Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/src/snapshot/DEPS b/src/snapshot/DEPS
new file mode 100644
index 0000000..810dfd6
--- /dev/null
+++ b/src/snapshot/DEPS
@@ -0,0 +1,5 @@
+specific_include_rules = {
+  "mksnapshot\.cc": [
+    "+include/libplatform/libplatform.h",
+  ],
+}
diff --git a/src/snapshot/OWNERS b/src/snapshot/OWNERS
new file mode 100644
index 0000000..6c84c07
--- /dev/null
+++ b/src/snapshot/OWNERS
@@ -0,0 +1,5 @@
+set noparent
+
+verwaest@chromium.org
+vogelheim@chromium.org
+yangguo@chromium.org
diff --git a/src/snapshot/mksnapshot.cc b/src/snapshot/mksnapshot.cc
new file mode 100644
index 0000000..c163cae
--- /dev/null
+++ b/src/snapshot/mksnapshot.cc
@@ -0,0 +1,176 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <errno.h>
+#include <signal.h>
+#include <stdio.h>
+
+#include "include/libplatform/libplatform.h"
+#include "src/assembler.h"
+#include "src/base/platform/platform.h"
+#include "src/flags.h"
+#include "src/list.h"
+#include "src/snapshot/natives.h"
+#include "src/snapshot/serialize.h"
+
+
+using namespace v8;
+
+class SnapshotWriter {
+ public:
+  SnapshotWriter() : fp_(NULL), startup_blob_file_(NULL) {}
+
+  ~SnapshotWriter() {
+    if (fp_) fclose(fp_);
+    if (startup_blob_file_) fclose(startup_blob_file_);
+  }
+
+  void SetSnapshotFile(const char* snapshot_file) {
+    if (snapshot_file != NULL) fp_ = GetFileDescriptorOrDie(snapshot_file);
+  }
+
+  void SetStartupBlobFile(const char* startup_blob_file) {
+    if (startup_blob_file != NULL)
+      startup_blob_file_ = GetFileDescriptorOrDie(startup_blob_file);
+  }
+
+  void WriteSnapshot(v8::StartupData blob) const {
+    i::Vector<const i::byte> blob_vector(
+        reinterpret_cast<const i::byte*>(blob.data), blob.raw_size);
+    MaybeWriteSnapshotFile(blob_vector);
+    MaybeWriteStartupBlob(blob_vector);
+  }
+
+ private:
+  void MaybeWriteStartupBlob(const i::Vector<const i::byte>& blob) const {
+    if (!startup_blob_file_) return;
+
+    size_t written = fwrite(blob.begin(), 1, blob.length(), startup_blob_file_);
+    if (written != static_cast<size_t>(blob.length())) {
+      i::PrintF("Writing snapshot file failed.. Aborting.\n");
+      exit(1);
+    }
+  }
+
+  void MaybeWriteSnapshotFile(const i::Vector<const i::byte>& blob) const {
+    if (!fp_) return;
+
+    WriteFilePrefix();
+    WriteData(blob);
+    WriteFileSuffix();
+  }
+
+  void WriteFilePrefix() const {
+    fprintf(fp_, "// Autogenerated snapshot file. Do not edit.\n\n");
+    fprintf(fp_, "#include \"src/v8.h\"\n");
+    fprintf(fp_, "#include \"src/base/platform/platform.h\"\n\n");
+    fprintf(fp_, "#include \"src/snapshot/snapshot.h\"\n\n");
+    fprintf(fp_, "namespace v8 {\n");
+    fprintf(fp_, "namespace internal {\n\n");
+  }
+
+  void WriteFileSuffix() const {
+    fprintf(fp_, "const v8::StartupData* Snapshot::DefaultSnapshotBlob() {\n");
+    fprintf(fp_, "  return &blob;\n");
+    fprintf(fp_, "}\n\n");
+    fprintf(fp_, "}  // namespace internal\n");
+    fprintf(fp_, "}  // namespace v8\n");
+  }
+
+  void WriteData(const i::Vector<const i::byte>& blob) const {
+    fprintf(fp_, "static const byte blob_data[] __attribute__((aligned(8))) = {\n");
+    WriteSnapshotData(blob);
+    fprintf(fp_, "};\n");
+    fprintf(fp_, "static const int blob_size = %d;\n", blob.length());
+    fprintf(fp_, "static const v8::StartupData blob =\n");
+    fprintf(fp_, "{ (const char*) blob_data, blob_size };\n");
+  }
+
+  void WriteSnapshotData(const i::Vector<const i::byte>& blob) const {
+    for (int i = 0; i < blob.length(); i++) {
+      if ((i & 0x1f) == 0x1f) fprintf(fp_, "\n");
+      if (i > 0) fprintf(fp_, ",");
+      fprintf(fp_, "%u", static_cast<unsigned char>(blob.at(i)));
+    }
+    fprintf(fp_, "\n");
+  }
+
+  FILE* GetFileDescriptorOrDie(const char* filename) {
+    FILE* fp = base::OS::FOpen(filename, "wb");
+    if (fp == NULL) {
+      i::PrintF("Unable to open file \"%s\" for writing.\n", filename);
+      exit(1);
+    }
+    return fp;
+  }
+
+  FILE* fp_;
+  FILE* startup_blob_file_;
+};
+
+
+char* GetExtraCode(char* filename) {
+  if (filename == NULL || strlen(filename) == 0) return NULL;
+  ::printf("Embedding extra script: %s\n", filename);
+  FILE* file = base::OS::FOpen(filename, "rb");
+  if (file == NULL) {
+    fprintf(stderr, "Failed to open '%s': errno %d\n", filename, errno);
+    exit(1);
+  }
+  fseek(file, 0, SEEK_END);
+  size_t size = ftell(file);
+  rewind(file);
+  char* chars = new char[size + 1];
+  chars[size] = '\0';
+  for (size_t i = 0; i < size;) {
+    size_t read = fread(&chars[i], 1, size - i, file);
+    if (ferror(file)) {
+      fprintf(stderr, "Failed to read '%s': errno %d\n", filename, errno);
+      exit(1);
+    }
+    i += read;
+  }
+  fclose(file);
+  return chars;
+}
+
+
+int main(int argc, char** argv) {
+  // By default, log code create information in the snapshot.
+  i::FLAG_log_code = true;
+  i::FLAG_logfile_per_isolate = false;
+
+  // Print the usage if an error occurs when parsing the command line
+  // flags or if the help flag is set.
+  int result = i::FlagList::SetFlagsFromCommandLine(&argc, argv, true);
+  if (result > 0 || (argc != 1 && argc != 2) || i::FLAG_help) {
+    ::printf("Usage: %s --startup_src=... --startup_blob=... [extras]\n",
+             argv[0]);
+    i::FlagList::PrintHelp();
+    return !i::FLAG_help;
+  }
+
+  i::CpuFeatures::Probe(true);
+  V8::InitializeICU();
+  v8::Platform* platform = v8::platform::CreateDefaultPlatform();
+  v8::V8::InitializePlatform(platform);
+  v8::V8::Initialize();
+
+  {
+    SnapshotWriter writer;
+    if (i::FLAG_startup_src) writer.SetSnapshotFile(i::FLAG_startup_src);
+    if (i::FLAG_startup_blob) writer.SetStartupBlobFile(i::FLAG_startup_blob);
+    char* extra_code = GetExtraCode(argc == 2 ? argv[1] : NULL);
+    StartupData blob = v8::V8::CreateSnapshotDataBlob(extra_code);
+    CHECK(blob.data);
+    writer.WriteSnapshot(blob);
+    delete[] extra_code;
+    delete[] blob.data;
+  }
+
+  V8::Dispose();
+  V8::ShutdownPlatform();
+  delete platform;
+  return 0;
+}
diff --git a/src/snapshot/natives-common.cc b/src/snapshot/natives-common.cc
new file mode 100644
index 0000000..f30e794
--- /dev/null
+++ b/src/snapshot/natives-common.cc
@@ -0,0 +1,57 @@
+// Copyright 2015 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// The common functionality when building with internal or external natives.
+
+#include "src/heap/heap.h"
+#include "src/objects-inl.h"
+#include "src/snapshot/natives.h"
+
+namespace v8 {
+namespace internal {
+
+template <>
+FixedArray* NativesCollection<CORE>::GetSourceCache(Heap* heap) {
+  return heap->natives_source_cache();
+}
+
+
+template <>
+FixedArray* NativesCollection<EXPERIMENTAL>::GetSourceCache(Heap* heap) {
+  return heap->experimental_natives_source_cache();
+}
+
+
+template <>
+FixedArray* NativesCollection<EXTRAS>::GetSourceCache(Heap* heap) {
+  return heap->extra_natives_source_cache();
+}
+
+
+template <>
+FixedArray* NativesCollection<EXPERIMENTAL_EXTRAS>::GetSourceCache(Heap* heap) {
+  return heap->experimental_extra_natives_source_cache();
+}
+
+
+template <NativeType type>
+void NativesCollection<type>::UpdateSourceCache(Heap* heap) {
+  for (int i = 0; i < GetBuiltinsCount(); i++) {
+    Object* source = GetSourceCache(heap)->get(i);
+    if (!source->IsUndefined()) {
+      ExternalOneByteString::cast(source)->update_data_cache();
+    }
+  }
+}
+
+
+// Explicit template instantiations.
+template void NativesCollection<CORE>::UpdateSourceCache(Heap* heap);
+template void NativesCollection<EXPERIMENTAL>::UpdateSourceCache(Heap* heap);
+template void NativesCollection<EXTRAS>::UpdateSourceCache(Heap* heap);
+template void NativesCollection<EXPERIMENTAL_EXTRAS>::UpdateSourceCache(
+    Heap* heap);
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/natives-external.cc b/src/snapshot/natives-external.cc
new file mode 100644
index 0000000..6505d15
--- /dev/null
+++ b/src/snapshot/natives-external.cc
@@ -0,0 +1,242 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/snapshot/natives.h"
+
+#include "src/base/logging.h"
+#include "src/list.h"
+#include "src/list-inl.h"
+#include "src/snapshot/snapshot-source-sink.h"
+#include "src/vector.h"
+
+#ifndef V8_USE_EXTERNAL_STARTUP_DATA
+#error natives-external.cc is used only for the external snapshot build.
+#endif  // V8_USE_EXTERNAL_STARTUP_DATA
+
+
+namespace v8 {
+namespace internal {
+
+
+/**
+ * NativesStore stores the 'native' (builtin) JS libraries.
+ *
+ * NativesStore needs to be initialized before using V8, usually by the
+ * embedder calling v8::SetNativesDataBlob, which calls SetNativesFromFile
+ * below.
+ */
+class NativesStore {
+ public:
+  ~NativesStore() {
+    for (int i = 0; i < native_names_.length(); i++) {
+      native_names_[i].Dispose();
+    }
+  }
+
+  int GetBuiltinsCount() { return native_ids_.length(); }
+  int GetDebuggerCount() { return debugger_count_; }
+
+  Vector<const char> GetScriptSource(int index) {
+    return native_source_[index];
+  }
+
+  Vector<const char> GetScriptName(int index) { return native_names_[index]; }
+
+  int GetIndex(const char* id) {
+    for (int i = 0; i < native_ids_.length(); ++i) {
+      int native_id_length = native_ids_[i].length();
+      if ((static_cast<int>(strlen(id)) == native_id_length) &&
+          (strncmp(id, native_ids_[i].start(), native_id_length) == 0)) {
+        return i;
+      }
+    }
+    DCHECK(false);
+    return -1;
+  }
+
+  Vector<const char> GetScriptsSource() {
+    DCHECK(false);  // Not implemented.
+    return Vector<const char>();
+  }
+
+  static NativesStore* MakeFromScriptsSource(SnapshotByteSource* source) {
+    NativesStore* store = new NativesStore;
+
+    // We expect the libraries in the following format:
+    //   int: # of debugger sources.
+    //   2N blobs: N pairs of source name + actual source.
+    //   then, repeat for non-debugger sources.
+    int debugger_count = source->GetInt();
+    for (int i = 0; i < debugger_count; ++i)
+      store->ReadNameAndContentPair(source);
+    int library_count = source->GetInt();
+    for (int i = 0; i < library_count; ++i)
+      store->ReadNameAndContentPair(source);
+
+    store->debugger_count_ = debugger_count;
+    return store;
+  }
+
+ private:
+  NativesStore() : debugger_count_(0) {}
+
+  Vector<const char> NameFromId(const byte* id, int id_length) {
+    const char native[] = "native ";
+    const char extension[] = ".js";
+    Vector<char> name(Vector<char>::New(id_length + sizeof(native) - 1 +
+                                        sizeof(extension) - 1));
+    memcpy(name.start(), native, sizeof(native) - 1);
+    memcpy(name.start() + sizeof(native) - 1, id, id_length);
+    memcpy(name.start() + sizeof(native) - 1 + id_length, extension,
+           sizeof(extension) - 1);
+    return Vector<const char>::cast(name);
+  }
+
+  void ReadNameAndContentPair(SnapshotByteSource* bytes) {
+    const byte* id;
+    const byte* source;
+    int id_length = bytes->GetBlob(&id);
+    int source_length = bytes->GetBlob(&source);
+    Vector<const char> id_vector(reinterpret_cast<const char*>(id), id_length);
+    Vector<const char> source_vector(reinterpret_cast<const char*>(source),
+                                     source_length);
+    native_ids_.Add(id_vector);
+    native_source_.Add(source_vector);
+    native_names_.Add(NameFromId(id, id_length));
+  }
+
+  List<Vector<const char> > native_ids_;
+  List<Vector<const char> > native_names_;
+  List<Vector<const char> > native_source_;
+  int debugger_count_;
+
+  DISALLOW_COPY_AND_ASSIGN(NativesStore);
+};
+
+
+template<NativeType type>
+class NativesHolder {
+ public:
+  static NativesStore* get() {
+    CHECK(holder_);
+    return holder_;
+  }
+  static void set(NativesStore* store) {
+    CHECK(store);
+    holder_ = store;
+  }
+  static bool empty() { return holder_ == NULL; }
+  static void Dispose() {
+    delete holder_;
+    holder_ = NULL;
+  }
+
+ private:
+  static NativesStore* holder_;
+};
+
+template<NativeType type>
+NativesStore* NativesHolder<type>::holder_ = NULL;
+
+
+// The natives blob. Memory is owned by caller.
+static StartupData* natives_blob_ = NULL;
+
+
+/**
+ * Read the Natives blob, as previously set by SetNativesFromFile.
+ */
+void ReadNatives() {
+  if (natives_blob_ && NativesHolder<CORE>::empty()) {
+    SnapshotByteSource bytes(natives_blob_->data, natives_blob_->raw_size);
+    NativesHolder<CORE>::set(NativesStore::MakeFromScriptsSource(&bytes));
+    NativesHolder<EXPERIMENTAL>::set(
+        NativesStore::MakeFromScriptsSource(&bytes));
+    NativesHolder<EXTRAS>::set(NativesStore::MakeFromScriptsSource(&bytes));
+    NativesHolder<EXPERIMENTAL_EXTRAS>::set(
+        NativesStore::MakeFromScriptsSource(&bytes));
+    DCHECK(!bytes.HasMore());
+  }
+}
+
+
+/**
+ * Set the Natives (library sources) blob, as generated by js2c + the build
+ * system.
+ */
+void SetNativesFromFile(StartupData* natives_blob) {
+  DCHECK(!natives_blob_);
+  DCHECK(natives_blob);
+  DCHECK(natives_blob->data);
+  DCHECK(natives_blob->raw_size > 0);
+
+  natives_blob_ = natives_blob;
+  ReadNatives();
+}
+
+
+/**
+ * Release memory allocated by SetNativesFromFile.
+ */
+void DisposeNatives() {
+  NativesHolder<CORE>::Dispose();
+  NativesHolder<EXPERIMENTAL>::Dispose();
+  NativesHolder<EXTRAS>::Dispose();
+  NativesHolder<EXPERIMENTAL_EXTRAS>::Dispose();
+}
+
+
+// Implement NativesCollection<T> bsaed on NativesHolder + NativesStore.
+//
+// (The callers expect a purely static interface, since this is how the
+//  natives are usually compiled in. Since we implement them based on
+//  runtime content, we have to implement this indirection to offer
+//  a static interface.)
+template<NativeType type>
+int NativesCollection<type>::GetBuiltinsCount() {
+  return NativesHolder<type>::get()->GetBuiltinsCount();
+}
+
+template<NativeType type>
+int NativesCollection<type>::GetDebuggerCount() {
+  return NativesHolder<type>::get()->GetDebuggerCount();
+}
+
+template<NativeType type>
+int NativesCollection<type>::GetIndex(const char* name) {
+  return NativesHolder<type>::get()->GetIndex(name);
+}
+
+template <NativeType type>
+Vector<const char> NativesCollection<type>::GetScriptSource(int index) {
+  return NativesHolder<type>::get()->GetScriptSource(index);
+}
+
+template<NativeType type>
+Vector<const char> NativesCollection<type>::GetScriptName(int index) {
+  return NativesHolder<type>::get()->GetScriptName(index);
+}
+
+template <NativeType type>
+Vector<const char> NativesCollection<type>::GetScriptsSource() {
+  return NativesHolder<type>::get()->GetScriptsSource();
+}
+
+
+// Explicit template instantiations.
+#define INSTANTIATE_TEMPLATES(T)                                            \
+  template int NativesCollection<T>::GetBuiltinsCount();                    \
+  template int NativesCollection<T>::GetDebuggerCount();                    \
+  template int NativesCollection<T>::GetIndex(const char* name);            \
+  template Vector<const char> NativesCollection<T>::GetScriptSource(int i); \
+  template Vector<const char> NativesCollection<T>::GetScriptName(int i);   \
+  template Vector<const char> NativesCollection<T>::GetScriptsSource();
+INSTANTIATE_TEMPLATES(CORE)
+INSTANTIATE_TEMPLATES(EXPERIMENTAL)
+INSTANTIATE_TEMPLATES(EXTRAS)
+INSTANTIATE_TEMPLATES(EXPERIMENTAL_EXTRAS)
+#undef INSTANTIATE_TEMPLATES
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/natives.h b/src/snapshot/natives.h
new file mode 100644
index 0000000..07f6b1a
--- /dev/null
+++ b/src/snapshot/natives.h
@@ -0,0 +1,66 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_SNAPSHOT_NATIVES_H_
+#define V8_SNAPSHOT_NATIVES_H_
+
+#include "src/objects.h"
+#include "src/vector.h"
+
+namespace v8 { class StartupData; }  // Forward declaration.
+
+namespace v8 {
+namespace internal {
+
+enum NativeType {
+  CORE,
+  EXPERIMENTAL,
+  EXTRAS,
+  EXPERIMENTAL_EXTRAS,
+  D8,
+  TEST
+};
+
+template <NativeType type>
+class NativesCollection {
+ public:
+  // The following methods are implemented in js2c-generated code:
+
+  // Number of built-in scripts.
+  static int GetBuiltinsCount();
+  // Number of debugger implementation scripts.
+  static int GetDebuggerCount();
+
+  // These are used to access built-in scripts.  The debugger implementation
+  // scripts have an index in the interval [0, GetDebuggerCount()).  The
+  // non-debugger scripts have an index in the interval [GetDebuggerCount(),
+  // GetNativesCount()).
