Upgrade V8 to version 4.9.385.28

https://chromium.googlesource.com/v8/v8/+/4.9.385.28

FPIIM-449

Change-Id: I4b2e74289d4bf3667f2f3dc8aa2e541f63e26eb4
diff --git a/test/cctest/heap/test-mark-compact.cc b/test/cctest/heap/test-mark-compact.cc
new file mode 100644
index 0000000..cfcf149
--- /dev/null
+++ b/test/cctest/heap/test-mark-compact.cc
@@ -0,0 +1,497 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdlib.h>
+
+#ifdef __linux__
+#include <errno.h>
+#include <fcntl.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <unistd.h>
+#endif
+
+#include <utility>
+
+#include "src/v8.h"
+
+#include "src/full-codegen/full-codegen.h"
+#include "src/global-handles.h"
+#include "test/cctest/cctest.h"
+#include "test/cctest/heap/heap-tester.h"
+#include "test/cctest/heap/utils-inl.h"
+
+
+using namespace v8::internal;
+using v8::Just;
+
+
+TEST(MarkingDeque) {
+  CcTest::InitializeVM();
+  int mem_size = 20 * kPointerSize;
+  byte* mem = NewArray<byte>(20*kPointerSize);
+  Address low = reinterpret_cast<Address>(mem);
+  Address high = low + mem_size;
+  MarkingDeque s;
+  s.Initialize(low, high);
+
+  Address original_address = reinterpret_cast<Address>(&s);
+  Address current_address = original_address;
+  while (!s.IsFull()) {
+    s.Push(HeapObject::FromAddress(current_address));
+    current_address += kPointerSize;
+  }
+
+  while (!s.IsEmpty()) {
+    Address value = s.Pop()->address();
+    current_address -= kPointerSize;
+    CHECK_EQ(current_address, value);
+  }
+
+  CHECK_EQ(original_address, current_address);
+  DeleteArray(mem);
+}
+
+
+HEAP_TEST(Promotion) {
+  CcTest::InitializeVM();
+  Heap* heap = CcTest::heap();
+  heap->ConfigureHeap(1, 1, 1, 0);
+
+  v8::HandleScope sc(CcTest::isolate());
+
+  // Allocate a fixed array in the new space.
+  int array_length =
+      (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
+      (4 * kPointerSize);
+  Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
+  Handle<FixedArray> array(FixedArray::cast(obj));
+
+  // Array should be in the new space.
+  CHECK(heap->InSpace(*array, NEW_SPACE));
+
+  // Call mark compact GC, so array becomes an old object.
+  heap->CollectAllGarbage();
+  heap->CollectAllGarbage();
+
+  // Array now sits in the old space
+  CHECK(heap->InSpace(*array, OLD_SPACE));
+}
+
+
+HEAP_TEST(NoPromotion) {
+  CcTest::InitializeVM();
+  Heap* heap = CcTest::heap();
+  heap->ConfigureHeap(1, 1, 1, 0);
+
+  v8::HandleScope sc(CcTest::isolate());
+
+  // Allocate a big fixed array in the new space.
+  int array_length =
+      (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
+      (2 * kPointerSize);
+  Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
+  Handle<FixedArray> array(FixedArray::cast(obj));
+
+  // Array should be in the new space.
+  CHECK(heap->InSpace(*array, NEW_SPACE));
+
+  // Simulate a full old space to make promotion fail.
+  SimulateFullSpace(heap->old_space());
+
+  // Call mark compact GC, and it should pass.
