Update V8 to r4588
We're using WebKit r58033, as used by
http://src.chromium.org/svn/releases/5.0.387.0/DEPS
This requires http://v8.googlecode.com/svn/trunk@4465 but this version has a
crashing bug for ARM. Instead we use http://v8.googlecode.com/svn/trunk@4588,
which is used by http://src.chromium.org/svn/releases/6.0.399.0/DEPS
Note that a trivial bug fix was required in arm/codegen-arm.cc. This is guarded
with ANDROID. See http://code.google.com/p/v8/issues/detail?id=703
Change-Id: I459647a8286c4f8c7405f0c5581ecbf051a6f1e8
diff --git a/src/conversions.cc b/src/conversions.cc
index fd6d38d..66faae8 100644
--- a/src/conversions.cc
+++ b/src/conversions.cc
@@ -26,11 +26,13 @@
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdarg.h>
+#include <limits.h>
#include "v8.h"
#include "conversions-inl.h"
#include "factory.h"
+#include "fast-dtoa.h"
#include "scanner.h"
namespace v8 {
@@ -46,134 +48,320 @@
return -1;
}
+namespace {
-// Provide a common interface to getting a character at a certain
-// index from a char* or a String object.
-static inline int GetChar(const char* str, int index) {
- ASSERT(index >= 0 && index < StrLength(str));
- return str[index];
+// C++-style iterator adaptor for StringInputBuffer
+// (unlike C++ iterators the end-marker has different type).
+class StringInputBufferIterator {
+ public:
+ class EndMarker {};
+
+ explicit StringInputBufferIterator(StringInputBuffer* buffer);
+
+ int operator*() const;
+ void operator++();
+ bool operator==(EndMarker const&) const { return end_; }
+ bool operator!=(EndMarker const& m) const { return !end_; }
+
+ private:
+ StringInputBuffer* const buffer_;
+ int current_;
+ bool end_;
+};
+
+
+StringInputBufferIterator::StringInputBufferIterator(
+ StringInputBuffer* buffer) : buffer_(buffer) {
+ ++(*this);
+}
+
+int StringInputBufferIterator::operator*() const {
+ return current_;
}
-static inline int GetChar(String* str, int index) {
- return str->Get(index);
-}
-
-
-static inline int GetLength(const char* str) {
- return StrLength(str);
-}
-
-
-static inline int GetLength(String* str) {
- return str->length();
-}
-
-
-static inline const char* GetCString(const char* str, int index) {
- return str + index;
-}
-
-
-static inline const char* GetCString(String* str, int index) {
- int length = str->length();
- char* result = NewArray<char>(length + 1);
- for (int i = index; i < length; i++) {
- uc16 c = str->Get(i);
- if (c <= 127) {
- result[i - index] = static_cast<char>(c);
- } else {
- result[i - index] = 127; // Force number parsing to fail.
- }
+void StringInputBufferIterator::operator++() {
+ end_ = !buffer_->has_more();
+ if (!end_) {
+ current_ = buffer_->GetNext();
}
- result[length - index] = '\0';
- return result;
+}
}
-static inline void ReleaseCString(const char* original, const char* str) {
-}
-
-
-static inline void ReleaseCString(String* original, const char* str) {
- DeleteArray(const_cast<char *>(str));
-}
-
-
-static inline bool IsSpace(const char* str, int index) {
- ASSERT(index >= 0 && index < StrLength(str));
- return Scanner::kIsWhiteSpace.get(str[index]);
-}
-
-
-static inline bool IsSpace(String* str, int index) {
- return Scanner::kIsWhiteSpace.get(str->Get(index));
-}
-
-
-static inline bool SubStringEquals(const char* str,
- int index,
- const char* other) {
- return strncmp(str + index, other, strlen(other)) != 0;
-}
-
-
-static inline bool SubStringEquals(String* str, int index, const char* other) {
- HandleScope scope;
- int str_length = str->length();
- int other_length = StrLength(other);
- int end = index + other_length < str_length ?
- index + other_length :
- str_length;
- Handle<String> substring =
- Factory::NewSubString(Handle<String>(str), index, end);
- return substring->IsEqualTo(Vector<const char>(other, other_length));
-}
-
-
-// Check if a string should be parsed as an octal number. The string
-// can be either a char* or a String*.