+  static int GetIndex(const char* name);
+  static Vector<const char> GetScriptSource(int index);
+  static Vector<const char> GetScriptName(int index);
+  static Vector<const char> GetScriptsSource();
+
+  // The following methods are implemented in natives-common.cc:
+
+  static FixedArray* GetSourceCache(Heap* heap);
+  static void UpdateSourceCache(Heap* heap);
+};
+
+typedef NativesCollection<CORE> Natives;
+typedef NativesCollection<EXPERIMENTAL> ExperimentalNatives;
+typedef NativesCollection<EXTRAS> ExtraNatives;
+typedef NativesCollection<EXPERIMENTAL_EXTRAS> ExperimentalExtraNatives;
+
+
+#ifdef V8_USE_EXTERNAL_STARTUP_DATA
+// Used for reading the natives at runtime. Implementation in natives-empty.cc
+void SetNativesFromFile(StartupData* natives_blob);
+void ReadNatives();
+void DisposeNatives();
+#endif
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_SNAPSHOT_NATIVES_H_
diff --git a/src/snapshot/serialize.cc b/src/snapshot/serialize.cc
new file mode 100644
index 0000000..421cf07
--- /dev/null
+++ b/src/snapshot/serialize.cc
@@ -0,0 +1,2804 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/snapshot/serialize.h"
+
+#include "src/accessors.h"
+#include "src/api.h"
+#include "src/base/platform/platform.h"
+#include "src/bootstrapper.h"
+#include "src/code-stubs.h"
+#include "src/deoptimizer.h"
+#include "src/execution.h"
+#include "src/global-handles.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/objects.h"
+#include "src/parsing/parser.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/runtime/runtime.h"
+#include "src/snapshot/natives.h"
+#include "src/snapshot/snapshot.h"
+#include "src/snapshot/snapshot-source-sink.h"
+#include "src/v8.h"
+#include "src/v8threads.h"
+#include "src/version.h"
+
+namespace v8 {
+namespace internal {
+
+
+// -----------------------------------------------------------------------------
+// Coding of external references.
+
+
+ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
+  ExternalReferenceTable* external_reference_table =
+      isolate->external_reference_table();
+  if (external_reference_table == NULL) {
+    external_reference_table = new ExternalReferenceTable(isolate);
+    isolate->set_external_reference_table(external_reference_table);
+  }
+  return external_reference_table;
+}
+
+
+ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
+  // Miscellaneous
+  Add(ExternalReference::roots_array_start(isolate).address(),
+      "Heap::roots_array_start()");
+  Add(ExternalReference::address_of_stack_limit(isolate).address(),
+      "StackGuard::address_of_jslimit()");
+  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
+      "StackGuard::address_of_real_jslimit()");
+  Add(ExternalReference::new_space_start(isolate).address(),
+      "Heap::NewSpaceStart()");
+  Add(ExternalReference::new_space_mask(isolate).address(),
+      "Heap::NewSpaceMask()");
+  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
+      "Heap::NewSpaceAllocationLimitAddress()");
+  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
+      "Heap::NewSpaceAllocationTopAddress()");
+  Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
+      "mod_two_doubles");
+  // Keyed lookup cache.
+  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
+      "KeyedLookupCache::keys()");
+  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
+      "KeyedLookupCache::field_offsets()");
+  Add(ExternalReference::handle_scope_next_address(isolate).address(),
+      "HandleScope::next");
+  Add(ExternalReference::handle_scope_limit_address(isolate).address(),
+      "HandleScope::limit");
+  Add(ExternalReference::handle_scope_level_address(isolate).address(),
+      "HandleScope::level");
+  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
+      "Deoptimizer::New()");
+  Add(ExternalReference::compute_output_frames_function(isolate).address(),
+      "Deoptimizer::ComputeOutputFrames()");
+  Add(ExternalReference::address_of_min_int().address(),
+      "LDoubleConstant::min_int");
+  Add(ExternalReference::address_of_one_half().address(),
+      "LDoubleConstant::one_half");
+  Add(ExternalReference::isolate_address(isolate).address(), "isolate");
+  Add(ExternalReference::address_of_negative_infinity().address(),
+      "LDoubleConstant::negative_infinity");
+  Add(ExternalReference::power_double_double_function(isolate).address(),
+      "power_double_double_function");
+  Add(ExternalReference::power_double_int_function(isolate).address(),
+      "power_double_int_function");
+  Add(ExternalReference::math_log_double_function(isolate).address(),
+      "std::log");
+  Add(ExternalReference::store_buffer_top(isolate).address(),
+      "store_buffer_top");
+  Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
+  Add(ExternalReference::get_date_field_function(isolate).address(),
+      "JSDate::GetField");
+  Add(ExternalReference::date_cache_stamp(isolate).address(),
+      "date_cache_stamp");
+  Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
+      "address_of_pending_message_obj");
+  Add(ExternalReference::get_make_code_young_function(isolate).address(),
+      "Code::MakeCodeYoung");
+  Add(ExternalReference::cpu_features().address(), "cpu_features");
+  Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
+      "Heap::OldSpaceAllocationTopAddress");
+  Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
+      "Heap::OldSpaceAllocationLimitAddress");
+  Add(ExternalReference::allocation_sites_list_address(isolate).address(),
+      "Heap::allocation_sites_list_address()");
+  Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
+  Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
+      "Code::MarkCodeAsExecuted");
+  Add(ExternalReference::is_profiling_address(isolate).address(),
+      "CpuProfiler::is_profiling");
+  Add(ExternalReference::scheduled_exception_address(isolate).address(),
+      "Isolate::scheduled_exception");
+  Add(ExternalReference::invoke_function_callback(isolate).address(),
+      "InvokeFunctionCallback");
+  Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
+      "InvokeAccessorGetterCallback");
+  Add(ExternalReference::log_enter_external_function(isolate).address(),
+      "Logger::EnterExternal");
+  Add(ExternalReference::log_leave_external_function(isolate).address(),
+      "Logger::LeaveExternal");
+  Add(ExternalReference::address_of_minus_one_half().address(),
+      "double_constants.minus_one_half");
+  Add(ExternalReference::stress_deopt_count(isolate).address(),
+      "Isolate::stress_deopt_count_address()");
+  Add(ExternalReference::virtual_handler_register(isolate).address(),
+      "Isolate::virtual_handler_register()");
+  Add(ExternalReference::virtual_slot_register(isolate).address(),
+      "Isolate::virtual_slot_register()");
+  Add(ExternalReference::runtime_function_table_address(isolate).address(),
+      "Runtime::runtime_function_table_address()");
+
+  // Debug addresses
+  Add(ExternalReference::debug_after_break_target_address(isolate).address(),
+      "Debug::after_break_target_address()");
+  Add(ExternalReference::debug_is_active_address(isolate).address(),
+      "Debug::is_active_address()");
+  Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
+      "Debug::step_in_enabled_address()");
+
+#ifndef V8_INTERPRETED_REGEXP
+  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
+      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
+  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
+      "RegExpMacroAssembler*::CheckStackGuardState()");
+  Add(ExternalReference::re_grow_stack(isolate).address(),
+      "NativeRegExpMacroAssembler::GrowStack()");
+  Add(ExternalReference::re_word_character_map().address(),
+      "NativeRegExpMacroAssembler::word_character_map");
+  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
+      "RegExpStack::limit_address()");
+  Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
+          .address(),
+      "RegExpStack::memory_address()");
+  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
+      "RegExpStack::memory_size()");
+  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
+      "OffsetsVector::static_offsets_vector");
+#endif  // V8_INTERPRETED_REGEXP
+
+  // The following populates all of the different type of external references
+  // into the ExternalReferenceTable.
+  //
+  // NOTE: This function was originally 100k of code.  It has since been
+  // rewritten to be mostly table driven, as the callback macro style tends to
+  // very easily cause code bloat.  Please be careful in the future when adding
+  // new references.
+
+  struct RefTableEntry {
+    uint16_t id;
+    const char* name;
+  };
+
+  static const RefTableEntry c_builtins[] = {
+#define DEF_ENTRY_C(name, ignored)           \
+  { Builtins::c_##name, "Builtins::" #name } \
+  ,
+      BUILTIN_LIST_C(DEF_ENTRY_C)
+#undef DEF_ENTRY_C
+  };
+
+  for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
+    ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
+                          isolate);
+    Add(ref.address(), c_builtins[i].name);
+  }
+
+  static const RefTableEntry builtins[] = {
+#define DEF_ENTRY_C(name, ignored)          \
+  { Builtins::k##name, "Builtins::" #name } \
+  ,
+#define DEF_ENTRY_A(name, i1, i2, i3)       \
+  { Builtins::k##name, "Builtins::" #name } \
+  ,
+      BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
+          BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
+#undef DEF_ENTRY_C
+#undef DEF_ENTRY_A
+  };
+
+  for (unsigned i = 0; i < arraysize(builtins); ++i) {
+    ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
+    Add(ref.address(), builtins[i].name);
+  }
+
+  static const RefTableEntry runtime_functions[] = {
+#define RUNTIME_ENTRY(name, i1, i2)       \
+  { Runtime::k##name, "Runtime::" #name } \
+  ,
+      FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
+#undef RUNTIME_ENTRY
+  };
+
+  for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
+    ExternalReference ref(
+        static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
+    Add(ref.address(), runtime_functions[i].name);
+  }
+
+  // Stat counters
+  struct StatsRefTableEntry {
+    StatsCounter* (Counters::*counter)();
+    const char* name;
+  };
+
+  static const StatsRefTableEntry stats_ref_table[] = {
+#define COUNTER_ENTRY(name, caption)      \
+  { &Counters::name, "Counters::" #name } \
+  ,
+      STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
+#undef COUNTER_ENTRY
+  };
+
+  Counters* counters = isolate->counters();
+  for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
+    // To make sure the indices are not dependent on whether counters are
+    // enabled, use a dummy address as filler.
+    Address address = NotAvailable();
+    StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
+    if (counter->Enabled()) {
+      address = reinterpret_cast<Address>(counter->GetInternalPointer());
+    }
+    Add(address, stats_ref_table[i].name);
+  }
+
+  // Top addresses
+  static const char* address_names[] = {
+#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
+      FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
+#undef BUILD_NAME_LITERAL
+  };
+
+  for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
+    Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
+        address_names[i]);
+  }
+
+  // Accessors
+  struct AccessorRefTable {
+    Address address;
+    const char* name;
+  };
+
+  static const AccessorRefTable accessors[] = {
+#define ACCESSOR_INFO_DECLARATION(name)                                     \
+  { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
+  , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
+      ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
+#undef ACCESSOR_INFO_DECLARATION
+  };
+
+  for (unsigned i = 0; i < arraysize(accessors); ++i) {
+    Add(accessors[i].address, accessors[i].name);
+  }
+
+  StubCache* stub_cache = isolate->stub_cache();
+
+  // Stub cache tables
+  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
+      "StubCache::primary_->key");
+  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
+      "StubCache::primary_->value");
+  Add(stub_cache->map_reference(StubCache::kPrimary).address(),
+      "StubCache::primary_->map");
+  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
+      "StubCache::secondary_->key");
+  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
+      "StubCache::secondary_->value");
+  Add(stub_cache->map_reference(StubCache::kSecondary).address(),
+      "StubCache::secondary_->map");
+
+  // Runtime entries
+  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
+      "HandleScope::DeleteExtensions");
+  Add(ExternalReference::incremental_marking_record_write_function(isolate)
+          .address(),
+      "IncrementalMarking::RecordWrite");
+  Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
+      "StoreBuffer::StoreBufferOverflow");
+
+  // Add a small set of deopt entry addresses to encoder without generating the
+  // deopt table code, which isn't possible at deserialization time.
+  HandleScope scope(isolate);
+  for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
+    Address address = Deoptimizer::GetDeoptimizationEntry(
+        isolate,
+        entry,
+        Deoptimizer::LAZY,
+        Deoptimizer::CALCULATE_ENTRY_ADDRESS);
+    Add(address, "lazy_deopt");
+  }
+}
+
+
+ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
+  map_ = isolate->external_reference_map();
+  if (map_ != NULL) return;
+  map_ = new HashMap(HashMap::PointersMatch);
+  ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
+  for (int i = 0; i < table->size(); ++i) {
+    Address addr = table->address(i);
+    if (addr == ExternalReferenceTable::NotAvailable()) continue;
+    // We expect no duplicate external references entries in the table.
+    DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
+    map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
+  }
+  isolate->set_external_reference_map(map_);
+}
+
+
+uint32_t ExternalReferenceEncoder::Encode(Address address) const {
+  DCHECK_NOT_NULL(address);
+  HashMap::Entry* entry =
+      const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
+  DCHECK_NOT_NULL(entry);
+  return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
+}
+
+
+const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
+                                                    Address address) const {
+  HashMap::Entry* entry =
+      const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
+  if (entry == NULL) return "<unknown>";
+  uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
+  return ExternalReferenceTable::instance(isolate)->name(i);
+}
+
+
+class CodeAddressMap: public CodeEventLogger {
+ public:
+  explicit CodeAddressMap(Isolate* isolate)
+      : isolate_(isolate) {
+    isolate->logger()->addCodeEventListener(this);
+  }
+
+  ~CodeAddressMap() override {
+    isolate_->logger()->removeCodeEventListener(this);
+  }
+
+  void CodeMoveEvent(Address from, Address to) override {
+    address_to_name_map_.Move(from, to);
+  }
+
+  void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) override {}
+
+  void CodeDeleteEvent(Address from) override {
+    address_to_name_map_.Remove(from);
+  }
+
+  const char* Lookup(Address address) {
+    return address_to_name_map_.Lookup(address);
+  }
+
+ private:
+  class NameMap {
+   public:
+    NameMap() : impl_(HashMap::PointersMatch) {}
+
+    ~NameMap() {
+      for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
+        DeleteArray(static_cast<const char*>(p->value));
+      }
+    }
+
+    void Insert(Address code_address, const char* name, int name_size) {
+      HashMap::Entry* entry = FindOrCreateEntry(code_address);
+      if (entry->value == NULL) {
+        entry->value = CopyName(name, name_size);
+      }
+    }
+
+    const char* Lookup(Address code_address) {
+      HashMap::Entry* entry = FindEntry(code_address);
+      return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
+    }
+
+    void Remove(Address code_address) {
+      HashMap::Entry* entry = FindEntry(code_address);
+      if (entry != NULL) {
+        DeleteArray(static_cast<char*>(entry->value));
+        RemoveEntry(entry);
+      }
+    }
+
+    void Move(Address from, Address to) {
+      if (from == to) return;
+      HashMap::Entry* from_entry = FindEntry(from);
+      DCHECK(from_entry != NULL);
+      void* value = from_entry->value;
+      RemoveEntry(from_entry);
+      HashMap::Entry* to_entry = FindOrCreateEntry(to);
+      DCHECK(to_entry->value == NULL);
+      to_entry->value = value;
+    }
+
+   private:
+    static char* CopyName(const char* name, int name_size) {
+      char* result = NewArray<char>(name_size + 1);
+      for (int i = 0; i < name_size; ++i) {
+        char c = name[i];
+        if (c == '\0') c = ' ';
+        result[i] = c;
+      }
+      result[name_size] = '\0';
+      return result;
+    }
+
+    HashMap::Entry* FindOrCreateEntry(Address code_address) {
+      return impl_.LookupOrInsert(code_address,
+                                  ComputePointerHash(code_address));
+    }
+
+    HashMap::Entry* FindEntry(Address code_address) {
+      return impl_.Lookup(code_address, ComputePointerHash(code_address));
+    }
+
+    void RemoveEntry(HashMap::Entry* entry) {
+      impl_.Remove(entry->key, entry->hash);
+    }
+
+    HashMap impl_;
+
+    DISALLOW_COPY_AND_ASSIGN(NameMap);
+  };
+
+  void LogRecordedBuffer(Code* code, SharedFunctionInfo*, const char* name,
+                         int length) override {
+    address_to_name_map_.Insert(code->address(), name, length);
+  }
+
+  NameMap address_to_name_map_;
+  Isolate* isolate_;
+};
+
+
+void Deserializer::DecodeReservation(
+    Vector<const SerializedData::Reservation> res) {
+  DCHECK_EQ(0, reservations_[NEW_SPACE].length());
+  STATIC_ASSERT(NEW_SPACE == 0);
+  int current_space = NEW_SPACE;
+  for (auto& r : res) {
+    reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
+    if (r.is_last()) current_space++;
+  }
+  DCHECK_EQ(kNumberOfSpaces, current_space);
+  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
+}
+
+
+void Deserializer::FlushICacheForNewIsolate() {
+  DCHECK(!deserializing_user_code_);
+  // The entire isolate is newly deserialized. Simply flush all code pages.
+  PageIterator it(isolate_->heap()->code_space());
+  while (it.has_next()) {
+    Page* p = it.next();
+    Assembler::FlushICache(isolate_, p->area_start(),
+                           p->area_end() - p->area_start());
+  }
+}
+
+
+void Deserializer::FlushICacheForNewCodeObjects() {
+  DCHECK(deserializing_user_code_);
+  for (Code* code : new_code_objects_) {
+    Assembler::FlushICache(isolate_, code->instruction_start(),
+                           code->instruction_size());
+  }
+}
+
+
+bool Deserializer::ReserveSpace() {
+#ifdef DEBUG
+  for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
+    CHECK(reservations_[i].length() > 0);
+  }
+#endif  // DEBUG
+  if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
+  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
+    high_water_[i] = reservations_[i][0].start;
+  }
+  return true;
+}
+
+
+void Deserializer::Initialize(Isolate* isolate) {
+  DCHECK_NULL(isolate_);
+  DCHECK_NOT_NULL(isolate);
+  isolate_ = isolate;
+  DCHECK_NULL(external_reference_table_);
+  external_reference_table_ = ExternalReferenceTable::instance(isolate);
+  CHECK_EQ(magic_number_,
+           SerializedData::ComputeMagicNumber(external_reference_table_));
+}
+
+
+void Deserializer::Deserialize(Isolate* isolate) {
+  Initialize(isolate);
+  if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
+  // No active threads.
+  DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
+  // No active handles.
+  DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
+
+  {
+    DisallowHeapAllocation no_gc;
+    isolate_->heap()->IterateSmiRoots(this);
+    isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
+    isolate_->heap()->RepairFreeListsAfterDeserialization();
+    isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
+    DeserializeDeferredObjects();
+    FlushICacheForNewIsolate();
+  }
+
+  isolate_->heap()->set_native_contexts_list(
+      isolate_->heap()->undefined_value());
+  // The allocation site list is build during root iteration, but if no sites
+  // were encountered then it needs to be initialized to undefined.
+  if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
+    isolate_->heap()->set_allocation_sites_list(
+        isolate_->heap()->undefined_value());
+  }
+
+  // Update data pointers to the external strings containing natives sources.
+  Natives::UpdateSourceCache(isolate_->heap());
+  ExtraNatives::UpdateSourceCache(isolate_->heap());
+
+  // Issue code events for newly deserialized code objects.
+  LOG_CODE_EVENT(isolate_, LogCodeObjects());
+  LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
+}
+
+
+MaybeHandle<Object> Deserializer::DeserializePartial(
+    Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
+  Initialize(isolate);
+  if (!ReserveSpace()) {
+    V8::FatalProcessOutOfMemory("deserialize context");
+    return MaybeHandle<Object>();
+  }
+
+  Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
+  attached_objects[kGlobalProxyReference] = global_proxy;
+  SetAttachedObjects(attached_objects);
+
+  DisallowHeapAllocation no_gc;
+  // Keep track of the code space start and end pointers in case new
+  // code objects were unserialized
+  OldSpace* code_space = isolate_->heap()->code_space();
+  Address start_address = code_space->top();
+  Object* root;
+  VisitPointer(&root);
+  DeserializeDeferredObjects();
+
+  // There's no code deserialized here. If this assert fires then that's
+  // changed and logging should be added to notify the profiler et al of the
+  // new code, which also has to be flushed from instruction cache.
+  CHECK_EQ(start_address, code_space->top());
+  return Handle<Object>(root, isolate);
+}
+
+
+MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
+    Isolate* isolate) {
+  Initialize(isolate);
+  if (!ReserveSpace()) {
+    return Handle<SharedFunctionInfo>();
+  } else {
+    deserializing_user_code_ = true;
+    HandleScope scope(isolate);
+    Handle<SharedFunctionInfo> result;
+    {
+      DisallowHeapAllocation no_gc;
+      Object* root;
+      VisitPointer(&root);
+      DeserializeDeferredObjects();
+      FlushICacheForNewCodeObjects();
+      result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
+    }
+    CommitPostProcessedObjects(isolate);
+    return scope.CloseAndEscape(result);
+  }
+}
+
+
+Deserializer::~Deserializer() {
+  // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
+  // DCHECK(source_.AtEOF());
+  attached_objects_.Dispose();
+}
+
+
+// This is called on the roots.  It is the driver of the deserialization
+// process.  It is also called on the body of each function.
+void Deserializer::VisitPointers(Object** start, Object** end) {
+  // The space must be new space.  Any other space would cause ReadChunk to try
+  // to update the remembered using NULL as the address.
