
+    int last_end_index = last_match[1];
+
+    if (regexp_->TypeTag() == JSRegExp::ATOM) {
+      num_matches_ = RegExpImpl::AtomExecRaw(regexp_,
+                                             subject_,
+                                             last_end_index,
+                                             register_array_,
+                                             register_array_size_);
+    } else {
+      int last_start_index = last_match[0];
+      if (last_start_index == last_end_index) last_end_index++;
+      if (last_end_index > subject_->length()) {
+        num_matches_ = 0;  // Signal failed match.
+        return NULL;
+      }
+      num_matches_ = RegExpImpl::IrregexpExecRaw(regexp_,
+                                                 subject_,
+                                                 last_end_index,
+                                                 register_array_,
+                                                 register_array_size_);
+    }
+
+    if (num_matches_ <= 0) return NULL;
+    current_match_index_ = 0;
+    return register_array_;
+  } else {
+    return &register_array_[current_match_index_ * registers_per_match_];
+  }
+}
+
+
+int32_t* RegExpImpl::GlobalCache::LastSuccessfulMatch() {
+  int index = current_match_index_ * registers_per_match_;
+  if (num_matches_ == 0) {
+    // After a failed match we shift back by one result.
+    index -= registers_per_match_;
+  }
+  return &register_array_[index];
+}
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_JSREGEXP_INL_H_
diff --git a/src/regexp/jsregexp.cc b/src/regexp/jsregexp.cc
new file mode 100644
index 0000000..34d20fe
--- /dev/null
+++ b/src/regexp/jsregexp.cc
@@ -0,0 +1,6509 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/jsregexp.h"
+
+#include "src/ast/ast.h"
+#include "src/base/platform/platform.h"
+#include "src/compilation-cache.h"
+#include "src/compiler.h"
+#include "src/execution.h"
+#include "src/factory.h"
+#include "src/isolate-inl.h"
+#include "src/messages.h"
+#include "src/ostreams.h"
+#include "src/regexp/interpreter-irregexp.h"
+#include "src/regexp/jsregexp-inl.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler-irregexp.h"
+#include "src/regexp/regexp-macro-assembler-tracer.h"
+#include "src/regexp/regexp-parser.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/runtime/runtime.h"
+#include "src/splay-tree-inl.h"
+#include "src/string-search.h"
+#include "src/unicode-decoder.h"
+
+#ifndef V8_INTERPRETED_REGEXP
+#if V8_TARGET_ARCH_IA32
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
+#elif V8_TARGET_ARCH_X64
+#include "src/regexp/x64/regexp-macro-assembler-x64.h"
+#elif V8_TARGET_ARCH_ARM64
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
+#elif V8_TARGET_ARCH_ARM
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
+#elif V8_TARGET_ARCH_PPC
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
+#elif V8_TARGET_ARCH_MIPS
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
+#elif V8_TARGET_ARCH_MIPS64
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
+#else
+#error Unsupported target architecture.
+#endif
+#endif
+
+
+namespace v8 {
+namespace internal {
+
+MUST_USE_RESULT
+static inline MaybeHandle<Object> ThrowRegExpException(
+    Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
+  Isolate* isolate = re->GetIsolate();
+  THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
+                                          pattern, error_text),
+                  Object);
+}
+
+
+inline void ThrowRegExpException(Handle<JSRegExp> re,
+                                 Handle<String> error_text) {
+  USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
+}
+
+
+ContainedInLattice AddRange(ContainedInLattice containment,
+                            const int* ranges,
+                            int ranges_length,
+                            Interval new_range) {
+  DCHECK((ranges_length & 1) == 1);
+  DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
+  if (containment == kLatticeUnknown) return containment;
+  bool inside = false;
+  int last = 0;
+  for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
+    // Consider the range from last to ranges[i].
+    // We haven't got to the new range yet.
+    if (ranges[i] <= new_range.from()) continue;
+    // New range is wholly inside last-ranges[i].  Note that new_range.to() is
+    // inclusive, but the values in ranges are not.
+    if (last <= new_range.from() && new_range.to() < ranges[i]) {
+      return Combine(containment, inside ? kLatticeIn : kLatticeOut);
+    }
+    return kLatticeUnknown;
+  }
+  return containment;
+}
+
+
+// More makes code generation slower, less makes V8 benchmark score lower.
+const int kMaxLookaheadForBoyerMoore = 8;
+// In a 3-character pattern you can maximally step forwards 3 characters
+// at a time, which is not always enough to pay for the extra logic.
+const int kPatternTooShortForBoyerMoore = 2;
+
+
+// Identifies the sort of regexps where the regexp engine is faster
+// than the code used for atom matches.
+static bool HasFewDifferentCharacters(Handle<String> pattern) {
+  int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
+  if (length <= kPatternTooShortForBoyerMoore) return false;
+  const int kMod = 128;
+  bool character_found[kMod];
+  int different = 0;
+  memset(&character_found[0], 0, sizeof(character_found));
+  for (int i = 0; i < length; i++) {
+    int ch = (pattern->Get(i) & (kMod - 1));
+    if (!character_found[ch]) {
+      character_found[ch] = true;
+      different++;
+      // We declare a regexp low-alphabet if it has at least 3 times as many
+      // characters as it has different characters.
+      if (different * 3 > length) return false;
+    }
+  }
+  return true;
+}
+
+
+// Generic RegExp methods. Dispatches to implementation specific methods.
+
+
+MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
+                                        Handle<String> pattern,
+                                        JSRegExp::Flags flags) {
+  Isolate* isolate = re->GetIsolate();
+  Zone zone;
+  CompilationCache* compilation_cache = isolate->compilation_cache();
+  MaybeHandle<FixedArray> maybe_cached =
+      compilation_cache->LookupRegExp(pattern, flags);
+  Handle<FixedArray> cached;
+  bool in_cache = maybe_cached.ToHandle(&cached);
+  LOG(isolate, RegExpCompileEvent(re, in_cache));
+
+  Handle<Object> result;
+  if (in_cache) {
+    re->set_data(*cached);
+    return re;
+  }
+  pattern = String::Flatten(pattern);
+  PostponeInterruptsScope postpone(isolate);
+  RegExpCompileData parse_result;
+  FlatStringReader reader(isolate, pattern);
+  if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader,
+                                 flags & JSRegExp::kMultiline,
+                                 flags & JSRegExp::kUnicode, &parse_result)) {
+    // Throw an exception if we fail to parse the pattern.
+    return ThrowRegExpException(re, pattern, parse_result.error);
+  }
+
+  bool has_been_compiled = false;
+
+  if (parse_result.simple && !(flags & JSRegExp::kIgnoreCase) &&
+      !(flags & JSRegExp::kSticky) && !HasFewDifferentCharacters(pattern)) {
+    // Parse-tree is a single atom that is equal to the pattern.
+    AtomCompile(re, pattern, flags, pattern);
+    has_been_compiled = true;
+  } else if (parse_result.tree->IsAtom() && !(flags & JSRegExp::kIgnoreCase) &&
+             !(flags & JSRegExp::kSticky) && parse_result.capture_count == 0) {
+    RegExpAtom* atom = parse_result.tree->AsAtom();
+    Vector<const uc16> atom_pattern = atom->data();
+    Handle<String> atom_string;
+    ASSIGN_RETURN_ON_EXCEPTION(
+        isolate, atom_string,
+        isolate->factory()->NewStringFromTwoByte(atom_pattern),
+        Object);
+    if (!HasFewDifferentCharacters(atom_string)) {
+      AtomCompile(re, pattern, flags, atom_string);
+      has_been_compiled = true;
+    }
+  }
+  if (!has_been_compiled) {
+    IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
+  }
+  DCHECK(re->data()->IsFixedArray());
+  // Compilation succeeded so the data is set on the regexp
+  // and we can store it in the cache.
+  Handle<FixedArray> data(FixedArray::cast(re->data()));
+  compilation_cache->PutRegExp(pattern, flags, data);
+
+  return re;
+}
+
+
+MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
+                                     Handle<String> subject,
+                                     int index,
+                                     Handle<JSArray> last_match_info) {
+  switch (regexp->TypeTag()) {
+    case JSRegExp::ATOM:
+      return AtomExec(regexp, subject, index, last_match_info);
+    case JSRegExp::IRREGEXP: {
+      return IrregexpExec(regexp, subject, index, last_match_info);
+    }
+    default:
+      UNREACHABLE();
+      return MaybeHandle<Object>();
+  }
+}
+
+
+// RegExp Atom implementation: Simple string search using indexOf.
+
+
+void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
+                             Handle<String> pattern,
+                             JSRegExp::Flags flags,
+                             Handle<String> match_pattern) {
+  re->GetIsolate()->factory()->SetRegExpAtomData(re,
+                                                 JSRegExp::ATOM,
+                                                 pattern,
+                                                 flags,
+                                                 match_pattern);
+}
+
+
+static void SetAtomLastCapture(FixedArray* array,
+                               String* subject,
+                               int from,
+                               int to) {
+  SealHandleScope shs(array->GetIsolate());
+  RegExpImpl::SetLastCaptureCount(array, 2);
+  RegExpImpl::SetLastSubject(array, subject);
+  RegExpImpl::SetLastInput(array, subject);
+  RegExpImpl::SetCapture(array, 0, from);
+  RegExpImpl::SetCapture(array, 1, to);
+}
+
+
+int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
+                            Handle<String> subject,
+                            int index,
+                            int32_t* output,
+                            int output_size) {
+  Isolate* isolate = regexp->GetIsolate();
+
+  DCHECK(0 <= index);
+  DCHECK(index <= subject->length());
+
+  subject = String::Flatten(subject);
+  DisallowHeapAllocation no_gc;  // ensure vectors stay valid
+
+  String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
+  int needle_len = needle->length();
+  DCHECK(needle->IsFlat());
+  DCHECK_LT(0, needle_len);
+
+  if (index + needle_len > subject->length()) {
+    return RegExpImpl::RE_FAILURE;
+  }
+
+  for (int i = 0; i < output_size; i += 2) {
+    String::FlatContent needle_content = needle->GetFlatContent();
+    String::FlatContent subject_content = subject->GetFlatContent();
+    DCHECK(needle_content.IsFlat());
+    DCHECK(subject_content.IsFlat());
+    // dispatch on type of strings
+    index =
+        (needle_content.IsOneByte()
+             ? (subject_content.IsOneByte()
+                    ? SearchString(isolate, subject_content.ToOneByteVector(),
+                                   needle_content.ToOneByteVector(), index)
+                    : SearchString(isolate, subject_content.ToUC16Vector(),
+                                   needle_content.ToOneByteVector(), index))
+             : (subject_content.IsOneByte()
+                    ? SearchString(isolate, subject_content.ToOneByteVector(),
+                                   needle_content.ToUC16Vector(), index)
+                    : SearchString(isolate, subject_content.ToUC16Vector(),
+                                   needle_content.ToUC16Vector(), index)));
+    if (index == -1) {
+      return i / 2;  // Return number of matches.
+    } else {
+      output[i] = index;
+      output[i+1] = index + needle_len;
+      index += needle_len;
+    }
+  }
+  return output_size / 2;
+}
+
+
+Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
+                                    Handle<String> subject,
+                                    int index,
+                                    Handle<JSArray> last_match_info) {
+  Isolate* isolate = re->GetIsolate();
+
+  static const int kNumRegisters = 2;
+  STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
+  int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
+
+  int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
+
+  if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
+
+  DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
+  SealHandleScope shs(isolate);
+  FixedArray* array = FixedArray::cast(last_match_info->elements());
+  SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
+  return last_match_info;
+}
+
+
+// Irregexp implementation.
+
+// Ensures that the regexp object contains a compiled version of the
+// source for either one-byte or two-byte subject strings.
+// If the compiled version doesn't already exist, it is compiled
+// from the source pattern.
+// If compilation fails, an exception is thrown and this function
+// returns false.
+bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
+                                        Handle<String> sample_subject,
+                                        bool is_one_byte) {
+  Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
+#ifdef V8_INTERPRETED_REGEXP
+  if (compiled_code->IsByteArray()) return true;
+#else  // V8_INTERPRETED_REGEXP (RegExp native code)
+  if (compiled_code->IsCode()) return true;
+#endif
+  // We could potentially have marked this as flushable, but have kept
+  // a saved version if we did not flush it yet.
+  Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
+  if (saved_code->IsCode()) {
+    // Reinstate the code in the original place.
+    re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
+    DCHECK(compiled_code->IsSmi());
+    return true;
+  }
+  return CompileIrregexp(re, sample_subject, is_one_byte);
+}
+
+
+bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
+                                 Handle<String> sample_subject,
+                                 bool is_one_byte) {
+  // Compile the RegExp.
+  Isolate* isolate = re->GetIsolate();
+  Zone zone;
+  PostponeInterruptsScope postpone(isolate);
+  // If we had a compilation error the last time this is saved at the
+  // saved code index.
+  Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
+  // When arriving here entry can only be a smi, either representing an
+  // uncompiled regexp, a previous compilation error, or code that has
+  // been flushed.
+  DCHECK(entry->IsSmi());
+  int entry_value = Smi::cast(entry)->value();
+  DCHECK(entry_value == JSRegExp::kUninitializedValue ||
+         entry_value == JSRegExp::kCompilationErrorValue ||
+         (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
+
+  if (entry_value == JSRegExp::kCompilationErrorValue) {
+    // A previous compilation failed and threw an error which we store in
+    // the saved code index (we store the error message, not the actual
+    // error). Recreate the error object and throw it.
+    Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
+    DCHECK(error_string->IsString());
+    Handle<String> error_message(String::cast(error_string));
+    ThrowRegExpException(re, error_message);
+    return false;
+  }
+
+  JSRegExp::Flags flags = re->GetFlags();
+
+  Handle<String> pattern(re->Pattern());
+  pattern = String::Flatten(pattern);
+  RegExpCompileData compile_data;
+  FlatStringReader reader(isolate, pattern);
+  if (!RegExpParser::ParseRegExp(isolate, &zone, &reader,
+                                 flags & JSRegExp::kMultiline,
+                                 flags & JSRegExp::kUnicode, &compile_data)) {
+    // Throw an exception if we fail to parse the pattern.
+    // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
+    USE(ThrowRegExpException(re, pattern, compile_data.error));
+    return false;
+  }
+  RegExpEngine::CompilationResult result = RegExpEngine::Compile(
+      isolate, &zone, &compile_data, flags & JSRegExp::kIgnoreCase,
+      flags & JSRegExp::kGlobal, flags & JSRegExp::kMultiline,
+      flags & JSRegExp::kSticky, pattern, sample_subject, is_one_byte);
+  if (result.error_message != NULL) {
+    // Unable to compile regexp.
+    Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
+        CStrVector(result.error_message)).ToHandleChecked();
+    ThrowRegExpException(re, error_message);
+    return false;
+  }
+
+  Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
+  data->set(JSRegExp::code_index(is_one_byte), result.code);
+  int register_max = IrregexpMaxRegisterCount(*data);
+  if (result.num_registers > register_max) {
+    SetIrregexpMaxRegisterCount(*data, result.num_registers);
+  }
+
+  return true;
+}
+
+
+int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
+  return Smi::cast(
+      re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
+  re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
+}
+
+
+int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
+  return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
+}
+
+
+int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
+  return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
+  return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
+}
+
+
+Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
+  return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
+}
+
+
+void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
+                                    Handle<String> pattern,
+                                    JSRegExp::Flags flags,
+                                    int capture_count) {
+  // Initialize compiled code entries to null.
+  re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
+                                                     JSRegExp::IRREGEXP,
+                                                     pattern,
+                                                     flags,
+                                                     capture_count);
+}
+
+
+int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
+                                Handle<String> subject) {
+  subject = String::Flatten(subject);
+
+  // Check representation of the underlying storage.
+  bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
+  if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
+
+#ifdef V8_INTERPRETED_REGEXP
+  // Byte-code regexp needs space allocated for all its registers.
+  // The result captures are copied to the start of the registers array
+  // if the match succeeds.  This way those registers are not clobbered
+  // when we set the last match info from last successful match.
+  return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
+         (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
+#else  // V8_INTERPRETED_REGEXP
+  // Native regexp only needs room to output captures. Registers are handled
+  // internally.
+  return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
+#endif  // V8_INTERPRETED_REGEXP
+}
+
+
+int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
+                                Handle<String> subject,
+                                int index,
+                                int32_t* output,
+                                int output_size) {
+  Isolate* isolate = regexp->GetIsolate();
+
+  Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
+
+  DCHECK(index >= 0);
+  DCHECK(index <= subject->length());
+  DCHECK(subject->IsFlat());
+
+  bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
+
+#ifndef V8_INTERPRETED_REGEXP
+  DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
+  do {
+    EnsureCompiledIrregexp(regexp, subject, is_one_byte);
+    Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
+    // The stack is used to allocate registers for the compiled regexp code.
+    // This means that in case of failure, the output registers array is left
+    // untouched and contains the capture results from the previous successful
+    // match.  We can use that to set the last match info lazily.
+    NativeRegExpMacroAssembler::Result res =
+        NativeRegExpMacroAssembler::Match(code,
+                                          subject,
+                                          output,
+                                          output_size,
+                                          index,
+                                          isolate);
+    if (res != NativeRegExpMacroAssembler::RETRY) {
+      DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
+             isolate->has_pending_exception());
+      STATIC_ASSERT(
+          static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
+      STATIC_ASSERT(
+          static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
+      STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
+                    == RE_EXCEPTION);
+      return static_cast<IrregexpResult>(res);
+    }
+    // If result is RETRY, the string has changed representation, and we
+    // must restart from scratch.
+    // In this case, it means we must make sure we are prepared to handle
+    // the, potentially, different subject (the string can switch between
+    // being internal and external, and even between being Latin1 and UC16,
+    // but the characters are always the same).
+    IrregexpPrepare(regexp, subject);
+    is_one_byte = subject->IsOneByteRepresentationUnderneath();
+  } while (true);
+  UNREACHABLE();
+  return RE_EXCEPTION;
+#else  // V8_INTERPRETED_REGEXP
+
+  DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
+  // We must have done EnsureCompiledIrregexp, so we can get the number of
+  // registers.
+  int number_of_capture_registers =
+      (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
+  int32_t* raw_output = &output[number_of_capture_registers];
+  // We do not touch the actual capture result registers until we know there
+  // has been a match so that we can use those capture results to set the
+  // last match info.
+  for (int i = number_of_capture_registers - 1; i >= 0; i--) {
+    raw_output[i] = -1;
+  }
+  Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
+                               isolate);
+
+  IrregexpResult result = IrregexpInterpreter::Match(isolate,
+                                                     byte_codes,
+                                                     subject,
+                                                     raw_output,
+                                                     index);
+  if (result == RE_SUCCESS) {
+    // Copy capture results to the start of the registers array.
+    MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
+  }
+  if (result == RE_EXCEPTION) {
+    DCHECK(!isolate->has_pending_exception());
+    isolate->StackOverflow();
+  }
+  return result;
+#endif  // V8_INTERPRETED_REGEXP
+}
+
+
+MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
+                                             Handle<String> subject,
+                                             int previous_index,
+                                             Handle<JSArray> last_match_info) {
+  Isolate* isolate = regexp->GetIsolate();
+  DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
+
+  // Prepare space for the return values.
+#if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
+  if (FLAG_trace_regexp_bytecodes) {
+    String* pattern = regexp->Pattern();
+    PrintF("\n\nRegexp match:   /%s/\n\n", pattern->ToCString().get());
+    PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
+  }
+#endif
+  int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
+  if (required_registers < 0) {
+    // Compiling failed with an exception.
+    DCHECK(isolate->has_pending_exception());
+    return MaybeHandle<Object>();
+  }
+
+  int32_t* output_registers = NULL;
+  if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+    output_registers = NewArray<int32_t>(required_registers);
+  }
+  base::SmartArrayPointer<int32_t> auto_release(output_registers);
+  if (output_registers == NULL) {
+    output_registers = isolate->jsregexp_static_offsets_vector();
+  }
+
+  int res = RegExpImpl::IrregexpExecRaw(
+      regexp, subject, previous_index, output_registers, required_registers);
+  if (res == RE_SUCCESS) {
+    int capture_count =
+        IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
+    return SetLastMatchInfo(
+        last_match_info, subject, capture_count, output_registers);
+  }
+  if (res == RE_EXCEPTION) {
+    DCHECK(isolate->has_pending_exception());
+    return MaybeHandle<Object>();
+  }
+  DCHECK(res == RE_FAILURE);
+  return isolate->factory()->null_value();
+}
+
+
+static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) {
+  if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) {
+    JSArray::SetLength(array, minimum_size);
+  }
+}
+
+
+Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
+                                             Handle<String> subject,
+                                             int capture_count,
+                                             int32_t* match) {
+  DCHECK(last_match_info->HasFastObjectElements());
+  int capture_register_count = (capture_count + 1) * 2;
+  EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead);
+  DisallowHeapAllocation no_allocation;
+  FixedArray* array = FixedArray::cast(last_match_info->elements());
+  if (match != NULL) {
+    for (int i = 0; i < capture_register_count; i += 2) {
+      SetCapture(array, i, match[i]);
+      SetCapture(array, i + 1, match[i + 1]);
+    }
+  }
+  SetLastCaptureCount(array, capture_register_count);
+  SetLastSubject(array, *subject);
+  SetLastInput(array, *subject);
+  return last_match_info;
+}
+
+
+RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
+                                     Handle<String> subject,
+                                     bool is_global,
+                                     Isolate* isolate)
+  : register_array_(NULL),
+    register_array_size_(0),
+    regexp_(regexp),
+    subject_(subject) {
+#ifdef V8_INTERPRETED_REGEXP
+  bool interpreted = true;
+#else
+  bool interpreted = false;
+#endif  // V8_INTERPRETED_REGEXP
+
+  if (regexp_->TypeTag() == JSRegExp::ATOM) {
+    static const int kAtomRegistersPerMatch = 2;
+    registers_per_match_ = kAtomRegistersPerMatch;
+    // There is no distinction between interpreted and native for atom regexps.
+    interpreted = false;
+  } else {
+    registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
+    if (registers_per_match_ < 0) {
+      num_matches_ = -1;  // Signal exception.
+      return;
+    }
+  }
+
+  if (is_global && !interpreted) {
+    register_array_size_ =
+        Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
+    max_matches_ = register_array_size_ / registers_per_match_;
+  } else {
+    // Global loop in interpreted regexp is not implemented.  We choose
+    // the size of the offsets vector so that it can only store one match.
+    register_array_size_ = registers_per_match_;
+    max_matches_ = 1;
+  }
+
+  if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+    register_array_ = NewArray<int32_t>(register_array_size_);
+  } else {
+    register_array_ = isolate->jsregexp_static_offsets_vector();
+  }
+
+  // Set state so that fetching the results the first time triggers a call
+  // to the compiled regexp.
+  current_match_index_ = max_matches_ - 1;
+  num_matches_ = max_matches_;
+  DCHECK(registers_per_match_ >= 2);  // Each match has at least one capture.
+  DCHECK_GE(register_array_size_, registers_per_match_);
+  int32_t* last_match =
+      &register_array_[current_match_index_ * registers_per_match_];
+  last_match[0] = -1;
+  last_match[1] = 0;
+}
+
+
+// -------------------------------------------------------------------
+// Implementation of the Irregexp regular expression engine.
+//
+// The Irregexp regular expression engine is intended to be a complete
+// implementation of ECMAScript regular expressions.  It generates either
+// bytecodes or native code.
+
+//   The Irregexp regexp engine is structured in three steps.
+//   1) The parser generates an abstract syntax tree.  See ast.cc.
+//   2) From the AST a node network is created.  The nodes are all
+//      subclasses of RegExpNode.  The nodes represent states when
+//      executing a regular expression.  Several optimizations are
+//      performed on the node network.
+//   3) From the nodes we generate either byte codes or native code
+//      that can actually execute the regular expression (perform
+//      the search).  The code generation step is described in more
+//      detail below.
+
+// Code generation.
+//
+//   The nodes are divided into four main categories.
+//   * Choice nodes
+//        These represent places where the regular expression can
+//        match in more than one way.  For example on entry to an
+//        alternation (foo|bar) or a repetition (*, +, ? or {}).
+//   * Action nodes
+//        These represent places where some action should be
+//        performed.  Examples include recording the current position
+//        in the input string to a register (in order to implement
+//        captures) or other actions on register for example in order
+//        to implement the counters needed for {} repetitions.
+//   * Matching nodes
+//        These attempt to match some element part of the input string.
+//        Examples of elements include character classes, plain strings
+//        or back references.
+//   * End nodes
+//        These are used to implement the actions required on finding
+//        a successful match or failing to find a match.
+//
+//   The code generated (whether as byte codes or native code) maintains
+//   some state as it runs.  This consists of the following elements:
+//
+//   * The capture registers.  Used for string captures.
+//   * Other registers.  Used for counters etc.
+//   * The current position.
+//   * The stack of backtracking information.  Used when a matching node
+//     fails to find a match and needs to try an alternative.
+//
+// Conceptual regular expression execution model:
+//
+//   There is a simple conceptual model of regular expression execution
+//   which will be presented first.  The actual code generated is a more
+//   efficient simulation of the simple conceptual model:
+//
+//   * Choice nodes are implemented as follows:
+//     For each choice except the last {
+//       push current position
+//       push backtrack code location
+//       <generate code to test for choice>
+//       backtrack code location:
+//       pop current position
+//     }
+//     <generate code to test for last choice>
+//
+//   * Actions nodes are generated as follows
+//     <push affected registers on backtrack stack>
+//     <generate code to perform action>
+//     push backtrack code location
+//     <generate code to test for following nodes>
+//     backtrack code location:
+//     <pop affected registers to restore their state>
+//     <pop backtrack location from stack and go to it>
+//
+//   * Matching nodes are generated as follows:
+//     if input string matches at current position
+//       update current position
+//       <generate code to test for following nodes>
+//     else
+//       <pop backtrack location from stack and go to it>
+//
+//   Thus it can be seen that the current position is saved and restored
+//   by the choice nodes, whereas the registers are saved and restored by
+//   by the action nodes that manipulate them.
+//
+//   The other interesting aspect of this model is that nodes are generated
+//   at the point where they are needed by a recursive call to Emit().  If
+//   the node has already been code generated then the Emit() call will
+//   generate a jump to the previously generated code instead.  In order to
+//   limit recursion it is possible for the Emit() function to put the node
+//   on a work list for later generation and instead generate a jump.  The
+//   destination of the jump is resolved later when the code is generated.
+//
+// Actual regular expression code generation.
+//
+//   Code generation is actually more complicated than the above.  In order
+//   to improve the efficiency of the generated code some optimizations are
+//   performed
+//
+//   * Choice nodes have 1-character lookahead.
+//     A choice node looks at the following character and eliminates some of
+//     the choices immediately based on that character.  This is not yet
+//     implemented.
+//   * Simple greedy loops store reduced backtracking information.
+//     A quantifier like /.*foo/m will greedily match the whole input.  It will
+//     then need to backtrack to a point where it can match "foo".  The naive
+//     implementation of this would push each character position onto the
+//     backtracking stack, then pop them off one by one.  This would use space
+//     proportional to the length of the input string.  However since the "."
+//     can only match in one way and always has a constant length (in this case
+//     of 1) it suffices to store the current position on the top of the stack
+//     once.  Matching now becomes merely incrementing the current position and
+//     backtracking becomes decrementing the current position and checking the
+//     result against the stored current position.  This is faster and saves
+//     space.
+//   * The current state is virtualized.
+//     This is used to defer expensive operations until it is clear that they
+//     are needed and to generate code for a node more than once, allowing
+//     specialized an efficient versions of the code to be created. This is
+//     explained in the section below.
+//
+// Execution state virtualization.
+//
+//   Instead of emitting code, nodes that manipulate the state can record their
+//   manipulation in an object called the Trace.  The Trace object can record a
+//   current position offset, an optional backtrack code location on the top of
+//   the virtualized backtrack stack and some register changes.  When a node is
+//   to be emitted it can flush the Trace or update it.  Flushing the Trace
+//   will emit code to bring the actual state into line with the virtual state.
+//   Avoiding flushing the state can postpone some work (e.g. updates of capture
+//   registers).  Postponing work can save time when executing the regular
+//   expression since it may be found that the work never has to be done as a
+//   failure to match can occur.  In addition it is much faster to jump to a
+//   known backtrack code location than it is to pop an unknown backtrack
+//   location from the stack and jump there.
+//
+//   The virtual state found in the Trace affects code generation.  For example
+//   the virtual state contains the difference between the actual current
+//   position and the virtual current position, and matching code needs to use
+//   this offset to attempt a match in the correct location of the input
+//   string.  Therefore code generated for a non-trivial trace is specialized
+//   to that trace.  The code generator therefore has the ability to generate
+//   code for each node several times.  In order to limit the size of the
+//   generated code there is an arbitrary limit on how many specialized sets of
+//   code may be generated for a given node.  If the limit is reached, the
+//   trace is flushed and a generic version of the code for a node is emitted.
+//   This is subsequently used for that node.  The code emitted for non-generic
+//   trace is not recorded in the node and so it cannot currently be reused in
+//   the event that code generation is requested for an identical trace.
+
+
+void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
+  UNREACHABLE();
+}
+
+
+void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
+  text->AddElement(TextElement::Atom(this), zone);
+}
+
+
+void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
+  text->AddElement(TextElement::CharClass(this), zone);
+}
+
+
+void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
+  for (int i = 0; i < elements()->length(); i++)
+    text->AddElement(elements()->at(i), zone);
+}
+
+
+TextElement TextElement::Atom(RegExpAtom* atom) {
+  return TextElement(ATOM, atom);
+}
+
+
+TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
+  return TextElement(CHAR_CLASS, char_class);
+}
+
+
+int TextElement::length() const {
+  switch (text_type()) {
+    case ATOM:
+      return atom()->length();
+
+    case CHAR_CLASS:
+      return 1;
+  }
+  UNREACHABLE();
+  return 0;
+}
+
+
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
+  if (table_ == NULL) {
+    table_ = new(zone()) DispatchTable(zone());
+    DispatchTableConstructor cons(table_, ignore_case, zone());
+    cons.BuildTable(this);
+  }
+  return table_;
+}
+
+
+class FrequencyCollator {
+ public:
+  FrequencyCollator() : total_samples_(0) {
+    for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+      frequencies_[i] = CharacterFrequency(i);
+    }
+  }
+
+  void CountCharacter(int character) {
+    int index = (character & RegExpMacroAssembler::kTableMask);
+    frequencies_[index].Increment();
+    total_samples_++;
+  }
+
+  // Does not measure in percent, but rather per-128 (the table size from the
+  // regexp macro assembler).
+  int Frequency(int in_character) {
+    DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+    if (total_samples_ < 1) return 1;  // Division by zero.
+    int freq_in_per128 =
+        (frequencies_[in_character].counter() * 128) / total_samples_;
+    return freq_in_per128;
+  }
+
+ private:
+  class CharacterFrequency {
+   public:
+    CharacterFrequency() : counter_(0), character_(-1) { }
+    explicit CharacterFrequency(int character)
+        : counter_(0), character_(character) { }
+
+    void Increment() { counter_++; }
+    int counter() { return counter_; }
+    int character() { return character_; }
+
+   private:
+    int counter_;
+    int character_;
+  };
+
+
+ private:
+  CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
+  int total_samples_;
+};
+
+
+class RegExpCompiler {
+ public:
+  RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
+                 bool ignore_case, bool is_one_byte);
+
+  int AllocateRegister() {
+    if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
+      reg_exp_too_big_ = true;
+      return next_register_;
+    }
+    return next_register_++;
+  }
+
+  RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+                                           RegExpNode* start,
+                                           int capture_count,
+                                           Handle<String> pattern);
+
+  inline void AddWork(RegExpNode* node) {
+    if (!node->on_work_list() && !node->label()->is_bound()) {
+      node->set_on_work_list(true);
+      work_list_->Add(node);
+    }
+  }
+
+  static const int kImplementationOffset = 0;
+  static const int kNumberOfRegistersOffset = 0;
+  static const int kCodeOffset = 1;
+
+  RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+  EndNode* accept() { return accept_; }
+
+  static const int kMaxRecursion = 100;
+  inline int recursion_depth() { return recursion_depth_; }
+  inline void IncrementRecursionDepth() { recursion_depth_++; }
+  inline void DecrementRecursionDepth() { recursion_depth_--; }
+
+  void SetRegExpTooBig() { reg_exp_too_big_ = true; }
+
+  inline bool ignore_case() { return ignore_case_; }
+  inline bool one_byte() { return one_byte_; }
+  inline bool optimize() { return optimize_; }
+  inline void set_optimize(bool value) { optimize_ = value; }
+  inline bool limiting_recursion() { return limiting_recursion_; }
+  inline void set_limiting_recursion(bool value) {
+    limiting_recursion_ = value;
+  }
+  bool read_backward() { return read_backward_; }
+  void set_read_backward(bool value) { read_backward_ = value; }
+  FrequencyCollator* frequency_collator() { return &frequency_collator_; }
+
+  int current_expansion_factor() { return current_expansion_factor_; }
+  void set_current_expansion_factor(int value) {
+    current_expansion_factor_ = value;
+  }
+
+  Isolate* isolate() const { return isolate_; }
+  Zone* zone() const { return zone_; }
+
+  static const int kNoRegister = -1;
+
+ private:
+  EndNode* accept_;
+  int next_register_;
+  List<RegExpNode*>* work_list_;
+  int recursion_depth_;
+  RegExpMacroAssembler* macro_assembler_;
+  bool ignore_case_;
+  bool one_byte_;
+  bool reg_exp_too_big_;
+  bool limiting_recursion_;
+  bool optimize_;
+  bool read_backward_;
+  int current_expansion_factor_;
+  FrequencyCollator frequency_collator_;
+  Isolate* isolate_;
+  Zone* zone_;
+};
+
+
+class RecursionCheck {
+ public:
+  explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
+    compiler->IncrementRecursionDepth();
+  }
+  ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
+ private:
+  RegExpCompiler* compiler_;
+};
+
+
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
+  return RegExpEngine::CompilationResult(isolate, "RegExp too big");
+}
+
+
+// Attempts to compile the regexp using an Irregexp code generator.  Returns
+// a fixed array or a null handle depending on whether it succeeded.
+RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
+                               bool ignore_case, bool one_byte)
+    : next_register_(2 * (capture_count + 1)),
+      work_list_(NULL),
+      recursion_depth_(0),
+      ignore_case_(ignore_case),
+      one_byte_(one_byte),
+      reg_exp_too_big_(false),
+      limiting_recursion_(false),
+      optimize_(FLAG_regexp_optimization),
+      read_backward_(false),
+      current_expansion_factor_(1),
+      frequency_collator_(),
+      isolate_(isolate),
+      zone_(zone) {
+  accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
+  DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
+}
+
+
+RegExpEngine::CompilationResult RegExpCompiler::Assemble(
+    RegExpMacroAssembler* macro_assembler,
+    RegExpNode* start,
+    int capture_count,
+    Handle<String> pattern) {
+  Heap* heap = pattern->GetHeap();
+
+#ifdef DEBUG
+  if (FLAG_trace_regexp_assembler)
+    macro_assembler_ =
+        new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
+  else
+#endif
+    macro_assembler_ = macro_assembler;
+
+  List <RegExpNode*> work_list(0);
+  work_list_ = &work_list;
+  Label fail;
+  macro_assembler_->PushBacktrack(&fail);
+  Trace new_trace;
+  start->Emit(this, &new_trace);
+  macro_assembler_->Bind(&fail);
+  macro_assembler_->Fail();
+  while (!work_list.is_empty()) {
+    RegExpNode* node = work_list.RemoveLast();
+    node->set_on_work_list(false);
+    if (!node->label()->is_bound()) node->Emit(this, &new_trace);
+  }
+  if (reg_exp_too_big_) {
+    macro_assembler_->AbortedCodeGeneration();
+    return IrregexpRegExpTooBig(isolate_);
+  }
+
+  Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
+  heap->IncreaseTotalRegexpCodeGenerated(code->Size());
+  work_list_ = NULL;
+#ifdef ENABLE_DISASSEMBLER
+  if (FLAG_print_code) {
+    CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
+    OFStream os(trace_scope.file());
+    Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
+  }
+#endif
+#ifdef DEBUG
+  if (FLAG_trace_regexp_assembler) {
+    delete macro_assembler_;
+  }
+#endif
+  return RegExpEngine::CompilationResult(*code, next_register_);
+}
+
+
+bool Trace::DeferredAction::Mentions(int that) {
+  if (action_type() == ActionNode::CLEAR_CAPTURES) {
+    Interval range = static_cast<DeferredClearCaptures*>(this)->range();
+    return range.Contains(that);
+  } else {
+    return reg() == that;
+  }
+}
+
+
+bool Trace::mentions_reg(int reg) {
+  for (DeferredAction* action = actions_;
+       action != NULL;
+       action = action->next()) {
+    if (action->Mentions(reg))
+      return true;
+  }
+  return false;
+}
+
+
+bool Trace::GetStoredPosition(int reg, int* cp_offset) {
+  DCHECK_EQ(0, *cp_offset);
+  for (DeferredAction* action = actions_;
+       action != NULL;
+       action = action->next()) {
+    if (action->Mentions(reg)) {
+      if (action->action_type() == ActionNode::STORE_POSITION) {
+        *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
+        return true;
+      } else {
+        return false;
+      }
+    }
+  }
+  return false;
+}
+
+
+int Trace::FindAffectedRegisters(OutSet* affected_registers,
+                                 Zone* zone) {
+  int max_register = RegExpCompiler::kNoRegister;
+  for (DeferredAction* action = actions_;
+       action != NULL;
+       action = action->next()) {
+    if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
+      Interval range = static_cast<DeferredClearCaptures*>(action)->range();
+      for (int i = range.from(); i <= range.to(); i++)
+        affected_registers->Set(i, zone);
+      if (range.to() > max_register) max_register = range.to();
+    } else {
+      affected_registers->Set(action->reg(), zone);
+      if (action->reg() > max_register) max_register = action->reg();
+    }
+  }
+  return max_register;
+}
+
+
+void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
+                                     int max_register,
+                                     const OutSet& registers_to_pop,
+                                     const OutSet& registers_to_clear) {
+  for (int reg = max_register; reg >= 0; reg--) {
+    if (registers_to_pop.Get(reg)) {
+      assembler->PopRegister(reg);
+    } else if (registers_to_clear.Get(reg)) {
+      int clear_to = reg;
+      while (reg > 0 && registers_to_clear.Get(reg - 1)) {
+        reg--;
+      }
+      assembler->ClearRegisters(reg, clear_to);
+    }
+  }
+}
+
+
+void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
+                                   int max_register,
+                                   const OutSet& affected_registers,
+                                   OutSet* registers_to_pop,
+                                   OutSet* registers_to_clear,
+                                   Zone* zone) {
+  // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+  const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+  // Count pushes performed to force a stack limit check occasionally.
+  int pushes = 0;
+
+  for (int reg = 0; reg <= max_register; reg++) {
+    if (!affected_registers.Get(reg)) {
+      continue;
+    }
+
+    // The chronologically first deferred action in the trace
+    // is used to infer the action needed to restore a register
+    // to its previous state (or not, if it's safe to ignore it).
+    enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
+    DeferredActionUndoType undo_action = IGNORE;
+
+    int value = 0;
+    bool absolute = false;
+    bool clear = false;
+    static const int kNoStore = kMinInt;
+    int store_position = kNoStore;
+    // This is a little tricky because we are scanning the actions in reverse
+    // historical order (newest first).
+    for (DeferredAction* action = actions_;
+         action != NULL;
+         action = action->next()) {
+      if (action->Mentions(reg)) {
+        switch (action->action_type()) {
+          case ActionNode::SET_REGISTER: {
+            Trace::DeferredSetRegister* psr =
+                static_cast<Trace::DeferredSetRegister*>(action);
+            if (!absolute) {
+              value += psr->value();
+              absolute = true;
+            }
+            // SET_REGISTER is currently only used for newly introduced loop
+            // counters. They can have a significant previous value if they
+            // occour in a loop. TODO(lrn): Propagate this information, so
+            // we can set undo_action to IGNORE if we know there is no value to
+            // restore.
+            undo_action = RESTORE;
+            DCHECK_EQ(store_position, kNoStore);
+            DCHECK(!clear);
+            break;
+          }
+          case ActionNode::INCREMENT_REGISTER:
+            if (!absolute) {
+              value++;
+            }
+            DCHECK_EQ(store_position, kNoStore);
+            DCHECK(!clear);
+            undo_action = RESTORE;
+            break;
+          case ActionNode::STORE_POSITION: {
+            Trace::DeferredCapture* pc =
+                static_cast<Trace::DeferredCapture*>(action);
+            if (!clear && store_position == kNoStore) {
+              store_position = pc->cp_offset();
+            }
+
+            // For captures we know that stores and clears alternate.
+            // Other register, are never cleared, and if the occur
+            // inside a loop, they might be assigned more than once.
+            if (reg <= 1) {
+              // Registers zero and one, aka "capture zero", is
+              // always set correctly if we succeed. There is no
+              // need to undo a setting on backtrack, because we
+              // will set it again or fail.
+              undo_action = IGNORE;
+            } else {
+              undo_action = pc->is_capture() ? CLEAR : RESTORE;
+            }
+            DCHECK(!absolute);
+            DCHECK_EQ(value, 0);
+            break;
+          }
+          case ActionNode::CLEAR_CAPTURES: {
+            // Since we're scanning in reverse order, if we've already
+            // set the position we have to ignore historically earlier
+            // clearing operations.
+            if (store_position == kNoStore) {
+              clear = true;
+            }
+            undo_action = RESTORE;
+            DCHECK(!absolute);
+            DCHECK_EQ(value, 0);
+            break;
+          }
+          default:
+            UNREACHABLE();
+            break;
+        }
+      }
+    }
+    // Prepare for the undo-action (e.g., push if it's going to be popped).
+    if (undo_action == RESTORE) {
+      pushes++;
+      RegExpMacroAssembler::StackCheckFlag stack_check =
+          RegExpMacroAssembler::kNoStackLimitCheck;
+      if (pushes == push_limit) {
+        stack_check = RegExpMacroAssembler::kCheckStackLimit;
+        pushes = 0;
+      }
+
+      assembler->PushRegister(reg, stack_check);
+      registers_to_pop->Set(reg, zone);
+    } else if (undo_action == CLEAR) {
+      registers_to_clear->Set(reg, zone);
+    }
+    // Perform the chronologically last action (or accumulated increment)
+    // for the register.
+    if (store_position != kNoStore) {
+      assembler->WriteCurrentPositionToRegister(reg, store_position);
+    } else if (clear) {
+      assembler->ClearRegisters(reg, reg);
+    } else if (absolute) {
+      assembler->SetRegister(reg, value);
+    } else if (value != 0) {
+      assembler->AdvanceRegister(reg, value);
+    }
+  }
+}
+
+
+// This is called as we come into a loop choice node and some other tricky
+// nodes.  It normalizes the state of the code generator to ensure we can
+// generate generic code.
+void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+  DCHECK(!is_trivial());
+
+  if (actions_ == NULL && backtrack() == NULL) {
+    // Here we just have some deferred cp advances to fix and we are back to
+    // a normal situation.  We may also have to forget some information gained
+    // through a quick check that was already performed.
+    if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
+    // Create a new trivial state and generate the node with that.
+    Trace new_state;
+    successor->Emit(compiler, &new_state);
+    return;
+  }
+
+  // Generate deferred actions here along with code to undo them again.
+  OutSet affected_registers;
+
+  if (backtrack() != NULL) {
+    // Here we have a concrete backtrack location.  These are set up by choice
+    // nodes and so they indicate that we have a deferred save of the current
+    // position which we may need to emit here.
+    assembler->PushCurrentPosition();
+  }
+
+  int max_register = FindAffectedRegisters(&affected_registers,
+                                           compiler->zone());
+  OutSet registers_to_pop;
+  OutSet registers_to_clear;
+  PerformDeferredActions(assembler,
+                         max_register,
+                         affected_registers,
+                         &registers_to_pop,
+                         &registers_to_clear,
+                         compiler->zone());
+  if (cp_offset_ != 0) {
+    assembler->AdvanceCurrentPosition(cp_offset_);
+  }
+
+  // Create a new trivial state and generate the node with that.
+  Label undo;
+  assembler->PushBacktrack(&undo);
+  if (successor->KeepRecursing(compiler)) {
+    Trace new_state;
+    successor->Emit(compiler, &new_state);
+  } else {
+    compiler->AddWork(successor);
+    assembler->GoTo(successor->label());
+  }
+
+  // On backtrack we need to restore state.
+  assembler->Bind(&undo);
+  RestoreAffectedRegisters(assembler,
+                           max_register,
+                           registers_to_pop,
+                           registers_to_clear);
+  if (backtrack() == NULL) {
+    assembler->Backtrack();
+  } else {
+    assembler->PopCurrentPosition();
+    assembler->GoTo(backtrack());
+  }
+}
+
+
+void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+  // Omit flushing the trace. We discard the entire stack frame anyway.
+
+  if (!label()->is_bound()) {
+    // We are completely independent of the trace, since we ignore it,
+    // so this code can be used as the generic version.
+    assembler->Bind(label());
+  }
+
+  // Throw away everything on the backtrack stack since the start
+  // of the negative submatch and restore the character position.
+  assembler->ReadCurrentPositionFromRegister(current_position_register_);
+  assembler->ReadStackPointerFromRegister(stack_pointer_register_);
+  if (clear_capture_count_ > 0) {
+    // Clear any captures that might have been performed during the success
+    // of the body of the negative look-ahead.
+    int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
+    assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
+  }
+  // Now that we have unwound the stack we find at the top of the stack the
+  // backtrack that the BeginSubmatch node got.
+  assembler->Backtrack();
+}
+
+
+void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  if (!trace->is_trivial()) {
+    trace->Flush(compiler, this);
+    return;
+  }
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  if (!label()->is_bound()) {
+    assembler->Bind(label());
+  }
+  switch (action_) {
+    case ACCEPT:
+      assembler->Succeed();
+      return;
+    case BACKTRACK:
+      assembler->GoTo(trace->backtrack());
+      return;
+    case NEGATIVE_SUBMATCH_SUCCESS:
+      // This case is handled in a different virtual method.
+      UNREACHABLE();
+  }
+  UNIMPLEMENTED();
+}
+
+
+void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
+  if (guards_ == NULL)
+    guards_ = new(zone) ZoneList<Guard*>(1, zone);
+  guards_->Add(guard, zone);
+}
+
+
+ActionNode* ActionNode::SetRegister(int reg,
+                                    int val,
+                                    RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
+  result->data_.u_store_register.reg = reg;
+  result->data_.u_store_register.value = val;
+  return result;
+}
+
+
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
+  result->data_.u_increment_register.reg = reg;
+  return result;
+}
+
+
+ActionNode* ActionNode::StorePosition(int reg,
+                                      bool is_capture,
+                                      RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
+  result->data_.u_position_register.reg = reg;
+  result->data_.u_position_register.is_capture = is_capture;
+  return result;
+}
+
+
+ActionNode* ActionNode::ClearCaptures(Interval range,
+                                      RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
+  result->data_.u_clear_captures.range_from = range.from();
+  result->data_.u_clear_captures.range_to = range.to();
+  return result;
+}
+
+
+ActionNode* ActionNode::BeginSubmatch(int stack_reg,
+                                      int position_reg,
+                                      RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
+  result->data_.u_submatch.stack_pointer_register = stack_reg;
+  result->data_.u_submatch.current_position_register = position_reg;
+  return result;
+}
+
+
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
+                                                int position_reg,
+                                                int clear_register_count,
+                                                int clear_register_from,
+                                                RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
+  result->data_.u_submatch.stack_pointer_register = stack_reg;
+  result->data_.u_submatch.current_position_register = position_reg;
+  result->data_.u_submatch.clear_register_count = clear_register_count;
+  result->data_.u_submatch.clear_register_from = clear_register_from;
+  return result;
+}
+
+
+ActionNode* ActionNode::EmptyMatchCheck(int start_register,
+                                        int repetition_register,
+                                        int repetition_limit,
+                                        RegExpNode* on_success) {
+  ActionNode* result =
+      new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
+  result->data_.u_empty_match_check.start_register = start_register;
+  result->data_.u_empty_match_check.repetition_register = repetition_register;
+  result->data_.u_empty_match_check.repetition_limit = repetition_limit;
+  return result;
+}
+
+
+#define DEFINE_ACCEPT(Type)                                          \
+  void Type##Node::Accept(NodeVisitor* visitor) {                    \
+    visitor->Visit##Type(this);                                      \
+  }
+FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
+#undef DEFINE_ACCEPT
+
+
+void LoopChoiceNode::Accept(NodeVisitor* visitor) {
+  visitor->VisitLoopChoice(this);
+}
+
+
+// -------------------------------------------------------------------
+// Emit code.
+
+
+void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
+                               Guard* guard,
+                               Trace* trace) {
+  switch (guard->op()) {
+    case Guard::LT:
+      DCHECK(!trace->mentions_reg(guard->reg()));
+      macro_assembler->IfRegisterGE(guard->reg(),
+                                    guard->value(),
+                                    trace->backtrack());
+      break;
+    case Guard::GEQ:
+      DCHECK(!trace->mentions_reg(guard->reg()));
+      macro_assembler->IfRegisterLT(guard->reg(),
+                                    guard->value(),
+                                    trace->backtrack());
+      break;
+  }
+}
+
+
+// Returns the number of characters in the equivalence class, omitting those
+// that cannot occur in the source string because it is Latin1.
+static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
+                                     bool one_byte_subject,
+                                     unibrow::uchar* letters) {
+  int length =
+      isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
+  // Unibrow returns 0 or 1 for characters where case independence is
+  // trivial.
+  if (length == 0) {
+    letters[0] = character;
+    length = 1;
+  }
+
+  if (one_byte_subject) {
+    int new_length = 0;
+    for (int i = 0; i < length; i++) {
+      if (letters[i] <= String::kMaxOneByteCharCode) {
+        letters[new_length++] = letters[i];
+      }
+    }
+    length = new_length;
+  }
+
+  return length;
+}
+
+
+static inline bool EmitSimpleCharacter(Isolate* isolate,
+                                       RegExpCompiler* compiler,
+                                       uc16 c,
+                                       Label* on_failure,
+                                       int cp_offset,
+                                       bool check,
+                                       bool preloaded) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  bool bound_checked = false;
+  if (!preloaded) {
+    assembler->LoadCurrentCharacter(
+        cp_offset,
+        on_failure,
+        check);
+    bound_checked = true;
+  }
+  assembler->CheckNotCharacter(c, on_failure);
+  return bound_checked;
+}
+
+
+// Only emits non-letters (things that don't have case).  Only used for case
+// independent matches.
+static inline bool EmitAtomNonLetter(Isolate* isolate,
+                                     RegExpCompiler* compiler,
+                                     uc16 c,
+                                     Label* on_failure,
+                                     int cp_offset,
+                                     bool check,
+                                     bool preloaded) {
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  bool one_byte = compiler->one_byte();
+  unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+  int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+  if (length < 1) {
+    // This can't match.  Must be an one-byte subject and a non-one-byte
+    // character.  We do not need to do anything since the one-byte pass
+    // already handled this.
+    return false;  // Bounds not checked.
+  }
+  bool checked = false;
+  // We handle the length > 1 case in a later pass.
+  if (length == 1) {
+    if (one_byte && c > String::kMaxOneByteCharCodeU) {
+      // Can't match - see above.
+      return false;  // Bounds not checked.
+    }
+    if (!preloaded) {
+      macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+      checked = check;
+    }
+    macro_assembler->CheckNotCharacter(c, on_failure);
+  }
+  return checked;
+}
+
+
+static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
+                                      bool one_byte, uc16 c1, uc16 c2,
+                                      Label* on_failure) {
+  uc16 char_mask;
+  if (one_byte) {
+    char_mask = String::kMaxOneByteCharCode;
+  } else {
+    char_mask = String::kMaxUtf16CodeUnit;
+  }
+  uc16 exor = c1 ^ c2;
+  // Check whether exor has only one bit set.
+  if (((exor - 1) & exor) == 0) {
+    // If c1 and c2 differ only by one bit.
+    // Ecma262UnCanonicalize always gives the highest number last.
+    DCHECK(c2 > c1);
+    uc16 mask = char_mask ^ exor;
+    macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
+    return true;
+  }
+  DCHECK(c2 > c1);
+  uc16 diff = c2 - c1;
+  if (((diff - 1) & diff) == 0 && c1 >= diff) {
+    // If the characters differ by 2^n but don't differ by one bit then
+    // subtract the difference from the found character, then do the or
+    // trick.  We avoid the theoretical case where negative numbers are
+    // involved in order to simplify code generation.
+    uc16 mask = char_mask ^ diff;
+    macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
+                                                    diff,
+                                                    mask,
+                                                    on_failure);
+    return true;
+  }
+  return false;
+}
+
+
+typedef bool EmitCharacterFunction(Isolate* isolate,
+                                   RegExpCompiler* compiler,
+                                   uc16 c,
+                                   Label* on_failure,
+                                   int cp_offset,
+                                   bool check,
+                                   bool preloaded);
+
+// Only emits letters (things that have case).  Only used for case independent
+// matches.
+static inline bool EmitAtomLetter(Isolate* isolate,
+                                  RegExpCompiler* compiler,
+                                  uc16 c,
+                                  Label* on_failure,
+                                  int cp_offset,
+                                  bool check,
+                                  bool preloaded) {
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  bool one_byte = compiler->one_byte();
+  unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+  int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+  if (length <= 1) return false;
+  // We may not need to check against the end of the input string
+  // if this character lies before a character that matched.
+  if (!preloaded) {
+    macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+  }
+  Label ok;
+  DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+  switch (length) {
+    case 2: {
+      if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
+                                    chars[1], on_failure)) {
+      } else {
+        macro_assembler->CheckCharacter(chars[0], &ok);
+        macro_assembler->CheckNotCharacter(chars[1], on_failure);
+        macro_assembler->Bind(&ok);
+      }
+      break;
+    }
+    case 4:
+      macro_assembler->CheckCharacter(chars[3], &ok);
+      // Fall through!
+    case 3:
+      macro_assembler->CheckCharacter(chars[0], &ok);
+      macro_assembler->CheckCharacter(chars[1], &ok);
+      macro_assembler->CheckNotCharacter(chars[2], on_failure);
+      macro_assembler->Bind(&ok);
+      break;
+    default:
+      UNREACHABLE();
+      break;
+  }
+  return true;
+}
+
+
+static void EmitBoundaryTest(RegExpMacroAssembler* masm,
+                             int border,
+                             Label* fall_through,
+                             Label* above_or_equal,
+                             Label* below) {
+  if (below != fall_through) {
+    masm->CheckCharacterLT(border, below);
+    if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
+  } else {
+    masm->CheckCharacterGT(border - 1, above_or_equal);
+  }
+}
+
+
+static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
+                                   int first,
+                                   int last,
+                                   Label* fall_through,
+                                   Label* in_range,
+                                   Label* out_of_range) {
+  if (in_range == fall_through) {
+    if (first == last) {
+      masm->CheckNotCharacter(first, out_of_range);
+    } else {
+      masm->CheckCharacterNotInRange(first, last, out_of_range);
+    }
+  } else {
+    if (first == last) {
+      masm->CheckCharacter(first, in_range);
+    } else {
+      masm->CheckCharacterInRange(first, last, in_range);
+    }
+    if (out_of_range != fall_through) masm->GoTo(out_of_range);
+  }
+}
+
+
+// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
+// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
+static void EmitUseLookupTable(
+    RegExpMacroAssembler* masm,
+    ZoneList<int>* ranges,
+    int start_index,
+    int end_index,
+    int min_char,
+    Label* fall_through,
+    Label* even_label,
+    Label* odd_label) {
+  static const int kSize = RegExpMacroAssembler::kTableSize;
+  static const int kMask = RegExpMacroAssembler::kTableMask;
+
+  int base = (min_char & ~kMask);
+  USE(base);
+
+  // Assert that everything is on one kTableSize page.
+  for (int i = start_index; i <= end_index; i++) {
+    DCHECK_EQ(ranges->at(i) & ~kMask, base);
+  }
+  DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
+
+  char templ[kSize];
+  Label* on_bit_set;
+  Label* on_bit_clear;
+  int bit;
+  if (even_label == fall_through) {
+    on_bit_set = odd_label;
+    on_bit_clear = even_label;
+    bit = 1;
+  } else {
+    on_bit_set = even_label;
+    on_bit_clear = odd_label;
+    bit = 0;
+  }
+  for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
+    templ[i] = bit;
+  }
+  int j = 0;
+  bit ^= 1;
+  for (int i = start_index; i < end_index; i++) {
+    for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
+      templ[j] = bit;
+    }
+    bit ^= 1;
+  }
+  for (int i = j; i < kSize; i++) {
+    templ[i] = bit;
+  }
+  Factory* factory = masm->isolate()->factory();
+  // TODO(erikcorry): Cache these.
+  Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
+  for (int i = 0; i < kSize; i++) {
+    ba->set(i, templ[i]);
+  }
+  masm->CheckBitInTable(ba, on_bit_set);
+  if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
+}
+
+
+static void CutOutRange(RegExpMacroAssembler* masm,
+                        ZoneList<int>* ranges,
+                        int start_index,
+                        int end_index,
+                        int cut_index,
+                        Label* even_label,
+                        Label* odd_label) {
+  bool odd = (((cut_index - start_index) & 1) == 1);
+  Label* in_range_label = odd ? odd_label : even_label;
+  Label dummy;
+  EmitDoubleBoundaryTest(masm,
+                         ranges->at(cut_index),
+                         ranges->at(cut_index + 1) - 1,
+                         &dummy,
+                         in_range_label,
+                         &dummy);
+  DCHECK(!dummy.is_linked());
+  // Cut out the single range by rewriting the array.  This creates a new
+  // range that is a merger of the two ranges on either side of the one we
+  // are cutting out.  The oddity of the labels is preserved.
+  for (int j = cut_index; j > start_index; j--) {
+    ranges->at(j) = ranges->at(j - 1);
+  }
+  for (int j = cut_index + 1; j < end_index; j++) {
+    ranges->at(j) = ranges->at(j + 1);
+  }
+}
+
+
+// Unicode case.  Split the search space into kSize spaces that are handled
+// with recursion.
+static void SplitSearchSpace(ZoneList<int>* ranges,
+                             int start_index,
+                             int end_index,
+                             int* new_start_index,
+                             int* new_end_index,
+                             int* border) {
+  static const int kSize = RegExpMacroAssembler::kTableSize;
+  static const int kMask = RegExpMacroAssembler::kTableMask;
+
+  int first = ranges->at(start_index);
+  int last = ranges->at(end_index) - 1;
+
+  *new_start_index = start_index;
+  *border = (ranges->at(start_index) & ~kMask) + kSize;
+  while (*new_start_index < end_index) {
+    if (ranges->at(*new_start_index) > *border) break;
+    (*new_start_index)++;
+  }
+  // new_start_index is the index of the first edge that is beyond the
+  // current kSize space.
+
+  // For very large search spaces we do a binary chop search of the non-Latin1
+  // space instead of just going to the end of the current kSize space.  The
+  // heuristics are complicated a little by the fact that any 128-character
+  // encoding space can be quickly tested with a table lookup, so we don't
+  // wish to do binary chop search at a smaller granularity than that.  A
+  // 128-character space can take up a lot of space in the ranges array if,
+  // for example, we only want to match every second character (eg. the lower
+  // case characters on some Unicode pages).
+  int binary_chop_index = (end_index + start_index) / 2;
+  // The first test ensures that we get to the code that handles the Latin1
+  // range with a single not-taken branch, speeding up this important
+  // character range (even non-Latin1 charset-based text has spaces and
+  // punctuation).
+  if (*border - 1 > String::kMaxOneByteCharCode &&  // Latin1 case.
+      end_index - start_index > (*new_start_index - start_index) * 2 &&
+      last - first > kSize * 2 && binary_chop_index > *new_start_index &&
+      ranges->at(binary_chop_index) >= first + 2 * kSize) {
+    int scan_forward_for_section_border = binary_chop_index;;
+    int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
+
+    while (scan_forward_for_section_border < end_index) {
+      if (ranges->at(scan_forward_for_section_border) > new_border) {
+        *new_start_index = scan_forward_for_section_border;
+        *border = new_border;
+        break;
+      }
+      scan_forward_for_section_border++;
+    }
+  }
+
+  DCHECK(*new_start_index > start_index);
+  *new_end_index = *new_start_index - 1;
+  if (ranges->at(*new_end_index) == *border) {
+    (*new_end_index)--;
+  }
+  if (*border >= ranges->at(end_index)) {
+    *border = ranges->at(end_index);
+    *new_start_index = end_index;  // Won't be used.
+    *new_end_index = end_index - 1;
+  }
+}
+
+
+// Gets a series of segment boundaries representing a character class.  If the
+// character is in the range between an even and an odd boundary (counting from
+// start_index) then go to even_label, otherwise go to odd_label.  We already
+// know that the character is in the range of min_char to max_char inclusive.
+// Either label can be NULL indicating backtracking.  Either label can also be
+// equal to the fall_through label.
+static void GenerateBranches(RegExpMacroAssembler* masm,
+                             ZoneList<int>* ranges,
+                             int start_index,
+                             int end_index,
+                             uc16 min_char,
+                             uc16 max_char,
+                             Label* fall_through,
+                             Label* even_label,
+                             Label* odd_label) {
+  int first = ranges->at(start_index);
+  int last = ranges->at(end_index) - 1;
+
+  DCHECK_LT(min_char, first);
+
+  // Just need to test if the character is before or on-or-after
+  // a particular character.
+  if (start_index == end_index) {
+    EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
+    return;
+  }
+
+  // Another almost trivial case:  There is one interval in the middle that is
+  // different from the end intervals.
+  if (start_index + 1 == end_index) {
+    EmitDoubleBoundaryTest(
+        masm, first, last, fall_through, even_label, odd_label);
+    return;
+  }
+
+  // It's not worth using table lookup if there are very few intervals in the
+  // character class.
+  if (end_index - start_index <= 6) {
+    // It is faster to test for individual characters, so we look for those
+    // first, then try arbitrary ranges in the second round.
+    static int kNoCutIndex = -1;
+    int cut = kNoCutIndex;
+    for (int i = start_index; i < end_index; i++) {
+      if (ranges->at(i) == ranges->at(i + 1) - 1) {
+        cut = i;
+        break;
+      }
+    }
+    if (cut == kNoCutIndex) cut = start_index;
+    CutOutRange(
+        masm, ranges, start_index, end_index, cut, even_label, odd_label);
+    DCHECK_GE(end_index - start_index, 2);
+    GenerateBranches(masm,
+                     ranges,
+                     start_index + 1,
+                     end_index - 1,
+                     min_char,
+                     max_char,
+                     fall_through,
+                     even_label,
+                     odd_label);
+    return;
+  }
+
+  // If there are a lot of intervals in the regexp, then we will use tables to
+  // determine whether the character is inside or outside the character class.
+  static const int kBits = RegExpMacroAssembler::kTableSizeBits;
+
+  if ((max_char >> kBits) == (min_char >> kBits)) {
+    EmitUseLookupTable(masm,
+                       ranges,
+                       start_index,
+                       end_index,
+                       min_char,
+                       fall_through,
+                       even_label,
+                       odd_label);
+    return;
+  }
+
+  if ((min_char >> kBits) != (first >> kBits)) {
+    masm->CheckCharacterLT(first, odd_label);
+    GenerateBranches(masm,
+                     ranges,
+                     start_index + 1,
+                     end_index,
+                     first,
+                     max_char,
+                     fall_through,
+                     odd_label,
+                     even_label);
+    return;
+  }
+
+  int new_start_index = 0;
+  int new_end_index = 0;
+  int border = 0;
+
+  SplitSearchSpace(ranges,
+                   start_index,
+                   end_index,
+                   &new_start_index,
+                   &new_end_index,
+                   &border);
+
+  Label handle_rest;
+  Label* above = &handle_rest;
+  if (border == last + 1) {
+    // We didn't find any section that started after the limit, so everything
+    // above the border is one of the terminal labels.
+    above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
+    DCHECK(new_end_index == end_index - 1);
+  }
+
+  DCHECK_LE(start_index, new_end_index);
+  DCHECK_LE(new_start_index, end_index);
+  DCHECK_LT(start_index, new_start_index);
+  DCHECK_LT(new_end_index, end_index);
+  DCHECK(new_end_index + 1 == new_start_index ||
+         (new_end_index + 2 == new_start_index &&
+          border == ranges->at(new_end_index + 1)));
+  DCHECK_LT(min_char, border - 1);
+  DCHECK_LT(border, max_char);
+  DCHECK_LT(ranges->at(new_end_index), border);
+  DCHECK(border < ranges->at(new_start_index) ||
+         (border == ranges->at(new_start_index) &&
+          new_start_index == end_index &&
+          new_end_index == end_index - 1 &&
+          border == last + 1));
+  DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
+
+  masm->CheckCharacterGT(border - 1, above);
+  Label dummy;
+  GenerateBranches(masm,
+                   ranges,
+                   start_index,
+                   new_end_index,
+                   min_char,
+                   border - 1,
+                   &dummy,
+                   even_label,
+                   odd_label);
+  if (handle_rest.is_linked()) {
+    masm->Bind(&handle_rest);
+    bool flip = (new_start_index & 1) != (start_index & 1);
+    GenerateBranches(masm,
+                     ranges,
+                     new_start_index,
+                     end_index,
+                     border,
+                     max_char,
+                     &dummy,
+                     flip ? odd_label : even_label,
+                     flip ? even_label : odd_label);
+  }
+}
+
+
+static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
+                          RegExpCharacterClass* cc, bool one_byte,
+                          Label* on_failure, int cp_offset, bool check_offset,
+                          bool preloaded, Zone* zone) {
+  ZoneList<CharacterRange>* ranges = cc->ranges(zone);
+  if (!CharacterRange::IsCanonical(ranges)) {
+    CharacterRange::Canonicalize(ranges);
+  }
+
+  int max_char;
+  if (one_byte) {
+    max_char = String::kMaxOneByteCharCode;
+  } else {
+    max_char = String::kMaxUtf16CodeUnit;
+  }
+
+  int range_count = ranges->length();
+
+  int last_valid_range = range_count - 1;
+  while (last_valid_range >= 0) {
+    CharacterRange& range = ranges->at(last_valid_range);
+    if (range.from() <= max_char) {
+      break;
+    }
+    last_valid_range--;
+  }
+
+  if (last_valid_range < 0) {
+    if (!cc->is_negated()) {
+      macro_assembler->GoTo(on_failure);
+    }
+    if (check_offset) {
+      macro_assembler->CheckPosition(cp_offset, on_failure);
+    }
+    return;
+  }
+
+  if (last_valid_range == 0 &&
+      ranges->at(0).IsEverything(max_char)) {
+    if (cc->is_negated()) {
+      macro_assembler->GoTo(on_failure);
+    } else {
+      // This is a common case hit by non-anchored expressions.
+      if (check_offset) {
+        macro_assembler->CheckPosition(cp_offset, on_failure);
+      }
+    }
+    return;
+  }
+  if (last_valid_range == 0 &&
+      !cc->is_negated() &&
+      ranges->at(0).IsEverything(max_char)) {
+    // This is a common case hit by non-anchored expressions.
+    if (check_offset) {
+      macro_assembler->CheckPosition(cp_offset, on_failure);
+    }
+    return;
+  }
+
+  if (!preloaded) {
+    macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
+  }
+
+  if (cc->is_standard(zone) &&
+        macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
+                                                    on_failure)) {
+      return;
+  }
+
+
+  // A new list with ascending entries.  Each entry is a code unit
+  // where there is a boundary between code units that are part of
+  // the class and code units that are not.  Normally we insert an
+  // entry at zero which goes to the failure label, but if there
+  // was already one there we fall through for success on that entry.
+  // Subsequent entries have alternating meaning (success/failure).
+  ZoneList<int>* range_boundaries =
+      new(zone) ZoneList<int>(last_valid_range, zone);
+
+  bool zeroth_entry_is_failure = !cc->is_negated();
+
+  for (int i = 0; i <= last_valid_range; i++) {
+    CharacterRange& range = ranges->at(i);
+    if (range.from() == 0) {
+      DCHECK_EQ(i, 0);
+      zeroth_entry_is_failure = !zeroth_entry_is_failure;
+    } else {
+      range_boundaries->Add(range.from(), zone);
+    }
+    range_boundaries->Add(range.to() + 1, zone);
+  }
+  int end_index = range_boundaries->length() - 1;
+  if (range_boundaries->at(end_index) > max_char) {
+    end_index--;
+  }
+
+  Label fall_through;
+  GenerateBranches(macro_assembler,
+                   range_boundaries,
+                   0,  // start_index.
+                   end_index,
+                   0,  // min_char.
+                   max_char,
+                   &fall_through,
+                   zeroth_entry_is_failure ? &fall_through : on_failure,
+                   zeroth_entry_is_failure ? on_failure : &fall_through);
+  macro_assembler->Bind(&fall_through);
+}
+
+
+RegExpNode::~RegExpNode() {
+}
+
+
+RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
+                                                  Trace* trace) {
+  // If we are generating a greedy loop then don't stop and don't reuse code.
+  if (trace->stop_node() != NULL) {
+    return CONTINUE;
+  }
+
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  if (trace->is_trivial()) {
+    if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
+      // If a generic version is already scheduled to be generated or we have
+      // recursed too deeply then just generate a jump to that code.
