Update V8 to r5388 as required by WebKit r66666

Change-Id: Ib3c42e9b7226d22c65c7077c543fe31afe62a318
diff --git a/src/x64/code-stubs-x64.cc b/src/x64/code-stubs-x64.cc
new file mode 100644
index 0000000..c75b945
--- /dev/null
+++ b/src/x64/code-stubs-x64.cc
@@ -0,0 +1,4015 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_X64)
+
+#include "bootstrapper.h"
+#include "code-stubs.h"
+#include "regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+void FastNewClosureStub::Generate(MacroAssembler* masm) {
+  // Create a new closure from the given function info in new
+  // space. Set the context to the current context in rsi.
+  Label gc;
+  __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
+
+  // Get the function info from the stack.
+  __ movq(rdx, Operand(rsp, 1 * kPointerSize));
+
+  // Compute the function map in the current global context and set that
+  // as the map of the allocated object.
+  __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+  __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
+  __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
+  __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
+
+  // Initialize the rest of the function. We don't have to update the
+  // write barrier because the allocated object is in new space.
+  __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
+  __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
+  __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
+  __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
+  __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
+  __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
+  __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
+  __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
+
+  // Initialize the code pointer in the function to be the one
+  // found in the shared function info object.
+  __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
+  __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
+  __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
+
+
+  // Return and remove the on-stack parameter.
+  __ ret(1 * kPointerSize);
+
+  // Create a new closure through the slower runtime call.
+  __ bind(&gc);
+  __ pop(rcx);  // Temporarily remove return address.
+  __ pop(rdx);
+  __ push(rsi);
+  __ push(rdx);
+  __ push(rcx);  // Restore return address.
+  __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
+}
+
+
+void FastNewContextStub::Generate(MacroAssembler* masm) {
+  // Try to allocate the context in new space.
+  Label gc;
+  int length = slots_ + Context::MIN_CONTEXT_SLOTS;
+  __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
+                        rax, rbx, rcx, &gc, TAG_OBJECT);
+
+  // Get the function from the stack.
+  __ movq(rcx, Operand(rsp, 1 * kPointerSize));
+
+  // Setup the object header.
+  __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
+  __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
+  __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
+
+  // Setup the fixed slots.
+  __ xor_(rbx, rbx);  // Set to NULL.
+  __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
+  __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
+  __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
+  __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
+
+  // Copy the global object from the surrounding context.
+  __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+  __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
+
+  // Initialize the rest of the slots to undefined.
+  __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
+  for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
+    __ movq(Operand(rax, Context::SlotOffset(i)), rbx);
+  }
+
+  // Return and remove the on-stack parameter.
+  __ movq(rsi, rax);
+  __ ret(1 * kPointerSize);
+
+  // Need to collect. Call into runtime system.
+  __ bind(&gc);
+  __ TailCallRuntime(Runtime::kNewContext, 1, 1);
+}
+
+
+void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
+  // Stack layout on entry:
+  //
+  // [rsp + kPointerSize]: constant elements.
+  // [rsp + (2 * kPointerSize)]: literal index.
+  // [rsp + (3 * kPointerSize)]: literals array.
+
+  // All sizes here are multiples of kPointerSize.
+  int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
+  int size = JSArray::kSize + elements_size;
+
+  // Load boilerplate object into rcx and check if we need to create a
+  // boilerplate.
+  Label slow_case;
+  __ movq(rcx, Operand(rsp, 3 * kPointerSize));
+  __ movq(rax, Operand(rsp, 2 * kPointerSize));
+  SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
+  __ movq(rcx,
+          FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
+  __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
+  __ j(equal, &slow_case);
+
+  if (FLAG_debug_code) {
+    const char* message;
+    Heap::RootListIndex expected_map_index;
+    if (mode_ == CLONE_ELEMENTS) {
+      message = "Expected (writable) fixed array";
+      expected_map_index = Heap::kFixedArrayMapRootIndex;
+    } else {
+      ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
+      message = "Expected copy-on-write fixed array";
+      expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
+    }
+    __ push(rcx);
+    __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
+    __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
+                   expected_map_index);
+    __ Assert(equal, message);
+    __ pop(rcx);
+  }
+
+  // Allocate both the JS array and the elements array in one big
+  // allocation. This avoids multiple limit checks.
+  __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
+
+  // Copy the JS array part.
+  for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
+    if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
+      __ movq(rbx, FieldOperand(rcx, i));
+      __ movq(FieldOperand(rax, i), rbx);
+    }
+  }
+
+  if (length_ > 0) {
+    // Get hold of the elements array of the boilerplate and setup the
+    // elements pointer in the resulting object.
+    __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
+    __ lea(rdx, Operand(rax, JSArray::kSize));
+    __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
+
+    // Copy the elements array.
+    for (int i = 0; i < elements_size; i += kPointerSize) {
+      __ movq(rbx, FieldOperand(rcx, i));
+      __ movq(FieldOperand(rdx, i), rbx);
+    }
+  }
+
+  // Return and remove the on-stack parameters.
+  __ ret(3 * kPointerSize);
+
+  __ bind(&slow_case);
+  __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
+}
+
+
+void ToBooleanStub::Generate(MacroAssembler* masm) {
+  Label false_result, true_result, not_string;
+  __ movq(rax, Operand(rsp, 1 * kPointerSize));
+
+  // 'null' => false.
+  __ CompareRoot(rax, Heap::kNullValueRootIndex);
+  __ j(equal, &false_result);
+
+  // Get the map and type of the heap object.
+  // We don't use CmpObjectType because we manipulate the type field.
+  __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
+  __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
+
+  // Undetectable => false.
+  __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
+  __ and_(rbx, Immediate(1 << Map::kIsUndetectable));
+  __ j(not_zero, &false_result);
+
+  // JavaScript object => true.
+  __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
+  __ j(above_equal, &true_result);
+
+  // String value => false iff empty.
+  __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
+  __ j(above_equal, &not_string);
+  __ movq(rdx, FieldOperand(rax, String::kLengthOffset));
+  __ SmiTest(rdx);
+  __ j(zero, &false_result);
+  __ jmp(&true_result);
+
+  __ bind(&not_string);
+  __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
+  __ j(not_equal, &true_result);
+  // HeapNumber => false iff +0, -0, or NaN.
+  // These three cases set the zero flag when compared to zero using ucomisd.
+  __ xorpd(xmm0, xmm0);
+  __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
+  __ j(zero, &false_result);
+  // Fall through to |true_result|.
+
+  // Return 1/0 for true/false in rax.
+  __ bind(&true_result);
+  __ movq(rax, Immediate(1));
+  __ ret(1 * kPointerSize);
+  __ bind(&false_result);
+  __ xor_(rax, rax);
+  __ ret(1 * kPointerSize);
+}
+
+
+const char* GenericBinaryOpStub::GetName() {
+  if (name_ != NULL) return name_;
+  const int kMaxNameLength = 100;
+  name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
+  if (name_ == NULL) return "OOM";
+  const char* op_name = Token::Name(op_);
+  const char* overwrite_name;
+  switch (mode_) {
+    case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+    case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+    case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+    default: overwrite_name = "UnknownOverwrite"; break;
+  }
+
+  OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+               "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
+               op_name,
+               overwrite_name,
+               (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
+               args_in_registers_ ? "RegArgs" : "StackArgs",
+               args_reversed_ ? "_R" : "",
+               static_operands_type_.ToString(),
+               BinaryOpIC::GetName(runtime_operands_type_));
+  return name_;
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+    MacroAssembler* masm,
+    Register left,
+    Register right) {
+  if (!ArgsInRegistersSupported()) {
+    // Pass arguments on the stack.
+    __ push(left);
+    __ push(right);
+  } else {
+    // The calling convention with registers is left in rdx and right in rax.
+    Register left_arg = rdx;
+    Register right_arg = rax;
+    if (!(left.is(left_arg) && right.is(right_arg))) {
+      if (left.is(right_arg) && right.is(left_arg)) {
+        if (IsOperationCommutative()) {
+          SetArgsReversed();
+        } else {
+          __ xchg(left, right);
+        }
+      } else if (left.is(left_arg)) {
+        __ movq(right_arg, right);
+      } else if (right.is(right_arg)) {
+        __ movq(left_arg, left);
+      } else if (left.is(right_arg)) {
+        if (IsOperationCommutative()) {
+          __ movq(left_arg, right);
+          SetArgsReversed();
+        } else {
+          // Order of moves important to avoid destroying left argument.
+          __ movq(left_arg, left);
+          __ movq(right_arg, right);
+        }
+      } else if (right.is(left_arg)) {
+        if (IsOperationCommutative()) {
+          __ movq(right_arg, left);
+          SetArgsReversed();
+        } else {
+          // Order of moves important to avoid destroying right argument.
+          __ movq(right_arg, right);
+          __ movq(left_arg, left);
+        }
+      } else {
+        // Order of moves is not important.
+        __ movq(left_arg, left);
+        __ movq(right_arg, right);
+      }
+    }
+
+    // Update flags to indicate that arguments are in registers.
+    SetArgsInRegisters();
+    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+  }
+
+  // Call the stub.
+  __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+    MacroAssembler* masm,
+    Register left,
+    Smi* right) {
+  if (!ArgsInRegistersSupported()) {
+    // Pass arguments on the stack.