+  ReadData(start, end, NEW_SPACE, NULL);
+}
+
+
+void Deserializer::DeserializeDeferredObjects() {
+  for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
+    switch (code) {
+      case kAlignmentPrefix:
+      case kAlignmentPrefix + 1:
+      case kAlignmentPrefix + 2:
+        SetAlignment(code);
+        break;
+      default: {
+        int space = code & kSpaceMask;
+        DCHECK(space <= kNumberOfSpaces);
+        DCHECK(code - space == kNewObject);
+        HeapObject* object = GetBackReferencedObject(space);
+        int size = source_.GetInt() << kPointerSizeLog2;
+        Address obj_address = object->address();
+        Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
+        Object** end = reinterpret_cast<Object**>(obj_address + size);
+        bool filled = ReadData(start, end, space, obj_address);
+        CHECK(filled);
+        DCHECK(CanBeDeferred(object));
+        PostProcessNewObject(object, space);
+      }
+    }
+  }
+}
+
+
+// Used to insert a deserialized internalized string into the string table.
+class StringTableInsertionKey : public HashTableKey {
+ public:
+  explicit StringTableInsertionKey(String* string)
+      : string_(string), hash_(HashForObject(string)) {
+    DCHECK(string->IsInternalizedString());
+  }
+
+  bool IsMatch(Object* string) override {
+    // We know that all entries in a hash table had their hash keys created.
+    // Use that knowledge to have fast failure.
+    if (hash_ != HashForObject(string)) return false;
+    // We want to compare the content of two internalized strings here.
+    return string_->SlowEquals(String::cast(string));
+  }
+
+  uint32_t Hash() override { return hash_; }
+
+  uint32_t HashForObject(Object* key) override {
+    return String::cast(key)->Hash();
+  }
+
+  MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
+    return handle(string_, isolate);
+  }
+
+ private:
+  String* string_;
+  uint32_t hash_;
+  DisallowHeapAllocation no_gc;
+};
+
+
+HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
+  if (deserializing_user_code()) {
+    if (obj->IsString()) {
+      String* string = String::cast(obj);
+      // Uninitialize hash field as the hash seed may have changed.
+      string->set_hash_field(String::kEmptyHashField);
+      if (string->IsInternalizedString()) {
+        // Canonicalize the internalized string. If it already exists in the
+        // string table, set it to forward to the existing one.
+        StringTableInsertionKey key(string);
+        String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
+        if (canonical == NULL) {
+          new_internalized_strings_.Add(handle(string));
+          return string;
+        } else {
+          string->SetForwardedInternalizedString(canonical);
+          return canonical;
+        }
+      }
+    } else if (obj->IsScript()) {
+      new_scripts_.Add(handle(Script::cast(obj)));
+    } else {
+      DCHECK(CanBeDeferred(obj));
+    }
+  }
+  if (obj->IsAllocationSite()) {
+    DCHECK(obj->IsAllocationSite());
+    // Allocation sites are present in the snapshot, and must be linked into
+    // a list at deserialization time.
+    AllocationSite* site = AllocationSite::cast(obj);
+    // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
+    // as a (weak) root. If this root is relocated correctly, this becomes
+    // unnecessary.
+    if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
+      site->set_weak_next(isolate_->heap()->undefined_value());
+    } else {
+      site->set_weak_next(isolate_->heap()->allocation_sites_list());
+    }
+    isolate_->heap()->set_allocation_sites_list(site);
+  } else if (obj->IsCode()) {
+    // We flush all code pages after deserializing the startup snapshot. In that
+    // case, we only need to remember code objects in the large object space.
+    // When deserializing user code, remember each individual code object.
+    if (deserializing_user_code() || space == LO_SPACE) {
+      new_code_objects_.Add(Code::cast(obj));
+    }
+  }
+  // Check alignment.
+  DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
+  return obj;
+}
+
+
+void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
+  StringTable::EnsureCapacityForDeserialization(
+      isolate, new_internalized_strings_.length());
+  for (Handle<String> string : new_internalized_strings_) {
+    StringTableInsertionKey key(*string);
+    DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
+    StringTable::LookupKey(isolate, &key);
+  }
+
+  Heap* heap = isolate->heap();
+  Factory* factory = isolate->factory();
+  for (Handle<Script> script : new_scripts_) {
+    // Assign a new script id to avoid collision.
+    script->set_id(isolate_->heap()->NextScriptId());
+    // Add script to list.
+    Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
+    heap->SetRootScriptList(*list);
+  }
+}
+
+
+HeapObject* Deserializer::GetBackReferencedObject(int space) {
+  HeapObject* obj;
+  BackReference back_reference(source_.GetInt());
+  if (space == LO_SPACE) {
+    CHECK(back_reference.chunk_index() == 0);
+    uint32_t index = back_reference.large_object_index();
+    obj = deserialized_large_objects_[index];
+  } else {
+    DCHECK(space < kNumberOfPreallocatedSpaces);
+    uint32_t chunk_index = back_reference.chunk_index();
+    DCHECK_LE(chunk_index, current_chunk_[space]);
+    uint32_t chunk_offset = back_reference.chunk_offset();
+    Address address = reservations_[space][chunk_index].start + chunk_offset;
+    if (next_alignment_ != kWordAligned) {
+      int padding = Heap::GetFillToAlign(address, next_alignment_);
+      next_alignment_ = kWordAligned;
+      DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
+      address += padding;
+    }
+    obj = HeapObject::FromAddress(address);
+  }
+  if (deserializing_user_code() && obj->IsInternalizedString()) {
+    obj = String::cast(obj)->GetForwardedInternalizedString();
+  }
+  hot_objects_.Add(obj);
+  return obj;
+}
+
+
+// This routine writes the new object into the pointer provided and then
+// returns true if the new object was in young space and false otherwise.
+// The reason for this strange interface is that otherwise the object is
+// written very late, which means the FreeSpace map is not set up by the
+// time we need to use it to mark the space at the end of a page free.
+void Deserializer::ReadObject(int space_number, Object** write_back) {
+  Address address;
+  HeapObject* obj;
+  int size = source_.GetInt() << kObjectAlignmentBits;
+
+  if (next_alignment_ != kWordAligned) {
+    int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
+    address = Allocate(space_number, reserved);
+    obj = HeapObject::FromAddress(address);
+    // If one of the following assertions fails, then we are deserializing an
+    // aligned object when the filler maps have not been deserialized yet.
+    // We require filler maps as padding to align the object.
+    Heap* heap = isolate_->heap();
+    DCHECK(heap->free_space_map()->IsMap());
+    DCHECK(heap->one_pointer_filler_map()->IsMap());
+    DCHECK(heap->two_pointer_filler_map()->IsMap());
+    obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
+    address = obj->address();
+    next_alignment_ = kWordAligned;
+  } else {
+    address = Allocate(space_number, size);
+    obj = HeapObject::FromAddress(address);
+  }
+
+  isolate_->heap()->OnAllocationEvent(obj, size);
+  Object** current = reinterpret_cast<Object**>(address);
+  Object** limit = current + (size >> kPointerSizeLog2);
+  if (FLAG_log_snapshot_positions) {
+    LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
+  }
+
+  if (ReadData(current, limit, space_number, address)) {
+    // Only post process if object content has not been deferred.
+    obj = PostProcessNewObject(obj, space_number);
+  }
+
+  Object* write_back_obj = obj;
+  UnalignedCopy(write_back, &write_back_obj);
+#ifdef DEBUG
+  if (obj->IsCode()) {
+    DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
+  } else {
+    DCHECK(space_number != CODE_SPACE);
+  }
+#endif  // DEBUG
+}
+
+
+// We know the space requirements before deserialization and can
+// pre-allocate that reserved space. During deserialization, all we need
+// to do is to bump up the pointer for each space in the reserved
+// space. This is also used for fixing back references.
+// We may have to split up the pre-allocation into several chunks
+// because it would not fit onto a single page. We do not have to keep
+// track of when to move to the next chunk. An opcode will signal this.
+// Since multiple large objects cannot be folded into one large object
+// space allocation, we have to do an actual allocation when deserializing
+// each large object. Instead of tracking offset for back references, we
+// reference large objects by index.
+Address Deserializer::Allocate(int space_index, int size) {
+  if (space_index == LO_SPACE) {
+    AlwaysAllocateScope scope(isolate_);
+    LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
+    Executability exec = static_cast<Executability>(source_.Get());
+    AllocationResult result = lo_space->AllocateRaw(size, exec);
+    HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
+    deserialized_large_objects_.Add(obj);
+    return obj->address();
+  } else {
+    DCHECK(space_index < kNumberOfPreallocatedSpaces);
+    Address address = high_water_[space_index];
+    DCHECK_NOT_NULL(address);
+    high_water_[space_index] += size;
+#ifdef DEBUG
+    // Assert that the current reserved chunk is still big enough.
+    const Heap::Reservation& reservation = reservations_[space_index];
+    int chunk_index = current_chunk_[space_index];
+    CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
+#endif
+    return address;
+  }
+}
+
+
+Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
+                                           Object** current) {
+  DCHECK(!isolate_->heap()->deserialization_complete());
+  NativesExternalStringResource* resource = new NativesExternalStringResource(
+      source_vector.start(), source_vector.length());
+  Object* resource_obj = reinterpret_cast<Object*>(resource);
+  UnalignedCopy(current++, &resource_obj);
+  return current;
+}
+
+
+bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
+                            Address current_object_address) {
+  Isolate* const isolate = isolate_;
+  // Write barrier support costs around 1% in startup time.  In fact there
+  // are no new space objects in current boot snapshots, so it's not needed,
+  // but that may change.
+  bool write_barrier_needed =
+      (current_object_address != NULL && source_space != NEW_SPACE &&
+       source_space != CODE_SPACE);
+  while (current < limit) {
+    byte data = source_.Get();
+    switch (data) {
+#define CASE_STATEMENT(where, how, within, space_number) \
+  case where + how + within + space_number:              \
+    STATIC_ASSERT((where & ~kWhereMask) == 0);           \
+    STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
+    STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
+    STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
+
+#define CASE_BODY(where, how, within, space_number_if_any)                     \
+  {                                                                            \
+    bool emit_write_barrier = false;                                           \
+    bool current_was_incremented = false;                                      \
+    int space_number = space_number_if_any == kAnyOldSpace                     \
+                           ? (data & kSpaceMask)                               \
+                           : space_number_if_any;                              \
+    if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
+      ReadObject(space_number, current);                                       \
+      emit_write_barrier = (space_number == NEW_SPACE);                        \
+    } else {                                                                   \
+      Object* new_object = NULL; /* May not be a real Object pointer. */       \
+      if (where == kNewObject) {                                               \
+        ReadObject(space_number, &new_object);                                 \
+      } else if (where == kBackref) {                                          \
+        emit_write_barrier = (space_number == NEW_SPACE);                      \
+        new_object = GetBackReferencedObject(data & kSpaceMask);               \
+      } else if (where == kBackrefWithSkip) {                                  \
+        int skip = source_.GetInt();                                           \
+        current = reinterpret_cast<Object**>(                                  \
+            reinterpret_cast<Address>(current) + skip);                        \
+        emit_write_barrier = (space_number == NEW_SPACE);                      \
+        new_object = GetBackReferencedObject(data & kSpaceMask);               \
+      } else if (where == kRootArray) {                                        \
+        int id = source_.GetInt();                                             \
+        Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
+        new_object = isolate->heap()->root(root_index);                        \
+        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
+      } else if (where == kPartialSnapshotCache) {                             \
+        int cache_index = source_.GetInt();                                    \
+        new_object = isolate->partial_snapshot_cache()->at(cache_index);       \
+        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
+      } else if (where == kExternalReference) {                                \
+        int skip = source_.GetInt();                                           \
+        current = reinterpret_cast<Object**>(                                  \
+            reinterpret_cast<Address>(current) + skip);                        \
+        int reference_id = source_.GetInt();                                   \
+        Address address = external_reference_table_->address(reference_id);    \
+        new_object = reinterpret_cast<Object*>(address);                       \
+      } else if (where == kAttachedReference) {                                \
+        int index = source_.GetInt();                                          \
+        DCHECK(deserializing_user_code() || index == kGlobalProxyReference);   \
+        new_object = *attached_objects_[index];                                \
+        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
+      } else {                                                                 \
+        DCHECK(where == kBuiltin);                                             \
+        DCHECK(deserializing_user_code());                                     \
+        int builtin_id = source_.GetInt();                                     \
+        DCHECK_LE(0, builtin_id);                                              \
+        DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
+        Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
+        new_object = isolate->builtins()->builtin(name);                       \
+        emit_write_barrier = false;                                            \
+      }                                                                        \
+      if (within == kInnerPointer) {                                           \
+        if (space_number != CODE_SPACE || new_object->IsCode()) {              \
+          Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
+          new_object =                                                         \
+              reinterpret_cast<Object*>(new_code_object->instruction_start()); \
+        } else {                                                               \
+          DCHECK(space_number == CODE_SPACE);                                  \
+          Cell* cell = Cell::cast(new_object);                                 \
+          new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
+        }                                                                      \
+      }                                                                        \
+      if (how == kFromCode) {                                                  \
+        Address location_of_branch_data = reinterpret_cast<Address>(current);  \
+        Assembler::deserialization_set_special_target_at(                      \
+            isolate, location_of_branch_data,                                  \
+            Code::cast(HeapObject::FromAddress(current_object_address)),       \
+            reinterpret_cast<Address>(new_object));                            \
+        location_of_branch_data += Assembler::kSpecialTargetSize;              \
+        current = reinterpret_cast<Object**>(location_of_branch_data);         \
+        current_was_incremented = true;                                        \
+      } else {                                                                 \
+        UnalignedCopy(current, &new_object);                                   \
+      }                                                                        \
+    }                                                                          \
+    if (emit_write_barrier && write_barrier_needed) {                          \
+      Address current_address = reinterpret_cast<Address>(current);            \
+      isolate->heap()->RecordWrite(                                            \
+          current_object_address,                                              \
+          static_cast<int>(current_address - current_object_address));         \
+    }                                                                          \
+    if (!current_was_incremented) {                                            \
+      current++;                                                               \
+    }                                                                          \
+    break;                                                                     \
+  }
+
+// This generates a case and a body for the new space (which has to do extra
+// write barrier handling) and handles the other spaces with fall-through cases
+// and one body.
+#define ALL_SPACES(where, how, within)           \
+  CASE_STATEMENT(where, how, within, NEW_SPACE)  \
+  CASE_BODY(where, how, within, NEW_SPACE)       \
+  CASE_STATEMENT(where, how, within, OLD_SPACE)  \
+  CASE_STATEMENT(where, how, within, CODE_SPACE) \
+  CASE_STATEMENT(where, how, within, MAP_SPACE)  \
+  CASE_STATEMENT(where, how, within, LO_SPACE)   \
+  CASE_BODY(where, how, within, kAnyOldSpace)
+
+#define FOUR_CASES(byte_code)             \
+  case byte_code:                         \
+  case byte_code + 1:                     \
+  case byte_code + 2:                     \
+  case byte_code + 3:
+
+#define SIXTEEN_CASES(byte_code)          \
+  FOUR_CASES(byte_code)                   \
+  FOUR_CASES(byte_code + 4)               \
+  FOUR_CASES(byte_code + 8)               \
+  FOUR_CASES(byte_code + 12)
+
+#define SINGLE_CASE(where, how, within, space) \
+  CASE_STATEMENT(where, how, within, space)    \
+  CASE_BODY(where, how, within, space)
+
+      // Deserialize a new object and write a pointer to it to the current
+      // object.
+      ALL_SPACES(kNewObject, kPlain, kStartOfObject)
+      // Support for direct instruction pointers in functions.  It's an inner
+      // pointer because it points at the entry point, not at the start of the
+      // code object.
+      SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
+      // Deserialize a new code object and write a pointer to its first
+      // instruction to the current code object.
+      ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
+      // Find a recently deserialized object using its offset from the current
+      // allocation point and write a pointer to it to the current object.
+      ALL_SPACES(kBackref, kPlain, kStartOfObject)
+      ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
+#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
+    defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
+      // Deserialize a new object from pointer found in code and write
+      // a pointer to it to the current object. Required only for MIPS, PPC or
+      // ARM with embedded constant pool, and omitted on the other architectures
+      // because it is fully unrolled and would cause bloat.
+      ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
+      // Find a recently deserialized code object using its offset from the
+      // current allocation point and write a pointer to it to the current
+      // object. Required only for MIPS, PPC or ARM with embedded constant pool.
+      ALL_SPACES(kBackref, kFromCode, kStartOfObject)
+      ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
+#endif
+      // Find a recently deserialized code object using its offset from the
+      // current allocation point and write a pointer to its first instruction
+      // to the current code object or the instruction pointer in a function
+      // object.
+      ALL_SPACES(kBackref, kFromCode, kInnerPointer)
+      ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
+      ALL_SPACES(kBackref, kPlain, kInnerPointer)
+      ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
+      // Find an object in the roots array and write a pointer to it to the
+      // current object.
+      SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
+#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
+    defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
+      // Find an object in the roots array and write a pointer to it to in code.
+      SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
+#endif
+      // Find an object in the partial snapshots cache and write a pointer to it
+      // to the current object.
+      SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
+      // Find an code entry in the partial snapshots cache and
+      // write a pointer to it to the current object.
+      SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
+      // Find an external reference and write a pointer to it to the current
+      // object.
+      SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
+      // Find an external reference and write a pointer to it in the current
+      // code object.
+      SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
+      // Find an object in the attached references and write a pointer to it to
+      // the current object.
+      SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
+      SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
+      SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
+      // Find a builtin and write a pointer to it to the current object.
+      SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
+      SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
+      SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
+
+#undef CASE_STATEMENT
+#undef CASE_BODY
+#undef ALL_SPACES
+
+      case kSkip: {
+        int size = source_.GetInt();
+        current = reinterpret_cast<Object**>(
+            reinterpret_cast<intptr_t>(current) + size);
+        break;
+      }
+
+      case kInternalReferenceEncoded:
+      case kInternalReference: {
+        // Internal reference address is not encoded via skip, but by offset
+        // from code entry.
+        int pc_offset = source_.GetInt();
+        int target_offset = source_.GetInt();
+        Code* code =
+            Code::cast(HeapObject::FromAddress(current_object_address));
+        DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
+        DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
+        Address pc = code->entry() + pc_offset;
+        Address target = code->entry() + target_offset;
+        Assembler::deserialization_set_target_internal_reference_at(
+            isolate, pc, target, data == kInternalReference
+                                     ? RelocInfo::INTERNAL_REFERENCE
+                                     : RelocInfo::INTERNAL_REFERENCE_ENCODED);
+        break;
+      }
+
+      case kNop:
+        break;
+
+      case kNextChunk: {
+        int space = source_.Get();
+        DCHECK(space < kNumberOfPreallocatedSpaces);
+        int chunk_index = current_chunk_[space];
+        const Heap::Reservation& reservation = reservations_[space];
+        // Make sure the current chunk is indeed exhausted.
+        CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
+        // Move to next reserved chunk.
+        chunk_index = ++current_chunk_[space];
+        CHECK_LT(chunk_index, reservation.length());
+        high_water_[space] = reservation[chunk_index].start;
+        break;
+      }
+
+      case kDeferred: {
+        // Deferred can only occur right after the heap object header.
+        DCHECK(current == reinterpret_cast<Object**>(current_object_address +
+                                                     kPointerSize));
+        HeapObject* obj = HeapObject::FromAddress(current_object_address);
+        // If the deferred object is a map, its instance type may be used
+        // during deserialization. Initialize it with a temporary value.
+        if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
+        current = limit;
+        return false;
+      }
+
+      case kSynchronize:
+        // If we get here then that indicates that you have a mismatch between
+        // the number of GC roots when serializing and deserializing.
+        CHECK(false);
+        break;
+
+      case kNativesStringResource:
+        current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
+                                      current);
+        break;
+
+      case kExtraNativesStringResource:
+        current = CopyInNativesSource(
+            ExtraNatives::GetScriptSource(source_.Get()), current);
+        break;
+
+      // Deserialize raw data of variable length.