+      macro_assembler->GoTo(&label_);
+      // This will queue it up for generation of a generic version if it hasn't
+      // already been queued.
+      compiler->AddWork(this);
+      return DONE;
+    }
+    // Generate generic version of the node and bind the label for later use.
+    macro_assembler->Bind(&label_);
+    return CONTINUE;
+  }
+
+  // We are being asked to make a non-generic version.  Keep track of how many
+  // non-generic versions we generate so as not to overdo it.
+  trace_count_++;
+  if (KeepRecursing(compiler) && compiler->optimize() &&
+      trace_count_ < kMaxCopiesCodeGenerated) {
+    return CONTINUE;
+  }
+
+  // If we get here code has been generated for this node too many times or
+  // recursion is too deep.  Time to switch to a generic version.  The code for
+  // generic versions above can handle deep recursion properly.
+  bool was_limiting = compiler->limiting_recursion();
+  compiler->set_limiting_recursion(true);
+  trace->Flush(compiler, this);
+  compiler->set_limiting_recursion(was_limiting);
+  return DONE;
+}
+
+
+bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
+  return !compiler->limiting_recursion() &&
+         compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
+}
+
+
+int ActionNode::EatsAtLeast(int still_to_find,
+                            int budget,
+                            bool not_at_start) {
+  if (budget <= 0) return 0;
+  if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
+  return on_success()->EatsAtLeast(still_to_find,
+                                   budget - 1,
+                                   not_at_start);
+}
+
+
+void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+                              BoyerMooreLookahead* bm, bool not_at_start) {
+  if (action_type_ == BEGIN_SUBMATCH) {
+    bm->SetRest(offset);
+  } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
+    on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+  }
+  SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int AssertionNode::EatsAtLeast(int still_to_find,
+                               int budget,
+                               bool not_at_start) {
+  if (budget <= 0) return 0;
+  // If we know we are not at the start and we are asked "how many characters
+  // will you match if you succeed?" then we can answer anything since false
+  // implies false.  So lets just return the max answer (still_to_find) since
+  // that won't prevent us from preloading a lot of characters for the other
+  // branches in the node graph.
+  if (assertion_type() == AT_START && not_at_start) return still_to_find;
+  return on_success()->EatsAtLeast(still_to_find,
+                                   budget - 1,
+                                   not_at_start);
+}
+
+
+void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+                                 BoyerMooreLookahead* bm, bool not_at_start) {
+  // Match the behaviour of EatsAtLeast on this node.
+  if (assertion_type() == AT_START && not_at_start) return;
+  on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+  SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int BackReferenceNode::EatsAtLeast(int still_to_find,
+                                   int budget,
+                                   bool not_at_start) {
+  if (read_backward()) return 0;
+  if (budget <= 0) return 0;
+  return on_success()->EatsAtLeast(still_to_find,
+                                   budget - 1,
+                                   not_at_start);
+}
+
+
+int TextNode::EatsAtLeast(int still_to_find,
+                          int budget,
+                          bool not_at_start) {
+  if (read_backward()) return 0;
+  int answer = Length();
+  if (answer >= still_to_find) return answer;
+  if (budget <= 0) return answer;
+  // We are not at start after this node so we set the last argument to 'true'.
+  return answer + on_success()->EatsAtLeast(still_to_find - answer,
+                                            budget - 1,
+                                            true);
+}
+
+
+int NegativeLookaroundChoiceNode::EatsAtLeast(int still_to_find, int budget,
+                                              bool not_at_start) {
+  if (budget <= 0) return 0;
+  // Alternative 0 is the negative lookahead, alternative 1 is what comes
+  // afterwards.
+  RegExpNode* node = alternatives_->at(1).node();
+  return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
+}
+
+
+void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
+    QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in,
+    bool not_at_start) {
+  // Alternative 0 is the negative lookahead, alternative 1 is what comes
+  // afterwards.
+  RegExpNode* node = alternatives_->at(1).node();
+  return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeastHelper(int still_to_find,
+                                  int budget,
+                                  RegExpNode* ignore_this_node,
+                                  bool not_at_start) {
+  if (budget <= 0) return 0;
+  int min = 100;
+  int choice_count = alternatives_->length();
+  budget = (budget - 1) / choice_count;
+  for (int i = 0; i < choice_count; i++) {
+    RegExpNode* node = alternatives_->at(i).node();
+    if (node == ignore_this_node) continue;
+    int node_eats_at_least =
+        node->EatsAtLeast(still_to_find, budget, not_at_start);
+    if (node_eats_at_least < min) min = node_eats_at_least;
+    if (min == 0) return 0;
+  }
+  return min;
+}
+
+
+int LoopChoiceNode::EatsAtLeast(int still_to_find,
+                                int budget,
+                                bool not_at_start) {
+  return EatsAtLeastHelper(still_to_find,
+                           budget - 1,
+                           loop_node_,
+                           not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeast(int still_to_find,
+                            int budget,
+                            bool not_at_start) {
+  return EatsAtLeastHelper(still_to_find,
+                           budget,
+                           NULL,
+                           not_at_start);
+}
+
+
+// Takes the left-most 1-bit and smears it out, setting all bits to its right.
+static inline uint32_t SmearBitsRight(uint32_t v) {
+  v |= v >> 1;
+  v |= v >> 2;
+  v |= v >> 4;
+  v |= v >> 8;
+  v |= v >> 16;
+  return v;
+}
+
+
+bool QuickCheckDetails::Rationalize(bool asc) {
+  bool found_useful_op = false;
+  uint32_t char_mask;
+  if (asc) {
+    char_mask = String::kMaxOneByteCharCode;
+  } else {
+    char_mask = String::kMaxUtf16CodeUnit;
+  }
+  mask_ = 0;
+  value_ = 0;
+  int char_shift = 0;
+  for (int i = 0; i < characters_; i++) {
+    Position* pos = &positions_[i];
+    if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
+      found_useful_op = true;
+    }
+    mask_ |= (pos->mask & char_mask) << char_shift;
+    value_ |= (pos->value & char_mask) << char_shift;
+    char_shift += asc ? 8 : 16;
+  }
+  return found_useful_op;
+}
+
+
+bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
+                                Trace* bounds_check_trace,
+                                Trace* trace,
+                                bool preload_has_checked_bounds,
+                                Label* on_possible_success,
+                                QuickCheckDetails* details,
+                                bool fall_through_on_failure) {
+  if (details->characters() == 0) return false;
+  GetQuickCheckDetails(
+      details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
+  if (details->cannot_match()) return false;
+  if (!details->Rationalize(compiler->one_byte())) return false;
+  DCHECK(details->characters() == 1 ||
+         compiler->macro_assembler()->CanReadUnaligned());
+  uint32_t mask = details->mask();
+  uint32_t value = details->value();
+
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+  if (trace->characters_preloaded() != details->characters()) {
+    DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
+    // We are attempting to preload the minimum number of characters
+    // any choice would eat, so if the bounds check fails, then none of the
+    // choices can succeed, so we can just immediately backtrack, rather
+    // than go to the next choice.
+    assembler->LoadCurrentCharacter(trace->cp_offset(),
+                                    bounds_check_trace->backtrack(),
+                                    !preload_has_checked_bounds,
+                                    details->characters());
+  }
+
+
+  bool need_mask = true;
+
+  if (details->characters() == 1) {
+    // If number of characters preloaded is 1 then we used a byte or 16 bit
+    // load so the value is already masked down.
+    uint32_t char_mask;
+    if (compiler->one_byte()) {
+      char_mask = String::kMaxOneByteCharCode;
+    } else {
+      char_mask = String::kMaxUtf16CodeUnit;
+    }
+    if ((mask & char_mask) == char_mask) need_mask = false;
+    mask &= char_mask;
+  } else {
+    // For 2-character preloads in one-byte mode or 1-character preloads in
+    // two-byte mode we also use a 16 bit load with zero extend.
+    if (details->characters() == 2 && compiler->one_byte()) {
+      if ((mask & 0xffff) == 0xffff) need_mask = false;
+    } else if (details->characters() == 1 && !compiler->one_byte()) {
+      if ((mask & 0xffff) == 0xffff) need_mask = false;
+    } else {
+      if (mask == 0xffffffff) need_mask = false;
+    }
+  }
+
+  if (fall_through_on_failure) {
+    if (need_mask) {
+      assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
+    } else {
+      assembler->CheckCharacter(value, on_possible_success);
+    }
+  } else {
+    if (need_mask) {
+      assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
+    } else {
+      assembler->CheckNotCharacter(value, trace->backtrack());
+    }
+  }
+  return true;
+}
+
+
+// Here is the meat of GetQuickCheckDetails (see also the comment on the
+// super-class in the .h file).
+//
+// We iterate along the text object, building up for each character a
+// mask and value that can be used to test for a quick failure to match.
+// The masks and values for the positions will be combined into a single
+// machine word for the current character width in order to be used in
+// generating a quick check.
+void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start) {
+  // Do not collect any quick check details if the text node reads backward,
+  // since it reads in the opposite direction than we use for quick checks.
+  if (read_backward()) return;
+  Isolate* isolate = compiler->macro_assembler()->isolate();
+  DCHECK(characters_filled_in < details->characters());
+  int characters = details->characters();
+  int char_mask;
+  if (compiler->one_byte()) {
+    char_mask = String::kMaxOneByteCharCode;
+  } else {
+    char_mask = String::kMaxUtf16CodeUnit;
+  }
+  for (int k = 0; k < elements()->length(); k++) {
+    TextElement elm = elements()->at(k);
+    if (elm.text_type() == TextElement::ATOM) {
+      Vector<const uc16> quarks = elm.atom()->data();
+      for (int i = 0; i < characters && i < quarks.length(); i++) {
+        QuickCheckDetails::Position* pos =
+            details->positions(characters_filled_in);
+        uc16 c = quarks[i];
+        if (compiler->ignore_case()) {
+          unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+          int length = GetCaseIndependentLetters(isolate, c,
+                                                 compiler->one_byte(), chars);
+          if (length == 0) {
+            // This can happen because all case variants are non-Latin1, but we
+            // know the input is Latin1.
+            details->set_cannot_match();
+            pos->determines_perfectly = false;
+            return;
+          }
+          if (length == 1) {
+            // This letter has no case equivalents, so it's nice and simple
+            // and the mask-compare will determine definitely whether we have
+            // a match at this character position.
+            pos->mask = char_mask;
+            pos->value = c;
+            pos->determines_perfectly = true;
+          } else {
+            uint32_t common_bits = char_mask;
+            uint32_t bits = chars[0];
+            for (int j = 1; j < length; j++) {
+              uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
+              common_bits ^= differing_bits;
+              bits &= common_bits;
+            }
+            // If length is 2 and common bits has only one zero in it then
+            // our mask and compare instruction will determine definitely
+            // whether we have a match at this character position.  Otherwise
+            // it can only be an approximate check.
+            uint32_t one_zero = (common_bits | ~char_mask);
+            if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
+              pos->determines_perfectly = true;
+            }
+            pos->mask = common_bits;
+            pos->value = bits;
+          }
+        } else {
+          // Don't ignore case.  Nice simple case where the mask-compare will
+          // determine definitely whether we have a match at this character
+          // position.
+          if (c > char_mask) {
+            details->set_cannot_match();
+            pos->determines_perfectly = false;
+            return;
+          }
+          pos->mask = char_mask;
+          pos->value = c;
+          pos->determines_perfectly = true;
+        }
+        characters_filled_in++;
+        DCHECK(characters_filled_in <= details->characters());
+        if (characters_filled_in == details->characters()) {
+          return;
+        }
+      }
+    } else {
+      QuickCheckDetails::Position* pos =
+          details->positions(characters_filled_in);
+      RegExpCharacterClass* tree = elm.char_class();
+      ZoneList<CharacterRange>* ranges = tree->ranges(zone());
+      if (tree->is_negated()) {
+        // A quick check uses multi-character mask and compare.  There is no
+        // useful way to incorporate a negative char class into this scheme
+        // so we just conservatively create a mask and value that will always
+        // succeed.
+        pos->mask = 0;
+        pos->value = 0;
+      } else {
+        int first_range = 0;
+        while (ranges->at(first_range).from() > char_mask) {
+          first_range++;
+          if (first_range == ranges->length()) {
+            details->set_cannot_match();
+            pos->determines_perfectly = false;
+            return;
+          }
+        }
+        CharacterRange range = ranges->at(first_range);
+        uc16 from = range.from();
+        uc16 to = range.to();
+        if (to > char_mask) {
+          to = char_mask;
+        }
+        uint32_t differing_bits = (from ^ to);
+        // A mask and compare is only perfect if the differing bits form a
+        // number like 00011111 with one single block of trailing 1s.
+        if ((differing_bits & (differing_bits + 1)) == 0 &&
+             from + differing_bits == to) {
+          pos->determines_perfectly = true;
+        }
+        uint32_t common_bits = ~SmearBitsRight(differing_bits);
+        uint32_t bits = (from & common_bits);
+        for (int i = first_range + 1; i < ranges->length(); i++) {
+          CharacterRange range = ranges->at(i);
+          uc16 from = range.from();
+          uc16 to = range.to();
+          if (from > char_mask) continue;
+          if (to > char_mask) to = char_mask;
+          // Here we are combining more ranges into the mask and compare
+          // value.  With each new range the mask becomes more sparse and
+          // so the chances of a false positive rise.  A character class
+          // with multiple ranges is assumed never to be equivalent to a
+          // mask and compare operation.
+          pos->determines_perfectly = false;
+          uint32_t new_common_bits = (from ^ to);
+          new_common_bits = ~SmearBitsRight(new_common_bits);
+          common_bits &= new_common_bits;
+          bits &= new_common_bits;
+          uint32_t differing_bits = (from & common_bits) ^ bits;
+          common_bits ^= differing_bits;
+          bits &= common_bits;
+        }
+        pos->mask = common_bits;
+        pos->value = bits;
+      }
+      characters_filled_in++;
+      DCHECK(characters_filled_in <= details->characters());
+      if (characters_filled_in == details->characters()) {
+        return;
+      }
+    }
+  }
+  DCHECK(characters_filled_in != details->characters());
+  if (!details->cannot_match()) {
+    on_success()-> GetQuickCheckDetails(details,
+                                        compiler,
+                                        characters_filled_in,
+                                        true);
+  }
+}
+
+
+void QuickCheckDetails::Clear() {
+  for (int i = 0; i < characters_; i++) {
+    positions_[i].mask = 0;
+    positions_[i].value = 0;
+    positions_[i].determines_perfectly = false;
+  }
+  characters_ = 0;
+}
+
+
+void QuickCheckDetails::Advance(int by, bool one_byte) {
+  if (by >= characters_ || by < 0) {
+    DCHECK_IMPLIES(by < 0, characters_ == 0);
+    Clear();
+    return;
+  }
+  DCHECK_LE(characters_ - by, 4);
+  DCHECK_LE(characters_, 4);
+  for (int i = 0; i < characters_ - by; i++) {
+    positions_[i] = positions_[by + i];
+  }
+  for (int i = characters_ - by; i < characters_; i++) {
+    positions_[i].mask = 0;
+    positions_[i].value = 0;
+    positions_[i].determines_perfectly = false;
+  }
+  characters_ -= by;
+  // We could change mask_ and value_ here but we would never advance unless
+  // they had already been used in a check and they won't be used again because
+  // it would gain us nothing.  So there's no point.
+}
+
+
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
+  DCHECK(characters_ == other->characters_);
+  if (other->cannot_match_) {
+    return;
+  }
+  if (cannot_match_) {
+    *this = *other;
+    return;
+  }
+  for (int i = from_index; i < characters_; i++) {
+    QuickCheckDetails::Position* pos = positions(i);
+    QuickCheckDetails::Position* other_pos = other->positions(i);
+    if (pos->mask != other_pos->mask ||
+        pos->value != other_pos->value ||
+        !other_pos->determines_perfectly) {
+      // Our mask-compare operation will be approximate unless we have the
+      // exact same operation on both sides of the alternation.
+      pos->determines_perfectly = false;
+    }
+    pos->mask &= other_pos->mask;
+    pos->value &= pos->mask;
+    other_pos->value &= pos->mask;
+    uc16 differing_bits = (pos->value ^ other_pos->value);
+    pos->mask &= ~differing_bits;
+    pos->value &= pos->mask;
+  }
+}
+
+
+class VisitMarker {
+ public:
+  explicit VisitMarker(NodeInfo* info) : info_(info) {
+    DCHECK(!info->visited);
+    info->visited = true;
+  }
+  ~VisitMarker() {
+    info_->visited = false;
+  }
+ private:
+  NodeInfo* info_;
+};
+
+
+RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
+  if (info()->replacement_calculated) return replacement();
+  if (depth < 0) return this;
+  DCHECK(!info()->visited);
+  VisitMarker marker(info());
+  return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
+  RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
+  if (next == NULL) return set_replacement(NULL);
+  on_success_ = next;
+  return set_replacement(this);
+}
+
+
+// We need to check for the following characters: 0x39c 0x3bc 0x178.
+static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
+  // TODO(dcarney): this could be a lot more efficient.
+  return range.Contains(0x39c) ||
+      range.Contains(0x3bc) || range.Contains(0x178);
+}
+
+
+static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
+  for (int i = 0; i < ranges->length(); i++) {
+    // TODO(dcarney): this could be a lot more efficient.
+    if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
+  }
+  return false;
+}
+
+
+RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
+  if (info()->replacement_calculated) return replacement();
+  if (depth < 0) return this;
+  DCHECK(!info()->visited);
+  VisitMarker marker(info());
+  int element_count = elements()->length();
+  for (int i = 0; i < element_count; i++) {
+    TextElement elm = elements()->at(i);
+    if (elm.text_type() == TextElement::ATOM) {
+      Vector<const uc16> quarks = elm.atom()->data();
+      for (int j = 0; j < quarks.length(); j++) {
+        uint16_t c = quarks[j];
+        if (c <= String::kMaxOneByteCharCode) continue;
+        if (!ignore_case) return set_replacement(NULL);
+        // Here, we need to check for characters whose upper and lower cases
+        // are outside the Latin-1 range.
+        uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
+        // Character is outside Latin-1 completely
+        if (converted == 0) return set_replacement(NULL);
+        // Convert quark to Latin-1 in place.
+        uint16_t* copy = const_cast<uint16_t*>(quarks.start());
+        copy[j] = converted;
+      }
+    } else {
+      DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
+      RegExpCharacterClass* cc = elm.char_class();
+      ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+      if (!CharacterRange::IsCanonical(ranges)) {
+        CharacterRange::Canonicalize(ranges);
+      }
+      // Now they are in order so we only need to look at the first.
+      int range_count = ranges->length();
+      if (cc->is_negated()) {
+        if (range_count != 0 &&
+            ranges->at(0).from() == 0 &&
+            ranges->at(0).to() >= String::kMaxOneByteCharCode) {
+          // This will be handled in a later filter.
+          if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+          return set_replacement(NULL);
+        }
+      } else {
+        if (range_count == 0 ||
+            ranges->at(0).from() > String::kMaxOneByteCharCode) {
+          // This will be handled in a later filter.
+          if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+          return set_replacement(NULL);
+        }
+      }
+    }
+  }
+  return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+  if (info()->replacement_calculated) return replacement();
+  if (depth < 0) return this;
+  if (info()->visited) return this;
+  {
+    VisitMarker marker(info());
+
+    RegExpNode* continue_replacement =
+        continue_node_->FilterOneByte(depth - 1, ignore_case);
+    // If we can't continue after the loop then there is no sense in doing the
+    // loop.
+    if (continue_replacement == NULL) return set_replacement(NULL);
+  }
+
+  return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
+}
+
+
+RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+  if (info()->replacement_calculated) return replacement();
+  if (depth < 0) return this;
+  if (info()->visited) return this;
+  VisitMarker marker(info());
+  int choice_count = alternatives_->length();
+
+  for (int i = 0; i < choice_count; i++) {
+    GuardedAlternative alternative = alternatives_->at(i);
+    if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
+      set_replacement(this);
+      return this;
+    }
+  }
+
+  int surviving = 0;
+  RegExpNode* survivor = NULL;
+  for (int i = 0; i < choice_count; i++) {
+    GuardedAlternative alternative = alternatives_->at(i);
+    RegExpNode* replacement =
+        alternative.node()->FilterOneByte(depth - 1, ignore_case);
+    DCHECK(replacement != this);  // No missing EMPTY_MATCH_CHECK.
+    if (replacement != NULL) {
+      alternatives_->at(i).set_node(replacement);
+      surviving++;
+      survivor = replacement;
+    }
+  }
+  if (surviving < 2) return set_replacement(survivor);
+
+  set_replacement(this);
+  if (surviving == choice_count) {
+    return this;
+  }
+  // Only some of the nodes survived the filtering.  We need to rebuild the
+  // alternatives list.
+  ZoneList<GuardedAlternative>* new_alternatives =
+      new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
+  for (int i = 0; i < choice_count; i++) {
+    RegExpNode* replacement =
+        alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
+    if (replacement != NULL) {
+      alternatives_->at(i).set_node(replacement);
+      new_alternatives->Add(alternatives_->at(i), zone());
+    }
+  }
+  alternatives_ = new_alternatives;
+  return this;
+}
+
+
+RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth,
+                                                        bool ignore_case) {
+  if (info()->replacement_calculated) return replacement();
+  if (depth < 0) return this;
+  if (info()->visited) return this;
+  VisitMarker marker(info());
+  // Alternative 0 is the negative lookahead, alternative 1 is what comes
+  // afterwards.
+  RegExpNode* node = alternatives_->at(1).node();
+  RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
+  if (replacement == NULL) return set_replacement(NULL);
+  alternatives_->at(1).set_node(replacement);
+
+  RegExpNode* neg_node = alternatives_->at(0).node();
+  RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
+  // If the negative lookahead is always going to fail then
+  // we don't need to check it.
+  if (neg_replacement == NULL) return set_replacement(replacement);
+  alternatives_->at(0).set_node(neg_replacement);
+  return set_replacement(this);
+}
+
+
+void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+                                          RegExpCompiler* compiler,
+                                          int characters_filled_in,
+                                          bool not_at_start) {
+  if (body_can_be_zero_length_ || info()->visited) return;
+  VisitMarker marker(info());
+  return ChoiceNode::GetQuickCheckDetails(details,
+                                          compiler,
+                                          characters_filled_in,
+                                          not_at_start);
+}
+
+
+void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+                                  BoyerMooreLookahead* bm, bool not_at_start) {
+  if (body_can_be_zero_length_ || budget <= 0) {
+    bm->SetRest(offset);
+    SaveBMInfo(bm, not_at_start, offset);
+    return;
+  }
+  ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+  SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+                                      RegExpCompiler* compiler,
+                                      int characters_filled_in,
+                                      bool not_at_start) {
+  not_at_start = (not_at_start || not_at_start_);
+  int choice_count = alternatives_->length();
+  DCHECK(choice_count > 0);
+  alternatives_->at(0).node()->GetQuickCheckDetails(details,
+                                                    compiler,
+                                                    characters_filled_in,
+                                                    not_at_start);
+  for (int i = 1; i < choice_count; i++) {
+    QuickCheckDetails new_details(details->characters());
+    RegExpNode* node = alternatives_->at(i).node();
+    node->GetQuickCheckDetails(&new_details, compiler,
+                               characters_filled_in,
+                               not_at_start);
+    // Here we merge the quick match details of the two branches.
+    details->Merge(&new_details, characters_filled_in);
+  }
+}
+
+
+// Check for [0-9A-Z_a-z].
+static void EmitWordCheck(RegExpMacroAssembler* assembler,
+                          Label* word,
+                          Label* non_word,
+                          bool fall_through_on_word) {
+  if (assembler->CheckSpecialCharacterClass(
+          fall_through_on_word ? 'w' : 'W',
+          fall_through_on_word ? non_word : word)) {
+    // Optimized implementation available.
+    return;
+  }
+  assembler->CheckCharacterGT('z', non_word);
+  assembler->CheckCharacterLT('0', non_word);
+  assembler->CheckCharacterGT('a' - 1, word);
+  assembler->CheckCharacterLT('9' + 1, word);
+  assembler->CheckCharacterLT('A', non_word);
+  assembler->CheckCharacterLT('Z' + 1, word);
+  if (fall_through_on_word) {
+    assembler->CheckNotCharacter('_', non_word);
+  } else {
+    assembler->CheckCharacter('_', word);
+  }
+}
+
+
+// Emit the code to check for a ^ in multiline mode (1-character lookbehind
+// that matches newline or the start of input).
+static void EmitHat(RegExpCompiler* compiler,
+                    RegExpNode* on_success,
+                    Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  // We will be loading the previous character into the current character
+  // register.
+  Trace new_trace(*trace);
+  new_trace.InvalidateCurrentCharacter();
+
+  Label ok;
+  if (new_trace.cp_offset() == 0) {
+    // The start of input counts as a newline in this context, so skip to
+    // ok if we are at the start.
+    assembler->CheckAtStart(&ok);
+  }
+  // We already checked that we are not at the start of input so it must be
+  // OK to load the previous character.
+  assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
+                                  new_trace.backtrack(),
+                                  false);
+  if (!assembler->CheckSpecialCharacterClass('n',
+                                             new_trace.backtrack())) {
+    // Newline means \n, \r, 0x2028 or 0x2029.
+    if (!compiler->one_byte()) {
+      assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
+    }
+    assembler->CheckCharacter('\n', &ok);
+    assembler->CheckNotCharacter('\r', new_trace.backtrack());
+  }
+  assembler->Bind(&ok);
+  on_success->Emit(compiler, &new_trace);
+}
+
+
+// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
+void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  Isolate* isolate = assembler->isolate();
+  Trace::TriBool next_is_word_character = Trace::UNKNOWN;
+  bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
+  BoyerMooreLookahead* lookahead = bm_info(not_at_start);
+  if (lookahead == NULL) {
+    int eats_at_least =
+        Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
+                                                    kRecursionBudget,
+                                                    not_at_start));
+    if (eats_at_least >= 1) {
+      BoyerMooreLookahead* bm =
+          new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
+      FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
+      if (bm->at(0)->is_non_word())
+        next_is_word_character = Trace::FALSE_VALUE;
+      if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
+    }
+  } else {
+    if (lookahead->at(0)->is_non_word())
+      next_is_word_character = Trace::FALSE_VALUE;
+    if (lookahead->at(0)->is_word())
+      next_is_word_character = Trace::TRUE_VALUE;
+  }
+  bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
+  if (next_is_word_character == Trace::UNKNOWN) {
+    Label before_non_word;
+    Label before_word;
+    if (trace->characters_preloaded() != 1) {
+      assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
+    }
+    // Fall through on non-word.
+    EmitWordCheck(assembler, &before_word, &before_non_word, false);
+    // Next character is not a word character.
+    assembler->Bind(&before_non_word);
+    Label ok;
+    BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+    assembler->GoTo(&ok);
+
+    assembler->Bind(&before_word);
+    BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+    assembler->Bind(&ok);
+  } else if (next_is_word_character == Trace::TRUE_VALUE) {
+    BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+  } else {
+    DCHECK(next_is_word_character == Trace::FALSE_VALUE);
+    BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+  }
+}
+
+
+void AssertionNode::BacktrackIfPrevious(
+    RegExpCompiler* compiler,
+    Trace* trace,
+    AssertionNode::IfPrevious backtrack_if_previous) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  Trace new_trace(*trace);
+  new_trace.InvalidateCurrentCharacter();
+
+  Label fall_through, dummy;
+
+  Label* non_word = backtrack_if_previous == kIsNonWord ?
+                    new_trace.backtrack() :
+                    &fall_through;
+  Label* word = backtrack_if_previous == kIsNonWord ?
+                &fall_through :
+                new_trace.backtrack();
+
+  if (new_trace.cp_offset() == 0) {
+    // The start of input counts as a non-word character, so the question is
+    // decided if we are at the start.
+    assembler->CheckAtStart(non_word);
+  }
+  // We already checked that we are not at the start of input so it must be
+  // OK to load the previous character.
+  assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
+  EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
+
+  assembler->Bind(&fall_through);
+  on_success()->Emit(compiler, &new_trace);
+}
+
+
+void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
+                                         RegExpCompiler* compiler,
+                                         int filled_in,
+                                         bool not_at_start) {
+  if (assertion_type_ == AT_START && not_at_start) {
+    details->set_cannot_match();
+    return;
+  }
+  return on_success()->GetQuickCheckDetails(details,
+                                            compiler,
+                                            filled_in,
+                                            not_at_start);
+}
+
+
+void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  switch (assertion_type_) {
+    case AT_END: {
+      Label ok;
+      assembler->CheckPosition(trace->cp_offset(), &ok);
+      assembler->GoTo(trace->backtrack());
+      assembler->Bind(&ok);
+      break;
+    }
+    case AT_START: {
+      if (trace->at_start() == Trace::FALSE_VALUE) {
+        assembler->GoTo(trace->backtrack());
+        return;
+      }
+      if (trace->at_start() == Trace::UNKNOWN) {
+        assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
+        Trace at_start_trace = *trace;
+        at_start_trace.set_at_start(Trace::TRUE_VALUE);
+        on_success()->Emit(compiler, &at_start_trace);
+        return;
+      }
+    }
+    break;
+    case AFTER_NEWLINE:
+      EmitHat(compiler, on_success(), trace);
+      return;
+    case AT_BOUNDARY:
+    case AT_NON_BOUNDARY: {
+      EmitBoundaryCheck(compiler, trace);
+      return;
+    }
+  }
+  on_success()->Emit(compiler, trace);
+}
+
+
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
+  if (quick_check == NULL) return false;
+  if (offset >= quick_check->characters()) return false;
+  return quick_check->positions(offset)->determines_perfectly;
+}
+
+
+static void UpdateBoundsCheck(int index, int* checked_up_to) {
+  if (index > *checked_up_to) {
+    *checked_up_to = index;
+  }
+}
+
+
+// We call this repeatedly to generate code for each pass over the text node.
+// The passes are in increasing order of difficulty because we hope one
+// of the first passes will fail in which case we are saved the work of the
+// later passes.  for example for the case independent regexp /%[asdfghjkl]a/
+// we will check the '%' in the first pass, the case independent 'a' in the
+// second pass and the character class in the last pass.
+//
+// The passes are done from right to left, so for example to test for /bar/
+// we will first test for an 'r' with offset 2, then an 'a' with offset 1
+// and then a 'b' with offset 0.  This means we can avoid the end-of-input
+// bounds check most of the time.  In the example we only need to check for
+// end-of-input when loading the putative 'r'.
+//
+// A slight complication involves the fact that the first character may already
+// be fetched into a register by the previous node.  In this case we want to
+// do the test for that character first.  We do this in separate passes.  The
+// 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
+// pass has been performed then subsequent passes will have true in
+// first_element_checked to indicate that that character does not need to be
+// checked again.
+//
+// In addition to all this we are passed a Trace, which can
+// contain an AlternativeGeneration object.  In this AlternativeGeneration
+// object we can see details of any quick check that was already passed in
+// order to get to the code we are now generating.  The quick check can involve
+// loading characters, which means we do not need to recheck the bounds
+// up to the limit the quick check already checked.  In addition the quick
+// check can have involved a mask and compare operation which may simplify
+// or obviate the need for further checks at some character positions.
+void TextNode::TextEmitPass(RegExpCompiler* compiler,
+                            TextEmitPassType pass,
+                            bool preloaded,
+                            Trace* trace,
+                            bool first_element_checked,
+                            int* checked_up_to) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  Isolate* isolate = assembler->isolate();
+  bool one_byte = compiler->one_byte();
+  Label* backtrack = trace->backtrack();
+  QuickCheckDetails* quick_check = trace->quick_check_performed();
+  int element_count = elements()->length();
+  int backward_offset = read_backward() ? -Length() : 0;
+  for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+    TextElement elm = elements()->at(i);
+    int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
+    if (elm.text_type() == TextElement::ATOM) {
+      Vector<const uc16> quarks = elm.atom()->data();
+      for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
+        if (first_element_checked && i == 0 && j == 0) continue;
+        if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
+        EmitCharacterFunction* emit_function = NULL;
+        switch (pass) {
+          case NON_LATIN1_MATCH:
+            DCHECK(one_byte);
+            if (quarks[j] > String::kMaxOneByteCharCode) {
+              assembler->GoTo(backtrack);
+              return;
+            }
+            break;
+          case NON_LETTER_CHARACTER_MATCH:
+            emit_function = &EmitAtomNonLetter;
+            break;
+          case SIMPLE_CHARACTER_MATCH:
+            emit_function = &EmitSimpleCharacter;
+            break;
+          case CASE_CHARACTER_MATCH:
+            emit_function = &EmitAtomLetter;
+            break;
+          default:
+            break;
+        }
+        if (emit_function != NULL) {
+          bool bounds_check = *checked_up_to < cp_offset + j || read_backward();
+          bool bound_checked =
+              emit_function(isolate, compiler, quarks[j], backtrack,
+                            cp_offset + j, bounds_check, preloaded);
+          if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
+        }
+      }
+    } else {
+      DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
+      if (pass == CHARACTER_CLASS_MATCH) {
+        if (first_element_checked && i == 0) continue;
+        if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
+        RegExpCharacterClass* cc = elm.char_class();
+        bool bounds_check = *checked_up_to < cp_offset || read_backward();
+        EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
+                      bounds_check, preloaded, zone());
+        UpdateBoundsCheck(cp_offset, checked_up_to);
+      }
+    }
+  }
+}
+
+
+int TextNode::Length() {
+  TextElement elm = elements()->last();
+  DCHECK(elm.cp_offset() >= 0);
+  return elm.cp_offset() + elm.length();
+}
+
+
+bool TextNode::SkipPass(int int_pass, bool ignore_case) {
+  TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
+  if (ignore_case) {
+    return pass == SIMPLE_CHARACTER_MATCH;
+  } else {
+    return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
+  }
+}
+
+
+// This generates the code to match a text node.  A text node can contain
+// straight character sequences (possibly to be matched in a case-independent
+// way) and character classes.  For efficiency we do not do this in a single
+// pass from left to right.  Instead we pass over the text node several times,
+// emitting code for some character positions every time.  See the comment on
+// TextEmitPass for details.
+void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  LimitResult limit_result = LimitVersions(compiler, trace);
+  if (limit_result == DONE) return;
+  DCHECK(limit_result == CONTINUE);
+
+  if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
+    compiler->SetRegExpTooBig();
+    return;
+  }
+
+  if (compiler->one_byte()) {
+    int dummy = 0;
+    TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
+  }
+
+  bool first_elt_done = false;
+  int bound_checked_to = trace->cp_offset() - 1;
+  bound_checked_to += trace->bound_checked_up_to();
+
+  // If a character is preloaded into the current character register then
+  // check that now.
+  if (trace->characters_preloaded() == 1) {
+    for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+      if (!SkipPass(pass, compiler->ignore_case())) {
+        TextEmitPass(compiler,
+                     static_cast<TextEmitPassType>(pass),
+                     true,
+                     trace,
+                     false,
+                     &bound_checked_to);
+      }
+    }
+    first_elt_done = true;
+  }
+
+  for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+    if (!SkipPass(pass, compiler->ignore_case())) {
+      TextEmitPass(compiler,
+                   static_cast<TextEmitPassType>(pass),
+                   false,
+                   trace,
+                   first_elt_done,
+                   &bound_checked_to);
+    }
+  }
+
+  Trace successor_trace(*trace);
+  // If we advance backward, we may end up at the start.
+  successor_trace.AdvanceCurrentPositionInTrace(
+      read_backward() ? -Length() : Length(), compiler);
+  successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
+                                               : Trace::FALSE_VALUE);
+  RecursionCheck rc(compiler);
+  on_success()->Emit(compiler, &successor_trace);
+}
+
+
+void Trace::InvalidateCurrentCharacter() {
+  characters_preloaded_ = 0;
+}
+
+
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
+  // We don't have an instruction for shifting the current character register
+  // down or for using a shifted value for anything so lets just forget that
+  // we preloaded any characters into it.
+  characters_preloaded_ = 0;
+  // Adjust the offsets of the quick check performed information.  This
+  // information is used to find out what we already determined about the
+  // characters by means of mask and compare.
+  quick_check_performed_.Advance(by, compiler->one_byte());
+  cp_offset_ += by;
+  if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
+    compiler->SetRegExpTooBig();
+    cp_offset_ = 0;
+  }
+  bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
+}
+
+
+void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
+  int element_count = elements()->length();
+  for (int i = 0; i < element_count; i++) {
+    TextElement elm = elements()->at(i);
+    if (elm.text_type() == TextElement::CHAR_CLASS) {
+      RegExpCharacterClass* cc = elm.char_class();
+      // None of the standard character classes is different in the case
+      // independent case and it slows us down if we don't know that.
+      if (cc->is_standard(zone())) continue;
+      ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+      int range_count = ranges->length();
+      for (int j = 0; j < range_count; j++) {
+        ranges->at(j).AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
+      }
+    }
+  }
+}
+
+
+int TextNode::GreedyLoopTextLength() { return Length(); }
+
+
+RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
+    RegExpCompiler* compiler) {
+  if (read_backward()) return NULL;
+  if (elements()->length() != 1) return NULL;
+  TextElement elm = elements()->at(0);
+  if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
+  RegExpCharacterClass* node = elm.char_class();
+  ZoneList<CharacterRange>* ranges = node->ranges(zone());
+  if (!CharacterRange::IsCanonical(ranges)) {
+    CharacterRange::Canonicalize(ranges);
+  }
+  if (node->is_negated()) {
+    return ranges->length() == 0 ? on_success() : NULL;
+  }
+  if (ranges->length() != 1) return NULL;
+  uint32_t max_char;
+  if (compiler->one_byte()) {
+    max_char = String::kMaxOneByteCharCode;
+  } else {
+    max_char = String::kMaxUtf16CodeUnit;
+  }
+  return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
+}
+
+
+// Finds the fixed match length of a sequence of nodes that goes from
+// this alternative and back to this choice node.  If there are variable
+// length nodes or other complications in the way then return a sentinel
+// value indicating that a greedy loop cannot be constructed.
+int ChoiceNode::GreedyLoopTextLengthForAlternative(
+    GuardedAlternative* alternative) {
+  int length = 0;
+  RegExpNode* node = alternative->node();
+  // Later we will generate code for all these text nodes using recursion
+  // so we have to limit the max number.
+  int recursion_depth = 0;
+  while (node != this) {
+    if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
+      return kNodeIsTooComplexForGreedyLoops;
+    }
+    int node_length = node->GreedyLoopTextLength();
+    if (node_length == kNodeIsTooComplexForGreedyLoops) {
+      return kNodeIsTooComplexForGreedyLoops;
+    }
+    length += node_length;
+    SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
+    node = seq_node->on_success();
+  }
+  return read_backward() ? -length : length;
+}
+
+
+void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
+  DCHECK_NULL(loop_node_);
+  AddAlternative(alt);
+  loop_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
+  DCHECK_NULL(continue_node_);
+  AddAlternative(alt);
+  continue_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  if (trace->stop_node() == this) {
+    // Back edge of greedy optimized loop node graph.
+    int text_length =
+        GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
+    DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
+    // Update the counter-based backtracking info on the stack.  This is an
+    // optimization for greedy loops (see below).
+    DCHECK(trace->cp_offset() == text_length);
+    macro_assembler->AdvanceCurrentPosition(text_length);
+    macro_assembler->GoTo(trace->loop_label());
+    return;
+  }
+  DCHECK_NULL(trace->stop_node());
+  if (!trace->is_trivial()) {
+    trace->Flush(compiler, this);
+    return;
+  }
+  ChoiceNode::Emit(compiler, trace);
+}
+
+
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
+                                           int eats_at_least) {
+  int preload_characters = Min(4, eats_at_least);
+  if (compiler->macro_assembler()->CanReadUnaligned()) {
+    bool one_byte = compiler->one_byte();
+    if (one_byte) {
+      if (preload_characters > 4) preload_characters = 4;
+      // We can't preload 3 characters because there is no machine instruction
+      // to do that.  We can't just load 4 because we could be reading
+      // beyond the end of the string, which could cause a memory fault.
+      if (preload_characters == 3) preload_characters = 2;
+    } else {
+      if (preload_characters > 2) preload_characters = 2;
+    }
+  } else {
+    if (preload_characters > 1) preload_characters = 1;
+  }
+  return preload_characters;
+}
+
+
+// This class is used when generating the alternatives in a choice node.  It
+// records the way the alternative is being code generated.
+class AlternativeGeneration: public Malloced {
+ public:
+  AlternativeGeneration()
+      : possible_success(),
+        expects_preload(false),
+        after(),
+        quick_check_details() { }
+  Label possible_success;
+  bool expects_preload;
+  Label after;
+  QuickCheckDetails quick_check_details;
+};
+
+
+// Creates a list of AlternativeGenerations.  If the list has a reasonable
+// size then it is on the stack, otherwise the excess is on the heap.
+class AlternativeGenerationList {
+ public:
+  AlternativeGenerationList(int count, Zone* zone)
+      : alt_gens_(count, zone) {
+    for (int i = 0; i < count && i < kAFew; i++) {
+      alt_gens_.Add(a_few_alt_gens_ + i, zone);
+    }
+    for (int i = kAFew; i < count; i++) {
+      alt_gens_.Add(new AlternativeGeneration(), zone);
+    }
+  }
+  ~AlternativeGenerationList() {
+    for (int i = kAFew; i < alt_gens_.length(); i++) {
+      delete alt_gens_[i];
+      alt_gens_[i] = NULL;
+    }
+  }
+
+  AlternativeGeneration* at(int i) {
+    return alt_gens_[i];
+  }
+
+ private:
+  static const int kAFew = 10;
+  ZoneList<AlternativeGeneration*> alt_gens_;
+  AlternativeGeneration a_few_alt_gens_[kAFew];
+};
+
+
+// The '2' variant is has inclusive from and exclusive to.
+// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
+// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
+static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
+    0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
+    0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
+    0xFEFF, 0xFF00, 0x10000 };
+static const int kSpaceRangeCount = arraysize(kSpaceRanges);
+
+static const int kWordRanges[] = {
+    '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
+static const int kWordRangeCount = arraysize(kWordRanges);
+static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
+static const int kDigitRangeCount = arraysize(kDigitRanges);
+static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
+static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
+    0x2028, 0x202A, 0x10000 };
+static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
+
+
+void BoyerMoorePositionInfo::Set(int character) {
+  SetInterval(Interval(character, character));
+}
+
+
+void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
+  s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
+  w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
+  d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
+  surrogate_ =
+      AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
+  if (interval.to() - interval.from() >= kMapSize - 1) {
+    if (map_count_ != kMapSize) {
+      map_count_ = kMapSize;
+      for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+    }
+    return;
+  }
+  for (int i = interval.from(); i <= interval.to(); i++) {
+    int mod_character = (i & kMask);
+    if (!map_->at(mod_character)) {
+      map_count_++;
+      map_->at(mod_character) = true;
+    }
+    if (map_count_ == kMapSize) return;
+  }
+}
+
+
+void BoyerMoorePositionInfo::SetAll() {
+  s_ = w_ = d_ = kLatticeUnknown;
+  if (map_count_ != kMapSize) {
+    map_count_ = kMapSize;
+    for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+  }
+}
+
+
+BoyerMooreLookahead::BoyerMooreLookahead(
+    int length, RegExpCompiler* compiler, Zone* zone)
+    : length_(length),
+      compiler_(compiler) {
+  if (compiler->one_byte()) {
+    max_char_ = String::kMaxOneByteCharCode;
+  } else {
+    max_char_ = String::kMaxUtf16CodeUnit;
+  }
+  bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
+  for (int i = 0; i < length; i++) {
+    bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
+  }
+}
+
+
+// Find the longest range of lookahead that has the fewest number of different
+// characters that can occur at a given position.  Since we are optimizing two
+// different parameters at once this is a tradeoff.
+bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
+  int biggest_points = 0;
+  // If more than 32 characters out of 128 can occur it is unlikely that we can
+  // be lucky enough to step forwards much of the time.
+  const int kMaxMax = 32;
+  for (int max_number_of_chars = 4;
+       max_number_of_chars < kMaxMax;
+       max_number_of_chars *= 2) {
+    biggest_points =
+        FindBestInterval(max_number_of_chars, biggest_points, from, to);
+  }
+  if (biggest_points == 0) return false;
+  return true;
+}
+
+
+// Find the highest-points range between 0 and length_ where the character
+// information is not too vague.  'Too vague' means that there are more than
+// max_number_of_chars that can occur at this position.  Calculates the number
+// of points as the product of width-of-the-range and
+// probability-of-finding-one-of-the-characters, where the probability is
+// calculated using the frequency distribution of the sample subject string.
+int BoyerMooreLookahead::FindBestInterval(
+    int max_number_of_chars, int old_biggest_points, int* from, int* to) {
+  int biggest_points = old_biggest_points;
+  static const int kSize = RegExpMacroAssembler::kTableSize;
+  for (int i = 0; i < length_; ) {
+    while (i < length_ && Count(i) > max_number_of_chars) i++;
+    if (i == length_) break;
+    int remembered_from = i;
+    bool union_map[kSize];
+    for (int j = 0; j < kSize; j++) union_map[j] = false;
+    while (i < length_ && Count(i) <= max_number_of_chars) {
+      BoyerMoorePositionInfo* map = bitmaps_->at(i);
+      for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+      i++;
+    }
+    int frequency = 0;
+    for (int j = 0; j < kSize; j++) {
+      if (union_map[j]) {
+        // Add 1 to the frequency to give a small per-character boost for
+        // the cases where our sampling is not good enough and many
+        // characters have a frequency of zero.  This means the frequency
+        // can theoretically be up to 2*kSize though we treat it mostly as
+        // a fraction of kSize.
+        frequency += compiler_->frequency_collator()->Frequency(j) + 1;
+      }
+    }
+    // We use the probability of skipping times the distance we are skipping to
+    // judge the effectiveness of this.  Actually we have a cut-off:  By
+    // dividing by 2 we switch off the skipping if the probability of skipping
+    // is less than 50%.  This is because the multibyte mask-and-compare
+    // skipping in quickcheck is more likely to do well on this case.
+    bool in_quickcheck_range =
+        ((i - remembered_from < 4) ||
+         (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
+    // Called 'probability' but it is only a rough estimate and can actually
+    // be outside the 0-kSize range.
+    int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+    int points = (i - remembered_from) * probability;
+    if (points > biggest_points) {
+      *from = remembered_from;
+      *to = i - 1;
+      biggest_points = points;
+    }
+  }
+  return biggest_points;
+}
+
+
+// Take all the characters that will not prevent a successful match if they
+// occur in the subject string in the range between min_lookahead and
+// max_lookahead (inclusive) measured from the current position.  If the
+// character at max_lookahead offset is not one of these characters, then we
+// can safely skip forwards by the number of characters in the range.
+int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
+                                      int max_lookahead,
+                                      Handle<ByteArray> boolean_skip_table) {
+  const int kSize = RegExpMacroAssembler::kTableSize;
+
+  const int kSkipArrayEntry = 0;
+  const int kDontSkipArrayEntry = 1;
+
+  for (int i = 0; i < kSize; i++) {
+    boolean_skip_table->set(i, kSkipArrayEntry);
+  }
+  int skip = max_lookahead + 1 - min_lookahead;
+
+  for (int i = max_lookahead; i >= min_lookahead; i--) {
+    BoyerMoorePositionInfo* map = bitmaps_->at(i);
+    for (int j = 0; j < kSize; j++) {
+      if (map->at(j)) {
+        boolean_skip_table->set(j, kDontSkipArrayEntry);
+      }
+    }
+  }
+
+  return skip;
+}
+
+
+// See comment above on the implementation of GetSkipTable.
+void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
+  const int kSize = RegExpMacroAssembler::kTableSize;
+
+  int min_lookahead = 0;
+  int max_lookahead = 0;
+
+  if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
+
+  bool found_single_character = false;
+  int single_character = 0;
+  for (int i = max_lookahead; i >= min_lookahead; i--) {
+    BoyerMoorePositionInfo* map = bitmaps_->at(i);
+    if (map->map_count() > 1 ||
+        (found_single_character && map->map_count() != 0)) {
+      found_single_character = false;
+      break;
+    }
+    for (int j = 0; j < kSize; j++) {
+      if (map->at(j)) {
+        found_single_character = true;
+        single_character = j;
+        break;
+      }
+    }
+  }
+
+  int lookahead_width = max_lookahead + 1 - min_lookahead;
+
+  if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
+    // The mask-compare can probably handle this better.
+    return;
+  }
+
+  if (found_single_character) {
+    Label cont, again;
+    masm->Bind(&again);
+    masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+    if (max_char_ > kSize) {
+      masm->CheckCharacterAfterAnd(single_character,
+                                   RegExpMacroAssembler::kTableMask,
+                                   &cont);
+    } else {
+      masm->CheckCharacter(single_character, &cont);
+    }
+    masm->AdvanceCurrentPosition(lookahead_width);
+    masm->GoTo(&again);
+    masm->Bind(&cont);
+    return;
+  }
+
+  Factory* factory = masm->isolate()->factory();
+  Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
+  int skip_distance = GetSkipTable(
+      min_lookahead, max_lookahead, boolean_skip_table);
+  DCHECK(skip_distance != 0);
+
+  Label cont, again;
+  masm->Bind(&again);
+  masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+  masm->CheckBitInTable(boolean_skip_table, &cont);
+  masm->AdvanceCurrentPosition(skip_distance);
+  masm->GoTo(&again);
+  masm->Bind(&cont);
+}
+
+
+/* Code generation for choice nodes.
+ *
+ * We generate quick checks that do a mask and compare to eliminate a
+ * choice.  If the quick check succeeds then it jumps to the continuation to
+ * do slow checks and check subsequent nodes.  If it fails (the common case)
+ * it falls through to the next choice.
+ *
+ * Here is the desired flow graph.  Nodes directly below each other imply
+ * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
+ * 3 doesn't have a quick check so we have to call the slow check.
+ * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
+ * regexp continuation is generated directly after the Sn node, up to the
+ * next GoTo if we decide to reuse some already generated code.  Some
+ * nodes expect preload_characters to be preloaded into the current
+ * character register.  R nodes do this preloading.  Vertices are marked
+ * F for failures and S for success (possible success in the case of quick
+ * nodes).  L, V, < and > are used as arrow heads.
+ *
+ * ----------> R
+ *             |
+ *             V
+ *            Q1 -----> S1
+ *             |   S   /
+ *            F|      /
+ *             |    F/
+ *             |    /
+ *             |   R
+ *             |  /
+ *             V L
+ *            Q2 -----> S2
+ *             |   S   /
+ *            F|      /
+ *             |    F/
+ *             |    /
+ *             |   R
+ *             |  /
+ *             V L
+ *            S3
+ *             |
+ *            F|
+ *             |
+ *             R
+ *             |
+ * backtrack   V
+ * <----------Q4
+ *   \    F    |
+ *    \        |S
+ *     \   F   V
+ *      \-----S4
+ *
+ * For greedy loops we push the current position, then generate the code that
+ * eats the input specially in EmitGreedyLoop.  The other choice (the
+ * continuation) is generated by the normal code in EmitChoices, and steps back
+ * in the input to the starting position when it fails to match.  The loop code
+ * looks like this (U is the unwind code that steps back in the greedy loop).
+ *
+ *              _____
+ *             /     \
+ *             V     |
+ * ----------> S1    |
+ *            /|     |
+ *           / |S    |
+ *         F/  \_____/
+ *         /
+ *        |<-----
+ *        |      \
+ *        V       |S
+ *        Q2 ---> U----->backtrack
+ *        |  F   /
+ *       S|     /
+ *        V  F /
+ *        S2--/
+ */
+
+GreedyLoopState::GreedyLoopState(bool not_at_start) {
+  counter_backtrack_trace_.set_backtrack(&label_);
+  if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
+}
+
+
+void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
+#ifdef DEBUG
+  int choice_count = alternatives_->length();
+  for (int i = 0; i < choice_count - 1; i++) {
+    GuardedAlternative alternative = alternatives_->at(i);
+    ZoneList<Guard*>* guards = alternative.guards();
+    int guard_count = (guards == NULL) ? 0 : guards->length();
+    for (int j = 0; j < guard_count; j++) {
+      DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
+    }
+  }
+#endif
+}
+
+
+void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
+                              Trace* current_trace,
+                              PreloadState* state) {
+    if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
+      // Save some time by looking at most one machine word ahead.
+      state->eats_at_least_ =
+          EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
+                      current_trace->at_start() == Trace::FALSE_VALUE);
+    }
+    state->preload_characters_ =
+        CalculatePreloadCharacters(compiler, state->eats_at_least_);
+
+    state->preload_is_current_ =
+        (current_trace->characters_preloaded() == state->preload_characters_);
+    state->preload_has_checked_bounds_ = state->preload_is_current_;
+}
+
+
+void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  int choice_count = alternatives_->length();
+
+  AssertGuardsMentionRegisters(trace);
+
+  LimitResult limit_result = LimitVersions(compiler, trace);
+  if (limit_result == DONE) return;
+  DCHECK(limit_result == CONTINUE);
+
+  // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
+  // other choice nodes we only flush if we are out of code size budget.
+  if (trace->flush_budget() == 0 && trace->actions() != NULL) {
+    trace->Flush(compiler, this);
+    return;
+  }
+
+  RecursionCheck rc(compiler);
+
+  PreloadState preload;
+  preload.init();
+  GreedyLoopState greedy_loop_state(not_at_start());
+
+  int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
+  AlternativeGenerationList alt_gens(choice_count, zone());
+
+  if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
+    trace = EmitGreedyLoop(compiler,
+                           trace,
+                           &alt_gens,
+                           &preload,
+                           &greedy_loop_state,
+                           text_length);
+  } else {
+    // TODO(erikcorry): Delete this.  We don't need this label, but it makes us
+    // match the traces produced pre-cleanup.
+    Label second_choice;
+    compiler->macro_assembler()->Bind(&second_choice);
+
+    preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
+
+    EmitChoices(compiler,
+                &alt_gens,
+                0,
+                trace,
+                &preload);
+  }
+
+  // At this point we need to generate slow checks for the alternatives where
+  // the quick check was inlined.  We can recognize these because the associated
+  // label was bound.
+  int new_flush_budget = trace->flush_budget() / choice_count;
+  for (int i = 0; i < choice_count; i++) {
+    AlternativeGeneration* alt_gen = alt_gens.at(i);
+    Trace new_trace(*trace);
+    // If there are actions to be flushed we have to limit how many times
+    // they are flushed.  Take the budget of the parent trace and distribute
+    // it fairly amongst the children.
+    if (new_trace.actions() != NULL) {
+      new_trace.set_flush_budget(new_flush_budget);
+    }
+    bool next_expects_preload =
+        i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
+    EmitOutOfLineContinuation(compiler,
+                              &new_trace,
+                              alternatives_->at(i),
+                              alt_gen,
+                              preload.preload_characters_,
+                              next_expects_preload);
+  }
+}
+
+
+Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
+                                  Trace* trace,
+                                  AlternativeGenerationList* alt_gens,
+                                  PreloadState* preload,
+                                  GreedyLoopState* greedy_loop_state,
+                                  int text_length) {
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  // Here we have special handling for greedy loops containing only text nodes
+  // and other simple nodes.  These are handled by pushing the current
+  // position on the stack and then incrementing the current position each
+  // time around the switch.  On backtrack we decrement the current position
+  // and check it against the pushed value.  This avoids pushing backtrack
+  // information for each iteration of the loop, which could take up a lot of
+  // space.
+  DCHECK(trace->stop_node() == NULL);
+  macro_assembler->PushCurrentPosition();
+  Label greedy_match_failed;
+  Trace greedy_match_trace;
+  if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
+  greedy_match_trace.set_backtrack(&greedy_match_failed);
+  Label loop_label;
+  macro_assembler->Bind(&loop_label);
+  greedy_match_trace.set_stop_node(this);
+  greedy_match_trace.set_loop_label(&loop_label);
+  alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
+  macro_assembler->Bind(&greedy_match_failed);
+
+  Label second_choice;  // For use in greedy matches.
+  macro_assembler->Bind(&second_choice);
+
+  Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
+
+  EmitChoices(compiler,
+              alt_gens,
+              1,
+              new_trace,
+              preload);
+
+  macro_assembler->Bind(greedy_loop_state->label());
+  // If we have unwound to the bottom then backtrack.
+  macro_assembler->CheckGreedyLoop(trace->backtrack());
+  // Otherwise try the second priority at an earlier position.
+  macro_assembler->AdvanceCurrentPosition(-text_length);
+  macro_assembler->GoTo(&second_choice);
+  return new_trace;
+}
+
+int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
+                                              Trace* trace) {
+  int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
+  if (alternatives_->length() != 2) return eats_at_least;
+
+  GuardedAlternative alt1 = alternatives_->at(1);
+  if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
+    return eats_at_least;
+  }
+  RegExpNode* eats_anything_node = alt1.node();
+  if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
+    return eats_at_least;
+  }
+
+  // Really we should be creating a new trace when we execute this function,
+  // but there is no need, because the code it generates cannot backtrack, and
+  // we always arrive here with a trivial trace (since it's the entry to a
+  // loop.  That also implies that there are no preloaded characters, which is
+  // good, because it means we won't be violating any assumptions by
+  // overwriting those characters with new load instructions.
+  DCHECK(trace->is_trivial());
+
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  Isolate* isolate = macro_assembler->isolate();
+  // At this point we know that we are at a non-greedy loop that will eat
+  // any character one at a time.  Any non-anchored regexp has such a
+  // loop prepended to it in order to find where it starts.  We look for
+  // a pattern of the form ...abc... where we can look 6 characters ahead
+  // and step forwards 3 if the character is not one of abc.  Abc need
+  // not be atoms, they can be any reasonably limited character class or
+  // small alternation.
+  BoyerMooreLookahead* bm = bm_info(false);
+  if (bm == NULL) {
+    eats_at_least = Min(kMaxLookaheadForBoyerMoore,
+                        EatsAtLeast(kMaxLookaheadForBoyerMoore,
+                                    kRecursionBudget,
+                                    false));
+    if (eats_at_least >= 1) {
+      bm = new(zone()) BoyerMooreLookahead(eats_at_least,
+                                           compiler,
+                                           zone());
+      GuardedAlternative alt0 = alternatives_->at(0);
+      alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
+    }
+  }
+  if (bm != NULL) {
+    bm->EmitSkipInstructions(macro_assembler);
+  }
+  return eats_at_least;
+}
+
+
+void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
+                             AlternativeGenerationList* alt_gens,
+                             int first_choice,
+                             Trace* trace,
+                             PreloadState* preload) {
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  SetUpPreLoad(compiler, trace, preload);
+
+  // For now we just call all choices one after the other.  The idea ultimately
+  // is to use the Dispatch table to try only the relevant ones.
+  int choice_count = alternatives_->length();
+
+  int new_flush_budget = trace->flush_budget() / choice_count;
+
+  for (int i = first_choice; i < choice_count; i++) {
+    bool is_last = i == choice_count - 1;
+    bool fall_through_on_failure = !is_last;
+    GuardedAlternative alternative = alternatives_->at(i);
+    AlternativeGeneration* alt_gen = alt_gens->at(i);
+    alt_gen->quick_check_details.set_characters(preload->preload_characters_);
+    ZoneList<Guard*>* guards = alternative.guards();
+    int guard_count = (guards == NULL) ? 0 : guards->length();
+    Trace new_trace(*trace);
+    new_trace.set_characters_preloaded(preload->preload_is_current_ ?
+                                         preload->preload_characters_ :
+                                         0);
+    if (preload->preload_has_checked_bounds_) {
+      new_trace.set_bound_checked_up_to(preload->preload_characters_);
+    }
+    new_trace.quick_check_performed()->Clear();
+    if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
+    if (!is_last) {
+      new_trace.set_backtrack(&alt_gen->after);
+    }
+    alt_gen->expects_preload = preload->preload_is_current_;
+    bool generate_full_check_inline = false;
+    if (compiler->optimize() &&
+        try_to_emit_quick_check_for_alternative(i == 0) &&
+        alternative.node()->EmitQuickCheck(
+            compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
+            &alt_gen->possible_success, &alt_gen->quick_check_details,
+            fall_through_on_failure)) {
+      // Quick check was generated for this choice.
+      preload->preload_is_current_ = true;
+      preload->preload_has_checked_bounds_ = true;
+      // If we generated the quick check to fall through on possible success,
+      // we now need to generate the full check inline.
+      if (!fall_through_on_failure) {
+        macro_assembler->Bind(&alt_gen->possible_success);
+        new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+        new_trace.set_characters_preloaded(preload->preload_characters_);
+        new_trace.set_bound_checked_up_to(preload->preload_characters_);
+        generate_full_check_inline = true;
+      }
+    } else if (alt_gen->quick_check_details.cannot_match()) {
+      if (!fall_through_on_failure) {
+        macro_assembler->GoTo(trace->backtrack());
+      }
+      continue;
+    } else {
+      // No quick check was generated.  Put the full code here.
+      // If this is not the first choice then there could be slow checks from
+      // previous cases that go here when they fail.  There's no reason to
+      // insist that they preload characters since the slow check we are about
+      // to generate probably can't use it.
+      if (i != first_choice) {
+        alt_gen->expects_preload = false;
+        new_trace.InvalidateCurrentCharacter();
+      }
+      generate_full_check_inline = true;
+    }
+    if (generate_full_check_inline) {
+      if (new_trace.actions() != NULL) {
+        new_trace.set_flush_budget(new_flush_budget);
+      }
+      for (int j = 0; j < guard_count; j++) {
+        GenerateGuard(macro_assembler, guards->at(j), &new_trace);
+      }
+      alternative.node()->Emit(compiler, &new_trace);
+      preload->preload_is_current_ = false;
+    }
+    macro_assembler->Bind(&alt_gen->after);
+  }
+}
+
+
+void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
+                                           Trace* trace,
+                                           GuardedAlternative alternative,
+                                           AlternativeGeneration* alt_gen,
+                                           int preload_characters,
+                                           bool next_expects_preload) {
+  if (!alt_gen->possible_success.is_linked()) return;
+
+  RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+  macro_assembler->Bind(&alt_gen->possible_success);
+  Trace out_of_line_trace(*trace);
+  out_of_line_trace.set_characters_preloaded(preload_characters);
+  out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+  if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
+  ZoneList<Guard*>* guards = alternative.guards();
+  int guard_count = (guards == NULL) ? 0 : guards->length();
+  if (next_expects_preload) {
+    Label reload_current_char;
+    out_of_line_trace.set_backtrack(&reload_current_char);
+    for (int j = 0; j < guard_count; j++) {
+      GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+    }
+    alternative.node()->Emit(compiler, &out_of_line_trace);
+    macro_assembler->Bind(&reload_current_char);
+    // Reload the current character, since the next quick check expects that.
+    // We don't need to check bounds here because we only get into this
+    // code through a quick check which already did the checked load.
+    macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
+                                          NULL,
+                                          false,
+                                          preload_characters);
+    macro_assembler->GoTo(&(alt_gen->after));
+  } else {
+    out_of_line_trace.set_backtrack(&(alt_gen->after));
+    for (int j = 0; j < guard_count; j++) {
+      GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+    }
+    alternative.node()->Emit(compiler, &out_of_line_trace);
+  }
+}
+
+
+void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  LimitResult limit_result = LimitVersions(compiler, trace);
+  if (limit_result == DONE) return;
+  DCHECK(limit_result == CONTINUE);
+
+  RecursionCheck rc(compiler);
+
+  switch (action_type_) {
+    case STORE_POSITION: {
+      Trace::DeferredCapture
+          new_capture(data_.u_position_register.reg,
+                      data_.u_position_register.is_capture,
+                      trace);
+      Trace new_trace = *trace;
+      new_trace.add_action(&new_capture);
+      on_success()->Emit(compiler, &new_trace);
+      break;
+    }
+    case INCREMENT_REGISTER: {
+      Trace::DeferredIncrementRegister
+          new_increment(data_.u_increment_register.reg);
+      Trace new_trace = *trace;
+      new_trace.add_action(&new_increment);
+      on_success()->Emit(compiler, &new_trace);
+      break;
+    }
+    case SET_REGISTER: {
+      Trace::DeferredSetRegister
+          new_set(data_.u_store_register.reg, data_.u_store_register.value);
+      Trace new_trace = *trace;
+      new_trace.add_action(&new_set);
+      on_success()->Emit(compiler, &new_trace);
+      break;
+    }
+    case CLEAR_CAPTURES: {
+      Trace::DeferredClearCaptures
+        new_capture(Interval(data_.u_clear_captures.range_from,
+                             data_.u_clear_captures.range_to));
+      Trace new_trace = *trace;
+      new_trace.add_action(&new_capture);
+      on_success()->Emit(compiler, &new_trace);
+      break;
+    }
+    case BEGIN_SUBMATCH:
+      if (!trace->is_trivial()) {
+        trace->Flush(compiler, this);
+      } else {
+        assembler->WriteCurrentPositionToRegister(
+            data_.u_submatch.current_position_register, 0);
+        assembler->WriteStackPointerToRegister(
+            data_.u_submatch.stack_pointer_register);
+        on_success()->Emit(compiler, trace);
+      }
+      break;
+    case EMPTY_MATCH_CHECK: {
+      int start_pos_reg = data_.u_empty_match_check.start_register;
+      int stored_pos = 0;
+      int rep_reg = data_.u_empty_match_check.repetition_register;
+      bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
+      bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
+      if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
+        // If we know we haven't advanced and there is no minimum we
+        // can just backtrack immediately.
+        assembler->GoTo(trace->backtrack());
+      } else if (know_dist && stored_pos < trace->cp_offset()) {
+        // If we know we've advanced we can generate the continuation
+        // immediately.
+        on_success()->Emit(compiler, trace);
+      } else if (!trace->is_trivial()) {
+        trace->Flush(compiler, this);
+      } else {
+        Label skip_empty_check;
+        // If we have a minimum number of repetitions we check the current
+        // number first and skip the empty check if it's not enough.
+        if (has_minimum) {
+          int limit = data_.u_empty_match_check.repetition_limit;
+          assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
+        }
+        // If the match is empty we bail out, otherwise we fall through
+        // to the on-success continuation.
+        assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
+                                   trace->backtrack());
+        assembler->Bind(&skip_empty_check);
+        on_success()->Emit(compiler, trace);
+      }
+      break;
+    }
+    case POSITIVE_SUBMATCH_SUCCESS: {
+      if (!trace->is_trivial()) {
+        trace->Flush(compiler, this);
+        return;
+      }
+      assembler->ReadCurrentPositionFromRegister(
+          data_.u_submatch.current_position_register);
+      assembler->ReadStackPointerFromRegister(
+          data_.u_submatch.stack_pointer_register);
+      int clear_register_count = data_.u_submatch.clear_register_count;
+      if (clear_register_count == 0) {
+        on_success()->Emit(compiler, trace);
+        return;
+      }
+      int clear_registers_from = data_.u_submatch.clear_register_from;
+      Label clear_registers_backtrack;
+      Trace new_trace = *trace;
+      new_trace.set_backtrack(&clear_registers_backtrack);
+      on_success()->Emit(compiler, &new_trace);
+
+      assembler->Bind(&clear_registers_backtrack);
+      int clear_registers_to = clear_registers_from + clear_register_count - 1;
+      assembler->ClearRegisters(clear_registers_from, clear_registers_to);
+
+      DCHECK(trace->backtrack() == NULL);
+      assembler->Backtrack();
+      return;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+  RegExpMacroAssembler* assembler = compiler->macro_assembler();
+  if (!trace->is_trivial()) {
+    trace->Flush(compiler, this);
+    return;
+  }
+
+  LimitResult limit_result = LimitVersions(compiler, trace);
+  if (limit_result == DONE) return;
+  DCHECK(limit_result == CONTINUE);
+
+  RecursionCheck rc(compiler);
+
+  DCHECK_EQ(start_reg_ + 1, end_reg_);
+  if (compiler->ignore_case()) {
+    assembler->CheckNotBackReferenceIgnoreCase(start_reg_, read_backward(),
+                                               trace->backtrack());
+  } else {
+    assembler->CheckNotBackReference(start_reg_, read_backward(),
+                                     trace->backtrack());
+  }
+  // We are going to advance backward, so we may end up at the start.