+  heap->CollectGarbage(OLD_SPACE);
+}
+
+
+HEAP_TEST(MarkCompactCollector) {
+  FLAG_incremental_marking = false;
+  FLAG_retain_maps_for_n_gc = 0;
+  CcTest::InitializeVM();
+  Isolate* isolate = CcTest::i_isolate();
+  Heap* heap = CcTest::heap();
+  Factory* factory = isolate->factory();
+
+  v8::HandleScope sc(CcTest::isolate());
+  Handle<JSGlobalObject> global(isolate->context()->global_object());
+
+  // call mark-compact when heap is empty
+  heap->CollectGarbage(OLD_SPACE, "trigger 1");
+
+  // keep allocating garbage in new space until it fails
+  const int arraysize = 100;
+  AllocationResult allocation;
+  do {
+    allocation = heap->AllocateFixedArray(arraysize);
+  } while (!allocation.IsRetry());
+  heap->CollectGarbage(NEW_SPACE, "trigger 2");
+  heap->AllocateFixedArray(arraysize).ToObjectChecked();
+
+  // keep allocating maps until it fails
+  do {
+    allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
+  } while (!allocation.IsRetry());
+  heap->CollectGarbage(MAP_SPACE, "trigger 3");
+  heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
+
+  { HandleScope scope(isolate);
+    // allocate a garbage
+    Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
+    Handle<JSFunction> function = factory->NewFunction(func_name);
+    JSReceiver::SetProperty(global, func_name, function, SLOPPY).Check();
+
+    factory->NewJSObject(function);
+  }
+
+  heap->CollectGarbage(OLD_SPACE, "trigger 4");
+
+  { HandleScope scope(isolate);
+    Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
+    CHECK(Just(true) == JSReceiver::HasOwnProperty(global, func_name));
+    Handle<Object> func_value =
+        Object::GetProperty(global, func_name).ToHandleChecked();
+    CHECK(func_value->IsJSFunction());
+    Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
+    Handle<JSObject> obj = factory->NewJSObject(function);
+
+    Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
+    JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
+    Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
+    Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
+    JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
+  }
+
+  heap->CollectGarbage(OLD_SPACE, "trigger 5");
+
+  { HandleScope scope(isolate);
+    Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
+    CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
+    Handle<Object> object =
+        Object::GetProperty(global, obj_name).ToHandleChecked();
+    CHECK(object->IsJSObject());
+    Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
+    CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
+             Smi::FromInt(23));
+  }
+}
+
+
+// TODO(1600): compaction of map space is temporary removed from GC.
+#if 0
+static Handle<Map> CreateMap(Isolate* isolate) {
+  return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
+}
+
+
+TEST(MapCompact) {
+  FLAG_max_map_space_pages = 16;
+  CcTest::InitializeVM();
+  Isolate* isolate = CcTest::i_isolate();
+  Factory* factory = isolate->factory();
+
+  {
+    v8::HandleScope sc;
+    // keep allocating maps while pointers are still encodable and thus
+    // mark compact is permitted.
+    Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
+    do {
+      Handle<Map> map = CreateMap();
+      map->set_prototype(*root);
+      root = factory->NewJSObjectFromMap(map);
+    } while (CcTest::heap()->map_space()->MapPointersEncodable());
+  }
+  // Now, as we don't have any handles to just allocated maps, we should
+  // be able to trigger map compaction.
+  // To give an additional chance to fail, try to force compaction which
+  // should be impossible right now.
+  CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
+  // And now map pointers should be encodable again.
+  CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
+}
+#endif
+
+
+static int NumberOfWeakCalls = 0;
+static void WeakPointerCallback(
+    const v8::WeakCallbackData<v8::Value, void>& data) {
+  std::pair<v8::Persistent<v8::Value>*, int>* p =
+      reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
+          data.GetParameter());
+  CHECK_EQ(1234, p->second);
+  NumberOfWeakCalls++;
+  p->first->Reset();
+}
+
+
+HEAP_TEST(ObjectGroups) {
+  FLAG_incremental_marking = false;
+  CcTest::InitializeVM();
+  GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
+  Heap* heap = CcTest::heap();
+  NumberOfWeakCalls = 0;
+  v8::HandleScope handle_scope(CcTest::isolate());
+
+  Handle<Object> g1s1 =
+      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  Handle<Object> g1s2 =
+      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  Handle<Object> g1c1 =
+      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
+  GlobalHandles::MakeWeak(g1s1.location(),
+                          reinterpret_cast<void*>(&g1s1_and_id),
+                          &WeakPointerCallback);
+  std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
+  GlobalHandles::MakeWeak(g1s2.location(),
+                          reinterpret_cast<void*>(&g1s2_and_id),
+                          &WeakPointerCallback);
+  std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
+  GlobalHandles::MakeWeak(g1c1.location(),
+                          reinterpret_cast<void*>(&g1c1_and_id),
+                          &WeakPointerCallback);
+
+  Handle<Object> g2s1 =
+      global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  Handle<Object> g2s2 =
+    global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  Handle<Object> g2c1 =
+    global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
+  std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
+  GlobalHandles::MakeWeak(g2s1.location(),
+                          reinterpret_cast<void*>(&g2s1_and_id),
+                          &WeakPointerCallback);
+  std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
+  GlobalHandles::MakeWeak(g2s2.location(),
+                          reinterpret_cast<void*>(&g2s2_and_id),
+                          &WeakPointerCallback);
+  std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
+  GlobalHandles::MakeWeak(g2c1.location(),
+                          reinterpret_cast<void*>(&g2c1_and_id),
+                          &WeakPointerCallback);
+
+  Handle<Object> root = global_handles->Create(*g1s1);  // make a root.