+      case kVariableRawData: {
+        int size_in_bytes = source_.GetInt();
+        byte* raw_data_out = reinterpret_cast<byte*>(current);
+        source_.CopyRaw(raw_data_out, size_in_bytes);
+        break;
+      }
+
+      case kVariableRepeat: {
+        int repeats = source_.GetInt();
+        Object* object = current[-1];
+        DCHECK(!isolate->heap()->InNewSpace(object));
+        for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
+        break;
+      }
+
+      case kAlignmentPrefix:
+      case kAlignmentPrefix + 1:
+      case kAlignmentPrefix + 2:
+        SetAlignment(data);
+        break;
+
+      STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
+      STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
+      SIXTEEN_CASES(kRootArrayConstantsWithSkip)
+      SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
+        int skip = source_.GetInt();
+        current = reinterpret_cast<Object**>(
+            reinterpret_cast<intptr_t>(current) + skip);
+        // Fall through.
+      }
+
+      SIXTEEN_CASES(kRootArrayConstants)
+      SIXTEEN_CASES(kRootArrayConstants + 16) {
+        int id = data & kRootArrayConstantsMask;
+        Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
+        Object* object = isolate->heap()->root(root_index);
+        DCHECK(!isolate->heap()->InNewSpace(object));
+        UnalignedCopy(current++, &object);
+        break;
+      }
+
+      STATIC_ASSERT(kNumberOfHotObjects == 8);
+      FOUR_CASES(kHotObjectWithSkip)
+      FOUR_CASES(kHotObjectWithSkip + 4) {
+        int skip = source_.GetInt();
+        current = reinterpret_cast<Object**>(
+            reinterpret_cast<Address>(current) + skip);
+        // Fall through.
+      }
+
+      FOUR_CASES(kHotObject)
+      FOUR_CASES(kHotObject + 4) {
+        int index = data & kHotObjectMask;
+        Object* hot_object = hot_objects_.Get(index);
+        UnalignedCopy(current, &hot_object);
+        if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
+          Address current_address = reinterpret_cast<Address>(current);
+          isolate->heap()->RecordWrite(
+              current_object_address,
+              static_cast<int>(current_address - current_object_address));
+        }
+        current++;
+        break;
+      }
+
+      // Deserialize raw data of fixed length from 1 to 32 words.
+      STATIC_ASSERT(kNumberOfFixedRawData == 32);
+      SIXTEEN_CASES(kFixedRawData)
+      SIXTEEN_CASES(kFixedRawData + 16) {
+        byte* raw_data_out = reinterpret_cast<byte*>(current);
+        int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
+        source_.CopyRaw(raw_data_out, size_in_bytes);
+        current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
+        break;
+      }
+
+      STATIC_ASSERT(kNumberOfFixedRepeat == 16);
+      SIXTEEN_CASES(kFixedRepeat) {
+        int repeats = data - kFixedRepeatStart;
+        Object* object;
+        UnalignedCopy(&object, current - 1);
+        DCHECK(!isolate->heap()->InNewSpace(object));
+        for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
+        break;
+      }
+
+#undef SIXTEEN_CASES
+#undef FOUR_CASES
+#undef SINGLE_CASE
+
+      default:
+        CHECK(false);
+    }
+  }
+  CHECK_EQ(limit, current);
+  return true;
+}
+
+
+Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
+    : isolate_(isolate),
+      sink_(sink),
+      external_reference_encoder_(isolate),
+      root_index_map_(isolate),
+      recursion_depth_(0),
+      code_address_map_(NULL),
+      large_objects_total_size_(0),
+      seen_large_objects_index_(0) {
+  // The serializer is meant to be used only to generate initial heap images
+  // from a context in which there is only one isolate.
+  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
+    pending_chunk_[i] = 0;
+    max_chunk_size_[i] = static_cast<uint32_t>(
+        MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
+  }
+
+#ifdef OBJECT_PRINT
+  if (FLAG_serialization_statistics) {
+    instance_type_count_ = NewArray<int>(kInstanceTypes);
+    instance_type_size_ = NewArray<size_t>(kInstanceTypes);
+    for (int i = 0; i < kInstanceTypes; i++) {
+      instance_type_count_[i] = 0;
+      instance_type_size_[i] = 0;
+    }
+  } else {
+    instance_type_count_ = NULL;
+    instance_type_size_ = NULL;
+  }
+#endif  // OBJECT_PRINT
+}
+
+
+Serializer::~Serializer() {
+  if (code_address_map_ != NULL) delete code_address_map_;
+#ifdef OBJECT_PRINT
+  if (instance_type_count_ != NULL) {
+    DeleteArray(instance_type_count_);
+    DeleteArray(instance_type_size_);
+  }
+#endif  // OBJECT_PRINT
+}
+
+
+#ifdef OBJECT_PRINT
+void Serializer::CountInstanceType(Map* map, int size) {
+  int instance_type = map->instance_type();
+  instance_type_count_[instance_type]++;
+  instance_type_size_[instance_type] += size;
+}
+#endif  // OBJECT_PRINT
+
+
+void Serializer::OutputStatistics(const char* name) {
+  if (!FLAG_serialization_statistics) return;
+  PrintF("%s:\n", name);
+  PrintF("  Spaces (bytes):\n");
+  for (int space = 0; space < kNumberOfSpaces; space++) {
+    PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
+  }
+  PrintF("\n");
+  for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
+    size_t s = pending_chunk_[space];
+    for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
+    PrintF("%16" V8_PTR_PREFIX "d", s);
+  }
+  PrintF("%16d\n", large_objects_total_size_);
+#ifdef OBJECT_PRINT
+  PrintF("  Instance types (count and bytes):\n");
+#define PRINT_INSTANCE_TYPE(Name)                                          \
+  if (instance_type_count_[Name]) {                                        \
+    PrintF("%10d %10" V8_PTR_PREFIX "d  %s\n", instance_type_count_[Name], \
+           instance_type_size_[Name], #Name);                              \
+  }
+  INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
+#undef PRINT_INSTANCE_TYPE
+  PrintF("\n");
+#endif  // OBJECT_PRINT
+}
+
+
+class Serializer::ObjectSerializer : public ObjectVisitor {
+ public:
+  ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
+                   HowToCode how_to_code, WhereToPoint where_to_point)
+      : serializer_(serializer),
+        object_(HeapObject::cast(o)),
+        sink_(sink),
+        reference_representation_(how_to_code + where_to_point),
+        bytes_processed_so_far_(0),
+        is_code_object_(o->IsCode()),
+        code_has_been_output_(false) {}
+  void Serialize();
+  void SerializeDeferred();
+  void VisitPointers(Object** start, Object** end) override;
+  void VisitEmbeddedPointer(RelocInfo* target) override;
+  void VisitExternalReference(Address* p) override;
+  void VisitExternalReference(RelocInfo* rinfo) override;
+  void VisitInternalReference(RelocInfo* rinfo) override;
+  void VisitCodeTarget(RelocInfo* target) override;
+  void VisitCodeEntry(Address entry_address) override;
+  void VisitCell(RelocInfo* rinfo) override;
+  void VisitRuntimeEntry(RelocInfo* reloc) override;
+  // Used for seralizing the external strings that hold the natives source.
+  void VisitExternalOneByteString(
+      v8::String::ExternalOneByteStringResource** resource) override;
+  // We can't serialize a heap with external two byte strings.
+  void VisitExternalTwoByteString(
+      v8::String::ExternalStringResource** resource) override {
+    UNREACHABLE();
+  }
+
+ private:
+  void SerializePrologue(AllocationSpace space, int size, Map* map);
+
+  bool SerializeExternalNativeSourceString(
+      int builtin_count,
+      v8::String::ExternalOneByteStringResource** resource_pointer,
+      FixedArray* source_cache, int resource_index);
+
+  enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
+  // This function outputs or skips the raw data between the last pointer and
+  // up to the current position.  It optionally can just return the number of
+  // bytes to skip instead of performing a skip instruction, in case the skip
+  // can be merged into the next instruction.
+  int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
+  // External strings are serialized in a way to resemble sequential strings.
+  void SerializeExternalString();
+
+  Address PrepareCode();
+
+  Serializer* serializer_;
+  HeapObject* object_;
+  SnapshotByteSink* sink_;
+  int reference_representation_;
+  int bytes_processed_so_far_;
+  bool is_code_object_;
+  bool code_has_been_output_;
+};
+
+
+void Serializer::SerializeDeferredObjects() {
+  while (deferred_objects_.length() > 0) {
+    HeapObject* obj = deferred_objects_.RemoveLast();
+    ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
+    obj_serializer.SerializeDeferred();
+  }
+  sink_->Put(kSynchronize, "Finished with deferred objects");
+}
+
+
+void StartupSerializer::SerializeStrongReferences() {
+  Isolate* isolate = this->isolate();
+  // No active threads.
+  CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
+  // No active or weak handles.
+  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
+  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
+  CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
+  // We don't support serializing installed extensions.
+  CHECK(!isolate->has_installed_extensions());
+  isolate->heap()->IterateSmiRoots(this);
+  isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
+}
+
+
+void StartupSerializer::VisitPointers(Object** start, Object** end) {
+  for (Object** current = start; current < end; current++) {
+    if (start == isolate()->heap()->roots_array_start()) {
+      root_index_wave_front_ =
+          Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
+    }
+    if (ShouldBeSkipped(current)) {
+      sink_->Put(kSkip, "Skip");
+      sink_->PutInt(kPointerSize, "SkipOneWord");
+    } else if ((*current)->IsSmi()) {
+      sink_->Put(kOnePointerRawData, "Smi");
+      for (int i = 0; i < kPointerSize; i++) {
+        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
+      }
+    } else {
+      SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
+    }
+  }
+}
+
+
+void PartialSerializer::Serialize(Object** o) {
+  if ((*o)->IsContext()) {
+    Context* context = Context::cast(*o);
+    global_object_ = context->global_object();
+    back_reference_map()->AddGlobalProxy(context->global_proxy());
+    // The bootstrap snapshot has a code-stub context. When serializing the
+    // partial snapshot, it is chained into the weak context list on the isolate
+    // and it's next context pointer may point to the code-stub context.  Clear
+    // it before serializing, it will get re-added to the context list
+    // explicitly when it's loaded.
+    if (context->IsNativeContext()) {
+      context->set(Context::NEXT_CONTEXT_LINK,
+                   isolate_->heap()->undefined_value());
+      DCHECK(!context->global_object()->IsUndefined());
+    }
+  }
+  VisitPointer(o);
+  SerializeDeferredObjects();
+  Pad();
+}
+
+
+bool Serializer::ShouldBeSkipped(Object** current) {
+  Object** roots = isolate()->heap()->roots_array_start();
+  return current == &roots[Heap::kStoreBufferTopRootIndex]
+      || current == &roots[Heap::kStackLimitRootIndex]
+      || current == &roots[Heap::kRealStackLimitRootIndex];
+}
+
+
+void Serializer::VisitPointers(Object** start, Object** end) {
+  for (Object** current = start; current < end; current++) {
+    if ((*current)->IsSmi()) {
+      sink_->Put(kOnePointerRawData, "Smi");
+      for (int i = 0; i < kPointerSize; i++) {
+        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
+      }
+    } else {
+      SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
+    }
+  }
+}
+
+
+void Serializer::EncodeReservations(
+    List<SerializedData::Reservation>* out) const {
+  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
+    for (int j = 0; j < completed_chunks_[i].length(); j++) {
+      out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
+    }
+
+    if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
+      out->Add(SerializedData::Reservation(pending_chunk_[i]));
+    }
+    out->last().mark_as_last();
+  }
+
+  out->Add(SerializedData::Reservation(large_objects_total_size_));
+  out->last().mark_as_last();
+}
+
+
+// This ensures that the partial snapshot cache keeps things alive during GC and
+// tracks their movement.  When it is called during serialization of the startup
+// snapshot nothing happens.  When the partial (context) snapshot is created,
+// this array is populated with the pointers that the partial snapshot will
+// need. As that happens we emit serialized objects to the startup snapshot
+// that correspond to the elements of this cache array.  On deserialization we
+// therefore need to visit the cache array.  This fills it up with pointers to
+// deserialized objects.
+void SerializerDeserializer::Iterate(Isolate* isolate,
+                                     ObjectVisitor* visitor) {
+  if (isolate->serializer_enabled()) return;
+  List<Object*>* cache = isolate->partial_snapshot_cache();
+  for (int i = 0;; ++i) {
+    // Extend the array ready to get a value when deserializing.
+    if (cache->length() <= i) cache->Add(Smi::FromInt(0));
+    visitor->VisitPointer(&cache->at(i));
+    // Sentinel is the undefined object, which is a root so it will not normally
+    // be found in the cache.
+    if (cache->at(i)->IsUndefined()) break;
+  }
+}
+
+
+bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
+  return !o->IsString() && !o->IsScript();
+}
+
+
+int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
+  Isolate* isolate = this->isolate();
+  List<Object*>* cache = isolate->partial_snapshot_cache();
+  int new_index = cache->length();
+
+  int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
+  if (index == PartialCacheIndexMap::kInvalidIndex) {
+    // We didn't find the object in the cache.  So we add it to the cache and
+    // then visit the pointer so that it becomes part of the startup snapshot
+    // and we can refer to it from the partial snapshot.
+    cache->Add(heap_object);
+    startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
+    // We don't recurse from the startup snapshot generator into the partial
+    // snapshot generator.
+    return new_index;
+  }
+  return index;
+}
+
+
+bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
+  // Scripts should be referred only through shared function infos.  We can't
+  // allow them to be part of the partial snapshot because they contain a
+  // unique ID, and deserializing several partial snapshots containing script
+  // would cause dupes.
+  DCHECK(!o->IsScript());
+  return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
+         o->IsCode() || o->IsScopeInfo() || o->IsExecutableAccessorInfo() ||
+         o->map() ==
+             startup_serializer_->isolate()->heap()->fixed_cow_array_map();
+}
+
+
+#ifdef DEBUG
+bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
+  DCHECK(reference.is_valid());
+  DCHECK(!reference.is_source());
+  DCHECK(!reference.is_global_proxy());
+  AllocationSpace space = reference.space();
+  int chunk_index = reference.chunk_index();
+  if (space == LO_SPACE) {
+    return chunk_index == 0 &&
+           reference.large_object_index() < seen_large_objects_index_;
+  } else if (chunk_index == completed_chunks_[space].length()) {
+    return reference.chunk_offset() < pending_chunk_[space];
+  } else {
+    return chunk_index < completed_chunks_[space].length() &&
+           reference.chunk_offset() < completed_chunks_[space][chunk_index];
+  }
+}
+#endif  // DEBUG
+
+
+bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
+                                      WhereToPoint where_to_point, int skip) {
+  if (how_to_code == kPlain && where_to_point == kStartOfObject) {
+    // Encode a reference to a hot object by its index in the working set.
+    int index = hot_objects_.Find(obj);
+    if (index != HotObjectsList::kNotFound) {
+      DCHECK(index >= 0 && index < kNumberOfHotObjects);
+      if (FLAG_trace_serializer) {
+        PrintF(" Encoding hot object %d:", index);
+        obj->ShortPrint();
+        PrintF("\n");
+      }
+      if (skip != 0) {
+        sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
+        sink_->PutInt(skip, "HotObjectSkipDistance");
+      } else {
+        sink_->Put(kHotObject + index, "HotObject");
+      }
+      return true;
+    }
+  }
+  BackReference back_reference = back_reference_map_.Lookup(obj);
+  if (back_reference.is_valid()) {
+    // Encode the location of an already deserialized object in order to write
+    // its location into a later object.  We can encode the location as an
+    // offset fromthe start of the deserialized objects or as an offset
+    // backwards from thecurrent allocation pointer.
+    if (back_reference.is_source()) {
+      FlushSkip(skip);
+      if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
+      DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
+      sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
+      sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
+    } else if (back_reference.is_global_proxy()) {
+      FlushSkip(skip);
+      if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
+      DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
+      sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
+      sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
+    } else {
+      if (FLAG_trace_serializer) {
+        PrintF(" Encoding back reference to: ");
+        obj->ShortPrint();
+        PrintF("\n");
+      }
+
+      PutAlignmentPrefix(obj);
+      AllocationSpace space = back_reference.space();
+      if (skip == 0) {
+        sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
+      } else {
+        sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
+                   "BackRefWithSkip");
+        sink_->PutInt(skip, "BackRefSkipDistance");
+      }
+      PutBackReference(obj, back_reference);
+    }
+    return true;
+  }
+  return false;
+}
+
+
+StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
+    : Serializer(isolate, sink), root_index_wave_front_(0) {
+  // Clear the cache of objects used by the partial snapshot.  After the
+  // strong roots have been serialized we can create a partial snapshot
+  // which will repopulate the cache with objects needed by that partial
+  // snapshot.
+  isolate->partial_snapshot_cache()->Clear();
+  InitializeCodeAddressMap();
+}
+
+
+void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
+                                        WhereToPoint where_to_point, int skip) {
+  DCHECK(!obj->IsJSFunction());
+
+  int root_index = root_index_map_.Lookup(obj);
+  // We can only encode roots as such if it has already been serialized.
+  // That applies to root indices below the wave front.
+  if (root_index != RootIndexMap::kInvalidRootIndex &&
+      root_index < root_index_wave_front_) {
+    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
+    return;
+  }
+
+  if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
+    obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
+  }
+
+  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
+
+  FlushSkip(skip);
+
+  // Object has not yet been serialized.  Serialize it here.
+  ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
+                                     where_to_point);
+  object_serializer.Serialize();
+}
+
+
+void StartupSerializer::SerializeWeakReferencesAndDeferred() {
+  // This phase comes right after the serialization (of the snapshot).
+  // After we have done the partial serialization the partial snapshot cache
+  // will contain some references needed to decode the partial snapshot.  We
+  // add one entry with 'undefined' which is the sentinel that the deserializer
+  // uses to know it is done deserializing the array.
+  Object* undefined = isolate()->heap()->undefined_value();
+  VisitPointer(&undefined);
+  isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
+  SerializeDeferredObjects();
+  Pad();
+}
+
+
+void Serializer::PutRoot(int root_index,
+                         HeapObject* object,
+                         SerializerDeserializer::HowToCode how_to_code,
+                         SerializerDeserializer::WhereToPoint where_to_point,
+                         int skip) {
+  if (FLAG_trace_serializer) {
+    PrintF(" Encoding root %d:", root_index);
+    object->ShortPrint();
+    PrintF("\n");
+  }
+
+  if (how_to_code == kPlain && where_to_point == kStartOfObject &&
+      root_index < kNumberOfRootArrayConstants &&
+      !isolate()->heap()->InNewSpace(object)) {
+    if (skip == 0) {
+      sink_->Put(kRootArrayConstants + root_index, "RootConstant");
+    } else {
+      sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
+      sink_->PutInt(skip, "SkipInPutRoot");
+    }
+  } else {
+    FlushSkip(skip);
+    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
+    sink_->PutInt(root_index, "root_index");
+  }
+}
+
+
+void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
+  DCHECK(BackReferenceIsAlreadyAllocated(reference));
+  sink_->PutInt(reference.reference(), "BackRefValue");
+  hot_objects_.Add(object);
+}
+
+
+int Serializer::PutAlignmentPrefix(HeapObject* object) {
+  AllocationAlignment alignment = object->RequiredAlignment();
+  if (alignment != kWordAligned) {
+    DCHECK(1 <= alignment && alignment <= 3);
+    byte prefix = (kAlignmentPrefix - 1) + alignment;
+    sink_->Put(prefix, "Alignment");
+    return Heap::GetMaximumFillToAlign(alignment);
+  }
+  return 0;
+}
+
+
+void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
+                                        WhereToPoint where_to_point, int skip) {
+  if (obj->IsMap()) {
+    // The code-caches link to context-specific code objects, which
+    // the startup and context serializes cannot currently handle.
+    DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
+  }
+
+  // Replace typed arrays by undefined.
+  if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
+
+  int root_index = root_index_map_.Lookup(obj);
+  if (root_index != RootIndexMap::kInvalidRootIndex) {
+    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
+    return;
+  }
+
+  if (ShouldBeInThePartialSnapshotCache(obj)) {
+    FlushSkip(skip);
+
+    int cache_index = PartialSnapshotCacheIndex(obj);
+    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
+               "PartialSnapshotCache");
+    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
+    return;
+  }
+
+  // Pointers from the partial snapshot to the objects in the startup snapshot
+  // should go through the root array or through the partial snapshot cache.