+  if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
+  on_success()->Emit(compiler, trace);
+}
+
+
+// -------------------------------------------------------------------
+// Dot/dotty output
+
+
+#ifdef DEBUG
+
+
+class DotPrinter: public NodeVisitor {
+ public:
+  DotPrinter(std::ostream& os, bool ignore_case)  // NOLINT
+      : os_(os),
+        ignore_case_(ignore_case) {}
+  void PrintNode(const char* label, RegExpNode* node);
+  void Visit(RegExpNode* node);
+  void PrintAttributes(RegExpNode* from);
+  void PrintOnFailure(RegExpNode* from, RegExpNode* to);
+#define DECLARE_VISIT(Type)                                          \
+  virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ private:
+  std::ostream& os_;
+  bool ignore_case_;
+};
+
+
+void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
+  os_ << "digraph G {\n  graph [label=\"";
+  for (int i = 0; label[i]; i++) {
+    switch (label[i]) {
+      case '\\':
+        os_ << "\\\\";
+        break;
+      case '"':
+        os_ << "\"";
+        break;
+      default:
+        os_ << label[i];
+        break;
+    }
+  }
+  os_ << "\"];\n";
+  Visit(node);
+  os_ << "}" << std::endl;
+}
+
+
+void DotPrinter::Visit(RegExpNode* node) {
+  if (node->info()->visited) return;
+  node->info()->visited = true;
+  node->Accept(this);
+}
+
+
+void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
+  os_ << "  n" << from << " -> n" << on_failure << " [style=dotted];\n";
+  Visit(on_failure);
+}
+
+
+class TableEntryBodyPrinter {
+ public:
+  TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice)  // NOLINT
+      : os_(os),
+        choice_(choice) {}
+  void Call(uc16 from, DispatchTable::Entry entry) {
+    OutSet* out_set = entry.out_set();
+    for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+      if (out_set->Get(i)) {
+        os_ << "    n" << choice() << ":s" << from << "o" << i << " -> n"
+            << choice()->alternatives()->at(i).node() << ";\n";
+      }
+    }
+  }
+ private:
+  ChoiceNode* choice() { return choice_; }
+  std::ostream& os_;
+  ChoiceNode* choice_;
+};
+
+
+class TableEntryHeaderPrinter {
+ public:
+  explicit TableEntryHeaderPrinter(std::ostream& os)  // NOLINT
+      : first_(true),
+        os_(os) {}
+  void Call(uc16 from, DispatchTable::Entry entry) {
+    if (first_) {
+      first_ = false;
+    } else {
+      os_ << "|";
+    }
+    os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
+    OutSet* out_set = entry.out_set();
+    int priority = 0;
+    for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+      if (out_set->Get(i)) {
+        if (priority > 0) os_ << "|";
+        os_ << "<s" << from << "o" << i << "> " << priority;
+        priority++;
+      }
+    }
+    os_ << "}}";
+  }
+
+ private:
+  bool first_;
+  std::ostream& os_;
+};
+
+
+class AttributePrinter {
+ public:
+  explicit AttributePrinter(std::ostream& os)  // NOLINT
+      : os_(os),
+        first_(true) {}
+  void PrintSeparator() {
+    if (first_) {
+      first_ = false;
+    } else {
+      os_ << "|";
+    }
+  }
+  void PrintBit(const char* name, bool value) {
+    if (!value) return;
+    PrintSeparator();
+    os_ << "{" << name << "}";
+  }
+  void PrintPositive(const char* name, int value) {
+    if (value < 0) return;
+    PrintSeparator();
+    os_ << "{" << name << "|" << value << "}";
+  }
+
+ private:
+  std::ostream& os_;
+  bool first_;
+};
+
+
+void DotPrinter::PrintAttributes(RegExpNode* that) {
+  os_ << "  a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
+      << "margin=0.1, fontsize=10, label=\"{";
+  AttributePrinter printer(os_);
+  NodeInfo* info = that->info();
+  printer.PrintBit("NI", info->follows_newline_interest);
+  printer.PrintBit("WI", info->follows_word_interest);
+  printer.PrintBit("SI", info->follows_start_interest);
+  Label* label = that->label();
+  if (label->is_bound())
+    printer.PrintPositive("@", label->pos());
+  os_ << "}\"];\n"
+      << "  a" << that << " -> n" << that
+      << " [style=dashed, color=grey, arrowhead=none];\n";
+}
+
+
+static const bool kPrintDispatchTable = false;
+void DotPrinter::VisitChoice(ChoiceNode* that) {
+  if (kPrintDispatchTable) {
+    os_ << "  n" << that << " [shape=Mrecord, label=\"";
+    TableEntryHeaderPrinter header_printer(os_);
+    that->GetTable(ignore_case_)->ForEach(&header_printer);
+    os_ << "\"]\n";
+    PrintAttributes(that);
+    TableEntryBodyPrinter body_printer(os_, that);
+    that->GetTable(ignore_case_)->ForEach(&body_printer);
+  } else {
+    os_ << "  n" << that << " [shape=Mrecord, label=\"?\"];\n";
+    for (int i = 0; i < that->alternatives()->length(); i++) {
+      GuardedAlternative alt = that->alternatives()->at(i);
+      os_ << "  n" << that << " -> n" << alt.node();
+    }
+  }
+  for (int i = 0; i < that->alternatives()->length(); i++) {
+    GuardedAlternative alt = that->alternatives()->at(i);
+    alt.node()->Accept(this);
+  }
+}
+
+
+void DotPrinter::VisitText(TextNode* that) {
+  Zone* zone = that->zone();
+  os_ << "  n" << that << " [label=\"";
+  for (int i = 0; i < that->elements()->length(); i++) {
+    if (i > 0) os_ << " ";
+    TextElement elm = that->elements()->at(i);
+    switch (elm.text_type()) {
+      case TextElement::ATOM: {
+        Vector<const uc16> data = elm.atom()->data();
+        for (int i = 0; i < data.length(); i++) {
+          os_ << static_cast<char>(data[i]);
+        }
+        break;
+      }
+      case TextElement::CHAR_CLASS: {
+        RegExpCharacterClass* node = elm.char_class();
+        os_ << "[";
+        if (node->is_negated()) os_ << "^";
+        for (int j = 0; j < node->ranges(zone)->length(); j++) {
+          CharacterRange range = node->ranges(zone)->at(j);
+          os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
+        }
+        os_ << "]";
+        break;
+      }
+      default:
+        UNREACHABLE();
+    }
+  }
+  os_ << "\", shape=box, peripheries=2];\n";
+  PrintAttributes(that);
+  os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
+  Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitBackReference(BackReferenceNode* that) {
+  os_ << "  n" << that << " [label=\"$" << that->start_register() << "..$"
+      << that->end_register() << "\", shape=doubleoctagon];\n";
+  PrintAttributes(that);
+  os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
+  Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitEnd(EndNode* that) {
+  os_ << "  n" << that << " [style=bold, shape=point];\n";
+  PrintAttributes(that);
+}
+
+
+void DotPrinter::VisitAssertion(AssertionNode* that) {
+  os_ << "  n" << that << " [";
+  switch (that->assertion_type()) {
+    case AssertionNode::AT_END:
+      os_ << "label=\"$\", shape=septagon";
+      break;
+    case AssertionNode::AT_START:
+      os_ << "label=\"^\", shape=septagon";
+      break;
+    case AssertionNode::AT_BOUNDARY:
+      os_ << "label=\"\\b\", shape=septagon";
+      break;
+    case AssertionNode::AT_NON_BOUNDARY:
+      os_ << "label=\"\\B\", shape=septagon";
+      break;
+    case AssertionNode::AFTER_NEWLINE:
+      os_ << "label=\"(?<=\\n)\", shape=septagon";
+      break;
+  }
+  os_ << "];\n";
+  PrintAttributes(that);
+  RegExpNode* successor = that->on_success();
+  os_ << "  n" << that << " -> n" << successor << ";\n";
+  Visit(successor);
+}
+
+
+void DotPrinter::VisitAction(ActionNode* that) {
+  os_ << "  n" << that << " [";
+  switch (that->action_type_) {
+    case ActionNode::SET_REGISTER:
+      os_ << "label=\"$" << that->data_.u_store_register.reg
+          << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
+      break;
+    case ActionNode::INCREMENT_REGISTER:
+      os_ << "label=\"$" << that->data_.u_increment_register.reg
+          << "++\", shape=octagon";
+      break;
+    case ActionNode::STORE_POSITION:
+      os_ << "label=\"$" << that->data_.u_position_register.reg
+          << ":=$pos\", shape=octagon";
+      break;
+    case ActionNode::BEGIN_SUBMATCH:
+      os_ << "label=\"$" << that->data_.u_submatch.current_position_register
+          << ":=$pos,begin\", shape=septagon";
+      break;
+    case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
+      os_ << "label=\"escape\", shape=septagon";
+      break;
+    case ActionNode::EMPTY_MATCH_CHECK:
+      os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
+          << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
+          << "<" << that->data_.u_empty_match_check.repetition_limit
+          << "?\", shape=septagon";
+      break;
+    case ActionNode::CLEAR_CAPTURES: {
+      os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
+          << " to $" << that->data_.u_clear_captures.range_to
+          << "\", shape=septagon";
+      break;
+    }
+  }
+  os_ << "];\n";
+  PrintAttributes(that);
+  RegExpNode* successor = that->on_success();
+  os_ << "  n" << that << " -> n" << successor << ";\n";
+  Visit(successor);
+}
+
+
+class DispatchTableDumper {
+ public:
+  explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
+  void Call(uc16 key, DispatchTable::Entry entry);
+ private:
+  std::ostream& os_;
+};
+
+
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
+  os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
+  OutSet* set = entry.out_set();
+  bool first = true;
+  for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+    if (set->Get(i)) {
+      if (first) {
+        first = false;
+      } else {
+        os_ << ", ";
+      }
+      os_ << i;
+    }
+  }
+  os_ << "}\n";
+}
+
+
+void DispatchTable::Dump() {
+  OFStream os(stderr);
+  DispatchTableDumper dumper(os);
+  tree()->ForEach(&dumper);
+}
+
+
+void RegExpEngine::DotPrint(const char* label,
+                            RegExpNode* node,
+                            bool ignore_case) {
+  OFStream os(stdout);
+  DotPrinter printer(os, ignore_case);
+  printer.PrintNode(label, node);
+}
+
+
+#endif  // DEBUG
+
+
+// -------------------------------------------------------------------
+// Tree to graph conversion
+
+RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
+                               RegExpNode* on_success) {
+  ZoneList<TextElement>* elms =
+      new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
+  elms->Add(TextElement::Atom(this), compiler->zone());
+  return new (compiler->zone())
+      TextNode(elms, compiler->read_backward(), on_success);
+}
+
+
+RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
+                               RegExpNode* on_success) {
+  return new (compiler->zone())
+      TextNode(elements(), compiler->read_backward(), on_success);
+}
+
+
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
+                                 const int* special_class,
+                                 int length) {
+  length--;  // Remove final 0x10000.
+  DCHECK(special_class[length] == 0x10000);
+  DCHECK(ranges->length() != 0);
+  DCHECK(length != 0);
+  DCHECK(special_class[0] != 0);
+  if (ranges->length() != (length >> 1) + 1) {
+    return false;
+  }
+  CharacterRange range = ranges->at(0);
+  if (range.from() != 0) {
+    return false;
+  }
+  for (int i = 0; i < length; i += 2) {
+    if (special_class[i] != (range.to() + 1)) {
+      return false;
+    }
+    range = ranges->at((i >> 1) + 1);
+    if (special_class[i+1] != range.from()) {
+      return false;
+    }
+  }
+  if (range.to() != 0xffff) {
+    return false;
+  }
+  return true;
+}
+
+
+static bool CompareRanges(ZoneList<CharacterRange>* ranges,
+                          const int* special_class,
+                          int length) {
+  length--;  // Remove final 0x10000.
+  DCHECK(special_class[length] == 0x10000);
+  if (ranges->length() * 2 != length) {
+    return false;
+  }
+  for (int i = 0; i < length; i += 2) {
+    CharacterRange range = ranges->at(i >> 1);
+    if (range.from() != special_class[i] ||
+        range.to() != special_class[i + 1] - 1) {
+      return false;
+    }
+  }
+  return true;
+}
+
+
+bool RegExpCharacterClass::is_standard(Zone* zone) {
+  // TODO(lrn): Remove need for this function, by not throwing away information
+  // along the way.
+  if (is_negated_) {
+    return false;
+  }
+  if (set_.is_standard()) {
+    return true;
+  }
+  if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+    set_.set_standard_set_type('s');
+    return true;
+  }
+  if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+    set_.set_standard_set_type('S');
+    return true;
+  }
+  if (CompareInverseRanges(set_.ranges(zone),
+                           kLineTerminatorRanges,
+                           kLineTerminatorRangeCount)) {
+    set_.set_standard_set_type('.');
+    return true;
+  }
+  if (CompareRanges(set_.ranges(zone),
+                    kLineTerminatorRanges,
+                    kLineTerminatorRangeCount)) {
+    set_.set_standard_set_type('n');
+    return true;
+  }
+  if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+    set_.set_standard_set_type('w');
+    return true;
+  }
+  if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+    set_.set_standard_set_type('W');
+    return true;
+  }
+  return false;
+}
+
+
+RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
+                                         RegExpNode* on_success) {
+  return new (compiler->zone())
+      TextNode(this, compiler->read_backward(), on_success);
+}
+
+
+int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
+  RegExpAtom* atom1 = (*a)->AsAtom();
+  RegExpAtom* atom2 = (*b)->AsAtom();
+  uc16 character1 = atom1->data().at(0);
+  uc16 character2 = atom2->data().at(0);
+  if (character1 < character2) return -1;
+  if (character1 > character2) return 1;
+  return 0;
+}
+
+
+static unibrow::uchar Canonical(
+    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
+    unibrow::uchar c) {
+  unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
+  int length = canonicalize->get(c, '\0', chars);
+  DCHECK_LE(length, 1);
+  unibrow::uchar canonical = c;
+  if (length == 1) canonical = chars[0];
+  return canonical;
+}
+
+
+int CompareFirstCharCaseIndependent(
+    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
+    RegExpTree* const* a, RegExpTree* const* b) {
+  RegExpAtom* atom1 = (*a)->AsAtom();
+  RegExpAtom* atom2 = (*b)->AsAtom();
+  unibrow::uchar character1 = atom1->data().at(0);
+  unibrow::uchar character2 = atom2->data().at(0);
+  if (character1 == character2) return 0;
+  if (character1 >= 'a' || character2 >= 'a') {
+    character1 = Canonical(canonicalize, character1);
+    character2 = Canonical(canonicalize, character2);
+  }
+  return static_cast<int>(character1) - static_cast<int>(character2);
+}
+
+
+// We can stable sort runs of atoms, since the order does not matter if they
+// start with different characters.
+// Returns true if any consecutive atoms were found.
+bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+  int length = alternatives->length();
+  bool found_consecutive_atoms = false;
+  for (int i = 0; i < length; i++) {
+    while (i < length) {
+      RegExpTree* alternative = alternatives->at(i);
+      if (alternative->IsAtom()) break;
+      i++;
+    }
+    // i is length or it is the index of an atom.
+    if (i == length) break;
+    int first_atom = i;
+    i++;
+    while (i < length) {
+      RegExpTree* alternative = alternatives->at(i);
+      if (!alternative->IsAtom()) break;
+      i++;
+    }
+    // Sort atoms to get ones with common prefixes together.
+    // This step is more tricky if we are in a case-independent regexp,
+    // because it would change /is|I/ to /I|is/, and order matters when
+    // the regexp parts don't match only disjoint starting points. To fix
+    // this we have a version of CompareFirstChar that uses case-
+    // independent character classes for comparison.
+    DCHECK_LT(first_atom, alternatives->length());
+    DCHECK_LE(i, alternatives->length());
+    DCHECK_LE(first_atom, i);
+    if (compiler->ignore_case()) {
+      unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+          compiler->isolate()->regexp_macro_assembler_canonicalize();
+      auto compare_closure =
+          [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
+            return CompareFirstCharCaseIndependent(canonicalize, a, b);
+          };
+      alternatives->StableSort(compare_closure, first_atom, i - first_atom);
+    } else {
+      alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
+    }
+    if (i - first_atom > 1) found_consecutive_atoms = true;
+  }
+  return found_consecutive_atoms;
+}
+
+
+// Optimizes ab|ac|az to a(?:b|c|d).
+void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
+  Zone* zone = compiler->zone();
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+  int length = alternatives->length();
+
+  int write_posn = 0;
+  int i = 0;
+  while (i < length) {
+    RegExpTree* alternative = alternatives->at(i);
+    if (!alternative->IsAtom()) {
+      alternatives->at(write_posn++) = alternatives->at(i);
+      i++;
+      continue;
+    }
+    RegExpAtom* atom = alternative->AsAtom();
+    unibrow::uchar common_prefix = atom->data().at(0);
+    int first_with_prefix = i;
+    int prefix_length = atom->length();
+    i++;
+    while (i < length) {
+      alternative = alternatives->at(i);
+      if (!alternative->IsAtom()) break;
+      atom = alternative->AsAtom();
+      unibrow::uchar new_prefix = atom->data().at(0);
+      if (new_prefix != common_prefix) {
+        if (!compiler->ignore_case()) break;
+        unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+            compiler->isolate()->regexp_macro_assembler_canonicalize();
+        new_prefix = Canonical(canonicalize, new_prefix);
+        common_prefix = Canonical(canonicalize, common_prefix);
+        if (new_prefix != common_prefix) break;
+      }
+      prefix_length = Min(prefix_length, atom->length());
+      i++;
+    }
+    if (i > first_with_prefix + 2) {
+      // Found worthwhile run of alternatives with common prefix of at least one
+      // character.  The sorting function above did not sort on more than one
+      // character for reasons of correctness, but there may still be a longer
+      // common prefix if the terms were similar or presorted in the input.
+      // Find out how long the common prefix is.
+      int run_length = i - first_with_prefix;
+      atom = alternatives->at(first_with_prefix)->AsAtom();
+      for (int j = 1; j < run_length && prefix_length > 1; j++) {
+        RegExpAtom* old_atom =
+            alternatives->at(j + first_with_prefix)->AsAtom();
+        for (int k = 1; k < prefix_length; k++) {
+          if (atom->data().at(k) != old_atom->data().at(k)) {
+            prefix_length = k;
+            break;
+          }
+        }
+      }
+      RegExpAtom* prefix =
+          new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
+      ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
+      pair->Add(prefix, zone);
+      ZoneList<RegExpTree*>* suffixes =
+          new (zone) ZoneList<RegExpTree*>(run_length, zone);
+      for (int j = 0; j < run_length; j++) {
+        RegExpAtom* old_atom =
+            alternatives->at(j + first_with_prefix)->AsAtom();
+        int len = old_atom->length();
+        if (len == prefix_length) {
+          suffixes->Add(new (zone) RegExpEmpty(), zone);
+        } else {
+          RegExpTree* suffix = new (zone) RegExpAtom(
+              old_atom->data().SubVector(prefix_length, old_atom->length()));
+          suffixes->Add(suffix, zone);
+        }
+      }
+      pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
+      alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
+    } else {
+      // Just copy any non-worthwhile alternatives.
+      for (int j = first_with_prefix; j < i; j++) {
+        alternatives->at(write_posn++) = alternatives->at(j);
+      }
+    }
+  }
+  alternatives->Rewind(write_posn);  // Trim end of array.
+}
+
+
+// Optimizes b|c|z to [bcz].
+void RegExpDisjunction::FixSingleCharacterDisjunctions(
+    RegExpCompiler* compiler) {
+  Zone* zone = compiler->zone();
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+  int length = alternatives->length();
+
+  int write_posn = 0;
+  int i = 0;
+  while (i < length) {
+    RegExpTree* alternative = alternatives->at(i);
+    if (!alternative->IsAtom()) {
+      alternatives->at(write_posn++) = alternatives->at(i);
+      i++;
+      continue;
+    }
+    RegExpAtom* atom = alternative->AsAtom();
+    if (atom->length() != 1) {
+      alternatives->at(write_posn++) = alternatives->at(i);
+      i++;
+      continue;
+    }
+    int first_in_run = i;
+    i++;
+    while (i < length) {
+      alternative = alternatives->at(i);
+      if (!alternative->IsAtom()) break;
+      atom = alternative->AsAtom();
+      if (atom->length() != 1) break;
+      i++;
+    }
+    if (i > first_in_run + 1) {
+      // Found non-trivial run of single-character alternatives.
+      int run_length = i - first_in_run;
+      ZoneList<CharacterRange>* ranges =
+          new (zone) ZoneList<CharacterRange>(2, zone);
+      for (int j = 0; j < run_length; j++) {
+        RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
+        DCHECK_EQ(old_atom->length(), 1);
+        ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
+      }
+      alternatives->at(write_posn++) =
+          new (zone) RegExpCharacterClass(ranges, false);
+    } else {
+      // Just copy any trivial alternatives.
+      for (int j = first_in_run; j < i; j++) {
+        alternatives->at(write_posn++) = alternatives->at(j);
+      }
+    }
+  }
+  alternatives->Rewind(write_posn);  // Trim end of array.
+}
+
+
+RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
+                                      RegExpNode* on_success) {
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+
+  if (alternatives->length() > 2) {
+    bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
+    if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
+    FixSingleCharacterDisjunctions(compiler);
+    if (alternatives->length() == 1) {
+      return alternatives->at(0)->ToNode(compiler, on_success);
+    }
+  }
+
+  int length = alternatives->length();
+
+  ChoiceNode* result =
+      new(compiler->zone()) ChoiceNode(length, compiler->zone());
+  for (int i = 0; i < length; i++) {
+    GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
+                                                               on_success));
+    result->AddAlternative(alternative);
+  }
+  return result;
+}
+
+
+RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
+                                     RegExpNode* on_success) {
+  return ToNode(min(),
+                max(),
+                is_greedy(),
+                body(),
+                compiler,
+                on_success);
+}
+
+
+// Scoped object to keep track of how much we unroll quantifier loops in the
+// regexp graph generator.
+class RegExpExpansionLimiter {
+ public:
+  static const int kMaxExpansionFactor = 6;
+  RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
+      : compiler_(compiler),
+        saved_expansion_factor_(compiler->current_expansion_factor()),
+        ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
+    DCHECK(factor > 0);
+    if (ok_to_expand_) {
+      if (factor > kMaxExpansionFactor) {
+        // Avoid integer overflow of the current expansion factor.
+        ok_to_expand_ = false;
+        compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
+      } else {
+        int new_factor = saved_expansion_factor_ * factor;
+        ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
+        compiler->set_current_expansion_factor(new_factor);
+      }
+    }
+  }
+
+  ~RegExpExpansionLimiter() {
+    compiler_->set_current_expansion_factor(saved_expansion_factor_);
+  }
+
+  bool ok_to_expand() { return ok_to_expand_; }
+
+ private:
+  RegExpCompiler* compiler_;
+  int saved_expansion_factor_;
+  bool ok_to_expand_;
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
+};
+
+
+RegExpNode* RegExpQuantifier::ToNode(int min,
+                                     int max,
+                                     bool is_greedy,
+                                     RegExpTree* body,
+                                     RegExpCompiler* compiler,
+                                     RegExpNode* on_success,
+                                     bool not_at_start) {
+  // x{f, t} becomes this:
+  //
+  //             (r++)<-.
+  //               |     `
+  //               |     (x)
+  //               v     ^
+  //      (r=0)-->(?)---/ [if r < t]
+  //               |
+  //   [if r >= f] \----> ...
+  //
+
+  // 15.10.2.5 RepeatMatcher algorithm.
+  // The parser has already eliminated the case where max is 0.  In the case
+  // where max_match is zero the parser has removed the quantifier if min was
+  // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
+
+  // If we know that we cannot match zero length then things are a little
+  // simpler since we don't need to make the special zero length match check
+  // from step 2.1.  If the min and max are small we can unroll a little in
+  // this case.
+  static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
+  static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
+  if (max == 0) return on_success;  // This can happen due to recursion.
+  bool body_can_be_empty = (body->min_match() == 0);
+  int body_start_reg = RegExpCompiler::kNoRegister;
+  Interval capture_registers = body->CaptureRegisters();
+  bool needs_capture_clearing = !capture_registers.is_empty();
+  Zone* zone = compiler->zone();
+
+  if (body_can_be_empty) {
+    body_start_reg = compiler->AllocateRegister();
+  } else if (compiler->optimize() && !needs_capture_clearing) {
+    // Only unroll if there are no captures and the body can't be
+    // empty.
+    {
+      RegExpExpansionLimiter limiter(
+          compiler, min + ((max != min) ? 1 : 0));
+      if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
+        int new_max = (max == kInfinity) ? max : max - min;
+        // Recurse once to get the loop or optional matches after the fixed
+        // ones.
+        RegExpNode* answer = ToNode(
+            0, new_max, is_greedy, body, compiler, on_success, true);
+        // Unroll the forced matches from 0 to min.  This can cause chains of
+        // TextNodes (which the parser does not generate).  These should be
+        // combined if it turns out they hinder good code generation.
+        for (int i = 0; i < min; i++) {
+          answer = body->ToNode(compiler, answer);
+        }
+        return answer;
+      }
+    }
+    if (max <= kMaxUnrolledMaxMatches && min == 0) {
+      DCHECK(max > 0);  // Due to the 'if' above.
+      RegExpExpansionLimiter limiter(compiler, max);
+      if (limiter.ok_to_expand()) {
+        // Unroll the optional matches up to max.
+        RegExpNode* answer = on_success;
+        for (int i = 0; i < max; i++) {
+          ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
+          if (is_greedy) {
+            alternation->AddAlternative(
+                GuardedAlternative(body->ToNode(compiler, answer)));
+            alternation->AddAlternative(GuardedAlternative(on_success));
+          } else {
+            alternation->AddAlternative(GuardedAlternative(on_success));
+            alternation->AddAlternative(
+                GuardedAlternative(body->ToNode(compiler, answer)));
+          }
+          answer = alternation;
+          if (not_at_start && !compiler->read_backward()) {
+            alternation->set_not_at_start();
+          }
+        }
+        return answer;
+      }
+    }
+  }
+  bool has_min = min > 0;
+  bool has_max = max < RegExpTree::kInfinity;
+  bool needs_counter = has_min || has_max;
+  int reg_ctr = needs_counter
+      ? compiler->AllocateRegister()
+      : RegExpCompiler::kNoRegister;
+  LoopChoiceNode* center = new (zone)
+      LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
+  if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
+  RegExpNode* loop_return = needs_counter
+      ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
+      : static_cast<RegExpNode*>(center);
+  if (body_can_be_empty) {
+    // If the body can be empty we need to check if it was and then
+    // backtrack.
+    loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
+                                              reg_ctr,
+                                              min,
+                                              loop_return);
+  }
+  RegExpNode* body_node = body->ToNode(compiler, loop_return);
+  if (body_can_be_empty) {
+    // If the body can be empty we need to store the start position
+    // so we can bail out if it was empty.
+    body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
+  }
+  if (needs_capture_clearing) {
+    // Before entering the body of this loop we need to clear captures.
+    body_node = ActionNode::ClearCaptures(capture_registers, body_node);
+  }
+  GuardedAlternative body_alt(body_node);
+  if (has_max) {
+    Guard* body_guard =
+        new(zone) Guard(reg_ctr, Guard::LT, max);
+    body_alt.AddGuard(body_guard, zone);
+  }
+  GuardedAlternative rest_alt(on_success);
+  if (has_min) {
+    Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
+    rest_alt.AddGuard(rest_guard, zone);
+  }
+  if (is_greedy) {
+    center->AddLoopAlternative(body_alt);
+    center->AddContinueAlternative(rest_alt);
+  } else {
+    center->AddContinueAlternative(rest_alt);
+    center->AddLoopAlternative(body_alt);
+  }
+  if (needs_counter) {
+    return ActionNode::SetRegister(reg_ctr, 0, center);
+  } else {
+    return center;
+  }
+}
+
+
+RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
+                                    RegExpNode* on_success) {
+  NodeInfo info;
+  Zone* zone = compiler->zone();
+
+  switch (assertion_type()) {
+    case START_OF_LINE:
+      return AssertionNode::AfterNewline(on_success);
+    case START_OF_INPUT:
+      return AssertionNode::AtStart(on_success);
+    case BOUNDARY:
+      return AssertionNode::AtBoundary(on_success);
+    case NON_BOUNDARY:
+      return AssertionNode::AtNonBoundary(on_success);
+    case END_OF_INPUT:
+      return AssertionNode::AtEnd(on_success);
+    case END_OF_LINE: {
+      // Compile $ in multiline regexps as an alternation with a positive
+      // lookahead in one side and an end-of-input on the other side.
+      // We need two registers for the lookahead.
+      int stack_pointer_register = compiler->AllocateRegister();
+      int position_register = compiler->AllocateRegister();
+      // The ChoiceNode to distinguish between a newline and end-of-input.
+      ChoiceNode* result = new(zone) ChoiceNode(2, zone);
+      // Create a newline atom.
+      ZoneList<CharacterRange>* newline_ranges =
+          new(zone) ZoneList<CharacterRange>(3, zone);
+      CharacterRange::AddClassEscape('n', newline_ranges, zone);
+      RegExpCharacterClass* newline_atom = new (zone) RegExpCharacterClass('n');
+      TextNode* newline_matcher = new (zone) TextNode(
+          newline_atom, false, ActionNode::PositiveSubmatchSuccess(
+                                   stack_pointer_register, position_register,
+                                   0,   // No captures inside.
+                                   -1,  // Ignored if no captures.
+                                   on_success));
+      // Create an end-of-input matcher.
+      RegExpNode* end_of_line = ActionNode::BeginSubmatch(
+          stack_pointer_register,
+          position_register,
+          newline_matcher);
+      // Add the two alternatives to the ChoiceNode.
+      GuardedAlternative eol_alternative(end_of_line);
+      result->AddAlternative(eol_alternative);
+      GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
+      result->AddAlternative(end_alternative);
+      return result;
+    }
+    default:
+      UNREACHABLE();
+  }
+  return on_success;
+}
+
+
+RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
+                                        RegExpNode* on_success) {
+  return new (compiler->zone())
+      BackReferenceNode(RegExpCapture::StartRegister(index()),
+                        RegExpCapture::EndRegister(index()),
+                        compiler->read_backward(), on_success);
+}
+
+
+RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
+                                RegExpNode* on_success) {
+  return on_success;
+}
+
+
+RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
+                                     RegExpNode* on_success) {
+  int stack_pointer_register = compiler->AllocateRegister();
+  int position_register = compiler->AllocateRegister();
+
+  const int registers_per_capture = 2;
+  const int register_of_first_capture = 2;
+  int register_count = capture_count_ * registers_per_capture;
+  int register_start =
+    register_of_first_capture + capture_from_ * registers_per_capture;
+
+  RegExpNode* result;
+  bool was_reading_backward = compiler->read_backward();
+  compiler->set_read_backward(type() == LOOKBEHIND);
+  if (is_positive()) {
+    result = ActionNode::BeginSubmatch(
+        stack_pointer_register, position_register,
+        body()->ToNode(compiler,
+                       ActionNode::PositiveSubmatchSuccess(
+                           stack_pointer_register, position_register,
+                           register_count, register_start, on_success)));
+  } else {
+    // We use a ChoiceNode for a negative lookahead because it has most of
+    // the characteristics we need.  It has the body of the lookahead as its
+    // first alternative and the expression after the lookahead of the second
+    // alternative.  If the first alternative succeeds then the
+    // NegativeSubmatchSuccess will unwind the stack including everything the
+    // choice node set up and backtrack.  If the first alternative fails then
+    // the second alternative is tried, which is exactly the desired result
+    // for a negative lookahead.  The NegativeLookaheadChoiceNode is a special
+    // ChoiceNode that knows to ignore the first exit when calculating quick
+    // checks.
+    Zone* zone = compiler->zone();
+
+    GuardedAlternative body_alt(
+        body()->ToNode(compiler, new (zone) NegativeSubmatchSuccess(
+                                     stack_pointer_register, position_register,
+                                     register_count, register_start, zone)));
+    ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
+        body_alt, GuardedAlternative(on_success), zone);
+    result = ActionNode::BeginSubmatch(stack_pointer_register,
+                                       position_register, choice_node);
+  }
+  compiler->set_read_backward(was_reading_backward);
+  return result;
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
+                                  RegExpNode* on_success) {
+  return ToNode(body(), index(), compiler, on_success);
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
+                                  int index,
+                                  RegExpCompiler* compiler,
+                                  RegExpNode* on_success) {
+  DCHECK_NOT_NULL(body);
+  int start_reg = RegExpCapture::StartRegister(index);
+  int end_reg = RegExpCapture::EndRegister(index);
+  if (compiler->read_backward()) std::swap(start_reg, end_reg);
+  RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
+  RegExpNode* body_node = body->ToNode(compiler, store_end);
+  return ActionNode::StorePosition(start_reg, true, body_node);
+}
+
+
+RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
+                                      RegExpNode* on_success) {
+  ZoneList<RegExpTree*>* children = nodes();
+  RegExpNode* current = on_success;
+  if (compiler->read_backward()) {
+    for (int i = 0; i < children->length(); i++) {
+      current = children->at(i)->ToNode(compiler, current);
+    }
+  } else {
+    for (int i = children->length() - 1; i >= 0; i--) {
+      current = children->at(i)->ToNode(compiler, current);
+    }
+  }
+  return current;
+}
+
+
+static void AddClass(const int* elmv,
+                     int elmc,
+                     ZoneList<CharacterRange>* ranges,
+                     Zone* zone) {
+  elmc--;
+  DCHECK(elmv[elmc] == 0x10000);
+  for (int i = 0; i < elmc; i += 2) {
+    DCHECK(elmv[i] < elmv[i + 1]);
+    ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
+  }
+}
+
+
+static void AddClassNegated(const int *elmv,
+                            int elmc,
+                            ZoneList<CharacterRange>* ranges,
+                            Zone* zone) {
+  elmc--;
+  DCHECK(elmv[elmc] == 0x10000);
+  DCHECK(elmv[0] != 0x0000);
+  DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
+  uc16 last = 0x0000;
+  for (int i = 0; i < elmc; i += 2) {
+    DCHECK(last <= elmv[i] - 1);
+    DCHECK(elmv[i] < elmv[i + 1]);
+    ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
+    last = elmv[i + 1];
+  }
+  ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
+}
+
+
+void CharacterRange::AddClassEscape(uc16 type,
+                                    ZoneList<CharacterRange>* ranges,
+                                    Zone* zone) {
+  switch (type) {
+    case 's':
+      AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+      break;
+    case 'S':
+      AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+      break;
+    case 'w':
+      AddClass(kWordRanges, kWordRangeCount, ranges, zone);
+      break;
+    case 'W':
+      AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
+      break;
+    case 'd':
+      AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
+      break;
+    case 'D':
+      AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
+      break;
+    case '.':
+      AddClassNegated(kLineTerminatorRanges,
+                      kLineTerminatorRangeCount,
+                      ranges,
+                      zone);
+      break;
+    // This is not a character range as defined by the spec but a
+    // convenient shorthand for a character class that matches any
+    // character.
+    case '*':
+      ranges->Add(CharacterRange::Everything(), zone);
+      break;
+    // This is the set of characters matched by the $ and ^ symbols
+    // in multiline mode.
+    case 'n':
+      AddClass(kLineTerminatorRanges,
+               kLineTerminatorRangeCount,
+               ranges,
+               zone);
+      break;
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+Vector<const int> CharacterRange::GetWordBounds() {
+  return Vector<const int>(kWordRanges, kWordRangeCount - 1);
+}
+
+
+class CharacterRangeSplitter {
+ public:
+  CharacterRangeSplitter(ZoneList<CharacterRange>** included,
+                         ZoneList<CharacterRange>** excluded,
+                         Zone* zone)
+      : included_(included),
+        excluded_(excluded),
+        zone_(zone) { }
+  void Call(uc16 from, DispatchTable::Entry entry);
+
+  static const int kInBase = 0;
+  static const int kInOverlay = 1;
+
+ private:
+  ZoneList<CharacterRange>** included_;
+  ZoneList<CharacterRange>** excluded_;
+  Zone* zone_;
+};
+
+
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
+  if (!entry.out_set()->Get(kInBase)) return;
+  ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
+    ? included_
+    : excluded_;
+  if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
+  (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
+}
+
+
+void CharacterRange::Split(ZoneList<CharacterRange>* base,
+                           Vector<const int> overlay,
+                           ZoneList<CharacterRange>** included,
+                           ZoneList<CharacterRange>** excluded,
+                           Zone* zone) {
+  DCHECK_NULL(*included);
+  DCHECK_NULL(*excluded);
+  DispatchTable table(zone);
+  for (int i = 0; i < base->length(); i++)
+    table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
+  for (int i = 0; i < overlay.length(); i += 2) {
+    table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
+                   CharacterRangeSplitter::kInOverlay, zone);
+  }
+  CharacterRangeSplitter callback(included, excluded, zone);
+  table.ForEach(&callback);
+}
+
+
+void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
+                                        ZoneList<CharacterRange>* ranges,
+                                        bool is_one_byte) {
+  uc16 bottom = from();
+  uc16 top = to();
+  if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
+    if (bottom > String::kMaxOneByteCharCode) return;
+    if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
+  }
+  unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+  if (top == bottom) {
+    // If this is a singleton we just expand the one character.
+    int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
+    for (int i = 0; i < length; i++) {
+      uc32 chr = chars[i];
+      if (chr != bottom) {
+        ranges->Add(CharacterRange::Singleton(chars[i]), zone);
+      }
+    }
+  } else {
+    // If this is a range we expand the characters block by block,
+    // expanding contiguous subranges (blocks) one at a time.
+    // The approach is as follows.  For a given start character we
+    // look up the remainder of the block that contains it (represented
+    // by the end point), for instance we find 'z' if the character
+    // is 'c'.  A block is characterized by the property
+    // that all characters uncanonicalize in the same way, except that
+    // each entry in the result is incremented by the distance from the first
+    // element.  So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
+    // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
+    // Once we've found the end point we look up its uncanonicalization
+    // and produce a range for each element.  For instance for [c-f]
+    // we look up ['z', 'Z'] and produce [c-f] and [C-F].  We then only
+    // add a range if it is not already contained in the input, so [c-f]
+    // will be skipped but [C-F] will be added.  If this range is not
+    // completely contained in a block we do this for all the blocks
+    // covered by the range (handling characters that is not in a block
+    // as a "singleton block").
+    unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+    int pos = bottom;
+    while (pos <= top) {
+      int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
+      uc16 block_end;
+      if (length == 0) {
+        block_end = pos;
+      } else {
+        DCHECK_EQ(1, length);
+        block_end = range[0];
+      }
+      int end = (block_end > top) ? top : block_end;
+      length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
+      for (int i = 0; i < length; i++) {
+        uc32 c = range[i];
+        uc16 range_from = c - (block_end - pos);
+        uc16 range_to = c - (block_end - end);
+        if (!(bottom <= range_from && range_to <= top)) {
+          ranges->Add(CharacterRange(range_from, range_to), zone);
+        }
+      }
+      pos = end + 1;
+    }
+  }
+}
+
+
+bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
+  DCHECK_NOT_NULL(ranges);
+  int n = ranges->length();
+  if (n <= 1) return true;
+  int max = ranges->at(0).to();
+  for (int i = 1; i < n; i++) {
+    CharacterRange next_range = ranges->at(i);
+    if (next_range.from() <= max + 1) return false;
+    max = next_range.to();
+  }
+  return true;
+}
+
+
+ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
+  if (ranges_ == NULL) {
+    ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
+    CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
+  }
+  return ranges_;
+}
+
+
+// Move a number of elements in a zonelist to another position
+// in the same list. Handles overlapping source and target areas.
+static void MoveRanges(ZoneList<CharacterRange>* list,
+                       int from,
+                       int to,
+                       int count) {
+  // Ranges are potentially overlapping.
+  if (from < to) {
+    for (int i = count - 1; i >= 0; i--) {
+      list->at(to + i) = list->at(from + i);
+    }
+  } else {
+    for (int i = 0; i < count; i++) {
+      list->at(to + i) = list->at(from + i);
+    }
+  }
+}
+
+
+static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
+                                      int count,
+                                      CharacterRange insert) {
+  // Inserts a range into list[0..count[, which must be sorted
+  // by from value and non-overlapping and non-adjacent, using at most
+  // list[0..count] for the result. Returns the number of resulting
+  // canonicalized ranges. Inserting a range may collapse existing ranges into
+  // fewer ranges, so the return value can be anything in the range 1..count+1.
+  uc16 from = insert.from();
+  uc16 to = insert.to();
+  int start_pos = 0;
+  int end_pos = count;
+  for (int i = count - 1; i >= 0; i--) {
+    CharacterRange current = list->at(i);
+    if (current.from() > to + 1) {
+      end_pos = i;
+    } else if (current.to() + 1 < from) {
+      start_pos = i + 1;
+      break;
+    }
+  }
+
+  // Inserted range overlaps, or is adjacent to, ranges at positions
+  // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
+  // not affected by the insertion.
+  // If start_pos == end_pos, the range must be inserted before start_pos.
+  // if start_pos < end_pos, the entire range from start_pos to end_pos
+  // must be merged with the insert range.
+
+  if (start_pos == end_pos) {
+    // Insert between existing ranges at position start_pos.
+    if (start_pos < count) {
+      MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
+    }
+    list->at(start_pos) = insert;
+    return count + 1;
+  }
+  if (start_pos + 1 == end_pos) {
+    // Replace single existing range at position start_pos.
+    CharacterRange to_replace = list->at(start_pos);
+    int new_from = Min(to_replace.from(), from);
+    int new_to = Max(to_replace.to(), to);
+    list->at(start_pos) = CharacterRange(new_from, new_to);
+    return count;
+  }
+  // Replace a number of existing ranges from start_pos to end_pos - 1.
+  // Move the remaining ranges down.
+
+  int new_from = Min(list->at(start_pos).from(), from);
+  int new_to = Max(list->at(end_pos - 1).to(), to);
+  if (end_pos < count) {
+    MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
+  }
+  list->at(start_pos) = CharacterRange(new_from, new_to);
+  return count - (end_pos - start_pos) + 1;
+}
+
+
+void CharacterSet::Canonicalize() {
+  // Special/default classes are always considered canonical. The result
+  // of calling ranges() will be sorted.
+  if (ranges_ == NULL) return;
+  CharacterRange::Canonicalize(ranges_);
+}
+
+
+void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
+  if (character_ranges->length() <= 1) return;
+  // Check whether ranges are already canonical (increasing, non-overlapping,
+  // non-adjacent).
+  int n = character_ranges->length();
+  int max = character_ranges->at(0).to();
+  int i = 1;
+  while (i < n) {
+    CharacterRange current = character_ranges->at(i);
+    if (current.from() <= max + 1) {
+      break;
+    }
+    max = current.to();
+    i++;
+  }
+  // Canonical until the i'th range. If that's all of them, we are done.
+  if (i == n) return;
+
+  // The ranges at index i and forward are not canonicalized. Make them so by
+  // doing the equivalent of insertion sort (inserting each into the previous
+  // list, in order).
+  // Notice that inserting a range can reduce the number of ranges in the
+  // result due to combining of adjacent and overlapping ranges.
+  int read = i;  // Range to insert.
+  int num_canonical = i;  // Length of canonicalized part of list.
+  do {
+    num_canonical = InsertRangeInCanonicalList(character_ranges,
+                                               num_canonical,
+                                               character_ranges->at(read));
+    read++;
+  } while (read < n);
+  character_ranges->Rewind(num_canonical);
+
+  DCHECK(CharacterRange::IsCanonical(character_ranges));
+}
+
+
+void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
+                            ZoneList<CharacterRange>* negated_ranges,
+                            Zone* zone) {
+  DCHECK(CharacterRange::IsCanonical(ranges));
+  DCHECK_EQ(0, negated_ranges->length());
+  int range_count = ranges->length();
+  uc16 from = 0;
+  int i = 0;
+  if (range_count > 0 && ranges->at(0).from() == 0) {
+    from = ranges->at(0).to();
+    i = 1;
+  }
+  while (i < range_count) {
+    CharacterRange range = ranges->at(i);
+    negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
+    from = range.to();
+    i++;
+  }
+  if (from < String::kMaxUtf16CodeUnit) {
+    negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
+                        zone);
+  }
+}
+
+
+// -------------------------------------------------------------------
+// Splay tree
+
+
+OutSet* OutSet::Extend(unsigned value, Zone* zone) {
+  if (Get(value))
+    return this;
+  if (successors(zone) != NULL) {
+    for (int i = 0; i < successors(zone)->length(); i++) {
+      OutSet* successor = successors(zone)->at(i);
+      if (successor->Get(value))
+        return successor;
+    }
+  } else {
+    successors_ = new(zone) ZoneList<OutSet*>(2, zone);
+  }
+  OutSet* result = new(zone) OutSet(first_, remaining_);
+  result->Set(value, zone);
+  successors(zone)->Add(result, zone);
+  return result;
+}
+
+
+void OutSet::Set(unsigned value, Zone *zone) {
+  if (value < kFirstLimit) {
+    first_ |= (1 << value);
+  } else {
+    if (remaining_ == NULL)
+      remaining_ = new(zone) ZoneList<unsigned>(1, zone);
+    if (remaining_->is_empty() || !remaining_->Contains(value))
+      remaining_->Add(value, zone);
+  }
+}
+
+
+bool OutSet::Get(unsigned value) const {
+  if (value < kFirstLimit) {
+    return (first_ & (1 << value)) != 0;
+  } else if (remaining_ == NULL) {
+    return false;
+  } else {
+    return remaining_->Contains(value);
+  }
+}
+
+
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
+
+
+void DispatchTable::AddRange(CharacterRange full_range, int value,
+                             Zone* zone) {
+  CharacterRange current = full_range;
+  if (tree()->is_empty()) {
+    // If this is the first range we just insert into the table.
+    ZoneSplayTree<Config>::Locator loc;
+    bool inserted = tree()->Insert(current.from(), &loc);
+    DCHECK(inserted);
+    USE(inserted);
+    loc.set_value(Entry(current.from(), current.to(),
+                        empty()->Extend(value, zone)));
+    return;
+  }
+  // First see if there is a range to the left of this one that
+  // overlaps.
+  ZoneSplayTree<Config>::Locator loc;
+  if (tree()->FindGreatestLessThan(current.from(), &loc)) {
+    Entry* entry = &loc.value();
+    // If we've found a range that overlaps with this one, and it
+    // starts strictly to the left of this one, we have to fix it
+    // because the following code only handles ranges that start on
+    // or after the start point of the range we're adding.
+    if (entry->from() < current.from() && entry->to() >= current.from()) {
+      // Snap the overlapping range in half around the start point of
+      // the range we're adding.
+      CharacterRange left(entry->from(), current.from() - 1);
+      CharacterRange right(current.from(), entry->to());
+      // The left part of the overlapping range doesn't overlap.
+      // Truncate the whole entry to be just the left part.
+      entry->set_to(left.to());
+      // The right part is the one that overlaps.  We add this part
+      // to the map and let the next step deal with merging it with
+      // the range we're adding.
+      ZoneSplayTree<Config>::Locator loc;
+      bool inserted = tree()->Insert(right.from(), &loc);
+      DCHECK(inserted);
+      USE(inserted);
+      loc.set_value(Entry(right.from(),
+                          right.to(),
+                          entry->out_set()));
+    }
+  }
+  while (current.is_valid()) {
+    if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
+        (loc.value().from() <= current.to()) &&
+        (loc.value().to() >= current.from())) {
+      Entry* entry = &loc.value();
+      // We have overlap.  If there is space between the start point of
+      // the range we're adding and where the overlapping range starts
+      // then we have to add a range covering just that space.
+      if (current.from() < entry->from()) {
+        ZoneSplayTree<Config>::Locator ins;
+        bool inserted = tree()->Insert(current.from(), &ins);
+        DCHECK(inserted);
+        USE(inserted);
+        ins.set_value(Entry(current.from(),
+                            entry->from() - 1,
+                            empty()->Extend(value, zone)));
+        current.set_from(entry->from());
+      }
+      DCHECK_EQ(current.from(), entry->from());
+      // If the overlapping range extends beyond the one we want to add
+      // we have to snap the right part off and add it separately.
+      if (entry->to() > current.to()) {
+        ZoneSplayTree<Config>::Locator ins;
+        bool inserted = tree()->Insert(current.to() + 1, &ins);
+        DCHECK(inserted);
+        USE(inserted);
+        ins.set_value(Entry(current.to() + 1,
+                            entry->to(),
+                            entry->out_set()));
+        entry->set_to(current.to());
+      }
+      DCHECK(entry->to() <= current.to());
+      // The overlapping range is now completely contained by the range
+      // we're adding so we can just update it and move the start point
+      // of the range we're adding just past it.
+      entry->AddValue(value, zone);
+      // Bail out if the last interval ended at 0xFFFF since otherwise
+      // adding 1 will wrap around to 0.
+      if (entry->to() == String::kMaxUtf16CodeUnit)
+        break;
+      DCHECK(entry->to() + 1 > current.from());
+      current.set_from(entry->to() + 1);
+    } else {
+      // There is no overlap so we can just add the range
+      ZoneSplayTree<Config>::Locator ins;
+      bool inserted = tree()->Insert(current.from(), &ins);
+      DCHECK(inserted);
+      USE(inserted);
+      ins.set_value(Entry(current.from(),
+                          current.to(),
+                          empty()->Extend(value, zone)));
+      break;
+    }
+  }
+}
+
+
+OutSet* DispatchTable::Get(uc16 value) {
+  ZoneSplayTree<Config>::Locator loc;
+  if (!tree()->FindGreatestLessThan(value, &loc))
+    return empty();
+  Entry* entry = &loc.value();
+  if (value <= entry->to())
+    return entry->out_set();
+  else
+    return empty();
+}
+
+
+// -------------------------------------------------------------------
+// Analysis
+
+
+void Analysis::EnsureAnalyzed(RegExpNode* that) {
+  StackLimitCheck check(isolate());
+  if (check.HasOverflowed()) {
+    fail("Stack overflow");
+    return;
+  }
+  if (that->info()->been_analyzed || that->info()->being_analyzed)
+    return;
+  that->info()->being_analyzed = true;
+  that->Accept(this);
+  that->info()->being_analyzed = false;
+  that->info()->been_analyzed = true;
+}
+
+
+void Analysis::VisitEnd(EndNode* that) {
+  // nothing to do
+}
+
+
+void TextNode::CalculateOffsets() {
+  int element_count = elements()->length();
+  // Set up the offsets of the elements relative to the start.  This is a fixed
+  // quantity since a TextNode can only contain fixed-width things.
+  int cp_offset = 0;
+  for (int i = 0; i < element_count; i++) {
+    TextElement& elm = elements()->at(i);
+    elm.set_cp_offset(cp_offset);
+    cp_offset += elm.length();
+  }
+}
+
+
+void Analysis::VisitText(TextNode* that) {
+  if (ignore_case_) {
+    that->MakeCaseIndependent(isolate(), is_one_byte_);
+  }
+  EnsureAnalyzed(that->on_success());
+  if (!has_failed()) {
+    that->CalculateOffsets();
+  }
+}
+
+
+void Analysis::VisitAction(ActionNode* that) {
+  RegExpNode* target = that->on_success();
+  EnsureAnalyzed(target);
+  if (!has_failed()) {
+    // If the next node is interested in what it follows then this node
+    // has to be interested too so it can pass the information on.
+    that->info()->AddFromFollowing(target->info());
+  }
+}
+
+
+void Analysis::VisitChoice(ChoiceNode* that) {
+  NodeInfo* info = that->info();
+  for (int i = 0; i < that->alternatives()->length(); i++) {
+    RegExpNode* node = that->alternatives()->at(i).node();
+    EnsureAnalyzed(node);
+    if (has_failed()) return;
+    // Anything the following nodes need to know has to be known by
+    // this node also, so it can pass it on.
+    info->AddFromFollowing(node->info());
+  }
+}
+
+
+void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
+  NodeInfo* info = that->info();
+  for (int i = 0; i < that->alternatives()->length(); i++) {
+    RegExpNode* node = that->alternatives()->at(i).node();
+    if (node != that->loop_node()) {
+      EnsureAnalyzed(node);
+      if (has_failed()) return;
+      info->AddFromFollowing(node->info());
+    }
+  }
+  // Check the loop last since it may need the value of this node
+  // to get a correct result.
+  EnsureAnalyzed(that->loop_node());
+  if (!has_failed()) {
+    info->AddFromFollowing(that->loop_node()->info());
+  }
+}
+
+
+void Analysis::VisitBackReference(BackReferenceNode* that) {
+  EnsureAnalyzed(that->on_success());
+}
+
+
+void Analysis::VisitAssertion(AssertionNode* that) {
+  EnsureAnalyzed(that->on_success());
+}
+
+
+void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+                                     BoyerMooreLookahead* bm,
+                                     bool not_at_start) {
+  // Working out the set of characters that a backreference can match is too
+  // hard, so we just say that any character can match.
+  bm->SetRest(offset);
+  SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
+              RegExpMacroAssembler::kTableSize);
+
+
+void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+                              BoyerMooreLookahead* bm, bool not_at_start) {
+  ZoneList<GuardedAlternative>* alts = alternatives();
+  budget = (budget - 1) / alts->length();
+  for (int i = 0; i < alts->length(); i++) {
+    GuardedAlternative& alt = alts->at(i);
+    if (alt.guards() != NULL && alt.guards()->length() != 0) {
+      bm->SetRest(offset);  // Give up trying to fill in info.
+      SaveBMInfo(bm, not_at_start, offset);
+      return;
+    }
+    alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
+  }
+  SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start) {
+  if (initial_offset >= bm->length()) return;
+  int offset = initial_offset;
+  int max_char = bm->max_char();
+  for (int i = 0; i < elements()->length(); i++) {
+    if (offset >= bm->length()) {
+      if (initial_offset == 0) set_bm_info(not_at_start, bm);
+      return;
+    }
+    TextElement text = elements()->at(i);
+    if (text.text_type() == TextElement::ATOM) {
+      RegExpAtom* atom = text.atom();
+      for (int j = 0; j < atom->length(); j++, offset++) {
+        if (offset >= bm->length()) {
+          if (initial_offset == 0) set_bm_info(not_at_start, bm);
+          return;
+        }
+        uc16 character = atom->data()[j];
+        if (bm->compiler()->ignore_case()) {
+          unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+          int length = GetCaseIndependentLetters(
+              isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
+              chars);
+          for (int j = 0; j < length; j++) {
+            bm->Set(offset, chars[j]);
+          }
+        } else {
+          if (character <= max_char) bm->Set(offset, character);
+        }
+      }
+    } else {
+      DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
+      RegExpCharacterClass* char_class = text.char_class();
+      ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
+      if (char_class->is_negated()) {
+        bm->SetAll(offset);
+      } else {
+        for (int k = 0; k < ranges->length(); k++) {
+          CharacterRange& range = ranges->at(k);
+          if (range.from() > max_char) continue;
+          int to = Min(max_char, static_cast<int>(range.to()));
+          bm->SetInterval(offset, Interval(range.from(), to));
+        }
+      }
+      offset++;
+    }
+  }
+  if (offset >= bm->length()) {
+    if (initial_offset == 0) set_bm_info(not_at_start, bm);
+    return;
+  }
+  on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
+                             true);  // Not at start after a text node.
+  if (initial_offset == 0) set_bm_info(not_at_start, bm);
+}
+
+
+// -------------------------------------------------------------------
+// Dispatch table construction
+
+
+void DispatchTableConstructor::VisitEnd(EndNode* that) {
+  AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
+  node->set_being_calculated(true);
+  ZoneList<GuardedAlternative>* alternatives = node->alternatives();
+  for (int i = 0; i < alternatives->length(); i++) {
+    set_choice_index(i);
+    alternatives->at(i).node()->Accept(this);
+  }
+  node->set_being_calculated(false);
+}
+
+
+class AddDispatchRange {
+ public:
+  explicit AddDispatchRange(DispatchTableConstructor* constructor)
+    : constructor_(constructor) { }
+  void Call(uc32 from, DispatchTable::Entry entry);
+ private:
+  DispatchTableConstructor* constructor_;
+};
+
+
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
+  CharacterRange range(from, entry.to());
+  constructor_->AddRange(range);
+}
+
+
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
+  if (node->being_calculated())
+    return;
+  DispatchTable* table = node->GetTable(ignore_case_);
+  AddDispatchRange adder(this);
+  table->ForEach(&adder);
+}
+
+
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
+  // TODO(160): Find the node that we refer back to and propagate its start
+  // set back to here.  For now we just accept anything.
+  AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
+  RegExpNode* target = that->on_success();
+  target->Accept(this);
+}
+
+
+static int CompareRangeByFrom(const CharacterRange* a,
+                              const CharacterRange* b) {
+  return Compare<uc16>(a->from(), b->from());
+}
+
+
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
+  ranges->Sort(CompareRangeByFrom);
+  uc16 last = 0;
+  for (int i = 0; i < ranges->length(); i++) {
+    CharacterRange range = ranges->at(i);
+    if (last < range.from())
+      AddRange(CharacterRange(last, range.from() - 1));
+    if (range.to() >= last) {
+      if (range.to() == String::kMaxUtf16CodeUnit) {
+        return;
+      } else {
+        last = range.to() + 1;
+      }
+    }
+  }
+  AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
+}
+
+
+void DispatchTableConstructor::VisitText(TextNode* that) {
+  TextElement elm = that->elements()->at(0);
+  switch (elm.text_type()) {
+    case TextElement::ATOM: {
+      uc16 c = elm.atom()->data()[0];
+      AddRange(CharacterRange(c, c));
+      break;
+    }
+    case TextElement::CHAR_CLASS: {
+      RegExpCharacterClass* tree = elm.char_class();
+      ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
+      if (tree->is_negated()) {
+        AddInverse(ranges);
+      } else {
+        for (int i = 0; i < ranges->length(); i++)
+          AddRange(ranges->at(i));
+      }
+      break;
+    }
+    default: {
+      UNIMPLEMENTED();
+    }
+  }
+}
+
+
+void DispatchTableConstructor::VisitAction(ActionNode* that) {
+  RegExpNode* target = that->on_success();
+  target->Accept(this);
+}
+
+
+RegExpEngine::CompilationResult RegExpEngine::Compile(
+    Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case,
+    bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern,
+    Handle<String> sample_subject, bool is_one_byte) {
+  if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
+    return IrregexpRegExpTooBig(isolate);
+  }
+  RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case,
+                          is_one_byte);
+
+  if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
+
+  // Sample some characters from the middle of the string.
+  static const int kSampleSize = 128;
+
+  sample_subject = String::Flatten(sample_subject);
+  int chars_sampled = 0;
+  int half_way = (sample_subject->length() - kSampleSize) / 2;
+  for (int i = Max(0, half_way);
+       i < sample_subject->length() && chars_sampled < kSampleSize;
+       i++, chars_sampled++) {
+    compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
+  }
+
+  // Wrap the body of the regexp in capture #0.
+  RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
+                                                    0,
+                                                    &compiler,
+                                                    compiler.accept());
+  RegExpNode* node = captured_body;
+  bool is_end_anchored = data->tree->IsAnchoredAtEnd();
+  bool is_start_anchored = data->tree->IsAnchoredAtStart();
+  int max_length = data->tree->max_match();
+  if (!is_start_anchored && !is_sticky) {
+    // Add a .*? at the beginning, outside the body capture, unless
+    // this expression is anchored at the beginning or sticky.
+    RegExpNode* loop_node = RegExpQuantifier::ToNode(
+        0, RegExpTree::kInfinity, false, new (zone) RegExpCharacterClass('*'),
+        &compiler, captured_body, data->contains_anchor);
+
+    if (data->contains_anchor) {
+      // Unroll loop once, to take care of the case that might start
+      // at the start of input.
+      ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
+      first_step_node->AddAlternative(GuardedAlternative(captured_body));
+      first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
+          new (zone) RegExpCharacterClass('*'), false, loop_node)));
+      node = first_step_node;
+    } else {
+      node = loop_node;
+    }
+  }
+  if (is_one_byte) {
+    node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+    // Do it again to propagate the new nodes to places where they were not
+    // put because they had not been calculated yet.
+    if (node != NULL) {
+      node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+    }
+  }
+
+  if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
+  data->node = node;
+  Analysis analysis(isolate, ignore_case, is_one_byte);
+  analysis.EnsureAnalyzed(node);
+  if (analysis.has_failed()) {
+    const char* error_message = analysis.error_message();
+    return CompilationResult(isolate, error_message);
+  }
+
+  // Create the correct assembler for the architecture.
+#ifndef V8_INTERPRETED_REGEXP
+  // Native regexp implementation.
+
+  NativeRegExpMacroAssembler::Mode mode =
+      is_one_byte ? NativeRegExpMacroAssembler::LATIN1
+                  : NativeRegExpMacroAssembler::UC16;
+
+#if V8_TARGET_ARCH_IA32
+  RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
+                                           (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_X64
+  RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
+                                          (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_ARM
+  RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
+                                          (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_ARM64
+  RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
+                                            (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_PPC
+  RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
+                                          (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_MIPS
+  RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
+                                           (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_MIPS64
+  RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
+                                           (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_X87
+  RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
+                                          (data->capture_count + 1) * 2);
+#else
+#error "Unsupported architecture"
+#endif
+
+#else  // V8_INTERPRETED_REGEXP
+  // Interpreted regexp implementation.
+  EmbeddedVector<byte, 1024> codes;
+  RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
+#endif  // V8_INTERPRETED_REGEXP
+
+  macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
+
+  // Inserted here, instead of in Assembler, because it depends on information
+  // in the AST that isn't replicated in the Node structure.
+  static const int kMaxBacksearchLimit = 1024;
+  if (is_end_anchored &&
+      !is_start_anchored &&
+      max_length < kMaxBacksearchLimit) {
+    macro_assembler.SetCurrentPositionFromEnd(max_length);
+  }
+
+  if (is_global) {
+    macro_assembler.set_global_mode(
+        (data->tree->min_match() > 0)
+            ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
+            : RegExpMacroAssembler::GLOBAL);
+  }
+
+  return compiler.Assemble(&macro_assembler,
+                           node,
+                           data->capture_count,
+                           pattern);
+}
+
+
+bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
+  Heap* heap = pattern->GetHeap();
+  bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
+  if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
+      heap->isolate()->memory_allocator()->SizeExecutable() >
+          RegExpImpl::kRegExpExecutableMemoryLimit) {
+    too_much = true;
+  }
+  return too_much;
+}
+
+
+Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string,
+                                   Object* key_pattern,
+                                   FixedArray** last_match_cache,
+                                   ResultsCacheType type) {
+  FixedArray* cache;
+  if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
+  if (type == STRING_SPLIT_SUBSTRINGS) {
+    DCHECK(key_pattern->IsString());
+    if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
+    cache = heap->string_split_cache();
+  } else {
+    DCHECK(type == REGEXP_MULTIPLE_INDICES);
+    DCHECK(key_pattern->IsFixedArray());
+    cache = heap->regexp_multiple_cache();
+  }
+
+  uint32_t hash = key_string->Hash();
+  uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
+                    ~(kArrayEntriesPerCacheEntry - 1));
+  if (cache->get(index + kStringOffset) != key_string ||
+      cache->get(index + kPatternOffset) != key_pattern) {
+    index =
+        ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
+    if (cache->get(index + kStringOffset) != key_string ||
+        cache->get(index + kPatternOffset) != key_pattern) {
+      return Smi::FromInt(0);
+    }
+  }
+
+  *last_match_cache = FixedArray::cast(cache->get(index + kLastMatchOffset));
+  return cache->get(index + kArrayOffset);
+}
+
+
+void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string,
+                               Handle<Object> key_pattern,
+                               Handle<FixedArray> value_array,
+                               Handle<FixedArray> last_match_cache,
+                               ResultsCacheType type) {
+  Factory* factory = isolate->factory();
+  Handle<FixedArray> cache;
+  if (!key_string->IsInternalizedString()) return;
+  if (type == STRING_SPLIT_SUBSTRINGS) {
+    DCHECK(key_pattern->IsString());
+    if (!key_pattern->IsInternalizedString()) return;
+    cache = factory->string_split_cache();
+  } else {
+    DCHECK(type == REGEXP_MULTIPLE_INDICES);
+    DCHECK(key_pattern->IsFixedArray());
+    cache = factory->regexp_multiple_cache();
+  }
+
+  uint32_t hash = key_string->Hash();
+  uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
+                    ~(kArrayEntriesPerCacheEntry - 1));
+  if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
+    cache->set(index + kStringOffset, *key_string);
+    cache->set(index + kPatternOffset, *key_pattern);
+    cache->set(index + kArrayOffset, *value_array);
+    cache->set(index + kLastMatchOffset, *last_match_cache);
+  } else {
+    uint32_t index2 =
+        ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
+    if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
+      cache->set(index2 + kStringOffset, *key_string);
+      cache->set(index2 + kPatternOffset, *key_pattern);
+      cache->set(index2 + kArrayOffset, *value_array);
+      cache->set(index2 + kLastMatchOffset, *last_match_cache);
+    } else {
+      cache->set(index2 + kStringOffset, Smi::FromInt(0));
+      cache->set(index2 + kPatternOffset, Smi::FromInt(0));
+      cache->set(index2 + kArrayOffset, Smi::FromInt(0));
+      cache->set(index2 + kLastMatchOffset, Smi::FromInt(0));
+      cache->set(index + kStringOffset, *key_string);
+      cache->set(index + kPatternOffset, *key_pattern);
+      cache->set(index + kArrayOffset, *value_array);
+      cache->set(index + kLastMatchOffset, *last_match_cache);
+    }
+  }
+  // If the array is a reasonably short list of substrings, convert it into a
+  // list of internalized strings.
+  if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
+    for (int i = 0; i < value_array->length(); i++) {
+      Handle<String> str(String::cast(value_array->get(i)), isolate);
+      Handle<String> internalized_str = factory->InternalizeString(str);
+      value_array->set(i, *internalized_str);
+    }
+  }
+  // Convert backing store to a copy-on-write array.
+  value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map());
+}
+
+
+void RegExpResultsCache::Clear(FixedArray* cache) {
+  for (int i = 0; i < kRegExpResultsCacheSize; i++) {
+    cache->set(i, Smi::FromInt(0));
+  }
+}
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/jsregexp.h b/src/regexp/jsregexp.h
new file mode 100644
index 0000000..0ad4b79
--- /dev/null
+++ b/src/regexp/jsregexp.h
@@ -0,0 +1,1547 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_JSREGEXP_H_
+#define V8_REGEXP_JSREGEXP_H_
+
+#include "src/allocation.h"
+#include "src/assembler.h"
+#include "src/regexp/regexp-ast.h"
+
+namespace v8 {
+namespace internal {
+
+class NodeVisitor;
+class RegExpCompiler;
+class RegExpMacroAssembler;
+class RegExpNode;
+class RegExpTree;
+class BoyerMooreLookahead;
+
+class RegExpImpl {
+ public:
+  // Whether V8 is compiled with native regexp support or not.
+  static bool UsesNativeRegExp() {
+#ifdef V8_INTERPRETED_REGEXP
+    return false;
+#else
+    return true;
+#endif
+  }
+
+  // Returns a string representation of a regular expression.
+  // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
+  // This function calls the garbage collector if necessary.
+  static Handle<String> ToString(Handle<Object> value);
+
+  // Parses the RegExp pattern and prepares the JSRegExp object with
+  // generic data and choice of implementation - as well as what
+  // the implementation wants to store in the data field.
+  // Returns false if compilation fails.
+  MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
+                                                     Handle<String> pattern,
+                                                     JSRegExp::Flags flags);
+
+  // See ECMA-262 section 15.10.6.2.
+  // This function calls the garbage collector if necessary.
+  MUST_USE_RESULT static MaybeHandle<Object> Exec(
+      Handle<JSRegExp> regexp,
+      Handle<String> subject,
+      int index,
+      Handle<JSArray> lastMatchInfo);
+
+  // Prepares a JSRegExp object with Irregexp-specific data.
+  static void IrregexpInitialize(Handle<JSRegExp> re,
+                                 Handle<String> pattern,
+                                 JSRegExp::Flags flags,
+                                 int capture_register_count);
+
+
+  static void AtomCompile(Handle<JSRegExp> re,
+                          Handle<String> pattern,
+                          JSRegExp::Flags flags,
+                          Handle<String> match_pattern);
+
+
+  static int AtomExecRaw(Handle<JSRegExp> regexp,
+                         Handle<String> subject,
+                         int index,
+                         int32_t* output,
+                         int output_size);
+
+
+  static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
+                                 Handle<String> subject,
+                                 int index,
+                                 Handle<JSArray> lastMatchInfo);
+
+  enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
+
+  // Prepare a RegExp for being executed one or more times (using
+  // IrregexpExecOnce) on the subject.
+  // This ensures that the regexp is compiled for the subject, and that
+  // the subject is flat.
+  // Returns the number of integer spaces required by IrregexpExecOnce
+  // as its "registers" argument.  If the regexp cannot be compiled,
+  // an exception is set as pending, and this function returns negative.
+  static int IrregexpPrepare(Handle<JSRegExp> regexp,
+                             Handle<String> subject);
+
+  // Execute a regular expression on the subject, starting from index.
+  // If matching succeeds, return the number of matches.  This can be larger
+  // than one in the case of global regular expressions.
+  // The captures and subcaptures are stored into the registers vector.
+  // If matching fails, returns RE_FAILURE.
+  // If execution fails, sets a pending exception and returns RE_EXCEPTION.
+  static int IrregexpExecRaw(Handle<JSRegExp> regexp,
+                             Handle<String> subject,
+                             int index,
+                             int32_t* output,
+                             int output_size);
+
+  // Execute an Irregexp bytecode pattern.
+  // On a successful match, the result is a JSArray containing
+  // captured positions.  On a failure, the result is the null value.
+  // Returns an empty handle in case of an exception.
+  MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
+      Handle<JSRegExp> regexp,
+      Handle<String> subject,
+      int index,
+      Handle<JSArray> lastMatchInfo);
+
+  // Set last match info.  If match is NULL, then setting captures is omitted.
+  static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
+                                          Handle<String> subject,
+                                          int capture_count,
+                                          int32_t* match);
+
+
+  class GlobalCache {
+   public:
+    GlobalCache(Handle<JSRegExp> regexp,
+                Handle<String> subject,
+                bool is_global,
+                Isolate* isolate);
+
+    INLINE(~GlobalCache());
+
+    // Fetch the next entry in the cache for global regexp match results.
+    // This does not set the last match info.  Upon failure, NULL is returned.
+    // The cause can be checked with Result().  The previous
+    // result is still in available in memory when a failure happens.
+    INLINE(int32_t* FetchNext());
+
+    INLINE(int32_t* LastSuccessfulMatch());
+
+    INLINE(bool HasException()) { return num_matches_ < 0; }
+
+   private:
+    int num_matches_;
+    int max_matches_;
+    int current_match_index_;
+    int registers_per_match_;
+    // Pointer to the last set of captures.