+    __ push(left);
+    __ Push(right);
+  } else {
+    // The calling convention with registers is left in rdx and right in rax.
+    Register left_arg = rdx;
+    Register right_arg = rax;
+    if (left.is(left_arg)) {
+      __ Move(right_arg, right);
+    } else if (left.is(right_arg) && IsOperationCommutative()) {
+      __ Move(left_arg, right);
+      SetArgsReversed();
+    } else {
+      // For non-commutative operations, left and right_arg might be
+      // the same register.  Therefore, the order of the moves is
+      // important here in order to not overwrite left before moving
+      // it to left_arg.
+      __ movq(left_arg, left);
+      __ Move(right_arg, right);
+    }
+
+    // Update flags to indicate that arguments are in registers.
+    SetArgsInRegisters();
+    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+  }
+
+  // Call the stub.
+  __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+    MacroAssembler* masm,
+    Smi* left,
+    Register right) {
+  if (!ArgsInRegistersSupported()) {
+    // Pass arguments on the stack.
+    __ Push(left);
+    __ push(right);
+  } else {
+    // The calling convention with registers is left in rdx and right in rax.
+    Register left_arg = rdx;
+    Register right_arg = rax;
+    if (right.is(right_arg)) {
+      __ Move(left_arg, left);
+    } else if (right.is(left_arg) && IsOperationCommutative()) {
+      __ Move(right_arg, left);
+      SetArgsReversed();
+    } else {
+      // For non-commutative operations, right and left_arg might be
+      // the same register.  Therefore, the order of the moves is
+      // important here in order to not overwrite right before moving
+      // it to right_arg.
+      __ movq(right_arg, right);
+      __ Move(left_arg, left);
+    }
+    // Update flags to indicate that arguments are in registers.
+    SetArgsInRegisters();
+    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+  }
+
+  // Call the stub.
+  __ CallStub(this);
+}
+
+
+class FloatingPointHelper : public AllStatic {
+ public:
+  // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
+  // If the operands are not both numbers, jump to not_numbers.
+  // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
+  // NumberOperands assumes both are smis or heap numbers.
+  static void LoadSSE2SmiOperands(MacroAssembler* masm);
+  static void LoadSSE2NumberOperands(MacroAssembler* masm);
+  static void LoadSSE2UnknownOperands(MacroAssembler* masm,
+                                      Label* not_numbers);
+
+  // Takes the operands in rdx and rax and loads them as integers in rax
+  // and rcx.
+  static void LoadAsIntegers(MacroAssembler* masm,
+                             Label* operand_conversion_failure,
+                             Register heap_number_map);
+  // As above, but we know the operands to be numbers. In that case,
+  // conversion can't fail.
+  static void LoadNumbersAsIntegers(MacroAssembler* masm);
+};
+
+
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
+  // 1. Move arguments into rdx, rax except for DIV and MOD, which need the
+  // dividend in rax and rdx free for the division.  Use rax, rbx for those.
+  Comment load_comment(masm, "-- Load arguments");
+  Register left = rdx;
+  Register right = rax;
+  if (op_ == Token::DIV || op_ == Token::MOD) {
+    left = rax;
+    right = rbx;
+    if (HasArgsInRegisters()) {
+      __ movq(rbx, rax);
+      __ movq(rax, rdx);
+    }
+  }
+  if (!HasArgsInRegisters()) {
+    __ movq(right, Operand(rsp, 1 * kPointerSize));
+    __ movq(left, Operand(rsp, 2 * kPointerSize));
+  }
+
+  Label not_smis;
+  // 2. Smi check both operands.
+  if (static_operands_type_.IsSmi()) {
+    // Skip smi check if we know that both arguments are smis.
+    if (FLAG_debug_code) {
+      __ AbortIfNotSmi(left);
+      __ AbortIfNotSmi(right);
+    }
+    if (op_ == Token::BIT_OR) {
+      // Handle OR here, since we do extra smi-checking in the or code below.
+      __ SmiOr(right, right, left);
+      GenerateReturn(masm);
+      return;
+    }
+  } else {
+    if (op_ != Token::BIT_OR) {
+      // Skip the check for OR as it is better combined with the
+      // actual operation.
+      Comment smi_check_comment(masm, "-- Smi check arguments");
+      __ JumpIfNotBothSmi(left, right, &not_smis);
+    }
+  }
+
+  // 3. Operands are both smis (except for OR), perform the operation leaving
+  // the result in rax and check the result if necessary.
+  Comment perform_smi(masm, "-- Perform smi operation");
+  Label use_fp_on_smis;
+  switch (op_) {
+    case Token::ADD: {
+      ASSERT(right.is(rax));
+      __ SmiAdd(right, right, left, &use_fp_on_smis);  // ADD is commutative.
+      break;
+    }
+
+    case Token::SUB: {
+      __ SmiSub(left, left, right, &use_fp_on_smis);
+      __ movq(rax, left);
+      break;
+    }
+
+    case Token::MUL:
+      ASSERT(right.is(rax));
+      __ SmiMul(right, right, left, &use_fp_on_smis);  // MUL is commutative.
+      break;
+
+    case Token::DIV:
+      ASSERT(left.is(rax));
+      __ SmiDiv(left, left, right, &use_fp_on_smis);
+      break;
+
+    case Token::MOD:
+      ASSERT(left.is(rax));
+      __ SmiMod(left, left, right, slow);
+      break;
+
+    case Token::BIT_OR:
+      ASSERT(right.is(rax));
+      __ movq(rcx, right);  // Save the right operand.
+      __ SmiOr(right, right, left);  // BIT_OR is commutative.
+      __ testb(right, Immediate(kSmiTagMask));
+      __ j(not_zero, &not_smis);
+      break;
+
+    case Token::BIT_AND:
+      ASSERT(right.is(rax));
+      __ SmiAnd(right, right, left);  // BIT_AND is commutative.
+      break;
+
+    case Token::BIT_XOR:
+      ASSERT(right.is(rax));
+      __ SmiXor(right, right, left);  // BIT_XOR is commutative.
+      break;
+
+    case Token::SHL:
+    case Token::SHR:
+    case Token::SAR:
+      switch (op_) {
+        case Token::SAR:
+          __ SmiShiftArithmeticRight(left, left, right);
+          break;
+        case Token::SHR:
+          __ SmiShiftLogicalRight(left, left, right, slow);
+          break;
+        case Token::SHL:
+          __ SmiShiftLeft(left, left, right);
+          break;
+        default:
+          UNREACHABLE();
+      }
+      __ movq(rax, left);
+      break;
+
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  // 4. Emit return of result in rax.
+  GenerateReturn(masm);
+
+  // 5. For some operations emit inline code to perform floating point
+  // operations on known smis (e.g., if the result of the operation
+  // overflowed the smi range).
+  switch (op_) {
+    case Token::ADD:
+    case Token::SUB:
+    case Token::MUL:
+    case Token::DIV: {
+      ASSERT(use_fp_on_smis.is_linked());
+      __ bind(&use_fp_on_smis);
+      if (op_ == Token::DIV) {
+        __ movq(rdx, rax);
+        __ movq(rax, rbx);
+      }
+      // left is rdx, right is rax.
+      __ AllocateHeapNumber(rbx, rcx, slow);
+      FloatingPointHelper::LoadSSE2SmiOperands(masm);
+      switch (op_) {
+        case Token::ADD: __ addsd(xmm0, xmm1); break;
+        case Token::SUB: __ subsd(xmm0, xmm1); break;
+        case Token::MUL: __ mulsd(xmm0, xmm1); break;
+        case Token::DIV: __ divsd(xmm0, xmm1); break;
+        default: UNREACHABLE();
+      }
+      __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
+      __ movq(rax, rbx);
+      GenerateReturn(masm);
+    }
+    default:
+      break;
+  }
+
+  // 6. Non-smi operands, fall out to the non-smi code with the operands in
+  // rdx and rax.
+  Comment done_comment(masm, "-- Enter non-smi code");
+  __ bind(&not_smis);
+
+  switch (op_) {
+    case Token::DIV:
+    case Token::MOD:
+      // Operands are in rax, rbx at this point.
+      __ movq(rdx, rax);
+      __ movq(rax, rbx);
+      break;
+
+    case Token::BIT_OR:
+      // Right operand is saved in rcx and rax was destroyed by the smi
+      // operation.
+      __ movq(rax, rcx);
+      break;
+
+    default:
+      break;
+  }
+}
+
+
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
+  Label call_runtime;
+
+  if (ShouldGenerateSmiCode()) {
+    GenerateSmiCode(masm, &call_runtime);
+  } else if (op_ != Token::MOD) {
+    if (!HasArgsInRegisters()) {
+      GenerateLoadArguments(masm);
+    }
+  }
+  // Floating point case.
+  if (ShouldGenerateFPCode()) {
+    switch (op_) {
+      case Token::ADD:
+      case Token::SUB:
+      case Token::MUL:
+      case Token::DIV: {
+        if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+            HasSmiCodeInStub()) {
+          // Execution reaches this point when the first non-smi argument occurs
+          // (and only if smi code is generated). This is the right moment to
+          // patch to HEAP_NUMBERS state. The transition is attempted only for
+          // the four basic operations. The stub stays in the DEFAULT state
+          // forever for all other operations (also if smi code is skipped).