+  // If this is not the case you may have to add something to the root array.
+  DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
+  // All the internalized strings that the partial snapshot needs should be
+  // either in the root table or in the partial snapshot cache.
+  DCHECK(!obj->IsInternalizedString());
+
+  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
+
+  FlushSkip(skip);
+
+  // Clear literal boilerplates.
+  if (obj->IsJSFunction()) {
+    FixedArray* literals = JSFunction::cast(obj)->literals();
+    for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
+  }
+
+  // Object has not yet been serialized.  Serialize it here.
+  ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
+  serializer.Serialize();
+}
+
+
+void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
+                                                     int size, Map* map) {
+  if (serializer_->code_address_map_) {
+    const char* code_name =
+        serializer_->code_address_map_->Lookup(object_->address());
+    LOG(serializer_->isolate_,
+        CodeNameEvent(object_->address(), sink_->Position(), code_name));
+    LOG(serializer_->isolate_,
+        SnapshotPositionEvent(object_->address(), sink_->Position()));
+  }
+
+  BackReference back_reference;
+  if (space == LO_SPACE) {
+    sink_->Put(kNewObject + reference_representation_ + space,
+               "NewLargeObject");
+    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
+    if (object_->IsCode()) {
+      sink_->Put(EXECUTABLE, "executable large object");
+    } else {
+      sink_->Put(NOT_EXECUTABLE, "not executable large object");
+    }
+    back_reference = serializer_->AllocateLargeObject(size);
+  } else {
+    int fill = serializer_->PutAlignmentPrefix(object_);
+    back_reference = serializer_->Allocate(space, size + fill);
+    sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
+    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
+  }
+
+#ifdef OBJECT_PRINT
+  if (FLAG_serialization_statistics) {
+    serializer_->CountInstanceType(map, size);
+  }
+#endif  // OBJECT_PRINT
+
+  // Mark this object as already serialized.
+  serializer_->back_reference_map()->Add(object_, back_reference);
+
+  // Serialize the map (first word of the object).
+  serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
+}
+
+
+void Serializer::ObjectSerializer::SerializeExternalString() {
+  // Instead of serializing this as an external string, we serialize
+  // an imaginary sequential string with the same content.
+  Isolate* isolate = serializer_->isolate();
+  DCHECK(object_->IsExternalString());
+  DCHECK(object_->map() != isolate->heap()->native_source_string_map());
+  ExternalString* string = ExternalString::cast(object_);
+  int length = string->length();
+  Map* map;
+  int content_size;
+  int allocation_size;
+  const byte* resource;
+  // Find the map and size for the imaginary sequential string.
+  bool internalized = object_->IsInternalizedString();
+  if (object_->IsExternalOneByteString()) {
+    map = internalized ? isolate->heap()->one_byte_internalized_string_map()
+                       : isolate->heap()->one_byte_string_map();
+    allocation_size = SeqOneByteString::SizeFor(length);
+    content_size = length * kCharSize;
+    resource = reinterpret_cast<const byte*>(
+        ExternalOneByteString::cast(string)->resource()->data());
+  } else {
+    map = internalized ? isolate->heap()->internalized_string_map()
+                       : isolate->heap()->string_map();
+    allocation_size = SeqTwoByteString::SizeFor(length);
+    content_size = length * kShortSize;
+    resource = reinterpret_cast<const byte*>(
+        ExternalTwoByteString::cast(string)->resource()->data());
+  }
+
+  AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
+                              ? LO_SPACE
+                              : OLD_SPACE;
+  SerializePrologue(space, allocation_size, map);
+
+  // Output the rest of the imaginary string.
+  int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
+
+  // Output raw data header. Do not bother with common raw length cases here.
+  sink_->Put(kVariableRawData, "RawDataForString");
+  sink_->PutInt(bytes_to_output, "length");
+
+  // Serialize string header (except for map).
+  Address string_start = string->address();
+  for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
+    sink_->PutSection(string_start[i], "StringHeader");
+  }
+
+  // Serialize string content.
+  sink_->PutRaw(resource, content_size, "StringContent");
+
+  // Since the allocation size is rounded up to object alignment, there
+  // maybe left-over bytes that need to be padded.
+  int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
+  DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
+  for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
+
+  sink_->Put(kSkip, "SkipAfterString");
+  sink_->PutInt(bytes_to_output, "SkipDistance");
+}
+
+
+// Clear and later restore the next link in the weak cell, if the object is one.
+class UnlinkWeakCellScope {
+ public:
+  explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) {
+    if (object->IsWeakCell()) {
+      weak_cell_ = WeakCell::cast(object);
+      next_ = weak_cell_->next();
+      weak_cell_->clear_next(object->GetHeap()->the_hole_value());
+    }
+  }
+
+  ~UnlinkWeakCellScope() {
+    if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
+  }
+
+ private:
+  WeakCell* weak_cell_;
+  Object* next_;
+  DisallowHeapAllocation no_gc_;
+};
+
+
+void Serializer::ObjectSerializer::Serialize() {
+  if (FLAG_trace_serializer) {
+    PrintF(" Encoding heap object: ");
+    object_->ShortPrint();
+    PrintF("\n");
+  }
+
+  // We cannot serialize typed array objects correctly.
+  DCHECK(!object_->IsJSTypedArray());
+
+  // We don't expect fillers.
+  DCHECK(!object_->IsFiller());
+
+  if (object_->IsScript()) {
+    // Clear cached line ends.
+    Object* undefined = serializer_->isolate()->heap()->undefined_value();
+    Script::cast(object_)->set_line_ends(undefined);
+  }
+
+  if (object_->IsExternalString()) {
+    Heap* heap = serializer_->isolate()->heap();
+    if (object_->map() != heap->native_source_string_map()) {
+      // Usually we cannot recreate resources for external strings. To work
+      // around this, external strings are serialized to look like ordinary
+      // sequential strings.
+      // The exception are native source code strings, since we can recreate
+      // their resources. In that case we fall through and leave it to
+      // VisitExternalOneByteString further down.
+      SerializeExternalString();
+      return;
+    }
+  }
+
+  int size = object_->Size();
+  Map* map = object_->map();
+  AllocationSpace space =
+      MemoryChunk::FromAddress(object_->address())->owner()->identity();
+  SerializePrologue(space, size, map);
+
+  // Serialize the rest of the object.
+  CHECK_EQ(0, bytes_processed_so_far_);
+  bytes_processed_so_far_ = kPointerSize;
+
+  RecursionScope recursion(serializer_);
+  // Objects that are immediately post processed during deserialization
+  // cannot be deferred, since post processing requires the object content.
+  if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
+    serializer_->QueueDeferredObject(object_);
+    sink_->Put(kDeferred, "Deferring object content");
+    return;
+  }
+
+  UnlinkWeakCellScope unlink_weak_cell(object_);
+
+  object_->IterateBody(map->instance_type(), size, this);
+  OutputRawData(object_->address() + size);
+}
+
+
+void Serializer::ObjectSerializer::SerializeDeferred() {
+  if (FLAG_trace_serializer) {
+    PrintF(" Encoding deferred heap object: ");
+    object_->ShortPrint();
+    PrintF("\n");
+  }
+
+  int size = object_->Size();
+  Map* map = object_->map();
+  BackReference reference = serializer_->back_reference_map()->Lookup(object_);
+
+  // Serialize the rest of the object.
+  CHECK_EQ(0, bytes_processed_so_far_);
+  bytes_processed_so_far_ = kPointerSize;
+
+  serializer_->PutAlignmentPrefix(object_);
+  sink_->Put(kNewObject + reference.space(), "deferred object");
+  serializer_->PutBackReference(object_, reference);
+  sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
+
+  UnlinkWeakCellScope unlink_weak_cell(object_);
+
+  object_->IterateBody(map->instance_type(), size, this);
+  OutputRawData(object_->address() + size);
+}
+
+
+void Serializer::ObjectSerializer::VisitPointers(Object** start,
+                                                 Object** end) {
+  Object** current = start;
+  while (current < end) {
+    while (current < end && (*current)->IsSmi()) current++;
+    if (current < end) OutputRawData(reinterpret_cast<Address>(current));
+
+    while (current < end && !(*current)->IsSmi()) {
+      HeapObject* current_contents = HeapObject::cast(*current);
+      int root_index = serializer_->root_index_map()->Lookup(current_contents);
+      // Repeats are not subject to the write barrier so we can only use
+      // immortal immovable root members. They are never in new space.
+      if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
+          Heap::RootIsImmortalImmovable(root_index) &&
+          current_contents == current[-1]) {
+        DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
+        int repeat_count = 1;
+        while (&current[repeat_count] < end - 1 &&
+               current[repeat_count] == current_contents) {
+          repeat_count++;
+        }
+        current += repeat_count;
+        bytes_processed_so_far_ += repeat_count * kPointerSize;
+        if (repeat_count > kNumberOfFixedRepeat) {
+          sink_->Put(kVariableRepeat, "VariableRepeat");
+          sink_->PutInt(repeat_count, "repeat count");
+        } else {
+          sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
+        }
+      } else {
+        serializer_->SerializeObject(
+                current_contents, kPlain, kStartOfObject, 0);
+        bytes_processed_so_far_ += kPointerSize;
+        current++;
+      }
+    }
+  }
+}
+
+
+void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
+  int skip = OutputRawData(rinfo->target_address_address(),
+                           kCanReturnSkipInsteadOfSkipping);
+  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
+  Object* object = rinfo->target_object();
+  serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
+                               kStartOfObject, skip);
+  bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
+  int skip = OutputRawData(reinterpret_cast<Address>(p),
+                           kCanReturnSkipInsteadOfSkipping);
+  sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
+  sink_->PutInt(skip, "SkipB4ExternalRef");
+  Address target = *p;
+  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
+  bytes_processed_so_far_ += kPointerSize;
+}
+
+
+void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
+  int skip = OutputRawData(rinfo->target_address_address(),
+                           kCanReturnSkipInsteadOfSkipping);
+  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
+  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
+  sink_->PutInt(skip, "SkipB4ExternalRef");
+  Address target = rinfo->target_external_reference();
+  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
+  bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
+  // We can only reference to internal references of code that has been output.
+  DCHECK(is_code_object_ && code_has_been_output_);
+  // We do not use skip from last patched pc to find the pc to patch, since
+  // target_address_address may not return addresses in ascending order when
+  // used for internal references. External references may be stored at the
+  // end of the code in the constant pool, whereas internal references are
+  // inline. That would cause the skip to be negative. Instead, we store the
+  // offset from code entry.
+  Address entry = Code::cast(object_)->entry();
+  intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
+  intptr_t target_offset = rinfo->target_internal_reference() - entry;
+  DCHECK(0 <= pc_offset &&
+         pc_offset <= Code::cast(object_)->instruction_size());
+  DCHECK(0 <= target_offset &&
+         target_offset <= Code::cast(object_)->instruction_size());
+  sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
+                 ? kInternalReference
+                 : kInternalReferenceEncoded,
+             "InternalRef");
+  sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
+  sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
+}
+
+
+void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
+  int skip = OutputRawData(rinfo->target_address_address(),
+                           kCanReturnSkipInsteadOfSkipping);
+  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
+  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
+  sink_->PutInt(skip, "SkipB4ExternalRef");
+  Address target = rinfo->target_address();
+  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
+  bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
+  int skip = OutputRawData(rinfo->target_address_address(),
+                           kCanReturnSkipInsteadOfSkipping);
+  Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
+  serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
+  bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
+  int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
+  Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
+  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
+  bytes_processed_so_far_ += kPointerSize;
+}
+
+
+void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
+  int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
+  Cell* object = Cell::cast(rinfo->target_cell());
+  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
+  bytes_processed_so_far_ += kPointerSize;
+}
+
+
+bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
+    int builtin_count,
+    v8::String::ExternalOneByteStringResource** resource_pointer,
+    FixedArray* source_cache, int resource_index) {
+  for (int i = 0; i < builtin_count; i++) {
+    Object* source = source_cache->get(i);
+    if (!source->IsUndefined()) {
+      ExternalOneByteString* string = ExternalOneByteString::cast(source);
+      typedef v8::String::ExternalOneByteStringResource Resource;
+      const Resource* resource = string->resource();
+      if (resource == *resource_pointer) {
+        sink_->Put(resource_index, "NativesStringResource");
+        sink_->PutSection(i, "NativesStringResourceEnd");
+        bytes_processed_so_far_ += sizeof(resource);
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+
+void Serializer::ObjectSerializer::VisitExternalOneByteString(
+    v8::String::ExternalOneByteStringResource** resource_pointer) {
+  Address references_start = reinterpret_cast<Address>(resource_pointer);
+  OutputRawData(references_start);
+  if (SerializeExternalNativeSourceString(
+          Natives::GetBuiltinsCount(), resource_pointer,
+          Natives::GetSourceCache(serializer_->isolate()->heap()),
+          kNativesStringResource)) {
+    return;
+  }
+  if (SerializeExternalNativeSourceString(
+          ExtraNatives::GetBuiltinsCount(), resource_pointer,
+          ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
+          kExtraNativesStringResource)) {
+    return;
+  }
+  // One of the strings in the natives cache should match the resource.  We
+  // don't expect any other kinds of external strings here.
+  UNREACHABLE();
+}
+
+
+Address Serializer::ObjectSerializer::PrepareCode() {
+  // To make snapshots reproducible, we make a copy of the code object
+  // and wipe all pointers in the copy, which we then serialize.
+  Code* original = Code::cast(object_);
+  Code* code = serializer_->CopyCode(original);
+  // Code age headers are not serializable.
+  code->MakeYoung(serializer_->isolate());
+  int mode_mask = RelocInfo::kCodeTargetMask |
+                  RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
+                  RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
+                  RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
+                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
+                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
+  for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
+    RelocInfo* rinfo = it.rinfo();
+    rinfo->WipeOut();
+  }
+  // We need to wipe out the header fields *after* wiping out the
+  // relocations, because some of these fields are needed for the latter.
+  code->WipeOutHeader();
+  return code->address();
+}
+
+
+int Serializer::ObjectSerializer::OutputRawData(
+    Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
+  Address object_start = object_->address();
+  int base = bytes_processed_so_far_;
+  int up_to_offset = static_cast<int>(up_to - object_start);
+  int to_skip = up_to_offset - bytes_processed_so_far_;
+  int bytes_to_output = to_skip;
+  bytes_processed_so_far_ += to_skip;
+  // This assert will fail if the reloc info gives us the target_address_address
+  // locations in a non-ascending order.  Luckily that doesn't happen.
+  DCHECK(to_skip >= 0);
+  bool outputting_code = false;
+  if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
+    // Output the code all at once and fix later.
+    bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
+    outputting_code = true;
+    code_has_been_output_ = true;
+  }
+  if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
+    if (!outputting_code && bytes_to_output == to_skip &&
+        IsAligned(bytes_to_output, kPointerAlignment) &&
+        bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
+      int size_in_words = bytes_to_output >> kPointerSizeLog2;
+      sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
+      to_skip = 0;  // This instruction includes skip.
+    } else {
+      // We always end up here if we are outputting the code of a code object.
+      sink_->Put(kVariableRawData, "VariableRawData");
+      sink_->PutInt(bytes_to_output, "length");
+    }
+
+    if (is_code_object_) object_start = PrepareCode();
+
+    const char* description = is_code_object_ ? "Code" : "Byte";
+    sink_->PutRaw(object_start + base, bytes_to_output, description);
+  }
+  if (to_skip != 0 && return_skip == kIgnoringReturn) {
+    sink_->Put(kSkip, "Skip");
+    sink_->PutInt(to_skip, "SkipDistance");
+    to_skip = 0;
+  }
+  return to_skip;
+}
+
+
+BackReference Serializer::AllocateLargeObject(int size) {
+  // Large objects are allocated one-by-one when deserializing. We do not
+  // have to keep track of multiple chunks.
+  large_objects_total_size_ += size;
+  return BackReference::LargeObjectReference(seen_large_objects_index_++);
+}
+
+
+BackReference Serializer::Allocate(AllocationSpace space, int size) {
+  DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
+  DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
+  uint32_t new_chunk_size = pending_chunk_[space] + size;
+  if (new_chunk_size > max_chunk_size(space)) {
+    // The new chunk size would not fit onto a single page. Complete the
+    // current chunk and start a new one.
+    sink_->Put(kNextChunk, "NextChunk");
+    sink_->Put(space, "NextChunkSpace");
+    completed_chunks_[space].Add(pending_chunk_[space]);
+    DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
+    pending_chunk_[space] = 0;
+    new_chunk_size = size;
+  }
+  uint32_t offset = pending_chunk_[space];
+  pending_chunk_[space] = new_chunk_size;
+  return BackReference::Reference(space, completed_chunks_[space].length(),
+                                  offset);
+}
+
+
+void Serializer::Pad() {
+  // The non-branching GetInt will read up to 3 bytes too far, so we need
+  // to pad the snapshot to make sure we don't read over the end.
+  for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
+    sink_->Put(kNop, "Padding");
+  }
+  // Pad up to pointer size for checksum.
+  while (!IsAligned(sink_->Position(), kPointerAlignment)) {
+    sink_->Put(kNop, "Padding");
+  }
+}
+
+
+void Serializer::InitializeCodeAddressMap() {
+  isolate_->InitializeLoggingAndCounters();
+  code_address_map_ = new CodeAddressMap(isolate_);
+}
+
+
+Code* Serializer::CopyCode(Code* code) {
+  code_buffer_.Rewind(0);  // Clear buffer without deleting backing store.
+  int size = code->CodeSize();
+  code_buffer_.AddAll(Vector<byte>(code->address(), size));
+  return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
+}
+
+
+ScriptData* CodeSerializer::Serialize(Isolate* isolate,
+                                      Handle<SharedFunctionInfo> info,
+                                      Handle<String> source) {
+  base::ElapsedTimer timer;
+  if (FLAG_profile_deserialization) timer.Start();
+  if (FLAG_trace_serializer) {
+    PrintF("[Serializing from");
+    Object* script = info->script();
+    if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
+    PrintF("]\n");
+  }
+
+  // Serialize code object.
+  SnapshotByteSink sink(info->code()->CodeSize() * 2);
+  CodeSerializer cs(isolate, &sink, *source);
+  DisallowHeapAllocation no_gc;
+  Object** location = Handle<Object>::cast(info).location();
+  cs.VisitPointer(location);
+  cs.SerializeDeferredObjects();
+  cs.Pad();
+
+  SerializedCodeData data(sink.data(), cs);
+  ScriptData* script_data = data.GetScriptData();
+
+  if (FLAG_profile_deserialization) {
+    double ms = timer.Elapsed().InMillisecondsF();
+    int length = script_data->length();
+    PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
+  }
+
+  return script_data;
+}
+
+
+void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
+                                     WhereToPoint where_to_point, int skip) {
+  int root_index = root_index_map_.Lookup(obj);
+  if (root_index != RootIndexMap::kInvalidRootIndex) {
+    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
+    return;
+  }
+
+  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
+
+  FlushSkip(skip);
+
+  if (obj->IsCode()) {
+    Code* code_object = Code::cast(obj);
+    switch (code_object->kind()) {
+      case Code::OPTIMIZED_FUNCTION:  // No optimized code compiled yet.
+      case Code::HANDLER:             // No handlers patched in yet.
+      case Code::REGEXP:              // No regexp literals initialized yet.
+      case Code::NUMBER_OF_KINDS:     // Pseudo enum value.
+        CHECK(false);
+      case Code::BUILTIN:
+        SerializeBuiltin(code_object->builtin_index(), how_to_code,
+                         where_to_point);
+        return;
+      case Code::STUB:
+        SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
+        return;
+#define IC_KIND_CASE(KIND) case Code::KIND:
+        IC_KIND_LIST(IC_KIND_CASE)
+#undef IC_KIND_CASE
+        SerializeIC(code_object, how_to_code, where_to_point);
+        return;
+      case Code::FUNCTION:
+        DCHECK(code_object->has_reloc_info_for_serialization());
+        SerializeGeneric(code_object, how_to_code, where_to_point);
+        return;
+      case Code::WASM_FUNCTION:
+        UNREACHABLE();
+    }
+    UNREACHABLE();
+  }
+
+  // Past this point we should not see any (context-specific) maps anymore.