+    int32_t* register_array_;
+    int register_array_size_;
+    Handle<JSRegExp> regexp_;
+    Handle<String> subject_;
+  };
+
+
+  // Array index in the lastMatchInfo array.
+  static const int kLastCaptureCount = 0;
+  static const int kLastSubject = 1;
+  static const int kLastInput = 2;
+  static const int kFirstCapture = 3;
+  static const int kLastMatchOverhead = 3;
+
+  // Direct offset into the lastMatchInfo array.
+  static const int kLastCaptureCountOffset =
+      FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
+  static const int kLastSubjectOffset =
+      FixedArray::kHeaderSize + kLastSubject * kPointerSize;
+  static const int kLastInputOffset =
+      FixedArray::kHeaderSize + kLastInput * kPointerSize;
+  static const int kFirstCaptureOffset =
+      FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
+
+  // Used to access the lastMatchInfo array.
+  static int GetCapture(FixedArray* array, int index) {
+    return Smi::cast(array->get(index + kFirstCapture))->value();
+  }
+
+  static void SetLastCaptureCount(FixedArray* array, int to) {
+    array->set(kLastCaptureCount, Smi::FromInt(to));
+  }
+
+  static void SetLastSubject(FixedArray* array, String* to) {
+    array->set(kLastSubject, to);
+  }
+
+  static void SetLastInput(FixedArray* array, String* to) {
+    array->set(kLastInput, to);
+  }
+
+  static void SetCapture(FixedArray* array, int index, int to) {
+    array->set(index + kFirstCapture, Smi::FromInt(to));
+  }
+
+  static int GetLastCaptureCount(FixedArray* array) {
+    return Smi::cast(array->get(kLastCaptureCount))->value();
+  }
+
+  // For acting on the JSRegExp data FixedArray.
+  static int IrregexpMaxRegisterCount(FixedArray* re);
+  static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
+  static int IrregexpNumberOfCaptures(FixedArray* re);
+  static int IrregexpNumberOfRegisters(FixedArray* re);
+  static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
+  static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
+
+  // Limit the space regexps take up on the heap.  In order to limit this we
+  // would like to keep track of the amount of regexp code on the heap.  This
+  // is not tracked, however.  As a conservative approximation we track the
+  // total regexp code compiled including code that has subsequently been freed
+  // and the total executable memory at any point.
+  static const int kRegExpExecutableMemoryLimit = 16 * MB;
+  static const int kRegExpCompiledLimit = 1 * MB;
+  static const int kRegExpTooLargeToOptimize = 20 * KB;
+
+ private:
+  static bool CompileIrregexp(Handle<JSRegExp> re,
+                              Handle<String> sample_subject, bool is_one_byte);
+  static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
+                                            Handle<String> sample_subject,
+                                            bool is_one_byte);
+};
+
+
+// Represents the location of one element relative to the intersection of
+// two sets. Corresponds to the four areas of a Venn diagram.
+enum ElementInSetsRelation {
+  kInsideNone = 0,
+  kInsideFirst = 1,
+  kInsideSecond = 2,
+  kInsideBoth = 3
+};
+
+
+// A set of unsigned integers that behaves especially well on small
+// integers (< 32).  May do zone-allocation.
+class OutSet: public ZoneObject {
+ public:
+  OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
+  OutSet* Extend(unsigned value, Zone* zone);
+  bool Get(unsigned value) const;
+  static const unsigned kFirstLimit = 32;
+
+ private:
+  // Destructively set a value in this set.  In most cases you want
+  // to use Extend instead to ensure that only one instance exists
+  // that contains the same values.
+  void Set(unsigned value, Zone* zone);
+
+  // The successors are a list of sets that contain the same values
+  // as this set and the one more value that is not present in this
+  // set.
+  ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
+
+  OutSet(uint32_t first, ZoneList<unsigned>* remaining)
+      : first_(first), remaining_(remaining), successors_(NULL) { }
+  uint32_t first_;
+  ZoneList<unsigned>* remaining_;
+  ZoneList<OutSet*>* successors_;
+  friend class Trace;
+};
+
+
+// A mapping from integers, specified as ranges, to a set of integers.
+// Used for mapping character ranges to choices.
+class DispatchTable : public ZoneObject {
+ public:
+  explicit DispatchTable(Zone* zone) : tree_(zone) { }
+
+  class Entry {
+   public:
+    Entry() : from_(0), to_(0), out_set_(NULL) { }
+    Entry(uc16 from, uc16 to, OutSet* out_set)
+        : from_(from), to_(to), out_set_(out_set) { }
+    uc16 from() { return from_; }
+    uc16 to() { return to_; }
+    void set_to(uc16 value) { to_ = value; }
+    void AddValue(int value, Zone* zone) {
+      out_set_ = out_set_->Extend(value, zone);
+    }
+    OutSet* out_set() { return out_set_; }
+   private:
+    uc16 from_;
+    uc16 to_;
+    OutSet* out_set_;
+  };
+
+  class Config {
+   public:
+    typedef uc16 Key;
+    typedef Entry Value;
+    static const uc16 kNoKey;
+    static const Entry NoValue() { return Value(); }
+    static inline int Compare(uc16 a, uc16 b) {
+      if (a == b)
+        return 0;
+      else if (a < b)
+        return -1;
+      else
+        return 1;
+    }
+  };
+
+  void AddRange(CharacterRange range, int value, Zone* zone);
+  OutSet* Get(uc16 value);
+  void Dump();
+
+  template <typename Callback>
+  void ForEach(Callback* callback) {
+    return tree()->ForEach(callback);
+  }
+
+ private:
+  // There can't be a static empty set since it allocates its
+  // successors in a zone and caches them.
+  OutSet* empty() { return &empty_; }
+  OutSet empty_;
+  ZoneSplayTree<Config>* tree() { return &tree_; }
+  ZoneSplayTree<Config> tree_;
+};
+
+
+#define FOR_EACH_NODE_TYPE(VISIT)                                    \
+  VISIT(End)                                                         \
+  VISIT(Action)                                                      \
+  VISIT(Choice)                                                      \
+  VISIT(BackReference)                                               \
+  VISIT(Assertion)                                                   \
+  VISIT(Text)
+
+
+class Trace;
+struct PreloadState;
+class GreedyLoopState;
+class AlternativeGenerationList;
+
+struct NodeInfo {
+  NodeInfo()
+      : being_analyzed(false),
+        been_analyzed(false),
+        follows_word_interest(false),
+        follows_newline_interest(false),
+        follows_start_interest(false),
+        at_end(false),
+        visited(false),
+        replacement_calculated(false) { }
+
+  // Returns true if the interests and assumptions of this node
+  // matches the given one.
+  bool Matches(NodeInfo* that) {
+    return (at_end == that->at_end) &&
+           (follows_word_interest == that->follows_word_interest) &&
+           (follows_newline_interest == that->follows_newline_interest) &&
+           (follows_start_interest == that->follows_start_interest);
+  }
+
+  // Updates the interests of this node given the interests of the
+  // node preceding it.
+  void AddFromPreceding(NodeInfo* that) {
+    at_end |= that->at_end;
+    follows_word_interest |= that->follows_word_interest;
+    follows_newline_interest |= that->follows_newline_interest;
+    follows_start_interest |= that->follows_start_interest;
+  }
+
+  bool HasLookbehind() {
+    return follows_word_interest ||
+           follows_newline_interest ||
+           follows_start_interest;
+  }
+
+  // Sets the interests of this node to include the interests of the
+  // following node.
+  void AddFromFollowing(NodeInfo* that) {
+    follows_word_interest |= that->follows_word_interest;
+    follows_newline_interest |= that->follows_newline_interest;
+    follows_start_interest |= that->follows_start_interest;
+  }
+
+  void ResetCompilationState() {
+    being_analyzed = false;
+    been_analyzed = false;
+  }
+
+  bool being_analyzed: 1;
+  bool been_analyzed: 1;
+
+  // These bits are set of this node has to know what the preceding
+  // character was.
+  bool follows_word_interest: 1;
+  bool follows_newline_interest: 1;
+  bool follows_start_interest: 1;
+
+  bool at_end: 1;
+  bool visited: 1;
+  bool replacement_calculated: 1;
+};
+
+
+// Details of a quick mask-compare check that can look ahead in the
+// input stream.
+class QuickCheckDetails {
+ public:
+  QuickCheckDetails()
+      : characters_(0),
+        mask_(0),
+        value_(0),
+        cannot_match_(false) { }
+  explicit QuickCheckDetails(int characters)
+      : characters_(characters),
+        mask_(0),
+        value_(0),
+        cannot_match_(false) { }
+  bool Rationalize(bool one_byte);
+  // Merge in the information from another branch of an alternation.
+  void Merge(QuickCheckDetails* other, int from_index);
+  // Advance the current position by some amount.
+  void Advance(int by, bool one_byte);
+  void Clear();
+  bool cannot_match() { return cannot_match_; }
+  void set_cannot_match() { cannot_match_ = true; }
+  struct Position {
+    Position() : mask(0), value(0), determines_perfectly(false) { }
+    uc16 mask;
+    uc16 value;
+    bool determines_perfectly;
+  };
+  int characters() { return characters_; }
+  void set_characters(int characters) { characters_ = characters; }
+  Position* positions(int index) {
+    DCHECK(index >= 0);
+    DCHECK(index < characters_);
+    return positions_ + index;
+  }
+  uint32_t mask() { return mask_; }
+  uint32_t value() { return value_; }
+
+ private:
+  // How many characters do we have quick check information from.  This is
+  // the same for all branches of a choice node.
+  int characters_;
+  Position positions_[4];
+  // These values are the condensate of the above array after Rationalize().
+  uint32_t mask_;
+  uint32_t value_;
+  // If set to true, there is no way this quick check can match at all.
+  // E.g., if it requires to be at the start of the input, and isn't.
+  bool cannot_match_;
+};
+
+
+extern int kUninitializedRegExpNodePlaceHolder;
+
+
+class RegExpNode: public ZoneObject {
+ public:
+  explicit RegExpNode(Zone* zone)
+      : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
+    bm_info_[0] = bm_info_[1] = NULL;
+  }
+  virtual ~RegExpNode();
+  virtual void Accept(NodeVisitor* visitor) = 0;
+  // Generates a goto to this node or actually generates the code at this point.
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
+  // How many characters must this node consume at a minimum in order to
+  // succeed.  If we have found at least 'still_to_find' characters that
+  // must be consumed there is no need to ask any following nodes whether
+  // they are sure to eat any more characters.  The not_at_start argument is
+  // used to indicate that we know we are not at the start of the input.  In
+  // this case anchored branches will always fail and can be ignored when
+  // determining how many characters are consumed on success.
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
+  // Emits some quick code that checks whether the preloaded characters match.
+  // Falls through on certain failure, jumps to the label on possible success.
+  // If the node cannot make a quick check it does nothing and returns false.
+  bool EmitQuickCheck(RegExpCompiler* compiler,
+                      Trace* bounds_check_trace,
+                      Trace* trace,
+                      bool preload_has_checked_bounds,
+                      Label* on_possible_success,
+                      QuickCheckDetails* details_return,
+                      bool fall_through_on_failure);
+  // For a given number of characters this returns a mask and a value.  The
+  // next n characters are anded with the mask and compared with the value.
+  // A comparison failure indicates the node cannot match the next n characters.
+  // A comparison success indicates the node may match.
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start) = 0;
+  static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
+  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+  // Only returns the successor for a text node of length 1 that matches any
+  // character and that has no guards on it.
+  virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
+      RegExpCompiler* compiler) {
+    return NULL;
+  }
+
+  // Collects information on the possible code units (mod 128) that can match if
+  // we look forward.  This is used for a Boyer-Moore-like string searching
+  // implementation.  TODO(erikcorry):  This should share more code with
+  // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
+  // the number of nodes we are willing to look at in order to create this data.
+  static const int kRecursionBudget = 200;
+  bool KeepRecursing(RegExpCompiler* compiler);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start) {
+    UNREACHABLE();
+  }
+
+  // If we know that the input is one-byte then there are some nodes that can
+  // never match.  This method returns a node that can be substituted for
+  // itself, or NULL if the node can never match.
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
+    return this;
+  }
+  // Helper for FilterOneByte.
+  RegExpNode* replacement() {
+    DCHECK(info()->replacement_calculated);
+    return replacement_;
+  }
+  RegExpNode* set_replacement(RegExpNode* replacement) {
+    info()->replacement_calculated = true;
+    replacement_ =  replacement;
+    return replacement;  // For convenience.
+  }
+
+  // We want to avoid recalculating the lookahead info, so we store it on the
+  // node.  Only info that is for this node is stored.  We can tell that the
+  // info is for this node when offset == 0, so the information is calculated
+  // relative to this node.
+  void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
+    if (offset == 0) set_bm_info(not_at_start, bm);
+  }
+
+  Label* label() { return &label_; }
+  // If non-generic code is generated for a node (i.e. the node is not at the
+  // start of the trace) then it cannot be reused.  This variable sets a limit
+  // on how often we allow that to happen before we insist on starting a new
+  // trace and generating generic code for a node that can be reused by flushing
+  // the deferred actions in the current trace and generating a goto.
+  static const int kMaxCopiesCodeGenerated = 10;
+
+  bool on_work_list() { return on_work_list_; }
+  void set_on_work_list(bool value) { on_work_list_ = value; }
+
+  NodeInfo* info() { return &info_; }
+
+  BoyerMooreLookahead* bm_info(bool not_at_start) {
+    return bm_info_[not_at_start ? 1 : 0];
+  }
+
+  Zone* zone() const { return zone_; }
+
+ protected:
+  enum LimitResult { DONE, CONTINUE };
+  RegExpNode* replacement_;
+
+  LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
+
+  void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
+    bm_info_[not_at_start ? 1 : 0] = bm;
+  }
+
+ private:
+  static const int kFirstCharBudget = 10;
+  Label label_;
+  bool on_work_list_;
+  NodeInfo info_;
+  // This variable keeps track of how many times code has been generated for
+  // this node (in different traces).  We don't keep track of where the
+  // generated code is located unless the code is generated at the start of
+  // a trace, in which case it is generic and can be reused by flushing the
+  // deferred operations in the current trace and generating a goto.
+  int trace_count_;
+  BoyerMooreLookahead* bm_info_[2];
+
+  Zone* zone_;
+};
+
+
+class SeqRegExpNode: public RegExpNode {
+ public:
+  explicit SeqRegExpNode(RegExpNode* on_success)
+      : RegExpNode(on_success->zone()), on_success_(on_success) { }
+  RegExpNode* on_success() { return on_success_; }
+  void set_on_success(RegExpNode* node) { on_success_ = node; }
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start) {
+    on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+    if (offset == 0) set_bm_info(not_at_start, bm);
+  }
+
+ protected:
+  RegExpNode* FilterSuccessor(int depth, bool ignore_case);
+
+ private:
+  RegExpNode* on_success_;
+};
+
+
+class ActionNode: public SeqRegExpNode {
+ public:
+  enum ActionType {
+    SET_REGISTER,
+    INCREMENT_REGISTER,
+    STORE_POSITION,
+    BEGIN_SUBMATCH,
+    POSITIVE_SUBMATCH_SUCCESS,
+    EMPTY_MATCH_CHECK,
+    CLEAR_CAPTURES
+  };
+  static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
+  static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
+  static ActionNode* StorePosition(int reg,
+                                   bool is_capture,
+                                   RegExpNode* on_success);
+  static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
+  static ActionNode* BeginSubmatch(int stack_pointer_reg,
+                                   int position_reg,
+                                   RegExpNode* on_success);
+  static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
+                                             int restore_reg,
+                                             int clear_capture_count,
+                                             int clear_capture_from,
+                                             RegExpNode* on_success);
+  static ActionNode* EmptyMatchCheck(int start_register,
+                                     int repetition_register,
+                                     int repetition_limit,
+                                     RegExpNode* on_success);
+  virtual void Accept(NodeVisitor* visitor);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int filled_in,
+                                    bool not_at_start) {
+    return on_success()->GetQuickCheckDetails(
+        details, compiler, filled_in, not_at_start);
+  }
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+  ActionType action_type() { return action_type_; }
+  // TODO(erikcorry): We should allow some action nodes in greedy loops.
+  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+
+ private:
+  union {
+    struct {
+      int reg;
+      int value;
+    } u_store_register;
+    struct {
+      int reg;
+    } u_increment_register;
+    struct {
+      int reg;
+      bool is_capture;
+    } u_position_register;
+    struct {
+      int stack_pointer_register;
+      int current_position_register;
+      int clear_register_count;
+      int clear_register_from;
+    } u_submatch;
+    struct {
+      int start_register;
+      int repetition_register;
+      int repetition_limit;
+    } u_empty_match_check;
+    struct {
+      int range_from;
+      int range_to;
+    } u_clear_captures;
+  } data_;
+  ActionNode(ActionType action_type, RegExpNode* on_success)
+      : SeqRegExpNode(on_success),
+        action_type_(action_type) { }
+  ActionType action_type_;
+  friend class DotPrinter;
+};
+
+
+class TextNode: public SeqRegExpNode {
+ public:
+  TextNode(ZoneList<TextElement>* elms, bool read_backward,
+           RegExpNode* on_success)
+      : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
+  TextNode(RegExpCharacterClass* that, bool read_backward,
+           RegExpNode* on_success)
+      : SeqRegExpNode(on_success),
+        elms_(new (zone()) ZoneList<TextElement>(1, zone())),
+        read_backward_(read_backward) {
+    elms_->Add(TextElement::CharClass(that), zone());
+  }
+  virtual void Accept(NodeVisitor* visitor);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start);
+  ZoneList<TextElement>* elements() { return elms_; }
+  bool read_backward() { return read_backward_; }
+  void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
+  virtual int GreedyLoopTextLength();
+  virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
+      RegExpCompiler* compiler);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+  void CalculateOffsets();
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+
+ private:
+  enum TextEmitPassType {
+    NON_LATIN1_MATCH,            // Check for characters that can't match.
+    SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
+    NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
+    CASE_CHARACTER_MATCH,        // Case-independent single character check.
+    CHARACTER_CLASS_MATCH        // Character class.
+  };
+  static bool SkipPass(int pass, bool ignore_case);
+  static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
+  static const int kLastPass = CHARACTER_CLASS_MATCH;
+  void TextEmitPass(RegExpCompiler* compiler,
+                    TextEmitPassType pass,
+                    bool preloaded,
+                    Trace* trace,
+                    bool first_element_checked,
+                    int* checked_up_to);
+  int Length();
+  ZoneList<TextElement>* elms_;
+  bool read_backward_;
+};
+
+
+class AssertionNode: public SeqRegExpNode {
+ public:
+  enum AssertionType {
+    AT_END,
+    AT_START,
+    AT_BOUNDARY,
+    AT_NON_BOUNDARY,
+    AFTER_NEWLINE
+  };
+  static AssertionNode* AtEnd(RegExpNode* on_success) {
+    return new(on_success->zone()) AssertionNode(AT_END, on_success);
+  }
+  static AssertionNode* AtStart(RegExpNode* on_success) {
+    return new(on_success->zone()) AssertionNode(AT_START, on_success);
+  }
+  static AssertionNode* AtBoundary(RegExpNode* on_success) {
+    return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
+  }
+  static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
+    return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
+  }
+  static AssertionNode* AfterNewline(RegExpNode* on_success) {
+    return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
+  }
+  virtual void Accept(NodeVisitor* visitor);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int filled_in,
+                                    bool not_at_start);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+  AssertionType assertion_type() { return assertion_type_; }
+
+ private:
+  void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
+  enum IfPrevious { kIsNonWord, kIsWord };
+  void BacktrackIfPrevious(RegExpCompiler* compiler,
+                           Trace* trace,
+                           IfPrevious backtrack_if_previous);
+  AssertionNode(AssertionType t, RegExpNode* on_success)
+      : SeqRegExpNode(on_success), assertion_type_(t) { }
+  AssertionType assertion_type_;
+};
+
+
+class BackReferenceNode: public SeqRegExpNode {
+ public:
+  BackReferenceNode(int start_reg, int end_reg, bool read_backward,
+                    RegExpNode* on_success)
+      : SeqRegExpNode(on_success),
+        start_reg_(start_reg),
+        end_reg_(end_reg),
+        read_backward_(read_backward) {}
+  virtual void Accept(NodeVisitor* visitor);
+  int start_register() { return start_reg_; }
+  int end_register() { return end_reg_; }
+  bool read_backward() { return read_backward_; }
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find,
+                          int recursion_depth,
+                          bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start) {
+    return;
+  }
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+
+ private:
+  int start_reg_;
+  int end_reg_;
+  bool read_backward_;
+};
+
+
+class EndNode: public RegExpNode {
+ public:
+  enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
+  explicit EndNode(Action action, Zone* zone)
+      : RegExpNode(zone), action_(action) { }
+  virtual void Accept(NodeVisitor* visitor);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find,
+                          int recursion_depth,
+                          bool not_at_start) { return 0; }
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start) {
+    // Returning 0 from EatsAtLeast should ensure we never get here.
+    UNREACHABLE();
+  }
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start) {
+    // Returning 0 from EatsAtLeast should ensure we never get here.
+    UNREACHABLE();
+  }
+
+ private:
+  Action action_;
+};
+
+
+class NegativeSubmatchSuccess: public EndNode {
+ public:
+  NegativeSubmatchSuccess(int stack_pointer_reg,
+                          int position_reg,
+                          int clear_capture_count,
+                          int clear_capture_start,
+                          Zone* zone)
+      : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
+        stack_pointer_register_(stack_pointer_reg),
+        current_position_register_(position_reg),
+        clear_capture_count_(clear_capture_count),
+        clear_capture_start_(clear_capture_start) { }
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+
+ private:
+  int stack_pointer_register_;
+  int current_position_register_;
+  int clear_capture_count_;
+  int clear_capture_start_;
+};
+
+
+class Guard: public ZoneObject {
+ public:
+  enum Relation { LT, GEQ };
+  Guard(int reg, Relation op, int value)
+      : reg_(reg),
+        op_(op),
+        value_(value) { }
+  int reg() { return reg_; }
+  Relation op() { return op_; }
+  int value() { return value_; }
+
+ private:
+  int reg_;
+  Relation op_;
+  int value_;
+};
+
+
+class GuardedAlternative {
+ public:
+  explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
+  void AddGuard(Guard* guard, Zone* zone);
+  RegExpNode* node() { return node_; }
+  void set_node(RegExpNode* node) { node_ = node; }
+  ZoneList<Guard*>* guards() { return guards_; }
+
+ private:
+  RegExpNode* node_;
+  ZoneList<Guard*>* guards_;
+};
+
+
+class AlternativeGeneration;
+
+
+class ChoiceNode: public RegExpNode {
+ public:
+  explicit ChoiceNode(int expected_size, Zone* zone)
+      : RegExpNode(zone),
+        alternatives_(new(zone)
+                      ZoneList<GuardedAlternative>(expected_size, zone)),
+        table_(NULL),
+        not_at_start_(false),
+        being_calculated_(false) { }
+  virtual void Accept(NodeVisitor* visitor);
+  void AddAlternative(GuardedAlternative node) {
+    alternatives()->Add(node, zone());
+  }
+  ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
+  DispatchTable* GetTable(bool ignore_case);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+  int EatsAtLeastHelper(int still_to_find,
+                        int budget,
+                        RegExpNode* ignore_this_node,
+                        bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+
+  bool being_calculated() { return being_calculated_; }
+  bool not_at_start() { return not_at_start_; }
+  void set_not_at_start() { not_at_start_ = true; }
+  void set_being_calculated(bool b) { being_calculated_ = b; }
+  virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
+    return true;
+  }
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+  virtual bool read_backward() { return false; }
+
+ protected:
+  int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
+  ZoneList<GuardedAlternative>* alternatives_;
+
+ private:
+  friend class DispatchTableConstructor;
+  friend class Analysis;
+  void GenerateGuard(RegExpMacroAssembler* macro_assembler,
+                     Guard* guard,
+                     Trace* trace);
+  int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
+  void EmitOutOfLineContinuation(RegExpCompiler* compiler,
+                                 Trace* trace,
+                                 GuardedAlternative alternative,
+                                 AlternativeGeneration* alt_gen,
+                                 int preload_characters,
+                                 bool next_expects_preload);
+  void SetUpPreLoad(RegExpCompiler* compiler,
+                    Trace* current_trace,
+                    PreloadState* preloads);
+  void AssertGuardsMentionRegisters(Trace* trace);
+  int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
+  Trace* EmitGreedyLoop(RegExpCompiler* compiler,
+                        Trace* trace,
+                        AlternativeGenerationList* alt_gens,
+                        PreloadState* preloads,
+                        GreedyLoopState* greedy_loop_state,
+                        int text_length);
+  void EmitChoices(RegExpCompiler* compiler,
+                   AlternativeGenerationList* alt_gens,
+                   int first_choice,
+                   Trace* trace,
+                   PreloadState* preloads);
+  DispatchTable* table_;
+  // If true, this node is never checked at the start of the input.
+  // Allows a new trace to start with at_start() set to false.
+  bool not_at_start_;
+  bool being_calculated_;
+};
+
+
+class NegativeLookaroundChoiceNode : public ChoiceNode {
+ public:
+  explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
+                                        GuardedAlternative then_do_this,
+                                        Zone* zone)
+      : ChoiceNode(2, zone) {
+    AddAlternative(this_must_fail);
+    AddAlternative(then_do_this);
+  }
+  virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start) {
+    alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
+                                              not_at_start);
+    if (offset == 0) set_bm_info(not_at_start, bm);
+  }
+  // For a negative lookahead we don't emit the quick check for the
+  // alternative that is expected to fail.  This is because quick check code
+  // starts by loading enough characters for the alternative that takes fewest
+  // characters, but on a negative lookahead the negative branch did not take
+  // part in that calculation (EatsAtLeast) so the assumptions don't hold.
+  virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
+    return !is_first;
+  }
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+};
+
+
+class LoopChoiceNode: public ChoiceNode {
+ public:
+  LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
+      : ChoiceNode(2, zone),
+        loop_node_(NULL),
+        continue_node_(NULL),
+        body_can_be_zero_length_(body_can_be_zero_length),
+        read_backward_(read_backward) {}
+  void AddLoopAlternative(GuardedAlternative alt);
+  void AddContinueAlternative(GuardedAlternative alt);
+  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+  virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
+  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+                                    RegExpCompiler* compiler,
+                                    int characters_filled_in,
+                                    bool not_at_start);
+  virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+                            BoyerMooreLookahead* bm, bool not_at_start);
+  RegExpNode* loop_node() { return loop_node_; }
+  RegExpNode* continue_node() { return continue_node_; }
+  bool body_can_be_zero_length() { return body_can_be_zero_length_; }
+  virtual bool read_backward() { return read_backward_; }
+  virtual void Accept(NodeVisitor* visitor);
+  virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+
+ private:
+  // AddAlternative is made private for loop nodes because alternatives
+  // should not be added freely, we need to keep track of which node
+  // goes back to the node itself.
+  void AddAlternative(GuardedAlternative node) {
+    ChoiceNode::AddAlternative(node);
+  }
+
+  RegExpNode* loop_node_;
+  RegExpNode* continue_node_;
+  bool body_can_be_zero_length_;
+  bool read_backward_;
+};
+
+
+// Improve the speed that we scan for an initial point where a non-anchored
+// regexp can match by using a Boyer-Moore-like table. This is done by
+// identifying non-greedy non-capturing loops in the nodes that eat any
+// character one at a time.  For example in the middle of the regexp
+// /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
+// inserted at the start of any non-anchored regexp.
+//
+// When we have found such a loop we look ahead in the nodes to find the set of
+// characters that can come at given distances. For example for the regexp
+// /.?foo/ we know that there are at least 3 characters ahead of us, and the
+// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
+// the lookahead info where the set of characters is reasonably constrained. In
+// our example this is from index 1 to 2 (0 is not constrained). We can now
+// look 3 characters ahead and if we don't find one of [f, o] (the union of
+// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
+//
+// For Unicode input strings we do the same, but modulo 128.
+//
+// We also look at the first string fed to the regexp and use that to get a hint
+// of the character frequencies in the inputs. This affects the assessment of
+// whether the set of characters is 'reasonably constrained'.
+//
+// We also have another lookahead mechanism (called quick check in the code),
+// which uses a wide load of multiple characters followed by a mask and compare
+// to determine whether a match is possible at this point.
+enum ContainedInLattice {
+  kNotYet = 0,
+  kLatticeIn = 1,
+  kLatticeOut = 2,
+  kLatticeUnknown = 3  // Can also mean both in and out.
+};
+
+
+inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
+  return static_cast<ContainedInLattice>(a | b);
+}
+
+
+ContainedInLattice AddRange(ContainedInLattice a,
+                            const int* ranges,
+                            int ranges_size,
+                            Interval new_range);
+
+
+class BoyerMoorePositionInfo : public ZoneObject {
+ public:
+  explicit BoyerMoorePositionInfo(Zone* zone)
+      : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
+        map_count_(0),
+        w_(kNotYet),
+        s_(kNotYet),
+        d_(kNotYet),
+        surrogate_(kNotYet) {
+     for (int i = 0; i < kMapSize; i++) {
+       map_->Add(false, zone);
+     }
+  }
+
+  bool& at(int i) { return map_->at(i); }
+
+  static const int kMapSize = 128;
+  static const int kMask = kMapSize - 1;
+
+  int map_count() const { return map_count_; }
+
+  void Set(int character);
+  void SetInterval(const Interval& interval);
+  void SetAll();
+  bool is_non_word() { return w_ == kLatticeOut; }
+  bool is_word() { return w_ == kLatticeIn; }
+
+ private:
+  ZoneList<bool>* map_;
+  int map_count_;  // Number of set bits in the map.
+  ContainedInLattice w_;  // The \w character class.
+  ContainedInLattice s_;  // The \s character class.
+  ContainedInLattice d_;  // The \d character class.
+  ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
+};
+
+
+class BoyerMooreLookahead : public ZoneObject {
+ public:
+  BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
+
+  int length() { return length_; }
+  int max_char() { return max_char_; }
+  RegExpCompiler* compiler() { return compiler_; }
+
+  int Count(int map_number) {
+    return bitmaps_->at(map_number)->map_count();
+  }
+
+  BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
+
+  void Set(int map_number, int character) {
+    if (character > max_char_) return;
+    BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
+    info->Set(character);
+  }
+
+  void SetInterval(int map_number, const Interval& interval) {
+    if (interval.from() > max_char_) return;
+    BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
+    if (interval.to() > max_char_) {
+      info->SetInterval(Interval(interval.from(), max_char_));
+    } else {
+      info->SetInterval(interval);
+    }
+  }
+
+  void SetAll(int map_number) {
+    bitmaps_->at(map_number)->SetAll();
+  }
+
+  void SetRest(int from_map) {
+    for (int i = from_map; i < length_; i++) SetAll(i);
+  }
+  void EmitSkipInstructions(RegExpMacroAssembler* masm);
+
+ private:
+  // This is the value obtained by EatsAtLeast.  If we do not have at least this
+  // many characters left in the sample string then the match is bound to fail.
+  // Therefore it is OK to read a character this far ahead of the current match
+  // point.
+  int length_;
+  RegExpCompiler* compiler_;
+  // 0xff for Latin1, 0xffff for UTF-16.
+  int max_char_;
+  ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
+
+  int GetSkipTable(int min_lookahead,
+                   int max_lookahead,
+                   Handle<ByteArray> boolean_skip_table);
+  bool FindWorthwhileInterval(int* from, int* to);
+  int FindBestInterval(
+    int max_number_of_chars, int old_biggest_points, int* from, int* to);
+};
+
+
+// There are many ways to generate code for a node.  This class encapsulates
+// the current way we should be generating.  In other words it encapsulates
+// the current state of the code generator.  The effect of this is that we
+// generate code for paths that the matcher can take through the regular
+// expression.  A given node in the regexp can be code-generated several times
+// as it can be part of several traces.  For example for the regexp:
+// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
+// of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
+// to match foo is generated only once (the traces have a common prefix).  The
+// code to store the capture is deferred and generated (twice) after the places
+// where baz has been matched.
+class Trace {
+ public:
+  // A value for a property that is either known to be true, know to be false,
+  // or not known.
+  enum TriBool {
+    UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
+  };
+
+  class DeferredAction {
+   public:
+    DeferredAction(ActionNode::ActionType action_type, int reg)
+        : action_type_(action_type), reg_(reg), next_(NULL) { }
+    DeferredAction* next() { return next_; }
+    bool Mentions(int reg);
+    int reg() { return reg_; }
+    ActionNode::ActionType action_type() { return action_type_; }
+   private:
+    ActionNode::ActionType action_type_;
+    int reg_;
+    DeferredAction* next_;
+    friend class Trace;
+  };
+
+  class DeferredCapture : public DeferredAction {
+   public:
+    DeferredCapture(int reg, bool is_capture, Trace* trace)
+        : DeferredAction(ActionNode::STORE_POSITION, reg),
+          cp_offset_(trace->cp_offset()),
+          is_capture_(is_capture) { }
+    int cp_offset() { return cp_offset_; }
+    bool is_capture() { return is_capture_; }
+   private:
+    int cp_offset_;
+    bool is_capture_;
+    void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
+  };
+
+  class DeferredSetRegister : public DeferredAction {
+   public:
+    DeferredSetRegister(int reg, int value)
+        : DeferredAction(ActionNode::SET_REGISTER, reg),
+          value_(value) { }
+    int value() { return value_; }
+   private:
+    int value_;
+  };
+
+  class DeferredClearCaptures : public DeferredAction {
+   public:
+    explicit DeferredClearCaptures(Interval range)
+        : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
+          range_(range) { }
+    Interval range() { return range_; }
+   private:
+    Interval range_;
+  };
+
+  class DeferredIncrementRegister : public DeferredAction {
+   public:
+    explicit DeferredIncrementRegister(int reg)
+        : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
+  };
+
+  Trace()
+      : cp_offset_(0),
+        actions_(NULL),
+        backtrack_(NULL),
+        stop_node_(NULL),
+        loop_label_(NULL),
+        characters_preloaded_(0),
+        bound_checked_up_to_(0),
+        flush_budget_(100),
+        at_start_(UNKNOWN) { }
+
+  // End the trace.  This involves flushing the deferred actions in the trace
+  // and pushing a backtrack location onto the backtrack stack.  Once this is
+  // done we can start a new trace or go to one that has already been
+  // generated.
+  void Flush(RegExpCompiler* compiler, RegExpNode* successor);
+  int cp_offset() { return cp_offset_; }
+  DeferredAction* actions() { return actions_; }
+  // A trivial trace is one that has no deferred actions or other state that
+  // affects the assumptions used when generating code.  There is no recorded
+  // backtrack location in a trivial trace, so with a trivial trace we will
+  // generate code that, on a failure to match, gets the backtrack location
+  // from the backtrack stack rather than using a direct jump instruction.  We
+  // always start code generation with a trivial trace and non-trivial traces
+  // are created as we emit code for nodes or add to the list of deferred
+  // actions in the trace.  The location of the code generated for a node using
+  // a trivial trace is recorded in a label in the node so that gotos can be
+  // generated to that code.
+  bool is_trivial() {
+    return backtrack_ == NULL &&
+           actions_ == NULL &&
+           cp_offset_ == 0 &&
+           characters_preloaded_ == 0 &&
+           bound_checked_up_to_ == 0 &&
+           quick_check_performed_.characters() == 0 &&
+           at_start_ == UNKNOWN;
+  }
+  TriBool at_start() { return at_start_; }
+  void set_at_start(TriBool at_start) { at_start_ = at_start; }
+  Label* backtrack() { return backtrack_; }
+  Label* loop_label() { return loop_label_; }
+  RegExpNode* stop_node() { return stop_node_; }
+  int characters_preloaded() { return characters_preloaded_; }
+  int bound_checked_up_to() { return bound_checked_up_to_; }
+  int flush_budget() { return flush_budget_; }
+  QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
+  bool mentions_reg(int reg);
+  // Returns true if a deferred position store exists to the specified
+  // register and stores the offset in the out-parameter.  Otherwise
+  // returns false.
+  bool GetStoredPosition(int reg, int* cp_offset);
+  // These set methods and AdvanceCurrentPositionInTrace should be used only on
+  // new traces - the intention is that traces are immutable after creation.
+  void add_action(DeferredAction* new_action) {
+    DCHECK(new_action->next_ == NULL);
+    new_action->next_ = actions_;
+    actions_ = new_action;
+  }
+  void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
+  void set_stop_node(RegExpNode* node) { stop_node_ = node; }
+  void set_loop_label(Label* label) { loop_label_ = label; }
+  void set_characters_preloaded(int count) { characters_preloaded_ = count; }
+  void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
+  void set_flush_budget(int to) { flush_budget_ = to; }
+  void set_quick_check_performed(QuickCheckDetails* d) {
+    quick_check_performed_ = *d;
+  }
+  void InvalidateCurrentCharacter();
+  void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
+
+ private:
+  int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
+  void PerformDeferredActions(RegExpMacroAssembler* macro,
+                              int max_register,
+                              const OutSet& affected_registers,
+                              OutSet* registers_to_pop,
+                              OutSet* registers_to_clear,
+                              Zone* zone);
+  void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
+                                int max_register,
+                                const OutSet& registers_to_pop,
+                                const OutSet& registers_to_clear);
+  int cp_offset_;
+  DeferredAction* actions_;
+  Label* backtrack_;
+  RegExpNode* stop_node_;
+  Label* loop_label_;
+  int characters_preloaded_;
+  int bound_checked_up_to_;
+  QuickCheckDetails quick_check_performed_;
+  int flush_budget_;
+  TriBool at_start_;
+};
+
+
+class GreedyLoopState {
+ public:
+  explicit GreedyLoopState(bool not_at_start);
+
+  Label* label() { return &label_; }
+  Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
+
+ private:
+  Label label_;
+  Trace counter_backtrack_trace_;
+};
+
+
+struct PreloadState {
+  static const int kEatsAtLeastNotYetInitialized = -1;
+  bool preload_is_current_;
+  bool preload_has_checked_bounds_;
+  int preload_characters_;
+  int eats_at_least_;
+  void init() {
+    eats_at_least_ = kEatsAtLeastNotYetInitialized;
+  }
+};
+
+
+class NodeVisitor {
+ public:
+  virtual ~NodeVisitor() { }
+#define DECLARE_VISIT(Type)                                          \
+  virtual void Visit##Type(Type##Node* that) = 0;
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+  virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
+};
+
+
+// Node visitor used to add the start set of the alternatives to the
+// dispatch table of a choice node.
+class DispatchTableConstructor: public NodeVisitor {
+ public:
+  DispatchTableConstructor(DispatchTable* table, bool ignore_case,
+                           Zone* zone)
+      : table_(table),
+        choice_index_(-1),
+        ignore_case_(ignore_case),
+        zone_(zone) { }
+
+  void BuildTable(ChoiceNode* node);
+
+  void AddRange(CharacterRange range) {
+    table()->AddRange(range, choice_index_, zone_);
+  }
+
+  void AddInverse(ZoneList<CharacterRange>* ranges);
+
+#define DECLARE_VISIT(Type)                                          \
+  virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+
+  DispatchTable* table() { return table_; }
+  void set_choice_index(int value) { choice_index_ = value; }
+
+ protected:
+  DispatchTable* table_;
+  int choice_index_;
+  bool ignore_case_;
+  Zone* zone_;
+};
+
+
+// Assertion propagation moves information about assertions such as
+// \b to the affected nodes.  For instance, in /.\b./ information must
+// be propagated to the first '.' that whatever follows needs to know
+// if it matched a word or a non-word, and to the second '.' that it
+// has to check if it succeeds a word or non-word.  In this case the
+// result will be something like:
+//
+//   +-------+        +------------+
+//   |   .   |        |      .     |
+//   +-------+  --->  +------------+
+//   | word? |        | check word |
+//   +-------+        +------------+
+class Analysis: public NodeVisitor {
+ public:
+  Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
+      : isolate_(isolate),
+        ignore_case_(ignore_case),
+        is_one_byte_(is_one_byte),
+        error_message_(NULL) {}
+  void EnsureAnalyzed(RegExpNode* node);
+
+#define DECLARE_VISIT(Type)                                          \
+  virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+  virtual void VisitLoopChoice(LoopChoiceNode* that);
+
+  bool has_failed() { return error_message_ != NULL; }
+  const char* error_message() {
+    DCHECK(error_message_ != NULL);
+    return error_message_;
+  }
+  void fail(const char* error_message) {
+    error_message_ = error_message;
+  }
+
+  Isolate* isolate() const { return isolate_; }
+
+ private:
+  Isolate* isolate_;
+  bool ignore_case_;
+  bool is_one_byte_;
+  const char* error_message_;
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
+};
+
+
+struct RegExpCompileData {
+  RegExpCompileData()
+    : tree(NULL),
+      node(NULL),
+      simple(true),
+      contains_anchor(false),
+      capture_count(0) { }
+  RegExpTree* tree;
+  RegExpNode* node;
+  bool simple;
+  bool contains_anchor;
+  Handle<String> error;
+  int capture_count;
+};
+
+
+class RegExpEngine: public AllStatic {
+ public:
+  struct CompilationResult {
+    CompilationResult(Isolate* isolate, const char* error_message)
+        : error_message(error_message),
+          code(isolate->heap()->the_hole_value()),
+          num_registers(0) {}
+    CompilationResult(Object* code, int registers)
+        : error_message(NULL), code(code), num_registers(registers) {}
+    const char* error_message;
+    Object* code;
+    int num_registers;
+  };
+
+  static CompilationResult Compile(Isolate* isolate, Zone* zone,
+                                   RegExpCompileData* input, bool ignore_case,
+                                   bool global, bool multiline, bool sticky,
+                                   Handle<String> pattern,
+                                   Handle<String> sample_subject,
+                                   bool is_one_byte);
+
+  static bool TooMuchRegExpCode(Handle<String> pattern);
+
+  static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
+};
+
+
+class RegExpResultsCache : public AllStatic {
+ public:
+  enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
+
+  // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
+  // On success, the returned result is guaranteed to be a COW-array.
+  static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
+                        FixedArray** last_match_out, ResultsCacheType type);
+  // Attempt to add value_array to the cache specified by type.  On success,
+  // value_array is turned into a COW-array.
+  static void Enter(Isolate* isolate, Handle<String> key_string,
+                    Handle<Object> key_pattern, Handle<FixedArray> value_array,
+                    Handle<FixedArray> last_match_cache, ResultsCacheType type);
+  static void Clear(FixedArray* cache);
+  static const int kRegExpResultsCacheSize = 0x100;
+
+ private:
+  static const int kArrayEntriesPerCacheEntry = 4;
+  static const int kStringOffset = 0;
+  static const int kPatternOffset = 1;
+  static const int kArrayOffset = 2;
+  static const int kLastMatchOffset = 3;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_JSREGEXP_H_
diff --git a/src/regexp/mips/OWNERS b/src/regexp/mips/OWNERS
new file mode 100644
index 0000000..89455a4
--- /dev/null
+++ b/src/regexp/mips/OWNERS
@@ -0,0 +1,6 @@
+paul.lind@imgtec.com
+gergely.kis@imgtec.com
+akos.palfi@imgtec.com
+balazs.kilvady@imgtec.com
+dusan.milosavljevic@imgtec.com
+ivica.bogosavljevic@imgtec.com
diff --git a/src/regexp/mips/regexp-macro-assembler-mips.cc b/src/regexp/mips/regexp-macro-assembler-mips.cc
new file mode 100644
index 0000000..9c59328
--- /dev/null
+++ b/src/regexp/mips/regexp-macro-assembler-mips.cc
@@ -0,0 +1,1290 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_MIPS
+
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - t7 : Temporarily stores the index of capture start after a matching pass
+ *        for a global regexp.
+ * - t1 : Pointer to current code object (Code*) including heap object tag.
+ * - t2 : Current position in input, as negative offset from end of string.
+ *        Please notice that this is the byte offset, not the character offset!
+ * - t3 : Currently loaded character. Must be loaded using
+ *        LoadCurrentCharacter before using any of the dispatch methods.
+ * - t4 : Points to tip of backtrack stack
+ * - t5 : Unused.
+ * - t6 : End of input (points to byte after last character in input).
+ * - fp : Frame pointer. Used to access arguments, local variables and
+ *         RegExp registers.
+ * - sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *
+ *  - fp[64]  Isolate* isolate   (address of the current isolate)
+ *  - fp[60]  direct_call  (if 1, direct call from JavaScript code,
+ *                          if 0, call through the runtime system).
+ *  - fp[56]  stack_area_base (High end of the memory area to use as
+ *                             backtracking stack).
+ *  - fp[52]  capture array size (may fit multiple sets of matches)
+ *  - fp[48]  int* capture_array (int[num_saved_registers_], for output).
+ *  - fp[44]  secondary link/return address used by native call.
+ *  --- sp when called ---
+ *  - fp[40]  return address      (lr).
+ *  - fp[36]  old frame pointer   (r11).
+ *  - fp[0..32]  backup of registers s0..s7.
+ *  --- frame pointer ----
+ *  - fp[-4]  end of input       (address of end of string).
+ *  - fp[-8]  start of input     (address of first character in string).
+ *  - fp[-12] start index        (character index of start).
+ *  - fp[-16] void* input_string (location of a handle containing the string).
+ *  - fp[-20] success counter    (only for global regexps to count matches).
+ *  - fp[-24] Offset of location before start of input (effectively character
+ *            position -1). Used to initialize capture registers to a
+ *            non-position.
+ *  - fp[-28] At start (if 1, we are starting at the start of the
+ *    string, otherwise 0)
+ *  - fp[-32] register 0         (Only positions must be stored in the first
+ *  -         register 1          num_saved_registers_ registers)
+ *  -         ...
+ *  -         register num_registers-1
+ *  --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              Address secondary_return_address,  // Only used by native call.
+ *              int* capture_output_array,
+ *              byte* stack_area_base,
+ *              bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in mips/simulator-mips.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the ra register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
+                                                   Mode mode,
+                                                   int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_(),
+      internal_failure_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code later.
+  // If the code gets too big or corrupted, an internal exception will be
+  // raised, and we will exit right away.
+  __ bind(&internal_failure_label_);
+  __ li(v0, Operand(FAILURE));
+  __ Ret();
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+  internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ Addu(current_input_offset(),
+            current_input_offset(), Operand(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ lw(a0, register_location(reg));
+    __ Addu(a0, a0, Operand(by));
+    __ sw(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(a0);
+  __ Addu(a0, a0, code_pointer());
+  __ Jump(a0);
+}
+
+
+void RegExpMacroAssemblerMIPS::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
+  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
+  __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ Addu(a0, current_input_offset(), Operand(-char_size()));
+  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
+                                               Label* on_not_at_start) {
+  __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ Addu(a0, current_input_offset(),
+          Operand(-char_size() + cp_offset * char_size()));
+  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
+  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
+  Label backtrack_non_equal;
+  __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
+  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
+  __ Addu(backtrack_stackpointer(),
+          backtrack_stackpointer(),
+          Operand(kPointerSize));
+  __ bind(&backtrack_non_equal);
+  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ lw(a0, register_location(start_reg));  // Index of start of capture.
+  __ lw(a1, register_location(start_reg + 1));  // Index of end of capture.
+  __ Subu(a1, a1, a0);  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+  if (read_backward) {
+    __ lw(t0, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Addu(t0, t0, a1);
+    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t0));
+  } else {
+    __ Addu(t5, a1, current_input_offset());
+    // Check that there are enough characters left in the input.
+    BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_check;
+
+    // a0 - offset of start of capture.
+    // a1 - length of capture.
+    __ Addu(a0, a0, Operand(end_of_input_address()));
+    __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
+    if (read_backward) {
+      __ Subu(a2, a2, Operand(a1));
+    }
+    __ Addu(a1, a0, Operand(a1));
+
+    // a0 - Address of start of capture.
+    // a1 - Address of end of capture.
+    // a2 - Address of current input position.
+
+    Label loop;
+    __ bind(&loop);
+    __ lbu(a3, MemOperand(a0, 0));
+    __ addiu(a0, a0, char_size());
+    __ lbu(t0, MemOperand(a2, 0));
+    __ addiu(a2, a2, char_size());
+
+    __ Branch(&loop_check, eq, t0, Operand(a3));
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
+    __ Or(t0, t0, Operand(0x20));  // Also convert input character.
+    __ Branch(&fail, ne, t0, Operand(a3));
+    __ Subu(a3, a3, Operand('a'));
+    __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ Subu(a3, a3, Operand(224 - 'a'));
+    // Weren't Latin-1 letters.
+    __ Branch(&fail, hi, a3, Operand(254 - 224));
+    // Check for 247.
+    __ Branch(&fail, eq, a3, Operand(247 - 224));
+
+    __ bind(&loop_check);
+    __ Branch(&loop, lt, a0, Operand(a1));
+    __ jmp(&success);
+
+    __ bind(&fail);
+    GoTo(on_no_match);
+
+    __ bind(&success);
+    // Compute new value of character position after the matched part.
+    __ Subu(current_input_offset(), a2, end_of_input_address());
+    if (read_backward) {
+      __ lw(t0, register_location(start_reg));  // Index of start of capture.
+      __ lw(t5, register_location(start_reg + 1));  // Index of end of capture.
+      __ Addu(current_input_offset(), current_input_offset(), Operand(t0));
+      __ Subu(current_input_offset(), current_input_offset(), Operand(t5));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    // Put regexp engine registers on stack.
+    RegList regexp_registers_to_retain = current_input_offset().bit() |
+        current_character().bit() | backtrack_stackpointer().bit();
+    __ MultiPush(regexp_registers_to_retain);
+
+    int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, a2);
+
+    // a0 - offset of start of capture.
+    // a1 - length of capture.
+
+    // Put arguments into arguments registers.
+    // Parameters are
+    //   a0: Address byte_offset1 - Address captured substring's start.
+    //   a1: Address byte_offset2 - Address of current character position.
+    //   a2: size_t byte_length - length of capture in bytes(!).
+    //   a3: Isolate* isolate.
+
+    // Address of start of capture.
+    __ Addu(a0, a0, Operand(end_of_input_address()));
+    // Length of capture.
+    __ mov(a2, a1);
+    // Save length in callee-save register for use on return.
+    __ mov(s3, a1);
+    // Address of current input position.
+    __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
+    if (read_backward) {
+      __ Subu(a1, a1, Operand(s3));
+    }
+    // Isolate.
+    __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference function =
+          ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
+      __ CallCFunction(function, argument_count);
+    }
+
+    // Restore regexp engine registers.
+    __ MultiPop(regexp_registers_to_retain);
+    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+    __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+
+    // Check if function returned non-zero for success or zero for failure.
+    BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ Subu(current_input_offset(), current_input_offset(), Operand(s3));
+    } else {
+      __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
+    }
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
+                                                     bool read_backward,
+                                                     Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+
+  // Find length of back-referenced capture.
+  __ lw(a0, register_location(start_reg));
+  __ lw(a1, register_location(start_reg + 1));
+  __ Subu(a1, a1, a0);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ Branch(&fallthrough, le, a1, Operand(zero_reg));
+
+  if (read_backward) {
+    __ lw(t0, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Addu(t0, t0, a1);
+    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t0));
+  } else {
+    __ Addu(t5, a1, current_input_offset());
+    // Check that there are enough characters left in the input.
+    BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
+  }
+
+  // a0 - offset of start of capture.
+  // a1 - length of capture.
+  __ Addu(a0, a0, Operand(end_of_input_address()));
+  __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
+  if (read_backward) {
+    __ Subu(a2, a2, Operand(a1));
+  }
+  __ Addu(a1, a0, Operand(a1));
+
+  // a0 - Address of start of capture.
+  // a1 - Address of end of capture.
+  // a2 - Address of current input position.
+
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ lbu(a3, MemOperand(a0, 0));
+    __ addiu(a0, a0, char_size());
+    __ lbu(t0, MemOperand(a2, 0));
+    __ addiu(a2, a2, char_size());
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhu(a3, MemOperand(a0, 0));
+    __ addiu(a0, a0, char_size());
+    __ lhu(t0, MemOperand(a2, 0));
+    __ addiu(a2, a2, char_size());
+  }
+  BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
+  __ Branch(&loop, lt, a0, Operand(a1));
+
+  // Move current character position to position after match.
+  __ Subu(current_input_offset(), a2, end_of_input_address());
+  if (read_backward) {
+    __ lw(t0, register_location(start_reg));      // Index of start of capture.
+    __ lw(t5, register_location(start_reg + 1));  // Index of end of capture.
+    __ Addu(current_input_offset(), current_input_offset(), Operand(t0));
+    __ Subu(current_input_offset(), current_input_offset(), Operand(t5));
+  }
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
+                                                 Label* on_not_equal) {
+  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
+                                                      uint32_t mask,
+                                                      Label* on_equal) {
+  __ And(a0, current_character(), Operand(mask));
+  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+  BranchOrBacktrack(on_equal, eq, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
+                                                         uint32_t mask,
+                                                         Label* on_not_equal) {
+  __ And(a0, current_character(), Operand(mask));
+  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ Subu(a0, current_character(), Operand(minus));
+  __ And(a0, a0, Operand(mask));
+  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ Subu(a0, current_character(), Operand(from));
+  // Unsigned lower-or-same condition.
+  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ Subu(a0, current_character(), Operand(from));
+  // Unsigned higher condition.
+  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ li(a0, Operand(table));
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ And(a1, current_character(), Operand(kTableSize - 1));
+    __ Addu(a0, a0, a1);
+  } else {
+    __ Addu(a0, a0, current_character());
+  }
+
+  __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
+  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
+                                                          Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check.
+  switch (type) {
+  case 's':
+    // Match space-characters.
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ Branch(&success, eq, current_character(), Operand(' '));
+      // Check range 0x09..0x0d.
+      __ Subu(a0, current_character(), Operand('\t'));
+      __ Branch(&success, ls, a0, Operand('\r' - '\t'));
+      // \u00a0 (NBSP).
+      BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match Latin1 digits ('0'..'9').
+    __ Subu(a0, current_character(), Operand('0'));
+    BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
+    return true;
+  case 'D':
+    // Match non Latin1-digits.
+    __ Subu(a0, current_character(), Operand('0'));
+    BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+    __ Xor(a0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+    __ Subu(a0, a0, Operand(0x0b));
+    BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ Subu(a0, a0, Operand(0x2028 - 0x0b));
+      BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
+    }
+    return true;
+  }
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+    __ Xor(a0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+    __ Subu(a0, a0, Operand(0x0b));
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
+    } else {
+      Label done;
+      BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ Subu(a0, a0, Operand(0x2028 - 0x0b));
+      BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
+      __ bind(&done);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ li(a0, Operand(map));
+    __ Addu(a0, a0, current_character());
+    __ lbu(a0, MemOperand(a0, 0));
+    BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ Branch(&done, hi, current_character(), Operand('z'));
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ li(a0, Operand(map));
+    __ Addu(a0, a0, current_character());
+    __ lbu(a0, MemOperand(a0, 0));
+    BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+  case '*':
+    // Match any character.
+    return true;
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::Fail() {
+  __ li(v0, Operand(FAILURE));
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
+  Label return_v0;
+  if (masm_->has_exception()) {
+    // If the code gets corrupted due to long regular expressions and lack of
+    // space on trampolines, an internal exception flag is set. If this case
+    // is detected, we will jump into exit sequence right away.
+    __ bind_to(&entry_label_, internal_failure_label_.pos());
+  } else {
+    // Finalize code - write the entry point code now we know how many
+    // registers we need.
+
+    // Entry code:
+    __ bind(&entry_label_);
+
+    // Tell the system that we have a stack frame.  Because the type is MANUAL,
+    // no is generated.
+    FrameScope scope(masm_, StackFrame::MANUAL);
+
+    // Actually emit code to start a new stack frame.
+    // Push arguments
+    // Save callee-save registers.
+    // Start new stack frame.
+    // Store link register in existing stack-cell.
+    // Order here should correspond to order of offset constants in header file.
+    RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
+        s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
+    RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+    __ MultiPush(argument_registers | registers_to_retain | ra.bit());
+    // Set frame pointer in space for it if this is not a direct call
+    // from generated code.
+    __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
+    __ mov(a0, zero_reg);
+    __ push(a0);  // Make room for success counter and initialize it to 0.
+    __ push(a0);  // Make room for "string start - 1" constant.
+
+    // Check if we have space on the stack for registers.
+    Label stack_limit_hit;
+    Label stack_ok;
+
+    ExternalReference stack_limit =
+        ExternalReference::address_of_stack_limit(masm_->isolate());
+    __ li(a0, Operand(stack_limit));
+    __ lw(a0, MemOperand(a0));
+    __ Subu(a0, sp, a0);
+    // Handle it if the stack pointer is already below the stack limit.
+    __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
+    // Check if there is room for the variable number of registers above
+    // the stack limit.
+    __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
+    // Exit with OutOfMemory exception. There is not enough space on the stack
+    // for our working registers.
+    __ li(v0, Operand(EXCEPTION));
+    __ jmp(&return_v0);
+
+    __ bind(&stack_limit_hit);
+    CallCheckStackGuardState(a0);
+    // If returned value is non-zero, we exit with the returned value as result.
+    __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+    __ bind(&stack_ok);
+    // Allocate space on stack for registers.
+    __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
+    // Load string end.
+    __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+    // Load input start.
+    __ lw(a0, MemOperand(frame_pointer(), kInputStart));
+    // Find negative length (offset of start relative to end).
+    __ Subu(current_input_offset(), a0, end_of_input_address());
+    // Set a0 to address of char before start of the input string
+    // (effectively string position -1).
+    __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
+    __ Subu(a0, current_input_offset(), Operand(char_size()));
+    __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
+    __ Subu(a0, a0, t5);
+    // Store this value in a local variable, for use when clearing
+    // position registers.
+    __ sw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+    // Initialize code pointer register
+    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+    Label load_char_start_regexp, start_regexp;
+    // Load newline if index is at start, previous character otherwise.
+    __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
+    __ li(current_character(), Operand('\n'));
+    __ jmp(&start_regexp);
+
+    // Global regexp restarts matching here.
+    __ bind(&load_char_start_regexp);
+    // Load previous char as initial value of current character register.
+    LoadCurrentCharacterUnchecked(-1, 1);
+    __ bind(&start_regexp);
+
+    // Initialize on-stack registers.
+    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+      // Fill saved registers with initial value = start offset - 1.
+      if (num_saved_registers_ > 8) {
+        // Address of register 0.
+        __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
+        __ li(a2, Operand(num_saved_registers_));
+        Label init_loop;
+        __ bind(&init_loop);
+        __ sw(a0, MemOperand(a1));
+        __ Addu(a1, a1, Operand(-kPointerSize));
+        __ Subu(a2, a2, Operand(1));
+        __ Branch(&init_loop, ne, a2, Operand(zero_reg));
+      } else {
+        for (int i = 0; i < num_saved_registers_; i++) {
+          __ sw(a0, register_location(i));
+        }
+      }
+    }
+
+    // Initialize backtrack stack pointer.
+    __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+    __ jmp(&start_label_);
+
+
+    // Exit code:
+    if (success_label_.is_linked()) {
+      // Save captures when successful.
+      __ bind(&success_label_);
+      if (num_saved_registers_ > 0) {
+        // Copy captures to output.
+        __ lw(a1, MemOperand(frame_pointer(), kInputStart));
+        __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
+        __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
+        __ Subu(a1, end_of_input_address(), a1);
+        // a1 is length of input in bytes.
+        if (mode_ == UC16) {
+          __ srl(a1, a1, 1);
+        }
+        // a1 is length of input in characters.
+        __ Addu(a1, a1, Operand(a2));
+        // a1 is length of string in characters.
+
+        DCHECK_EQ(0, num_saved_registers_ % 2);
+        // Always an even number of capture registers. This allows us to
+        // unroll the loop once to add an operation between a load of a register
+        // and the following use of that register.
+        for (int i = 0; i < num_saved_registers_; i += 2) {
+          __ lw(a2, register_location(i));
+          __ lw(a3, register_location(i + 1));
+          if (i == 0 && global_with_zero_length_check()) {
+            // Keep capture start in a4 for the zero-length check later.
+            __ mov(t7, a2);
+          }
+          if (mode_ == UC16) {
+            __ sra(a2, a2, 1);
+            __ Addu(a2, a2, a1);
+            __ sra(a3, a3, 1);
+            __ Addu(a3, a3, a1);
+          } else {
+            __ Addu(a2, a1, Operand(a2));
+            __ Addu(a3, a1, Operand(a3));
+          }
+          __ sw(a2, MemOperand(a0));
+          __ Addu(a0, a0, kPointerSize);
+          __ sw(a3, MemOperand(a0));
+          __ Addu(a0, a0, kPointerSize);
+        }
+      }
+
+      if (global()) {
+        // Restart matching if the regular expression is flagged as global.
+        __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+        __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
+        // Increment success counter.
+        __ Addu(a0, a0, 1);
+        __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        // Capture results have been stored, so the number of remaining global
+        // output registers is reduced by the number of stored captures.
+        __ Subu(a1, a1, num_saved_registers_);
+        // Check whether we have enough room for another set of capture results.
+        __ mov(v0, a0);
+        __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
+
+        __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+        // Advance the location for output.
+        __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
+        __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
+
+        // Prepare a0 to initialize registers with its value in the next run.
+        __ lw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+        if (global_with_zero_length_check()) {
+          // Special case for zero-length matches.
+          // t7: capture start index
+          // Not a zero-length match, restart.
+          __ Branch(
+              &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
+          // Offset from the end is zero if we already reached the end.
+          __ Branch(&exit_label_, eq, current_input_offset(),
+                    Operand(zero_reg));
+          // Advance current position after a zero-length match.
+          __ Addu(current_input_offset(),
+                  current_input_offset(),
+                  Operand((mode_ == UC16) ? 2 : 1));
+        }
+
+        __ Branch(&load_char_start_regexp);
+      } else {
+        __ li(v0, Operand(SUCCESS));
+      }
+    }
+    // Exit and return v0.
+    __ bind(&exit_label_);
+    if (global()) {
+      __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+    }
+
+    __ bind(&return_v0);
+    // Skip sp past regexp registers and local variables..
+    __ mov(sp, frame_pointer());
+    // Restore registers s0..s7 and return (restoring ra to pc).
+    __ MultiPop(registers_to_retain | ra.bit());
+    __ Ret();
+
+    // Backtrack code (branch target for conditional backtracks).
+    if (backtrack_label_.is_linked()) {
+      __ bind(&backtrack_label_);
+      Backtrack();
+    }
+
+    Label exit_with_exception;
+
+    // Preempt-code.
+    if (check_preempt_label_.is_linked()) {
+      SafeCallTarget(&check_preempt_label_);
+      // Put regexp engine registers on stack.
+      RegList regexp_registers_to_retain = current_input_offset().bit() |
+          current_character().bit() | backtrack_stackpointer().bit();
+      __ MultiPush(regexp_registers_to_retain);
+      CallCheckStackGuardState(a0);
+      __ MultiPop(regexp_registers_to_retain);
+      // If returning non-zero, we should end execution with the given
+      // result as return value.
+      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+      // String might have moved: Reload end of string from frame.
+      __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+      SafeReturn();
+    }
+
+    // Backtrack stack overflow code.
+    if (stack_overflow_label_.is_linked()) {
+      SafeCallTarget(&stack_overflow_label_);
+      // Reached if the backtrack-stack limit has been hit.
+      // Put regexp engine registers on stack first.
+      RegList regexp_registers = current_input_offset().bit() |
+          current_character().bit();
+      __ MultiPush(regexp_registers);
+      Label grow_failed;
+      // Call GrowStack(backtrack_stackpointer(), &stack_base)
+      static const int num_arguments = 3;
+      __ PrepareCallCFunction(num_arguments, a0);
+      __ mov(a0, backtrack_stackpointer());
+      __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
+      __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
+      ExternalReference grow_stack =
+          ExternalReference::re_grow_stack(masm_->isolate());
+      __ CallCFunction(grow_stack, num_arguments);
+      // Restore regexp registers.
+      __ MultiPop(regexp_registers);
+      // If return NULL, we have failed to grow the stack, and
+      // must exit with a stack-overflow exception.
+      __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
+      // Otherwise use return value as new stack pointer.
+      __ mov(backtrack_stackpointer(), v0);
+      // Restore saved registers and continue.
+      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+      __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+      SafeReturn();
+    }
+
+    if (exit_with_exception.is_linked()) {
+      // If any of the code above needed to exit with an exception.
+      __ bind(&exit_with_exception);
+      // Exit with Result EXCEPTION(-1) to signal thrown exception.
+      __ li(v0, Operand(EXCEPTION));
+      __ jmp(&return_v0);
+    }
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code = isolate()->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+  LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
+  if (to == NULL) {
+    Backtrack();
+    return;
+  }
+  __ jmp(to);
+  return;
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
+                                            int comparand,
+                                            Label* if_ge) {
+  __ lw(a0, register_location(reg));
+    BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
+                                            int comparand,
+                                            Label* if_lt) {
+  __ lw(a0, register_location(reg));
+  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
+                                               Label* if_eq) {
+  __ lw(a0, register_location(reg));
+  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerMIPS::Implementation() {
+  return kMIPSImplementation;
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
+                                                    Label* on_end_of_input,
+                                                    bool check_bounds,
+                                                    int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
+  Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
+  Pop(a0);
+  __ sw(a0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
+  if (label->is_bound()) {
+    int target = label->pos();
+    __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
+  } else {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    Label after_constant;
+    __ Branch(&after_constant);
+    int offset = masm_->pc_offset();
+    int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
+    __ emit(0);
+    masm_->label_at_put(label, offset);
+    __ bind(&after_constant);
+    if (is_int16(cp_offset)) {
+      __ lw(a0, MemOperand(code_pointer(), cp_offset));
+    } else {
+      __ Addu(a0, code_pointer(), cp_offset);
+      __ lw(a0, MemOperand(a0, 0));
+    }
+  }
+  Push(a0);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
+  Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
+                                            StackCheckFlag check_stack_limit) {
+  __ lw(a0, register_location(register_index));
+  Push(a0);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
+  __ lw(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
+  __ lw(backtrack_stackpointer(), register_location(reg));
+  __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
+  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ Branch(&after_position,
+            ge,
+            current_input_offset(),
+            Operand(-by * char_size()));
+  __ li(current_input_offset(), -by * char_size());
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ li(a0, Operand(to));
+  __ sw(a0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerMIPS::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
+                                                              int cp_offset) {
+  if (cp_offset == 0) {
+    __ sw(current_input_offset(), register_location(reg));
+  } else {
+    __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+    __ sw(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ lw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ sw(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
+  __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
+  __ Subu(a0, backtrack_stackpointer(), a1);
+  __ sw(a0, register_location(reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
+  return false;
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
+  int stack_alignment = base::OS::ActivationFrameAlignment();
+
+  // Align the stack pointer and save the original sp value on the stack.
+  __ mov(scratch, sp);
+  __ Subu(sp, sp, Operand(kPointerSize));
+  DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
+  __ And(sp, sp, Operand(-stack_alignment));
+  __ sw(scratch, MemOperand(sp));
+
+  __ mov(a2, frame_pointer());
+  // Code* of self.
+  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+  // We need to make room for the return address on the stack.
+  DCHECK(IsAligned(stack_alignment, kPointerSize));
+  __ Subu(sp, sp, Operand(stack_alignment));
+
+  // Stack pointer now points to cell where return address is to be written.
+  // Arguments are in registers, meaning we teat the return address as
+  // argument 5. Since DirectCEntryStub will handleallocating space for the C
+  // argument slots, we don't need to care about that here. This is how the
+  // stack will look (sp meaning the value of sp at this moment):
+  // [sp + 3] - empty slot if needed for alignment.
+  // [sp + 2] - saved sp.
+  // [sp + 1] - second word reserved for return value.
+  // [sp + 0] - first word reserved for return value.
+
+  // a0 will point to the return address, placed by DirectCEntry.
+  __ mov(a0, sp);
+
+  ExternalReference stack_guard_check =
+      ExternalReference::re_check_stack_guard_state(masm_->isolate());
+  __ li(t9, Operand(stack_guard_check));
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm_, t9);
+
+  // DirectCEntryStub allocated space for the C argument slots so we have to
+  // drop them with the return address from the stack with loading saved sp.
+  // At this point stack must look:
+  // [sp + 7] - empty slot if needed for alignment.
+  // [sp + 6] - saved sp.
+  // [sp + 5] - second word reserved for return value.
+  // [sp + 4] - first word reserved for return value.
+  // [sp + 3] - C argument slot.
+  // [sp + 2] - C argument slot.
+  // [sp + 1] - C argument slot.
+  // [sp + 0] - C argument slot.
+  __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
+
+  __ li(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
+                                                   Code* re_code,
+                                                   Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<int>(re_frame, kStartIndex),
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return MemOperand(frame_pointer(),
+                    kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
+                                             Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
+                      Operand(-cp_offset * char_size()));
+  } else {
+    __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+    BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
+                                                 Condition condition,
+                                                 Register rs,
+                                                 const Operand& rt) {
+  if (condition == al) {  // Unconditional.