+          GenerateTypeTransition(masm);
+          break;
+        }
+
+        Label not_floats;
+        // rax: y
+        // rdx: x
+        if (static_operands_type_.IsNumber()) {
+          if (FLAG_debug_code) {
+            // Assert at runtime that inputs are only numbers.
+            __ AbortIfNotNumber(rdx);
+            __ AbortIfNotNumber(rax);
+          }
+          FloatingPointHelper::LoadSSE2NumberOperands(masm);
+        } else {
+          FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
+        }
+
+        switch (op_) {
+          case Token::ADD: __ addsd(xmm0, xmm1); break;
+          case Token::SUB: __ subsd(xmm0, xmm1); break;
+          case Token::MUL: __ mulsd(xmm0, xmm1); break;
+          case Token::DIV: __ divsd(xmm0, xmm1); break;
+          default: UNREACHABLE();
+        }
+        // Allocate a heap number, if needed.
+        Label skip_allocation;
+        OverwriteMode mode = mode_;
+        if (HasArgsReversed()) {
+          if (mode == OVERWRITE_RIGHT) {
+            mode = OVERWRITE_LEFT;
+          } else if (mode == OVERWRITE_LEFT) {
+            mode = OVERWRITE_RIGHT;
+          }
+        }
+        switch (mode) {
+          case OVERWRITE_LEFT:
+            __ JumpIfNotSmi(rdx, &skip_allocation);
+            __ AllocateHeapNumber(rbx, rcx, &call_runtime);
+            __ movq(rdx, rbx);
+            __ bind(&skip_allocation);
+            __ movq(rax, rdx);
+            break;
+          case OVERWRITE_RIGHT:
+            // If the argument in rax is already an object, we skip the
+            // allocation of a heap number.
+            __ JumpIfNotSmi(rax, &skip_allocation);
+            // Fall through!
+          case NO_OVERWRITE:
+            // Allocate a heap number for the result. Keep rax and rdx intact
+            // for the possible runtime call.
+            __ AllocateHeapNumber(rbx, rcx, &call_runtime);
+            __ movq(rax, rbx);
+            __ bind(&skip_allocation);
+            break;
+          default: UNREACHABLE();
+        }
+        __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
+        GenerateReturn(masm);
+        __ bind(&not_floats);
+        if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+            !HasSmiCodeInStub()) {
+            // Execution reaches this point when the first non-number argument
+            // occurs (and only if smi code is skipped from the stub, otherwise
+            // the patching has already been done earlier in this case branch).
+            // A perfect moment to try patching to STRINGS for ADD operation.
+            if (op_ == Token::ADD) {
+              GenerateTypeTransition(masm);
+            }
+        }
+        break;
+      }
+      case Token::MOD: {
+        // For MOD we go directly to runtime in the non-smi case.
+        break;
+      }
+      case Token::BIT_OR:
+      case Token::BIT_AND:
+      case Token::BIT_XOR:
+      case Token::SAR:
+      case Token::SHL:
+      case Token::SHR: {
+        Label skip_allocation, non_smi_shr_result;
+        Register heap_number_map = r9;
+        __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+        if (static_operands_type_.IsNumber()) {
+          if (FLAG_debug_code) {
+            // Assert at runtime that inputs are only numbers.
+            __ AbortIfNotNumber(rdx);
+            __ AbortIfNotNumber(rax);
+          }
+          FloatingPointHelper::LoadNumbersAsIntegers(masm);
+        } else {
+          FloatingPointHelper::LoadAsIntegers(masm,
+                                              &call_runtime,
+                                              heap_number_map);
+        }
+        switch (op_) {
+          case Token::BIT_OR:  __ orl(rax, rcx); break;
+          case Token::BIT_AND: __ andl(rax, rcx); break;
+          case Token::BIT_XOR: __ xorl(rax, rcx); break;
+          case Token::SAR: __ sarl_cl(rax); break;
+          case Token::SHL: __ shll_cl(rax); break;
+          case Token::SHR: {
+            __ shrl_cl(rax);
+            // Check if result is negative. This can only happen for a shift
+            // by zero.
+            __ testl(rax, rax);
+            __ j(negative, &non_smi_shr_result);
+            break;
+          }
+          default: UNREACHABLE();
+        }
+
+        STATIC_ASSERT(kSmiValueSize == 32);
+        // Tag smi result and return.
+        __ Integer32ToSmi(rax, rax);
+        GenerateReturn(masm);
+
+        // All bit-ops except SHR return a signed int32 that can be
+        // returned immediately as a smi.
+        // We might need to allocate a HeapNumber if we shift a negative
+        // number right by zero (i.e., convert to UInt32).
+        if (op_ == Token::SHR) {
+          ASSERT(non_smi_shr_result.is_linked());
+          __ bind(&non_smi_shr_result);
+          // Allocate a heap number if needed.
+          __ movl(rbx, rax);  // rbx holds result value (uint32 value as int64).
+          switch (mode_) {
+            case OVERWRITE_LEFT:
+            case OVERWRITE_RIGHT:
+              // If the operand was an object, we skip the
+              // allocation of a heap number.
+              __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
+                                   1 * kPointerSize : 2 * kPointerSize));
+              __ JumpIfNotSmi(rax, &skip_allocation);
+              // Fall through!
+            case NO_OVERWRITE:
+              // Allocate heap number in new space.
+              // Not using AllocateHeapNumber macro in order to reuse
+              // already loaded heap_number_map.
+              __ AllocateInNewSpace(HeapNumber::kSize,
+                                    rax,
+                                    rcx,
+                                    no_reg,
+                                    &call_runtime,
+                                    TAG_OBJECT);
+              // Set the map.
+              if (FLAG_debug_code) {
+                __ AbortIfNotRootValue(heap_number_map,
+                                       Heap::kHeapNumberMapRootIndex,
+                                       "HeapNumberMap register clobbered.");
+              }
+              __ movq(FieldOperand(rax, HeapObject::kMapOffset),
+                      heap_number_map);
+              __ bind(&skip_allocation);
+              break;
+            default: UNREACHABLE();
+          }
+          // Store the result in the HeapNumber and return.
+          __ cvtqsi2sd(xmm0, rbx);
+          __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
+          GenerateReturn(masm);
+        }
+
+        break;
+      }
+      default: UNREACHABLE(); break;
+    }
+  }
+
+  // If all else fails, use the runtime system to get the correct
+  // result. If arguments was passed in registers now place them on the
+  // stack in the correct order below the return address.
+  __ bind(&call_runtime);
+
+  if (HasArgsInRegisters()) {
+    GenerateRegisterArgsPush(masm);
+  }
+
+  switch (op_) {
+    case Token::ADD: {
+      // Registers containing left and right operands respectively.
+      Register lhs, rhs;
+
+      if (HasArgsReversed()) {
+        lhs = rax;
+        rhs = rdx;
+      } else {
+        lhs = rdx;
+        rhs = rax;
+      }
+
+      // Test for string arguments before calling runtime.
+      Label not_strings, both_strings, not_string1, string1, string1_smi2;
+
+      // If this stub has already generated FP-specific code then the arguments
+      // are already in rdx and rax.
+      if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
+        GenerateLoadArguments(masm);
+      }
+
+      Condition is_smi;
+      is_smi = masm->CheckSmi(lhs);
+      __ j(is_smi, &not_string1);
+      __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
+      __ j(above_equal, &not_string1);
+
+      // First argument is a a string, test second.
+      is_smi = masm->CheckSmi(rhs);
+      __ j(is_smi, &string1_smi2);
+      __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
+      __ j(above_equal, &string1);
+
+      // First and second argument are strings.
+      StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
+      __ TailCallStub(&string_add_stub);
+
+      __ bind(&string1_smi2);
+      // First argument is a string, second is a smi. Try to lookup the number
+      // string for the smi in the number string cache.
+      NumberToStringStub::GenerateLookupNumberStringCache(
+          masm, rhs, rbx, rcx, r8, true, &string1);
+
+      // Replace second argument on stack and tailcall string add stub to make
+      // the result.
+      __ movq(Operand(rsp, 1 * kPointerSize), rbx);
+      __ TailCallStub(&string_add_stub);
+
+      // Only first argument is a string.
+      __ bind(&string1);
+      __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
+
+      // First argument was not a string, test second.
+      __ bind(&not_string1);
+      is_smi = masm->CheckSmi(rhs);
+      __ j(is_smi, &not_strings);
+      __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
+      __ j(above_equal, &not_strings);
+
+      // Only second argument is a string.
+      __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
+
+      __ bind(&not_strings);
+      // Neither argument is a string.
+      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+      break;
+    }
+    case Token::SUB:
+      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+      break;
+    case Token::MUL:
+      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+      break;
+    case Token::DIV:
+      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+      break;
+    case Token::MOD:
+      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+      break;
+    case Token::BIT_OR:
+      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+      break;
+    case Token::BIT_AND:
+      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+      break;
+    case Token::BIT_XOR:
+      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+      break;
+    case Token::SAR:
+      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+      break;
+    case Token::SHL:
+      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+      break;
+    case Token::SHR:
+      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+      break;
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
+  ASSERT(!HasArgsInRegisters());
+  __ movq(rax, Operand(rsp, 1 * kPointerSize));
+  __ movq(rdx, Operand(rsp, 2 * kPointerSize));
+}
+
+
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
+  // If arguments are not passed in registers remove them from the stack before
+  // returning.