+  CHECK(!obj->IsMap());
+  // There should be no references to the global object embedded.
+  CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
+  // There should be no hash table embedded. They would require rehashing.
+  CHECK(!obj->IsHashTable());
+  // We expect no instantiated function objects or contexts.
+  CHECK(!obj->IsJSFunction() && !obj->IsContext());
+
+  SerializeGeneric(obj, how_to_code, where_to_point);
+}
+
+
+void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
+                                      HowToCode how_to_code,
+                                      WhereToPoint where_to_point) {
+  // Object has not yet been serialized.  Serialize it here.
+  ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
+                              where_to_point);
+  serializer.Serialize();
+}
+
+
+void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
+                                      WhereToPoint where_to_point) {
+  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
+         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
+         (how_to_code == kFromCode && where_to_point == kInnerPointer));
+  DCHECK_LT(builtin_index, Builtins::builtin_count);
+  DCHECK_LE(0, builtin_index);
+
+  if (FLAG_trace_serializer) {
+    PrintF(" Encoding builtin: %s\n",
+           isolate()->builtins()->name(builtin_index));
+  }
+
+  sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
+  sink_->PutInt(builtin_index, "builtin_index");
+}
+
+
+void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
+                                       WhereToPoint where_to_point) {
+  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
+         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
+         (how_to_code == kFromCode && where_to_point == kInnerPointer));
+  DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
+  DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
+
+  int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
+
+  if (FLAG_trace_serializer) {
+    PrintF(" Encoding code stub %s as %d\n",
+           CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
+  }
+
+  sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
+  sink_->PutInt(index, "CodeStub key");
+}
+
+
+void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
+                                 WhereToPoint where_to_point) {
+  // The IC may be implemented as a stub.
+  uint32_t stub_key = ic->stub_key();
+  if (stub_key != CodeStub::NoCacheKey()) {
+    if (FLAG_trace_serializer) {
+      PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
+    }
+    SerializeCodeStub(stub_key, how_to_code, where_to_point);
+    return;
+  }
+  // The IC may be implemented as builtin. Only real builtins have an
+  // actual builtin_index value attached (otherwise it's just garbage).
+  // Compare to make sure we are really dealing with a builtin.
+  int builtin_index = ic->builtin_index();
+  if (builtin_index < Builtins::builtin_count) {
+    Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
+    Code* builtin = isolate()->builtins()->builtin(name);
+    if (builtin == ic) {
+      if (FLAG_trace_serializer) {
+        PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
+      }
+      DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
+             ic->kind() == Code::KEYED_STORE_IC);
+      SerializeBuiltin(builtin_index, how_to_code, where_to_point);
+      return;
+    }
+  }
+  // The IC may also just be a piece of code kept in the non_monomorphic_cache.
+  // In that case, just serialize as a normal code object.
+  if (FLAG_trace_serializer) {
+    PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
+  }
+  DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
+  SerializeGeneric(ic, how_to_code, where_to_point);
+}
+
+
+int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
+  // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
+  int index = 0;
+  while (index < stub_keys_.length()) {
+    if (stub_keys_[index] == stub_key) return index;
+    index++;
+  }
+  stub_keys_.Add(stub_key);
+  return index;
+}
+
+
+MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
+    Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
+  base::ElapsedTimer timer;
+  if (FLAG_profile_deserialization) timer.Start();
+
+  HandleScope scope(isolate);
+
+  base::SmartPointer<SerializedCodeData> scd(
+      SerializedCodeData::FromCachedData(isolate, cached_data, *source));
+  if (scd.is_empty()) {
+    if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
+    DCHECK(cached_data->rejected());
+    return MaybeHandle<SharedFunctionInfo>();
+  }
+
+  // Prepare and register list of attached objects.
+  Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
+  Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
+      code_stub_keys.length() + kCodeStubsBaseIndex);
+  attached_objects[kSourceObjectIndex] = source;
+  for (int i = 0; i < code_stub_keys.length(); i++) {
+    attached_objects[i + kCodeStubsBaseIndex] =
+        CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
+  }
+
+  Deserializer deserializer(scd.get());
+  deserializer.SetAttachedObjects(attached_objects);
+
+  // Deserialize.
+  Handle<SharedFunctionInfo> result;
+  if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
+    // Deserializing may fail if the reservations cannot be fulfilled.
+    if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
+    return MaybeHandle<SharedFunctionInfo>();
+  }
+
+  if (FLAG_profile_deserialization) {
+    double ms = timer.Elapsed().InMillisecondsF();
+    int length = cached_data->length();
+    PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
+  }
+  result->set_deserialized(true);
+
+  if (isolate->logger()->is_logging_code_events() ||
+      isolate->cpu_profiler()->is_profiling()) {
+    String* name = isolate->heap()->empty_string();
+    if (result->script()->IsScript()) {
+      Script* script = Script::cast(result->script());
+      if (script->name()->IsString()) name = String::cast(script->name());
+    }
+    isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
+                                       *result, NULL, name);
+  }
+  return scope.CloseAndEscape(result);
+}
+
+
+void SerializedData::AllocateData(int size) {
+  DCHECK(!owns_data_);
+  data_ = NewArray<byte>(size);
+  size_ = size;
+  owns_data_ = true;
+  DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
+}
+
+
+SnapshotData::SnapshotData(const Serializer& ser) {
+  DisallowHeapAllocation no_gc;
+  List<Reservation> reservations;
+  ser.EncodeReservations(&reservations);
+  const List<byte>& payload = ser.sink()->data();
+
+  // Calculate sizes.
+  int reservation_size = reservations.length() * kInt32Size;
+  int size = kHeaderSize + reservation_size + payload.length();
+
+  // Allocate backing store and create result data.
+  AllocateData(size);
+
+  // Set header values.
+  SetMagicNumber(ser.isolate());
+  SetHeaderValue(kCheckSumOffset, Version::Hash());
+  SetHeaderValue(kNumReservationsOffset, reservations.length());
+  SetHeaderValue(kPayloadLengthOffset, payload.length());
+
+  // Copy reservation chunk sizes.
+  CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
+            reservation_size);
+
+  // Copy serialized data.
+  CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
+            static_cast<size_t>(payload.length()));
+}
+
+
+bool SnapshotData::IsSane() {
+  return GetHeaderValue(kCheckSumOffset) == Version::Hash();
+}
+
+
+Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
+  return Vector<const Reservation>(
+      reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
+      GetHeaderValue(kNumReservationsOffset));
+}
+
+
+Vector<const byte> SnapshotData::Payload() const {
+  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
+  const byte* payload = data_ + kHeaderSize + reservations_size;
+  int length = GetHeaderValue(kPayloadLengthOffset);
+  DCHECK_EQ(data_ + size_, payload + length);
+  return Vector<const byte>(payload, length);
+}
+
+
+class Checksum {
+ public:
+  explicit Checksum(Vector<const byte> payload) {
+#ifdef MEMORY_SANITIZER
+    // Computing the checksum includes padding bytes for objects like strings.
+    // Mark every object as initialized in the code serializer.
+    MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
+#endif  // MEMORY_SANITIZER
+    // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
+    uintptr_t a = 1;
+    uintptr_t b = 0;
+    const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
+    DCHECK(IsAligned(payload.length(), kIntptrSize));
+    const uintptr_t* end = cur + payload.length() / kIntptrSize;
+    while (cur < end) {
+      // Unsigned overflow expected and intended.
+      a += *cur++;
+      b += a;
+    }
+#if V8_HOST_ARCH_64_BIT
+    a ^= a >> 32;
+    b ^= b >> 32;
+#endif  // V8_HOST_ARCH_64_BIT
+    a_ = static_cast<uint32_t>(a);
+    b_ = static_cast<uint32_t>(b);
+  }
+
+  bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
+
+  uint32_t a() const { return a_; }
+  uint32_t b() const { return b_; }
+
+ private:
+  uint32_t a_;
+  uint32_t b_;
+
+  DISALLOW_COPY_AND_ASSIGN(Checksum);
+};
+
+
+SerializedCodeData::SerializedCodeData(const List<byte>& payload,
+                                       const CodeSerializer& cs) {
+  DisallowHeapAllocation no_gc;
+  const List<uint32_t>* stub_keys = cs.stub_keys();
+
+  List<Reservation> reservations;
+  cs.EncodeReservations(&reservations);
+
+  // Calculate sizes.
+  int reservation_size = reservations.length() * kInt32Size;
+  int num_stub_keys = stub_keys->length();
+  int stub_keys_size = stub_keys->length() * kInt32Size;
+  int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
+  int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
+  int size = padded_payload_offset + payload.length();
+
+  // Allocate backing store and create result data.
+  AllocateData(size);
+
+  // Set header values.
+  SetMagicNumber(cs.isolate());
+  SetHeaderValue(kVersionHashOffset, Version::Hash());
+  SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
+  SetHeaderValue(kCpuFeaturesOffset,
+                 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
+  SetHeaderValue(kFlagHashOffset, FlagList::Hash());
+  SetHeaderValue(kNumReservationsOffset, reservations.length());
+  SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
+  SetHeaderValue(kPayloadLengthOffset, payload.length());
+
+  Checksum checksum(payload.ToConstVector());
+  SetHeaderValue(kChecksum1Offset, checksum.a());
+  SetHeaderValue(kChecksum2Offset, checksum.b());
+
+  // Copy reservation chunk sizes.
+  CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
+            reservation_size);
+
+  // Copy code stub keys.
+  CopyBytes(data_ + kHeaderSize + reservation_size,
+            reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
+
+  memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
+
+  // Copy serialized data.
+  CopyBytes(data_ + padded_payload_offset, payload.begin(),
+            static_cast<size_t>(payload.length()));
+}
+
+
+SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
+    Isolate* isolate, String* source) const {
+  uint32_t magic_number = GetMagicNumber();
+  if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
+  uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
+  uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
+  uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
+  uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
+  uint32_t c1 = GetHeaderValue(kChecksum1Offset);
+  uint32_t c2 = GetHeaderValue(kChecksum2Offset);
+  if (version_hash != Version::Hash()) return VERSION_MISMATCH;
+  if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
+  if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
+    return CPU_FEATURES_MISMATCH;
+  }
+  if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
+  if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
+  return CHECK_SUCCESS;
+}
+
+
+uint32_t SerializedCodeData::SourceHash(String* source) const {
+  return source->length();
+}
+
+
+// Return ScriptData object and relinquish ownership over it to the caller.
+ScriptData* SerializedCodeData::GetScriptData() {
+  DCHECK(owns_data_);
+  ScriptData* result = new ScriptData(data_, size_);
+  result->AcquireDataOwnership();
+  owns_data_ = false;
+  data_ = NULL;
+  return result;
+}
+
+
+Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
+    const {
+  return Vector<const Reservation>(
+      reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
+      GetHeaderValue(kNumReservationsOffset));
+}
+
+
+Vector<const byte> SerializedCodeData::Payload() const {
+  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
+  int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
+  int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
+  int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
+  const byte* payload = data_ + padded_payload_offset;
+  DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
+  int length = GetHeaderValue(kPayloadLengthOffset);
+  DCHECK_EQ(data_ + size_, payload + length);
+  return Vector<const byte>(payload, length);
+}
+
+
+Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
+  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
+  const byte* start = data_ + kHeaderSize + reservations_size;
+  return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
+                                GetHeaderValue(kNumCodeStubKeysOffset));
+}
+
+
+SerializedCodeData::SerializedCodeData(ScriptData* data)
+    : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
+
+
+SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
+                                                       ScriptData* cached_data,
+                                                       String* source) {
+  DisallowHeapAllocation no_gc;
+  SerializedCodeData* scd = new SerializedCodeData(cached_data);
+  SanityCheckResult r = scd->SanityCheck(isolate, source);
+  if (r == CHECK_SUCCESS) return scd;
+  cached_data->Reject();
+  source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
+  delete scd;
+  return NULL;
+}
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/serialize.h b/src/snapshot/serialize.h
new file mode 100644
index 0000000..7f4676e
--- /dev/null
+++ b/src/snapshot/serialize.h
@@ -0,0 +1,810 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_SNAPSHOT_SERIALIZE_H_
+#define V8_SNAPSHOT_SERIALIZE_H_
+
+#include "src/address-map.h"
+#include "src/heap/heap.h"
+#include "src/objects.h"
+#include "src/snapshot/snapshot-source-sink.h"
+
+namespace v8 {
+namespace internal {
+
+class Isolate;
+class ScriptData;
+
+static const int kDeoptTableSerializeEntryCount = 64;
+
+// ExternalReferenceTable is a helper class that defines the relationship
+// between external references and their encodings. It is used to build
+// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
+class ExternalReferenceTable {
+ public:
+  static ExternalReferenceTable* instance(Isolate* isolate);
+
+  int size() const { return refs_.length(); }
+  Address address(int i) { return refs_[i].address; }
+  const char* name(int i) { return refs_[i].name; }
+
+  inline static Address NotAvailable() { return NULL; }
+
+ private:
+  struct ExternalReferenceEntry {
+    Address address;
+    const char* name;
+  };
+
+  explicit ExternalReferenceTable(Isolate* isolate);
+
+  void Add(Address address, const char* name) {
+    ExternalReferenceEntry entry = {address, name};
+    refs_.Add(entry);
+  }
+
+  List<ExternalReferenceEntry> refs_;
+
+  DISALLOW_COPY_AND_ASSIGN(ExternalReferenceTable);
+};
+
+
+class ExternalReferenceEncoder {
+ public:
+  explicit ExternalReferenceEncoder(Isolate* isolate);
+
+  uint32_t Encode(Address key) const;
+
+  const char* NameOfAddress(Isolate* isolate, Address address) const;
+
+ private:
+  static uint32_t Hash(Address key) {
+    return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >>
+                                 kPointerSizeLog2);
+  }
+
+  HashMap* map_;
+
+  DISALLOW_COPY_AND_ASSIGN(ExternalReferenceEncoder);
+};
+
+
+class PartialCacheIndexMap : public AddressMapBase {
+ public:
+  PartialCacheIndexMap() : map_(HashMap::PointersMatch) {}
+
+  static const int kInvalidIndex = -1;
+
+  // Lookup object in the map. Return its index if found, or create
+  // a new entry with new_index as value, and return kInvalidIndex.
+  int LookupOrInsert(HeapObject* obj, int new_index) {
+    HashMap::Entry* entry = LookupEntry(&map_, obj, false);
+    if (entry != NULL) return GetValue(entry);
+    SetValue(LookupEntry(&map_, obj, true), static_cast<uint32_t>(new_index));
+    return kInvalidIndex;
+  }
+
+ private:
+  HashMap map_;
+
+  DISALLOW_COPY_AND_ASSIGN(PartialCacheIndexMap);
+};
+
+
+class HotObjectsList {
+ public:
+  HotObjectsList() : index_(0) {
+    for (int i = 0; i < kSize; i++) circular_queue_[i] = NULL;
+  }
+
+  void Add(HeapObject* object) {
+    circular_queue_[index_] = object;
+    index_ = (index_ + 1) & kSizeMask;
+  }
+
+  HeapObject* Get(int index) {
+    DCHECK_NOT_NULL(circular_queue_[index]);
+    return circular_queue_[index];
+  }
+
+  static const int kNotFound = -1;
+
+  int Find(HeapObject* object) {
+    for (int i = 0; i < kSize; i++) {
+      if (circular_queue_[i] == object) return i;
+    }
+    return kNotFound;
+  }
+
+  static const int kSize = 8;
+
+ private:
+  STATIC_ASSERT(IS_POWER_OF_TWO(kSize));
+  static const int kSizeMask = kSize - 1;
+  HeapObject* circular_queue_[kSize];
+  int index_;
+
+  DISALLOW_COPY_AND_ASSIGN(HotObjectsList);
+};
+
+
+// The Serializer/Deserializer class is a common superclass for Serializer and
+// Deserializer which is used to store common constants and methods used by
+// both.
+class SerializerDeserializer: public ObjectVisitor {
+ public:
+  static void Iterate(Isolate* isolate, ObjectVisitor* visitor);
+
+  // No reservation for large object space necessary.
+  static const int kNumberOfPreallocatedSpaces = LAST_PAGED_SPACE + 1;
+  static const int kNumberOfSpaces = LAST_SPACE + 1;
+
+ protected:
+  static bool CanBeDeferred(HeapObject* o);
+
+  // ---------- byte code range 0x00..0x7f ----------
+  // Byte codes in this range represent Where, HowToCode and WhereToPoint.
+  // Where the pointed-to object can be found:
+  // The static assert below will trigger when the number of preallocated spaces
+  // changed. If that happens, update the bytecode ranges in the comments below.
+  STATIC_ASSERT(5 == kNumberOfSpaces);
+  enum Where {
+    // 0x00..0x04  Allocate new object, in specified space.
+    kNewObject = 0,
+    // 0x05        Unused (including 0x25, 0x45, 0x65).
+    // 0x06        Unused (including 0x26, 0x46, 0x66).
+    // 0x07        Unused (including 0x27, 0x47, 0x67).
+    // 0x08..0x0c  Reference to previous object from space.
+    kBackref = 0x08,
+    // 0x0d        Unused (including 0x2d, 0x4d, 0x6d).
+    // 0x0e        Unused (including 0x2e, 0x4e, 0x6e).
+    // 0x0f        Unused (including 0x2f, 0x4f, 0x6f).
+    // 0x10..0x14  Reference to previous object from space after skip.
+    kBackrefWithSkip = 0x10,
+    // 0x15        Unused (including 0x35, 0x55, 0x75).
+    // 0x16        Unused (including 0x36, 0x56, 0x76).
+    // 0x17        Misc (including 0x37, 0x57, 0x77).
+    // 0x18        Root array item.
+    kRootArray = 0x18,
+    // 0x19        Object in the partial snapshot cache.
+    kPartialSnapshotCache = 0x19,
+    // 0x1a        External reference referenced by id.
+    kExternalReference = 0x1a,
+    // 0x1b        Object provided in the attached list.
+    kAttachedReference = 0x1b,
+    // 0x1c        Builtin code referenced by index.
+    kBuiltin = 0x1c
+    // 0x1d..0x1f  Misc (including 0x3d..0x3f, 0x5d..0x5f, 0x7d..0x7f)
+  };
+
+  static const int kWhereMask = 0x1f;
+  static const int kSpaceMask = 7;
+  STATIC_ASSERT(kNumberOfSpaces <= kSpaceMask + 1);
+
+  // How to code the pointer to the object.
+  enum HowToCode {
+    // Straight pointer.
+    kPlain = 0,
+    // A pointer inlined in code. What this means depends on the architecture.
+    kFromCode = 0x20
+  };
+
+  static const int kHowToCodeMask = 0x20;
+
+  // Where to point within the object.
+  enum WhereToPoint {
+    // Points to start of object
+    kStartOfObject = 0,
+    // Points to instruction in code object or payload of cell.
+    kInnerPointer = 0x40
+  };
+
+  static const int kWhereToPointMask = 0x40;
+
+  // ---------- Misc ----------
+  // Skip.
+  static const int kSkip = 0x1d;
+  // Internal reference encoded as offsets of pc and target from code entry.
+  static const int kInternalReference = 0x1e;
+  static const int kInternalReferenceEncoded = 0x1f;
+  // Do nothing, used for padding.
+  static const int kNop = 0x3d;
+  // Move to next reserved chunk.
+  static const int kNextChunk = 0x3e;
+  // Deferring object content.
+  static const int kDeferred = 0x3f;
+  // Used for the source code of the natives, which is in the executable, but
+  // is referred to from external strings in the snapshot.
+  static const int kNativesStringResource = 0x5d;
+  // Used for the source code for compiled stubs, which is in the executable,
+  // but is referred to from external strings in the snapshot.
+  static const int kExtraNativesStringResource = 0x5e;
+  // A tag emitted at strategic points in the snapshot to delineate sections.
+  // If the deserializer does not find these at the expected moments then it
+  // is an indication that the snapshot and the VM do not fit together.
+  // Examine the build process for architecture, version or configuration
+  // mismatches.
+  static const int kSynchronize = 0x17;
+  // Repeats of variable length.