-template<class S>
-static bool ShouldParseOctal(S* s, int i) {
- int index = i;
- int len = GetLength(s);
- if (index < len && GetChar(s, index) != '0') return false;
-
- // If the first real character (following '0') is not an octal
- // digit, bail out early. This also takes care of numbers of the
- // forms 0.xxx and 0exxx by not allowing the first 0 to be
- // interpreted as an octal.
- index++;
- if (index < len) {
- int d = GetChar(s, index) - '0';
- if (d < 0 || d > 7) return false;
- } else {
- return false;
+template <class Iterator, class EndMark>
+static bool SubStringEquals(Iterator* current,
+ EndMark end,
+ const char* substring) {
+ ASSERT(**current == *substring);
+ for (substring++; *substring != '\0'; substring++) {
+ ++*current;
+ if (*current == end || **current != *substring) return false;
}
-
- // Traverse all digits (including the first). If there is an octal
- // prefix which is not a part of a longer decimal prefix, we return
- // true. Otherwise, false is returned.
- while (index < len) {
- int d = GetChar(s, index++) - '0';
- if (d == 8 || d == 9) return false;
- if (d < 0 || d > 7) return true;
- }
+ ++*current;
return true;
}
extern "C" double gay_strtod(const char* s00, const char** se);
+// Maximum number of significant digits in decimal representation.
+// The longest possible double in decimal representation is
+// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
+// (768 digits). If we parse a number whose first digits are equal to a
+// mean of 2 adjacent doubles (that could have up to 769 digits) the result
+// must be rounded to the bigger one unless the tail consists of zeros, so
+// we don't need to preserve all the digits.
+const int kMaxSignificantDigits = 772;
-// Parse an int from a string starting a given index and in a given
-// radix. The string can be either a char* or a String*.
-template <class S>
-static int InternalStringToInt(S* s, int i, int radix, double* value) {
- int len = GetLength(s);
- // Setup limits for computing the value.
- ASSERT(2 <= radix && radix <= 36);
+static const double JUNK_STRING_VALUE = OS::nan_value();
+
+
+// Returns true if a nonspace found and false if the end has reached.
+template <class Iterator, class EndMark>
+static inline bool AdvanceToNonspace(Iterator* current, EndMark end) {
+ while (*current != end) {
+ if (!Scanner::kIsWhiteSpace.get(**current)) return true;
+ ++*current;
+ }
+ return false;
+}
+
+
+static bool isDigit(int x, int radix) {
+ return (x >= '0' && x <= '9' && x < '0' + radix)
+ || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
+ || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
+}
+
+
+static double SignedZero(bool sign) {
+ return sign ? -0.0 : 0.0;
+}
+
+
+// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+template <int radix_log_2, class Iterator, class EndMark>
+static double InternalStringToIntDouble(Iterator current,
+ EndMark end,
+ bool sign,
+ bool allow_trailing_junk) {
+ ASSERT(current != end);
+
+ // Skip leading 0s.
+ while (*current == '0') {
+ ++current;
+ if (current == end) return SignedZero(sign);
+ }
+
+ int64_t number = 0;
+ int exponent = 0;
+ const int radix = (1 << radix_log_2);
+
+ do {
+ int digit;
+ if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
+ digit = static_cast<char>(*current) - '0';
+ } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
+ digit = static_cast<char>(*current) - 'a' + 10;
+ } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
+ digit = static_cast<char>(*current) - 'A' + 10;
+ } else {
+ if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) {
+ break;
+ } else {
+ return JUNK_STRING_VALUE;
+ }
+ }
+
+ number = number * radix + digit;
+ int overflow = static_cast<int>(number >> 53);
+ if (overflow != 0) {
+ // Overflow occurred. Need to determine which direction to round the
+ // result.
+ int overflow_bits_count = 1;
+ while (overflow > 1) {
+ overflow_bits_count++;
+ overflow >>= 1;
+ }
+
+ int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
+ int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
+ number >>= overflow_bits_count;
+ exponent = overflow_bits_count;
+
+ bool zero_tail = true;
+ while (true) {
+ ++current;
+ if (current == end || !isDigit(*current, radix)) break;
+ zero_tail = zero_tail && *current == '0';
+ exponent += radix_log_2;
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ int middle_value = (1 << (overflow_bits_count - 1));
+ if (dropped_bits > middle_value) {
+ number++; // Rounding up.