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ Branch(&backtrack_label_, condition, rs, rt);
+    return;
+  }
+  __ Branch(to, condition, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
+                                        Condition cond,
+                                        Register rs,
+                                        const Operand& rt) {
+  __ BranchAndLink(to, cond, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeReturn() {
+  __ pop(ra);
+  __ Addu(t5, ra, Operand(masm_->CodeObject()));
+  __ Jump(t5);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
+  __ bind(name);
+  __ Subu(ra, ra, Operand(masm_->CodeObject()));
+  __ push(ra);
+}
+
+
+void RegExpMacroAssemblerMIPS::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  __ Addu(backtrack_stackpointer(),
+          backtrack_stackpointer(),
+          Operand(-kPointerSize));
+  __ sw(source, MemOperand(backtrack_stackpointer()));
+}
+
+
+void RegExpMacroAssemblerMIPS::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ lw(target, MemOperand(backtrack_stackpointer()));
+  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPreemption() {
+  // Check for preemption.
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(masm_->isolate());
+  __ li(a0, Operand(stack_limit));
+  __ lw(a0, MemOperand(a0));
+  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckStackLimit() {
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
+
+  __ li(a0, Operand(stack_limit));
+  __ lw(a0, MemOperand(a0));
+  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                             int characters) {
+  Register offset = current_input_offset();
+  if (cp_offset != 0) {
+    // t7 is not being used to store the capture start index at this point.
+    __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
+    offset = t7;
+  }
+  // We assume that we cannot do unaligned loads on MIPS, so this function
+  // must only be used to load a single character at a time.
+  DCHECK(characters == 1);
+  __ Addu(t5, end_of_input_address(), Operand(offset));
+  if (mode_ == LATIN1) {
+    __ lbu(current_character(), MemOperand(t5, 0));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhu(current_character(), MemOperand(t5, 0));
+  }
+}
+
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_MIPS
diff --git a/src/regexp/mips/regexp-macro-assembler-mips.h b/src/regexp/mips/regexp-macro-assembler-mips.h
new file mode 100644
index 0000000..902e220
--- /dev/null
+++ b/src/regexp/mips/regexp-macro-assembler-mips.h
@@ -0,0 +1,228 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/macro-assembler.h"
+#include "src/mips/assembler-mips.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
+                           int registers_to_save);
+  virtual ~RegExpMacroAssemblerMIPS();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(uint32_t c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(uint32_t c,
+                                      uint32_t mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(uint32_t c,
+                                         uint32_t mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual bool CanReadUnaligned();
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from frame_pointer() of function parameters and stored registers.
+  static const int kFramePointer = 0;
+
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Registers s0 to s7, fp, and ra.
+  static const int kStoredRegisters = kFramePointer;
+  // Return address (stored from link register, read into pc on return).
+  static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+  static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+  // Stack frame header.
+  static const int kStackFrameHeader = kReturnAddress + kPointerSize;
+  // Stack parameters placed by caller.
+  static const int kRegisterOutput = kStackFrameHeader + 20;
+  static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+  static const int kDirectCall = kStackHighEnd + kPointerSize;
+  static const int kIsolate = kDirectCall + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kInputEnd = kFramePointer - kPointerSize;
+  static const int kInputStart = kInputEnd - kPointerSize;
+  static const int kStartIndex = kInputStart - kPointerSize;
+  static const int kInputString = kStartIndex - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessfulCaptures = kInputString - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  MemOperand register_location(int register_index);
+
+  // Register holding the current input position as negative offset from
+  // the end of the string.
+  inline Register current_input_offset() { return t2; }
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return t3; }
+
+  // Register holding address of the end of the input string.
+  inline Register end_of_input_address() { return t6; }
+
+  // Register holding the frame address. Local variables, parameters and
+  // regexp registers are addressed relative to this.
+  inline Register frame_pointer() { return fp; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return t4; }
+
+  // Register holding pointer to the current code object.
+  inline Register code_pointer() { return t1; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument).
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Label* to,
+                         Condition condition,
+                         Register rs,
+                         const Operand& rt);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to,
+                       Condition cond,
+                       Register rs,
+                       const Operand& rt);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (Latin1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1).
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+  Label internal_failure_label_;
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
diff --git a/src/regexp/mips64/OWNERS b/src/regexp/mips64/OWNERS
new file mode 100644
index 0000000..89455a4
--- /dev/null
+++ b/src/regexp/mips64/OWNERS
@@ -0,0 +1,6 @@
+paul.lind@imgtec.com
+gergely.kis@imgtec.com
+akos.palfi@imgtec.com
+balazs.kilvady@imgtec.com
+dusan.milosavljevic@imgtec.com
+ivica.bogosavljevic@imgtec.com
diff --git a/src/regexp/mips64/regexp-macro-assembler-mips64.cc b/src/regexp/mips64/regexp-macro-assembler-mips64.cc
new file mode 100644
index 0000000..5153bd0
--- /dev/null
+++ b/src/regexp/mips64/regexp-macro-assembler-mips64.cc
@@ -0,0 +1,1329 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - t3 : Temporarily stores the index of capture start after a matching pass
+ *        for a global regexp.
+ * - a5 : Pointer to current code object (Code*) including heap object tag.
+ * - a6 : Current position in input, as negative offset from end of string.
+ *        Please notice that this is the byte offset, not the character offset!
+ * - a7 : Currently loaded character. Must be loaded using
+ *        LoadCurrentCharacter before using any of the dispatch methods.
+ * - t0 : Points to tip of backtrack stack
+ * - t1 : Unused.
+ * - t2 : End of input (points to byte after last character in input).
+ * - fp : Frame pointer. Used to access arguments, local variables and
+ *         RegExp registers.
+ * - sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * TODO(plind): O32 documented here with intent of having single 32/64 codebase
+ *              in the future.
+ *
+ * The O32 stack will have the following structure:
+ *
+ *  - fp[76]  Isolate* isolate   (address of the current isolate)
+ *  - fp[72]  direct_call  (if 1, direct call from JavaScript code,
+ *                          if 0, call through the runtime system).
+ *  - fp[68]  stack_area_base (High end of the memory area to use as
+ *                             backtracking stack).
+ *  - fp[64]  capture array size (may fit multiple sets of matches)
+ *  - fp[60]  int* capture_array (int[num_saved_registers_], for output).
+ *  - fp[44..59]  MIPS O32 four argument slots
+ *  - fp[40]  secondary link/return address used by native call.
+ *  --- sp when called ---
+ *  - fp[36]  return address      (lr).
+ *  - fp[32]  old frame pointer   (r11).
+ *  - fp[0..31]  backup of registers s0..s7.
+ *  --- frame pointer ----
+ *  - fp[-4]  end of input       (address of end of string).
+ *  - fp[-8]  start of input     (address of first character in string).
+ *  - fp[-12] start index        (character index of start).
+ *  - fp[-16] void* input_string (location of a handle containing the string).
+ *  - fp[-20] success counter    (only for global regexps to count matches).
+ *  - fp[-24] Offset of location before start of input (effectively character
+ *            string start - 1). Used to initialize capture registers to a
+ *            non-position.
+ *  - fp[-28] At start (if 1, we are starting at the start of the
+ *    string, otherwise 0)
+ *  - fp[-32] register 0         (Only positions must be stored in the first
+ *  -         register 1          num_saved_registers_ registers)
+ *  -         ...
+ *  -         register num_registers-1
+ *  --- sp ---
+ *
+ *
+ * The N64 stack will have the following structure:
+ *
+ *  - fp[88]  Isolate* isolate   (address of the current isolate)               kIsolate
+ *  - fp[80]  secondary link/return address used by exit frame on native call.  kSecondaryReturnAddress
+                                                                                kStackFrameHeader
+ *  --- sp when called ---
+ *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
+ *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
+ *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
+ *  --- frame pointer ----
+ *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
+ *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
+ *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
+ *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
+ *  - fp[-40] end of input       (address of end of string).                    kInputEnd
+ *  - fp[-48] start of input     (address of first character in string).        kInputStart
+ *  - fp[-56] start index        (character index of start).                    kStartIndex
+ *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
+ *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
+ *  - fp[-80] Offset of location before start of input (effectively character   kStringStartMinusOne
+ *            position -1). Used to initialize capture registers to a
+ *            non-position.
+ *  --------- The following output registers are 32-bit values. ---------
+ *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
+ *  -         register 1          num_saved_registers_ registers)
+ *  -         ...
+ *  -         register num_registers-1
+ *  --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              Address secondary_return_address,  // Only used by native call.
+ *              int* capture_output_array,
+ *              byte* stack_area_base,
+ *              bool direct_call = false,
+ *              void* return_address,
+ *              Isolate* isolate);
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in mips/simulator-mips.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the ra register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
+                                                   Mode mode,
+                                                   int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_(),
+      internal_failure_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code later.
+  // If the code gets too big or corrupted, an internal exception will be
+  // raised, and we will exit right away.
+  __ bind(&internal_failure_label_);
+  __ li(v0, Operand(FAILURE));
+  __ Ret();
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+  internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ Daddu(current_input_offset(),
+            current_input_offset(), Operand(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ ld(a0, register_location(reg));
+    __ Daddu(a0, a0, Operand(by));
+    __ sd(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(a0);
+  __ Daddu(a0, a0, code_pointer());
+  __ Jump(a0);
+}
+
+
+void RegExpMacroAssemblerMIPS::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
+  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
+  __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ Daddu(a0, current_input_offset(), Operand(-char_size()));
+  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
+                                               Label* on_not_at_start) {
+  __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ Daddu(a0, current_input_offset(),
+           Operand(-char_size() + cp_offset * char_size()));
+  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
+  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
+  Label backtrack_non_equal;
+  __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
+  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
+  __ Daddu(backtrack_stackpointer(),
+          backtrack_stackpointer(),
+          Operand(kIntSize));
+  __ bind(&backtrack_non_equal);
+  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ ld(a0, register_location(start_reg));  // Index of start of capture.
+  __ ld(a1, register_location(start_reg + 1));  // Index of end of capture.
+  __ Dsubu(a1, a1, a0);  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+  if (read_backward) {
+    __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Daddu(t1, t1, a1);
+    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
+  } else {
+    __ Daddu(t1, a1, current_input_offset());
+    // Check that there are enough characters left in the input.
+    BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_check;
+
+    // a0 - offset of start of capture.
+    // a1 - length of capture.
+    __ Daddu(a0, a0, Operand(end_of_input_address()));
+    __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
+    if (read_backward) {
+      __ Dsubu(a2, a2, Operand(a1));
+    }
+    __ Daddu(a1, a0, Operand(a1));
+
+    // a0 - Address of start of capture.
+    // a1 - Address of end of capture.
+    // a2 - Address of current input position.
+
+    Label loop;
+    __ bind(&loop);
+    __ lbu(a3, MemOperand(a0, 0));
+    __ daddiu(a0, a0, char_size());
+    __ lbu(a4, MemOperand(a2, 0));
+    __ daddiu(a2, a2, char_size());
+
+    __ Branch(&loop_check, eq, a4, Operand(a3));
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
+    __ Or(a4, a4, Operand(0x20));  // Also convert input character.
+    __ Branch(&fail, ne, a4, Operand(a3));
+    __ Dsubu(a3, a3, Operand('a'));
+    __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ Dsubu(a3, a3, Operand(224 - 'a'));
+    // Weren't Latin-1 letters.
+    __ Branch(&fail, hi, a3, Operand(254 - 224));
+    // Check for 247.
+    __ Branch(&fail, eq, a3, Operand(247 - 224));
+
+    __ bind(&loop_check);
+    __ Branch(&loop, lt, a0, Operand(a1));
+    __ jmp(&success);
+
+    __ bind(&fail);
+    GoTo(on_no_match);
+
+    __ bind(&success);
+    // Compute new value of character position after the matched part.
+    __ Dsubu(current_input_offset(), a2, end_of_input_address());
+    if (read_backward) {
+      __ ld(t1, register_location(start_reg));  // Index of start of capture.
+      __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
+      __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
+      __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    // Put regexp engine registers on stack.
+    RegList regexp_registers_to_retain = current_input_offset().bit() |
+        current_character().bit() | backtrack_stackpointer().bit();
+    __ MultiPush(regexp_registers_to_retain);
+
+    int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, a2);
+
+    // a0 - offset of start of capture.
+    // a1 - length of capture.
+
+    // Put arguments into arguments registers.
+    // Parameters are
+    //   a0: Address byte_offset1 - Address captured substring's start.
+    //   a1: Address byte_offset2 - Address of current character position.
+    //   a2: size_t byte_length - length of capture in bytes(!).
+    //   a3: Isolate* isolate.
+
+    // Address of start of capture.
+    __ Daddu(a0, a0, Operand(end_of_input_address()));
+    // Length of capture.
+    __ mov(a2, a1);
+    // Save length in callee-save register for use on return.
+    __ mov(s3, a1);
+    // Address of current input position.
+    __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
+    if (read_backward) {
+      __ Dsubu(a1, a1, Operand(s3));
+    }
+    // Isolate.
+    __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference function =
+          ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
+      __ CallCFunction(function, argument_count);
+    }
+
+    // Restore regexp engine registers.
+    __ MultiPop(regexp_registers_to_retain);
+    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+    __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+
+    // Check if function returned non-zero for success or zero for failure.
+    BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
+    // On success, increment position by length of capture.
+    if (read_backward) {
+      __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
+    } else {
+      __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
+    }
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
+                                                     bool read_backward,
+                                                     Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+
+  // Find length of back-referenced capture.
+  __ ld(a0, register_location(start_reg));
+  __ ld(a1, register_location(start_reg + 1));
+  __ Dsubu(a1, a1, a0);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+  if (read_backward) {
+    __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Daddu(t1, t1, a1);
+    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
+  } else {
+    __ Daddu(t1, a1, current_input_offset());
+    // Check that there are enough characters left in the input.
+    BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
+  }
+
+  // Compute pointers to match string and capture string.
+  __ Daddu(a0, a0, Operand(end_of_input_address()));
+  __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
+  if (read_backward) {
+    __ Dsubu(a2, a2, Operand(a1));
+  }
+  __ Daddu(a1, a1, Operand(a0));
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ lbu(a3, MemOperand(a0, 0));
+    __ daddiu(a0, a0, char_size());
+    __ lbu(a4, MemOperand(a2, 0));
+    __ daddiu(a2, a2, char_size());
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhu(a3, MemOperand(a0, 0));
+    __ daddiu(a0, a0, char_size());
+    __ lhu(a4, MemOperand(a2, 0));
+    __ daddiu(a2, a2, char_size());
+  }
+  BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
+  __ Branch(&loop, lt, a0, Operand(a1));
+
+  // Move current character position to position after match.
+  __ Dsubu(current_input_offset(), a2, end_of_input_address());
+  if (read_backward) {
+    __ ld(t1, register_location(start_reg));      // Index of start of capture.
+    __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
+    __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
+    __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
+  }
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
+                                                 Label* on_not_equal) {
+  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
+                                                      uint32_t mask,
+                                                      Label* on_equal) {
+  __ And(a0, current_character(), Operand(mask));
+  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+  BranchOrBacktrack(on_equal, eq, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
+                                                         uint32_t mask,
+                                                         Label* on_not_equal) {
+  __ And(a0, current_character(), Operand(mask));
+  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ Dsubu(a0, current_character(), Operand(minus));
+  __ And(a0, a0, Operand(mask));
+  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ Dsubu(a0, current_character(), Operand(from));
+  // Unsigned lower-or-same condition.
+  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ Dsubu(a0, current_character(), Operand(from));
+  // Unsigned higher condition.
+  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ li(a0, Operand(table));
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ And(a1, current_character(), Operand(kTableSize - 1));
+    __ Daddu(a0, a0, a1);
+  } else {
+    __ Daddu(a0, a0, current_character());
+  }
+
+  __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
+  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
+                                                          Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check.
+  switch (type) {
+  case 's':
+    // Match space-characters.
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ Branch(&success, eq, current_character(), Operand(' '));
+      // Check range 0x09..0x0d.
+      __ Dsubu(a0, current_character(), Operand('\t'));
+      __ Branch(&success, ls, a0, Operand('\r' - '\t'));
+      // \u00a0 (NBSP).
+      BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match Latin1 digits ('0'..'9').
+    __ Dsubu(a0, current_character(), Operand('0'));
+    BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
+    return true;
+  case 'D':
+    // Match non Latin1-digits.
+    __ Dsubu(a0, current_character(), Operand('0'));
+    BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+    __ Xor(a0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+    __ Dsubu(a0, a0, Operand(0x0b));
+    BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
+      BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
+    }
+    return true;
+  }
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+    __ Xor(a0, current_character(), Operand(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+    __ Dsubu(a0, a0, Operand(0x0b));
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
+    } else {
+      Label done;
+      BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
+      BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
+      __ bind(&done);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ li(a0, Operand(map));
+    __ Daddu(a0, a0, current_character());
+    __ lbu(a0, MemOperand(a0, 0));
+    BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ Branch(&done, hi, current_character(), Operand('z'));
+    }
+    ExternalReference map = ExternalReference::re_word_character_map();
+    __ li(a0, Operand(map));
+    __ Daddu(a0, a0, current_character());
+    __ lbu(a0, MemOperand(a0, 0));
+    BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+  case '*':
+    // Match any character.
+    return true;
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::Fail() {
+  __ li(v0, Operand(FAILURE));
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
+  Label return_v0;
+  if (masm_->has_exception()) {
+    // If the code gets corrupted due to long regular expressions and lack of
+    // space on trampolines, an internal exception flag is set. If this case
+    // is detected, we will jump into exit sequence right away.
+    __ bind_to(&entry_label_, internal_failure_label_.pos());
+  } else {
+    // Finalize code - write the entry point code now we know how many
+    // registers we need.
+
+    // Entry code:
+    __ bind(&entry_label_);
+
+    // Tell the system that we have a stack frame.  Because the type is MANUAL,
+    // no is generated.
+    FrameScope scope(masm_, StackFrame::MANUAL);
+
+    // Actually emit code to start a new stack frame.
+    // Push arguments
+    // Save callee-save registers.
+    // Start new stack frame.
+    // Store link register in existing stack-cell.
+    // Order here should correspond to order of offset constants in header file.
+    // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
+    // or dont save.
+    RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
+        s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
+    RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+
+    if (kMipsAbi == kN64) {
+      // TODO(plind): Should probably alias a4-a7, for clarity.
+      argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
+    }
+
+    __ MultiPush(argument_registers | registers_to_retain | ra.bit());
+    // Set frame pointer in space for it if this is not a direct call
+    // from generated code.
+    // TODO(plind): this 8 is the # of argument regs, should have definition.
+    __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
+    __ mov(a0, zero_reg);
+    __ push(a0);  // Make room for success counter and initialize it to 0.
+    __ push(a0);  // Make room for "string start - 1" constant.
+
+    // Check if we have space on the stack for registers.
+    Label stack_limit_hit;
+    Label stack_ok;
+
+    ExternalReference stack_limit =
+        ExternalReference::address_of_stack_limit(masm_->isolate());
+    __ li(a0, Operand(stack_limit));
+    __ ld(a0, MemOperand(a0));
+    __ Dsubu(a0, sp, a0);
+    // Handle it if the stack pointer is already below the stack limit.
+    __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
+    // Check if there is room for the variable number of registers above
+    // the stack limit.
+    __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
+    // Exit with OutOfMemory exception. There is not enough space on the stack
+    // for our working registers.
+    __ li(v0, Operand(EXCEPTION));
+    __ jmp(&return_v0);
+
+    __ bind(&stack_limit_hit);
+    CallCheckStackGuardState(a0);
+    // If returned value is non-zero, we exit with the returned value as result.
+    __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+    __ bind(&stack_ok);
+    // Allocate space on stack for registers.
+    __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
+    // Load string end.
+    __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+    // Load input start.
+    __ ld(a0, MemOperand(frame_pointer(), kInputStart));
+    // Find negative length (offset of start relative to end).
+    __ Dsubu(current_input_offset(), a0, end_of_input_address());
+    // Set a0 to address of char before start of the input string
+    // (effectively string position -1).
+    __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
+    __ Dsubu(a0, current_input_offset(), Operand(char_size()));
+    __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
+    __ Dsubu(a0, a0, t1);
+    // Store this value in a local variable, for use when clearing
+    // position registers.
+    __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+    // Initialize code pointer register
+    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+    Label load_char_start_regexp, start_regexp;
+    // Load newline if index is at start, previous character otherwise.
+    __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
+    __ li(current_character(), Operand('\n'));
+    __ jmp(&start_regexp);
+
+    // Global regexp restarts matching here.
+    __ bind(&load_char_start_regexp);
+    // Load previous char as initial value of current character register.
+    LoadCurrentCharacterUnchecked(-1, 1);
+    __ bind(&start_regexp);
+
+    // Initialize on-stack registers.
+    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+      // Fill saved registers with initial value = start offset - 1.
+      if (num_saved_registers_ > 8) {
+        // Address of register 0.
+        __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
+        __ li(a2, Operand(num_saved_registers_));
+        Label init_loop;
+        __ bind(&init_loop);
+        __ sd(a0, MemOperand(a1));
+        __ Daddu(a1, a1, Operand(-kPointerSize));
+        __ Dsubu(a2, a2, Operand(1));
+        __ Branch(&init_loop, ne, a2, Operand(zero_reg));
+      } else {
+        for (int i = 0; i < num_saved_registers_; i++) {
+          __ sd(a0, register_location(i));
+        }
+      }
+    }
+
+    // Initialize backtrack stack pointer.
+    __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+    __ jmp(&start_label_);
+
+
+    // Exit code:
+    if (success_label_.is_linked()) {
+      // Save captures when successful.
+      __ bind(&success_label_);
+      if (num_saved_registers_ > 0) {
+        // Copy captures to output.
+        __ ld(a1, MemOperand(frame_pointer(), kInputStart));
+        __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
+        __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
+        __ Dsubu(a1, end_of_input_address(), a1);
+        // a1 is length of input in bytes.
+        if (mode_ == UC16) {
+          __ dsrl(a1, a1, 1);
+        }
+        // a1 is length of input in characters.
+        __ Daddu(a1, a1, Operand(a2));
+        // a1 is length of string in characters.
+
+        DCHECK_EQ(0, num_saved_registers_ % 2);
+        // Always an even number of capture registers. This allows us to
+        // unroll the loop once to add an operation between a load of a register
+        // and the following use of that register.
+        for (int i = 0; i < num_saved_registers_; i += 2) {
+          __ ld(a2, register_location(i));
+          __ ld(a3, register_location(i + 1));
+          if (i == 0 && global_with_zero_length_check()) {
+            // Keep capture start in a4 for the zero-length check later.
+            __ mov(t3, a2);
+          }
+          if (mode_ == UC16) {
+            __ dsra(a2, a2, 1);
+            __ Daddu(a2, a2, a1);
+            __ dsra(a3, a3, 1);
+            __ Daddu(a3, a3, a1);
+          } else {
+            __ Daddu(a2, a1, Operand(a2));
+            __ Daddu(a3, a1, Operand(a3));
+          }
+          // V8 expects the output to be an int32_t array.
+          __ sw(a2, MemOperand(a0));
+          __ Daddu(a0, a0, kIntSize);
+          __ sw(a3, MemOperand(a0));
+          __ Daddu(a0, a0, kIntSize);
+        }
+      }
+
+      if (global()) {
+        // Restart matching if the regular expression is flagged as global.
+        __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+        __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
+        // Increment success counter.
+        __ Daddu(a0, a0, 1);
+        __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        // Capture results have been stored, so the number of remaining global
+        // output registers is reduced by the number of stored captures.
+        __ Dsubu(a1, a1, num_saved_registers_);
+        // Check whether we have enough room for another set of capture results.
+        __ mov(v0, a0);
+        __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
+
+        __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+        // Advance the location for output.
+        __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
+        __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
+
+        // Prepare a0 to initialize registers with its value in the next run.
+        __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+        if (global_with_zero_length_check()) {
+          // Special case for zero-length matches.
+          // t3: capture start index
+          // Not a zero-length match, restart.
+          __ Branch(
+              &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
+          // Offset from the end is zero if we already reached the end.
+          __ Branch(&exit_label_, eq, current_input_offset(),
+                    Operand(zero_reg));
+          // Advance current position after a zero-length match.
+          __ Daddu(current_input_offset(),
+                  current_input_offset(),
+                  Operand((mode_ == UC16) ? 2 : 1));
+        }
+
+        __ Branch(&load_char_start_regexp);
+      } else {
+        __ li(v0, Operand(SUCCESS));
+      }
+    }
+    // Exit and return v0.
+    __ bind(&exit_label_);
+    if (global()) {
+      __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+    }
+
+    __ bind(&return_v0);
+    // Skip sp past regexp registers and local variables..
+    __ mov(sp, frame_pointer());
+    // Restore registers s0..s7 and return (restoring ra to pc).
+    __ MultiPop(registers_to_retain | ra.bit());
+    __ Ret();
+
+    // Backtrack code (branch target for conditional backtracks).
+    if (backtrack_label_.is_linked()) {
+      __ bind(&backtrack_label_);
+      Backtrack();
+    }
+
+    Label exit_with_exception;
+
+    // Preempt-code.
+    if (check_preempt_label_.is_linked()) {
+      SafeCallTarget(&check_preempt_label_);
+      // Put regexp engine registers on stack.
+      RegList regexp_registers_to_retain = current_input_offset().bit() |
+          current_character().bit() | backtrack_stackpointer().bit();
+      __ MultiPush(regexp_registers_to_retain);
+      CallCheckStackGuardState(a0);
+      __ MultiPop(regexp_registers_to_retain);
+      // If returning non-zero, we should end execution with the given
+      // result as return value.
+      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+      // String might have moved: Reload end of string from frame.
+      __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+      SafeReturn();
+    }
+
+    // Backtrack stack overflow code.
+    if (stack_overflow_label_.is_linked()) {
+      SafeCallTarget(&stack_overflow_label_);
+      // Reached if the backtrack-stack limit has been hit.
+      // Put regexp engine registers on stack first.
+      RegList regexp_registers = current_input_offset().bit() |
+          current_character().bit();
+      __ MultiPush(regexp_registers);
+      Label grow_failed;
+      // Call GrowStack(backtrack_stackpointer(), &stack_base)
+      static const int num_arguments = 3;
+      __ PrepareCallCFunction(num_arguments, a0);
+      __ mov(a0, backtrack_stackpointer());
+      __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
+      __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
+      ExternalReference grow_stack =
+          ExternalReference::re_grow_stack(masm_->isolate());
+      __ CallCFunction(grow_stack, num_arguments);
+      // Restore regexp registers.
+      __ MultiPop(regexp_registers);
+      // If return NULL, we have failed to grow the stack, and
+      // must exit with a stack-overflow exception.
+      __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
+      // Otherwise use return value as new stack pointer.
+      __ mov(backtrack_stackpointer(), v0);
+      // Restore saved registers and continue.
+      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+      __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+      SafeReturn();
+    }
+
+    if (exit_with_exception.is_linked()) {
+      // If any of the code above needed to exit with an exception.
+      __ bind(&exit_with_exception);
+      // Exit with Result EXCEPTION(-1) to signal thrown exception.
+      __ li(v0, Operand(EXCEPTION));
+      __ jmp(&return_v0);
+    }
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code = isolate()->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+  LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
+  if (to == NULL) {
+    Backtrack();
+    return;
+  }
+  __ jmp(to);
+  return;
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
+                                            int comparand,
+                                            Label* if_ge) {
+  __ ld(a0, register_location(reg));
+    BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
+                                            int comparand,
+                                            Label* if_lt) {
+  __ ld(a0, register_location(reg));
+  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
+                                               Label* if_eq) {
+  __ ld(a0, register_location(reg));
+  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerMIPS::Implementation() {
+  return kMIPSImplementation;
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
+                                                    Label* on_end_of_input,
+                                                    bool check_bounds,
+                                                    int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
+  Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
+  Pop(a0);
+  __ sd(a0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
+  if (label->is_bound()) {
+    int target = label->pos();
+    __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
+  } else {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    Label after_constant;
+    __ Branch(&after_constant);
+    int offset = masm_->pc_offset();
+    int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
+    __ emit(0);
+    masm_->label_at_put(label, offset);
+    __ bind(&after_constant);
+    if (is_int16(cp_offset)) {
+      __ lwu(a0, MemOperand(code_pointer(), cp_offset));
+    } else {
+      __ Daddu(a0, code_pointer(), cp_offset);
+      __ lwu(a0, MemOperand(a0, 0));
+    }
+  }
+  Push(a0);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
+  Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
+                                            StackCheckFlag check_stack_limit) {
+  __ ld(a0, register_location(register_index));
+  Push(a0);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
+  __ ld(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
+  __ ld(backtrack_stackpointer(), register_location(reg));
+  __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
+  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ Branch(&after_position,
+            ge,
+            current_input_offset(),
+            Operand(-by * char_size()));
+  __ li(current_input_offset(), -by * char_size());
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ li(a0, Operand(to));
+  __ sd(a0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerMIPS::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
+                                                              int cp_offset) {
+  if (cp_offset == 0) {
+    __ sd(current_input_offset(), register_location(reg));
+  } else {
+    __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+    __ sd(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ sd(a0, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
+  __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
+  __ Dsubu(a0, backtrack_stackpointer(), a1);
+  __ sd(a0, register_location(reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
+  return false;
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
+  int stack_alignment = base::OS::ActivationFrameAlignment();
+
+  // Align the stack pointer and save the original sp value on the stack.
+  __ mov(scratch, sp);
+  __ Dsubu(sp, sp, Operand(kPointerSize));
+  DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
+  __ And(sp, sp, Operand(-stack_alignment));
+  __ sd(scratch, MemOperand(sp));
+
+  __ mov(a2, frame_pointer());
+  // Code* of self.
+  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+  // We need to make room for the return address on the stack.
+  DCHECK(IsAligned(stack_alignment, kPointerSize));
+  __ Dsubu(sp, sp, Operand(stack_alignment));
+
+  // Stack pointer now points to cell where return address is to be written.
+  // Arguments are in registers, meaning we teat the return address as
+  // argument 5. Since DirectCEntryStub will handleallocating space for the C
+  // argument slots, we don't need to care about that here. This is how the
+  // stack will look (sp meaning the value of sp at this moment):
+  // [sp + 3] - empty slot if needed for alignment.
+  // [sp + 2] - saved sp.
+  // [sp + 1] - second word reserved for return value.
+  // [sp + 0] - first word reserved for return value.
+
+  // a0 will point to the return address, placed by DirectCEntry.
+  __ mov(a0, sp);
+
+  ExternalReference stack_guard_check =
+      ExternalReference::re_check_stack_guard_state(masm_->isolate());
+  __ li(t9, Operand(stack_guard_check));
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm_, t9);
+
+  // DirectCEntryStub allocated space for the C argument slots so we have to
+  // drop them with the return address from the stack with loading saved sp.
+  // At this point stack must look:
+  // [sp + 7] - empty slot if needed for alignment.
+  // [sp + 6] - saved sp.
+  // [sp + 5] - second word reserved for return value.
+  // [sp + 4] - first word reserved for return value.
+  // [sp + 3] - C argument slot.
+  // [sp + 2] - C argument slot.
+  // [sp + 1] - C argument slot.
+  // [sp + 0] - C argument slot.
+  __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
+
+  __ li(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
+                                                       Code* re_code,
+                                                       Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
+      frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return MemOperand(frame_pointer(),
+                    kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
+                                             Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
+                      Operand(-cp_offset * char_size()));
+  } else {
+    __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+    BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
+  }
+}
+
+
+void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
+                                                 Condition condition,
+                                                 Register rs,
+                                                 const Operand& rt) {
+  if (condition == al) {  // Unconditional.
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ Branch(&backtrack_label_, condition, rs, rt);
+    return;
+  }
+  __ Branch(to, condition, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
+                                        Condition cond,
+                                        Register rs,
+                                        const Operand& rt) {
+  __ BranchAndLink(to, cond, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeReturn() {
+  __ pop(ra);
+  __ Daddu(t1, ra, Operand(masm_->CodeObject()));
+  __ Jump(t1);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
+  __ bind(name);
+  __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
+  __ push(ra);
+}
+
+
+void RegExpMacroAssemblerMIPS::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  __ Daddu(backtrack_stackpointer(),
+          backtrack_stackpointer(),
+          Operand(-kIntSize));
+  __ sw(source, MemOperand(backtrack_stackpointer()));
+}
+
+
+void RegExpMacroAssemblerMIPS::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ lw(target, MemOperand(backtrack_stackpointer()));
+  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPreemption() {
+  // Check for preemption.
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(masm_->isolate());
+  __ li(a0, Operand(stack_limit));
+  __ ld(a0, MemOperand(a0));
+  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckStackLimit() {
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
+
+  __ li(a0, Operand(stack_limit));
+  __ ld(a0, MemOperand(a0));
+  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                             int characters) {
+  Register offset = current_input_offset();
+  if (cp_offset != 0) {
+    // t3 is not being used to store the capture start index at this point.
+    __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
+    offset = t3;
+  }
+  // We assume that we cannot do unaligned loads on MIPS, so this function
+  // must only be used to load a single character at a time.
+  DCHECK(characters == 1);
+  __ Daddu(t1, end_of_input_address(), Operand(offset));
+  if (mode_ == LATIN1) {
+    __ lbu(current_character(), MemOperand(t1, 0));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhu(current_character(), MemOperand(t1, 0));
+  }
+}
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_MIPS64
diff --git a/src/regexp/mips64/regexp-macro-assembler-mips64.h b/src/regexp/mips64/regexp-macro-assembler-mips64.h
new file mode 100644
index 0000000..9a8ca17
--- /dev/null
+++ b/src/regexp/mips64/regexp-macro-assembler-mips64.h
@@ -0,0 +1,270 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/macro-assembler.h"
+#include "src/mips64/assembler-mips64.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
+                           int registers_to_save);
+  virtual ~RegExpMacroAssemblerMIPS();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(uint32_t c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(uint32_t c,
+                                      uint32_t mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(uint32_t c,
+                                         uint32_t mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual bool CanReadUnaligned();
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int64_t CheckStackGuardState(Address* return_address, Code* re_code,
+                                      Address re_frame);
+
+  void print_regexp_frame_constants();
+
+ private:
+#if defined(MIPS_ABI_N64)
+  // Offsets from frame_pointer() of function parameters and stored registers.
+  static const int kFramePointer = 0;
+
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Registers s0 to s7, fp, and ra.
+  static const int kStoredRegisters = kFramePointer;
+  // Return address (stored from link register, read into pc on return).
+
+// TODO(plind): This 9 - is 8 s-regs (s0..s7) plus fp.
+
+  static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+  static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+  // Stack frame header.
+  static const int kStackFrameHeader = kSecondaryReturnAddress;
+  // Stack parameters placed by caller.
+  static const int kIsolate = kStackFrameHeader + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kDirectCall = kFramePointer - kPointerSize;
+  static const int kStackHighEnd = kDirectCall - kPointerSize;
+  static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
+  static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
+  static const int kInputEnd = kRegisterOutput - kPointerSize;
+  static const int kInputStart = kInputEnd - kPointerSize;
+  static const int kStartIndex = kInputStart - kPointerSize;
+  static const int kInputString = kStartIndex - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessfulCaptures = kInputString - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+#elif defined(MIPS_ABI_O32)
+  // Offsets from frame_pointer() of function parameters and stored registers.
+  static const int kFramePointer = 0;
+
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Registers s0 to s7, fp, and ra.
+  static const int kStoredRegisters = kFramePointer;
+  // Return address (stored from link register, read into pc on return).
+  static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+  static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+  // Stack frame header.
+  static const int kStackFrameHeader = kReturnAddress + kPointerSize;
+  // Stack parameters placed by caller.
+  static const int kRegisterOutput =
+      kStackFrameHeader + 4 * kPointerSize + kPointerSize;
+  static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+  static const int kDirectCall = kStackHighEnd + kPointerSize;
+  static const int kIsolate = kDirectCall + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kInputEnd = kFramePointer - kPointerSize;
+  static const int kInputStart = kInputEnd - kPointerSize;
+  static const int kStartIndex = kInputStart - kPointerSize;
+  static const int kInputString = kStartIndex - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessfulCaptures = kInputString - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+#else
+# error "undefined MIPS ABI"
+#endif
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  MemOperand register_location(int register_index);
+
+  // Register holding the current input position as negative offset from
+  // the end of the string.
+  inline Register current_input_offset() { return a6; }
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return a7; }
+
+  // Register holding address of the end of the input string.
+  inline Register end_of_input_address() { return t2; }
+
+  // Register holding the frame address. Local variables, parameters and
+  // regexp registers are addressed relative to this.
+  inline Register frame_pointer() { return fp; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return t0; }
+
+  // Register holding pointer to the current code object.
+  inline Register code_pointer() { return a5; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument).
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Label* to,
+                         Condition condition,
+                         Register rs,
+                         const Operand& rt);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to,
+                       Condition cond,
+                       Register rs,
+                       const Operand& rt);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (Latin1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1).
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+  Label internal_failure_label_;
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
diff --git a/src/regexp/ppc/OWNERS b/src/regexp/ppc/OWNERS
new file mode 100644
index 0000000..eb007cb
--- /dev/null
+++ b/src/regexp/ppc/OWNERS
@@ -0,0 +1,5 @@
+jyan@ca.ibm.com
+dstence@us.ibm.com
+joransiu@ca.ibm.com
+mbrandy@us.ibm.com
+michael_dawson@ca.ibm.com
diff --git a/src/regexp/ppc/regexp-macro-assembler-ppc.cc b/src/regexp/ppc/regexp-macro-assembler-ppc.cc
new file mode 100644
index 0000000..f3ddf7b
--- /dev/null
+++ b/src/regexp/ppc/regexp-macro-assembler-ppc.cc
@@ -0,0 +1,1298 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
+
+#include "src/base/bits.h"
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - r25: Temporarily stores the index of capture start after a matching pass
+ *        for a global regexp.
+ * - r26: Pointer to current code object (Code*) including heap object tag.
+ * - r27: Current position in input, as negative offset from end of string.
+ *        Please notice that this is the byte offset, not the character offset!
+ * - r28: Currently loaded character. Must be loaded using
+ *        LoadCurrentCharacter before using any of the dispatch methods.
+ * - r29: Points to tip of backtrack stack
+ * - r30: End of input (points to byte after last character in input).
+ * - r31: Frame pointer. Used to access arguments, local variables and
+ *         RegExp registers.
+ * - r12: IP register, used by assembler. Very volatile.
+ * - r1/sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *  - fp[44]  Isolate* isolate   (address of the current isolate)
+ *  - fp[40]  secondary link/return address used by native call.
+ *  - fp[36]  lr save area (currently unused)
+ *  - fp[32]  backchain    (currently unused)
+ *  --- sp when called ---
+ *  - fp[28]  return address     (lr).
+ *  - fp[24]  old frame pointer  (r31).
+ *  - fp[0..20]  backup of registers r25..r30
+ *  --- frame pointer ----
+ *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
+ *                                if 0, call through the runtime system).
+ *  - fp[-8]  stack_area_base    (high end of the memory area to use as
+ *                                backtracking stack).
+ *  - fp[-12] capture array size (may fit multiple sets of matches)
+ *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
+ *  - fp[-20] end of input       (address of end of string).
+ *  - fp[-24] start of input     (address of first character in string).
+ *  - fp[-28] start index        (character index of start).
+ *  - fp[-32] void* input_string (location of a handle containing the string).
+ *  - fp[-36] success counter    (only for global regexps to count matches).
+ *  - fp[-40] Offset of location before start of input (effectively character
+ *            string start - 1). Used to initialize capture registers to a
+ *            non-position.
+ *  - fp[-44] At start (if 1, we are starting at the start of the
+ *    string, otherwise 0)
+ *  - fp[-48] register 0         (Only positions must be stored in the first
+ *  -         register 1          num_saved_registers_ registers)
+ *  -         ...
+ *  -         register num_registers-1
+ *  --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              int* capture_output_array,
+ *              byte* stack_area_base,
+ *              Address secondary_return_address,  // Only used by native call.
+ *              bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in ppc/simulator-ppc.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
+                                                 Mode mode,
+                                                 int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_(),
+      internal_failure_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+
+// Called from C
+  __ function_descriptor();
+
+  __ b(&entry_label_);  // We'll write the entry code later.
+  // If the code gets too big or corrupted, an internal exception will be
+  // raised, and we will exit right away.
+  __ bind(&internal_failure_label_);
+  __ li(r3, Operand(FAILURE));
+  __ Ret();
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+  internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerPPC::stack_limit_slack() {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ addi(current_input_offset(), current_input_offset(),
+            Operand(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ LoadP(r3, register_location(reg), r0);
+    __ mov(r0, Operand(by));
+    __ add(r3, r3, r0);
+    __ StoreP(r3, register_location(reg), r0);
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(r3);
+  __ add(r3, r3, code_pointer());
+  __ Jump(r3);
+}
+
+
+void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
+
+
+void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
+  __ Cmpli(current_character(), Operand(c), r0);
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  __ Cmpli(current_character(), Operand(limit), r0);
+  BranchOrBacktrack(gt, on_greater);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
+  __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ addi(r3, current_input_offset(), Operand(-char_size()));
+  __ cmp(r3, r4);
+  BranchOrBacktrack(eq, on_at_start);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
+                                              Label* on_not_at_start) {
+  __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
+  __ addi(r3, current_input_offset(),
+          Operand(-char_size() + cp_offset * char_size()));
+  __ cmp(r3, r4);
+  BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
+  __ Cmpli(current_character(), Operand(limit), r0);
+  BranchOrBacktrack(lt, on_less);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
+  Label backtrack_non_equal;
+  __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
+  __ cmp(current_input_offset(), r3);
+  __ bne(&backtrack_non_equal);
+  __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
+          Operand(kPointerSize));
+
+  __ bind(&backtrack_non_equal);
+  BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
+  __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
+  __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ beq(&fallthrough, cr0);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ add(r6, r6, r4);
+    __ cmp(current_input_offset(), r6);
+    BranchOrBacktrack(le, on_no_match);
+  } else {
+    __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
+    BranchOrBacktrack(gt, on_no_match, cr0);
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_check;
+
+    // r3 - offset of start of capture
+    // r4 - length of capture
+    __ add(r3, r3, end_of_input_address());
+    __ add(r5, end_of_input_address(), current_input_offset());
+    if (read_backward) {
+      __ sub(r5, r5, r4);  // Offset by length when matching backwards.
+    }
+    __ add(r4, r3, r4);
+
+    // r3 - Address of start of capture.
+    // r4 - Address of end of capture
+    // r5 - Address of current input position.
+
+    Label loop;
+    __ bind(&loop);
+    __ lbz(r6, MemOperand(r3));
+    __ addi(r3, r3, Operand(char_size()));
+    __ lbz(r25, MemOperand(r5));
+    __ addi(r5, r5, Operand(char_size()));
+    __ cmp(r25, r6);
+    __ beq(&loop_check);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
+    __ ori(r25, r25, Operand(0x20));  // Also convert input character.
+    __ cmp(r25, r6);
+    __ bne(&fail);
+    __ subi(r6, r6, Operand('a'));
+    __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
+    __ ble(&loop_check);               // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ subi(r6, r6, Operand(224 - 'a'));
+    __ cmpli(r6, Operand(254 - 224));
+    __ bgt(&fail);                    // Weren't Latin-1 letters.
+    __ cmpi(r6, Operand(247 - 224));  // Check for 247.
+    __ beq(&fail);
+
+    __ bind(&loop_check);
+    __ cmp(r3, r4);
+    __ blt(&loop);
+    __ b(&success);
+
+    __ bind(&fail);
+    BranchOrBacktrack(al, on_no_match);
+
+    __ bind(&success);
+    // Compute new value of character position after the matched part.
+    __ sub(current_input_offset(), r5, end_of_input_address());
+    if (read_backward) {
+      __ LoadP(r3, register_location(start_reg));  // Index of start of capture
+      __ LoadP(r4,
+               register_location(start_reg + 1));  // Index of end of capture
+      __ add(current_input_offset(), current_input_offset(), r3);
+      __ sub(current_input_offset(), current_input_offset(), r4);
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, r5);
+
+    // r3 - offset of start of capture
+    // r4 - length of capture
+
+    // Put arguments into arguments registers.
+    // Parameters are
+    //   r3: Address byte_offset1 - Address captured substring's start.
+    //   r4: Address byte_offset2 - Address of current character position.
+    //   r5: size_t byte_length - length of capture in bytes(!)
+    //   r6: Isolate* isolate
+
+    // Address of start of capture.
+    __ add(r3, r3, end_of_input_address());
+    // Length of capture.
+    __ mr(r5, r4);
+    // Save length in callee-save register for use on return.
+    __ mr(r25, r4);
+    // Address of current input position.
+    __ add(r4, current_input_offset(), end_of_input_address());
+    if (read_backward) {
+      __ sub(r4, r4, r25);
+    }
+    // Isolate.
+    __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference function =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(function, argument_count);
+    }
+
+    // Check if function returned non-zero for success or zero for failure.
+    __ cmpi(r3, Operand::Zero());
+    BranchOrBacktrack(eq, on_no_match);
+
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ sub(current_input_offset(), current_input_offset(), r25);
+    } else {
+      __ add(current_input_offset(), current_input_offset(), r25);
+    }
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
+                                                    bool read_backward,
+                                                    Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+
+  // Find length of back-referenced capture.
+  __ LoadP(r3, register_location(start_reg), r0);
+  __ LoadP(r4, register_location(start_reg + 1), r0);
+  __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ beq(&fallthrough, cr0);
+
+  // Check that there are enough characters left in the input.
+  if (read_backward) {
+    __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ add(r6, r6, r4);
+    __ cmp(current_input_offset(), r6);
+    BranchOrBacktrack(lt, on_no_match);
+  } else {
+    __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
+    BranchOrBacktrack(gt, on_no_match, cr0);
+  }
+
+  // r3 - offset of start of capture
+  // r4 - length of capture
+  __ add(r3, r3, end_of_input_address());
+  __ add(r5, end_of_input_address(), current_input_offset());
+  if (read_backward) {
+    __ sub(r5, r5, r4);  // Offset by length when matching backwards.
+  }
+  __ add(r4, r4, r3);
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ lbz(r6, MemOperand(r3));
+    __ addi(r3, r3, Operand(char_size()));
+    __ lbz(r25, MemOperand(r5));
+    __ addi(r5, r5, Operand(char_size()));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhz(r6, MemOperand(r3));
+    __ addi(r3, r3, Operand(char_size()));
+    __ lhz(r25, MemOperand(r5));
+    __ addi(r5, r5, Operand(char_size()));
+  }
+  __ cmp(r6, r25);
+  BranchOrBacktrack(ne, on_no_match);
+  __ cmp(r3, r4);
+  __ blt(&loop);
+
+  // Move current character position to position after match.
+  __ sub(current_input_offset(), r5, end_of_input_address());
+  if (read_backward) {
+    __ LoadP(r3, register_location(start_reg));  // Index of start of capture
+    __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
+    __ add(current_input_offset(), current_input_offset(), r3);
+    __ sub(current_input_offset(), current_input_offset(), r4);
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
+                                                Label* on_not_equal) {
+  __ Cmpli(current_character(), Operand(c), r0);
+  BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
+                                                     Label* on_equal) {
+  __ mov(r0, Operand(mask));
+  if (c == 0) {
+    __ and_(r3, current_character(), r0, SetRC);
+  } else {
+    __ and_(r3, current_character(), r0);
+    __ Cmpli(r3, Operand(c), r0, cr0);
+  }
+  BranchOrBacktrack(eq, on_equal, cr0);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
+                                                        unsigned mask,
+                                                        Label* on_not_equal) {
+  __ mov(r0, Operand(mask));
+  if (c == 0) {
+    __ and_(r3, current_character(), r0, SetRC);
+  } else {
+    __ and_(r3, current_character(), r0);
+    __ Cmpli(r3, Operand(c), r0, cr0);
+  }
+  BranchOrBacktrack(ne, on_not_equal, cr0);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
+    uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ subi(r3, current_character(), Operand(minus));
+  __ mov(r0, Operand(mask));
+  __ and_(r3, r3, r0);
+  __ Cmpli(r3, Operand(c), r0);
+  BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
+                                                    Label* on_in_range) {
+  __ mov(r0, Operand(from));
+  __ sub(r3, current_character(), r0);
+  __ Cmpli(r3, Operand(to - from), r0);
+  BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
+                                                       Label* on_not_in_range) {
+  __ mov(r0, Operand(from));
+  __ sub(r3, current_character(), r0);
+  __ Cmpli(r3, Operand(to - from), r0);
+  BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
+}
+
+
+void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
+                                              Label* on_bit_set) {
+  __ mov(r3, Operand(table));
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ andi(r4, current_character(), Operand(kTableSize - 1));
+    __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+  } else {
+    __ addi(r4, current_character(),
+            Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+  }
+  __ lbzx(r3, MemOperand(r3, r4));
+  __ cmpi(r3, Operand::Zero());
+  BranchOrBacktrack(ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
+                                                         Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check
+  switch (type) {
+    case 's':
+      // Match space-characters
+      if (mode_ == LATIN1) {
+        // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+        Label success;
+        __ cmpi(current_character(), Operand(' '));
+        __ beq(&success);
+        // Check range 0x09..0x0d
+        __ subi(r3, current_character(), Operand('\t'));
+        __ cmpli(r3, Operand('\r' - '\t'));
+        __ ble(&success);
+        // \u00a0 (NBSP).
+        __ cmpi(r3, Operand(0x00a0 - '\t'));
+        BranchOrBacktrack(ne, on_no_match);
+        __ bind(&success);
+        return true;
+      }
+      return false;
+    case 'S':
+      // The emitted code for generic character classes is good enough.
+      return false;
+    case 'd':
+      // Match ASCII digits ('0'..'9')
+      __ subi(r3, current_character(), Operand('0'));
+      __ cmpli(r3, Operand('9' - '0'));
+      BranchOrBacktrack(gt, on_no_match);
+      return true;
+    case 'D':
+      // Match non ASCII-digits
+      __ subi(r3, current_character(), Operand('0'));
+      __ cmpli(r3, Operand('9' - '0'));
+      BranchOrBacktrack(le, on_no_match);
+      return true;
+    case '.': {
+      // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+      __ xori(r3, current_character(), Operand(0x01));
+      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+      __ subi(r3, r3, Operand(0x0b));
+      __ cmpli(r3, Operand(0x0c - 0x0b));
+      BranchOrBacktrack(le, on_no_match);
+      if (mode_ == UC16) {
+        // Compare original value to 0x2028 and 0x2029, using the already
+        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+        // 0x201d (0x2028 - 0x0b) or 0x201e.
+        __ subi(r3, r3, Operand(0x2028 - 0x0b));
+        __ cmpli(r3, Operand(1));
+        BranchOrBacktrack(le, on_no_match);
+      }
+      return true;
+    }
+    case 'n': {
+      // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+      __ xori(r3, current_character(), Operand(0x01));
+      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+      __ subi(r3, r3, Operand(0x0b));
+      __ cmpli(r3, Operand(0x0c - 0x0b));
+      if (mode_ == LATIN1) {
+        BranchOrBacktrack(gt, on_no_match);
+      } else {
+        Label done;
+        __ ble(&done);
+        // Compare original value to 0x2028 and 0x2029, using the already
+        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+        // 0x201d (0x2028 - 0x0b) or 0x201e.
+        __ subi(r3, r3, Operand(0x2028 - 0x0b));
+        __ cmpli(r3, Operand(1));
+        BranchOrBacktrack(gt, on_no_match);
+        __ bind(&done);
+      }
+      return true;
+    }
+    case 'w': {
+      if (mode_ != LATIN1) {
+        // Table is 256 entries, so all Latin1 characters can be tested.
+        __ cmpi(current_character(), Operand('z'));
+        BranchOrBacktrack(gt, on_no_match);
+      }
+      ExternalReference map = ExternalReference::re_word_character_map();
+      __ mov(r3, Operand(map));
+      __ lbzx(r3, MemOperand(r3, current_character()));
+      __ cmpli(r3, Operand::Zero());
+      BranchOrBacktrack(eq, on_no_match);
+      return true;
+    }
+    case 'W': {
+      Label done;
+      if (mode_ != LATIN1) {
+        // Table is 256 entries, so all Latin1 characters can be tested.
+        __ cmpli(current_character(), Operand('z'));
+        __ bgt(&done);
+      }
+      ExternalReference map = ExternalReference::re_word_character_map();
+      __ mov(r3, Operand(map));
+      __ lbzx(r3, MemOperand(r3, current_character()));
+      __ cmpli(r3, Operand::Zero());
+      BranchOrBacktrack(ne, on_no_match);
+      if (mode_ != LATIN1) {
+        __ bind(&done);
+      }
+      return true;
+    }
+    case '*':
+      // Match any character.
+      return true;
+    // No custom implementation (yet): s(UC16), S(UC16).
+    default:
+      return false;
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::Fail() {
+  __ li(r3, Operand(FAILURE));
+  __ b(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
+  Label return_r3;
+
+  if (masm_->has_exception()) {
+    // If the code gets corrupted due to long regular expressions and lack of
+    // space on trampolines, an internal exception flag is set. If this case
+    // is detected, we will jump into exit sequence right away.
+    __ bind_to(&entry_label_, internal_failure_label_.pos());
+  } else {
+    // Finalize code - write the entry point code now we know how many
+    // registers we need.
+
+    // Entry code:
+    __ bind(&entry_label_);
+
+    // Tell the system that we have a stack frame.  Because the type
+    // is MANUAL, no is generated.
+    FrameScope scope(masm_, StackFrame::MANUAL);
+
+    // Ensure register assigments are consistent with callee save mask
+    DCHECK(r25.bit() & kRegExpCalleeSaved);
+    DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
+    DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
+    DCHECK(current_character().bit() & kRegExpCalleeSaved);
+    DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
+    DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
+    DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
+
+    // Actually emit code to start a new stack frame.
+    // Push arguments
+    // Save callee-save registers.
+    // Start new stack frame.
+    // Store link register in existing stack-cell.
+    // Order here should correspond to order of offset constants in header file.
+    RegList registers_to_retain = kRegExpCalleeSaved;
+    RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
+                                 r7.bit() | r8.bit() | r9.bit() | r10.bit();
+    __ mflr(r0);
+    __ push(r0);
+    __ MultiPush(argument_registers | registers_to_retain);
+    // Set frame pointer in space for it if this is not a direct call
+    // from generated code.
+    __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
+    __ li(r3, Operand::Zero());
+    __ push(r3);  // Make room for success counter and initialize it to 0.
+    __ push(r3);  // Make room for "string start - 1" constant.
+    // Check if we have space on the stack for registers.
+    Label stack_limit_hit;
+    Label stack_ok;
+
+    ExternalReference stack_limit =
+        ExternalReference::address_of_stack_limit(isolate());
+    __ mov(r3, Operand(stack_limit));
+    __ LoadP(r3, MemOperand(r3));
+    __ sub(r3, sp, r3, LeaveOE, SetRC);
+    // Handle it if the stack pointer is already below the stack limit.
+    __ ble(&stack_limit_hit, cr0);
+    // Check if there is room for the variable number of registers above
+    // the stack limit.
+    __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
+    __ bge(&stack_ok);
+    // Exit with OutOfMemory exception. There is not enough space on the stack
+    // for our working registers.
+    __ li(r3, Operand(EXCEPTION));
+    __ b(&return_r3);
+
+    __ bind(&stack_limit_hit);
+    CallCheckStackGuardState(r3);
+    __ cmpi(r3, Operand::Zero());
+    // If returned value is non-zero, we exit with the returned value as result.
+    __ bne(&return_r3);
+
+    __ bind(&stack_ok);
+
+    // Allocate space on stack for registers.
+    __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
+    // Load string end.
+    __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+    // Load input start.
+    __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
+    // Find negative length (offset of start relative to end).
+    __ sub(current_input_offset(), r3, end_of_input_address());
+    // Set r3 to address of char before start of the input string
+    // (effectively string position -1).
+    __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
+    __ subi(r3, current_input_offset(), Operand(char_size()));
+    if (mode_ == UC16) {
+      __ ShiftLeftImm(r0, r4, Operand(1));
+      __ sub(r3, r3, r0);
+    } else {
+      __ sub(r3, r3, r4);
+    }
+    // Store this value in a local variable, for use when clearing
+    // position registers.
+    __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+    // Initialize code pointer register
+    __ mov(code_pointer(), Operand(masm_->CodeObject()));
+
+    Label load_char_start_regexp, start_regexp;
+    // Load newline if index is at start, previous character otherwise.
+    __ cmpi(r4, Operand::Zero());
+    __ bne(&load_char_start_regexp);
+    __ li(current_character(), Operand('\n'));
+    __ b(&start_regexp);
+
+    // Global regexp restarts matching here.
+    __ bind(&load_char_start_regexp);
+    // Load previous char as initial value of current character register.
+    LoadCurrentCharacterUnchecked(-1, 1);
+    __ bind(&start_regexp);
+
+    // Initialize on-stack registers.
+    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+      // Fill saved registers with initial value = start offset - 1
+      if (num_saved_registers_ > 8) {
+        // One slot beyond address of register 0.
+        __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
+        __ li(r5, Operand(num_saved_registers_));
+        __ mtctr(r5);
+        Label init_loop;
+        __ bind(&init_loop);
+        __ StorePU(r3, MemOperand(r4, -kPointerSize));
+        __ bdnz(&init_loop);
+      } else {
+        for (int i = 0; i < num_saved_registers_; i++) {
+          __ StoreP(r3, register_location(i), r0);
+        }
+      }
+    }
+
+    // Initialize backtrack stack pointer.
+    __ LoadP(backtrack_stackpointer(),
+             MemOperand(frame_pointer(), kStackHighEnd));
+
+    __ b(&start_label_);
+
+    // Exit code:
+    if (success_label_.is_linked()) {
+      // Save captures when successful.
+      __ bind(&success_label_);
+      if (num_saved_registers_ > 0) {
+        // copy captures to output
+        __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
+        __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
+        __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
+        __ sub(r4, end_of_input_address(), r4);
+        // r4 is length of input in bytes.
+        if (mode_ == UC16) {
+          __ ShiftRightImm(r4, r4, Operand(1));
+        }
+        // r4 is length of input in characters.
+        __ add(r4, r4, r5);
+        // r4 is length of string in characters.
+
+        DCHECK_EQ(0, num_saved_registers_ % 2);
+        // Always an even number of capture registers. This allows us to
+        // unroll the loop once to add an operation between a load of a register
+        // and the following use of that register.
+        for (int i = 0; i < num_saved_registers_; i += 2) {
+          __ LoadP(r5, register_location(i), r0);
+          __ LoadP(r6, register_location(i + 1), r0);
+          if (i == 0 && global_with_zero_length_check()) {
+            // Keep capture start in r25 for the zero-length check later.
+            __ mr(r25, r5);
+          }
+          if (mode_ == UC16) {
+            __ ShiftRightArithImm(r5, r5, 1);
+            __ add(r5, r4, r5);
+            __ ShiftRightArithImm(r6, r6, 1);
+            __ add(r6, r4, r6);
+          } else {
+            __ add(r5, r4, r5);
+            __ add(r6, r4, r6);
+          }
+          __ stw(r5, MemOperand(r3));
+          __ addi(r3, r3, Operand(kIntSize));
+          __ stw(r6, MemOperand(r3));
+          __ addi(r3, r3, Operand(kIntSize));
+        }
+      }
+
+      if (global()) {
+        // Restart matching if the regular expression is flagged as global.
+        __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
+        __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
+        // Increment success counter.
+        __ addi(r3, r3, Operand(1));
+        __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+        // Capture results have been stored, so the number of remaining global
+        // output registers is reduced by the number of stored captures.
+        __ subi(r4, r4, Operand(num_saved_registers_));
+        // Check whether we have enough room for another set of capture results.
+        __ cmpi(r4, Operand(num_saved_registers_));
+        __ blt(&return_r3);
+
+        __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
+        // Advance the location for output.
+        __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
+        __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
+
+        // Prepare r3 to initialize registers with its value in the next run.
+        __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
+
+        if (global_with_zero_length_check()) {
+          // Special case for zero-length matches.
+          // r25: capture start index
+          __ cmp(current_input_offset(), r25);
+          // Not a zero-length match, restart.
+          __ bne(&load_char_start_regexp);
+          // Offset from the end is zero if we already reached the end.
+          __ cmpi(current_input_offset(), Operand::Zero());
+          __ beq(&exit_label_);
+          // Advance current position after a zero-length match.
+          __ addi(current_input_offset(), current_input_offset(),
+                  Operand((mode_ == UC16) ? 2 : 1));
+        }
+
+        __ b(&load_char_start_regexp);
+      } else {
+        __ li(r3, Operand(SUCCESS));
+      }
+    }
+
+    // Exit and return r3
+    __ bind(&exit_label_);
+    if (global()) {
+      __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+    }
+
+    __ bind(&return_r3);
+    // Skip sp past regexp registers and local variables..
+    __ mr(sp, frame_pointer());
+    // Restore registers r25..r31 and return (restoring lr to pc).
+    __ MultiPop(registers_to_retain);
+    __ pop(r0);
+    __ mtlr(r0);
+    __ blr();
+
+    // Backtrack code (branch target for conditional backtracks).
+    if (backtrack_label_.is_linked()) {
+      __ bind(&backtrack_label_);
+      Backtrack();
+    }
+
+    Label exit_with_exception;
+
+    // Preempt-code
+    if (check_preempt_label_.is_linked()) {
+      SafeCallTarget(&check_preempt_label_);
+
+      CallCheckStackGuardState(r3);
+      __ cmpi(r3, Operand::Zero());
+      // If returning non-zero, we should end execution with the given
+      // result as return value.
+      __ bne(&return_r3);
+
+      // String might have moved: Reload end of string from frame.
+      __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+      SafeReturn();
+    }
+
+    // Backtrack stack overflow code.
+    if (stack_overflow_label_.is_linked()) {
+      SafeCallTarget(&stack_overflow_label_);
+      // Reached if the backtrack-stack limit has been hit.
+      Label grow_failed;
+
+      // Call GrowStack(backtrack_stackpointer(), &stack_base)
+      static const int num_arguments = 3;
+      __ PrepareCallCFunction(num_arguments, r3);
+      __ mr(r3, backtrack_stackpointer());
+      __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
+      __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
+      ExternalReference grow_stack =
+          ExternalReference::re_grow_stack(isolate());
+      __ CallCFunction(grow_stack, num_arguments);
+      // If return NULL, we have failed to grow the stack, and
+      // must exit with a stack-overflow exception.
+      __ cmpi(r3, Operand::Zero());
+      __ beq(&exit_with_exception);
+      // Otherwise use return value as new stack pointer.
+      __ mr(backtrack_stackpointer(), r3);
+      // Restore saved registers and continue.
+      SafeReturn();
+    }
+
+    if (exit_with_exception.is_linked()) {
+      // If any of the code above needed to exit with an exception.
+      __ bind(&exit_with_exception);
+      // Exit with Result EXCEPTION(-1) to signal thrown exception.
+      __ li(r3, Operand(EXCEPTION));
+      __ b(&return_r3);
+    }
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code = isolate()->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
+
+
+void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
+                                           Label* if_ge) {
+  __ LoadP(r3, register_location(reg), r0);
+  __ Cmpi(r3, Operand(comparand), r0);
+  BranchOrBacktrack(ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
+                                           Label* if_lt) {
+  __ LoadP(r3, register_location(reg), r0);
+  __ Cmpi(r3, Operand(comparand), r0);
+  BranchOrBacktrack(lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
+  __ LoadP(r3, register_location(reg), r0);
+  __ cmp(r3, current_input_offset());
+  BranchOrBacktrack(eq, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+RegExpMacroAssemblerPPC::Implementation() {
+  return kPPCImplementation;
+}
+
+
+void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
+                                                   Label* on_end_of_input,
+                                                   bool check_bounds,
+                                                   int characters) {
+  DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerPPC::PopCurrentPosition() {
+  Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
+  Pop(r3);
+  __ StoreP(r3, register_location(register_index), r0);
+}
+
+
+void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
+  __ mov_label_offset(r3, label);
+  Push(r3);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerPPC::PushCurrentPosition() {
+  Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerPPC::PushRegister(int register_index,
+                                           StackCheckFlag check_stack_limit) {
+  __ LoadP(r3, register_location(register_index), r0);
+  Push(r3);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
+  __ LoadP(current_input_offset(), register_location(reg), r0);
+}
+
+
+void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
+  __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
+  __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
+  __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
+}
+
+
+void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
+  __ bge(&after_position);
+  __ mov(current_input_offset(), Operand(-by * char_size()));
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ mov(r3, Operand(to));
+  __ StoreP(r3, register_location(register_index), r0);
+}
+
+
+bool RegExpMacroAssemblerPPC::Succeed() {
+  __ b(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
+                                                             int cp_offset) {
+  if (cp_offset == 0) {
+    __ StoreP(current_input_offset(), register_location(reg), r0);
+  } else {
+    __ mov(r0, Operand(cp_offset * char_size()));
+    __ add(r3, current_input_offset(), r0);
+    __ StoreP(r3, register_location(reg), r0);
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ StoreP(r3, register_location(reg), r0);
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
+  __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
+  __ sub(r3, backtrack_stackpointer(), r4);
+  __ StoreP(r3, register_location(reg), r0);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
+  int frame_alignment = masm_->ActivationFrameAlignment();
+  int stack_space = kNumRequiredStackFrameSlots;
+  int stack_passed_arguments = 1;  // space for return address pointer
+
+  // The following stack manipulation logic is similar to
+  // PrepareCallCFunction.  However, we need an extra slot on the
+  // stack to house the return address parameter.
+  if (frame_alignment > kPointerSize) {
+    // Make stack end at alignment and make room for stack arguments
+    // -- preserving original value of sp.
+    __ mr(scratch, sp);
+    __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
+    __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+  } else {
+    // Make room for stack arguments
+    stack_space += stack_passed_arguments;
+  }
+
+  // Allocate frame with required slots to make ABI work.
+  __ li(r0, Operand::Zero());
+  __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
+
+  // RegExp code frame pointer.
+  __ mr(r5, frame_pointer());
+  // Code* of self.
+  __ mov(r4, Operand(masm_->CodeObject()));
+  // r3 will point to the return address, placed by DirectCEntry.
+  __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
+
+  ExternalReference stack_guard_check =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ mov(ip, Operand(stack_guard_check));
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm_, ip);
+
+  // Restore the stack pointer
+  stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
+  if (frame_alignment > kPointerSize) {
+    __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
+  } else {
+    __ addi(sp, sp, Operand(stack_space * kPointerSize));
+  }
+
+  __ mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
+                                                  Code* re_code,
+                                                  Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<intptr_t>(re_frame, kStartIndex),
+      frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
+      re_code, frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
+  DCHECK(register_index < (1 << 30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return MemOperand(frame_pointer(),
+                    kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
+                                            Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
+    BranchOrBacktrack(ge, on_outside_input);
+  } else {
+    __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
+    __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
+    __ cmp(r3, r4);
+    BranchOrBacktrack(le, on_outside_input);
+  }
+}
+
+
+void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
+                                                CRegister cr) {
+  if (condition == al) {  // Unconditional.
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ b(to);
+    return;
+  }
+  if (to == NULL) {
+    __ b(condition, &backtrack_label_, cr);
+    return;
+  }
+  __ b(condition, to, cr);
+}
+
+
+void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
+                                       CRegister cr) {
+  __ b(cond, to, cr, SetLK);
+}
+
+
+void RegExpMacroAssemblerPPC::SafeReturn() {
+  __ pop(r0);
+  __ mov(ip, Operand(masm_->CodeObject()));
+  __ add(r0, r0, ip);
+  __ mtlr(r0);
+  __ blr();
+}
+
+
+void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
+  __ bind(name);
+  __ mflr(r0);
+  __ mov(ip, Operand(masm_->CodeObject()));
+  __ sub(r0, r0, ip);
+  __ push(r0);
+}
+
+
+void RegExpMacroAssemblerPPC::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
+}
+
+
+void RegExpMacroAssemblerPPC::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ LoadP(target, MemOperand(backtrack_stackpointer()));
+  __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
+          Operand(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerPPC::CheckPreemption() {
+  // Check for preemption.
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ mov(r3, Operand(stack_limit));
+  __ LoadP(r3, MemOperand(r3));
+  __ cmpl(sp, r3);
+  SafeCall(&check_preempt_label_, le);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckStackLimit() {
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ mov(r3, Operand(stack_limit));
+  __ LoadP(r3, MemOperand(r3));
+  __ cmpl(backtrack_stackpointer(), r3);
+  SafeCall(&stack_overflow_label_, le);
+}
+
+
+bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
+  return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
+}
+
+
+void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                            int characters) {
+  Register offset = current_input_offset();
+  if (cp_offset != 0) {
+    // r25 is not being used to store the capture start index at this point.
+    __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
+    offset = r25;
+  }
+  // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
+  // and the operating system running on the target allow it.
+  // We assume we don't want to do unaligned loads on PPC, so this function
+  // must only be used to load a single character at a time.
+
+  DCHECK(characters == 1);
+  __ add(current_character(), end_of_input_address(), offset);
+  if (mode_ == LATIN1) {
+    __ lbz(current_character(), MemOperand(current_character()));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ lhz(current_character(), MemOperand(current_character()));
+  }
+}
+
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_PPC
diff --git a/src/regexp/ppc/regexp-macro-assembler-ppc.h b/src/regexp/ppc/regexp-macro-assembler-ppc.h
new file mode 100644
index 0000000..4d1836f
--- /dev/null
+++ b/src/regexp/ppc/regexp-macro-assembler-ppc.h
@@ -0,0 +1,216 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
+#define V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
+
+#include "src/macro-assembler.h"
+#include "src/ppc/assembler-ppc.h"
+#include "src/ppc/frames-ppc.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerPPC : public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone, Mode mode,
+                          int registers_to_save);
+  virtual ~RegExpMacroAssemblerPPC();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(unsigned c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from, uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual bool CanReadUnaligned();
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address, Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from frame_pointer() of function parameters and stored registers.