+  static const int kVariableRepeat = 0x37;
+  // Raw data of variable length.
+  static const int kVariableRawData = 0x57;
+  // Alignment prefixes 0x7d..0x7f
+  static const int kAlignmentPrefix = 0x7d;
+
+  // 0x77 unused
+
+  // ---------- byte code range 0x80..0xff ----------
+  // First 32 root array items.
+  static const int kNumberOfRootArrayConstants = 0x20;
+  // 0x80..0x9f
+  static const int kRootArrayConstants = 0x80;
+  // 0xa0..0xbf
+  static const int kRootArrayConstantsWithSkip = 0xa0;
+  static const int kRootArrayConstantsMask = 0x1f;
+
+  // 8 hot (recently seen or back-referenced) objects with optional skip.
+  static const int kNumberOfHotObjects = 0x08;
+  // 0xc0..0xc7
+  static const int kHotObject = 0xc0;
+  // 0xc8..0xcf
+  static const int kHotObjectWithSkip = 0xc8;
+  static const int kHotObjectMask = 0x07;
+
+  // 32 common raw data lengths.
+  static const int kNumberOfFixedRawData = 0x20;
+  // 0xd0..0xef
+  static const int kFixedRawData = 0xd0;
+  static const int kOnePointerRawData = kFixedRawData;
+  static const int kFixedRawDataStart = kFixedRawData - 1;
+
+  // 16 repeats lengths.
+  static const int kNumberOfFixedRepeat = 0x10;
+  // 0xf0..0xff
+  static const int kFixedRepeat = 0xf0;
+  static const int kFixedRepeatStart = kFixedRepeat - 1;
+
+  // ---------- special values ----------
+  static const int kAnyOldSpace = -1;
+
+  // Sentinel after a new object to indicate that double alignment is needed.
+  static const int kDoubleAlignmentSentinel = 0;
+
+  // Used as index for the attached reference representing the source object.
+  static const int kSourceObjectReference = 0;
+
+  // Used as index for the attached reference representing the global proxy.
+  static const int kGlobalProxyReference = 0;
+
+  // ---------- member variable ----------
+  HotObjectsList hot_objects_;
+};
+
+
+class SerializedData {
+ public:
+  class Reservation {
+   public:
+    explicit Reservation(uint32_t size)
+        : reservation_(ChunkSizeBits::encode(size)) {}
+
+    uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation_); }
+    bool is_last() const { return IsLastChunkBits::decode(reservation_); }
+
+    void mark_as_last() { reservation_ |= IsLastChunkBits::encode(true); }
+
+   private:
+    uint32_t reservation_;
+  };
+
+  SerializedData(byte* data, int size)
+      : data_(data), size_(size), owns_data_(false) {}
+  SerializedData() : data_(NULL), size_(0), owns_data_(false) {}
+
+  ~SerializedData() {
+    if (owns_data_) DeleteArray<byte>(data_);
+  }
+
+  uint32_t GetMagicNumber() const { return GetHeaderValue(kMagicNumberOffset); }
+
+  class ChunkSizeBits : public BitField<uint32_t, 0, 31> {};
+  class IsLastChunkBits : public BitField<bool, 31, 1> {};
+
+  static uint32_t ComputeMagicNumber(ExternalReferenceTable* table) {
+    uint32_t external_refs = table->size();
+    return 0xC0DE0000 ^ external_refs;
+  }
+
+ protected:
+  void SetHeaderValue(int offset, uint32_t value) {
+    uint32_t* address = reinterpret_cast<uint32_t*>(data_ + offset);
+    memcpy(reinterpret_cast<uint32_t*>(address), &value, sizeof(value));
+  }
+
+  uint32_t GetHeaderValue(int offset) const {
+    uint32_t value;
+    memcpy(&value, reinterpret_cast<int*>(data_ + offset), sizeof(value));
+    return value;
+  }
+
+  void AllocateData(int size);
+
+  static uint32_t ComputeMagicNumber(Isolate* isolate) {
+    return ComputeMagicNumber(ExternalReferenceTable::instance(isolate));
+  }
+
+  void SetMagicNumber(Isolate* isolate) {
+    SetHeaderValue(kMagicNumberOffset, ComputeMagicNumber(isolate));
+  }
+
+  static const int kMagicNumberOffset = 0;
+
+  byte* data_;
+  int size_;
+  bool owns_data_;
+};
+
+
+// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
+class Deserializer: public SerializerDeserializer {
+ public:
+  // Create a deserializer from a snapshot byte source.
+  template <class Data>
+  explicit Deserializer(Data* data)
+      : isolate_(NULL),
+        source_(data->Payload()),
+        magic_number_(data->GetMagicNumber()),
+        external_reference_table_(NULL),
+        deserialized_large_objects_(0),
+        deserializing_user_code_(false),
+        next_alignment_(kWordAligned) {
+    DecodeReservation(data->Reservations());
+  }
+
+  ~Deserializer() override;
+
+  // Deserialize the snapshot into an empty heap.
+  void Deserialize(Isolate* isolate);
+
+  // Deserialize a single object and the objects reachable from it.
+  MaybeHandle<Object> DeserializePartial(Isolate* isolate,
+                                         Handle<JSGlobalProxy> global_proxy);
+
+  // Deserialize a shared function info. Fail gracefully.
+  MaybeHandle<SharedFunctionInfo> DeserializeCode(Isolate* isolate);
+
+  // Pass a vector of externally-provided objects referenced by the snapshot.
+  // The ownership to its backing store is handed over as well.
+  void SetAttachedObjects(Vector<Handle<Object> > attached_objects) {
+    attached_objects_ = attached_objects;
+  }
+
+ private:
+  void VisitPointers(Object** start, Object** end) override;
+
+  void VisitRuntimeEntry(RelocInfo* rinfo) override { UNREACHABLE(); }
+
+  void Initialize(Isolate* isolate);
+
+  bool deserializing_user_code() { return deserializing_user_code_; }
+
+  void DecodeReservation(Vector<const SerializedData::Reservation> res);
+
+  bool ReserveSpace();
+
+  void UnalignedCopy(Object** dest, Object** src) {
+    memcpy(dest, src, sizeof(*src));
+  }
+
+  void SetAlignment(byte data) {
+    DCHECK_EQ(kWordAligned, next_alignment_);
+    int alignment = data - (kAlignmentPrefix - 1);
+    DCHECK_LE(kWordAligned, alignment);
+    DCHECK_LE(alignment, kSimd128Unaligned);
+    next_alignment_ = static_cast<AllocationAlignment>(alignment);
+  }
+
+  void DeserializeDeferredObjects();
+
+  void FlushICacheForNewIsolate();
+  void FlushICacheForNewCodeObjects();
+
+  void CommitPostProcessedObjects(Isolate* isolate);
+
+  // Fills in some heap data in an area from start to end (non-inclusive).  The
+  // space id is used for the write barrier.  The object_address is the address
+  // of the object we are writing into, or NULL if we are not writing into an
+  // object, i.e. if we are writing a series of tagged values that are not on
+  // the heap. Return false if the object content has been deferred.
+  bool ReadData(Object** start, Object** end, int space,
+                Address object_address);
+  void ReadObject(int space_number, Object** write_back);
+  Address Allocate(int space_index, int size);
+
+  // Special handling for serialized code like hooking up internalized strings.
+  HeapObject* PostProcessNewObject(HeapObject* obj, int space);
+
+  // This returns the address of an object that has been described in the
+  // snapshot by chunk index and offset.
+  HeapObject* GetBackReferencedObject(int space);
+
+  Object** CopyInNativesSource(Vector<const char> source_vector,
+                               Object** current);
+
+  // Cached current isolate.
+  Isolate* isolate_;
+
+  // Objects from the attached object descriptions in the serialized user code.
+  Vector<Handle<Object> > attached_objects_;
+
+  SnapshotByteSource source_;
+  uint32_t magic_number_;
+
+  // The address of the next object that will be allocated in each space.
+  // Each space has a number of chunks reserved by the GC, with each chunk
+  // fitting into a page. Deserialized objects are allocated into the
+  // current chunk of the target space by bumping up high water mark.
+  Heap::Reservation reservations_[kNumberOfSpaces];
+  uint32_t current_chunk_[kNumberOfPreallocatedSpaces];
+  Address high_water_[kNumberOfPreallocatedSpaces];
+
+  ExternalReferenceTable* external_reference_table_;
+
+  List<HeapObject*> deserialized_large_objects_;
+  List<Code*> new_code_objects_;
+  List<Handle<String> > new_internalized_strings_;
+  List<Handle<Script> > new_scripts_;
+
+  bool deserializing_user_code_;
+
+  AllocationAlignment next_alignment_;
+
+  DISALLOW_COPY_AND_ASSIGN(Deserializer);
+};
+
+
+class CodeAddressMap;
+
+// There can be only one serializer per V8 process.
+class Serializer : public SerializerDeserializer {
+ public:
+  Serializer(Isolate* isolate, SnapshotByteSink* sink);
+  ~Serializer() override;
+  void VisitPointers(Object** start, Object** end) override;
+
+  void EncodeReservations(List<SerializedData::Reservation>* out) const;
+
+  void SerializeDeferredObjects();
+
+  Isolate* isolate() const { return isolate_; }
+
+  BackReferenceMap* back_reference_map() { return &back_reference_map_; }
+  RootIndexMap* root_index_map() { return &root_index_map_; }
+
+#ifdef OBJECT_PRINT
+  void CountInstanceType(Map* map, int size);
+#endif  // OBJECT_PRINT
+
+ protected:
+  class ObjectSerializer;
+  class RecursionScope {
+   public:
+    explicit RecursionScope(Serializer* serializer) : serializer_(serializer) {
+      serializer_->recursion_depth_++;
+    }
+    ~RecursionScope() { serializer_->recursion_depth_--; }
+    bool ExceedsMaximum() {
+      return serializer_->recursion_depth_ >= kMaxRecursionDepth;
+    }
+
+   private:
+    static const int kMaxRecursionDepth = 32;
+    Serializer* serializer_;
+  };
+
+  virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
+                               WhereToPoint where_to_point, int skip) = 0;
+
+  void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where,
+               int skip);
+
+  void PutBackReference(HeapObject* object, BackReference reference);
+
+  // Emit alignment prefix if necessary, return required padding space in bytes.
+  int PutAlignmentPrefix(HeapObject* object);
+
+  // Returns true if the object was successfully serialized.
+  bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
+                            WhereToPoint where_to_point, int skip);
+
+  inline void FlushSkip(int skip) {
+    if (skip != 0) {
+      sink_->Put(kSkip, "SkipFromSerializeObject");
+      sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
+    }
+  }
+
+  bool BackReferenceIsAlreadyAllocated(BackReference back_reference);
+
+  // This will return the space for an object.
+  BackReference AllocateLargeObject(int size);
+  BackReference Allocate(AllocationSpace space, int size);
+  int EncodeExternalReference(Address addr) {
+    return external_reference_encoder_.Encode(addr);
+  }
+
+  // GetInt reads 4 bytes at once, requiring padding at the end.
+  void Pad();
+
+  // Some roots should not be serialized, because their actual value depends on
+  // absolute addresses and they are reset after deserialization, anyway.
+  bool ShouldBeSkipped(Object** current);
+
+  // We may not need the code address map for logging for every instance
+  // of the serializer.  Initialize it on demand.
+  void InitializeCodeAddressMap();
+
+  Code* CopyCode(Code* code);
+
+  inline uint32_t max_chunk_size(int space) const {
+    DCHECK_LE(0, space);
+    DCHECK_LT(space, kNumberOfSpaces);
+    return max_chunk_size_[space];
+  }
+
+  SnapshotByteSink* sink() const { return sink_; }
+
+  void QueueDeferredObject(HeapObject* obj) {
+    DCHECK(back_reference_map_.Lookup(obj).is_valid());
+    deferred_objects_.Add(obj);
+  }
+
+  void OutputStatistics(const char* name);
+
+  Isolate* isolate_;
+
+  SnapshotByteSink* sink_;
+  ExternalReferenceEncoder external_reference_encoder_;
+
+  BackReferenceMap back_reference_map_;
+  RootIndexMap root_index_map_;
+
+  int recursion_depth_;
+
+  friend class Deserializer;
+  friend class ObjectSerializer;
+  friend class RecursionScope;
+  friend class SnapshotData;
+
+ private:
+  CodeAddressMap* code_address_map_;
+  // Objects from the same space are put into chunks for bulk-allocation
+  // when deserializing. We have to make sure that each chunk fits into a
+  // page. So we track the chunk size in pending_chunk_ of a space, but
+  // when it exceeds a page, we complete the current chunk and start a new one.
+  uint32_t pending_chunk_[kNumberOfPreallocatedSpaces];
+  List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces];
+  uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces];
+
+  // We map serialized large objects to indexes for back-referencing.
+  uint32_t large_objects_total_size_;
+  uint32_t seen_large_objects_index_;
+
+  List<byte> code_buffer_;
+
+  // To handle stack overflow.
+  List<HeapObject*> deferred_objects_;
+
+#ifdef OBJECT_PRINT
+  static const int kInstanceTypes = 256;
+  int* instance_type_count_;
+  size_t* instance_type_size_;
+#endif  // OBJECT_PRINT
+
+  DISALLOW_COPY_AND_ASSIGN(Serializer);
+};
+
+
+class PartialSerializer : public Serializer {
+ public:
+  PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer,
+                    SnapshotByteSink* sink)
+      : Serializer(isolate, sink),
+        startup_serializer_(startup_snapshot_serializer),
+        global_object_(NULL) {
+    InitializeCodeAddressMap();
+  }
+
+  ~PartialSerializer() override { OutputStatistics("PartialSerializer"); }
+
+  // Serialize the objects reachable from a single object pointer.
+  void Serialize(Object** o);
+  void SerializeObject(HeapObject* o, HowToCode how_to_code,
+                       WhereToPoint where_to_point, int skip) override;
+
+ private:
+  int PartialSnapshotCacheIndex(HeapObject* o);
+  bool ShouldBeInThePartialSnapshotCache(HeapObject* o);
+
+  Serializer* startup_serializer_;
+  Object* global_object_;
+  PartialCacheIndexMap partial_cache_index_map_;
+  DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
+};
+
+
+class StartupSerializer : public Serializer {
+ public:
+  StartupSerializer(Isolate* isolate, SnapshotByteSink* sink);
+  ~StartupSerializer() override { OutputStatistics("StartupSerializer"); }
+
+  // The StartupSerializer has to serialize the root array, which is slightly
+  // different.
+  void VisitPointers(Object** start, Object** end) override;
+
+  // Serialize the current state of the heap.  The order is:
+  // 1) Strong references.
+  // 2) Partial snapshot cache.
+  // 3) Weak references (e.g. the string table).
+  virtual void SerializeStrongReferences();
+  void SerializeObject(HeapObject* o, HowToCode how_to_code,
+                       WhereToPoint where_to_point, int skip) override;
+  void SerializeWeakReferencesAndDeferred();
+
+ private:
+  intptr_t root_index_wave_front_;
+  DISALLOW_COPY_AND_ASSIGN(StartupSerializer);
+};
+
+
+class CodeSerializer : public Serializer {
+ public:
+  static ScriptData* Serialize(Isolate* isolate,
+                               Handle<SharedFunctionInfo> info,
+                               Handle<String> source);
+
+  MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize(
+      Isolate* isolate, ScriptData* cached_data, Handle<String> source);
+
+  static const int kSourceObjectIndex = 0;
+  STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex);
+
+  static const int kCodeStubsBaseIndex = 1;
+
+  String* source() const {
+    DCHECK(!AllowHeapAllocation::IsAllowed());
+    return source_;
+  }
+
+  const List<uint32_t>* stub_keys() const { return &stub_keys_; }
+
+ private:
+  CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source)
+      : Serializer(isolate, sink), source_(source) {
+    back_reference_map_.AddSourceString(source);
+  }
+
+  ~CodeSerializer() override { OutputStatistics("CodeSerializer"); }
+
+  void SerializeObject(HeapObject* o, HowToCode how_to_code,
+                       WhereToPoint where_to_point, int skip) override;
+
+  void SerializeBuiltin(int builtin_index, HowToCode how_to_code,
+                        WhereToPoint where_to_point);
+  void SerializeIC(Code* ic, HowToCode how_to_code,
+                   WhereToPoint where_to_point);
+  void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
+                         WhereToPoint where_to_point);
+  void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code,
+                        WhereToPoint where_to_point);
+  int AddCodeStubKey(uint32_t stub_key);
+
+  DisallowHeapAllocation no_gc_;
+  String* source_;
+  List<uint32_t> stub_keys_;
+  DISALLOW_COPY_AND_ASSIGN(CodeSerializer);
+};
+
+
+// Wrapper around reservation sizes and the serialization payload.
+class SnapshotData : public SerializedData {
+ public:
+  // Used when producing.
+  explicit SnapshotData(const Serializer& ser);
+
+  // Used when consuming.
+  explicit SnapshotData(const Vector<const byte> snapshot)
+      : SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) {
+    CHECK(IsSane());
+  }
+
+  Vector<const Reservation> Reservations() const;
+  Vector<const byte> Payload() const;
+
+  Vector<const byte> RawData() const {
+    return Vector<const byte>(data_, size_);
+  }
+
+ private:
+  bool IsSane();
+
+  // The data header consists of uint32_t-sized entries:
+  // [0] magic number and external reference count
+  // [1] version hash
+  // [2] number of reservation size entries
+  // [3] payload length
+  // ... reservations
+  // ... serialized payload
+  static const int kCheckSumOffset = kMagicNumberOffset + kInt32Size;
+  static const int kNumReservationsOffset = kCheckSumOffset + kInt32Size;
+  static const int kPayloadLengthOffset = kNumReservationsOffset + kInt32Size;
+  static const int kHeaderSize = kPayloadLengthOffset + kInt32Size;
+};
+
+
+// Wrapper around ScriptData to provide code-serializer-specific functionality.
+class SerializedCodeData : public SerializedData {
+ public:
+  // Used when consuming.
+  static SerializedCodeData* FromCachedData(Isolate* isolate,
+                                            ScriptData* cached_data,
+                                            String* source);
+
+  // Used when producing.
+  SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs);
+
+  // Return ScriptData object and relinquish ownership over it to the caller.
+  ScriptData* GetScriptData();
+
+  Vector<const Reservation> Reservations() const;
+  Vector<const byte> Payload() const;
+
+  Vector<const uint32_t> CodeStubKeys() const;
+
+ private:
+  explicit SerializedCodeData(ScriptData* data);
+
+  enum SanityCheckResult {
+    CHECK_SUCCESS = 0,
+    MAGIC_NUMBER_MISMATCH = 1,
+    VERSION_MISMATCH = 2,
+    SOURCE_MISMATCH = 3,
+    CPU_FEATURES_MISMATCH = 4,
+    FLAGS_MISMATCH = 5,
+    CHECKSUM_MISMATCH = 6
+  };
+
+  SanityCheckResult SanityCheck(Isolate* isolate, String* source) const;
+
+  uint32_t SourceHash(String* source) const;
+
+  // The data header consists of uint32_t-sized entries:
+  // [0] magic number and external reference count
+  // [1] version hash
+  // [2] source hash
+  // [3] cpu features
+  // [4] flag hash
+  // [5] number of code stub keys
+  // [6] number of reservation size entries
+  // [7] payload length
+  // [8] payload checksum part 1
+  // [9] payload checksum part 2
+  // ...  reservations
+  // ...  code stub keys
+  // ...  serialized payload
+  static const int kVersionHashOffset = kMagicNumberOffset + kInt32Size;
+  static const int kSourceHashOffset = kVersionHashOffset + kInt32Size;
+  static const int kCpuFeaturesOffset = kSourceHashOffset + kInt32Size;
+  static const int kFlagHashOffset = kCpuFeaturesOffset + kInt32Size;
+  static const int kNumReservationsOffset = kFlagHashOffset + kInt32Size;
+  static const int kNumCodeStubKeysOffset = kNumReservationsOffset + kInt32Size;
+  static const int kPayloadLengthOffset = kNumCodeStubKeysOffset + kInt32Size;
+  static const int kChecksum1Offset = kPayloadLengthOffset + kInt32Size;
+  static const int kChecksum2Offset = kChecksum1Offset + kInt32Size;
+  static const int kHeaderSize = kChecksum2Offset + kInt32Size;
+};
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_SNAPSHOT_SERIALIZE_H_
diff --git a/src/snapshot/snapshot-common.cc b/src/snapshot/snapshot-common.cc
new file mode 100644
index 0000000..97e7c6b
--- /dev/null
+++ b/src/snapshot/snapshot-common.cc
@@ -0,0 +1,232 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// The common functionality when building with or without snapshots.