+ } else if (dropped_bits == middle_value) {
+ // Rounding to even to consistency with decimals: half-way case rounds
+ // up if significant part is odd and down otherwise.
+ if ((number & 1) != 0 || !zero_tail) {
+ number++; // Rounding up.
+ }
+ }
+
+ // Rounding up may cause overflow.
+ if ((number & ((int64_t)1 << 53)) != 0) {
+ exponent++;
+ number >>= 1;
+ }
+ break;
+ }
+ ++current;
+ } while (current != end);
+
+ ASSERT(number < ((int64_t)1 << 53));
+ ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
+
+ if (exponent == 0) {
+ if (sign) {
+ if (number == 0) return -0.0;
+ number = -number;
+ }
+ return static_cast<double>(number);
+ }
+
+ ASSERT(number != 0);
+ // The double could be constructed faster from number (mantissa), exponent
+ // and sign. Assuming it's a rare case more simple code is used.
+ return static_cast<double>(sign ? -number : number) * pow(2.0, exponent);
+}
+
+
+template <class Iterator, class EndMark>
+static double InternalStringToInt(Iterator current, EndMark end, int radix) {
+ const bool allow_trailing_junk = true;
+ const double empty_string_val = JUNK_STRING_VALUE;
+
+ if (!AdvanceToNonspace(¤t, end)) return empty_string_val;
+
+ bool sign = false;
+ bool leading_zero = false;
+
+ if (*current == '+') {
+ // Ignore leading sign; skip following spaces.
+ ++current;
+ if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE;
+ } else if (*current == '-') {
+ ++current;
+ if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE;
+ sign = true;
+ }
+
+ if (radix == 0) {
+ // Radix detection.
+ if (*current == '0') {
+ ++current;
+ if (current == end) return SignedZero(sign);
+ if (*current == 'x' || *current == 'X') {
+ radix = 16;
+ ++current;
+ if (current == end) return JUNK_STRING_VALUE;
+ } else {
+ radix = 8;
+ leading_zero = true;
+ }
+ } else {
+ radix = 10;
+ }
+ } else if (radix == 16) {
+ if (*current == '0') {
+ // Allow "0x" prefix.
+ ++current;
+ if (current == end) return SignedZero(sign);
+ if (*current == 'x' || *current == 'X') {
+ ++current;
+ if (current == end) return JUNK_STRING_VALUE;
+ } else {
+ leading_zero = true;
+ }
+ }
+ }
+
+ if (radix < 2 || radix > 36) return JUNK_STRING_VALUE;
+
+ // Skip leading zeros.
+ while (*current == '0') {
+ leading_zero = true;
+ ++current;
+ if (current == end) return SignedZero(sign);
+ }
+
+ if (!leading_zero && !isDigit(*current, radix)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ if (IsPowerOf2(radix)) {
+ switch (radix) {
+ case 2:
+ return InternalStringToIntDouble<1>(
+ current, end, sign, allow_trailing_junk);
+ case 4:
+ return InternalStringToIntDouble<2>(
+ current, end, sign, allow_trailing_junk);
+ case 8:
+ return InternalStringToIntDouble<3>(
+ current, end, sign, allow_trailing_junk);
+
+ case 16:
+ return InternalStringToIntDouble<4>(
+ current, end, sign, allow_trailing_junk);
+
+ case 32:
+ return InternalStringToIntDouble<5>(
+ current, end, sign, allow_trailing_junk);
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ if (radix == 10) {
+ // Parsing with strtod.
+ const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
+ // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
+ // end.
+ const int kBufferSize = kMaxSignificantDigits + 2;
+ char buffer[kBufferSize];
+ int buffer_pos = 0;
+ while (*current >= '0' && *current <= '9') {
+ if (buffer_pos <= kMaxSignificantDigits) {
+ // If the number has more than kMaxSignificantDigits it will be parsed
+ // as infinity.