+  static const int kFramePointer = 0;
+
+  // Above the frame pointer - Stored registers and stack passed parameters.
+  // Register 25..31.
+  static const int kStoredRegisters = kFramePointer;
+  // Return address (stored from link register, read into pc on return).
+  static const int kReturnAddress = kStoredRegisters + 7 * kPointerSize;
+  static const int kCallerFrame = kReturnAddress + kPointerSize;
+  // Stack parameters placed by caller.
+  static const int kSecondaryReturnAddress =
+      kCallerFrame + kStackFrameExtraParamSlot * kPointerSize;
+  static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
+
+  // Below the frame pointer.
+  // Register parameters stored by setup code.
+  static const int kDirectCall = kFramePointer - kPointerSize;
+  static const int kStackHighEnd = kDirectCall - kPointerSize;
+  static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
+  static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
+  static const int kInputEnd = kRegisterOutput - kPointerSize;
+  static const int kInputStart = kInputEnd - kPointerSize;
+  static const int kStartIndex = kInputStart - kPointerSize;
+  static const int kInputString = kStartIndex - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kSuccessfulCaptures = kInputString - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  MemOperand register_location(int register_index);
+
+  // Register holding the current input position as negative offset from
+  // the end of the string.
+  inline Register current_input_offset() { return r27; }
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return r28; }
+
+  // Register holding address of the end of the input string.
+  inline Register end_of_input_address() { return r30; }
+
+  // Register holding the frame address. Local variables, parameters and
+  // regexp registers are addressed relative to this.
+  inline Register frame_pointer() { return fp; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return r29; }
+
+  // Register holding pointer to the current code object.
+  inline Register code_pointer() { return r26; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to, CRegister cr = cr7);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to, Condition cond = al, CRegister cr = cr7);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (Latin1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+  Label internal_failure_label_;
+};
+
+// Set of non-volatile registers saved/restored by generated regexp code.
+const RegList kRegExpCalleeSaved =
+    1 << 25 | 1 << 26 | 1 << 27 | 1 << 28 | 1 << 29 | 1 << 30 | 1 << 31;
+
+#endif  // V8_INTERPRETED_REGEXP
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
diff --git a/src/regexp/regexp-ast.cc b/src/regexp/regexp-ast.cc
new file mode 100644
index 0000000..31c93b1
--- /dev/null
+++ b/src/regexp/regexp-ast.cc
@@ -0,0 +1,337 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/ostreams.h"
+#include "src/regexp/regexp-ast.h"
+
+namespace v8 {
+namespace internal {
+
+#define MAKE_ACCEPT(Name)                                          \
+  void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
+    return visitor->Visit##Name(this, data);                       \
+  }
+FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
+#undef MAKE_ACCEPT
+
+#define MAKE_TYPE_CASE(Name)                            \
+  RegExp##Name* RegExpTree::As##Name() { return NULL; } \
+  bool RegExpTree::Is##Name() { return false; }
+FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
+#undef MAKE_TYPE_CASE
+
+#define MAKE_TYPE_CASE(Name)                              \
+  RegExp##Name* RegExp##Name::As##Name() { return this; } \
+  bool RegExp##Name::Is##Name() { return true; }
+FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
+#undef MAKE_TYPE_CASE
+
+
+static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
+  Interval result = Interval::Empty();
+  for (int i = 0; i < children->length(); i++)
+    result = result.Union(children->at(i)->CaptureRegisters());
+  return result;
+}
+
+
+Interval RegExpAlternative::CaptureRegisters() {
+  return ListCaptureRegisters(nodes());
+}
+
+
+Interval RegExpDisjunction::CaptureRegisters() {
+  return ListCaptureRegisters(alternatives());
+}
+
+
+Interval RegExpLookaround::CaptureRegisters() {
+  return body()->CaptureRegisters();
+}
+
+
+Interval RegExpCapture::CaptureRegisters() {
+  Interval self(StartRegister(index()), EndRegister(index()));
+  return self.Union(body()->CaptureRegisters());
+}
+
+
+Interval RegExpQuantifier::CaptureRegisters() {
+  return body()->CaptureRegisters();
+}
+
+
+bool RegExpAssertion::IsAnchoredAtStart() {
+  return assertion_type() == RegExpAssertion::START_OF_INPUT;
+}
+
+
+bool RegExpAssertion::IsAnchoredAtEnd() {
+  return assertion_type() == RegExpAssertion::END_OF_INPUT;
+}
+
+
+bool RegExpAlternative::IsAnchoredAtStart() {
+  ZoneList<RegExpTree*>* nodes = this->nodes();
+  for (int i = 0; i < nodes->length(); i++) {
+    RegExpTree* node = nodes->at(i);
+    if (node->IsAnchoredAtStart()) {
+      return true;
+    }
+    if (node->max_match() > 0) {
+      return false;
+    }
+  }
+  return false;
+}
+
+
+bool RegExpAlternative::IsAnchoredAtEnd() {
+  ZoneList<RegExpTree*>* nodes = this->nodes();
+  for (int i = nodes->length() - 1; i >= 0; i--) {
+    RegExpTree* node = nodes->at(i);
+    if (node->IsAnchoredAtEnd()) {
+      return true;
+    }
+    if (node->max_match() > 0) {
+      return false;
+    }
+  }
+  return false;
+}
+
+
+bool RegExpDisjunction::IsAnchoredAtStart() {
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+  for (int i = 0; i < alternatives->length(); i++) {
+    if (!alternatives->at(i)->IsAnchoredAtStart()) return false;
+  }
+  return true;
+}
+
+
+bool RegExpDisjunction::IsAnchoredAtEnd() {
+  ZoneList<RegExpTree*>* alternatives = this->alternatives();
+  for (int i = 0; i < alternatives->length(); i++) {
+    if (!alternatives->at(i)->IsAnchoredAtEnd()) return false;
+  }
+  return true;
+}
+
+
+bool RegExpLookaround::IsAnchoredAtStart() {
+  return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart();
+}
+
+
+bool RegExpCapture::IsAnchoredAtStart() { return body()->IsAnchoredAtStart(); }
+
+
+bool RegExpCapture::IsAnchoredAtEnd() { return body()->IsAnchoredAtEnd(); }
+
+
+// Convert regular expression trees to a simple sexp representation.
+// This representation should be different from the input grammar
+// in as many cases as possible, to make it more difficult for incorrect
+// parses to look as correct ones which is likely if the input and
+// output formats are alike.
+class RegExpUnparser final : public RegExpVisitor {
+ public:
+  RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {}
+  void VisitCharacterRange(CharacterRange that);
+#define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override;
+  FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
+#undef MAKE_CASE
+ private:
+  std::ostream& os_;
+  Zone* zone_;
+};
+
+
+void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
+  os_ << "(|";
+  for (int i = 0; i < that->alternatives()->length(); i++) {
+    os_ << " ";
+    that->alternatives()->at(i)->Accept(this, data);
+  }
+  os_ << ")";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
+  os_ << "(:";
+  for (int i = 0; i < that->nodes()->length(); i++) {
+    os_ << " ";
+    that->nodes()->at(i)->Accept(this, data);
+  }
+  os_ << ")";
+  return NULL;
+}
+
+
+void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
+  os_ << AsUC16(that.from());
+  if (!that.IsSingleton()) {
+    os_ << "-" << AsUC16(that.to());
+  }
+}
+
+
+void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
+                                          void* data) {
+  if (that->is_negated()) os_ << "^";
+  os_ << "[";
+  for (int i = 0; i < that->ranges(zone_)->length(); i++) {
+    if (i > 0) os_ << " ";
+    VisitCharacterRange(that->ranges(zone_)->at(i));
+  }
+  os_ << "]";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
+  switch (that->assertion_type()) {
+    case RegExpAssertion::START_OF_INPUT:
+      os_ << "@^i";
+      break;
+    case RegExpAssertion::END_OF_INPUT:
+      os_ << "@$i";
+      break;
+    case RegExpAssertion::START_OF_LINE:
+      os_ << "@^l";
+      break;
+    case RegExpAssertion::END_OF_LINE:
+      os_ << "@$l";
+      break;
+    case RegExpAssertion::BOUNDARY:
+      os_ << "@b";
+      break;
+    case RegExpAssertion::NON_BOUNDARY:
+      os_ << "@B";
+      break;
+  }
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
+  os_ << "'";
+  Vector<const uc16> chardata = that->data();
+  for (int i = 0; i < chardata.length(); i++) {
+    os_ << AsUC16(chardata[i]);
+  }
+  os_ << "'";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
+  if (that->elements()->length() == 1) {
+    that->elements()->at(0).tree()->Accept(this, data);
+  } else {
+    os_ << "(!";
+    for (int i = 0; i < that->elements()->length(); i++) {
+      os_ << " ";
+      that->elements()->at(i).tree()->Accept(this, data);
+    }
+    os_ << ")";
+  }
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
+  os_ << "(# " << that->min() << " ";
+  if (that->max() == RegExpTree::kInfinity) {
+    os_ << "- ";
+  } else {
+    os_ << that->max() << " ";
+  }
+  os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
+  that->body()->Accept(this, data);
+  os_ << ")";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
+  os_ << "(^ ";
+  that->body()->Accept(this, data);
+  os_ << ")";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) {
+  os_ << "(";
+  os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-");
+  os_ << (that->is_positive() ? " + " : " - ");
+  that->body()->Accept(this, data);
+  os_ << ")";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
+                                         void* data) {
+  os_ << "(<- " << that->index() << ")";
+  return NULL;
+}
+
+
+void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
+  os_ << '%';
+  return NULL;
+}
+
+
+std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) {  // NOLINT
+  RegExpUnparser unparser(os, zone);
+  Accept(&unparser, NULL);
+  return os;
+}
+
+
+RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
+    : alternatives_(alternatives) {
+  DCHECK(alternatives->length() > 1);
+  RegExpTree* first_alternative = alternatives->at(0);
+  min_match_ = first_alternative->min_match();
+  max_match_ = first_alternative->max_match();
+  for (int i = 1; i < alternatives->length(); i++) {
+    RegExpTree* alternative = alternatives->at(i);
+    min_match_ = Min(min_match_, alternative->min_match());
+    max_match_ = Max(max_match_, alternative->max_match());
+  }
+}
+
+
+static int IncreaseBy(int previous, int increase) {
+  if (RegExpTree::kInfinity - previous < increase) {
+    return RegExpTree::kInfinity;
+  } else {
+    return previous + increase;
+  }
+}
+
+
+RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
+    : nodes_(nodes) {
+  DCHECK(nodes->length() > 1);
+  min_match_ = 0;
+  max_match_ = 0;
+  for (int i = 0; i < nodes->length(); i++) {
+    RegExpTree* node = nodes->at(i);
+    int node_min_match = node->min_match();
+    min_match_ = IncreaseBy(min_match_, node_min_match);
+    int node_max_match = node->max_match();
+    max_match_ = IncreaseBy(max_match_, node_max_match);
+  }
+}
+
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-ast.h b/src/regexp/regexp-ast.h
new file mode 100644
index 0000000..f877785
--- /dev/null
+++ b/src/regexp/regexp-ast.h
@@ -0,0 +1,496 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_AST_H_
+#define V8_REGEXP_REGEXP_AST_H_
+
+#include "src/utils.h"
+#include "src/zone.h"
+
+namespace v8 {
+namespace internal {
+
+#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
+  VISIT(Disjunction)                      \
+  VISIT(Alternative)                      \
+  VISIT(Assertion)                        \
+  VISIT(CharacterClass)                   \
+  VISIT(Atom)                             \
+  VISIT(Quantifier)                       \
+  VISIT(Capture)                          \
+  VISIT(Lookaround)                       \
+  VISIT(BackReference)                    \
+  VISIT(Empty)                            \
+  VISIT(Text)
+
+
+#define FORWARD_DECLARE(Name) class RegExp##Name;
+FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
+#undef FORWARD_DECLARE
+
+class RegExpCompiler;
+class RegExpNode;
+class RegExpTree;
+
+
+class RegExpVisitor BASE_EMBEDDED {
+ public:
+  virtual ~RegExpVisitor() {}
+#define MAKE_CASE(Name) \
+  virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
+  FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
+#undef MAKE_CASE
+};
+
+
+// A simple closed interval.
+class Interval {
+ public:
+  Interval() : from_(kNone), to_(kNone) {}
+  Interval(int from, int to) : from_(from), to_(to) {}
+  Interval Union(Interval that) {
+    if (that.from_ == kNone)
+      return *this;
+    else if (from_ == kNone)
+      return that;
+    else
+      return Interval(Min(from_, that.from_), Max(to_, that.to_));
+  }
+  bool Contains(int value) { return (from_ <= value) && (value <= to_); }
+  bool is_empty() { return from_ == kNone; }
+  int from() const { return from_; }
+  int to() const { return to_; }
+  static Interval Empty() { return Interval(); }
+  static const int kNone = -1;
+
+ private:
+  int from_;
+  int to_;
+};
+
+
+// Represents code units in the range from from_ to to_, both ends are
+// inclusive.
+class CharacterRange {
+ public:
+  CharacterRange() : from_(0), to_(0) {}
+  // For compatibility with the CHECK_OK macro
+  CharacterRange(void* null) { DCHECK_NULL(null); }  // NOLINT
+  CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) {}
+  static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
+                             Zone* zone);
+  static Vector<const int> GetWordBounds();
+  static inline CharacterRange Singleton(uc16 value) {
+    return CharacterRange(value, value);
+  }
+  static inline CharacterRange Range(uc16 from, uc16 to) {
+    DCHECK(from <= to);
+    return CharacterRange(from, to);
+  }
+  static inline CharacterRange Everything() {
+    return CharacterRange(0, 0xFFFF);
+  }
+  bool Contains(uc16 i) { return from_ <= i && i <= to_; }
+  uc16 from() const { return from_; }
+  void set_from(uc16 value) { from_ = value; }
+  uc16 to() const { return to_; }
+  void set_to(uc16 value) { to_ = value; }
+  bool is_valid() { return from_ <= to_; }
+  bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
+  bool IsSingleton() { return (from_ == to_); }
+  void AddCaseEquivalents(Isolate* isolate, Zone* zone,
+                          ZoneList<CharacterRange>* ranges, bool is_one_byte);
+  static void Split(ZoneList<CharacterRange>* base, Vector<const int> overlay,
+                    ZoneList<CharacterRange>** included,
+                    ZoneList<CharacterRange>** excluded, Zone* zone);
+  // Whether a range list is in canonical form: Ranges ordered by from value,
+  // and ranges non-overlapping and non-adjacent.
+  static bool IsCanonical(ZoneList<CharacterRange>* ranges);
+  // Convert range list to canonical form. The characters covered by the ranges
+  // will still be the same, but no character is in more than one range, and
+  // adjacent ranges are merged. The resulting list may be shorter than the
+  // original, but cannot be longer.
+  static void Canonicalize(ZoneList<CharacterRange>* ranges);
+  // Negate the contents of a character range in canonical form.
+  static void Negate(ZoneList<CharacterRange>* src,
+                     ZoneList<CharacterRange>* dst, Zone* zone);
+  static const int kStartMarker = (1 << 24);
+  static const int kPayloadMask = (1 << 24) - 1;
+
+ private:
+  uc16 from_;
+  uc16 to_;
+};
+
+
+class CharacterSet final BASE_EMBEDDED {
+ public:
+  explicit CharacterSet(uc16 standard_set_type)
+      : ranges_(NULL), standard_set_type_(standard_set_type) {}
+  explicit CharacterSet(ZoneList<CharacterRange>* ranges)
+      : ranges_(ranges), standard_set_type_(0) {}
+  ZoneList<CharacterRange>* ranges(Zone* zone);
+  uc16 standard_set_type() { return standard_set_type_; }
+  void set_standard_set_type(uc16 special_set_type) {
+    standard_set_type_ = special_set_type;
+  }
+  bool is_standard() { return standard_set_type_ != 0; }
+  void Canonicalize();
+
+ private:
+  ZoneList<CharacterRange>* ranges_;
+  // If non-zero, the value represents a standard set (e.g., all whitespace
+  // characters) without having to expand the ranges.
+  uc16 standard_set_type_;
+};
+
+
+class TextElement final BASE_EMBEDDED {
+ public:
+  enum TextType { ATOM, CHAR_CLASS };
+
+  static TextElement Atom(RegExpAtom* atom);
+  static TextElement CharClass(RegExpCharacterClass* char_class);
+
+  int cp_offset() const { return cp_offset_; }
+  void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
+  int length() const;
+
+  TextType text_type() const { return text_type_; }
+
+  RegExpTree* tree() const { return tree_; }
+
+  RegExpAtom* atom() const {
+    DCHECK(text_type() == ATOM);
+    return reinterpret_cast<RegExpAtom*>(tree());
+  }
+
+  RegExpCharacterClass* char_class() const {
+    DCHECK(text_type() == CHAR_CLASS);
+    return reinterpret_cast<RegExpCharacterClass*>(tree());
+  }
+
+ private:
+  TextElement(TextType text_type, RegExpTree* tree)
+      : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
+
+  int cp_offset_;
+  TextType text_type_;
+  RegExpTree* tree_;
+};
+
+
+class RegExpTree : public ZoneObject {
+ public:
+  static const int kInfinity = kMaxInt;
+  virtual ~RegExpTree() {}
+  virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
+  virtual RegExpNode* ToNode(RegExpCompiler* compiler,
+                             RegExpNode* on_success) = 0;
+  virtual bool IsTextElement() { return false; }
+  virtual bool IsAnchoredAtStart() { return false; }
+  virtual bool IsAnchoredAtEnd() { return false; }
+  virtual int min_match() = 0;
+  virtual int max_match() = 0;
+  // Returns the interval of registers used for captures within this
+  // expression.
+  virtual Interval CaptureRegisters() { return Interval::Empty(); }
+  virtual void AppendToText(RegExpText* text, Zone* zone);
+  std::ostream& Print(std::ostream& os, Zone* zone);  // NOLINT
+#define MAKE_ASTYPE(Name)           \
+  virtual RegExp##Name* As##Name(); \
+  virtual bool Is##Name();
+  FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
+#undef MAKE_ASTYPE
+};
+
+
+class RegExpDisjunction final : public RegExpTree {
+ public:
+  explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpDisjunction* AsDisjunction() override;
+  Interval CaptureRegisters() override;
+  bool IsDisjunction() override;
+  bool IsAnchoredAtStart() override;
+  bool IsAnchoredAtEnd() override;
+  int min_match() override { return min_match_; }
+  int max_match() override { return max_match_; }
+  ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
+
+ private:
+  bool SortConsecutiveAtoms(RegExpCompiler* compiler);
+  void RationalizeConsecutiveAtoms(RegExpCompiler* compiler);
+  void FixSingleCharacterDisjunctions(RegExpCompiler* compiler);
+  ZoneList<RegExpTree*>* alternatives_;
+  int min_match_;
+  int max_match_;
+};
+
+
+class RegExpAlternative final : public RegExpTree {
+ public:
+  explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpAlternative* AsAlternative() override;
+  Interval CaptureRegisters() override;
+  bool IsAlternative() override;
+  bool IsAnchoredAtStart() override;
+  bool IsAnchoredAtEnd() override;
+  int min_match() override { return min_match_; }
+  int max_match() override { return max_match_; }
+  ZoneList<RegExpTree*>* nodes() { return nodes_; }
+
+ private:
+  ZoneList<RegExpTree*>* nodes_;
+  int min_match_;
+  int max_match_;
+};
+
+
+class RegExpAssertion final : public RegExpTree {
+ public:
+  enum AssertionType {
+    START_OF_LINE,
+    START_OF_INPUT,
+    END_OF_LINE,
+    END_OF_INPUT,
+    BOUNDARY,
+    NON_BOUNDARY
+  };
+  explicit RegExpAssertion(AssertionType type) : assertion_type_(type) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpAssertion* AsAssertion() override;
+  bool IsAssertion() override;
+  bool IsAnchoredAtStart() override;
+  bool IsAnchoredAtEnd() override;
+  int min_match() override { return 0; }
+  int max_match() override { return 0; }
+  AssertionType assertion_type() { return assertion_type_; }
+
+ private:
+  AssertionType assertion_type_;
+};
+
+
+class RegExpCharacterClass final : public RegExpTree {
+ public:
+  RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
+      : set_(ranges), is_negated_(is_negated) {}
+  explicit RegExpCharacterClass(uc16 type) : set_(type), is_negated_(false) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpCharacterClass* AsCharacterClass() override;
+  bool IsCharacterClass() override;
+  bool IsTextElement() override { return true; }
+  int min_match() override { return 1; }
+  int max_match() override { return 1; }
+  void AppendToText(RegExpText* text, Zone* zone) override;
+  CharacterSet character_set() { return set_; }
+  // TODO(lrn): Remove need for complex version if is_standard that
+  // recognizes a mangled standard set and just do { return set_.is_special(); }
+  bool is_standard(Zone* zone);
+  // Returns a value representing the standard character set if is_standard()
+  // returns true.
+  // Currently used values are:
+  // s : unicode whitespace
+  // S : unicode non-whitespace
+  // w : ASCII word character (digit, letter, underscore)
+  // W : non-ASCII word character
+  // d : ASCII digit
+  // D : non-ASCII digit
+  // . : non-unicode non-newline
+  // * : All characters
+  uc16 standard_type() { return set_.standard_set_type(); }
+  ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
+  bool is_negated() { return is_negated_; }
+
+ private:
+  CharacterSet set_;
+  bool is_negated_;
+};
+
+
+class RegExpAtom final : public RegExpTree {
+ public:
+  explicit RegExpAtom(Vector<const uc16> data) : data_(data) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpAtom* AsAtom() override;
+  bool IsAtom() override;
+  bool IsTextElement() override { return true; }
+  int min_match() override { return data_.length(); }
+  int max_match() override { return data_.length(); }
+  void AppendToText(RegExpText* text, Zone* zone) override;
+  Vector<const uc16> data() { return data_; }
+  int length() { return data_.length(); }
+
+ private:
+  Vector<const uc16> data_;
+};
+
+
+class RegExpText final : public RegExpTree {
+ public:
+  explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpText* AsText() override;
+  bool IsText() override;
+  bool IsTextElement() override { return true; }
+  int min_match() override { return length_; }
+  int max_match() override { return length_; }
+  void AppendToText(RegExpText* text, Zone* zone) override;
+  void AddElement(TextElement elm, Zone* zone) {
+    elements_.Add(elm, zone);
+    length_ += elm.length();
+  }
+  ZoneList<TextElement>* elements() { return &elements_; }
+
+ private:
+  ZoneList<TextElement> elements_;
+  int length_;
+};
+
+
+class RegExpQuantifier final : public RegExpTree {
+ public:
+  enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
+  RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
+      : body_(body),
+        min_(min),
+        max_(max),
+        min_match_(min * body->min_match()),
+        quantifier_type_(type) {
+    if (max > 0 && body->max_match() > kInfinity / max) {
+      max_match_ = kInfinity;
+    } else {
+      max_match_ = max * body->max_match();
+    }
+  }
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  static RegExpNode* ToNode(int min, int max, bool is_greedy, RegExpTree* body,
+                            RegExpCompiler* compiler, RegExpNode* on_success,
+                            bool not_at_start = false);
+  RegExpQuantifier* AsQuantifier() override;
+  Interval CaptureRegisters() override;
+  bool IsQuantifier() override;
+  int min_match() override { return min_match_; }
+  int max_match() override { return max_match_; }
+  int min() { return min_; }
+  int max() { return max_; }
+  bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
+  bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
+  bool is_greedy() { return quantifier_type_ == GREEDY; }
+  RegExpTree* body() { return body_; }
+
+ private:
+  RegExpTree* body_;
+  int min_;
+  int max_;
+  int min_match_;
+  int max_match_;
+  QuantifierType quantifier_type_;
+};
+
+
+class RegExpCapture final : public RegExpTree {
+ public:
+  explicit RegExpCapture(int index) : body_(NULL), index_(index) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  static RegExpNode* ToNode(RegExpTree* body, int index,
+                            RegExpCompiler* compiler, RegExpNode* on_success);
+  RegExpCapture* AsCapture() override;
+  bool IsAnchoredAtStart() override;
+  bool IsAnchoredAtEnd() override;
+  Interval CaptureRegisters() override;
+  bool IsCapture() override;
+  int min_match() override { return body_->min_match(); }
+  int max_match() override { return body_->max_match(); }
+  RegExpTree* body() { return body_; }
+  void set_body(RegExpTree* body) { body_ = body; }
+  int index() { return index_; }
+  static int StartRegister(int index) { return index * 2; }
+  static int EndRegister(int index) { return index * 2 + 1; }
+
+ private:
+  RegExpTree* body_;
+  int index_;
+};
+
+
+class RegExpLookaround final : public RegExpTree {
+ public:
+  enum Type { LOOKAHEAD, LOOKBEHIND };
+
+  RegExpLookaround(RegExpTree* body, bool is_positive, int capture_count,
+                   int capture_from, Type type)
+      : body_(body),
+        is_positive_(is_positive),
+        capture_count_(capture_count),
+        capture_from_(capture_from),
+        type_(type) {}
+
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpLookaround* AsLookaround() override;
+  Interval CaptureRegisters() override;
+  bool IsLookaround() override;
+  bool IsAnchoredAtStart() override;
+  int min_match() override { return 0; }
+  int max_match() override { return 0; }
+  RegExpTree* body() { return body_; }
+  bool is_positive() { return is_positive_; }
+  int capture_count() { return capture_count_; }
+  int capture_from() { return capture_from_; }
+  Type type() { return type_; }
+
+ private:
+  RegExpTree* body_;
+  bool is_positive_;
+  int capture_count_;
+  int capture_from_;
+  Type type_;
+};
+
+
+class RegExpBackReference final : public RegExpTree {
+ public:
+  explicit RegExpBackReference(RegExpCapture* capture) : capture_(capture) {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpBackReference* AsBackReference() override;
+  bool IsBackReference() override;
+  int min_match() override { return 0; }
+  // The back reference may be recursive, e.g. /(\2)(\1)/. To avoid infinite
+  // recursion, we give up. Ignorance is bliss.
+  int max_match() override { return kInfinity; }
+  int index() { return capture_->index(); }
+  RegExpCapture* capture() { return capture_; }
+
+ private:
+  RegExpCapture* capture_;
+};
+
+
+class RegExpEmpty final : public RegExpTree {
+ public:
+  RegExpEmpty() {}
+  void* Accept(RegExpVisitor* visitor, void* data) override;
+  RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
+  RegExpEmpty* AsEmpty() override;
+  bool IsEmpty() override;
+  int min_match() override { return 0; }
+  int max_match() override { return 0; }
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_AST_H_
diff --git a/src/regexp/regexp-macro-assembler-irregexp-inl.h b/src/regexp/regexp-macro-assembler-irregexp-inl.h
new file mode 100644
index 0000000..4d0b1bc
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler-irregexp-inl.h
@@ -0,0 +1,62 @@
+// Copyright 2008-2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
+
+#include "src/ast/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+void RegExpMacroAssemblerIrregexp::Emit(uint32_t byte,
+                                        uint32_t twenty_four_bits) {
+  uint32_t word = ((twenty_four_bits << BYTECODE_SHIFT) | byte);
+  DCHECK(pc_ <= buffer_.length());
+  if (pc_  + 3 >= buffer_.length()) {
+    Expand();
+  }
+  *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
+  pc_ += 4;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit16(uint32_t word) {
+  DCHECK(pc_ <= buffer_.length());
+  if (pc_ + 1 >= buffer_.length()) {
+    Expand();
+  }
+  *reinterpret_cast<uint16_t*>(buffer_.start() + pc_) = word;
+  pc_ += 2;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit8(uint32_t word) {
+  DCHECK(pc_ <= buffer_.length());
+  if (pc_ == buffer_.length()) {
+    Expand();
+  }
+  *reinterpret_cast<unsigned char*>(buffer_.start() + pc_) = word;
+  pc_ += 1;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit32(uint32_t word) {
+  DCHECK(pc_ <= buffer_.length());
+  if (pc_ + 3 >= buffer_.length()) {
+    Expand();
+  }
+  *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
+  pc_ += 4;
+}
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
diff --git a/src/regexp/regexp-macro-assembler-irregexp.cc b/src/regexp/regexp-macro-assembler-irregexp.cc
new file mode 100644
index 0000000..751ee44
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler-irregexp.cc
@@ -0,0 +1,460 @@
+// Copyright 2008-2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/regexp-macro-assembler-irregexp.h"
+
+#include "src/ast/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler-irregexp-inl.h"
+
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+RegExpMacroAssemblerIrregexp::RegExpMacroAssemblerIrregexp(Isolate* isolate,
+                                                           Vector<byte> buffer,
+                                                           Zone* zone)
+    : RegExpMacroAssembler(isolate, zone),
+      buffer_(buffer),
+      pc_(0),
+      own_buffer_(false),
+      advance_current_end_(kInvalidPC),
+      isolate_(isolate) {}
+
+
+RegExpMacroAssemblerIrregexp::~RegExpMacroAssemblerIrregexp() {
+  if (backtrack_.is_linked()) backtrack_.Unuse();
+  if (own_buffer_) buffer_.Dispose();
+}
+
+
+RegExpMacroAssemblerIrregexp::IrregexpImplementation
+RegExpMacroAssemblerIrregexp::Implementation() {
+  return kBytecodeImplementation;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Bind(Label* l) {
+  advance_current_end_ = kInvalidPC;
+  DCHECK(!l->is_bound());
+  if (l->is_linked()) {
+    int pos = l->pos();
+    while (pos != 0) {
+      int fixup = pos;
+      pos = *reinterpret_cast<int32_t*>(buffer_.start() + fixup);
+      *reinterpret_cast<uint32_t*>(buffer_.start() + fixup) = pc_;
+    }
+  }
+  l->bind_to(pc_);
+}
+
+
+void RegExpMacroAssemblerIrregexp::EmitOrLink(Label* l) {
+  if (l == NULL) l = &backtrack_;
+  if (l->is_bound()) {
+    Emit32(l->pos());
+  } else {
+    int pos = 0;
+    if (l->is_linked()) {
+      pos = l->pos();
+    }
+    l->link_to(pc_);
+    Emit32(pos);
+  }
+}
+
+
+void RegExpMacroAssemblerIrregexp::PopRegister(int register_index) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_POP_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushRegister(
+    int register_index,
+    StackCheckFlag check_stack_limit) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_PUSH_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::WriteCurrentPositionToRegister(
+    int register_index, int cp_offset) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_SET_REGISTER_TO_CP, register_index);
+  Emit32(cp_offset);  // Current position offset.
+}
+
+
+void RegExpMacroAssemblerIrregexp::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    SetRegister(reg, -1);
+  }
+}
+
+
+void RegExpMacroAssemblerIrregexp::ReadCurrentPositionFromRegister(
+    int register_index) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_SET_CP_TO_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::WriteStackPointerToRegister(
+    int register_index) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_SET_REGISTER_TO_SP, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::ReadStackPointerFromRegister(
+    int register_index) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_SET_SP_TO_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::SetCurrentPositionFromEnd(int by) {
+  DCHECK(is_uint24(by));
+  Emit(BC_SET_CURRENT_POSITION_FROM_END, by);
+}
+
+
+void RegExpMacroAssemblerIrregexp::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_SET_REGISTER, register_index);
+  Emit32(to);
+}
+
+
+void RegExpMacroAssemblerIrregexp::AdvanceRegister(int register_index, int by) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_ADVANCE_REGISTER, register_index);
+  Emit32(by);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PopCurrentPosition() {
+  Emit(BC_POP_CP, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushCurrentPosition() {
+  Emit(BC_PUSH_CP, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::Backtrack() {
+  Emit(BC_POP_BT, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::GoTo(Label* l) {
+  if (advance_current_end_ == pc_) {
+    // Combine advance current and goto.
+    pc_ = advance_current_start_;
+    Emit(BC_ADVANCE_CP_AND_GOTO, advance_current_offset_);
+    EmitOrLink(l);
+    advance_current_end_ = kInvalidPC;
+  } else {
+    // Regular goto.
+    Emit(BC_GOTO, 0);
+    EmitOrLink(l);
+  }
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushBacktrack(Label* l) {
+  Emit(BC_PUSH_BT, 0);
+  EmitOrLink(l);
+}
+
+
+bool RegExpMacroAssemblerIrregexp::Succeed() {
+  Emit(BC_SUCCEED, 0);
+  return false;  // Restart matching for global regexp not supported.
+}
+
+
+void RegExpMacroAssemblerIrregexp::Fail() {
+  Emit(BC_FAIL, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::AdvanceCurrentPosition(int by) {
+  DCHECK(by >= kMinCPOffset);
+  DCHECK(by <= kMaxCPOffset);
+  advance_current_start_ = pc_;
+  advance_current_offset_ = by;
+  Emit(BC_ADVANCE_CP, by);
+  advance_current_end_ = pc_;
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckGreedyLoop(
+      Label* on_tos_equals_current_position) {
+  Emit(BC_CHECK_GREEDY, 0);
+  EmitOrLink(on_tos_equals_current_position);
+}
+
+
+void RegExpMacroAssemblerIrregexp::LoadCurrentCharacter(int cp_offset,
+                                                        Label* on_failure,
+                                                        bool check_bounds,
+                                                        int characters) {
+  DCHECK(cp_offset >= kMinCPOffset);
+  DCHECK(cp_offset <= kMaxCPOffset);
+  int bytecode;
+  if (check_bounds) {
+    if (characters == 4) {
+      bytecode = BC_LOAD_4_CURRENT_CHARS;
+    } else if (characters == 2) {
+      bytecode = BC_LOAD_2_CURRENT_CHARS;
+    } else {
+      DCHECK(characters == 1);
+      bytecode = BC_LOAD_CURRENT_CHAR;
+    }
+  } else {
+    if (characters == 4) {
+      bytecode = BC_LOAD_4_CURRENT_CHARS_UNCHECKED;
+    } else if (characters == 2) {
+      bytecode = BC_LOAD_2_CURRENT_CHARS_UNCHECKED;
+    } else {
+      DCHECK(characters == 1);
+      bytecode = BC_LOAD_CURRENT_CHAR_UNCHECKED;
+    }
+  }
+  Emit(bytecode, cp_offset);
+  if (check_bounds) EmitOrLink(on_failure);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterLT(uc16 limit,
+                                                    Label* on_less) {
+  Emit(BC_CHECK_LT, limit);
+  EmitOrLink(on_less);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterGT(uc16 limit,
+                                                    Label* on_greater) {
+  Emit(BC_CHECK_GT, limit);
+  EmitOrLink(on_greater);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacter(uint32_t c, Label* on_equal) {
+  if (c > MAX_FIRST_ARG) {
+    Emit(BC_CHECK_4_CHARS, 0);
+    Emit32(c);
+  } else {
+    Emit(BC_CHECK_CHAR, c);
+  }
+  EmitOrLink(on_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckAtStart(Label* on_at_start) {
+  Emit(BC_CHECK_AT_START, 0);
+  EmitOrLink(on_at_start);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotAtStart(int cp_offset,
+                                                   Label* on_not_at_start) {
+  Emit(BC_CHECK_NOT_AT_START, cp_offset);
+  EmitOrLink(on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacter(uint32_t c,
+                                                     Label* on_not_equal) {
+  if (c > MAX_FIRST_ARG) {
+    Emit(BC_CHECK_NOT_4_CHARS, 0);
+    Emit32(c);
+  } else {
+    Emit(BC_CHECK_NOT_CHAR, c);
+  }
+  EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterAfterAnd(
+    uint32_t c,
+    uint32_t mask,
+    Label* on_equal) {
+  if (c > MAX_FIRST_ARG) {
+    Emit(BC_AND_CHECK_4_CHARS, 0);
+    Emit32(c);
+  } else {
+    Emit(BC_AND_CHECK_CHAR, c);
+  }
+  Emit32(mask);
+  EmitOrLink(on_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterAnd(
+    uint32_t c,
+    uint32_t mask,
+    Label* on_not_equal) {
+  if (c > MAX_FIRST_ARG) {
+    Emit(BC_AND_CHECK_NOT_4_CHARS, 0);
+    Emit32(c);
+  } else {
+    Emit(BC_AND_CHECK_NOT_CHAR, c);
+  }
+  Emit32(mask);
+  EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c);
+  Emit16(minus);
+  Emit16(mask);
+  EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  Emit(BC_CHECK_CHAR_IN_RANGE, 0);
+  Emit16(from);
+  Emit16(to);
+  EmitOrLink(on_in_range);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0);
+  Emit16(from);
+  Emit16(to);
+  EmitOrLink(on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckBitInTable(
+    Handle<ByteArray> table, Label* on_bit_set) {
+  Emit(BC_CHECK_BIT_IN_TABLE, 0);
+  EmitOrLink(on_bit_set);
+  for (int i = 0; i < kTableSize; i += kBitsPerByte) {
+    int byte = 0;
+    for (int j = 0; j < kBitsPerByte; j++) {
+      if (table->get(i + j) != 0) byte |= 1 << j;
+    }
+    Emit8(byte);
+  }
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotBackReference(int start_reg,
+                                                         bool read_backward,
+                                                         Label* on_not_equal) {
+  DCHECK(start_reg >= 0);
+  DCHECK(start_reg <= kMaxRegister);
+  Emit(read_backward ? BC_CHECK_NOT_BACK_REF_BACKWARD : BC_CHECK_NOT_BACK_REF,
+       start_reg);
+  EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_not_equal) {
+  DCHECK(start_reg >= 0);
+  DCHECK(start_reg <= kMaxRegister);
+  Emit(read_backward ? BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD
+                     : BC_CHECK_NOT_BACK_REF_NO_CASE,
+       start_reg);
+  EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterLT(int register_index,
+                                                int comparand,
+                                                Label* on_less_than) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_CHECK_REGISTER_LT, register_index);
+  Emit32(comparand);
+  EmitOrLink(on_less_than);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterGE(int register_index,
+                                                int comparand,
+                                                Label* on_greater_or_equal) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_CHECK_REGISTER_GE, register_index);
+  Emit32(comparand);
+  EmitOrLink(on_greater_or_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterEqPos(int register_index,
+                                                   Label* on_eq) {
+  DCHECK(register_index >= 0);
+  DCHECK(register_index <= kMaxRegister);
+  Emit(BC_CHECK_REGISTER_EQ_POS, register_index);
+  EmitOrLink(on_eq);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerIrregexp::GetCode(
+    Handle<String> source) {
+  Bind(&backtrack_);
+  Emit(BC_POP_BT, 0);
+  Handle<ByteArray> array = isolate_->factory()->NewByteArray(length());
+  Copy(array->GetDataStartAddress());
+  return array;
+}
+
+
+int RegExpMacroAssemblerIrregexp::length() {
+  return pc_;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Copy(Address a) {
+  MemCopy(a, buffer_.start(), length());
+}
+
+
+void RegExpMacroAssemblerIrregexp::Expand() {
+  bool old_buffer_was_our_own = own_buffer_;
+  Vector<byte> old_buffer = buffer_;
+  buffer_ = Vector<byte>::New(old_buffer.length() * 2);
+  own_buffer_ = true;
+  MemCopy(buffer_.start(), old_buffer.start(), old_buffer.length());
+  if (old_buffer_was_our_own) {
+    old_buffer.Dispose();
+  }
+}
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-macro-assembler-irregexp.h b/src/regexp/regexp-macro-assembler-irregexp.h
new file mode 100644
index 0000000..f1ace63
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler-irregexp.h
@@ -0,0 +1,133 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
+
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+// A light-weight assembler for the Irregexp byte code.
+class RegExpMacroAssemblerIrregexp: public RegExpMacroAssembler {
+ public:
+  // Create an assembler. Instructions and relocation information are emitted
+  // into a buffer, with the instructions starting from the beginning and the
+  // relocation information starting from the end of the buffer. See CodeDesc
+  // for a detailed comment on the layout (globals.h).
+  //
+  // If the provided buffer is NULL, the assembler allocates and grows its own
+  // buffer, and buffer_size determines the initial buffer size. The buffer is
+  // owned by the assembler and deallocated upon destruction of the assembler.
+  //
+  // If the provided buffer is not NULL, the assembler uses the provided buffer
+  // for code generation and assumes its size to be buffer_size. If the buffer
+  // is too small, a fatal error occurs. No deallocation of the buffer is done
+  // upon destruction of the assembler.
+  RegExpMacroAssemblerIrregexp(Isolate* isolate, Vector<byte> buffer,
+                               Zone* zone);
+  virtual ~RegExpMacroAssemblerIrregexp();
+  // The byte-code interpreter checks on each push anyway.
+  virtual int stack_limit_slack() { return 1; }
+  virtual bool CanReadUnaligned() { return false; }
+  virtual void Bind(Label* label);
+  virtual void AdvanceCurrentPosition(int by);  // Signed cp change.
+  virtual void PopCurrentPosition();
+  virtual void PushCurrentPosition();
+  virtual void Backtrack();
+  virtual void GoTo(Label* label);
+  virtual void PushBacktrack(Label* label);
+  virtual bool Succeed();
+  virtual void Fail();
+  virtual void PopRegister(int register_index);
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void AdvanceRegister(int reg, int by);  // r[reg] += by.
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void WriteStackPointerToRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void CheckCharacter(unsigned c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(unsigned c,
+                                      unsigned mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(unsigned c,
+                                         unsigned mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void IfRegisterLT(int register_index, int comparand, Label* if_lt);
+  virtual void IfRegisterGE(int register_index, int comparand, Label* if_ge);
+  virtual void IfRegisterEqPos(int register_index, Label* if_eq);
+
+  virtual IrregexpImplementation Implementation();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+
+ private:
+  void Expand();
+  // Code and bitmap emission.
+  inline void EmitOrLink(Label* label);
+  inline void Emit32(uint32_t x);
+  inline void Emit16(uint32_t x);
+  inline void Emit8(uint32_t x);
+  inline void Emit(uint32_t bc, uint32_t arg);
+  // Bytecode buffer.
+  int length();
+  void Copy(Address a);
+
+  // The buffer into which code and relocation info are generated.
+  Vector<byte> buffer_;
+  // The program counter.
+  int pc_;
+  // True if the assembler owns the buffer, false if buffer is external.
+  bool own_buffer_;
+  Label backtrack_;
+
+  int advance_current_start_;
+  int advance_current_offset_;
+  int advance_current_end_;
+
+  Isolate* isolate_;
+
+  static const int kInvalidPC = -1;
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpMacroAssemblerIrregexp);
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
diff --git a/src/regexp/regexp-macro-assembler-tracer.cc b/src/regexp/regexp-macro-assembler-tracer.cc
new file mode 100644
index 0000000..5301ead
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler-tracer.cc
@@ -0,0 +1,429 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/regexp-macro-assembler-tracer.h"
+
+#include "src/ast/ast.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpMacroAssemblerTracer::RegExpMacroAssemblerTracer(
+    Isolate* isolate, RegExpMacroAssembler* assembler)
+    : RegExpMacroAssembler(isolate, assembler->zone()), assembler_(assembler) {
+  unsigned int type = assembler->Implementation();
+  DCHECK(type < 8);
+  const char* impl_names[] = {"IA32", "ARM", "ARM64", "MIPS",
+                              "PPC",  "X64", "X87",   "Bytecode"};
+  PrintF("RegExpMacroAssembler%s();\n", impl_names[type]);
+}
+
+
+RegExpMacroAssemblerTracer::~RegExpMacroAssemblerTracer() {
+}
+
+
+void RegExpMacroAssemblerTracer::AbortedCodeGeneration() {
+  PrintF(" AbortedCodeGeneration\n");
+  assembler_->AbortedCodeGeneration();
+}
+
+
+// This is used for printing out debugging information.  It makes an integer
+// that is closely related to the address of an object.
+static int LabelToInt(Label* label) {
+  return static_cast<int>(reinterpret_cast<intptr_t>(label));
+}
+
+
+void RegExpMacroAssemblerTracer::Bind(Label* label) {
+  PrintF("label[%08x]: (Bind)\n", LabelToInt(label));
+  assembler_->Bind(label);
+}
+
+
+void RegExpMacroAssemblerTracer::AdvanceCurrentPosition(int by) {
+  PrintF(" AdvanceCurrentPosition(by=%d);\n", by);
+  assembler_->AdvanceCurrentPosition(by);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckGreedyLoop(Label* label) {
+  PrintF(" CheckGreedyLoop(label[%08x]);\n\n", LabelToInt(label));
+  assembler_->CheckGreedyLoop(label);
+}
+
+
+void RegExpMacroAssemblerTracer::PopCurrentPosition() {
+  PrintF(" PopCurrentPosition();\n");
+  assembler_->PopCurrentPosition();
+}
+
+
+void RegExpMacroAssemblerTracer::PushCurrentPosition() {
+  PrintF(" PushCurrentPosition();\n");
+  assembler_->PushCurrentPosition();
+}
+
+
+void RegExpMacroAssemblerTracer::Backtrack() {
+  PrintF(" Backtrack();\n");
+  assembler_->Backtrack();
+}
+
+
+void RegExpMacroAssemblerTracer::GoTo(Label* label) {
+  PrintF(" GoTo(label[%08x]);\n\n", LabelToInt(label));
+  assembler_->GoTo(label);
+}
+
+
+void RegExpMacroAssemblerTracer::PushBacktrack(Label* label) {
+  PrintF(" PushBacktrack(label[%08x]);\n", LabelToInt(label));
+  assembler_->PushBacktrack(label);
+}
+
+
+bool RegExpMacroAssemblerTracer::Succeed() {
+  bool restart = assembler_->Succeed();
+  PrintF(" Succeed();%s\n", restart ? " [restart for global match]" : "");
+  return restart;
+}
+
+
+void RegExpMacroAssemblerTracer::Fail() {
+  PrintF(" Fail();");
+  assembler_->Fail();
+}
+
+
+void RegExpMacroAssemblerTracer::PopRegister(int register_index) {
+  PrintF(" PopRegister(register=%d);\n", register_index);
+  assembler_->PopRegister(register_index);
+}
+
+
+void RegExpMacroAssemblerTracer::PushRegister(
+    int register_index,
+    StackCheckFlag check_stack_limit) {
+  PrintF(" PushRegister(register=%d, %s);\n",
+         register_index,
+         check_stack_limit ? "check stack limit" : "");
+  assembler_->PushRegister(register_index, check_stack_limit);
+}
+
+
+void RegExpMacroAssemblerTracer::AdvanceRegister(int reg, int by) {
+  PrintF(" AdvanceRegister(register=%d, by=%d);\n", reg, by);
+  assembler_->AdvanceRegister(reg, by);
+}
+
+
+void RegExpMacroAssemblerTracer::SetCurrentPositionFromEnd(int by) {
+  PrintF(" SetCurrentPositionFromEnd(by=%d);\n", by);
+  assembler_->SetCurrentPositionFromEnd(by);
+}
+
+
+void RegExpMacroAssemblerTracer::SetRegister(int register_index, int to) {
+  PrintF(" SetRegister(register=%d, to=%d);\n", register_index, to);
+  assembler_->SetRegister(register_index, to);
+}
+
+
+void RegExpMacroAssemblerTracer::WriteCurrentPositionToRegister(int reg,
+                                                                int cp_offset) {
+  PrintF(" WriteCurrentPositionToRegister(register=%d,cp_offset=%d);\n",
+         reg,
+         cp_offset);
+  assembler_->WriteCurrentPositionToRegister(reg, cp_offset);
+}
+
+
+void RegExpMacroAssemblerTracer::ClearRegisters(int reg_from, int reg_to) {
+  PrintF(" ClearRegister(from=%d, to=%d);\n", reg_from, reg_to);
+  assembler_->ClearRegisters(reg_from, reg_to);
+}
+
+
+void RegExpMacroAssemblerTracer::ReadCurrentPositionFromRegister(int reg) {
+  PrintF(" ReadCurrentPositionFromRegister(register=%d);\n", reg);
+  assembler_->ReadCurrentPositionFromRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::WriteStackPointerToRegister(int reg) {
+  PrintF(" WriteStackPointerToRegister(register=%d);\n", reg);
+  assembler_->WriteStackPointerToRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::ReadStackPointerFromRegister(int reg) {
+  PrintF(" ReadStackPointerFromRegister(register=%d);\n", reg);
+  assembler_->ReadStackPointerFromRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::LoadCurrentCharacter(int cp_offset,
+                                                      Label* on_end_of_input,
+                                                      bool check_bounds,
+                                                      int characters) {
+  const char* check_msg = check_bounds ? "" : " (unchecked)";
+  PrintF(" LoadCurrentCharacter(cp_offset=%d, label[%08x]%s (%d chars));\n",
+         cp_offset,
+         LabelToInt(on_end_of_input),
+         check_msg,
+         characters);
+  assembler_->LoadCurrentCharacter(cp_offset,
+                                   on_end_of_input,
+                                   check_bounds,
+                                   characters);
+}
+
+
+class PrintablePrinter {
+ public:
+  explicit PrintablePrinter(uc16 character) : character_(character) { }
+
+  const char* operator*() {
+    if (character_ >= ' ' && character_ <= '~') {
+      buffer_[0] = '(';
+      buffer_[1] = static_cast<char>(character_);
+      buffer_[2] = ')';
+      buffer_[3] = '\0';
+    } else {
+      buffer_[0] = '\0';
+    }
+    return &buffer_[0];
+  }
+
+ private:
+  uc16 character_;
+  char buffer_[4];
+};
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterLT(uc16 limit, Label* on_less) {
+  PrintablePrinter printable(limit);
+  PrintF(" CheckCharacterLT(c=0x%04x%s, label[%08x]);\n",
+         limit,
+         *printable,
+         LabelToInt(on_less));
+  assembler_->CheckCharacterLT(limit, on_less);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterGT(uc16 limit,
+                                                  Label* on_greater) {
+  PrintablePrinter printable(limit);
+  PrintF(" CheckCharacterGT(c=0x%04x%s, label[%08x]);\n",
+         limit,
+         *printable,
+         LabelToInt(on_greater));
+  assembler_->CheckCharacterGT(limit, on_greater);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacter(unsigned c, Label* on_equal) {
+  PrintablePrinter printable(c);
+  PrintF(" CheckCharacter(c=0x%04x%s, label[%08x]);\n",
+         c,
+         *printable,
+         LabelToInt(on_equal));
+  assembler_->CheckCharacter(c, on_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckAtStart(Label* on_at_start) {
+  PrintF(" CheckAtStart(label[%08x]);\n", LabelToInt(on_at_start));
+  assembler_->CheckAtStart(on_at_start);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotAtStart(int cp_offset,
+                                                 Label* on_not_at_start) {
+  PrintF(" CheckNotAtStart(cp_offset=%d, label[%08x]);\n", cp_offset,
+         LabelToInt(on_not_at_start));
+  assembler_->CheckNotAtStart(cp_offset, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacter(unsigned c,
+                                                   Label* on_not_equal) {
+  PrintablePrinter printable(c);
+  PrintF(" CheckNotCharacter(c=0x%04x%s, label[%08x]);\n",
+         c,
+         *printable,
+         LabelToInt(on_not_equal));
+  assembler_->CheckNotCharacter(c, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterAfterAnd(
+    unsigned c,
+    unsigned mask,
+    Label* on_equal) {
+  PrintablePrinter printable(c);
+  PrintF(" CheckCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
+         c,
+         *printable,
+         mask,
+         LabelToInt(on_equal));
+  assembler_->CheckCharacterAfterAnd(c, mask, on_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacterAfterAnd(
+    unsigned c,
+    unsigned mask,
+    Label* on_not_equal) {
+  PrintablePrinter printable(c);
+  PrintF(" CheckNotCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
+         c,
+         *printable,
+         mask,
+         LabelToInt(on_not_equal));
+  assembler_->CheckNotCharacterAfterAnd(c, mask, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  PrintF(" CheckNotCharacterAfterMinusAnd(c=0x%04x, minus=%04x, mask=0x%04x, "
+             "label[%08x]);\n",
+         c,
+         minus,
+         mask,
+         LabelToInt(on_not_equal));
+  assembler_->CheckNotCharacterAfterMinusAnd(c, minus, mask, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  PrintablePrinter printable_from(from);
+  PrintablePrinter printable_to(to);
+  PrintF(" CheckCharacterInRange(from=0x%04x%s, to=0x%04x%s, label[%08x]);\n",
+         from,
+         *printable_from,
+         to,
+         *printable_to,
+         LabelToInt(on_not_in_range));
+  assembler_->CheckCharacterInRange(from, to, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  PrintablePrinter printable_from(from);
+  PrintablePrinter printable_to(to);
+  PrintF(
+      " CheckCharacterNotInRange(from=0x%04x%s," " to=%04x%s, label[%08x]);\n",
+      from,
+      *printable_from,
+      to,
+      *printable_to,
+      LabelToInt(on_in_range));
+  assembler_->CheckCharacterNotInRange(from, to, on_in_range);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckBitInTable(
+    Handle<ByteArray> table, Label* on_bit_set) {
+  PrintF(" CheckBitInTable(label[%08x] ", LabelToInt(on_bit_set));
+  for (int i = 0; i < kTableSize; i++) {
+    PrintF("%c", table->get(i) != 0 ? 'X' : '.');
+    if (i % 32 == 31 && i != kTableMask) {
+      PrintF("\n                                 ");
+    }
+  }
+  PrintF(");\n");
+  assembler_->CheckBitInTable(table, on_bit_set);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotBackReference(int start_reg,
+                                                       bool read_backward,
+                                                       Label* on_no_match) {
+  PrintF(" CheckNotBackReference(register=%d, %s, label[%08x]);\n", start_reg,
+         read_backward ? "backward" : "forward", LabelToInt(on_no_match));
+  assembler_->CheckNotBackReference(start_reg, read_backward, on_no_match);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  PrintF(" CheckNotBackReferenceIgnoreCase(register=%d, %s, label[%08x]);\n",
+         start_reg, read_backward ? "backward" : "forward",
+         LabelToInt(on_no_match));
+  assembler_->CheckNotBackReferenceIgnoreCase(start_reg, read_backward,
+                                              on_no_match);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckPosition(int cp_offset,
+                                               Label* on_outside_input) {
+  PrintF(" CheckPosition(cp_offset=%d, label[%08x]);\n", cp_offset,
+         LabelToInt(on_outside_input));
+  assembler_->CheckPosition(cp_offset, on_outside_input);
+}
+
+
+bool RegExpMacroAssemblerTracer::CheckSpecialCharacterClass(
+    uc16 type,
+    Label* on_no_match) {
+  bool supported = assembler_->CheckSpecialCharacterClass(type,
+                                                          on_no_match);
+  PrintF(" CheckSpecialCharacterClass(type='%c', label[%08x]): %s;\n",
+         type,
+         LabelToInt(on_no_match),
+         supported ? "true" : "false");
+  return supported;
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterLT(int register_index,
+                                              int comparand, Label* if_lt) {
+  PrintF(" IfRegisterLT(register=%d, number=%d, label[%08x]);\n",
+         register_index, comparand, LabelToInt(if_lt));
+  assembler_->IfRegisterLT(register_index, comparand, if_lt);
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterEqPos(int register_index,
+                                                 Label* if_eq) {
+  PrintF(" IfRegisterEqPos(register=%d, label[%08x]);\n",
+         register_index, LabelToInt(if_eq));
+  assembler_->IfRegisterEqPos(register_index, if_eq);
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterGE(int register_index,
+                                              int comparand, Label* if_ge) {
+  PrintF(" IfRegisterGE(register=%d, number=%d, label[%08x]);\n",
+         register_index, comparand, LabelToInt(if_ge));
+  assembler_->IfRegisterGE(register_index, comparand, if_ge);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerTracer::Implementation() {
+  return assembler_->Implementation();
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerTracer::GetCode(Handle<String> source) {
+  PrintF(" GetCode(%s);\n", source->ToCString().get());
+  return assembler_->GetCode(source);
+}
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-macro-assembler-tracer.h b/src/regexp/regexp-macro-assembler-tracer.h
new file mode 100644
index 0000000..77377aa
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler-tracer.h
@@ -0,0 +1,90 @@
+// Copyright 2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
+
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+// Decorator on a RegExpMacroAssembler that write all calls.
+class RegExpMacroAssemblerTracer: public RegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerTracer(Isolate* isolate, RegExpMacroAssembler* assembler);
+  virtual ~RegExpMacroAssemblerTracer();
+  virtual void AbortedCodeGeneration();
+  virtual int stack_limit_slack() { return assembler_->stack_limit_slack(); }
+  virtual bool CanReadUnaligned() { return assembler_->CanReadUnaligned(); }
+  virtual void AdvanceCurrentPosition(int by);  // Signed cp change.
+  virtual void AdvanceRegister(int reg, int by);  // r[reg] += by.
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(unsigned c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(unsigned c,
+                                      unsigned and_with,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(unsigned c,
+                                         unsigned and_with,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 and_with,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+
+ private:
+  RegExpMacroAssembler* assembler_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
diff --git a/src/regexp/regexp-macro-assembler.cc b/src/regexp/regexp-macro-assembler.cc
new file mode 100644
index 0000000..caf8b51
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler.cc
@@ -0,0 +1,303 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/regexp-macro-assembler.h"
+
+#include "src/assembler.h"
+#include "src/isolate-inl.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/simulator.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone)
+    : slow_safe_compiler_(false),
+      global_mode_(NOT_GLOBAL),
+      isolate_(isolate),
+      zone_(zone) {}
+
+
+RegExpMacroAssembler::~RegExpMacroAssembler() {
+}
+
+
+#ifndef V8_INTERPRETED_REGEXP  // Avoid unused code, e.g., on ARM.
+
+NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate,
+                                                       Zone* zone)
+    : RegExpMacroAssembler(isolate, zone) {}
+
+
+NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() {
+}
+
+
+bool NativeRegExpMacroAssembler::CanReadUnaligned() {
+  return FLAG_enable_unaligned_accesses && !slow_safe();
+}
+
+const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
+    String* subject,
+    int start_index) {
+  if (subject->IsConsString()) {
+    subject = ConsString::cast(subject)->first();
+  } else if (subject->IsSlicedString()) {
+    start_index += SlicedString::cast(subject)->offset();
+    subject = SlicedString::cast(subject)->parent();
+  }
+  DCHECK(start_index >= 0);
+  DCHECK(start_index <= subject->length());
+  if (subject->IsSeqOneByteString()) {
+    return reinterpret_cast<const byte*>(
+        SeqOneByteString::cast(subject)->GetChars() + start_index);
+  } else if (subject->IsSeqTwoByteString()) {
+    return reinterpret_cast<const byte*>(
+        SeqTwoByteString::cast(subject)->GetChars() + start_index);
+  } else if (subject->IsExternalOneByteString()) {
+    return reinterpret_cast<const byte*>(
+        ExternalOneByteString::cast(subject)->GetChars() + start_index);
+  } else {
+    return reinterpret_cast<const byte*>(
+        ExternalTwoByteString::cast(subject)->GetChars() + start_index);
+  }
+}
+
+
+int NativeRegExpMacroAssembler::CheckStackGuardState(
+    Isolate* isolate, int start_index, bool is_direct_call,
+    Address* return_address, Code* re_code, String** subject,
+    const byte** input_start, const byte** input_end) {
+  DCHECK(re_code->instruction_start() <= *return_address);
+  DCHECK(*return_address <= re_code->instruction_end());
+  int return_value = 0;
+  // Prepare for possible GC.
+  HandleScope handles(isolate);
+  Handle<Code> code_handle(re_code);
+  Handle<String> subject_handle(*subject);
+  bool is_one_byte = subject_handle->IsOneByteRepresentationUnderneath();
+
+  StackLimitCheck check(isolate);
+  if (check.JsHasOverflowed()) {
+    isolate->StackOverflow();
+    return_value = EXCEPTION;
+  } else if (is_direct_call) {
+    // If not real stack overflow the stack guard was used to interrupt
+    // execution for another purpose.  If this is a direct call from JavaScript
+    // retry the RegExp forcing the call through the runtime system.
+    // Currently the direct call cannot handle a GC.
+    return_value = RETRY;
+  } else {
+    Object* result = isolate->stack_guard()->HandleInterrupts();
+    if (result->IsException()) return_value = EXCEPTION;
+  }
+
+  DisallowHeapAllocation no_gc;
+
+  if (*code_handle != re_code) {  // Return address no longer valid
+    intptr_t delta = code_handle->address() - re_code->address();
+    // Overwrite the return address on the stack.
+    *return_address += delta;
+  }
+
+  // If we continue, we need to update the subject string addresses.
+  if (return_value == 0) {
+    // String encoding might have changed.
+    if (subject_handle->IsOneByteRepresentationUnderneath() != is_one_byte) {
+      // If we changed between an LATIN1 and an UC16 string, the specialized
+      // code cannot be used, and we need to restart regexp matching from
+      // scratch (including, potentially, compiling a new version of the code).
+      return_value = RETRY;
+    } else {
+      *subject = *subject_handle;
+      intptr_t byte_length = *input_end - *input_start;
+      *input_start = StringCharacterPosition(*subject, start_index);
+      *input_end = *input_start + byte_length;
+    }
+  }
+  return return_value;
+}
+
+
+NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match(
+    Handle<Code> regexp_code,
+    Handle<String> subject,
+    int* offsets_vector,
+    int offsets_vector_length,
+    int previous_index,
+    Isolate* isolate) {
+
+  DCHECK(subject->IsFlat());
+  DCHECK(previous_index >= 0);
+  DCHECK(previous_index <= subject->length());
+
+  // No allocations before calling the regexp, but we can't use
+  // DisallowHeapAllocation, since regexps might be preempted, and another
+  // thread might do allocation anyway.
+
+  String* subject_ptr = *subject;
+  // Character offsets into string.
+  int start_offset = previous_index;
+  int char_length = subject_ptr->length() - start_offset;
+  int slice_offset = 0;
+
+  // The string has been flattened, so if it is a cons string it contains the
+  // full string in the first part.
+  if (StringShape(subject_ptr).IsCons()) {
+    DCHECK_EQ(0, ConsString::cast(subject_ptr)->second()->length());
+    subject_ptr = ConsString::cast(subject_ptr)->first();
+  } else if (StringShape(subject_ptr).IsSliced()) {
+    SlicedString* slice = SlicedString::cast(subject_ptr);
+    subject_ptr = slice->parent();
+    slice_offset = slice->offset();
+  }
+  // Ensure that an underlying string has the same representation.
+  bool is_one_byte = subject_ptr->IsOneByteRepresentation();
+  DCHECK(subject_ptr->IsExternalString() || subject_ptr->IsSeqString());
+  // String is now either Sequential or External
+  int char_size_shift = is_one_byte ? 0 : 1;
+
+  const byte* input_start =
+      StringCharacterPosition(subject_ptr, start_offset + slice_offset);
+  int byte_length = char_length << char_size_shift;
+  const byte* input_end = input_start + byte_length;
+  Result res = Execute(*regexp_code,
+                       *subject,
+                       start_offset,
+                       input_start,
+                       input_end,
+                       offsets_vector,
+                       offsets_vector_length,
+                       isolate);
+  return res;
+}
+
+
+NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute(
+    Code* code,
+    String* input,  // This needs to be the unpacked (sliced, cons) string.
+    int start_offset,
+    const byte* input_start,
+    const byte* input_end,
+    int* output,
+    int output_size,
+    Isolate* isolate) {
+  // Ensure that the minimum stack has been allocated.
+  RegExpStackScope stack_scope(isolate);
+  Address stack_base = stack_scope.stack()->stack_base();
+
+  int direct_call = 0;
+  int result = CALL_GENERATED_REGEXP_CODE(
+      isolate, code->entry(), input, start_offset, input_start, input_end,
+      output, output_size, stack_base, direct_call, isolate);
+  DCHECK(result >= RETRY);
+
+  if (result == EXCEPTION && !isolate->has_pending_exception()) {
+    // We detected a stack overflow (on the backtrack stack) in RegExp code,
+    // but haven't created the exception yet.
+    isolate->StackOverflow();
+  }
+  return static_cast<Result>(result);
+}
+
+
+const byte NativeRegExpMacroAssembler::word_character_map[] = {
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // '0' - '7'
+    0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // '8' - '9'
+
+    0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'A' - 'G'
+    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'H' - 'O'
+    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'P' - 'W'
+    0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu,  // 'X' - 'Z', '_'
+
+    0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'a' - 'g'
+    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'h' - 'o'
+    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'p' - 'w'
+    0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // 'x' - 'z'
+    // Latin-1 range
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+};
+
+
+int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16(
+    Address byte_offset1,
+    Address byte_offset2,
+    size_t byte_length,
+    Isolate* isolate) {
+  unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+      isolate->regexp_macro_assembler_canonicalize();
+  // This function is not allowed to cause a garbage collection.
+  // A GC might move the calling generated code and invalidate the
+  // return address on the stack.
+  DCHECK(byte_length % 2 == 0);
+  uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1);
+  uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2);
+  size_t length = byte_length >> 1;
+
+  for (size_t i = 0; i < length; i++) {
+    unibrow::uchar c1 = substring1[i];
+    unibrow::uchar c2 = substring2[i];
+    if (c1 != c2) {
+      unibrow::uchar s1[1] = { c1 };
+      canonicalize->get(c1, '\0', s1);
+      if (s1[0] != c2) {
+        unibrow::uchar s2[1] = { c2 };
+        canonicalize->get(c2, '\0', s2);
+        if (s1[0] != s2[0]) {
+          return 0;
+        }
+      }
+    }
+  }
+  return 1;
+}
+
+
+Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer,
+                                              Address* stack_base,
+                                              Isolate* isolate) {
+  RegExpStack* regexp_stack = isolate->regexp_stack();
+  size_t size = regexp_stack->stack_capacity();
+  Address old_stack_base = regexp_stack->stack_base();
+  DCHECK(old_stack_base == *stack_base);
+  DCHECK(stack_pointer <= old_stack_base);
+  DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size);
+  Address new_stack_base = regexp_stack->EnsureCapacity(size * 2);
+  if (new_stack_base == NULL) {
+    return NULL;
+  }
+  *stack_base = new_stack_base;
+  intptr_t stack_content_size = old_stack_base - stack_pointer;
+  return new_stack_base - stack_content_size;
+}
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-macro-assembler.h b/src/regexp/regexp-macro-assembler.h
new file mode 100644
index 0000000..2059933
--- /dev/null
+++ b/src/regexp/regexp-macro-assembler.h
@@ -0,0 +1,249 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
+
+#include "src/assembler.h"
+#include "src/regexp/regexp-ast.h"
+
+namespace v8 {
+namespace internal {
+
+struct DisjunctDecisionRow {
+  RegExpCharacterClass cc;
+  Label* on_match;
+};
+
+
+class RegExpMacroAssembler {
+ public:
+  // The implementation must be able to handle at least:
+  static const int kMaxRegister = (1 << 16) - 1;
+  static const int kMaxCPOffset = (1 << 15) - 1;
+  static const int kMinCPOffset = -(1 << 15);
+
+  static const int kTableSizeBits = 7;
+  static const int kTableSize = 1 << kTableSizeBits;
+  static const int kTableMask = kTableSize - 1;
+
+  enum IrregexpImplementation {
+    kIA32Implementation,
+    kARMImplementation,
+    kARM64Implementation,
+    kMIPSImplementation,
+    kPPCImplementation,
+    kX64Implementation,
+    kX87Implementation,
+    kBytecodeImplementation
+  };
+
+  enum StackCheckFlag {
+    kNoStackLimitCheck = false,
+    kCheckStackLimit = true
+  };
+
+  RegExpMacroAssembler(Isolate* isolate, Zone* zone);
+  virtual ~RegExpMacroAssembler();
+  // This function is called when code generation is aborted, so that
+  // the assembler could clean up internal data structures.
+  virtual void AbortedCodeGeneration() {}
+  // The maximal number of pushes between stack checks. Users must supply
+  // kCheckStackLimit flag to push operations (instead of kNoStackLimitCheck)
+  // at least once for every stack_limit() pushes that are executed.
+  virtual int stack_limit_slack() = 0;
+  virtual bool CanReadUnaligned() = 0;
+  virtual void AdvanceCurrentPosition(int by) = 0;  // Signed cp change.
+  virtual void AdvanceRegister(int reg, int by) = 0;  // r[reg] += by.
+  // Continues execution from the position pushed on the top of the backtrack
+  // stack by an earlier PushBacktrack(Label*).
+  virtual void Backtrack() = 0;
+  virtual void Bind(Label* label) = 0;
+  virtual void CheckAtStart(Label* on_at_start) = 0;
+  // Dispatch after looking the current character up in a 2-bits-per-entry
+  // map.  The destinations vector has up to 4 labels.
+  virtual void CheckCharacter(unsigned c, Label* on_equal) = 0;
+  // Bitwise and the current character with the given constant and then
+  // check for a match with c.
+  virtual void CheckCharacterAfterAnd(unsigned c,
+                                      unsigned and_with,
+                                      Label* on_equal) = 0;
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater) = 0;
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less) = 0;
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position) = 0;
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start) = 0;
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match) = 0;
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match) = 0;
+  // Check the current character for a match with a literal character.  If we
+  // fail to match then goto the on_failure label.  End of input always
+  // matches.  If the label is NULL then we should pop a backtrack address off
+  // the stack and go to that.
+  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal) = 0;
+  virtual void CheckNotCharacterAfterAnd(unsigned c,
+                                         unsigned and_with,
+                                         Label* on_not_equal) = 0;
+  // Subtract a constant from the current character, then and with the given
+  // constant and then check for a match with c.