+  if (!HasArgsInRegisters()) {
+    __ ret(2 * kPointerSize);  // Remove both operands
+  } else {
+    __ ret(0);
+  }
+}
+
+
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+  ASSERT(HasArgsInRegisters());
+  __ pop(rcx);
+  if (HasArgsReversed()) {
+    __ push(rax);
+    __ push(rdx);
+  } else {
+    __ push(rdx);
+    __ push(rax);
+  }
+  __ push(rcx);
+}
+
+
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+  Label get_result;
+
+  // Ensure the operands are on the stack.
+  if (HasArgsInRegisters()) {
+    GenerateRegisterArgsPush(masm);
+  }
+
+  // Left and right arguments are already on stack.
+  __ pop(rcx);  // Save the return address.
+
+  // Push this stub's key.
+  __ Push(Smi::FromInt(MinorKey()));
+
+  // Although the operation and the type info are encoded into the key,
+  // the encoding is opaque, so push them too.
+  __ Push(Smi::FromInt(op_));
+
+  __ Push(Smi::FromInt(runtime_operands_type_));
+
+  __ push(rcx);  // The return address.
+
+  // Perform patching to an appropriate fast case and return the result.
+  __ TailCallExternalReference(
+      ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
+      5,
+      1);
+}
+
+
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
+  GenericBinaryOpStub stub(key, type_info);
+  return stub.GetCode();
+}
+
+
+void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
+  // Input on stack:
+  // rsp[8]: argument (should be number).
+  // rsp[0]: return address.
+  Label runtime_call;
+  Label runtime_call_clear_stack;
+  Label input_not_smi;
+  Label loaded;
+  // Test that rax is a number.
+  __ movq(rax, Operand(rsp, kPointerSize));
+  __ JumpIfNotSmi(rax, &input_not_smi);
+  // Input is a smi. Untag and load it onto the FPU stack.
+  // Then load the bits of the double into rbx.
+  __ SmiToInteger32(rax, rax);
+  __ subq(rsp, Immediate(kPointerSize));
+  __ cvtlsi2sd(xmm1, rax);
+  __ movsd(Operand(rsp, 0), xmm1);
+  __ movq(rbx, xmm1);
+  __ movq(rdx, xmm1);
+  __ fld_d(Operand(rsp, 0));
+  __ addq(rsp, Immediate(kPointerSize));
+  __ jmp(&loaded);
+
+  __ bind(&input_not_smi);
+  // Check if input is a HeapNumber.
+  __ Move(rbx, Factory::heap_number_map());
+  __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
+  __ j(not_equal, &runtime_call);
+  // Input is a HeapNumber. Push it on the FPU stack and load its
+  // bits into rbx.
+  __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
+  __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
+  __ movq(rdx, rbx);
+  __ bind(&loaded);
+  // ST[0] == double value
+  // rbx = bits of double value.
+  // rdx = also bits of double value.
+  // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
+  //   h = h0 = bits ^ (bits >> 32);
+  //   h ^= h >> 16;
+  //   h ^= h >> 8;
+  //   h = h & (cacheSize - 1);
+  // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
+  __ sar(rdx, Immediate(32));
+  __ xorl(rdx, rbx);
+  __ movl(rcx, rdx);
+  __ movl(rax, rdx);
+  __ movl(rdi, rdx);
+  __ sarl(rdx, Immediate(8));
+  __ sarl(rcx, Immediate(16));
+  __ sarl(rax, Immediate(24));
+  __ xorl(rcx, rdx);
+  __ xorl(rax, rdi);
+  __ xorl(rcx, rax);
+  ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
+  __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));
+
+  // ST[0] == double value.
+  // rbx = bits of double value.
+  // rcx = TranscendentalCache::hash(double value).
+  __ movq(rax, ExternalReference::transcendental_cache_array_address());
+  // rax points to cache array.
+  __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
+  // rax points to the cache for the type type_.
+  // If NULL, the cache hasn't been initialized yet, so go through runtime.
+  __ testq(rax, rax);
+  __ j(zero, &runtime_call_clear_stack);
+#ifdef DEBUG
+  // Check that the layout of cache elements match expectations.
+  {  // NOLINT - doesn't like a single brace on a line.
+    TranscendentalCache::Element test_elem[2];
+    char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
+    char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
+    char* elem_in0  = reinterpret_cast<char*>(&(test_elem[0].in[0]));
+    char* elem_in1  = reinterpret_cast<char*>(&(test_elem[0].in[1]));
+    char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
+    // Two uint_32's and a pointer per element.
+    CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
+    CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
+    CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
+    CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
+  }
+#endif
+  // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
+  __ addl(rcx, rcx);
+  __ lea(rcx, Operand(rax, rcx, times_8, 0));
+  // Check if cache matches: Double value is stored in uint32_t[2] array.
+  Label cache_miss;
+  __ cmpq(rbx, Operand(rcx, 0));
+  __ j(not_equal, &cache_miss);
+  // Cache hit!
+  __ movq(rax, Operand(rcx, 2 * kIntSize));
+  __ fstp(0);  // Clear FPU stack.
+  __ ret(kPointerSize);
+
+  __ bind(&cache_miss);
+  // Update cache with new value.
+  Label nan_result;
+  GenerateOperation(masm, &nan_result);
+  __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
+  __ movq(Operand(rcx, 0), rbx);
+  __ movq(Operand(rcx, 2 * kIntSize), rax);
+  __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
+  __ ret(kPointerSize);
+
+  __ bind(&runtime_call_clear_stack);
+  __ fstp(0);
+  __ bind(&runtime_call);
+  __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
+
+  __ bind(&nan_result);
+  __ fstp(0);  // Remove argument from FPU stack.
+  __ LoadRoot(rax, Heap::kNanValueRootIndex);
+  __ movq(Operand(rcx, 0), rbx);
+  __ movq(Operand(rcx, 2 * kIntSize), rax);
+  __ ret(kPointerSize);
+}
+
+
+Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
+  switch (type_) {
+    // Add more cases when necessary.
+    case TranscendentalCache::SIN: return Runtime::kMath_sin;
+    case TranscendentalCache::COS: return Runtime::kMath_cos;
+    default:
+      UNIMPLEMENTED();
+      return Runtime::kAbort;
+  }
+}
+
+
+void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
+                                                Label* on_nan_result) {
+  // Registers:
+  // rbx: Bits of input double. Must be preserved.
+  // rcx: Pointer to cache entry. Must be preserved.
+  // st(0): Input double
+  Label done;
+  ASSERT(type_ == TranscendentalCache::SIN ||
+         type_ == TranscendentalCache::COS);
+  // More transcendental types can be added later.
+
+  // Both fsin and fcos require arguments in the range +/-2^63 and
+  // return NaN for infinities and NaN. They can share all code except
+  // the actual fsin/fcos operation.
+  Label in_range;
+  // If argument is outside the range -2^63..2^63, fsin/cos doesn't
+  // work. We must reduce it to the appropriate range.
+  __ movq(rdi, rbx);
+  // Move exponent and sign bits to low bits.
+  __ shr(rdi, Immediate(HeapNumber::kMantissaBits));
+  // Remove sign bit.
+  __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
+  int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
+  __ cmpl(rdi, Immediate(supported_exponent_limit));
+  __ j(below, &in_range);
+  // Check for infinity and NaN. Both return NaN for sin.
+  __ cmpl(rdi, Immediate(0x7ff));
+  __ j(equal, on_nan_result);
+
+  // Use fpmod to restrict argument to the range +/-2*PI.
+  __ fldpi();
+  __ fadd(0);
+  __ fld(1);
+  // FPU Stack: input, 2*pi, input.
+  {
+    Label no_exceptions;
+    __ fwait();
+    __ fnstsw_ax();
+    // Clear if Illegal Operand or Zero Division exceptions are set.
+    __ testl(rax, Immediate(5));  // #IO and #ZD flags of FPU status word.
+    __ j(zero, &no_exceptions);
+    __ fnclex();
+    __ bind(&no_exceptions);
+  }
+
+  // Compute st(0) % st(1)
+  {
+    Label partial_remainder_loop;
+    __ bind(&partial_remainder_loop);
+    __ fprem1();
+    __ fwait();
+    __ fnstsw_ax();
+    __ testl(rax, Immediate(0x400));  // Check C2 bit of FPU status word.
+    // If C2 is set, computation only has partial result. Loop to
+    // continue computation.
+    __ j(not_zero, &partial_remainder_loop);
+  }
+  // FPU Stack: input, 2*pi, input % 2*pi
+  __ fstp(2);
+  // FPU Stack: input % 2*pi, 2*pi,
+  __ fstp(0);
+  // FPU Stack: input % 2*pi
+  __ bind(&in_range);
+  switch (type_) {
+    case TranscendentalCache::SIN:
+      __ fsin();
+      break;
+    case TranscendentalCache::COS:
+      __ fcos();
+      break;
+    default:
+      UNREACHABLE();
+  }
+  __ bind(&done);
+}
+
+
+// Get the integer part of a heap number.
+// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
+void IntegerConvert(MacroAssembler* masm,
+                    Register result,
+                    Register source) {
+  // Result may be rcx. If result and source are the same register, source will
+  // be overwritten.
+  ASSERT(!result.is(rdi) && !result.is(rbx));
+  // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
+  // cvttsd2si (32-bit version) directly.
+  Register double_exponent = rbx;
+  Register double_value = rdi;
+  Label done, exponent_63_plus;
+  // Get double and extract exponent.
+  __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
+  // Clear result preemptively, in case we need to return zero.
+  __ xorl(result, result);
+  __ movq(xmm0, double_value);  // Save copy in xmm0 in case we need it there.
+  // Double to remove sign bit, shift exponent down to least significant bits.
+  // and subtract bias to get the unshifted, unbiased exponent.
+  __ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
+  __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
+  __ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
+  // Check whether the exponent is too big for a 63 bit unsigned integer.
+  __ cmpl(double_exponent, Immediate(63));
+  __ j(above_equal, &exponent_63_plus);
+  // Handle exponent range 0..62.
+  __ cvttsd2siq(result, xmm0);
+  __ jmp(&done);
+
+  __ bind(&exponent_63_plus);
+  // Exponent negative or 63+.
+  __ cmpl(double_exponent, Immediate(83));
+  // If exponent negative or above 83, number contains no significant bits in
+  // the range 0..2^31, so result is zero, and rcx already holds zero.
+  __ j(above, &done);
+
+  // Exponent in rage 63..83.
+  // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
+  // the least significant exponent-52 bits.
+
+  // Negate low bits of mantissa if value is negative.
+  __ addq(double_value, double_value);  // Move sign bit to carry.
+  __ sbbl(result, result);  // And convert carry to -1 in result register.
+  // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
+  __ addl(double_value, result);
+  // Do xor in opposite directions depending on where we want the result
+  // (depending on whether result is rcx or not).
+
+  if (result.is(rcx)) {
+    __ xorl(double_value, result);
+    // Left shift mantissa by (exponent - mantissabits - 1) to save the
+    // bits that have positional values below 2^32 (the extra -1 comes from the
+    // doubling done above to move the sign bit into the carry flag).
+    __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
+    __ shll_cl(double_value);
+    __ movl(result, double_value);
+  } else {
+    // As the then-branch, but move double-value to result before shifting.
+    __ xorl(result, double_value);
+    __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
+    __ shll_cl(result);
+  }
+
+  __ bind(&done);
+}
+
+
+// Input: rdx, rax are the left and right objects of a bit op.
+// Output: rax, rcx are left and right integers for a bit op.
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
+  // Check float operands.
+  Label done;
+  Label rax_is_smi;
+  Label rax_is_object;
+  Label rdx_is_object;
+
+  __ JumpIfNotSmi(rdx, &rdx_is_object);
+  __ SmiToInteger32(rdx, rdx);
+  __ JumpIfSmi(rax, &rax_is_smi);
+
+  __ bind(&rax_is_object);
+  IntegerConvert(masm, rcx, rax);  // Uses rdi, rcx and rbx.
+  __ jmp(&done);
+
+  __ bind(&rdx_is_object);
+  IntegerConvert(masm, rdx, rdx);  // Uses rdi, rcx and rbx.
+  __ JumpIfNotSmi(rax, &rax_is_object);
+  __ bind(&rax_is_smi);
+  __ SmiToInteger32(rcx, rax);
+
+  __ bind(&done);
+  __ movl(rax, rdx);
+}
+
+
+// Input: rdx, rax are the left and right objects of a bit op.
+// Output: rax, rcx are left and right integers for a bit op.
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
+                                         Label* conversion_failure,
+                                         Register heap_number_map) {
+  // Check float operands.
+  Label arg1_is_object, check_undefined_arg1;
+  Label arg2_is_object, check_undefined_arg2;
+  Label load_arg2, done;
+
+  __ JumpIfNotSmi(rdx, &arg1_is_object);
+  __ SmiToInteger32(rdx, rdx);
+  __ jmp(&load_arg2);
+
+  // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+  __ bind(&check_undefined_arg1);
+  __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
+  __ j(not_equal, conversion_failure);
+  __ movl(rdx, Immediate(0));
+  __ jmp(&load_arg2);
+
+  __ bind(&arg1_is_object);
+  __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
+  __ j(not_equal, &check_undefined_arg1);
+  // Get the untagged integer version of the edx heap number in rcx.
+  IntegerConvert(masm, rdx, rdx);
+
+  // Here rdx has the untagged integer, rax has a Smi or a heap number.
+  __ bind(&load_arg2);
+  // Test if arg2 is a Smi.
+  __ JumpIfNotSmi(rax, &arg2_is_object);
+  __ SmiToInteger32(rax, rax);
+  __ movl(rcx, rax);
+  __ jmp(&done);
+
+  // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+  __ bind(&check_undefined_arg2);
+  __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
+  __ j(not_equal, conversion_failure);
+  __ movl(rcx, Immediate(0));
+  __ jmp(&done);
+
+  __ bind(&arg2_is_object);
+  __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
+  __ j(not_equal, &check_undefined_arg2);
+  // Get the untagged integer version of the rax heap number in rcx.
+  IntegerConvert(masm, rcx, rax);
+  __ bind(&done);
+  __ movl(rax, rdx);
+}
+
+
+void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
+  __ SmiToInteger32(kScratchRegister, rdx);
+  __ cvtlsi2sd(xmm0, kScratchRegister);
+  __ SmiToInteger32(kScratchRegister, rax);
+  __ cvtlsi2sd(xmm1, kScratchRegister);
+}
+
+
+void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
+  Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
+  // Load operand in rdx into xmm0.
+  __ JumpIfSmi(rdx, &load_smi_rdx);
+  __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
+  // Load operand in rax into xmm1.
+  __ JumpIfSmi(rax, &load_smi_rax);
+  __ bind(&load_nonsmi_rax);
+  __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
+  __ jmp(&done);
+
+  __ bind(&load_smi_rdx);
+  __ SmiToInteger32(kScratchRegister, rdx);
+  __ cvtlsi2sd(xmm0, kScratchRegister);
+  __ JumpIfNotSmi(rax, &load_nonsmi_rax);
+
+  __ bind(&load_smi_rax);
+  __ SmiToInteger32(kScratchRegister, rax);
+  __ cvtlsi2sd(xmm1, kScratchRegister);
+
+  __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
+                                                  Label* not_numbers) {
+  Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
+  // Load operand in rdx into xmm0, or branch to not_numbers.
+  __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
+  __ JumpIfSmi(rdx, &load_smi_rdx);
+  __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
+  __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
+  __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
+  // Load operand in rax into xmm1, or branch to not_numbers.
+  __ JumpIfSmi(rax, &load_smi_rax);
+
+  __ bind(&load_nonsmi_rax);
+  __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
+  __ j(not_equal, not_numbers);
+  __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
+  __ jmp(&done);
+
+  __ bind(&load_smi_rdx);
+  __ SmiToInteger32(kScratchRegister, rdx);
+  __ cvtlsi2sd(xmm0, kScratchRegister);
+  __ JumpIfNotSmi(rax, &load_nonsmi_rax);
+
+  __ bind(&load_smi_rax);
+  __ SmiToInteger32(kScratchRegister, rax);
+  __ cvtlsi2sd(xmm1, kScratchRegister);
+  __ bind(&done);
+}
+
+
+void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
+  Label slow, done;
+
+  if (op_ == Token::SUB) {
+    // Check whether the value is a smi.
+    Label try_float;
+    __ JumpIfNotSmi(rax, &try_float);
+
+    if (negative_zero_ == kIgnoreNegativeZero) {
+      __ SmiCompare(rax, Smi::FromInt(0));
+      __ j(equal, &done);
+    }
+
+    // Enter runtime system if the value of the smi is zero
+    // to make sure that we switch between 0 and -0.
+    // Also enter it if the value of the smi is Smi::kMinValue.
+    __ SmiNeg(rax, rax, &done);
+
+    // Either zero or Smi::kMinValue, neither of which become a smi when
+    // negated.
+    if (negative_zero_ == kStrictNegativeZero) {
+      __ SmiCompare(rax, Smi::FromInt(0));
+      __ j(not_equal, &slow);
+      __ Move(rax, Factory::minus_zero_value());
+      __ jmp(&done);
+    } else  {
+      __ jmp(&slow);
+    }
+
+    // Try floating point case.
+    __ bind(&try_float);
+    __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
+    __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
+    __ j(not_equal, &slow);
+    // Operand is a float, negate its value by flipping sign bit.
+    __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
+    __ movq(kScratchRegister, Immediate(0x01));
+    __ shl(kScratchRegister, Immediate(63));
+    __ xor_(rdx, kScratchRegister);  // Flip sign.
+    // rdx is value to store.
+    if (overwrite_ == UNARY_OVERWRITE) {
+      __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
+    } else {
+      __ AllocateHeapNumber(rcx, rbx, &slow);
+      // rcx: allocated 'empty' number
+      __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
+      __ movq(rax, rcx);
+    }
+  } else if (op_ == Token::BIT_NOT) {
+    // Check if the operand is a heap number.