+
+#include "src/snapshot/snapshot.h"
+
+#include "src/api.h"
+#include "src/base/platform/platform.h"
+#include "src/full-codegen/full-codegen.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef DEBUG
+bool Snapshot::SnapshotIsValid(v8::StartupData* snapshot_blob) {
+  return !Snapshot::ExtractStartupData(snapshot_blob).is_empty() &&
+         !Snapshot::ExtractContextData(snapshot_blob).is_empty();
+}
+#endif  // DEBUG
+
+
+bool Snapshot::HaveASnapshotToStartFrom(Isolate* isolate) {
+  // Do not use snapshots if the isolate is used to create snapshots.
+  return isolate->snapshot_blob() != NULL &&
+         isolate->snapshot_blob()->data != NULL;
+}
+
+
+bool Snapshot::EmbedsScript(Isolate* isolate) {
+  if (!isolate->snapshot_available()) return false;
+  return ExtractMetadata(isolate->snapshot_blob()).embeds_script();
+}
+
+
+uint32_t Snapshot::SizeOfFirstPage(Isolate* isolate, AllocationSpace space) {
+  DCHECK(space >= FIRST_PAGED_SPACE && space <= LAST_PAGED_SPACE);
+  if (!isolate->snapshot_available()) {
+    return static_cast<uint32_t>(MemoryAllocator::PageAreaSize(space));
+  }
+  uint32_t size;
+  int offset = kFirstPageSizesOffset + (space - FIRST_PAGED_SPACE) * kInt32Size;
+  memcpy(&size, isolate->snapshot_blob()->data + offset, kInt32Size);
+  return size;
+}
+
+
+bool Snapshot::Initialize(Isolate* isolate) {
+  if (!isolate->snapshot_available()) return false;
+  base::ElapsedTimer timer;
+  if (FLAG_profile_deserialization) timer.Start();
+
+  const v8::StartupData* blob = isolate->snapshot_blob();
+  Vector<const byte> startup_data = ExtractStartupData(blob);
+  SnapshotData snapshot_data(startup_data);
+  Deserializer deserializer(&snapshot_data);
+  bool success = isolate->Init(&deserializer);
+  if (FLAG_profile_deserialization) {
+    double ms = timer.Elapsed().InMillisecondsF();
+    int bytes = startup_data.length();
+    PrintF("[Deserializing isolate (%d bytes) took %0.3f ms]\n", bytes, ms);
+  }
+  return success;
+}
+
+
+MaybeHandle<Context> Snapshot::NewContextFromSnapshot(
+    Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
+  if (!isolate->snapshot_available()) return Handle<Context>();
+  base::ElapsedTimer timer;
+  if (FLAG_profile_deserialization) timer.Start();
+
+  const v8::StartupData* blob = isolate->snapshot_blob();
+  Vector<const byte> context_data = ExtractContextData(blob);
+  SnapshotData snapshot_data(context_data);
+  Deserializer deserializer(&snapshot_data);
+
+  MaybeHandle<Object> maybe_context =
+      deserializer.DeserializePartial(isolate, global_proxy);
+  Handle<Object> result;
+  if (!maybe_context.ToHandle(&result)) return MaybeHandle<Context>();
+  CHECK(result->IsContext());
+  if (FLAG_profile_deserialization) {
+    double ms = timer.Elapsed().InMillisecondsF();
+    int bytes = context_data.length();
+    PrintF("[Deserializing context (%d bytes) took %0.3f ms]\n", bytes, ms);
+  }
+  return Handle<Context>::cast(result);
+}
+
+
+void CalculateFirstPageSizes(bool is_default_snapshot,
+                             const SnapshotData& startup_snapshot,
+                             const SnapshotData& context_snapshot,
+                             uint32_t* sizes_out) {
+  Vector<const SerializedData::Reservation> startup_reservations =
+      startup_snapshot.Reservations();
+  Vector<const SerializedData::Reservation> context_reservations =
+      context_snapshot.Reservations();
+  int startup_index = 0;
+  int context_index = 0;
+
+  if (FLAG_profile_deserialization) {
+    int startup_total = 0;
+    int context_total = 0;
+    for (auto& reservation : startup_reservations) {
+      startup_total += reservation.chunk_size();
+    }
+    for (auto& reservation : context_reservations) {
+      context_total += reservation.chunk_size();
+    }
+    PrintF(
+        "Deserialization will reserve:\n"
+        "%10d bytes per isolate\n"
+        "%10d bytes per context\n",
+        startup_total, context_total);
+  }
+
+  for (int space = 0; space < i::Serializer::kNumberOfSpaces; space++) {
+    bool single_chunk = true;
+    while (!startup_reservations[startup_index].is_last()) {
+      single_chunk = false;
+      startup_index++;
+    }
+    while (!context_reservations[context_index].is_last()) {
+      single_chunk = false;
+      context_index++;
+    }
+
+    uint32_t required = kMaxUInt32;
+    if (single_chunk) {
+      // If both the startup snapshot data and the context snapshot data on
+      // this space fit in a single page, then we consider limiting the size
+      // of the first page. For this, we add the chunk sizes and some extra
+      // allowance. This way we achieve a smaller startup memory footprint.
+      required = (startup_reservations[startup_index].chunk_size() +
+                  2 * context_reservations[context_index].chunk_size()) +
+                 Page::kObjectStartOffset;
+      // Add a small allowance to the code space for small scripts.
+      if (space == CODE_SPACE) required += 32 * KB;
+    } else {
+      // We expect the vanilla snapshot to only require on page per space.
+      DCHECK(!is_default_snapshot);
+    }
+
+    if (space >= FIRST_PAGED_SPACE && space <= LAST_PAGED_SPACE) {
+      uint32_t max_size =
+          MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(space));
+      sizes_out[space - FIRST_PAGED_SPACE] = Min(required, max_size);
+    } else {
+      DCHECK(single_chunk);
+    }
+    startup_index++;
+    context_index++;
+  }
+
+  DCHECK_EQ(startup_reservations.length(), startup_index);
+  DCHECK_EQ(context_reservations.length(), context_index);
+}
+
+
+v8::StartupData Snapshot::CreateSnapshotBlob(
+    const i::StartupSerializer& startup_ser,
+    const i::PartialSerializer& context_ser, Snapshot::Metadata metadata) {
+  SnapshotData startup_snapshot(startup_ser);
+  SnapshotData context_snapshot(context_ser);
+  Vector<const byte> startup_data = startup_snapshot.RawData();
+  Vector<const byte> context_data = context_snapshot.RawData();
+
+  uint32_t first_page_sizes[kNumPagedSpaces];
+
+  CalculateFirstPageSizes(!metadata.embeds_script(), startup_snapshot,
+                          context_snapshot, first_page_sizes);
+
+  int startup_length = startup_data.length();
+  int context_length = context_data.length();
+  int context_offset = ContextOffset(startup_length);
+
+  int length = context_offset + context_length;
+  char* data = new char[length];
+
+  memcpy(data + kMetadataOffset, &metadata.RawValue(), kInt32Size);
+  memcpy(data + kFirstPageSizesOffset, first_page_sizes,
+         kNumPagedSpaces * kInt32Size);
+  memcpy(data + kStartupLengthOffset, &startup_length, kInt32Size);
+  memcpy(data + kStartupDataOffset, startup_data.begin(), startup_length);
+  memcpy(data + context_offset, context_data.begin(), context_length);
+  v8::StartupData result = {data, length};
+
+  if (FLAG_profile_deserialization) {
+    PrintF(
+        "Snapshot blob consists of:\n"
+        "%10d bytes for startup\n"
+        "%10d bytes for context\n",
+        startup_length, context_length);
+  }
+  return result;
+}
+
+
+Snapshot::Metadata Snapshot::ExtractMetadata(const v8::StartupData* data) {
+  uint32_t raw;
+  memcpy(&raw, data->data + kMetadataOffset, kInt32Size);
+  return Metadata(raw);
+}
+
+
+Vector<const byte> Snapshot::ExtractStartupData(const v8::StartupData* data) {
+  DCHECK_LT(kIntSize, data->raw_size);
+  int startup_length;
+  memcpy(&startup_length, data->data + kStartupLengthOffset, kInt32Size);
+  DCHECK_LT(startup_length, data->raw_size);
+  const byte* startup_data =
+      reinterpret_cast<const byte*>(data->data + kStartupDataOffset);
+  return Vector<const byte>(startup_data, startup_length);
+}
+
+
+Vector<const byte> Snapshot::ExtractContextData(const v8::StartupData* data) {
+  DCHECK_LT(kIntSize, data->raw_size);
+  int startup_length;
+  memcpy(&startup_length, data->data + kStartupLengthOffset, kIntSize);
+  int context_offset = ContextOffset(startup_length);
+  const byte* context_data =
+      reinterpret_cast<const byte*>(data->data + context_offset);
+  DCHECK_LT(context_offset, data->raw_size);
+  int context_length = data->raw_size - context_offset;
+  return Vector<const byte>(context_data, context_length);
+}
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/snapshot-empty.cc b/src/snapshot/snapshot-empty.cc
new file mode 100644
index 0000000..35cb6c3
--- /dev/null
+++ b/src/snapshot/snapshot-empty.cc
@@ -0,0 +1,27 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Used for building without snapshots.
+
+#include "src/snapshot/snapshot.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_USE_EXTERNAL_STARTUP_DATA
+// Dummy implementations of Set*FromFile(..) APIs.
+//
+// These are meant for use with snapshot-external.cc. Should this file
+// be compiled with those options we just supply these dummy implementations
+// below. This happens when compiling the mksnapshot utility.
+void SetNativesFromFile(StartupData* data) { CHECK(false); }
+void SetSnapshotFromFile(StartupData* data) { CHECK(false); }
+void ReadNatives() {}
+void DisposeNatives() {}
+#endif  // V8_USE_EXTERNAL_STARTUP_DATA
+
+
+const v8::StartupData* Snapshot::DefaultSnapshotBlob() { return NULL; }
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/snapshot-external.cc b/src/snapshot/snapshot-external.cc
new file mode 100644
index 0000000..1d5476c
--- /dev/null
+++ b/src/snapshot/snapshot-external.cc
@@ -0,0 +1,44 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Used for building with external snapshots.
+
+#include "src/snapshot/snapshot.h"
+
+#include "src/base/platform/mutex.h"
+#include "src/snapshot/serialize.h"
+#include "src/snapshot/snapshot-source-sink.h"
+#include "src/v8.h"  // for V8::Initialize
+
+
+#ifndef V8_USE_EXTERNAL_STARTUP_DATA
+#error snapshot-external.cc is used only for the external snapshot build.
+#endif  // V8_USE_EXTERNAL_STARTUP_DATA
+
+
+namespace v8 {
+namespace internal {
+
+static base::LazyMutex external_startup_data_mutex = LAZY_MUTEX_INITIALIZER;
+static v8::StartupData external_startup_blob = {NULL, 0};
+
+void SetSnapshotFromFile(StartupData* snapshot_blob) {
+  base::LockGuard<base::Mutex> lock_guard(
+      external_startup_data_mutex.Pointer());
+  DCHECK(snapshot_blob);
+  DCHECK(snapshot_blob->data);
+  DCHECK(snapshot_blob->raw_size > 0);
+  DCHECK(!external_startup_blob.data);
+  DCHECK(Snapshot::SnapshotIsValid(snapshot_blob));
+  external_startup_blob = *snapshot_blob;
+}
+
+
+const v8::StartupData* Snapshot::DefaultSnapshotBlob() {
+  base::LockGuard<base::Mutex> lock_guard(
+      external_startup_data_mutex.Pointer());
+  return &external_startup_blob;
+}
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/snapshot-source-sink.cc b/src/snapshot/snapshot-source-sink.cc
new file mode 100644
index 0000000..812de5e
--- /dev/null
+++ b/src/snapshot/snapshot-source-sink.cc
@@ -0,0 +1,51 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#include "src/snapshot/snapshot-source-sink.h"
+
+#include "src/base/logging.h"
+#include "src/handles-inl.h"
+#include "src/snapshot/serialize.h"  // for SerializerDeserializer::nop()
+
+
+namespace v8 {
+namespace internal {
+
+void SnapshotByteSource::CopyRaw(byte* to, int number_of_bytes) {
+  memcpy(to, data_ + position_, number_of_bytes);
+  position_ += number_of_bytes;
+}
+
+
+void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
+  DCHECK(integer < 1 << 30);
+  integer <<= 2;
+  int bytes = 1;
+  if (integer > 0xff) bytes = 2;
+  if (integer > 0xffff) bytes = 3;
+  if (integer > 0xffffff) bytes = 4;
+  integer |= (bytes - 1);
+  Put(static_cast<int>(integer & 0xff), "IntPart1");
+  if (bytes > 1) Put(static_cast<int>((integer >> 8) & 0xff), "IntPart2");
+  if (bytes > 2) Put(static_cast<int>((integer >> 16) & 0xff), "IntPart3");
+  if (bytes > 3) Put(static_cast<int>((integer >> 24) & 0xff), "IntPart4");
+}
+
+
+void SnapshotByteSink::PutRaw(const byte* data, int number_of_bytes,
+                              const char* description) {
+  data_.AddAll(Vector<byte>(const_cast<byte*>(data), number_of_bytes));
+}
+
+
+int SnapshotByteSource::GetBlob(const byte** data) {
+  int size = GetInt();
+  CHECK(position_ + size <= length_);
+  *data = &data_[position_];
+  Advance(size);
+  return size;
+}
+}  // namespace internal
+}  // namespace v8
diff --git a/src/snapshot/snapshot-source-sink.h b/src/snapshot/snapshot-source-sink.h
new file mode 100644
index 0000000..360ec76
--- /dev/null
+++ b/src/snapshot/snapshot-source-sink.h
@@ -0,0 +1,106 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_SNAPSHOT_SNAPSHOT_SOURCE_SINK_H_
+#define V8_SNAPSHOT_SNAPSHOT_SOURCE_SINK_H_
+
+#include "src/base/logging.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+
+/**
+ * Source to read snapshot and builtins files from.
+ *
+ * Note: Memory ownership remains with callee.
+ */
+class SnapshotByteSource final {
+ public:
+  SnapshotByteSource(const char* data, int length)
+      : data_(reinterpret_cast<const byte*>(data)),
+        length_(length),
+        position_(0) {}
+
+  explicit SnapshotByteSource(Vector<const byte> payload)
+      : data_(payload.start()), length_(payload.length()), position_(0) {}
+
+  ~SnapshotByteSource() {}
+
+  bool HasMore() { return position_ < length_; }
+
+  byte Get() {
+    DCHECK(position_ < length_);
+    return data_[position_++];
+  }
+
+  void Advance(int by) { position_ += by; }
+
+  void CopyRaw(byte* to, int number_of_bytes);
+
+  inline int GetInt() {
+    // This way of decoding variable-length encoded integers does not
+    // suffer from branch mispredictions.
+    DCHECK(position_ + 3 < length_);
+    uint32_t answer = data_[position_];
+    answer |= data_[position_ + 1] << 8;
+    answer |= data_[position_ + 2] << 16;
+    answer |= data_[position_ + 3] << 24;
+    int bytes = (answer & 3) + 1;
+    Advance(bytes);
+    uint32_t mask = 0xffffffffu;
+    mask >>= 32 - (bytes << 3);
+    answer &= mask;
+    answer >>= 2;
+    return answer;
+  }
+
+  // Returns length.
+  int GetBlob(const byte** data);
+
+  int position() { return position_; }
+
+ private:
+  const byte* data_;
+  int length_;
+  int position_;
+
+  DISALLOW_COPY_AND_ASSIGN(SnapshotByteSource);
+};
+
+
+/**
+ * Sink to write snapshot files to.
+ *
+ * Subclasses must implement actual storage or i/o.
+ */
+class SnapshotByteSink {
+ public:
+  SnapshotByteSink() {}
+  explicit SnapshotByteSink(int initial_size) : data_(initial_size) {}
+
+  ~SnapshotByteSink() {}
+
+  void Put(byte b, const char* description) { data_.Add(b); }
+
+  void PutSection(int b, const char* description) {
+    DCHECK_LE(b, kMaxUInt8);
+    Put(static_cast<byte>(b), description);
+  }
+
+  void PutInt(uintptr_t integer, const char* description);
+  void PutRaw(const byte* data, int number_of_bytes, const char* description);
+  int Position() { return data_.length(); }
+
+  const List<byte>& data() const { return data_; }
+
+ private:
+  List<byte> data_;
+};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_SNAPSHOT_SNAPSHOT_SOURCE_SINK_H_
diff --git a/src/snapshot/snapshot.h b/src/snapshot/snapshot.h
new file mode 100644
index 0000000..d99f118
--- /dev/null
+++ b/src/snapshot/snapshot.h
@@ -0,0 +1,94 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_SNAPSHOT_SNAPSHOT_H_
+#define V8_SNAPSHOT_SNAPSHOT_H_
+
+#include "src/snapshot/serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declarations.
+class Isolate;
+class PartialSerializer;
+class StartupSerializer;
+
+class Snapshot : public AllStatic {
+ public:
+  class Metadata {
+   public:
+    explicit Metadata(uint32_t data = 0) : data_(data) {}
+    bool embeds_script() { return EmbedsScriptBits::decode(data_); }
+    void set_embeds_script(bool v) {
+      data_ = EmbedsScriptBits::update(data_, v);
+    }
+
+    uint32_t& RawValue() { return data_; }
+
+   private:
+    class EmbedsScriptBits : public BitField<bool, 0, 1> {};
+    uint32_t data_;
+  };
+
+  // Initialize the Isolate from the internal snapshot. Returns false if no
+  // snapshot could be found.
+  static bool Initialize(Isolate* isolate);
+  // Create a new context using the internal partial snapshot.
+  static MaybeHandle<Context> NewContextFromSnapshot(
+      Isolate* isolate, Handle<JSGlobalProxy> global_proxy);
+
+  static bool HaveASnapshotToStartFrom(Isolate* isolate);
+
+  static bool EmbedsScript(Isolate* isolate);
+
+  static uint32_t SizeOfFirstPage(Isolate* isolate, AllocationSpace space);
+
+
+  // To be implemented by the snapshot source.
+  static const v8::StartupData* DefaultSnapshotBlob();
+
+  static v8::StartupData CreateSnapshotBlob(
+      const StartupSerializer& startup_ser,
+      const PartialSerializer& context_ser, Snapshot::Metadata metadata);
+
+#ifdef DEBUG
+  static bool SnapshotIsValid(v8::StartupData* snapshot_blob);
+#endif  // DEBUG
+
+ private:
+  static Vector<const byte> ExtractStartupData(const v8::StartupData* data);
+  static Vector<const byte> ExtractContextData(const v8::StartupData* data);
+  static Metadata ExtractMetadata(const v8::StartupData* data);
+
+  // Snapshot blob layout:
+  // [0] metadata
+  // [1 - 6] pre-calculated first page sizes for paged spaces
+  // [7] serialized start up data length
+  // ... serialized start up data
+  // ... serialized context data
+
+  static const int kNumPagedSpaces = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
+
+  static const int kMetadataOffset = 0;
+  static const int kFirstPageSizesOffset = kMetadataOffset + kInt32Size;
+  static const int kStartupLengthOffset =
+      kFirstPageSizesOffset + kNumPagedSpaces * kInt32Size;
+  static const int kStartupDataOffset = kStartupLengthOffset + kInt32Size;
+
+  static int ContextOffset(int startup_length) {
+    return kStartupDataOffset + startup_length;
+  }
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(Snapshot);
+};
+
+#ifdef V8_USE_EXTERNAL_STARTUP_DATA
+void SetSnapshotFromFile(StartupData* snapshot_blob);
+#endif
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_SNAPSHOT_SNAPSHOT_H_