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ }
+ ++current;
+ if (current == end) break;
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = '\0';
+ return sign ? -gay_strtod(buffer, NULL) : gay_strtod(buffer, NULL);
+ }
+
+ // The following code causes accumulating rounding error for numbers greater
+ // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
+ // 16, or 32, then mathInt may be an implementation-dependent approximation to
+ // the mathematical integer value" (15.1.2.2).
+
int lim_0 = '0' + (radix < 10 ? radix : 10);
int lim_a = 'a' + (radix - 10);
int lim_A = 'A' + (radix - 10);
@@ -183,22 +371,22 @@
// loops as long as possible to avoid loosing precision.
double v = 0.0;
- int j;
- for (j = i; j < len;) {
+ bool done = false;
+ do {
// Parse the longest part of the string starting at index j
// possible while keeping the multiplier, and thus the part
// itself, within 32 bits.
- uint32_t part = 0, multiplier = 1;
- int k;
- for (k = j; k < len; k++) {
- int c = GetChar(s, k);
- if (c >= '0' && c < lim_0) {
- c = c - '0';
- } else if (c >= 'a' && c < lim_a) {
- c = c - 'a' + 10;
- } else if (c >= 'A' && c < lim_A) {
- c = c - 'A' + 10;
+ unsigned int part = 0, multiplier = 1;
+ while (true) {
+ int d;
+ if (*current >= '0' && *current < lim_0) {
+ d = *current - '0';
+ } else if (*current >= 'a' && *current < lim_a) {
+ d = *current - 'a' + 10;
+ } else if (*current >= 'A' && *current < lim_A) {
+ d = *current - 'A' + 10;
} else {
+ done = true;
break;
}
@@ -206,150 +394,347 @@
// in 32 bits. When we can't guarantee that the next iteration
// will not overflow the multiplier, we stop parsing the part
// by leaving the loop.
- static const uint32_t kMaximumMultiplier = 0xffffffffU / 36;
+ const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
uint32_t m = multiplier * radix;
if (m > kMaximumMultiplier) break;
- part = part * radix + c;
+ part = part * radix + d;
multiplier = m;
ASSERT(multiplier > part);
+
+ ++current;
+ if (current == end) {
+ done = true;
+ break;
+ }
}
- // Compute the number of part digits. If no digits were parsed;
- // we're done parsing the entire string.
- int digits = k - j;
- if (digits == 0) break;
-
// Update the value and skip the part in the string.
- ASSERT(multiplier ==
- pow(static_cast<double>(radix), static_cast<double>(digits)));
v = v * multiplier + part;
- j = k;
- }
+ } while (!done);
- // If the resulting value is larger than 2^53 the value does not fit
- // in the mantissa of the double and there is a loss of precision.
- // When the value is larger than 2^53 the rounding depends on the
- // code generation. If the code generator spills the double value
- // it uses 64 bits and if it does not it uses 80 bits.
- //
- // If there is a potential for overflow we resort to strtod for
- // radix 10 numbers to get higher precision. For numbers in another
- // radix we live with the loss of precision.
- static const double kPreciseConversionLimit = 9007199254740992.0;
- if (radix == 10 && v > kPreciseConversionLimit) {
- const char* cstr = GetCString(s, i);
- const char* end;
- v = gay_strtod(cstr, &end);
- ReleaseCString(s, cstr);
- }
-
- *value = v;
- return j;
-}
-
-
-int StringToInt(String* str, int index, int radix, double* value) {
- return InternalStringToInt(str, index, radix, value);
-}
-
-
-int StringToInt(const char* str, int index, int radix, double* value) {
- return InternalStringToInt(const_cast<char*>(str), index, radix, value);
-}
-
-
-static const double JUNK_STRING_VALUE = OS::nan_value();
-
-
-// Convert a string to a double value. The string can be either a
-// char* or a String*.
-template<class S>
-static double InternalStringToDouble(S* str,
- int flags,
- double empty_string_val) {
- double result = 0.0;
- int index = 0;
-
- int len = GetLength(str);
-
- // Skip leading spaces.
- while ((index < len) && IsSpace(str, index)) index++;
-
- // Is the string empty?
- if (index >= len) return empty_string_val;
-
- // Get the first character.