+    __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
+    __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
+    __ j(not_equal, &slow);
+
+    // Convert the heap number in rax to an untagged integer in rcx.
+    IntegerConvert(masm, rax, rax);
+
+    // Do the bitwise operation and smi tag the result.
+    __ notl(rax);
+    __ Integer32ToSmi(rax, rax);
+  }
+
+  // Return from the stub.
+  __ bind(&done);
+  __ StubReturn(1);
+
+  // Handle the slow case by jumping to the JavaScript builtin.
+  __ bind(&slow);
+  __ pop(rcx);  // pop return address
+  __ push(rax);
+  __ push(rcx);  // push return address
+  switch (op_) {
+    case Token::SUB:
+      __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
+      break;
+    case Token::BIT_NOT:
+      __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
+      break;
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+  // The key is in rdx and the parameter count is in rax.
+
+  // The displacement is used for skipping the frame pointer on the
+  // stack. It is the offset of the last parameter (if any) relative
+  // to the frame pointer.
+  static const int kDisplacement = 1 * kPointerSize;
+
+  // Check that the key is a smi.
+  Label slow;
+  __ JumpIfNotSmi(rdx, &slow);
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor;
+  __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+  __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
+                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+  __ j(equal, &adaptor);
+
+  // Check index against formal parameters count limit passed in
+  // through register rax. Use unsigned comparison to get negative
+  // check for free.
+  __ cmpq(rdx, rax);
+  __ j(above_equal, &slow);
+
+  // Read the argument from the stack and return it.
+  SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
+  __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
+  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
+  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
+  __ Ret();
+
+  // Arguments adaptor case: Check index against actual arguments
+  // limit found in the arguments adaptor frame. Use unsigned
+  // comparison to get negative check for free.
+  __ bind(&adaptor);
+  __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ cmpq(rdx, rcx);
+  __ j(above_equal, &slow);
+
+  // Read the argument from the stack and return it.
+  index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
+  __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
+  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
+  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
+  __ Ret();
+
+  // Slow-case: Handle non-smi or out-of-bounds access to arguments
+  // by calling the runtime system.
+  __ bind(&slow);
+  __ pop(rbx);  // Return address.
+  __ push(rdx);
+  __ push(rbx);
+  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
+  // rsp[0] : return address
+  // rsp[8] : number of parameters
+  // rsp[16] : receiver displacement
+  // rsp[24] : function
+
+  // The displacement is used for skipping the return address and the
+  // frame pointer on the stack. It is the offset of the last
+  // parameter (if any) relative to the frame pointer.
+  static const int kDisplacement = 2 * kPointerSize;
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor_frame, try_allocate, runtime;
+  __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+  __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
+                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+  __ j(equal, &adaptor_frame);
+
+  // Get the length from the frame.
+  __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
+  __ jmp(&try_allocate);
+
+  // Patch the arguments.length and the parameters pointer.
+  __ bind(&adaptor_frame);
+  __ SmiToInteger32(rcx,
+                    Operand(rdx,
+                            ArgumentsAdaptorFrameConstants::kLengthOffset));
+  // Space on stack must already hold a smi.
+  __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
+  // Do not clobber the length index for the indexing operation since
+  // it is used compute the size for allocation later.
+  __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
+  __ movq(Operand(rsp, 2 * kPointerSize), rdx);
+
+  // Try the new space allocation. Start out with computing the size of
+  // the arguments object and the elements array.
+  Label add_arguments_object;
+  __ bind(&try_allocate);
+  __ testl(rcx, rcx);
+  __ j(zero, &add_arguments_object);
+  __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
+  __ bind(&add_arguments_object);
+  __ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
+
+  // Do the allocation of both objects in one go.
+  __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
+
+  // Get the arguments boilerplate from the current (global) context.
+  int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
+  __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+  __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
+  __ movq(rdi, Operand(rdi, offset));
+
+  // Copy the JS object part.
+  STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
+  __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
+  __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
+  __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
+  __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
+  __ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
+  __ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
+
+  // Setup the callee in-object property.
+  ASSERT(Heap::arguments_callee_index == 0);
+  __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
+  __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
+
+  // Get the length (smi tagged) and set that as an in-object property too.
+  ASSERT(Heap::arguments_length_index == 1);
+  __ movq(rcx, Operand(rsp, 1 * kPointerSize));
+  __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
+
+  // If there are no actual arguments, we're done.
+  Label done;
+  __ SmiTest(rcx);
+  __ j(zero, &done);
+
+  // Get the parameters pointer from the stack and untag the length.
+  __ movq(rdx, Operand(rsp, 2 * kPointerSize));
+
+  // Setup the elements pointer in the allocated arguments object and
+  // initialize the header in the elements fixed array.
+  __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
+  __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
+  __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
+  __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
+  __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
+  __ SmiToInteger32(rcx, rcx);  // Untag length for the loop below.
+
+  // Copy the fixed array slots.
+  Label loop;
+  __ bind(&loop);
+  __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize));  // Skip receiver.
+  __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
+  __ addq(rdi, Immediate(kPointerSize));
+  __ subq(rdx, Immediate(kPointerSize));
+  __ decl(rcx);
+  __ j(not_zero, &loop);
+
+  // Return and remove the on-stack parameters.
+  __ bind(&done);
+  __ ret(3 * kPointerSize);
+
+  // Do the runtime call to allocate the arguments object.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+  // Just jump directly to runtime if native RegExp is not selected at compile
+  // time or if regexp entry in generated code is turned off runtime switch or
+  // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#else  // V8_INTERPRETED_REGEXP
+  if (!FLAG_regexp_entry_native) {
+    __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+    return;
+  }
+
+  // Stack frame on entry.
+  //  esp[0]: return address
+  //  esp[8]: last_match_info (expected JSArray)
+  //  esp[16]: previous index
+  //  esp[24]: subject string
+  //  esp[32]: JSRegExp object
+
+  static const int kLastMatchInfoOffset = 1 * kPointerSize;
+  static const int kPreviousIndexOffset = 2 * kPointerSize;
+  static const int kSubjectOffset = 3 * kPointerSize;
+  static const int kJSRegExpOffset = 4 * kPointerSize;
+
+  Label runtime;
+
+  // Ensure that a RegExp stack is allocated.
+  ExternalReference address_of_regexp_stack_memory_address =
+      ExternalReference::address_of_regexp_stack_memory_address();
+  ExternalReference address_of_regexp_stack_memory_size =
+      ExternalReference::address_of_regexp_stack_memory_size();
+  __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
+  __ movq(kScratchRegister, Operand(kScratchRegister, 0));
+  __ testq(kScratchRegister, kScratchRegister);
+  __ j(zero, &runtime);
+
+
+  // Check that the first argument is a JSRegExp object.
+  __ movq(rax, Operand(rsp, kJSRegExpOffset));
+  __ JumpIfSmi(rax, &runtime);
+  __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
+  __ j(not_equal, &runtime);
+  // Check that the RegExp has been compiled (data contains a fixed array).
+  __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
+  if (FLAG_debug_code) {
+    Condition is_smi = masm->CheckSmi(rcx);
+    __ Check(NegateCondition(is_smi),
+        "Unexpected type for RegExp data, FixedArray expected");
+    __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
+    __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
+  }
+
+  // rcx: RegExp data (FixedArray)
+  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+  __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
+  __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
+  __ j(not_equal, &runtime);
+
+  // rcx: RegExp data (FixedArray)
+  // Check that the number of captures fit in the static offsets vector buffer.
+  __ SmiToInteger32(rdx,
+                    FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
+  // Calculate number of capture registers (number_of_captures + 1) * 2.
+  __ leal(rdx, Operand(rdx, rdx, times_1, 2));
+  // Check that the static offsets vector buffer is large enough.
+  __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
+  __ j(above, &runtime);
+
+  // rcx: RegExp data (FixedArray)
+  // rdx: Number of capture registers
+  // Check that the second argument is a string.
+  __ movq(rax, Operand(rsp, kSubjectOffset));
+  __ JumpIfSmi(rax, &runtime);
+  Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
+  __ j(NegateCondition(is_string), &runtime);
+
+  // rax: Subject string.
+  // rcx: RegExp data (FixedArray).
+  // rdx: Number of capture registers.
+  // Check that the third argument is a positive smi less than the string
+  // length. A negative value will be greater (unsigned comparison).
+  __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
+  __ JumpIfNotSmi(rbx, &runtime);
+  __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
+  __ j(above_equal, &runtime);
+
+  // rcx: RegExp data (FixedArray)
+  // rdx: Number of capture registers
+  // Check that the fourth object is a JSArray object.
+  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
+  __ JumpIfSmi(rax, &runtime);
+  __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
+  __ j(not_equal, &runtime);
+  // Check that the JSArray is in fast case.
+  __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
+  __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
+  __ Cmp(rax, Factory::fixed_array_map());
+  __ j(not_equal, &runtime);
+  // Check that the last match info has space for the capture registers and the
+  // additional information. Ensure no overflow in add.
+  STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
+  __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
+  __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
+  __ cmpl(rdx, rax);
+  __ j(greater, &runtime);
+
+  // rcx: RegExp data (FixedArray)
+  // Check the representation and encoding of the subject string.