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 and_with,
+                                              Label* on_not_equal) = 0;
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,  // Both inclusive.
+                                     Label* on_in_range) = 0;
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,  // Both inclusive.
+                                        Label* on_not_in_range) = 0;
+
+  // The current character (modulus the kTableSize) is looked up in the byte
+  // array, and if the found byte is non-zero, we jump to the on_bit_set label.
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) = 0;
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.  May overwrite the current character.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input) = 0;
+  // Check whether a standard/default character class matches the current
+  // character. Returns false if the type of special character class does
+  // not have custom support.
+  // May clobber the current loaded character.
+  virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match) = 0;
+  virtual void Fail() = 0;
+  virtual Handle<HeapObject> GetCode(Handle<String> source) = 0;
+  virtual void GoTo(Label* label) = 0;
+  // Check whether a register is >= a given constant and go to a label if it
+  // is.  Backtracks instead if the label is NULL.
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge) = 0;
+  // Check whether a register is < a given constant and go to a label if it is.
+  // Backtracks instead if the label is NULL.
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt) = 0;
+  // Check whether a register is == to the current position and go to a
+  // label if it is.
+  virtual void IfRegisterEqPos(int reg, Label* if_eq) = 0;
+  virtual IrregexpImplementation Implementation() = 0;
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1) = 0;
+  virtual void PopCurrentPosition() = 0;
+  virtual void PopRegister(int register_index) = 0;
+  // Pushes the label on the backtrack stack, so that a following Backtrack
+  // will go to this label. Always checks the backtrack stack limit.
+  virtual void PushBacktrack(Label* label) = 0;
+  virtual void PushCurrentPosition() = 0;
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit) = 0;
+  virtual void ReadCurrentPositionFromRegister(int reg) = 0;
+  virtual void ReadStackPointerFromRegister(int reg) = 0;
+  virtual void SetCurrentPositionFromEnd(int by) = 0;
+  virtual void SetRegister(int register_index, int to) = 0;
+  // Return whether the matching (with a global regexp) will be restarted.
+  virtual bool Succeed() = 0;
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset) = 0;
+  virtual void ClearRegisters(int reg_from, int reg_to) = 0;
+  virtual void WriteStackPointerToRegister(int reg) = 0;
+
+  // Controls the generation of large inlined constants in the code.
+  void set_slow_safe(bool ssc) { slow_safe_compiler_ = ssc; }
+  bool slow_safe() { return slow_safe_compiler_; }
+
+  enum GlobalMode { NOT_GLOBAL, GLOBAL, GLOBAL_NO_ZERO_LENGTH_CHECK };
+  // Set whether the regular expression has the global flag.  Exiting due to
+  // a failure in a global regexp may still mean success overall.
+  inline void set_global_mode(GlobalMode mode) { global_mode_ = mode; }
+  inline bool global() { return global_mode_ != NOT_GLOBAL; }
+  inline bool global_with_zero_length_check() {
+    return global_mode_ == GLOBAL;
+  }
+
+  Isolate* isolate() const { return isolate_; }
+  Zone* zone() const { return zone_; }
+
+ private:
+  bool slow_safe_compiler_;
+  bool global_mode_;
+  Isolate* isolate_;
+  Zone* zone_;
+};
+
+
+#ifndef V8_INTERPRETED_REGEXP  // Avoid compiling unused code.
+
+class NativeRegExpMacroAssembler: public RegExpMacroAssembler {
+ public:
+  // Type of input string to generate code for.
+  enum Mode { LATIN1 = 1, UC16 = 2 };
+
+  // Result of calling generated native RegExp code.
+  // RETRY: Something significant changed during execution, and the matching
+  //        should be retried from scratch.
+  // EXCEPTION: Something failed during execution. If no exception has been
+  //        thrown, it's an internal out-of-memory, and the caller should
+  //        throw the exception.
+  // FAILURE: Matching failed.
+  // SUCCESS: Matching succeeded, and the output array has been filled with
+  //        capture positions.
+  enum Result { RETRY = -2, EXCEPTION = -1, FAILURE = 0, SUCCESS = 1 };
+
+  NativeRegExpMacroAssembler(Isolate* isolate, Zone* zone);
+  virtual ~NativeRegExpMacroAssembler();
+  virtual bool CanReadUnaligned();
+
+  static Result Match(Handle<Code> regexp,
+                      Handle<String> subject,
+                      int* offsets_vector,
+                      int offsets_vector_length,
+                      int previous_index,
+                      Isolate* isolate);
+
+  // Compares two-byte strings case insensitively.
+  // Called from generated RegExp code.
+  static int CaseInsensitiveCompareUC16(Address byte_offset1,
+                                        Address byte_offset2,
+                                        size_t byte_length,
+                                        Isolate* isolate);
+
+  // Called from RegExp if the backtrack stack limit is hit.
+  // Tries to expand the stack. Returns the new stack-pointer if
+  // successful, and updates the stack_top address, or returns 0 if unable
+  // to grow the stack.
+  // This function must not trigger a garbage collection.
+  static Address GrowStack(Address stack_pointer, Address* stack_top,
+                           Isolate* isolate);
+
+  static const byte* StringCharacterPosition(String* subject, int start_index);
+
+  static int CheckStackGuardState(Isolate* isolate, int start_index,
+                                  bool is_direct_call, Address* return_address,
+                                  Code* re_code, String** subject,
+                                  const byte** input_start,
+                                  const byte** input_end);
+
+  // Byte map of one byte characters with a 0xff if the character is a word
+  // character (digit, letter or underscore) and 0x00 otherwise.
+  // Used by generated RegExp code.
+  static const byte word_character_map[256];
+
+  static Address word_character_map_address() {
+    return const_cast<Address>(&word_character_map[0]);
+  }
+
+  static Result Execute(Code* code,
+                        String* input,
+                        int start_offset,
+                        const byte* input_start,
+                        const byte* input_end,
+                        int* output,
+                        int output_size,
+                        Isolate* isolate);
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
diff --git a/src/regexp/regexp-parser.cc b/src/regexp/regexp-parser.cc
new file mode 100644
index 0000000..fa89003
--- /dev/null
+++ b/src/regexp/regexp-parser.cc
@@ -0,0 +1,1180 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/regexp-parser.h"
+
+#include "src/char-predicates-inl.h"
+#include "src/factory.h"
+#include "src/isolate.h"
+#include "src/objects-inl.h"
+#include "src/regexp/jsregexp.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpParser::RegExpParser(FlatStringReader* in, Handle<String>* error,
+                           bool multiline, bool unicode, Isolate* isolate,
+                           Zone* zone)
+    : isolate_(isolate),
+      zone_(zone),
+      error_(error),
+      captures_(NULL),
+      in_(in),
+      current_(kEndMarker),
+      next_pos_(0),
+      captures_started_(0),
+      capture_count_(0),
+      has_more_(true),
+      multiline_(multiline),
+      unicode_(unicode),
+      simple_(false),
+      contains_anchor_(false),
+      is_scanned_for_captures_(false),
+      failed_(false) {
+  Advance();
+}
+
+
+uc32 RegExpParser::Next() {
+  if (has_next()) {
+    return in()->Get(next_pos_);
+  } else {
+    return kEndMarker;
+  }
+}
+
+
+void RegExpParser::Advance() {
+  if (next_pos_ < in()->length()) {
+    StackLimitCheck check(isolate());
+    if (check.HasOverflowed()) {
+      ReportError(CStrVector(Isolate::kStackOverflowMessage));
+    } else if (zone()->excess_allocation()) {
+      ReportError(CStrVector("Regular expression too large"));
+    } else {
+      current_ = in()->Get(next_pos_);
+      next_pos_++;
+      // Read the whole surrogate pair in case of unicode flag, if possible.
+      if (unicode_ && next_pos_ < in()->length() &&
+          unibrow::Utf16::IsLeadSurrogate(static_cast<uc16>(current_))) {
+        uc16 trail = in()->Get(next_pos_);
+        if (unibrow::Utf16::IsTrailSurrogate(trail)) {
+          current_ = unibrow::Utf16::CombineSurrogatePair(
+              static_cast<uc16>(current_), trail);
+          next_pos_++;
+        }
+      }
+    }
+  } else {
+    current_ = kEndMarker;
+    // Advance so that position() points to 1-after-the-last-character. This is
+    // important so that Reset() to this position works correctly.
+    next_pos_ = in()->length() + 1;
+    has_more_ = false;
+  }
+}
+
+
+void RegExpParser::Reset(int pos) {
+  next_pos_ = pos;
+  has_more_ = (pos < in()->length());
+  Advance();
+}
+
+
+void RegExpParser::Advance(int dist) {
+  next_pos_ += dist - 1;
+  Advance();
+}
+
+
+bool RegExpParser::simple() { return simple_; }
+
+
+bool RegExpParser::IsSyntaxCharacter(uc32 c) {
+  return c == '^' || c == '$' || c == '\\' || c == '.' || c == '*' ||
+         c == '+' || c == '?' || c == '(' || c == ')' || c == '[' || c == ']' ||
+         c == '{' || c == '}' || c == '|';
+}
+
+
+RegExpTree* RegExpParser::ReportError(Vector<const char> message) {
+  failed_ = true;
+  *error_ = isolate()->factory()->NewStringFromAscii(message).ToHandleChecked();
+  // Zip to the end to make sure the no more input is read.
+  current_ = kEndMarker;
+  next_pos_ = in()->length();
+  return NULL;
+}
+
+
+#define CHECK_FAILED /**/); \
+  if (failed_) return NULL; \
+  ((void)0
+
+
+// Pattern ::
+//   Disjunction
+RegExpTree* RegExpParser::ParsePattern() {
+  RegExpTree* result = ParseDisjunction(CHECK_FAILED);
+  DCHECK(!has_more());
+  // If the result of parsing is a literal string atom, and it has the
+  // same length as the input, then the atom is identical to the input.
+  if (result->IsAtom() && result->AsAtom()->length() == in()->length()) {
+    simple_ = true;
+  }
+  return result;
+}
+
+
+// Disjunction ::
+//   Alternative
+//   Alternative | Disjunction
+// Alternative ::
+//   [empty]
+//   Term Alternative
+// Term ::
+//   Assertion
+//   Atom
+//   Atom Quantifier
+RegExpTree* RegExpParser::ParseDisjunction() {
+  // Used to store current state while parsing subexpressions.
+  RegExpParserState initial_state(NULL, INITIAL, RegExpLookaround::LOOKAHEAD, 0,
+                                  zone());
+  RegExpParserState* state = &initial_state;
+  // Cache the builder in a local variable for quick access.
+  RegExpBuilder* builder = initial_state.builder();
+  while (true) {
+    switch (current()) {
+      case kEndMarker:
+        if (state->IsSubexpression()) {
+          // Inside a parenthesized group when hitting end of input.
+          ReportError(CStrVector("Unterminated group") CHECK_FAILED);
+        }
+        DCHECK_EQ(INITIAL, state->group_type());
+        // Parsing completed successfully.
+        return builder->ToRegExp();
+      case ')': {
+        if (!state->IsSubexpression()) {
+          ReportError(CStrVector("Unmatched ')'") CHECK_FAILED);
+        }
+        DCHECK_NE(INITIAL, state->group_type());
+
+        Advance();
+        // End disjunction parsing and convert builder content to new single
+        // regexp atom.
+        RegExpTree* body = builder->ToRegExp();
+
+        int end_capture_index = captures_started();
+
+        int capture_index = state->capture_index();
+        SubexpressionType group_type = state->group_type();
+
+        // Build result of subexpression.
+        if (group_type == CAPTURE) {
+          RegExpCapture* capture = GetCapture(capture_index);
+          capture->set_body(body);
+          body = capture;
+        } else if (group_type != GROUPING) {
+          DCHECK(group_type == POSITIVE_LOOKAROUND ||
+                 group_type == NEGATIVE_LOOKAROUND);
+          bool is_positive = (group_type == POSITIVE_LOOKAROUND);
+          body = new (zone()) RegExpLookaround(
+              body, is_positive, end_capture_index - capture_index,
+              capture_index, state->lookaround_type());
+        }
+
+        // Restore previous state.
+        state = state->previous_state();
+        builder = state->builder();
+
+        builder->AddAtom(body);
+        // For compatability with JSC and ES3, we allow quantifiers after
+        // lookaheads, and break in all cases.
+        break;
+      }
+      case '|': {
+        Advance();
+        builder->NewAlternative();
+        continue;
+      }
+      case '*':
+      case '+':
+      case '?':
+        return ReportError(CStrVector("Nothing to repeat"));
+      case '^': {
+        Advance();
+        if (multiline_) {
+          builder->AddAssertion(
+              new (zone()) RegExpAssertion(RegExpAssertion::START_OF_LINE));
+        } else {
+          builder->AddAssertion(
+              new (zone()) RegExpAssertion(RegExpAssertion::START_OF_INPUT));
+          set_contains_anchor();
+        }
+        continue;
+      }
+      case '$': {
+        Advance();
+        RegExpAssertion::AssertionType assertion_type =
+            multiline_ ? RegExpAssertion::END_OF_LINE
+                       : RegExpAssertion::END_OF_INPUT;
+        builder->AddAssertion(new (zone()) RegExpAssertion(assertion_type));
+        continue;
+      }
+      case '.': {
+        Advance();
+        // everything except \x0a, \x0d, \u2028 and \u2029
+        ZoneList<CharacterRange>* ranges =
+            new (zone()) ZoneList<CharacterRange>(2, zone());
+        CharacterRange::AddClassEscape('.', ranges, zone());
+        RegExpTree* atom = new (zone()) RegExpCharacterClass(ranges, false);
+        builder->AddAtom(atom);
+        break;
+      }
+      case '(': {
+        SubexpressionType subexpr_type = CAPTURE;
+        RegExpLookaround::Type lookaround_type = state->lookaround_type();
+        Advance();
+        if (current() == '?') {
+          switch (Next()) {
+            case ':':
+              subexpr_type = GROUPING;
+              break;
+            case '=':
+              lookaround_type = RegExpLookaround::LOOKAHEAD;
+              subexpr_type = POSITIVE_LOOKAROUND;
+              break;
+            case '!':
+              lookaround_type = RegExpLookaround::LOOKAHEAD;
+              subexpr_type = NEGATIVE_LOOKAROUND;
+              break;
+            case '<':
+              if (FLAG_harmony_regexp_lookbehind) {
+                Advance();
+                lookaround_type = RegExpLookaround::LOOKBEHIND;
+                if (Next() == '=') {
+                  subexpr_type = POSITIVE_LOOKAROUND;
+                  break;
+                } else if (Next() == '!') {
+                  subexpr_type = NEGATIVE_LOOKAROUND;
+                  break;
+                }
+              }
+            // Fall through.
+            default:
+              ReportError(CStrVector("Invalid group") CHECK_FAILED);
+              break;
+          }
+          Advance(2);
+        } else {
+          if (captures_started_ >= kMaxCaptures) {
+            ReportError(CStrVector("Too many captures") CHECK_FAILED);
+          }
+          captures_started_++;
+        }
+        // Store current state and begin new disjunction parsing.
+        state = new (zone()) RegExpParserState(
+            state, subexpr_type, lookaround_type, captures_started_, zone());
+        builder = state->builder();
+        continue;
+      }
+      case '[': {
+        RegExpTree* atom = ParseCharacterClass(CHECK_FAILED);
+        builder->AddAtom(atom);
+        break;
+      }
+      // Atom ::
+      //   \ AtomEscape
+      case '\\':
+        switch (Next()) {
+          case kEndMarker:
+            return ReportError(CStrVector("\\ at end of pattern"));
+          case 'b':
+            Advance(2);
+            builder->AddAssertion(
+                new (zone()) RegExpAssertion(RegExpAssertion::BOUNDARY));
+            continue;
+          case 'B':
+            Advance(2);
+            builder->AddAssertion(
+                new (zone()) RegExpAssertion(RegExpAssertion::NON_BOUNDARY));
+            continue;
+          // AtomEscape ::
+          //   CharacterClassEscape
+          //
+          // CharacterClassEscape :: one of
+          //   d D s S w W
+          case 'd':
+          case 'D':
+          case 's':
+          case 'S':
+          case 'w':
+          case 'W': {
+            uc32 c = Next();
+            Advance(2);
+            ZoneList<CharacterRange>* ranges =
+                new (zone()) ZoneList<CharacterRange>(2, zone());
+            CharacterRange::AddClassEscape(c, ranges, zone());
+            RegExpTree* atom = new (zone()) RegExpCharacterClass(ranges, false);
+            builder->AddAtom(atom);
+            break;
+          }
+          case '1':
+          case '2':
+          case '3':
+          case '4':
+          case '5':
+          case '6':
+          case '7':
+          case '8':
+          case '9': {
+            int index = 0;
+            if (ParseBackReferenceIndex(&index)) {
+              if (state->IsInsideCaptureGroup(index)) {
+                // The back reference is inside the capture group it refers to.
+                // Nothing can possibly have been captured yet, so we use empty
+                // instead. This ensures that, when checking a back reference,
+                // the capture registers of the referenced capture are either
+                // both set or both cleared.
+                builder->AddEmpty();
+              } else {
+                RegExpCapture* capture = GetCapture(index);
+                RegExpTree* atom = new (zone()) RegExpBackReference(capture);
+                builder->AddAtom(atom);
+              }
+              break;
+            }
+            uc32 first_digit = Next();
+            if (first_digit == '8' || first_digit == '9') {
+              // If the 'u' flag is present, only syntax characters can be
+              // escaped,
+              // no other identity escapes are allowed. If the 'u' flag is not
+              // present, all identity escapes are allowed.
+              if (!unicode_) {
+                builder->AddCharacter(first_digit);
+                Advance(2);
+              } else {
+                return ReportError(CStrVector("Invalid escape"));
+              }
+              break;
+            }
+          }
+          // FALLTHROUGH
+          case '0': {
+            Advance();
+            uc32 octal = ParseOctalLiteral();
+            builder->AddCharacter(octal);
+            break;
+          }
+          // ControlEscape :: one of
+          //   f n r t v
+          case 'f':
+            Advance(2);
+            builder->AddCharacter('\f');
+            break;
+          case 'n':
+            Advance(2);
+            builder->AddCharacter('\n');
+            break;
+          case 'r':
+            Advance(2);
+            builder->AddCharacter('\r');
+            break;
+          case 't':
+            Advance(2);
+            builder->AddCharacter('\t');
+            break;
+          case 'v':
+            Advance(2);
+            builder->AddCharacter('\v');
+            break;
+          case 'c': {
+            Advance();
+            uc32 controlLetter = Next();
+            // Special case if it is an ASCII letter.
+            // Convert lower case letters to uppercase.
+            uc32 letter = controlLetter & ~('a' ^ 'A');
+            if (letter < 'A' || 'Z' < letter) {
+              // controlLetter is not in range 'A'-'Z' or 'a'-'z'.
+              // This is outside the specification. We match JSC in
+              // reading the backslash as a literal character instead
+              // of as starting an escape.
+              builder->AddCharacter('\\');
+            } else {
+              Advance(2);
+              builder->AddCharacter(controlLetter & 0x1f);
+            }
+            break;
+          }
+          case 'x': {
+            Advance(2);
+            uc32 value;
+            if (ParseHexEscape(2, &value)) {
+              builder->AddCharacter(value);
+            } else if (!unicode_) {
+              builder->AddCharacter('x');
+            } else {
+              // If the 'u' flag is present, invalid escapes are not treated as
+              // identity escapes.
+              return ReportError(CStrVector("Invalid escape"));
+            }
+            break;
+          }
+          case 'u': {
+            Advance(2);
+            uc32 value;
+            if (ParseUnicodeEscape(&value)) {
+              builder->AddUnicodeCharacter(value);
+            } else if (!unicode_) {
+              builder->AddCharacter('u');
+            } else {
+              // If the 'u' flag is present, invalid escapes are not treated as
+              // identity escapes.
+              return ReportError(CStrVector("Invalid unicode escape"));
+            }
+            break;
+          }
+          default:
+            Advance();
+            // If the 'u' flag is present, only syntax characters can be
+            // escaped, no
+            // other identity escapes are allowed. If the 'u' flag is not
+            // present,
+            // all identity escapes are allowed.
+            if (!unicode_ || IsSyntaxCharacter(current())) {
+              builder->AddCharacter(current());
+              Advance();
+            } else {
+              return ReportError(CStrVector("Invalid escape"));
+            }
+            break;
+        }
+        break;
+      case '{': {
+        int dummy;
+        if (ParseIntervalQuantifier(&dummy, &dummy)) {
+          ReportError(CStrVector("Nothing to repeat") CHECK_FAILED);
+        }
+        // fallthrough
+      }
+      default:
+        builder->AddUnicodeCharacter(current());
+        Advance();
+        break;
+    }  // end switch(current())
+
+    int min;
+    int max;
+    switch (current()) {
+      // QuantifierPrefix ::
+      //   *
+      //   +
+      //   ?
+      //   {
+      case '*':
+        min = 0;
+        max = RegExpTree::kInfinity;
+        Advance();
+        break;
+      case '+':
+        min = 1;
+        max = RegExpTree::kInfinity;
+        Advance();
+        break;
+      case '?':
+        min = 0;
+        max = 1;
+        Advance();
+        break;
+      case '{':
+        if (ParseIntervalQuantifier(&min, &max)) {
+          if (max < min) {
+            ReportError(CStrVector("numbers out of order in {} quantifier.")
+                            CHECK_FAILED);
+          }
+          break;
+        } else {
+          continue;
+        }
+      default:
+        continue;
+    }
+    RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY;
+    if (current() == '?') {
+      quantifier_type = RegExpQuantifier::NON_GREEDY;
+      Advance();
+    } else if (FLAG_regexp_possessive_quantifier && current() == '+') {
+      // FLAG_regexp_possessive_quantifier is a debug-only flag.
+      quantifier_type = RegExpQuantifier::POSSESSIVE;
+      Advance();
+    }
+    builder->AddQuantifierToAtom(min, max, quantifier_type);
+  }
+}
+
+
+#ifdef DEBUG
+// Currently only used in an DCHECK.
+static bool IsSpecialClassEscape(uc32 c) {
+  switch (c) {
+    case 'd':
+    case 'D':
+    case 's':
+    case 'S':
+    case 'w':
+    case 'W':
+      return true;
+    default:
+      return false;
+  }
+}
+#endif
+
+
+// In order to know whether an escape is a backreference or not we have to scan
+// the entire regexp and find the number of capturing parentheses.  However we
+// don't want to scan the regexp twice unless it is necessary.  This mini-parser
+// is called when needed.  It can see the difference between capturing and
+// noncapturing parentheses and can skip character classes and backslash-escaped
+// characters.
+void RegExpParser::ScanForCaptures() {
+  // Start with captures started previous to current position
+  int capture_count = captures_started();
+  // Add count of captures after this position.
+  int n;
+  while ((n = current()) != kEndMarker) {
+    Advance();
+    switch (n) {
+      case '\\':
+        Advance();
+        break;
+      case '[': {
+        int c;
+        while ((c = current()) != kEndMarker) {
+          Advance();
+          if (c == '\\') {
+            Advance();
+          } else {
+            if (c == ']') break;
+          }
+        }
+        break;
+      }
+      case '(':
+        if (current() != '?') capture_count++;
+        break;
+    }
+  }
+  capture_count_ = capture_count;
+  is_scanned_for_captures_ = true;
+}
+
+
+bool RegExpParser::ParseBackReferenceIndex(int* index_out) {
+  DCHECK_EQ('\\', current());
+  DCHECK('1' <= Next() && Next() <= '9');
+  // Try to parse a decimal literal that is no greater than the total number
+  // of left capturing parentheses in the input.
+  int start = position();
+  int value = Next() - '0';
+  Advance(2);
+  while (true) {
+    uc32 c = current();
+    if (IsDecimalDigit(c)) {
+      value = 10 * value + (c - '0');
+      if (value > kMaxCaptures) {
+        Reset(start);
+        return false;
+      }
+      Advance();
+    } else {
+      break;
+    }
+  }
+  if (value > captures_started()) {
+    if (!is_scanned_for_captures_) {
+      int saved_position = position();
+      ScanForCaptures();
+      Reset(saved_position);
+    }
+    if (value > capture_count_) {
+      Reset(start);
+      return false;
+    }
+  }
+  *index_out = value;
+  return true;
+}
+
+
+RegExpCapture* RegExpParser::GetCapture(int index) {
+  // The index for the capture groups are one-based. Its index in the list is
+  // zero-based.
+  int know_captures =
+      is_scanned_for_captures_ ? capture_count_ : captures_started_;
+  DCHECK(index <= know_captures);
+  if (captures_ == NULL) {
+    captures_ = new (zone()) ZoneList<RegExpCapture*>(know_captures, zone());
+  }
+  while (captures_->length() < know_captures) {
+    captures_->Add(new (zone()) RegExpCapture(captures_->length() + 1), zone());
+  }
+  return captures_->at(index - 1);
+}
+
+
+bool RegExpParser::RegExpParserState::IsInsideCaptureGroup(int index) {
+  for (RegExpParserState* s = this; s != NULL; s = s->previous_state()) {
+    if (s->group_type() != CAPTURE) continue;
+    // Return true if we found the matching capture index.
+    if (index == s->capture_index()) return true;
+    // Abort if index is larger than what has been parsed up till this state.
+    if (index > s->capture_index()) return false;
+  }
+  return false;
+}
+
+
+// QuantifierPrefix ::
+//   { DecimalDigits }
+//   { DecimalDigits , }
+//   { DecimalDigits , DecimalDigits }
+//
+// Returns true if parsing succeeds, and set the min_out and max_out
+// values. Values are truncated to RegExpTree::kInfinity if they overflow.
+bool RegExpParser::ParseIntervalQuantifier(int* min_out, int* max_out) {
+  DCHECK_EQ(current(), '{');
+  int start = position();
+  Advance();
+  int min = 0;
+  if (!IsDecimalDigit(current())) {
+    Reset(start);
+    return false;
+  }
+  while (IsDecimalDigit(current())) {
+    int next = current() - '0';
+    if (min > (RegExpTree::kInfinity - next) / 10) {
+      // Overflow. Skip past remaining decimal digits and return -1.
+      do {
+        Advance();
+      } while (IsDecimalDigit(current()));
+      min = RegExpTree::kInfinity;
+      break;
+    }
+    min = 10 * min + next;
+    Advance();
+  }
+  int max = 0;
+  if (current() == '}') {
+    max = min;
+    Advance();
+  } else if (current() == ',') {
+    Advance();
+    if (current() == '}') {
+      max = RegExpTree::kInfinity;
+      Advance();
+    } else {
+      while (IsDecimalDigit(current())) {
+        int next = current() - '0';
+        if (max > (RegExpTree::kInfinity - next) / 10) {
+          do {
+            Advance();
+          } while (IsDecimalDigit(current()));
+          max = RegExpTree::kInfinity;
+          break;
+        }
+        max = 10 * max + next;
+        Advance();
+      }
+      if (current() != '}') {
+        Reset(start);
+        return false;
+      }
+      Advance();
+    }
+  } else {
+    Reset(start);
+    return false;
+  }
+  *min_out = min;
+  *max_out = max;
+  return true;
+}
+
+
+uc32 RegExpParser::ParseOctalLiteral() {
+  DCHECK(('0' <= current() && current() <= '7') || current() == kEndMarker);
+  // For compatibility with some other browsers (not all), we parse
+  // up to three octal digits with a value below 256.
+  uc32 value = current() - '0';
+  Advance();
+  if ('0' <= current() && current() <= '7') {
+    value = value * 8 + current() - '0';
+    Advance();
+    if (value < 32 && '0' <= current() && current() <= '7') {
+      value = value * 8 + current() - '0';
+      Advance();
+    }
+  }
+  return value;
+}
+
+
+bool RegExpParser::ParseHexEscape(int length, uc32* value) {
+  int start = position();
+  uc32 val = 0;
+  for (int i = 0; i < length; ++i) {
+    uc32 c = current();
+    int d = HexValue(c);
+    if (d < 0) {
+      Reset(start);
+      return false;
+    }
+    val = val * 16 + d;
+    Advance();
+  }
+  *value = val;
+  return true;
+}
+
+
+bool RegExpParser::ParseUnicodeEscape(uc32* value) {
+  // Accept both \uxxxx and \u{xxxxxx} (if harmony unicode escapes are
+  // allowed). In the latter case, the number of hex digits between { } is
+  // arbitrary. \ and u have already been read.
+  if (current() == '{' && unicode_) {
+    int start = position();
+    Advance();
+    if (ParseUnlimitedLengthHexNumber(0x10ffff, value)) {
+      if (current() == '}') {
+        Advance();
+        return true;
+      }
+    }
+    Reset(start);
+    return false;
+  }
+  // \u but no {, or \u{...} escapes not allowed.
+  return ParseHexEscape(4, value);
+}
+
+
+bool RegExpParser::ParseUnlimitedLengthHexNumber(int max_value, uc32* value) {
+  uc32 x = 0;
+  int d = HexValue(current());
+  if (d < 0) {
+    return false;
+  }
+  while (d >= 0) {
+    x = x * 16 + d;
+    if (x > max_value) {
+      return false;
+    }
+    Advance();
+    d = HexValue(current());
+  }
+  *value = x;
+  return true;
+}
+
+
+uc32 RegExpParser::ParseClassCharacterEscape() {
+  DCHECK(current() == '\\');
+  DCHECK(has_next() && !IsSpecialClassEscape(Next()));
+  Advance();
+  switch (current()) {
+    case 'b':
+      Advance();
+      return '\b';
+    // ControlEscape :: one of
+    //   f n r t v
+    case 'f':
+      Advance();
+      return '\f';
+    case 'n':
+      Advance();
+      return '\n';
+    case 'r':
+      Advance();
+      return '\r';
+    case 't':
+      Advance();
+      return '\t';
+    case 'v':
+      Advance();
+      return '\v';
+    case 'c': {
+      uc32 controlLetter = Next();
+      uc32 letter = controlLetter & ~('A' ^ 'a');
+      // For compatibility with JSC, inside a character class
+      // we also accept digits and underscore as control characters.
+      if ((controlLetter >= '0' && controlLetter <= '9') ||
+          controlLetter == '_' || (letter >= 'A' && letter <= 'Z')) {
+        Advance(2);
+        // Control letters mapped to ASCII control characters in the range
+        // 0x00-0x1f.
+        return controlLetter & 0x1f;
+      }
+      // We match JSC in reading the backslash as a literal
+      // character instead of as starting an escape.
+      return '\\';
+    }
+    case '0':
+    case '1':
+    case '2':
+    case '3':
+    case '4':
+    case '5':
+    case '6':
+    case '7':
+      // For compatibility, we interpret a decimal escape that isn't
+      // a back reference (and therefore either \0 or not valid according
+      // to the specification) as a 1..3 digit octal character code.
+      return ParseOctalLiteral();
+    case 'x': {
+      Advance();
+      uc32 value;
+      if (ParseHexEscape(2, &value)) {
+        return value;
+      }
+      if (!unicode_) {
+        // If \x is not followed by a two-digit hexadecimal, treat it
+        // as an identity escape.
+        return 'x';
+      }
+      // If the 'u' flag is present, invalid escapes are not treated as
+      // identity escapes.
+      ReportError(CStrVector("Invalid escape"));
+      return 0;
+    }
+    case 'u': {
+      Advance();
+      uc32 value;
+      if (ParseUnicodeEscape(&value)) {
+        return value;
+      }
+      if (!unicode_) {
+        return 'u';
+      }
+      // If the 'u' flag is present, invalid escapes are not treated as
+      // identity escapes.
+      ReportError(CStrVector("Invalid unicode escape"));
+      return 0;
+    }
+    default: {
+      uc32 result = current();
+      // If the 'u' flag is present, only syntax characters can be escaped, no
+      // other identity escapes are allowed. If the 'u' flag is not present, all
+      // identity escapes are allowed.
+      if (!unicode_ || IsSyntaxCharacter(result)) {
+        Advance();
+        return result;
+      }
+      ReportError(CStrVector("Invalid escape"));
+      return 0;
+    }
+  }
+  return 0;
+}
+
+
+CharacterRange RegExpParser::ParseClassAtom(uc16* char_class) {
+  DCHECK_EQ(0, *char_class);
+  uc32 first = current();
+  if (first == '\\') {
+    switch (Next()) {
+      case 'w':
+      case 'W':
+      case 'd':
+      case 'D':
+      case 's':
+      case 'S': {
+        *char_class = Next();
+        Advance(2);
+        return CharacterRange::Singleton(0);  // Return dummy value.
+      }
+      case kEndMarker:
+        return ReportError(CStrVector("\\ at end of pattern"));
+      default:
+        uc32 c = ParseClassCharacterEscape(CHECK_FAILED);
+        return CharacterRange::Singleton(c);
+    }
+  } else {
+    Advance();
+    return CharacterRange::Singleton(first);
+  }
+}
+
+
+static const uc16 kNoCharClass = 0;
+
+// Adds range or pre-defined character class to character ranges.
+// If char_class is not kInvalidClass, it's interpreted as a class
+// escape (i.e., 's' means whitespace, from '\s').
+static inline void AddRangeOrEscape(ZoneList<CharacterRange>* ranges,
+                                    uc16 char_class, CharacterRange range,
+                                    Zone* zone) {
+  if (char_class != kNoCharClass) {
+    CharacterRange::AddClassEscape(char_class, ranges, zone);
+  } else {
+    ranges->Add(range, zone);
+  }
+}
+
+
+RegExpTree* RegExpParser::ParseCharacterClass() {
+  static const char* kUnterminated = "Unterminated character class";
+  static const char* kRangeOutOfOrder = "Range out of order in character class";
+
+  DCHECK_EQ(current(), '[');
+  Advance();
+  bool is_negated = false;
+  if (current() == '^') {
+    is_negated = true;
+    Advance();
+  }
+  ZoneList<CharacterRange>* ranges =
+      new (zone()) ZoneList<CharacterRange>(2, zone());
+  while (has_more() && current() != ']') {
+    uc16 char_class = kNoCharClass;
+    CharacterRange first = ParseClassAtom(&char_class CHECK_FAILED);
+    if (current() == '-') {
+      Advance();
+      if (current() == kEndMarker) {
+        // If we reach the end we break out of the loop and let the
+        // following code report an error.
+        break;
+      } else if (current() == ']') {
+        AddRangeOrEscape(ranges, char_class, first, zone());
+        ranges->Add(CharacterRange::Singleton('-'), zone());
+        break;
+      }
+      uc16 char_class_2 = kNoCharClass;
+      CharacterRange next = ParseClassAtom(&char_class_2 CHECK_FAILED);
+      if (char_class != kNoCharClass || char_class_2 != kNoCharClass) {
+        // Either end is an escaped character class. Treat the '-' verbatim.
+        AddRangeOrEscape(ranges, char_class, first, zone());
+        ranges->Add(CharacterRange::Singleton('-'), zone());
+        AddRangeOrEscape(ranges, char_class_2, next, zone());
+        continue;
+      }
+      if (first.from() > next.to()) {
+        return ReportError(CStrVector(kRangeOutOfOrder) CHECK_FAILED);
+      }
+      ranges->Add(CharacterRange::Range(first.from(), next.to()), zone());
+    } else {
+      AddRangeOrEscape(ranges, char_class, first, zone());
+    }
+  }
+  if (!has_more()) {
+    return ReportError(CStrVector(kUnterminated) CHECK_FAILED);
+  }
+  Advance();
+  if (ranges->length() == 0) {
+    ranges->Add(CharacterRange::Everything(), zone());
+    is_negated = !is_negated;
+  }
+  return new (zone()) RegExpCharacterClass(ranges, is_negated);
+}
+
+
+#undef CHECK_FAILED
+
+
+bool RegExpParser::ParseRegExp(Isolate* isolate, Zone* zone,
+                               FlatStringReader* input, bool multiline,
+                               bool unicode, RegExpCompileData* result) {
+  DCHECK(result != NULL);
+  RegExpParser parser(input, &result->error, multiline, unicode, isolate, zone);
+  RegExpTree* tree = parser.ParsePattern();
+  if (parser.failed()) {
+    DCHECK(tree == NULL);
+    DCHECK(!result->error.is_null());
+  } else {
+    DCHECK(tree != NULL);
+    DCHECK(result->error.is_null());
+    if (FLAG_trace_regexp_parser) {
+      OFStream os(stdout);
+      tree->Print(os, zone);
+      os << "\n";
+    }
+    result->tree = tree;
+    int capture_count = parser.captures_started();
+    result->simple = tree->IsAtom() && parser.simple() && capture_count == 0;
+    result->contains_anchor = parser.contains_anchor();
+    result->capture_count = capture_count;
+  }
+  return !parser.failed();
+}
+
+
+RegExpBuilder::RegExpBuilder(Zone* zone)
+    : zone_(zone),
+      pending_empty_(false),
+      characters_(NULL),
+      terms_(),
+      alternatives_()
+#ifdef DEBUG
+      ,
+      last_added_(ADD_NONE)
+#endif
+{
+}
+
+
+void RegExpBuilder::FlushCharacters() {
+  pending_empty_ = false;
+  if (characters_ != NULL) {
+    RegExpTree* atom = new (zone()) RegExpAtom(characters_->ToConstVector());
+    characters_ = NULL;
+    text_.Add(atom, zone());
+    LAST(ADD_ATOM);
+  }
+}
+
+
+void RegExpBuilder::FlushText() {
+  FlushCharacters();
+  int num_text = text_.length();
+  if (num_text == 0) {
+    return;
+  } else if (num_text == 1) {
+    terms_.Add(text_.last(), zone());
+  } else {
+    RegExpText* text = new (zone()) RegExpText(zone());
+    for (int i = 0; i < num_text; i++) text_.Get(i)->AppendToText(text, zone());
+    terms_.Add(text, zone());
+  }
+  text_.Clear();
+}
+
+
+void RegExpBuilder::AddCharacter(uc16 c) {
+  pending_empty_ = false;
+  if (characters_ == NULL) {
+    characters_ = new (zone()) ZoneList<uc16>(4, zone());
+  }
+  characters_->Add(c, zone());
+  LAST(ADD_CHAR);
+}
+
+
+void RegExpBuilder::AddUnicodeCharacter(uc32 c) {
+  if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
+    ZoneList<uc16> surrogate_pair(2, zone());
+    surrogate_pair.Add(unibrow::Utf16::LeadSurrogate(c), zone());
+    surrogate_pair.Add(unibrow::Utf16::TrailSurrogate(c), zone());
+    RegExpAtom* atom = new (zone()) RegExpAtom(surrogate_pair.ToConstVector());
+    AddAtom(atom);
+  } else {
+    AddCharacter(static_cast<uc16>(c));
+  }
+}
+
+
+void RegExpBuilder::AddEmpty() { pending_empty_ = true; }
+
+
+void RegExpBuilder::AddAtom(RegExpTree* term) {
+  if (term->IsEmpty()) {
+    AddEmpty();
+    return;
+  }
+  if (term->IsTextElement()) {
+    FlushCharacters();
+    text_.Add(term, zone());
+  } else {
+    FlushText();
+    terms_.Add(term, zone());
+  }
+  LAST(ADD_ATOM);
+}
+
+
+void RegExpBuilder::AddAssertion(RegExpTree* assert) {
+  FlushText();
+  terms_.Add(assert, zone());
+  LAST(ADD_ASSERT);
+}
+
+
+void RegExpBuilder::NewAlternative() { FlushTerms(); }
+
+
+void RegExpBuilder::FlushTerms() {
+  FlushText();
+  int num_terms = terms_.length();
+  RegExpTree* alternative;
+  if (num_terms == 0) {
+    alternative = new (zone()) RegExpEmpty();
+  } else if (num_terms == 1) {
+    alternative = terms_.last();
+  } else {
+    alternative = new (zone()) RegExpAlternative(terms_.GetList(zone()));
+  }
+  alternatives_.Add(alternative, zone());
+  terms_.Clear();
+  LAST(ADD_NONE);
+}
+
+
+RegExpTree* RegExpBuilder::ToRegExp() {
+  FlushTerms();
+  int num_alternatives = alternatives_.length();
+  if (num_alternatives == 0) return new (zone()) RegExpEmpty();
+  if (num_alternatives == 1) return alternatives_.last();
+  return new (zone()) RegExpDisjunction(alternatives_.GetList(zone()));
+}
+
+
+void RegExpBuilder::AddQuantifierToAtom(
+    int min, int max, RegExpQuantifier::QuantifierType quantifier_type) {
+  if (pending_empty_) {
+    pending_empty_ = false;
+    return;
+  }
+  RegExpTree* atom;
+  if (characters_ != NULL) {
+    DCHECK(last_added_ == ADD_CHAR);
+    // Last atom was character.
+    Vector<const uc16> char_vector = characters_->ToConstVector();
+    int num_chars = char_vector.length();
+    if (num_chars > 1) {
+      Vector<const uc16> prefix = char_vector.SubVector(0, num_chars - 1);
+      text_.Add(new (zone()) RegExpAtom(prefix), zone());
+      char_vector = char_vector.SubVector(num_chars - 1, num_chars);
+    }
+    characters_ = NULL;
+    atom = new (zone()) RegExpAtom(char_vector);
+    FlushText();
+  } else if (text_.length() > 0) {
+    DCHECK(last_added_ == ADD_ATOM);
+    atom = text_.RemoveLast();
+    FlushText();
+  } else if (terms_.length() > 0) {
+    DCHECK(last_added_ == ADD_ATOM);
+    atom = terms_.RemoveLast();
+    if (atom->max_match() == 0) {
+      // Guaranteed to only match an empty string.
+      LAST(ADD_TERM);
+      if (min == 0) {
+        return;
+      }
+      terms_.Add(atom, zone());
+      return;
+    }
+  } else {
+    // Only call immediately after adding an atom or character!
+    UNREACHABLE();
+    return;
+  }
+  terms_.Add(new (zone()) RegExpQuantifier(min, max, quantifier_type, atom),
+             zone());
+  LAST(ADD_TERM);
+}
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-parser.h b/src/regexp/regexp-parser.h
new file mode 100644
index 0000000..af9b765
--- /dev/null
+++ b/src/regexp/regexp-parser.h
@@ -0,0 +1,277 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_PARSER_H_
+#define V8_REGEXP_REGEXP_PARSER_H_
+
+#include "src/objects.h"
+#include "src/regexp/regexp-ast.h"
+#include "src/zone.h"
+
+namespace v8 {
+namespace internal {
+
+struct RegExpCompileData;
+
+
+// A BufferedZoneList is an automatically growing list, just like (and backed
+// by) a ZoneList, that is optimized for the case of adding and removing
+// a single element. The last element added is stored outside the backing list,
+// and if no more than one element is ever added, the ZoneList isn't even
+// allocated.
+// Elements must not be NULL pointers.
+template <typename T, int initial_size>
+class BufferedZoneList {
+ public:
+  BufferedZoneList() : list_(NULL), last_(NULL) {}
+
+  // Adds element at end of list. This element is buffered and can
+  // be read using last() or removed using RemoveLast until a new Add or until
+  // RemoveLast or GetList has been called.
+  void Add(T* value, Zone* zone) {
+    if (last_ != NULL) {
+      if (list_ == NULL) {
+        list_ = new (zone) ZoneList<T*>(initial_size, zone);
+      }
+      list_->Add(last_, zone);
+    }
+    last_ = value;
+  }
+
+  T* last() {
+    DCHECK(last_ != NULL);
+    return last_;
+  }
+
+  T* RemoveLast() {
+    DCHECK(last_ != NULL);
+    T* result = last_;
+    if ((list_ != NULL) && (list_->length() > 0))
+      last_ = list_->RemoveLast();
+    else
+      last_ = NULL;
+    return result;
+  }
+
+  T* Get(int i) {
+    DCHECK((0 <= i) && (i < length()));
+    if (list_ == NULL) {
+      DCHECK_EQ(0, i);
+      return last_;
+    } else {
+      if (i == list_->length()) {
+        DCHECK(last_ != NULL);
+        return last_;
+      } else {
+        return list_->at(i);
+      }
+    }
+  }
+
+  void Clear() {
+    list_ = NULL;
+    last_ = NULL;
+  }
+
+  int length() {
+    int length = (list_ == NULL) ? 0 : list_->length();
+    return length + ((last_ == NULL) ? 0 : 1);
+  }
+
+  ZoneList<T*>* GetList(Zone* zone) {
+    if (list_ == NULL) {
+      list_ = new (zone) ZoneList<T*>(initial_size, zone);
+    }
+    if (last_ != NULL) {
+      list_->Add(last_, zone);
+      last_ = NULL;
+    }
+    return list_;
+  }
+
+ private:
+  ZoneList<T*>* list_;
+  T* last_;
+};
+
+
+// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
+class RegExpBuilder : public ZoneObject {
+ public:
+  explicit RegExpBuilder(Zone* zone);
+  void AddCharacter(uc16 character);
+  void AddUnicodeCharacter(uc32 character);
+  // "Adds" an empty expression. Does nothing except consume a
+  // following quantifier
+  void AddEmpty();
+  void AddAtom(RegExpTree* tree);
+  void AddAssertion(RegExpTree* tree);
+  void NewAlternative();  // '|'
+  void AddQuantifierToAtom(int min, int max,
+                           RegExpQuantifier::QuantifierType type);
+  RegExpTree* ToRegExp();
+
+ private:
+  void FlushCharacters();
+  void FlushText();
+  void FlushTerms();
+  Zone* zone() const { return zone_; }
+
+  Zone* zone_;
+  bool pending_empty_;
+  ZoneList<uc16>* characters_;
+  BufferedZoneList<RegExpTree, 2> terms_;
+  BufferedZoneList<RegExpTree, 2> text_;
+  BufferedZoneList<RegExpTree, 2> alternatives_;
+#ifdef DEBUG
+  enum { ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM } last_added_;
+#define LAST(x) last_added_ = x;
+#else
+#define LAST(x)
+#endif
+};
+
+
+class RegExpParser BASE_EMBEDDED {
+ public:
+  RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline_mode,
+               bool unicode, Isolate* isolate, Zone* zone);
+
+  static bool ParseRegExp(Isolate* isolate, Zone* zone, FlatStringReader* input,
+                          bool multiline, bool unicode,
+                          RegExpCompileData* result);
+
+  RegExpTree* ParsePattern();
+  RegExpTree* ParseDisjunction();
+  RegExpTree* ParseGroup();
+  RegExpTree* ParseCharacterClass();
+
+  // Parses a {...,...} quantifier and stores the range in the given
+  // out parameters.
+  bool ParseIntervalQuantifier(int* min_out, int* max_out);
+
+  // Parses and returns a single escaped character.  The character
+  // must not be 'b' or 'B' since they are usually handle specially.
+  uc32 ParseClassCharacterEscape();
+
+  // Checks whether the following is a length-digit hexadecimal number,
+  // and sets the value if it is.
+  bool ParseHexEscape(int length, uc32* value);
+  bool ParseUnicodeEscape(uc32* value);
+  bool ParseUnlimitedLengthHexNumber(int max_value, uc32* value);
+
+  uc32 ParseOctalLiteral();
+
+  // Tries to parse the input as a back reference.  If successful it
+  // stores the result in the output parameter and returns true.  If
+  // it fails it will push back the characters read so the same characters
+  // can be reparsed.
+  bool ParseBackReferenceIndex(int* index_out);
+
+  CharacterRange ParseClassAtom(uc16* char_class);
+  RegExpTree* ReportError(Vector<const char> message);
+  void Advance();
+  void Advance(int dist);
+  void Reset(int pos);
+
+  // Reports whether the pattern might be used as a literal search string.
+  // Only use if the result of the parse is a single atom node.
+  bool simple();
+  bool contains_anchor() { return contains_anchor_; }
+  void set_contains_anchor() { contains_anchor_ = true; }
+  int captures_started() { return captures_started_; }
+  int position() { return next_pos_ - 1; }
+  bool failed() { return failed_; }
+
+  static bool IsSyntaxCharacter(uc32 c);
+
+  static const int kMaxCaptures = 1 << 16;
+  static const uc32 kEndMarker = (1 << 21);
+
+ private:
+  enum SubexpressionType {
+    INITIAL,
+    CAPTURE,  // All positive values represent captures.
+    POSITIVE_LOOKAROUND,
+    NEGATIVE_LOOKAROUND,
+    GROUPING
+  };
+
+  class RegExpParserState : public ZoneObject {
+   public:
+    RegExpParserState(RegExpParserState* previous_state,
+                      SubexpressionType group_type,
+                      RegExpLookaround::Type lookaround_type,
+                      int disjunction_capture_index, Zone* zone)
+        : previous_state_(previous_state),
+          builder_(new (zone) RegExpBuilder(zone)),
+          group_type_(group_type),
+          lookaround_type_(lookaround_type),
+          disjunction_capture_index_(disjunction_capture_index) {}
+    // Parser state of containing expression, if any.
+    RegExpParserState* previous_state() { return previous_state_; }
+    bool IsSubexpression() { return previous_state_ != NULL; }
+    // RegExpBuilder building this regexp's AST.
+    RegExpBuilder* builder() { return builder_; }
+    // Type of regexp being parsed (parenthesized group or entire regexp).
+    SubexpressionType group_type() { return group_type_; }
+    // Lookahead or Lookbehind.
+    RegExpLookaround::Type lookaround_type() { return lookaround_type_; }
+    // Index in captures array of first capture in this sub-expression, if any.
+    // Also the capture index of this sub-expression itself, if group_type
+    // is CAPTURE.
+    int capture_index() { return disjunction_capture_index_; }
+
+    // Check whether the parser is inside a capture group with the given index.
+    bool IsInsideCaptureGroup(int index);
+
+   private:
+    // Linked list implementation of stack of states.
+    RegExpParserState* previous_state_;
+    // Builder for the stored disjunction.
+    RegExpBuilder* builder_;
+    // Stored disjunction type (capture, look-ahead or grouping), if any.
+    SubexpressionType group_type_;
+    // Stored read direction.
+    RegExpLookaround::Type lookaround_type_;
+    // Stored disjunction's capture index (if any).
+    int disjunction_capture_index_;
+  };
+
+  // Return the 1-indexed RegExpCapture object, allocate if necessary.
+  RegExpCapture* GetCapture(int index);
+
+  Isolate* isolate() { return isolate_; }
+  Zone* zone() const { return zone_; }
+
+  uc32 current() { return current_; }
+  bool has_more() { return has_more_; }
+  bool has_next() { return next_pos_ < in()->length(); }
+  uc32 Next();
+  FlatStringReader* in() { return in_; }
+  void ScanForCaptures();
+
+  Isolate* isolate_;
+  Zone* zone_;
+  Handle<String>* error_;
+  ZoneList<RegExpCapture*>* captures_;
+  FlatStringReader* in_;
+  uc32 current_;
+  int next_pos_;
+  int captures_started_;
+  // The capture count is only valid after we have scanned for captures.
+  int capture_count_;
+  bool has_more_;
+  bool multiline_;
+  bool unicode_;
+  bool simple_;
+  bool contains_anchor_;
+  bool is_scanned_for_captures_;
+  bool failed_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_PARSER_H_
diff --git a/src/regexp/regexp-stack.cc b/src/regexp/regexp-stack.cc
new file mode 100644
index 0000000..34f9127
--- /dev/null
+++ b/src/regexp/regexp-stack.cc
@@ -0,0 +1,88 @@
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/regexp/regexp-stack.h"
+
+#include "src/isolate.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpStackScope::RegExpStackScope(Isolate* isolate)
+    : regexp_stack_(isolate->regexp_stack()) {
+  // Initialize, if not already initialized.
+  regexp_stack_->EnsureCapacity(0);
+}
+
+
+RegExpStackScope::~RegExpStackScope() {
+  // Reset the buffer if it has grown.
+  regexp_stack_->Reset();
+}
+
+
+RegExpStack::RegExpStack()
+    : isolate_(NULL) {
+}
+
+
+RegExpStack::~RegExpStack() {
+  thread_local_.Free();
+}
+
+
+char* RegExpStack::ArchiveStack(char* to) {
+  size_t size = sizeof(thread_local_);
+  MemCopy(reinterpret_cast<void*>(to), &thread_local_, size);
+  thread_local_ = ThreadLocal();
+  return to + size;
+}
+
+
+char* RegExpStack::RestoreStack(char* from) {
+  size_t size = sizeof(thread_local_);
+  MemCopy(&thread_local_, reinterpret_cast<void*>(from), size);
+  return from + size;
+}
+
+
+void RegExpStack::Reset() {
+  if (thread_local_.memory_size_ > kMinimumStackSize) {
+    DeleteArray(thread_local_.memory_);
+    thread_local_ = ThreadLocal();
+  }
+}
+
+
+void RegExpStack::ThreadLocal::Free() {
+  if (memory_size_ > 0) {
+    DeleteArray(memory_);
+    Clear();
+  }
+}
+
+
+Address RegExpStack::EnsureCapacity(size_t size) {
+  if (size > kMaximumStackSize) return NULL;
+  if (size < kMinimumStackSize) size = kMinimumStackSize;
+  if (thread_local_.memory_size_ < size) {
+    Address new_memory = NewArray<byte>(static_cast<int>(size));
+    if (thread_local_.memory_size_ > 0) {
+      // Copy original memory into top of new memory.
+      MemCopy(reinterpret_cast<void*>(new_memory + size -
+                                      thread_local_.memory_size_),
+              reinterpret_cast<void*>(thread_local_.memory_),
+              thread_local_.memory_size_);
+      DeleteArray(thread_local_.memory_);
+    }
+    thread_local_.memory_ = new_memory;
+    thread_local_.memory_size_ = size;
+    thread_local_.limit_ = new_memory + kStackLimitSlack * kPointerSize;
+  }
+  return thread_local_.memory_ + thread_local_.memory_size_;
+}
+
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/regexp/regexp-stack.h b/src/regexp/regexp-stack.h
new file mode 100644
index 0000000..aea46cf
--- /dev/null
+++ b/src/regexp/regexp-stack.h
@@ -0,0 +1,130 @@
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_STACK_H_
+#define V8_REGEXP_REGEXP_STACK_H_
+
+#include "src/base/logging.h"
+#include "src/base/macros.h"
+#include "src/globals.h"
+
+namespace v8 {
+namespace internal {
+
+class RegExpStack;
+
+// Maintains a per-v8thread stack area that can be used by irregexp
+// implementation for its backtracking stack.
+// Since there is only one stack area, the Irregexp implementation is not
+// re-entrant. I.e., no regular expressions may be executed in the same thread
+// during a preempted Irregexp execution.
+class RegExpStackScope {
+ public:
+  // Create and delete an instance to control the life-time of a growing stack.
+
+  // Initializes the stack memory area if necessary.
+  explicit RegExpStackScope(Isolate* isolate);
+  ~RegExpStackScope();  // Releases the stack if it has grown.
+
+  RegExpStack* stack() const { return regexp_stack_; }
+
+ private:
+  RegExpStack* regexp_stack_;
+
+  DISALLOW_COPY_AND_ASSIGN(RegExpStackScope);
+};
+
+
+class RegExpStack {
+ public:
+  // Number of allocated locations on the stack below the limit.
+  // No sequence of pushes must be longer that this without doing a stack-limit
+  // check.
+  static const int kStackLimitSlack = 32;
+
+  // Gives the top of the memory used as stack.
+  Address stack_base() {
+    DCHECK(thread_local_.memory_size_ != 0);
+    return thread_local_.memory_ + thread_local_.memory_size_;
+  }
+
+  // The total size of the memory allocated for the stack.
+  size_t stack_capacity() { return thread_local_.memory_size_; }
+
+  // If the stack pointer gets below the limit, we should react and
+  // either grow the stack or report an out-of-stack exception.
+  // There is only a limited number of locations below the stack limit,
+  // so users of the stack should check the stack limit during any
+  // sequence of pushes longer that this.
+  Address* limit_address() { return &(thread_local_.limit_); }
+
+  // Ensures that there is a memory area with at least the specified size.
+  // If passing zero, the default/minimum size buffer is allocated.
+  Address EnsureCapacity(size_t size);
+
+  // Thread local archiving.
+  static int ArchiveSpacePerThread() {
+    return static_cast<int>(sizeof(ThreadLocal));
+  }
+  char* ArchiveStack(char* to);
+  char* RestoreStack(char* from);
+  void FreeThreadResources() { thread_local_.Free(); }
+
+ private:
+  RegExpStack();
+  ~RegExpStack();
+
+  // Artificial limit used when no memory has been allocated.
+  static const uintptr_t kMemoryTop = static_cast<uintptr_t>(-1);
+
+  // Minimal size of allocated stack area.
+  static const size_t kMinimumStackSize = 1 * KB;
+
+  // Maximal size of allocated stack area.
+  static const size_t kMaximumStackSize = 64 * MB;
+
+  // Structure holding the allocated memory, size and limit.
+  struct ThreadLocal {
+    ThreadLocal() { Clear(); }
+    // If memory_size_ > 0 then memory_ must be non-NULL.
+    Address memory_;
+    size_t memory_size_;
+    Address limit_;
+    void Clear() {
+      memory_ = NULL;
+      memory_size_ = 0;
+      limit_ = reinterpret_cast<Address>(kMemoryTop);
+    }
+    void Free();
+  };
+
+  // Address of allocated memory.
+  Address memory_address() {
+    return reinterpret_cast<Address>(&thread_local_.memory_);
+  }
+
+  // Address of size of allocated memory.
+  Address memory_size_address() {
+    return reinterpret_cast<Address>(&thread_local_.memory_size_);
+  }
+
+  // Resets the buffer if it has grown beyond the default/minimum size.
+  // After this, the buffer is either the default size, or it is empty, so
+  // you have to call EnsureCapacity before using it again.
+  void Reset();
+
+  ThreadLocal thread_local_;
+  Isolate* isolate_;
+
+  friend class ExternalReference;
+  friend class Isolate;
+  friend class RegExpStackScope;
+
+  DISALLOW_COPY_AND_ASSIGN(RegExpStack);
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_REGEXP_STACK_H_
diff --git a/src/regexp/x64/regexp-macro-assembler-x64.cc b/src/regexp/x64/regexp-macro-assembler-x64.cc
new file mode 100644
index 0000000..286f159
--- /dev/null
+++ b/src/regexp/x64/regexp-macro-assembler-x64.cc
@@ -0,0 +1,1392 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X64
+
+#include "src/regexp/x64/regexp-macro-assembler-x64.h"
+
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+
+/*
+ * This assembler uses the following register assignment convention
+ * - rdx : Currently loaded character(s) as Latin1 or UC16.  Must be loaded
+ *         using LoadCurrentCharacter before using any of the dispatch methods.
+ *         Temporarily stores the index of capture start after a matching pass
+ *         for a global regexp.
+ * - rdi : Current position in input, as negative offset from end of string.
+ *         Please notice that this is the byte offset, not the character
+ *         offset!  Is always a 32-bit signed (negative) offset, but must be
+ *         maintained sign-extended to 64 bits, since it is used as index.
+ * - rsi : End of input (points to byte after last character in input),
+ *         so that rsi+rdi points to the current character.
+ * - rbp : Frame pointer.  Used to access arguments, local variables and
+ *         RegExp registers.
+ * - rsp : Points to tip of C stack.
+ * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
+ *         only 32-bit values.  Most are offsets from some base (e.g., character
+ *         positions from end of string or code location from Code* pointer).
+ * - r8  : Code object pointer.  Used to convert between absolute and
+ *         code-object-relative addresses.
+ *
+ * The registers rax, rbx, r9 and r11 are free to use for computations.
+ * If changed to use r12+, they should be saved as callee-save registers.
+ * The macro assembler special register r13 (kRootRegister) isn't special
+ * during execution of RegExp code (it doesn't hold the value assumed when
+ * creating JS code), so Root related macro operations can be used.
+ *
+ * Each call to a C++ method should retain these registers.
+ *
+ * The stack will have the following content, in some order, indexable from the
+ * frame pointer (see, e.g., kStackHighEnd):
+ *    - Isolate* isolate     (address of the current isolate)
+ *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
+ *                            through the runtime system)
+ *    - stack_area_base      (high end of the memory area to use as
+ *                            backtracking stack)
+ *    - capture array size   (may fit multiple sets of matches)
+ *    - int* capture_array   (int[num_saved_registers_], for output).
+ *    - end of input         (address of end of string)
+ *    - start of input       (address of first character in string)
+ *    - start index          (character index of start)
+ *    - String* input_string (input string)
+ *    - return address
+ *    - backup of callee save registers (rbx, possibly rsi and rdi).
+ *    - success counter      (only useful for global regexp to count matches)
+ *    - Offset of location before start of input (effectively character
+ *      string start - 1).  Used to initialize capture registers to a
+ *      non-position.
+ *    - At start of string (if 1, we are starting at the start of the
+ *      string, otherwise 0)
+ *    - register 0  rbp[-n]   (Only positions must be stored in the first
+ *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
+ *    - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string).  The remaining registers starts out uninitialized.
+ *
+ * The first seven values must be provided by the calling code by
+ * calling the code's entry address cast to a function pointer with the
+ * following signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              int* capture_output_array,
+ *              bool at_start,
+ *              byte* stack_area_base,
+ *              bool direct_call)
+ */
+
+#define __ ACCESS_MASM((&masm_))
+
+RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
+                                                 Mode mode,
+                                                 int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(isolate, NULL, kRegExpCodeSize, CodeObjectRequired::kYes),
+      no_root_array_scope_(&masm_),
+      code_relative_fixup_positions_(4, zone),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code when we know more.
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerX64::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ addq(rdi, Immediate(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ addp(register_location(reg), Immediate(by));
+  }
+}
+
+
+void RegExpMacroAssemblerX64::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(rbx);
+  __ addp(rbx, code_object_pointer());
+  __ jmp(rbx);
+}
+
+
+void RegExpMacroAssemblerX64::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
+  __ cmpl(current_character(), Immediate(c));
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  __ cmpl(current_character(), Immediate(limit));
+  BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
+  __ leap(rax, Operand(rdi, -char_size()));
+  __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
+  BranchOrBacktrack(equal, on_at_start);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
+                                              Label* on_not_at_start) {
+  __ leap(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
+  __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
+  BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
+  __ cmpl(current_character(), Immediate(limit));
+  BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
+  Label fallthrough;
+  __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
+  __ j(not_equal, &fallthrough);
+  Drop();
+  BranchOrBacktrack(no_condition, on_equal);
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
+  ReadPositionFromRegister(rbx, start_reg + 1);  // Offset of end of capture
+  __ subp(rbx, rdx);  // Length of capture.
+
+  // -----------------------
+  // rdx  = Start offset of capture.
+  // rbx = Length of capture
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // -----------------------
+  // rdx - Start of capture
+  // rbx - length of capture
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ movl(rax, Operand(rbp, kStringStartMinusOne));
+    __ addl(rax, rbx);
+    __ cmpl(rdi, rax);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ movl(rax, rdi);
+    __ addl(rax, rbx);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  if (mode_ == LATIN1) {
+    Label loop_increment;
+    if (on_no_match == NULL) {
+      on_no_match = &backtrack_label_;
+    }
+
+    __ leap(r9, Operand(rsi, rdx, times_1, 0));
+    __ leap(r11, Operand(rsi, rdi, times_1, 0));
+    if (read_backward) {
+      __ subp(r11, rbx);  // Offset by length when matching backwards.
+    }
+    __ addp(rbx, r9);  // End of capture
+    // ---------------------
+    // r11 - current input character address
+    // r9 - current capture character address
+    // rbx - end of capture
+
+    Label loop;
+    __ bind(&loop);
+    __ movzxbl(rdx, Operand(r9, 0));
+    __ movzxbl(rax, Operand(r11, 0));
+    // al - input character
+    // dl - capture character
+    __ cmpb(rax, rdx);
+    __ j(equal, &loop_increment);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
+    // a match.
+    __ orp(rax, Immediate(0x20));  // Convert match character to lower-case.
+    __ orp(rdx, Immediate(0x20));  // Convert capture character to lower-case.
+    __ cmpb(rax, rdx);
+    __ j(not_equal, on_no_match);  // Definitely not equal.
+    __ subb(rax, Immediate('a'));
+    __ cmpb(rax, Immediate('z' - 'a'));
+    __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ subb(rax, Immediate(224 - 'a'));
+    __ cmpb(rax, Immediate(254 - 224));
+    __ j(above, on_no_match);  // Weren't Latin-1 letters.
+    __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
+    __ j(equal, on_no_match);
+    __ bind(&loop_increment);
+    // Increment pointers into match and capture strings.
+    __ addp(r11, Immediate(1));
+    __ addp(r9, Immediate(1));
+    // Compare to end of capture, and loop if not done.
+    __ cmpp(r9, rbx);
+    __ j(below, &loop);
+
+    // Compute new value of character position after the matched part.
+    __ movp(rdi, r11);
+    __ subq(rdi, rsi);
+    if (read_backward) {
+      // Subtract match length if we matched backward.
+      __ addq(rdi, register_location(start_reg));
+      __ subq(rdi, register_location(start_reg + 1));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    // Save important/volatile registers before calling C function.
+#ifndef _WIN64
+    // Caller save on Linux and callee save in Windows.
+    __ pushq(rsi);
+    __ pushq(rdi);
+#endif
+    __ pushq(backtrack_stackpointer());
+
+    static const int num_arguments = 4;
+    __ PrepareCallCFunction(num_arguments);
+
+    // Put arguments into parameter registers. Parameters are
+    //   Address byte_offset1 - Address captured substring's start.
+    //   Address byte_offset2 - Address of current character position.
+    //   size_t byte_length - length of capture in bytes(!)
+    //   Isolate* isolate
+#ifdef _WIN64
+    // Compute and set byte_offset1 (start of capture).
+    __ leap(rcx, Operand(rsi, rdx, times_1, 0));
+    // Set byte_offset2.
+    __ leap(rdx, Operand(rsi, rdi, times_1, 0));
+    if (read_backward) {
+      __ subq(rdx, rbx);
+    }
+    // Set byte_length.
+    __ movp(r8, rbx);
+    // Isolate.
+    __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
+#else  // AMD64 calling convention
+    // Compute byte_offset2 (current position = rsi+rdi).
+    __ leap(rax, Operand(rsi, rdi, times_1, 0));
+    // Compute and set byte_offset1 (start of capture).
+    __ leap(rdi, Operand(rsi, rdx, times_1, 0));
+    // Set byte_offset2.
+    __ movp(rsi, rax);
+    if (read_backward) {
+      __ subq(rsi, rbx);
+    }
+    // Set byte_length.
+    __ movp(rdx, rbx);
+    // Isolate.
+    __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
+#endif
+
+    { // NOLINT: Can't find a way to open this scope without confusing the
+      // linter.
+      AllowExternalCallThatCantCauseGC scope(&masm_);
+      ExternalReference compare =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(compare, num_arguments);
+    }
+
+    // Restore original values before reacting on result value.
+    __ Move(code_object_pointer(), masm_.CodeObject());
+    __ popq(backtrack_stackpointer());
+#ifndef _WIN64
+    __ popq(rdi);
+    __ popq(rsi);
+#endif
+
+    // Check if function returned non-zero for success or zero for failure.
+    __ testp(rax, rax);
+    BranchOrBacktrack(zero, on_no_match);
+    // On success, advance position by length of capture.
+    // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
+    if (read_backward) {
+      __ subq(rdi, rbx);
+    } else {
+      __ addq(rdi, rbx);
+    }
+  }
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
+                                                    bool read_backward,
+                                                    Label* on_no_match) {
+  Label fallthrough;
+
+  // Find length of back-referenced capture.
+  ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
+  ReadPositionFromRegister(rax, start_reg + 1);  // Offset of end of capture
+  __ subp(rax, rdx);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // -----------------------
+  // rdx - Start of capture
+  // rax - length of capture
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ movl(rbx, Operand(rbp, kStringStartMinusOne));
+    __ addl(rbx, rax);
+    __ cmpl(rdi, rbx);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ movl(rbx, rdi);
+    __ addl(rbx, rax);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  // Compute pointers to match string and capture string
+  __ leap(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
+  if (read_backward) {
+    __ subq(rbx, rax);  // Offset by length when matching backwards.
+  }
+  __ addp(rdx, rsi);  // Start of capture.
+  __ leap(r9, Operand(rdx, rax, times_1, 0));  // End of capture
+
+  // -----------------------
+  // rbx - current capture character address.
+  // rbx - current input character address .
+  // r9 - end of input to match (capture length after rbx).
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ movzxbl(rax, Operand(rdx, 0));
+    __ cmpb(rax, Operand(rbx, 0));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ movzxwl(rax, Operand(rdx, 0));
+    __ cmpw(rax, Operand(rbx, 0));
+  }
+  BranchOrBacktrack(not_equal, on_no_match);
+  // Increment pointers into capture and match string.
+  __ addp(rbx, Immediate(char_size()));
+  __ addp(rdx, Immediate(char_size()));
+  // Check if we have reached end of match area.
+  __ cmpp(rdx, r9);
+  __ j(below, &loop);
+
+  // Success.
+  // Set current character position to position after match.
+  __ movp(rdi, rbx);
+  __ subq(rdi, rsi);
+  if (read_backward) {
+    // Subtract match length if we matched backward.