- uint16_t first = GetChar(str, index);
-
- // Numbers can only start with '-', '+', '.', 'I' (Infinity), or a digit.
- if (first != '-' && first != '+' && first != '.' && first != 'I' &&
- (first > '9' || first < '0')) {
+ if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
return JUNK_STRING_VALUE;
}
- // Compute sign of result based on first character.
- int sign = 1;
- if (first == '-') {
- sign = -1;
- index++;
- // String only containing a '-' are junk chars.
- if (index == len) return JUNK_STRING_VALUE;
- }
-
- // do we have a hex number?
- // (since the string is 0-terminated, it's ok to look one char beyond the end)
- if ((flags & ALLOW_HEX) != 0 &&
- (index + 1) < len &&
- GetChar(str, index) == '0' &&
- (GetChar(str, index + 1) == 'x' || GetChar(str, index + 1) == 'X')) {
- index += 2;
- index = StringToInt(str, index, 16, &result);
- } else if ((flags & ALLOW_OCTALS) != 0 && ShouldParseOctal(str, index)) {
- // NOTE: We optimistically try to parse the number as an octal (if
- // we're allowed to), even though this is not as dictated by
- // ECMA-262. The reason for doing this is compatibility with IE and
- // Firefox.
- index = StringToInt(str, index, 8, &result);
- } else {
- const char* cstr = GetCString(str, index);
- const char* end;
- // Optimistically parse the number and then, if that fails,
- // check if it might have been {+,-,}Infinity.
- result = gay_strtod(cstr, &end);
- ReleaseCString(str, cstr);
- if (result != 0.0 || end != cstr) {
- // It appears that strtod worked
- index += static_cast<int>(end - cstr);
- } else {
- // Check for {+,-,}Infinity
- bool is_negative = (GetChar(str, index) == '-');
- if (GetChar(str, index) == '+' || GetChar(str, index) == '-')
- index++;
- if (!SubStringEquals(str, index, "Infinity"))
- return JUNK_STRING_VALUE;
- result = is_negative ? -V8_INFINITY : V8_INFINITY;
- index += 8;
- }
- }
-
- if ((flags & ALLOW_TRAILING_JUNK) == 0) {
- // skip trailing spaces
- while ((index < len) && IsSpace(str, index)) index++;
- // string ending with junk?
- if (index < len) return JUNK_STRING_VALUE;
- }
-
- return sign * result;
+ return sign ? -v : v;
}
+// Converts a string to a double value. Assumes the Iterator supports
+// the following operations:
+// 1. current == end (other ops are not allowed), current != end.
+// 2. *current - gets the current character in the sequence.
+// 3. ++current (advances the position).
+template <class Iterator, class EndMark>
+static double InternalStringToDouble(Iterator current,
+ EndMark end,
+ int flags,
+ double empty_string_val) {
+ // To make sure that iterator dereferencing is valid the following
+ // convention is used:
+ // 1. Each '++current' statement is followed by check for equality to 'end'.
+ // 2. If AdvanceToNonspace returned false then current == end.
+ // 3. If 'current' becomes be equal to 'end' the function returns or goes to
+ // 'parsing_done'.
+ // 4. 'current' is not dereferenced after the 'parsing_done' label.
+ // 5. Code before 'parsing_done' may rely on 'current != end'.
+ if (!AdvanceToNonspace(¤t, end)) return empty_string_val;
+
+ const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
+
+ // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
+ const int kBufferSize = kMaxSignificantDigits + 10;
+ char buffer[kBufferSize]; // NOLINT: size is known at compile time.
+ int buffer_pos = 0;
+
+ // Exponent will be adjusted if insignificant digits of the integer part
+ // or insignificant leading zeros of the fractional part are dropped.
+ int exponent = 0;
+ int significant_digits = 0;
+ int insignificant_digits = 0;
+ bool nonzero_digit_dropped = false;
+ bool fractional_part = false;
+
+ bool sign = false;
+
+ if (*current == '+') {
+ // Ignore leading sign; skip following spaces.