+  Label seq_ascii_string, seq_two_byte_string, check_code;
+  __ movq(rax, Operand(rsp, kSubjectOffset));
+  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
+  __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
+  // First check for flat two byte string.
+  __ andb(rbx, Immediate(
+      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
+  STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
+  __ j(zero, &seq_two_byte_string);
+  // Any other flat string must be a flat ascii string.
+  __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
+  __ j(zero, &seq_ascii_string);
+
+  // Check for flat cons string.
+  // A flat cons string is a cons string where the second part is the empty
+  // string. In that case the subject string is just the first part of the cons
+  // string. Also in this case the first part of the cons string is known to be
+  // a sequential string or an external string.
+  STATIC_ASSERT(kExternalStringTag !=0);
+  STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
+  __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
+  __ j(not_zero, &runtime);
+  // String is a cons string.
+  __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
+  __ Cmp(rdx, Factory::empty_string());
+  __ j(not_equal, &runtime);
+  __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
+  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
+  // String is a cons string with empty second part.
+  // rax: first part of cons string.
+  // rbx: map of first part of cons string.
+  // Is first part a flat two byte string?
+  __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
+           Immediate(kStringRepresentationMask | kStringEncodingMask));
+  STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
+  __ j(zero, &seq_two_byte_string);
+  // Any other flat string must be ascii.
+  __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
+           Immediate(kStringRepresentationMask));
+  __ j(not_zero, &runtime);
+
+  __ bind(&seq_ascii_string);
+  // rax: subject string (sequential ascii)
+  // rcx: RegExp data (FixedArray)
+  __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
+  __ Set(rdi, 1);  // Type is ascii.
+  __ jmp(&check_code);
+
+  __ bind(&seq_two_byte_string);
+  // rax: subject string (flat two-byte)
+  // rcx: RegExp data (FixedArray)
+  __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
+  __ Set(rdi, 0);  // Type is two byte.
+
+  __ bind(&check_code);
+  // Check that the irregexp code has been generated for the actual string
+  // encoding. If it has, the field contains a code object otherwise it contains
+  // the hole.
+  __ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
+  __ j(not_equal, &runtime);
+
+  // rax: subject string
+  // rdi: encoding of subject string (1 if ascii, 0 if two_byte);
+  // r11: code
+  // Load used arguments before starting to push arguments for call to native
+  // RegExp code to avoid handling changing stack height.
+  __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
+
+  // rax: subject string
+  // rbx: previous index
+  // rdi: encoding of subject string (1 if ascii 0 if two_byte);
+  // r11: code
+  // All checks done. Now push arguments for native regexp code.
+  __ IncrementCounter(&Counters::regexp_entry_native, 1);
+
+  // rsi is caller save on Windows and used to pass parameter on Linux.
+  __ push(rsi);
+
+  static const int kRegExpExecuteArguments = 7;
+  __ PrepareCallCFunction(kRegExpExecuteArguments);
+  int argument_slots_on_stack =
+      masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
+
+  // Argument 7: Indicate that this is a direct call from JavaScript.
+  __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
+          Immediate(1));
+
+  // Argument 6: Start (high end) of backtracking stack memory area.
+  __ movq(kScratchRegister, address_of_regexp_stack_memory_address);
+  __ movq(r9, Operand(kScratchRegister, 0));
+  __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
+  __ addq(r9, Operand(kScratchRegister, 0));
+  // Argument 6 passed in r9 on Linux and on the stack on Windows.
+#ifdef _WIN64
+  __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
+#endif
+
+  // Argument 5: static offsets vector buffer.
+  __ movq(r8, ExternalReference::address_of_static_offsets_vector());
+  // Argument 5 passed in r8 on Linux and on the stack on Windows.
+#ifdef _WIN64
+  __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
+#endif
+
+  // First four arguments are passed in registers on both Linux and Windows.
+#ifdef _WIN64
+  Register arg4 = r9;
+  Register arg3 = r8;
+  Register arg2 = rdx;
+  Register arg1 = rcx;
+#else
+  Register arg4 = rcx;
+  Register arg3 = rdx;
+  Register arg2 = rsi;
+  Register arg1 = rdi;
+#endif
+
+  // Keep track on aliasing between argX defined above and the registers used.
+  // rax: subject string
+  // rbx: previous index
+  // rdi: encoding of subject string (1 if ascii 0 if two_byte);
+  // r11: code
+
+  // Argument 4: End of string data
+  // Argument 3: Start of string data
+  Label setup_two_byte, setup_rest;
+  __ testb(rdi, rdi);
+  __ j(zero, &setup_two_byte);
+  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
+  __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
+  __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
+  __ jmp(&setup_rest);
+  __ bind(&setup_two_byte);
+  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
+  __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
+  __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
+
+  __ bind(&setup_rest);
+  // Argument 2: Previous index.
+  __ movq(arg2, rbx);
+
+  // Argument 1: Subject string.
+  __ movq(arg1, rax);
+
+  // Locate the code entry and call it.
+  __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
+  __ CallCFunction(r11, kRegExpExecuteArguments);
+
+  // rsi is caller save, as it is used to pass parameter.
+  __ pop(rsi);
+
+  // Check the result.
+  Label success;
+  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
+  __ j(equal, &success);
+  Label failure;
+  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
+  __ j(equal, &failure);
+  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
+  // If not exception it can only be retry. Handle that in the runtime system.
+  __ j(not_equal, &runtime);
+  // Result must now be exception. If there is no pending exception already a
+  // stack overflow (on the backtrack stack) was detected in RegExp code but
+  // haven't created the exception yet. Handle that in the runtime system.
+  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+  ExternalReference pending_exception_address(Top::k_pending_exception_address);
+  __ movq(kScratchRegister, pending_exception_address);
+  __ Cmp(kScratchRegister, Factory::the_hole_value());
+  __ j(equal, &runtime);
+  __ bind(&failure);
+  // For failure and exception return null.
+  __ Move(rax, Factory::null_value());
+  __ ret(4 * kPointerSize);
+
+  // Load RegExp data.
+  __ bind(&success);
+  __ movq(rax, Operand(rsp, kJSRegExpOffset));
+  __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
+  __ SmiToInteger32(rax,
+                    FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
+  // Calculate number of capture registers (number_of_captures + 1) * 2.
+  __ leal(rdx, Operand(rax, rax, times_1, 2));
+
+  // rdx: Number of capture registers
+  // Load last_match_info which is still known to be a fast case JSArray.
+  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
+  __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
+
+  // rbx: last_match_info backing store (FixedArray)
+  // rdx: number of capture registers
+  // Store the capture count.
+  __ Integer32ToSmi(kScratchRegister, rdx);
+  __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
+          kScratchRegister);
+  // Store last subject and last input.
+  __ movq(rax, Operand(rsp, kSubjectOffset));
+  __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
+  __ movq(rcx, rbx);
+  __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
+  __ movq(rax, Operand(rsp, kSubjectOffset));
+  __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
+  __ movq(rcx, rbx);
+  __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
+
+  // Get the static offsets vector filled by the native regexp code.
+  __ movq(rcx, ExternalReference::address_of_static_offsets_vector());
+
+  // rbx: last_match_info backing store (FixedArray)
+  // rcx: offsets vector
+  // rdx: number of capture registers
+  Label next_capture, done;
+  // Capture register counter starts from number of capture registers and
+  // counts down until wraping after zero.
+  __ bind(&next_capture);
+  __ subq(rdx, Immediate(1));
+  __ j(negative, &done);
+  // Read the value from the static offsets vector buffer and make it a smi.
+  __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
+  __ Integer32ToSmi(rdi, rdi, &runtime);
+  // Store the smi value in the last match info.
+  __ movq(FieldOperand(rbx,
+                       rdx,
+                       times_pointer_size,
+                       RegExpImpl::kFirstCaptureOffset),
+          rdi);
+  __ jmp(&next_capture);
+  __ bind(&done);
+
+  // Return last match info.
+  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
+  __ ret(4 * kPointerSize);
+
+  // Do the runtime call to execute the regexp.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#endif  // V8_INTERPRETED_REGEXP
+}
+
+
+void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
+                                                         Register object,
+                                                         Register result,
+                                                         Register scratch1,
+                                                         Register scratch2,
+                                                         bool object_is_smi,
+                                                         Label* not_found) {
+  // Use of registers. Register result is used as a temporary.
+  Register number_string_cache = result;
+  Register mask = scratch1;
+  Register scratch = scratch2;
+
+  // Load the number string cache.
+  __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+  // Make the hash mask from the length of the number string cache. It
+  // contains two elements (number and string) for each cache entry.
+  __ SmiToInteger32(
+      mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
+  __ shrl(mask, Immediate(1));
+  __ subq(mask, Immediate(1));  // Make mask.
+
+  // Calculate the entry in the number string cache. The hash value in the
+  // number string cache for smis is just the smi value, and the hash for
+  // doubles is the xor of the upper and lower words. See
+  // Heap::GetNumberStringCache.