+
+  // Connect group 1 and 2, make a cycle.
+  Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
+  Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
+
+  {
+    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
+    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
+    global_handles->AddObjectGroup(g1_objects, 2, NULL);
+    global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
+                                 g1c1.location());
+    global_handles->AddObjectGroup(g2_objects, 2, NULL);
+    global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
+                                 g2c1.location());
+  }
+  // Do a full GC
+  heap->CollectGarbage(OLD_SPACE);
+
+  // All object should be alive.
+  CHECK_EQ(0, NumberOfWeakCalls);
+
+  // Weaken the root.
+  std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
+  GlobalHandles::MakeWeak(root.location(),
+                          reinterpret_cast<void*>(&root_and_id),
+                          &WeakPointerCallback);
+  // But make children strong roots---all the objects (except for children)
+  // should be collectable now.
+  global_handles->ClearWeakness(g1c1.location());
+  global_handles->ClearWeakness(g2c1.location());
+
+  // Groups are deleted, rebuild groups.
+  {
+    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
+    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
+    global_handles->AddObjectGroup(g1_objects, 2, NULL);
+    global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
+                                 g1c1.location());
+    global_handles->AddObjectGroup(g2_objects, 2, NULL);
+    global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
+                                 g2c1.location());
+  }
+
+  heap->CollectGarbage(OLD_SPACE);
+
+  // All objects should be gone. 5 global handles in total.
+  CHECK_EQ(5, NumberOfWeakCalls);
+
+  // And now make children weak again and collect them.
+  GlobalHandles::MakeWeak(g1c1.location(),
+                          reinterpret_cast<void*>(&g1c1_and_id),
+                          &WeakPointerCallback);
+  GlobalHandles::MakeWeak(g2c1.location(),
+                          reinterpret_cast<void*>(&g2c1_and_id),
+                          &WeakPointerCallback);
+
+  heap->CollectGarbage(OLD_SPACE);
+  CHECK_EQ(7, NumberOfWeakCalls);
+}
+
+
+class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
+ public:
+  TestRetainedObjectInfo() : has_been_disposed_(false) {}
+
+  bool has_been_disposed() { return has_been_disposed_; }
+
+  virtual void Dispose() {
+    CHECK(!has_been_disposed_);
+    has_been_disposed_ = true;
+  }
+
+  virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
+    return other == this;
+  }
+
+  virtual intptr_t GetHash() { return 0; }
+
+  virtual const char* GetLabel() { return "whatever"; }
+
+ private:
+  bool has_been_disposed_;
+};
+
+
+TEST(EmptyObjectGroups) {
+  CcTest::InitializeVM();
+  GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
+
+  v8::HandleScope handle_scope(CcTest::isolate());
+
+  TestRetainedObjectInfo info;
+  global_handles->AddObjectGroup(NULL, 0, &info);
+  CHECK(info.has_been_disposed());
+}
+
+
+#if defined(__has_feature)
+#if __has_feature(address_sanitizer)
+#define V8_WITH_ASAN 1
+#endif
+#endif
+
+
+// Here is a memory use test that uses /proc, and is therefore Linux-only.  We
+// do not care how much memory the simulator uses, since it is only there for
+// debugging purposes. Testing with ASAN doesn't make sense, either.