+ ++current;
+ if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE;
+ } else if (*current == '-') {
+ buffer[buffer_pos++] = '-';
+ ++current;
+ if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE;
+ sign = true;
+ }
+
+ static const char kInfinitySymbol[] = "Infinity";
+ if (*current == kInfinitySymbol[0]) {
+ if (!SubStringEquals(¤t, end, kInfinitySymbol)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ ASSERT(buffer_pos == 0 || buffer[0] == '-');
+ return buffer_pos > 0 ? -V8_INFINITY : V8_INFINITY;
+ }
+
+ bool leading_zero = false;
+ if (*current == '0') {
+ ++current;
+ if (current == end) return SignedZero(sign);
+
+ leading_zero = true;
+
+ // It could be hexadecimal value.
+ if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+ ++current;
+ if (current == end || !isDigit(*current, 16)) {
+ return JUNK_STRING_VALUE; // "0x".
+ }
+
+ bool sign = (buffer_pos > 0 && buffer[0] == '-');
+ return InternalStringToIntDouble<4>(current,
+ end,
+ sign,
+ allow_trailing_junk);
+ }
+
+ // Ignore leading zeros in the integer part.
+ while (*current == '0') {
+ ++current;
+ if (current == end) return SignedZero(sign);
+ }
+ }
+
+ bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0;
+
+ // Copy significant digits of the integer part (if any) to the buffer.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ // Will later check if it's an octal in the buffer.
+ } else {
+ insignificant_digits++; // Move the digit into the exponential part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ octal = octal && *current < '8';
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+
+ if (significant_digits == 0) {
+ octal = false;
+ }
+
+ if (*current == '.') {
+ ++current;
+ if (current == end) {
+ if (significant_digits == 0 && !leading_zero) {
+ return JUNK_STRING_VALUE;
+ } else {
+ goto parsing_done;
+ }
+ }
+
+ if (significant_digits == 0) {
+ // octal = false;
+ // Integer part consists of 0 or is absent. Significant digits start after
+ // leading zeros (if any).
+ while (*current == '0') {
+ ++current;
+ if (current == end) return SignedZero(sign);
+ exponent--; // Move this 0 into the exponent.
+ }
+ }
+
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = '.';
+ fractional_part = true;
+
+ // There is the fractional part.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ } else {
+ // Ignore insignificant digits in the fractional part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+ }
+
+ if (!leading_zero && exponent == 0 && significant_digits == 0) {
+ // If leading_zeros is true then the string contains zeros.
+ // If exponent < 0 then string was [+-]\.0*...
+ // If significant_digits != 0 the string is not equal to 0.
+ // Otherwise there are no digits in the string.
+ return JUNK_STRING_VALUE;
+ }
+
+ // Parse exponential part.
+ if (*current == 'e' || *current == 'E') {
+ if (octal) return JUNK_STRING_VALUE;
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return JUNK_STRING_VALUE;
+ }
+ }
+ char sign = '+';
+ if (*current == '+' || *current == '-') {
+ sign = static_cast<char>(*current);
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return JUNK_STRING_VALUE;
+ }
+ }
+ }
+
+ if (current == end || *current < '0' || *current > '9') {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return JUNK_STRING_VALUE;
+ }
+ }
+
+ const int max_exponent = INT_MAX / 2;
+ ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
+ int num = 0;
+ do {
+ // Check overflow.
+ int digit = *current - '0';
+ if (num >= max_exponent / 10
+ && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
+ num = max_exponent;
+ } else {
+ num = num * 10 + digit;
+ }
+ ++current;
+ } while (current != end && *current >= '0' && *current <= '9');
+
+ exponent += (sign == '-' ? -num : num);
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
+ return JUNK_STRING_VALUE;
+ }
+
+ parsing_done:
+ exponent += insignificant_digits;
+
+ if (octal) {
+ bool sign = buffer[0] == '-';
+ int start_pos = (sign ? 1 : 0);
+
+ return InternalStringToIntDouble<3>(buffer + start_pos,
+ buffer + buffer_pos,
+ sign,
+ allow_trailing_junk);
+ }
+
+ if (nonzero_digit_dropped) {
+ if (insignificant_digits) buffer[buffer_pos++] = '.';
+ buffer[buffer_pos++] = '1';
+ }
+
+ // If the number has no more than kMaxDigitsInInt digits and doesn't have
+ // fractional part it could be parsed faster (without checks for
+ // spaces, overflow, etc.).