+    __ addq(rdi, register_location(start_reg));
+    __ subq(rdi, register_location(start_reg + 1));
+  }
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
+                                                Label* on_not_equal) {
+  __ cmpl(current_character(), Immediate(c));
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
+                                                     uint32_t mask,
+                                                     Label* on_equal) {
+  if (c == 0) {
+    __ testl(current_character(), Immediate(mask));
+  } else {
+    __ movl(rax, Immediate(mask));
+    __ andp(rax, current_character());
+    __ cmpl(rax, Immediate(c));
+  }
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
+                                                        uint32_t mask,
+                                                        Label* on_not_equal) {
+  if (c == 0) {
+    __ testl(current_character(), Immediate(mask));
+  } else {
+    __ movl(rax, Immediate(mask));
+    __ andp(rax, current_character());
+    __ cmpl(rax, Immediate(c));
+  }
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ leap(rax, Operand(current_character(), -minus));
+  __ andp(rax, Immediate(mask));
+  __ cmpl(rax, Immediate(c));
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ leal(rax, Operand(current_character(), -from));
+  __ cmpl(rax, Immediate(to - from));
+  BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ leal(rax, Operand(current_character(), -from));
+  __ cmpl(rax, Immediate(to - from));
+  BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerX64::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ Move(rax, table);
+  Register index = current_character();
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ movp(rbx, current_character());
+    __ andp(rbx, Immediate(kTableMask));
+    index = rbx;
+  }
+  __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
+          Immediate(0));
+  BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
+                                                         Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check, using the sequence:
+  //   leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
+  //   cmp(rax, Immediate(max - min))
+  switch (type) {
+  case 's':
+    // Match space-characters
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ cmpl(current_character(), Immediate(' '));
+      __ j(equal, &success, Label::kNear);
+      // Check range 0x09..0x0d
+      __ leap(rax, Operand(current_character(), -'\t'));
+      __ cmpl(rax, Immediate('\r' - '\t'));
+      __ j(below_equal, &success, Label::kNear);
+      // \u00a0 (NBSP).
+      __ cmpl(rax, Immediate(0x00a0 - '\t'));
+      BranchOrBacktrack(not_equal, on_no_match);
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match ASCII digits ('0'..'9')
+    __ leap(rax, Operand(current_character(), -'0'));
+    __ cmpl(rax, Immediate('9' - '0'));
+    BranchOrBacktrack(above, on_no_match);
+    return true;
+  case 'D':
+    // Match non ASCII-digits
+    __ leap(rax, Operand(current_character(), -'0'));
+    __ cmpl(rax, Immediate('9' - '0'));
+    BranchOrBacktrack(below_equal, on_no_match);
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ movl(rax, current_character());
+    __ xorp(rax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ subl(rax, Immediate(0x0b));
+    __ cmpl(rax, Immediate(0x0c - 0x0b));
+    BranchOrBacktrack(below_equal, on_no_match);
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ subl(rax, Immediate(0x2028 - 0x0b));
+      __ cmpl(rax, Immediate(0x2029 - 0x2028));
+      BranchOrBacktrack(below_equal, on_no_match);
+    }
+    return true;
+  }
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ movl(rax, current_character());
+    __ xorp(rax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ subl(rax, Immediate(0x0b));
+    __ cmpl(rax, Immediate(0x0c - 0x0b));
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(above, on_no_match);
+    } else {
+      Label done;
+      BranchOrBacktrack(below_equal, &done);
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ subl(rax, Immediate(0x2028 - 0x0b));
+      __ cmpl(rax, Immediate(0x2029 - 0x2028));
+      BranchOrBacktrack(above, on_no_match);
+      __ bind(&done);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmpl(current_character(), Immediate('z'));
+      BranchOrBacktrack(above, on_no_match);
+    }
+    __ Move(rbx, ExternalReference::re_word_character_map());
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    __ testb(Operand(rbx, current_character(), times_1, 0),
+             current_character());
+    BranchOrBacktrack(zero, on_no_match);
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmpl(current_character(), Immediate('z'));
+      __ j(above, &done);
+    }
+    __ Move(rbx, ExternalReference::re_word_character_map());
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    __ testb(Operand(rbx, current_character(), times_1, 0),
+             current_character());
+    BranchOrBacktrack(not_zero, on_no_match);
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+
+  case '*':
+    // Match any character.
+    return true;
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerX64::Fail() {
+  STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
+  if (!global()) {
+    __ Set(rax, FAILURE);
+  }
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
+  Label return_rax;
+  // Finalize code - write the entry point code now we know how many
+  // registers we need.
+  // Entry code:
+  __ bind(&entry_label_);
+
+  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
+  // is generated.
+  FrameScope scope(&masm_, StackFrame::MANUAL);
+
+  // Actually emit code to start a new stack frame.
+  __ pushq(rbp);
+  __ movp(rbp, rsp);
+  // Save parameters and callee-save registers. Order here should correspond
+  //  to order of kBackup_ebx etc.
+#ifdef _WIN64
+  // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
+  // Store register parameters in pre-allocated stack slots,
+  __ movq(Operand(rbp, kInputString), rcx);
+  __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
+  __ movq(Operand(rbp, kInputStart), r8);
+  __ movq(Operand(rbp, kInputEnd), r9);
+  // Callee-save on Win64.
+  __ pushq(rsi);
+  __ pushq(rdi);
+  __ pushq(rbx);
+#else
+  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
+  // Push register parameters on stack for reference.
+  DCHECK_EQ(kInputString, -1 * kRegisterSize);
+  DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
+  DCHECK_EQ(kInputStart, -3 * kRegisterSize);
+  DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
+  DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
+  DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
+  __ pushq(rdi);
+  __ pushq(rsi);
+  __ pushq(rdx);
+  __ pushq(rcx);
+  __ pushq(r8);
+  __ pushq(r9);
+
+  __ pushq(rbx);  // Callee-save
+#endif
+
+  __ Push(Immediate(0));  // Number of successful matches in a global regexp.
+  __ Push(Immediate(0));  // Make room for "string start - 1" constant.
+
+  // Check if we have space on the stack for registers.
+  Label stack_limit_hit;
+  Label stack_ok;
+
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ movp(rcx, rsp);
+  __ Move(kScratchRegister, stack_limit);
+  __ subp(rcx, Operand(kScratchRegister, 0));
+  // Handle it if the stack pointer is already below the stack limit.
+  __ j(below_equal, &stack_limit_hit);
+  // Check if there is room for the variable number of registers above
+  // the stack limit.
+  __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
+  __ j(above_equal, &stack_ok);
+  // Exit with OutOfMemory exception. There is not enough space on the stack
+  // for our working registers.
+  __ Set(rax, EXCEPTION);
+  __ jmp(&return_rax);
+
+  __ bind(&stack_limit_hit);
+  __ Move(code_object_pointer(), masm_.CodeObject());
+  CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
+  __ testp(rax, rax);
+  // If returned value is non-zero, we exit with the returned value as result.
+  __ j(not_zero, &return_rax);
+
+  __ bind(&stack_ok);
+
+  // Allocate space on stack for registers.
+  __ subp(rsp, Immediate(num_registers_ * kPointerSize));
+  // Load string length.
+  __ movp(rsi, Operand(rbp, kInputEnd));
+  // Load input position.
+  __ movp(rdi, Operand(rbp, kInputStart));
+  // Set up rdi to be negative offset from string end.
+  __ subq(rdi, rsi);
+  // Set rax to address of char before start of the string
+  // (effectively string position -1).
+  __ movp(rbx, Operand(rbp, kStartIndex));
+  __ negq(rbx);
+  if (mode_ == UC16) {
+    __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
+  } else {
+    __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
+  }
+  // Store this value in a local variable, for use when clearing
+  // position registers.
+  __ movp(Operand(rbp, kStringStartMinusOne), rax);
+
+#if V8_OS_WIN
+  // Ensure that we have written to each stack page, in order. Skipping a page
+  // on Windows can cause segmentation faults. Assuming page size is 4k.
+  const int kPageSize = 4096;
+  const int kRegistersPerPage = kPageSize / kPointerSize;
+  for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+      i < num_registers_;
+      i += kRegistersPerPage) {
+    __ movp(register_location(i), rax);  // One write every page.
+  }
+#endif  // V8_OS_WIN
+
+  // Initialize code object pointer.
+  __ Move(code_object_pointer(), masm_.CodeObject());
+
+  Label load_char_start_regexp, start_regexp;
+  // Load newline if index is at start, previous character otherwise.
+  __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
+  __ j(not_equal, &load_char_start_regexp, Label::kNear);
+  __ Set(current_character(), '\n');
+  __ jmp(&start_regexp, Label::kNear);
+
+  // Global regexp restarts matching here.
+  __ bind(&load_char_start_regexp);
+  // Load previous char as initial value of current character register.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&start_regexp);
+
+  // Initialize on-stack registers.
+  if (num_saved_registers_ > 0) {
+    // Fill saved registers with initial value = start offset - 1
+    // Fill in stack push order, to avoid accessing across an unwritten
+    // page (a problem on Windows).
+    if (num_saved_registers_ > 8) {
+      __ Set(rcx, kRegisterZero);
+      Label init_loop;
+      __ bind(&init_loop);
+      __ movp(Operand(rbp, rcx, times_1, 0), rax);
+      __ subq(rcx, Immediate(kPointerSize));
+      __ cmpq(rcx,
+              Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
+      __ j(greater, &init_loop);
+    } else {  // Unroll the loop.
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ movp(register_location(i), rax);
+      }
+    }
+  }
+
+  // Initialize backtrack stack pointer.
+  __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
+
+  __ jmp(&start_label_);
+
+  // Exit code:
+  if (success_label_.is_linked()) {
+    // Save captures when successful.
+    __ bind(&success_label_);
+    if (num_saved_registers_ > 0) {
+      // copy captures to output
+      __ movp(rdx, Operand(rbp, kStartIndex));
+      __ movp(rbx, Operand(rbp, kRegisterOutput));
+      __ movp(rcx, Operand(rbp, kInputEnd));
+      __ subp(rcx, Operand(rbp, kInputStart));
+      if (mode_ == UC16) {
+        __ leap(rcx, Operand(rcx, rdx, times_2, 0));
+      } else {
+        __ addp(rcx, rdx);
+      }
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ movp(rax, register_location(i));
+        if (i == 0 && global_with_zero_length_check()) {
+          // Keep capture start in rdx for the zero-length check later.
+          __ movp(rdx, rax);
+        }
+        __ addp(rax, rcx);  // Convert to index from start, not end.
+        if (mode_ == UC16) {
+          __ sarp(rax, Immediate(1));  // Convert byte index to character index.
+        }
+        __ movl(Operand(rbx, i * kIntSize), rax);
+      }
+    }
+
+    if (global()) {
+      // Restart matching if the regular expression is flagged as global.
+      // Increment success counter.
+      __ incp(Operand(rbp, kSuccessfulCaptures));
+      // Capture results have been stored, so the number of remaining global
+      // output registers is reduced by the number of stored captures.
+      __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
+      __ subp(rcx, Immediate(num_saved_registers_));
+      // Check whether we have enough room for another set of capture results.
+      __ cmpp(rcx, Immediate(num_saved_registers_));
+      __ j(less, &exit_label_);
+
+      __ movp(Operand(rbp, kNumOutputRegisters), rcx);
+      // Advance the location for output.
+      __ addp(Operand(rbp, kRegisterOutput),
+              Immediate(num_saved_registers_ * kIntSize));
+
+      // Prepare rax to initialize registers with its value in the next run.
+      __ movp(rax, Operand(rbp, kStringStartMinusOne));
+
+      if (global_with_zero_length_check()) {
+        // Special case for zero-length matches.
+        // rdx: capture start index
+        __ cmpp(rdi, rdx);
+        // Not a zero-length match, restart.
+        __ j(not_equal, &load_char_start_regexp);
+        // rdi (offset from the end) is zero if we already reached the end.
+        __ testp(rdi, rdi);
+        __ j(zero, &exit_label_, Label::kNear);
+        // Advance current position after a zero-length match.
+        if (mode_ == UC16) {
+          __ addq(rdi, Immediate(2));
+        } else {
+          __ incq(rdi);
+        }
+      }
+
+      __ jmp(&load_char_start_regexp);
+    } else {
+      __ movp(rax, Immediate(SUCCESS));
+    }
+  }
+
+  __ bind(&exit_label_);
+  if (global()) {
+    // Return the number of successful captures.
+    __ movp(rax, Operand(rbp, kSuccessfulCaptures));
+  }
+
+  __ bind(&return_rax);
+#ifdef _WIN64
+  // Restore callee save registers.
+  __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
+  __ popq(rbx);
+  __ popq(rdi);
+  __ popq(rsi);
+  // Stack now at rbp.
+#else
+  // Restore callee save register.
+  __ movp(rbx, Operand(rbp, kBackup_rbx));
+  // Skip rsp to rbp.
+  __ movp(rsp, rbp);
+#endif
+  // Exit function frame, restore previous one.
+  __ popq(rbp);
+  __ ret(0);
+
+  // Backtrack code (branch target for conditional backtracks).
+  if (backtrack_label_.is_linked()) {
+    __ bind(&backtrack_label_);
+    Backtrack();
+  }
+
+  Label exit_with_exception;
+
+  // Preempt-code
+  if (check_preempt_label_.is_linked()) {
+    SafeCallTarget(&check_preempt_label_);
+
+    __ pushq(backtrack_stackpointer());
+    __ pushq(rdi);
+
+    CallCheckStackGuardState();
+    __ testp(rax, rax);
+    // If returning non-zero, we should end execution with the given
+    // result as return value.
+    __ j(not_zero, &return_rax);
+
+    // Restore registers.
+    __ Move(code_object_pointer(), masm_.CodeObject());
+    __ popq(rdi);
+    __ popq(backtrack_stackpointer());
+    // String might have moved: Reload esi from frame.
+    __ movp(rsi, Operand(rbp, kInputEnd));
+    SafeReturn();
+  }
+
+  // Backtrack stack overflow code.
+  if (stack_overflow_label_.is_linked()) {
+    SafeCallTarget(&stack_overflow_label_);
+    // Reached if the backtrack-stack limit has been hit.
+
+    Label grow_failed;
+    // Save registers before calling C function
+#ifndef _WIN64
+    // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
+    __ pushq(rsi);
+    __ pushq(rdi);
+#endif
+
+    // Call GrowStack(backtrack_stackpointer())
+    static const int num_arguments = 3;
+    __ PrepareCallCFunction(num_arguments);
+#ifdef _WIN64
+    // Microsoft passes parameters in rcx, rdx, r8.
+    // First argument, backtrack stackpointer, is already in rcx.
+    __ leap(rdx, Operand(rbp, kStackHighEnd));  // Second argument
+    __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
+#else
+    // AMD64 ABI passes parameters in rdi, rsi, rdx.
+    __ movp(rdi, backtrack_stackpointer());   // First argument.
+    __ leap(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
+    __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
+#endif
+    ExternalReference grow_stack =
+        ExternalReference::re_grow_stack(isolate());
+    __ CallCFunction(grow_stack, num_arguments);
+    // If return NULL, we have failed to grow the stack, and
+    // must exit with a stack-overflow exception.
+    __ testp(rax, rax);
+    __ j(equal, &exit_with_exception);
+    // Otherwise use return value as new stack pointer.
+    __ movp(backtrack_stackpointer(), rax);
+    // Restore saved registers and continue.
+    __ Move(code_object_pointer(), masm_.CodeObject());
+#ifndef _WIN64
+    __ popq(rdi);
+    __ popq(rsi);
+#endif
+    SafeReturn();
+  }
+
+  if (exit_with_exception.is_linked()) {
+    // If any of the code above needed to exit with an exception.
+    __ bind(&exit_with_exception);
+    // Exit with Result EXCEPTION(-1) to signal thrown exception.
+    __ Set(rax, EXCEPTION);
+    __ jmp(&return_rax);
+  }
+
+  FixupCodeRelativePositions();
+
+  CodeDesc code_desc;
+  masm_.GetCode(&code_desc);
+  Isolate* isolate = this->isolate();
+  Handle<Code> code = isolate->factory()->NewCode(
+      code_desc, Code::ComputeFlags(Code::REGEXP),
+      masm_.CodeObject());
+  PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerX64::GoTo(Label* to) {
+  BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
+                                           int comparand,
+                                           Label* if_ge) {
+  __ cmpp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
+                                           int comparand,
+                                           Label* if_lt) {
+  __ cmpp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
+                                              Label* if_eq) {
+  __ cmpp(rdi, register_location(reg));
+  BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerX64::Implementation() {
+  return kX64Implementation;
+}
+
+
+void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
+                                                   Label* on_end_of_input,
+                                                   bool check_bounds,
+                                                   int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerX64::PopCurrentPosition() {
+  Pop(rdi);
+}
+
+
+void RegExpMacroAssemblerX64::PopRegister(int register_index) {
+  Pop(rax);
+  __ movp(register_location(register_index), rax);
+}
+
+
+void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
+  Push(label);
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX64::PushCurrentPosition() {
+  Push(rdi);
+}
+
+
+void RegExpMacroAssemblerX64::PushRegister(int register_index,
+                                           StackCheckFlag check_stack_limit) {
+  __ movp(rax, register_location(register_index));
+  Push(rax);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
+
+
+void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
+  if (kPointerSize == kInt64Size) {
+    __ movq(rdi, register_location(reg));
+  } else {
+    // Need sign extension for x32 as rdi might be used as an index register.
+    __ movsxlq(rdi, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
+  if (kPointerSize == kInt64Size) {
+    __ movq(dst, register_location(reg));
+  } else {
+    // Need sign extension for x32 as dst might be used as an index register.
+    __ movsxlq(dst, register_location(reg));
+  }
+}
+
+
+void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
+  __ movp(backtrack_stackpointer(), register_location(reg));
+  __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
+}
+
+
+void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
+  Label after_position;
+  __ cmpp(rdi, Immediate(-by * char_size()));
+  __ j(greater_equal, &after_position, Label::kNear);
+  __ movq(rdi, Immediate(-by * char_size()));
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ movp(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerX64::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
+                                                             int cp_offset) {
+  if (cp_offset == 0) {
+    __ movp(register_location(reg), rdi);
+  } else {
+    __ leap(rax, Operand(rdi, cp_offset * char_size()));
+    __ movp(register_location(reg), rax);
+  }
+}
+
+
+void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ movp(rax, Operand(rbp, kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ movp(register_location(reg), rax);
+  }
+}
+
+
+void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
+  __ movp(rax, backtrack_stackpointer());
+  __ subp(rax, Operand(rbp, kStackHighEnd));
+  __ movp(register_location(reg), rax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
+  // This function call preserves no register values. Caller should
+  // store anything volatile in a C call or overwritten by this function.
+  static const int num_arguments = 3;
+  __ PrepareCallCFunction(num_arguments);
+#ifdef _WIN64
+  // Second argument: Code* of self. (Do this before overwriting r8).
+  __ movp(rdx, code_object_pointer());
+  // Third argument: RegExp code frame pointer.
+  __ movp(r8, rbp);
+  // First argument: Next address on the stack (will be address of
+  // return address).
+  __ leap(rcx, Operand(rsp, -kPointerSize));
+#else
+  // Third argument: RegExp code frame pointer.
+  __ movp(rdx, rbp);
+  // Second argument: Code* of self.
+  __ movp(rsi, code_object_pointer());
+  // First argument: Next address on the stack (will be address of
+  // return address).
+  __ leap(rdi, Operand(rsp, -kRegisterSize));
+#endif
+  ExternalReference stack_check =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ CallCFunction(stack_check, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
+                                                  Code* re_code,
+                                                  Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<int>(re_frame, kStartIndex),
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerX64::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return Operand(rbp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
+                                            Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    __ cmpl(rdi, Immediate(-cp_offset * char_size()));
+    BranchOrBacktrack(greater_equal, on_outside_input);
+  } else {
+    __ leap(rax, Operand(rdi, cp_offset * char_size()));
+    __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
+    BranchOrBacktrack(less_equal, on_outside_input);
+  }
+}
+
+
+void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
+                                                Label* to) {
+  if (condition < 0) {  // No condition
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ j(condition, &backtrack_label_);
+    return;
+  }
+  __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerX64::SafeCall(Label* to) {
+  __ call(to);
+}
+
+
+void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
+  __ bind(label);
+  __ subp(Operand(rsp, 0), code_object_pointer());
+}
+
+
+void RegExpMacroAssemblerX64::SafeReturn() {
+  __ addp(Operand(rsp, 0), code_object_pointer());
+  __ ret(0);
+}
+
+
+void RegExpMacroAssemblerX64::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  // Notice: This updates flags, unlike normal Push.
+  __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+  __ movl(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerX64::Push(Immediate value) {
+  // Notice: This updates flags, unlike normal Push.
+  __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+  __ movl(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
+  for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
+    int position = code_relative_fixup_positions_[i];
+    // The position succeeds a relative label offset from position.
+    // Patch the relative offset to be relative to the Code object pointer
+    // instead.
+    int patch_position = position - kIntSize;
+    int offset = masm_.long_at(patch_position);
+    masm_.long_at_put(patch_position,
+                       offset
+                       + position
+                       + Code::kHeaderSize
+                       - kHeapObjectTag);
+  }
+  code_relative_fixup_positions_.Clear();
+}
+
+
+void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
+  __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+  __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
+  MarkPositionForCodeRelativeFixup();
+}
+
+
+void RegExpMacroAssemblerX64::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
+  // Notice: This updates flags, unlike normal Pop.
+  __ addp(backtrack_stackpointer(), Immediate(kIntSize));
+}
+
+
+void RegExpMacroAssemblerX64::Drop() {
+  __ addp(backtrack_stackpointer(), Immediate(kIntSize));
+}
+
+
+void RegExpMacroAssemblerX64::CheckPreemption() {
+  // Check for preemption.
+  Label no_preempt;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ load_rax(stack_limit);
+  __ cmpp(rsp, rax);
+  __ j(above, &no_preempt);
+
+  SafeCall(&check_preempt_label_);
+
+  __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerX64::CheckStackLimit() {
+  Label no_stack_overflow;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ load_rax(stack_limit);
+  __ cmpp(backtrack_stackpointer(), rax);
+  __ j(above, &no_stack_overflow);
+
+  SafeCall(&stack_overflow_label_);
+
+  __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                            int characters) {
+  if (mode_ == LATIN1) {
+    if (characters == 4) {
+      __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+    } else if (characters == 2) {
+      __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+    } else {
+      DCHECK(characters == 1);
+      __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    if (characters == 2) {
+      __ movl(current_character(),
+              Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
+    } else {
+      DCHECK(characters == 1);
+      __ movzxwl(current_character(),
+                 Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
+    }
+  }
+}
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_X64
diff --git a/src/regexp/x64/regexp-macro-assembler-x64.h b/src/regexp/x64/regexp-macro-assembler-x64.h
new file mode 100644
index 0000000..2578047
--- /dev/null
+++ b/src/regexp/x64/regexp-macro-assembler-x64.h
@@ -0,0 +1,284 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
+#define V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
+
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/x64/assembler-x64.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+
+class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode,
+                          int registers_to_save);
+  virtual ~RegExpMacroAssemblerX64();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(uint32_t c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(uint32_t c,
+                                      uint32_t mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(uint32_t c,
+                                         uint32_t mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type,
+                                          Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+
+  static Result Match(Handle<Code> regexp,
+                      Handle<String> subject,
+                      int* offsets_vector,
+                      int offsets_vector_length,
+                      int previous_index,
+                      Isolate* isolate);
+
+  static Result Execute(Code* code,
+                        String* input,
+                        int start_offset,
+                        const byte* input_start,
+                        const byte* input_end,
+                        int* output,
+                        bool at_start);
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from rbp of function parameters and stored registers.
+  static const int kFramePointer = 0;
+  // Above the frame pointer - function parameters and return address.
+  static const int kReturn_eip = kFramePointer + kRegisterSize;
+  static const int kFrameAlign = kReturn_eip + kRegisterSize;
+
+#ifdef _WIN64
+  // Parameters (first four passed as registers, but with room on stack).
+  // In Microsoft 64-bit Calling Convention, there is room on the callers
+  // stack (before the return address) to spill parameter registers. We
+  // use this space to store the register passed parameters.
+  static const int kInputString = kFrameAlign;
+  // StartIndex is passed as 32 bit int.
+  static const int kStartIndex = kInputString + kRegisterSize;
+  static const int kInputStart = kStartIndex + kRegisterSize;
+  static const int kInputEnd = kInputStart + kRegisterSize;
+  static const int kRegisterOutput = kInputEnd + kRegisterSize;
+  // For the case of global regular expression, we have room to store at least
+  // one set of capture results.  For the case of non-global regexp, we ignore
+  // this value. NumOutputRegisters is passed as 32-bit value.  The upper
+  // 32 bit of this 64-bit stack slot may contain garbage.
+  static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize;
+  // DirectCall is passed as 32 bit int (values 0 or 1).
+  static const int kDirectCall = kStackHighEnd + kRegisterSize;
+  static const int kIsolate = kDirectCall + kRegisterSize;
+#else
+  // In AMD64 ABI Calling Convention, the first six integer parameters
+  // are passed as registers, and caller must allocate space on the stack
+  // if it wants them stored. We push the parameters after the frame pointer.
+  static const int kInputString = kFramePointer - kRegisterSize;
+  static const int kStartIndex = kInputString - kRegisterSize;
+  static const int kInputStart = kStartIndex - kRegisterSize;
+  static const int kInputEnd = kInputStart - kRegisterSize;
+  static const int kRegisterOutput = kInputEnd - kRegisterSize;
+
+  // For the case of global regular expression, we have room to store at least
+  // one set of capture results.  For the case of non-global regexp, we ignore
+  // this value.
+  static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize;
+  static const int kStackHighEnd = kFrameAlign;
+  static const int kDirectCall = kStackHighEnd + kRegisterSize;
+  static const int kIsolate = kDirectCall + kRegisterSize;
+#endif
+
+#ifdef _WIN64
+  // Microsoft calling convention has three callee-saved registers
+  // (that we are using). We push these after the frame pointer.
+  static const int kBackup_rsi = kFramePointer - kRegisterSize;
+  static const int kBackup_rdi = kBackup_rsi - kRegisterSize;
+  static const int kBackup_rbx = kBackup_rdi - kRegisterSize;
+  static const int kLastCalleeSaveRegister = kBackup_rbx;
+#else
+  // AMD64 Calling Convention has only one callee-save register that
+  // we use. We push this after the frame pointer (and after the
+  // parameters).
+  static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize;
+  static const int kLastCalleeSaveRegister = kBackup_rbx;
+#endif
+
+  static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize;
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState();
+
+  // The rbp-relative location of a regexp register.
+  Operand register_location(int register_index);
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return rdx; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return rcx; }
+
+  // The registers containing a self pointer to this code's Code object.
+  inline Register code_object_pointer() { return r8; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to);
+
+  void MarkPositionForCodeRelativeFixup() {
+    code_relative_fixup_positions_.Add(masm_.pc_offset(), zone());
+  }
+
+  void FixupCodeRelativePositions();
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to);
+  inline void SafeCallTarget(Label* label);
+  inline void SafeReturn();
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer (rcx) by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pushes a value on the backtrack stack. Decrements the stack pointer (rcx)
+  // by a word size and stores the value there.
+  inline void Push(Immediate value);
+
+  // Pushes the Code object relative offset of a label on the backtrack stack
+  // (i.e., a backtrack target). Decrements the stack pointer (rcx)
+  // by a word size and stores the value there.
+  inline void Push(Label* label);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // (rcx) and increments it by a word size.
+  inline void Pop(Register target);
+
+  // Drops the top value from the backtrack stack without reading it.
+  // Increments the stack pointer (rcx) by a word size.
+  inline void Drop();
+
+  inline void ReadPositionFromRegister(Register dst, int reg);
+
+  Isolate* isolate() const { return masm_.isolate(); }
+
+  MacroAssembler masm_;
+  MacroAssembler::NoRootArrayScope no_root_array_scope_;
+
+  ZoneList<int> code_relative_fixup_positions_;
+
+  // Which mode to generate code for (LATIN1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+};
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
diff --git a/src/regexp/x87/OWNERS b/src/regexp/x87/OWNERS
new file mode 100644
index 0000000..dd9998b
--- /dev/null
+++ b/src/regexp/x87/OWNERS
@@ -0,0 +1 @@
+weiliang.lin@intel.com
diff --git a/src/regexp/x87/regexp-macro-assembler-x87.cc b/src/regexp/x87/regexp-macro-assembler-x87.cc
new file mode 100644
index 0000000..01d0b24
--- /dev/null
+++ b/src/regexp/x87/regexp-macro-assembler-x87.cc
@@ -0,0 +1,1263 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
+
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - edx : Current character.  Must be loaded using LoadCurrentCharacter
+ *         before using any of the dispatch methods.  Temporarily stores the
+ *         index of capture start after a matching pass for a global regexp.
+ * - edi : Current position in input, as negative offset from end of string.
+ *         Please notice that this is the byte offset, not the character offset!
+ * - esi : end of input (points to byte after last character in input).
+ * - ebp : Frame pointer.  Used to access arguments, local variables and
+ *         RegExp registers.
+ * - esp : Points to tip of C stack.
+ * - ecx : Points to tip of backtrack stack
+ *
+ * The registers eax and ebx are free to use for computations.
+ *
+ * Each call to a public method should retain this convention.
+ * The stack will have the following structure:
+ *       - Isolate* isolate     (address of the current isolate)
+ *       - direct_call          (if 1, direct call from JavaScript code, if 0
+ *                               call through the runtime system)
+ *       - stack_area_base      (high end of the memory area to use as
+ *                               backtracking stack)
+ *       - capture array size   (may fit multiple sets of matches)
+ *       - int* capture_array   (int[num_saved_registers_], for output).
+ *       - end of input         (address of end of string)
+ *       - start of input       (address of first character in string)
+ *       - start index          (character index of start)
+ *       - String* input_string (location of a handle containing the string)
+ *       --- frame alignment (if applicable) ---
+ *       - return address
+ * ebp-> - old ebp
+ *       - backup of caller esi
+ *       - backup of caller edi
+ *       - backup of caller ebx
+ *       - success counter      (only for global regexps to count matches).
+ *       - Offset of location before start of input (effectively character
+ *         string start - 1). Used to initialize capture registers to a
+ *         non-position.
+ *       - register 0  ebp[-4]  (only positions must be stored in the first
+ *       - register 1  ebp[-8]   num_saved_registers_ registers)
+ *       - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code, by calling the code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ *              int start_index,
+ *              Address start,
+ *              Address end,
+ *              int* capture_output_array,
+ *              bool at_start,
+ *              byte* stack_area_base,
+ *              bool direct_call)
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
+                                                 Mode mode,
+                                                 int registers_to_save)
+    : NativeRegExpMacroAssembler(isolate, zone),
+      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+                               CodeObjectRequired::kYes)),
+      mode_(mode),
+      num_registers_(registers_to_save),
+      num_saved_registers_(registers_to_save),
+      entry_label_(),
+      start_label_(),
+      success_label_(),
+      backtrack_label_(),
+      exit_label_() {
+  DCHECK_EQ(0, registers_to_save % 2);
+  __ jmp(&entry_label_);   // We'll write the entry code later.
+  __ bind(&start_label_);  // And then continue from here.
+}
+
+
+RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
+  delete masm_;
+  // Unuse labels in case we throw away the assembler without calling GetCode.
+  entry_label_.Unuse();
+  start_label_.Unuse();
+  success_label_.Unuse();
+  backtrack_label_.Unuse();
+  exit_label_.Unuse();
+  check_preempt_label_.Unuse();
+  stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerX87::stack_limit_slack()  {
+  return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
+  if (by != 0) {
+    __ add(edi, Immediate(by * char_size()));
+  }
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
+  DCHECK(reg >= 0);
+  DCHECK(reg < num_registers_);
+  if (by != 0) {
+    __ add(register_location(reg), Immediate(by));
+  }
+}
+
+
+void RegExpMacroAssemblerX87::Backtrack() {
+  CheckPreemption();
+  // Pop Code* offset from backtrack stack, add Code* and jump to location.
+  Pop(ebx);
+  __ add(ebx, Immediate(masm_->CodeObject()));
+  __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::Bind(Label* label) {
+  __ bind(label);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
+  __ cmp(current_character(), c);
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
+  __ cmp(current_character(), limit);
+  BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
+  __ lea(eax, Operand(edi, -char_size()));
+  __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+  BranchOrBacktrack(equal, on_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotAtStart(int cp_offset,
+                                              Label* on_not_at_start) {
+  __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
+  __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+  BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
+  __ cmp(current_character(), limit);
+  BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
+  Label fallthrough;
+  __ cmp(edi, Operand(backtrack_stackpointer(), 0));
+  __ j(not_equal, &fallthrough);
+  __ add(backtrack_stackpointer(), Immediate(kPointerSize));  // Pop.
+  BranchOrBacktrack(no_condition, on_equal);
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
+    int start_reg, bool read_backward, Label* on_no_match) {
+  Label fallthrough;
+  __ mov(edx, register_location(start_reg));  // Index of start of capture
+  __ mov(ebx, register_location(start_reg + 1));  // Index of end of capture
+  __ sub(ebx, edx);  // Length of capture.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ mov(eax, Operand(ebp, kStringStartMinusOne));
+    __ add(eax, ebx);
+    __ cmp(edi, eax);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ mov(eax, edi);
+    __ add(eax, ebx);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  if (mode_ == LATIN1) {
+    Label success;
+    Label fail;
+    Label loop_increment;
+    // Save register contents to make the registers available below.
+    __ push(edi);
+    __ push(backtrack_stackpointer());
+    // After this, the eax, ecx, and edi registers are available.
+
+    __ add(edx, esi);  // Start of capture
+    __ add(edi, esi);  // Start of text to match against capture.
+    if (read_backward) {
+      __ sub(edi, ebx);  // Offset by length when matching backwards.
+    }
+    __ add(ebx, edi);  // End of text to match against capture.
+
+    Label loop;
+    __ bind(&loop);
+    __ movzx_b(eax, Operand(edi, 0));
+    __ cmpb_al(Operand(edx, 0));
+    __ j(equal, &loop_increment);
+
+    // Mismatch, try case-insensitive match (converting letters to lower-case).
+    __ or_(eax, 0x20);  // Convert match character to lower-case.
+    __ lea(ecx, Operand(eax, -'a'));
+    __ cmp(ecx, static_cast<int32_t>('z' - 'a'));  // Is eax a lowercase letter?
+    Label convert_capture;
+    __ j(below_equal, &convert_capture);  // In range 'a'-'z'.
+    // Latin-1: Check for values in range [224,254] but not 247.
+    __ sub(ecx, Immediate(224 - 'a'));
+    __ cmp(ecx, Immediate(254 - 224));
+    __ j(above, &fail);  // Weren't Latin-1 letters.
+    __ cmp(ecx, Immediate(247 - 224));  // Check for 247.
+    __ j(equal, &fail);
+    __ bind(&convert_capture);
+    // Also convert capture character.
+    __ movzx_b(ecx, Operand(edx, 0));
+    __ or_(ecx, 0x20);
+
+    __ cmp(eax, ecx);
+    __ j(not_equal, &fail);
+
+    __ bind(&loop_increment);
+    // Increment pointers into match and capture strings.
+    __ add(edx, Immediate(1));
+    __ add(edi, Immediate(1));
+    // Compare to end of match, and loop if not done.
+    __ cmp(edi, ebx);
+    __ j(below, &loop);
+    __ jmp(&success);
+
+    __ bind(&fail);
+    // Restore original values before failing.
+    __ pop(backtrack_stackpointer());
+    __ pop(edi);
+    BranchOrBacktrack(no_condition, on_no_match);
+
+    __ bind(&success);
+    // Restore original value before continuing.
+    __ pop(backtrack_stackpointer());
+    // Drop original value of character position.
+    __ add(esp, Immediate(kPointerSize));
+    // Compute new value of character position after the matched part.
+    __ sub(edi, esi);
+    if (read_backward) {
+      // Subtract match length if we matched backward.
+      __ add(edi, register_location(start_reg));
+      __ sub(edi, register_location(start_reg + 1));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    // Save registers before calling C function.
+    __ push(esi);
+    __ push(edi);
+    __ push(backtrack_stackpointer());
+    __ push(ebx);
+
+    static const int argument_count = 4;
+    __ PrepareCallCFunction(argument_count, ecx);
+    // Put arguments into allocated stack area, last argument highest on stack.
+    // Parameters are
+    //   Address byte_offset1 - Address captured substring's start.
+    //   Address byte_offset2 - Address of current character position.
+    //   size_t byte_length - length of capture in bytes(!)
+    //   Isolate* isolate
+
+    // Set isolate.
+    __ mov(Operand(esp, 3 * kPointerSize),
+           Immediate(ExternalReference::isolate_address(isolate())));
+    // Set byte_length.
+    __ mov(Operand(esp, 2 * kPointerSize), ebx);
+    // Set byte_offset2.
+    // Found by adding negative string-end offset of current position (edi)
+    // to end of string.
+    __ add(edi, esi);
+    if (read_backward) {
+      __ sub(edi, ebx);  // Offset by length when matching backwards.
+    }
+    __ mov(Operand(esp, 1 * kPointerSize), edi);
+    // Set byte_offset1.
+    // Start of capture, where edx already holds string-end negative offset.
+    __ add(edx, esi);
+    __ mov(Operand(esp, 0 * kPointerSize), edx);
+
+    {
+      AllowExternalCallThatCantCauseGC scope(masm_);
+      ExternalReference compare =
+          ExternalReference::re_case_insensitive_compare_uc16(isolate());
+      __ CallCFunction(compare, argument_count);
+    }
+    // Pop original values before reacting on result value.
+    __ pop(ebx);
+    __ pop(backtrack_stackpointer());
+    __ pop(edi);
+    __ pop(esi);
+
+    // Check if function returned non-zero for success or zero for failure.
+    __ or_(eax, eax);
+    BranchOrBacktrack(zero, on_no_match);
+    // On success, advance position by length of capture.
+    if (read_backward) {
+      __ sub(edi, ebx);
+    } else {
+      __ add(edi, ebx);
+    }
+  }
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotBackReference(int start_reg,
+                                                    bool read_backward,
+                                                    Label* on_no_match) {
+  Label fallthrough;
+  Label success;
+  Label fail;
+
+  // Find length of back-referenced capture.
+  __ mov(edx, register_location(start_reg));
+  __ mov(eax, register_location(start_reg + 1));
+  __ sub(eax, edx);  // Length to check.
+
+  // At this point, the capture registers are either both set or both cleared.
+  // If the capture length is zero, then the capture is either empty or cleared.
+  // Fall through in both cases.
+  __ j(equal, &fallthrough);
+
+  // Check that there are sufficient characters left in the input.
+  if (read_backward) {
+    __ mov(ebx, Operand(ebp, kStringStartMinusOne));
+    __ add(ebx, eax);
+    __ cmp(edi, ebx);
+    BranchOrBacktrack(less_equal, on_no_match);
+  } else {
+    __ mov(ebx, edi);
+    __ add(ebx, eax);
+    BranchOrBacktrack(greater, on_no_match);
+  }
+
+  // Save register to make it available below.
+  __ push(backtrack_stackpointer());
+
+  // Compute pointers to match string and capture string
+  __ add(edx, esi);  // Start of capture.
+  __ lea(ebx, Operand(esi, edi, times_1, 0));  // Start of match.
+  if (read_backward) {
+    __ sub(ebx, eax);  // Offset by length when matching backwards.
+  }
+  __ lea(ecx, Operand(eax, ebx, times_1, 0));  // End of match
+
+  Label loop;
+  __ bind(&loop);
+  if (mode_ == LATIN1) {
+    __ movzx_b(eax, Operand(edx, 0));
+    __ cmpb_al(Operand(ebx, 0));
+  } else {
+    DCHECK(mode_ == UC16);
+    __ movzx_w(eax, Operand(edx, 0));
+    __ cmpw_ax(Operand(ebx, 0));
+  }
+  __ j(not_equal, &fail);
+  // Increment pointers into capture and match string.
+  __ add(edx, Immediate(char_size()));
+  __ add(ebx, Immediate(char_size()));
+  // Check if we have reached end of match area.
+  __ cmp(ebx, ecx);
+  __ j(below, &loop);
+  __ jmp(&success);
+
+  __ bind(&fail);
+  // Restore backtrack stackpointer.
+  __ pop(backtrack_stackpointer());
+  BranchOrBacktrack(no_condition, on_no_match);
+
+  __ bind(&success);
+  // Move current character position to position after match.
+  __ mov(edi, ecx);
+  __ sub(edi, esi);
+  if (read_backward) {
+    // Subtract match length if we matched backward.
+    __ add(edi, register_location(start_reg));
+    __ sub(edi, register_location(start_reg + 1));
+  }
+  // Restore backtrack stackpointer.
+  __ pop(backtrack_stackpointer());
+
+  __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
+                                                 Label* on_not_equal) {
+  __ cmp(current_character(), c);
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
+                                                      uint32_t mask,
+                                                      Label* on_equal) {
+  if (c == 0) {
+    __ test(current_character(), Immediate(mask));
+  } else {
+    __ mov(eax, mask);
+    __ and_(eax, current_character());
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
+                                                         uint32_t mask,
+                                                         Label* on_not_equal) {
+  if (c == 0) {
+    __ test(current_character(), Immediate(mask));
+  } else {
+    __ mov(eax, mask);
+    __ and_(eax, current_character());
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
+    uc16 c,
+    uc16 minus,
+    uc16 mask,
+    Label* on_not_equal) {
+  DCHECK(minus < String::kMaxUtf16CodeUnit);
+  __ lea(eax, Operand(current_character(), -minus));
+  if (c == 0) {
+    __ test(eax, Immediate(mask));
+  } else {
+    __ and_(eax, mask);
+    __ cmp(eax, c);
+  }
+  BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_in_range) {
+  __ lea(eax, Operand(current_character(), -from));
+  __ cmp(eax, to - from);
+  BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
+    uc16 from,
+    uc16 to,
+    Label* on_not_in_range) {
+  __ lea(eax, Operand(current_character(), -from));
+  __ cmp(eax, to - from);
+  BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckBitInTable(
+    Handle<ByteArray> table,
+    Label* on_bit_set) {
+  __ mov(eax, Immediate(table));
+  Register index = current_character();
+  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+    __ mov(ebx, kTableSize - 1);
+    __ and_(ebx, current_character());
+    index = ebx;
+  }
+  __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
+  BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
+                                                          Label* on_no_match) {
+  // Range checks (c in min..max) are generally implemented by an unsigned
+  // (c - min) <= (max - min) check
+  switch (type) {
+  case 's':
+    // Match space-characters
+    if (mode_ == LATIN1) {
+      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+      Label success;
+      __ cmp(current_character(), ' ');
+      __ j(equal, &success, Label::kNear);
+      // Check range 0x09..0x0d
+      __ lea(eax, Operand(current_character(), -'\t'));
+      __ cmp(eax, '\r' - '\t');
+      __ j(below_equal, &success, Label::kNear);
+      // \u00a0 (NBSP).
+      __ cmp(eax, 0x00a0 - '\t');
+      BranchOrBacktrack(not_equal, on_no_match);
+      __ bind(&success);
+      return true;
+    }
+    return false;
+  case 'S':
+    // The emitted code for generic character classes is good enough.
+    return false;
+  case 'd':
+    // Match ASCII digits ('0'..'9')
+    __ lea(eax, Operand(current_character(), -'0'));
+    __ cmp(eax, '9' - '0');
+    BranchOrBacktrack(above, on_no_match);
+    return true;
+  case 'D':
+    // Match non ASCII-digits
+    __ lea(eax, Operand(current_character(), -'0'));
+    __ cmp(eax, '9' - '0');
+    BranchOrBacktrack(below_equal, on_no_match);
+    return true;
+  case '.': {
+    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+    __ mov(eax, current_character());
+    __ xor_(eax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(eax, Immediate(0x0b));
+    __ cmp(eax, 0x0c - 0x0b);
+    BranchOrBacktrack(below_equal, on_no_match);
+    if (mode_ == UC16) {
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(eax, Immediate(0x2028 - 0x0b));
+      __ cmp(eax, 0x2029 - 0x2028);
+      BranchOrBacktrack(below_equal, on_no_match);
+    }
+    return true;
+  }
+  case 'w': {
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Immediate('z'));
+      BranchOrBacktrack(above, on_no_match);
+    }
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    ExternalReference word_map = ExternalReference::re_word_character_map();
+    __ test_b(current_character(),
+              Operand::StaticArray(current_character(), times_1, word_map));
+    BranchOrBacktrack(zero, on_no_match);
+    return true;
+  }
+  case 'W': {
+    Label done;
+    if (mode_ != LATIN1) {
+      // Table is 256 entries, so all Latin1 characters can be tested.
+      __ cmp(current_character(), Immediate('z'));
+      __ j(above, &done);
+    }
+    DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
+    ExternalReference word_map = ExternalReference::re_word_character_map();
+    __ test_b(current_character(),
+              Operand::StaticArray(current_character(), times_1, word_map));
+    BranchOrBacktrack(not_zero, on_no_match);
+    if (mode_ != LATIN1) {
+      __ bind(&done);
+    }
+    return true;
+  }
+  // Non-standard classes (with no syntactic shorthand) used internally.
+  case '*':
+    // Match any character.
+    return true;
+  case 'n': {
+    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
+    // The opposite of '.'.
+    __ mov(eax, current_character());
+    __ xor_(eax, Immediate(0x01));
+    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+    __ sub(eax, Immediate(0x0b));
+    __ cmp(eax, 0x0c - 0x0b);
+    if (mode_ == LATIN1) {
+      BranchOrBacktrack(above, on_no_match);
+    } else {
+      Label done;
+      BranchOrBacktrack(below_equal, &done);
+      DCHECK_EQ(UC16, mode_);
+      // Compare original value to 0x2028 and 0x2029, using the already
+      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+      // 0x201d (0x2028 - 0x0b) or 0x201e.
+      __ sub(eax, Immediate(0x2028 - 0x0b));
+      __ cmp(eax, 1);
+      BranchOrBacktrack(above, on_no_match);
+      __ bind(&done);
+    }
+    return true;
+  }
+  // No custom implementation (yet): s(UC16), S(UC16).
+  default:
+    return false;
+  }
+}
+
+
+void RegExpMacroAssemblerX87::Fail() {
+  STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
+  if (!global()) {
+    __ Move(eax, Immediate(FAILURE));
+  }
+  __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
+  Label return_eax;
+  // Finalize code - write the entry point code now we know how many
+  // registers we need.
+
+  // Entry code:
+  __ bind(&entry_label_);
+
+  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
+  // code is generated.
+  FrameScope scope(masm_, StackFrame::MANUAL);
+
+  // Actually emit code to start a new stack frame.
+  __ push(ebp);
+  __ mov(ebp, esp);
+  // Save callee-save registers. Order here should correspond to order of
+  // kBackup_ebx etc.
+  __ push(esi);
+  __ push(edi);
+  __ push(ebx);  // Callee-save on MacOS.
+  __ push(Immediate(0));  // Number of successful matches in a global regexp.
+  __ push(Immediate(0));  // Make room for "string start - 1" constant.
+
+  // Check if we have space on the stack for registers.
+  Label stack_limit_hit;
+  Label stack_ok;
+
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ mov(ecx, esp);
+  __ sub(ecx, Operand::StaticVariable(stack_limit));
+  // Handle it if the stack pointer is already below the stack limit.
+  __ j(below_equal, &stack_limit_hit);
+  // Check if there is room for the variable number of registers above
+  // the stack limit.
+  __ cmp(ecx, num_registers_ * kPointerSize);
+  __ j(above_equal, &stack_ok);
+  // Exit with OutOfMemory exception. There is not enough space on the stack
+  // for our working registers.
+  __ mov(eax, EXCEPTION);
+  __ jmp(&return_eax);
+
+  __ bind(&stack_limit_hit);
+  CallCheckStackGuardState(ebx);
+  __ or_(eax, eax);
+  // If returned value is non-zero, we exit with the returned value as result.
+  __ j(not_zero, &return_eax);
+
+  __ bind(&stack_ok);
+  // Load start index for later use.
+  __ mov(ebx, Operand(ebp, kStartIndex));
+
+  // Allocate space on stack for registers.
+  __ sub(esp, Immediate(num_registers_ * kPointerSize));
+  // Load string length.
+  __ mov(esi, Operand(ebp, kInputEnd));
+  // Load input position.
+  __ mov(edi, Operand(ebp, kInputStart));
+  // Set up edi to be negative offset from string end.
+  __ sub(edi, esi);
+
+  // Set eax to address of char before start of the string.
+  // (effectively string position -1).
+  __ neg(ebx);
+  if (mode_ == UC16) {
+    __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
+  } else {
+    __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
+  }
+  // Store this value in a local variable, for use when clearing
+  // position registers.
+  __ mov(Operand(ebp, kStringStartMinusOne), eax);
+
+#if V8_OS_WIN
+  // Ensure that we write to each stack page, in order. Skipping a page
+  // on Windows can cause segmentation faults. Assuming page size is 4k.
+  const int kPageSize = 4096;
+  const int kRegistersPerPage = kPageSize / kPointerSize;
+  for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+      i < num_registers_;
+      i += kRegistersPerPage) {
+    __ mov(register_location(i), eax);  // One write every page.
+  }
+#endif  // V8_OS_WIN
+
+  Label load_char_start_regexp, start_regexp;
+  // Load newline if index is at start, previous character otherwise.
+  __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+  __ j(not_equal, &load_char_start_regexp, Label::kNear);
+  __ mov(current_character(), '\n');
+  __ jmp(&start_regexp, Label::kNear);
+
+  // Global regexp restarts matching here.
+  __ bind(&load_char_start_regexp);
+  // Load previous char as initial value of current character register.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&start_regexp);
+
+  // Initialize on-stack registers.
+  if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
+    // Fill saved registers with initial value = start offset - 1
+    // Fill in stack push order, to avoid accessing across an unwritten
+    // page (a problem on Windows).
+    if (num_saved_registers_ > 8) {
+      __ mov(ecx, kRegisterZero);
+      Label init_loop;
+      __ bind(&init_loop);
+      __ mov(Operand(ebp, ecx, times_1, 0), eax);
+      __ sub(ecx, Immediate(kPointerSize));
+      __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
+      __ j(greater, &init_loop);
+    } else {  // Unroll the loop.
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ mov(register_location(i), eax);
+      }
+    }
+  }
+
+  // Initialize backtrack stack pointer.
+  __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+
+  __ jmp(&start_label_);
+
+  // Exit code:
+  if (success_label_.is_linked()) {
+    // Save captures when successful.
+    __ bind(&success_label_);
+    if (num_saved_registers_ > 0) {
+      // copy captures to output
+      __ mov(ebx, Operand(ebp, kRegisterOutput));
+      __ mov(ecx, Operand(ebp, kInputEnd));
+      __ mov(edx, Operand(ebp, kStartIndex));
+      __ sub(ecx, Operand(ebp, kInputStart));
+      if (mode_ == UC16) {
+        __ lea(ecx, Operand(ecx, edx, times_2, 0));
+      } else {
+        __ add(ecx, edx);
+      }
+      for (int i = 0; i < num_saved_registers_; i++) {
+        __ mov(eax, register_location(i));
+        if (i == 0 && global_with_zero_length_check()) {
+          // Keep capture start in edx for the zero-length check later.
+          __ mov(edx, eax);
+        }
+        // Convert to index from start of string, not end.
+        __ add(eax, ecx);
+        if (mode_ == UC16) {
+          __ sar(eax, 1);  // Convert byte index to character index.
+        }
+        __ mov(Operand(ebx, i * kPointerSize), eax);
+      }
+    }
+
+    if (global()) {
+      // Restart matching if the regular expression is flagged as global.
+      // Increment success counter.
+      __ inc(Operand(ebp, kSuccessfulCaptures));
+      // Capture results have been stored, so the number of remaining global
+      // output registers is reduced by the number of stored captures.
+      __ mov(ecx, Operand(ebp, kNumOutputRegisters));
+      __ sub(ecx, Immediate(num_saved_registers_));
+      // Check whether we have enough room for another set of capture results.
+      __ cmp(ecx, Immediate(num_saved_registers_));
+      __ j(less, &exit_label_);
+
+      __ mov(Operand(ebp, kNumOutputRegisters), ecx);
+      // Advance the location for output.
+      __ add(Operand(ebp, kRegisterOutput),
+             Immediate(num_saved_registers_ * kPointerSize));
+
+      // Prepare eax to initialize registers with its value in the next run.
+      __ mov(eax, Operand(ebp, kStringStartMinusOne));
+
+      if (global_with_zero_length_check()) {
+        // Special case for zero-length matches.
+        // edx: capture start index
+        __ cmp(edi, edx);
+        // Not a zero-length match, restart.
+        __ j(not_equal, &load_char_start_regexp);
+        // edi (offset from the end) is zero if we already reached the end.
+        __ test(edi, edi);
+        __ j(zero, &exit_label_, Label::kNear);
+        // Advance current position after a zero-length match.
+        if (mode_ == UC16) {
+          __ add(edi, Immediate(2));
+        } else {
+          __ inc(edi);
+        }
+      }
+
+      __ jmp(&load_char_start_regexp);
+    } else {
+      __ mov(eax, Immediate(SUCCESS));
+    }
+  }
+
+  __ bind(&exit_label_);
+  if (global()) {
+    // Return the number of successful captures.
+    __ mov(eax, Operand(ebp, kSuccessfulCaptures));
+  }
+
+  __ bind(&return_eax);
+  // Skip esp past regexp registers.
+  __ lea(esp, Operand(ebp, kBackup_ebx));
+  // Restore callee-save registers.
+  __ pop(ebx);
+  __ pop(edi);
+  __ pop(esi);
+  // Exit function frame, restore previous one.
+  __ pop(ebp);
+  __ ret(0);
+
+  // Backtrack code (branch target for conditional backtracks).
+  if (backtrack_label_.is_linked()) {
+    __ bind(&backtrack_label_);
+    Backtrack();
+  }
+
+  Label exit_with_exception;
+
+  // Preempt-code
+  if (check_preempt_label_.is_linked()) {
+    SafeCallTarget(&check_preempt_label_);
+
+    __ push(backtrack_stackpointer());
+    __ push(edi);
+
+    CallCheckStackGuardState(ebx);
+    __ or_(eax, eax);
+    // If returning non-zero, we should end execution with the given
+    // result as return value.
+    __ j(not_zero, &return_eax);
+
+    __ pop(edi);
+    __ pop(backtrack_stackpointer());
+    // String might have moved: Reload esi from frame.
+    __ mov(esi, Operand(ebp, kInputEnd));
+    SafeReturn();
+  }
+
+  // Backtrack stack overflow code.
+  if (stack_overflow_label_.is_linked()) {
+    SafeCallTarget(&stack_overflow_label_);
+    // Reached if the backtrack-stack limit has been hit.
+
+    Label grow_failed;
+    // Save registers before calling C function
+    __ push(esi);
+    __ push(edi);
+
+    // Call GrowStack(backtrack_stackpointer())
+    static const int num_arguments = 3;
+    __ PrepareCallCFunction(num_arguments, ebx);
+    __ mov(Operand(esp, 2 * kPointerSize),
+           Immediate(ExternalReference::isolate_address(isolate())));
+    __ lea(eax, Operand(ebp, kStackHighEnd));
+    __ mov(Operand(esp, 1 * kPointerSize), eax);
+    __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
+    ExternalReference grow_stack =
+        ExternalReference::re_grow_stack(isolate());
+    __ CallCFunction(grow_stack, num_arguments);
+    // If return NULL, we have failed to grow the stack, and
+    // must exit with a stack-overflow exception.
+    __ or_(eax, eax);
+    __ j(equal, &exit_with_exception);
+    // Otherwise use return value as new stack pointer.
+    __ mov(backtrack_stackpointer(), eax);
+    // Restore saved registers and continue.
+    __ pop(edi);
+    __ pop(esi);
+    SafeReturn();
+  }
+
+  if (exit_with_exception.is_linked()) {
+    // If any of the code above needed to exit with an exception.
+    __ bind(&exit_with_exception);
+    // Exit with Result EXCEPTION(-1) to signal thrown exception.
+    __ mov(eax, EXCEPTION);
+    __ jmp(&return_eax);
+  }
+
+  CodeDesc code_desc;
+  masm_->GetCode(&code_desc);
+  Handle<Code> code =
+      isolate()->factory()->NewCode(code_desc,
+                                    Code::ComputeFlags(Code::REGEXP),
+                                    masm_->CodeObject());
+  PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
+  return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerX87::GoTo(Label* to) {
+  BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
+                                            int comparand,
+                                            Label* if_ge) {
+  __ cmp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
+                                            int comparand,
+                                            Label* if_lt) {
+  __ cmp(register_location(reg), Immediate(comparand));
+  BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
+                                               Label* if_eq) {
+  __ cmp(edi, register_location(reg));
+  BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+    RegExpMacroAssemblerX87::Implementation() {
+  return kX87Implementation;
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
+                                                    Label* on_end_of_input,
+                                                    bool check_bounds,
+                                                    int characters) {
+  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
+  if (check_bounds) {
+    if (cp_offset >= 0) {
+      CheckPosition(cp_offset + characters - 1, on_end_of_input);
+    } else {
+      CheckPosition(cp_offset, on_end_of_input);
+    }
+  }
+  LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerX87::PopCurrentPosition() {
+  Pop(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PopRegister(int register_index) {
+  Pop(eax);
+  __ mov(register_location(register_index), eax);
+}
+
+
+void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
+  Push(Immediate::CodeRelativeOffset(label));
+  CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::PushCurrentPosition() {
+  Push(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PushRegister(int register_index,
+                                            StackCheckFlag check_stack_limit) {
+  __ mov(eax, register_location(register_index));
+  Push(eax);
+  if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
+  __ mov(edi, register_location(reg));
+}
+
+
+void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
+  __ mov(backtrack_stackpointer(), register_location(reg));
+  __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+}
+
+void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by)  {
+  Label after_position;
+  __ cmp(edi, -by * char_size());
+  __ j(greater_equal, &after_position, Label::kNear);
+  __ mov(edi, -by * char_size());
+  // On RegExp code entry (where this operation is used), the character before
+  // the current position is expected to be already loaded.
+  // We have advanced the position, so it's safe to read backwards.
+  LoadCurrentCharacterUnchecked(-1, 1);
+  __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
+  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
+  __ mov(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerX87::Succeed() {
+  __ jmp(&success_label_);
+  return global();
+}
+
+
+void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
+                                                              int cp_offset) {
+  if (cp_offset == 0) {
+    __ mov(register_location(reg), edi);
+  } else {
+    __ lea(eax, Operand(edi, cp_offset * char_size()));
+    __ mov(register_location(reg), eax);
+  }
+}
+
+
+void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
+  DCHECK(reg_from <= reg_to);
+  __ mov(eax, Operand(ebp, kStringStartMinusOne));
+  for (int reg = reg_from; reg <= reg_to; reg++) {
+    __ mov(register_location(reg), eax);
+  }
+}
+
+
+void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
+  __ mov(eax, backtrack_stackpointer());
+  __ sub(eax, Operand(ebp, kStackHighEnd));
+  __ mov(register_location(reg), eax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
+  static const int num_arguments = 3;
+  __ PrepareCallCFunction(num_arguments, scratch);
+  // RegExp code frame pointer.
+  __ mov(Operand(esp, 2 * kPointerSize), ebp);
+  // Code* of self.
+  __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
+  // Next address on the stack (will be address of return address).
+  __ lea(eax, Operand(esp, -kPointerSize));
+  __ mov(Operand(esp, 0 * kPointerSize), eax);
+  ExternalReference check_stack_guard =
+      ExternalReference::re_check_stack_guard_state(isolate());
+  __ CallCFunction(check_stack_guard, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+  return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
+                                                   Code* re_code,
+                                                   Address re_frame) {
+  return NativeRegExpMacroAssembler::CheckStackGuardState(
+      frame_entry<Isolate*>(re_frame, kIsolate),
+      frame_entry<int>(re_frame, kStartIndex),
+      frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+      frame_entry_address<String*>(re_frame, kInputString),
+      frame_entry_address<const byte*>(re_frame, kInputStart),
+      frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerX87::register_location(int register_index) {
+  DCHECK(register_index < (1<<30));
+  if (num_registers_ <= register_index) {
+    num_registers_ = register_index + 1;
+  }
+  return Operand(ebp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
+                                             Label* on_outside_input) {
+  if (cp_offset >= 0) {
+    __ cmp(edi, -cp_offset * char_size());
+    BranchOrBacktrack(greater_equal, on_outside_input);
+  } else {
+    __ lea(eax, Operand(edi, cp_offset * char_size()));
+    __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+    BranchOrBacktrack(less_equal, on_outside_input);
+  }
+}
+
+
+void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
+                                                 Label* to) {
+  if (condition < 0) {  // No condition
+    if (to == NULL) {
+      Backtrack();
+      return;
+    }
+    __ jmp(to);
+    return;
+  }
+  if (to == NULL) {
+    __ j(condition, &backtrack_label_);
+    return;
+  }
+  __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCall(Label* to) {
+  Label return_to;
+  __ push(Immediate::CodeRelativeOffset(&return_to));
+  __ jmp(to);
+  __ bind(&return_to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeReturn() {
+  __ pop(ebx);
+  __ add(ebx, Immediate(masm_->CodeObject()));
+  __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
+  __ bind(name);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Register source) {
+  DCHECK(!source.is(backtrack_stackpointer()));
+  // Notice: This updates flags, unlike normal Push.
+  __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+  __ mov(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Immediate value) {
+  // Notice: This updates flags, unlike normal Push.
+  __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+  __ mov(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerX87::Pop(Register target) {
+  DCHECK(!target.is(backtrack_stackpointer()));
+  __ mov(target, Operand(backtrack_stackpointer(), 0));
+  // Notice: This updates flags, unlike normal Pop.
+  __ add(backtrack_stackpointer(), Immediate(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerX87::CheckPreemption() {
+  // Check for preemption.
+  Label no_preempt;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_stack_limit(isolate());
+  __ cmp(esp, Operand::StaticVariable(stack_limit));
+  __ j(above, &no_preempt);
+
+  SafeCall(&check_preempt_label_);
+
+  __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerX87::CheckStackLimit() {
+  Label no_stack_overflow;
+  ExternalReference stack_limit =
+      ExternalReference::address_of_regexp_stack_limit(isolate());
+  __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
+  __ j(above, &no_stack_overflow);
+
+  SafeCall(&stack_overflow_label_);
+
+  __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
+                                                             int characters) {
+  if (mode_ == LATIN1) {
+    if (characters == 4) {
+      __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
+    } else if (characters == 2) {
+      __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
+    } else {
+      DCHECK(characters == 1);
+      __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
+    }
+  } else {
+    DCHECK(mode_ == UC16);
+    if (characters == 2) {
+      __ mov(current_character(),
+             Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+    } else {
+      DCHECK(characters == 1);
+      __ movzx_w(current_character(),
+                 Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+    }
+  }
+}
+
+
+#undef __
+
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_TARGET_ARCH_X87
diff --git a/src/regexp/x87/regexp-macro-assembler-x87.h b/src/regexp/x87/regexp-macro-assembler-x87.h
new file mode 100644
index 0000000..c955412
--- /dev/null
+++ b/src/regexp/x87/regexp-macro-assembler-x87.h
@@ -0,0 +1,204 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+#define V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/x87/assembler-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerX87: public NativeRegExpMacroAssembler {
+ public:
+  RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone, Mode mode,
+                          int registers_to_save);
+  virtual ~RegExpMacroAssemblerX87();
+  virtual int stack_limit_slack();
+  virtual void AdvanceCurrentPosition(int by);
+  virtual void AdvanceRegister(int reg, int by);
+  virtual void Backtrack();
+  virtual void Bind(Label* label);
+  virtual void CheckAtStart(Label* on_at_start);
+  virtual void CheckCharacter(uint32_t c, Label* on_equal);
+  virtual void CheckCharacterAfterAnd(uint32_t c,
+                                      uint32_t mask,
+                                      Label* on_equal);
+  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+  // A "greedy loop" is a loop that is both greedy and with a simple
+  // body. It has a particularly simple implementation.
+  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+  virtual void CheckNotBackReference(int start_reg, bool read_backward,
+                                     Label* on_no_match);
+  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+                                               bool read_backward,
+                                               Label* on_no_match);
+  virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+  virtual void CheckNotCharacterAfterAnd(uint32_t c,
+                                         uint32_t mask,
+                                         Label* on_not_equal);
+  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+                                              uc16 minus,
+                                              uc16 mask,
+                                              Label* on_not_equal);
+  virtual void CheckCharacterInRange(uc16 from,
+                                     uc16 to,
+                                     Label* on_in_range);
+  virtual void CheckCharacterNotInRange(uc16 from,
+                                        uc16 to,
+                                        Label* on_not_in_range);
+  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+  // Checks whether the given offset from the current position is before
+  // the end of the string.
+  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+  virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+  virtual void Fail();
+  virtual Handle<HeapObject> GetCode(Handle<String> source);
+  virtual void GoTo(Label* label);
+  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+  virtual void IfRegisterEqPos(int reg, Label* if_eq);
+  virtual IrregexpImplementation Implementation();
+  virtual void LoadCurrentCharacter(int cp_offset,
+                                    Label* on_end_of_input,
+                                    bool check_bounds = true,
+                                    int characters = 1);
+  virtual void PopCurrentPosition();
+  virtual void PopRegister(int register_index);
+  virtual void PushBacktrack(Label* label);
+  virtual void PushCurrentPosition();
+  virtual void PushRegister(int register_index,
+                            StackCheckFlag check_stack_limit);
+  virtual void ReadCurrentPositionFromRegister(int reg);
+  virtual void ReadStackPointerFromRegister(int reg);
+  virtual void SetCurrentPositionFromEnd(int by);
+  virtual void SetRegister(int register_index, int to);
+  virtual bool Succeed();
+  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+  virtual void ClearRegisters(int reg_from, int reg_to);
+  virtual void WriteStackPointerToRegister(int reg);
+
+  // Called from RegExp if the stack-guard is triggered.
+  // If the code object is relocated, the return address is fixed before
+  // returning.
+  static int CheckStackGuardState(Address* return_address,
+                                  Code* re_code,
+                                  Address re_frame);
+
+ private:
+  // Offsets from ebp of function parameters and stored registers.
+  static const int kFramePointer = 0;
+  // Above the frame pointer - function parameters and return address.
+  static const int kReturn_eip = kFramePointer + kPointerSize;
+  static const int kFrameAlign = kReturn_eip + kPointerSize;
+  // Parameters.
+  static const int kInputString = kFrameAlign;
+  static const int kStartIndex = kInputString + kPointerSize;
+  static const int kInputStart = kStartIndex + kPointerSize;
+  static const int kInputEnd = kInputStart + kPointerSize;
+  static const int kRegisterOutput = kInputEnd + kPointerSize;
+  // For the case of global regular expression, we have room to store at least
+  // one set of capture results.  For the case of non-global regexp, we ignore
+  // this value.
+  static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+  static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+  static const int kDirectCall = kStackHighEnd + kPointerSize;
+  static const int kIsolate = kDirectCall + kPointerSize;
+  // Below the frame pointer - local stack variables.
+  // When adding local variables remember to push space for them in
+  // the frame in GetCode.
+  static const int kBackup_esi = kFramePointer - kPointerSize;
+  static const int kBackup_edi = kBackup_esi - kPointerSize;
+  static const int kBackup_ebx = kBackup_edi - kPointerSize;
+  static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
+  static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+  // First register address. Following registers are below it on the stack.
+  static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+  // Initial size of code buffer.
+  static const size_t kRegExpCodeSize = 1024;
+
+  // Load a number of characters at the given offset from the
+  // current position, into the current-character register.
+  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+  // Check whether preemption has been requested.
+  void CheckPreemption();
+
+  // Check whether we are exceeding the stack limit on the backtrack stack.
+  void CheckStackLimit();
+
+  // Generate a call to CheckStackGuardState.
+  void CallCheckStackGuardState(Register scratch);
+
+  // The ebp-relative location of a regexp register.
+  Operand register_location(int register_index);
+
+  // The register containing the current character after LoadCurrentCharacter.
+  inline Register current_character() { return edx; }
+
+  // The register containing the backtrack stack top. Provides a meaningful
+  // name to the register.
+  inline Register backtrack_stackpointer() { return ecx; }
+
+  // Byte size of chars in the string to match (decided by the Mode argument)
+  inline int char_size() { return static_cast<int>(mode_); }
+
+  // Equivalent to a conditional branch to the label, unless the label
+  // is NULL, in which case it is a conditional Backtrack.
+  void BranchOrBacktrack(Condition condition, Label* to);
+
+  // Call and return internally in the generated code in a way that
+  // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+  inline void SafeCall(Label* to);
+  inline void SafeReturn();
+  inline void SafeCallTarget(Label* name);
+
+  // Pushes the value of a register on the backtrack stack. Decrements the
+  // stack pointer (ecx) by a word size and stores the register's value there.
+  inline void Push(Register source);
+
+  // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
+  // by a word size and stores the value there.
+  inline void Push(Immediate value);
+
+  // Pops a value from the backtrack stack. Reads the word at the stack pointer
+  // (ecx) and increments it by a word size.
+  inline void Pop(Register target);
+
+  Isolate* isolate() const { return masm_->isolate(); }
+
+  MacroAssembler* masm_;
+
+  // Which mode to generate code for (LATIN1 or UC16).
+  Mode mode_;
+
+  // One greater than maximal register index actually used.
+  int num_registers_;
+
+  // Number of registers to output at the end (the saved registers
+  // are always 0..num_saved_registers_-1)
+  int num_saved_registers_;
+
+  // Labels used internally.
+  Label entry_label_;
+  Label start_label_;
+  Label success_label_;
+  Label backtrack_label_;
+  Label exit_label_;
+  Label check_preempt_label_;
+  Label stack_overflow_label_;
+};
+#endif  // V8_INTERPRETED_REGEXP
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_