+#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
+
+
+static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
+  char* end_address = buffer + *position;
+  uintptr_t result = strtoul(buffer + *position, &end_address, base);
+  CHECK(result != ULONG_MAX || errno != ERANGE);
+  CHECK(end_address > buffer + *position);
+  *position = end_address - buffer;
+  return result;
+}
+
+
+// The memory use computed this way is not entirely accurate and depends on
+// the way malloc allocates memory.  That's why the memory use may seem to
+// increase even though the sum of the allocated object sizes decreases.  It
+// also means that the memory use depends on the kernel and stdlib.
+static intptr_t MemoryInUse() {
+  intptr_t memory_use = 0;
+
+  int fd = open("/proc/self/maps", O_RDONLY);
+  if (fd < 0) return -1;
+
+  const int kBufSize = 10000;
+  char buffer[kBufSize];
+  ssize_t length = read(fd, buffer, kBufSize);
+  intptr_t line_start = 0;
+  CHECK_LT(length, kBufSize);  // Make the buffer bigger.
+  CHECK_GT(length, 0);  // We have to find some data in the file.
+  while (line_start < length) {
+    if (buffer[line_start] == '\n') {
+      line_start++;
+      continue;
+    }
+    intptr_t position = line_start;
+    uintptr_t start = ReadLong(buffer, &position, 16);
+    CHECK_EQ(buffer[position++], '-');
+    uintptr_t end = ReadLong(buffer, &position, 16);
+    CHECK_EQ(buffer[position++], ' ');
+    CHECK(buffer[position] == '-' || buffer[position] == 'r');
+    bool read_permission = (buffer[position++] == 'r');
+    CHECK(buffer[position] == '-' || buffer[position] == 'w');
+    bool write_permission = (buffer[position++] == 'w');
+    CHECK(buffer[position] == '-' || buffer[position] == 'x');
+    bool execute_permission = (buffer[position++] == 'x');
+    CHECK(buffer[position] == 's' || buffer[position] == 'p');
+    bool private_mapping = (buffer[position++] == 'p');
+    CHECK_EQ(buffer[position++], ' ');
+    uintptr_t offset = ReadLong(buffer, &position, 16);
+    USE(offset);
+    CHECK_EQ(buffer[position++], ' ');
+    uintptr_t major = ReadLong(buffer, &position, 16);
+    USE(major);
+    CHECK_EQ(buffer[position++], ':');
+    uintptr_t minor = ReadLong(buffer, &position, 16);
+    USE(minor);
+    CHECK_EQ(buffer[position++], ' ');
+    uintptr_t inode = ReadLong(buffer, &position, 10);
+    while (position < length && buffer[position] != '\n') position++;
+    if ((read_permission || write_permission || execute_permission) &&
+        private_mapping && inode == 0) {
+      memory_use += (end - start);
+    }
+
+    line_start = position;
+  }
+  close(fd);
+  return memory_use;
+}
+
+
+intptr_t ShortLivingIsolate() {
+  v8::Isolate::CreateParams create_params;
+  create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
+  v8::Isolate* isolate = v8::Isolate::New(create_params);
+  { v8::Isolate::Scope isolate_scope(isolate);
+    v8::Locker lock(isolate);
+    v8::HandleScope handle_scope(isolate);
+    v8::Local<v8::Context> context = v8::Context::New(isolate);
+    CHECK(!context.IsEmpty());
+  }
+  isolate->Dispose();
+  return MemoryInUse();
+}
+
+
+TEST(RegressJoinThreadsOnIsolateDeinit) {
+  intptr_t size_limit = ShortLivingIsolate() * 2;
+  for (int i = 0; i < 10; i++) {
+    CHECK_GT(size_limit, ShortLivingIsolate());
+  }
+}
+
+#endif  // __linux__ and !USE_SIMULATOR