+ const int kMaxDigitsInInt = 9 * sizeof(int) / 4; // NOLINT
+
+ if (exponent != 0) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = 'e';
+ if (exponent < 0) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = '-';
+ exponent = -exponent;
+ }
+ if (exponent > 999) exponent = 999; // Result will be Infinity or 0 or -0.
+
+ const int exp_digits = 3;
+ for (int i = 0; i < exp_digits; i++) {
+ buffer[buffer_pos + exp_digits - 1 - i] = '0' + exponent % 10;
+ exponent /= 10;
+ }
+ ASSERT(exponent == 0);
+ buffer_pos += exp_digits;
+ } else if (!fractional_part && significant_digits <= kMaxDigitsInInt) {
+ if (significant_digits == 0) return SignedZero(sign);
+ ASSERT(buffer_pos > 0);
+ int num = 0;
+ int start_pos = (buffer[0] == '-' ? 1 : 0);
+ for (int i = start_pos; i < buffer_pos; i++) {
+ ASSERT(buffer[i] >= '0' && buffer[i] <= '9');
+ num = 10 * num + (buffer[i] - '0');
+ }
+ return static_cast<double>(start_pos == 0 ? num : -num);
+ }
+
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos] = '\0';
+
+ return gay_strtod(buffer, NULL);
+}
+
double StringToDouble(String* str, int flags, double empty_string_val) {
- return InternalStringToDouble(str, flags, empty_string_val);
+ StringShape shape(str);
+ if (shape.IsSequentialAscii()) {
+ const char* begin = SeqAsciiString::cast(str)->GetChars();
+ const char* end = begin + str->length();
+ return InternalStringToDouble(begin, end, flags, empty_string_val);
+ } else if (shape.IsSequentialTwoByte()) {
+ const uc16* begin = SeqTwoByteString::cast(str)->GetChars();
+ const uc16* end = begin + str->length();
+ return InternalStringToDouble(begin, end, flags, empty_string_val);
+ } else {
+ StringInputBuffer buffer(str);
+ return InternalStringToDouble(StringInputBufferIterator(&buffer),
+ StringInputBufferIterator::EndMarker(),
+ flags,
+ empty_string_val);
+ }
+}
+
+
+double StringToInt(String* str, int radix) {
+ StringShape shape(str);
+ if (shape.IsSequentialAscii()) {
+ const char* begin = SeqAsciiString::cast(str)->GetChars();
+ const char* end = begin + str->length();
+ return InternalStringToInt(begin, end, radix);
+ } else if (shape.IsSequentialTwoByte()) {
+ const uc16* begin = SeqTwoByteString::cast(str)->GetChars();
+ const uc16* end = begin + str->length();
+ return InternalStringToInt(begin, end, radix);
+ } else {
+ StringInputBuffer buffer(str);
+ return InternalStringToInt(StringInputBufferIterator(&buffer),
+ StringInputBufferIterator::EndMarker(),
+ radix);
+ }
}
double StringToDouble(const char* str, int flags, double empty_string_val) {
- return InternalStringToDouble(str, flags, empty_string_val);
+ const char* end = str + StrLength(str);
+
+ return InternalStringToDouble(str, end, flags, empty_string_val);
}
@@ -382,8 +767,19 @@
int decimal_point;
int sign;
- char* decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
- int length = StrLength(decimal_rep);
+ char* decimal_rep;
+ bool used_gay_dtoa = false;
+ const int kFastDtoaBufferCapacity = kFastDtoaMaximalLength + 1;
+ char fast_dtoa_buffer[kFastDtoaBufferCapacity];
+ int length;
+ if (FastDtoa(v, Vector<char>(fast_dtoa_buffer, kFastDtoaBufferCapacity),
+ &sign, &length, &decimal_point)) {
+ decimal_rep = fast_dtoa_buffer;
+ } else {
+ decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
+ used_gay_dtoa = true;
+ length = StrLength(decimal_rep);
+ }
if (sign) builder.AddCharacter('-');
@@ -418,7 +814,7 @@
builder.AddFormatted("%d", exponent);
}
- freedtoa(decimal_rep);
+ if (used_gay_dtoa) freedtoa(decimal_rep);
}
}
return builder.Finalize();