+  Label is_smi;
+  Label load_result_from_cache;
+  if (!object_is_smi) {
+    __ JumpIfSmi(object, &is_smi);
+    __ CheckMap(object, Factory::heap_number_map(), not_found, true);
+
+    STATIC_ASSERT(8 == kDoubleSize);
+    __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
+    __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
+    GenerateConvertHashCodeToIndex(masm, scratch, mask);
+
+    Register index = scratch;
+    Register probe = mask;
+    __ movq(probe,
+            FieldOperand(number_string_cache,
+                         index,
+                         times_1,
+                         FixedArray::kHeaderSize));
+    __ JumpIfSmi(probe, not_found);
+    ASSERT(CpuFeatures::IsSupported(SSE2));
+    CpuFeatures::Scope fscope(SSE2);
+    __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
+    __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
+    __ ucomisd(xmm0, xmm1);
+    __ j(parity_even, not_found);  // Bail out if NaN is involved.
+    __ j(not_equal, not_found);  // The cache did not contain this value.
+    __ jmp(&load_result_from_cache);
+  }
+
+  __ bind(&is_smi);
+  __ SmiToInteger32(scratch, object);
+  GenerateConvertHashCodeToIndex(masm, scratch, mask);
+
+  Register index = scratch;
+  // Check if the entry is the smi we are looking for.
+  __ cmpq(object,
+          FieldOperand(number_string_cache,
+                       index,
+                       times_1,
+                       FixedArray::kHeaderSize));
+  __ j(not_equal, not_found);
+
+  // Get the result from the cache.
+  __ bind(&load_result_from_cache);
+  __ movq(result,
+          FieldOperand(number_string_cache,
+                       index,
+                       times_1,
+                       FixedArray::kHeaderSize + kPointerSize));
+  __ IncrementCounter(&Counters::number_to_string_native, 1);
+}
+
+
+void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
+                                                        Register hash,
+                                                        Register mask) {
+  __ and_(hash, mask);
+  // Each entry in string cache consists of two pointer sized fields,
+  // but times_twice_pointer_size (multiplication by 16) scale factor
+  // is not supported by addrmode on x64 platform.
+  // So we have to premultiply entry index before lookup.
+  __ shl(hash, Immediate(kPointerSizeLog2 + 1));
+}
+
+
+void NumberToStringStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  __ movq(rbx, Operand(rsp, kPointerSize));
+
+  // Generate code to lookup number in the number string cache.
+  GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
+  __ ret(1 * kPointerSize);
+
+  __ bind(&runtime);
+  // Handle number to string in the runtime system if not found in the cache.
+  __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
+}
+
+
+static int NegativeComparisonResult(Condition cc) {
+  ASSERT(cc != equal);
+  ASSERT((cc == less) || (cc == less_equal)
+      || (cc == greater) || (cc == greater_equal));
+  return (cc == greater || cc == greater_equal) ? LESS : GREATER;
+}
+
+
+void CompareStub::Generate(MacroAssembler* masm) {
+  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+
+  Label check_unequal_objects, done;
+  // The compare stub returns a positive, negative, or zero 64-bit integer
+  // value in rax, corresponding to result of comparing the two inputs.
+  // NOTICE! This code is only reached after a smi-fast-case check, so
+  // it is certain that at least one operand isn't a smi.
+
+  // Two identical objects are equal unless they are both NaN or undefined.
+  {
+    Label not_identical;
+    __ cmpq(rax, rdx);
+    __ j(not_equal, &not_identical);
+
+    if (cc_ != equal) {
+      // Check for undefined.  undefined OP undefined is false even though
+      // undefined == undefined.
+      Label check_for_nan;
+      __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
+      __ j(not_equal, &check_for_nan);
+      __ Set(rax, NegativeComparisonResult(cc_));
+      __ ret(0);
+      __ bind(&check_for_nan);
+    }
+
+    // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
+    // so we do the second best thing - test it ourselves.
+    // Note: if cc_ != equal, never_nan_nan_ is not used.
+    // We cannot set rax to EQUAL until just before return because
+    // rax must be unchanged on jump to not_identical.
+
+    if (never_nan_nan_ && (cc_ == equal)) {
+      __ Set(rax, EQUAL);
+      __ ret(0);
+    } else {
+      Label heap_number;
+      // If it's not a heap number, then return equal for (in)equality operator.
+      __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
+             Factory::heap_number_map());
+      __ j(equal, &heap_number);
+      if (cc_ != equal) {
+        // Call runtime on identical JSObjects.  Otherwise return equal.
+        __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
+        __ j(above_equal, &not_identical);
+      }
+      __ Set(rax, EQUAL);
+      __ ret(0);
+
+      __ bind(&heap_number);
+      // It is a heap number, so return  equal if it's not NaN.
+      // For NaN, return 1 for every condition except greater and
+      // greater-equal.  Return -1 for them, so the comparison yields
+      // false for all conditions except not-equal.
+      __ Set(rax, EQUAL);
+      __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
+      __ ucomisd(xmm0, xmm0);
+      __ setcc(parity_even, rax);
+      // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
+      if (cc_ == greater_equal || cc_ == greater) {
+        __ neg(rax);
+      }
+      __ ret(0);
+    }
+
+    __ bind(&not_identical);
+  }
+
+  if (cc_ == equal) {  // Both strict and non-strict.
+    Label slow;  // Fallthrough label.
+
+    // If we're doing a strict equality comparison, we don't have to do
+    // type conversion, so we generate code to do fast comparison for objects
+    // and oddballs. Non-smi numbers and strings still go through the usual
+    // slow-case code.
+    if (strict_) {
+      // If either is a Smi (we know that not both are), then they can only
+      // be equal if the other is a HeapNumber. If so, use the slow case.
+      {
+        Label not_smis;
+        __ SelectNonSmi(rbx, rax, rdx, &not_smis);
+
+        // Check if the non-smi operand is a heap number.
+        __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
+               Factory::heap_number_map());
+        // If heap number, handle it in the slow case.
+        __ j(equal, &slow);
+        // Return non-equal.  ebx (the lower half of rbx) is not zero.
+        __ movq(rax, rbx);
+        __ ret(0);
+
+        __ bind(&not_smis);
+      }
+
+      // If either operand is a JSObject or an oddball value, then they are not
+      // equal since their pointers are different
+      // There is no test for undetectability in strict equality.
+
+      // If the first object is a JS object, we have done pointer comparison.
+      STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+      Label first_non_object;
+      __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
+      __ j(below, &first_non_object);
+      // Return non-zero (eax (not rax) is not zero)
+      Label return_not_equal;
+      STATIC_ASSERT(kHeapObjectTag != 0);
+      __ bind(&return_not_equal);
+      __ ret(0);
+
+      __ bind(&first_non_object);
+      // Check for oddballs: true, false, null, undefined.
+      __ CmpInstanceType(rcx, ODDBALL_TYPE);
+      __ j(equal, &return_not_equal);
+
+      __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
+      __ j(above_equal, &return_not_equal);
+
+      // Check for oddballs: true, false, null, undefined.
+      __ CmpInstanceType(rcx, ODDBALL_TYPE);
+      __ j(equal, &return_not_equal);
+
+      // Fall through to the general case.
+    }
+    __ bind(&slow);
+  }
+
+  // Generate the number comparison code.
+  if (include_number_compare_) {
+    Label non_number_comparison;
+    Label unordered;
+    FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
+    __ xorl(rax, rax);
+    __ xorl(rcx, rcx);
+    __ ucomisd(xmm0, xmm1);
+
+    // Don't base result on EFLAGS when a NaN is involved.
+    __ j(parity_even, &unordered);
+    // Return a result of -1, 0, or 1, based on EFLAGS.
+    __ setcc(above, rax);
+    __ setcc(below, rcx);
+    __ subq(rax, rcx);
+    __ ret(0);
+
+    // If one of the numbers was NaN, then the result is always false.
+    // The cc is never not-equal.
+    __ bind(&unordered);
+    ASSERT(cc_ != not_equal);
+    if (cc_ == less || cc_ == less_equal) {
+      __ Set(rax, 1);
+    } else {
+      __ Set(rax, -1);
+    }
+    __ ret(0);
+
+    // The number comparison code did not provide a valid result.
+    __ bind(&non_number_comparison);
+  }
+
+  // Fast negative check for symbol-to-symbol equality.
+  Label check_for_strings;
+  if (cc_ == equal) {
+    BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
+    BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
+
+    // We've already checked for object identity, so if both operands
+    // are symbols they aren't equal. Register eax (not rax) already holds a
+    // non-zero value, which indicates not equal, so just return.
+    __ ret(0);
+  }
+
+  __ bind(&check_for_strings);
+
+  __ JumpIfNotBothSequentialAsciiStrings(
+      rdx, rax, rcx, rbx, &check_unequal_objects);
+
+  // Inline comparison of ascii strings.
+  StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
+                                                     rdx,
+                                                     rax,
+                                                     rcx,
+                                                     rbx,
+                                                     rdi,
+                                                     r8);
+
+#ifdef DEBUG
+  __ Abort("Unexpected fall-through from string comparison");
+#endif
+
+  __ bind(&check_unequal_objects);
+  if (cc_ == equal && !strict_) {
+    // Not strict equality.  Objects are unequal if
+    // they are both JSObjects and not undetectable,
+    // and their pointers are different.
+    Label not_both_objects, return_unequal;
+    // At most one is a smi, so we can test for smi by adding the two.
+    // A smi plus a heap object has the low bit set, a heap object plus
+    // a heap object has the low bit clear.
+    STATIC_ASSERT(kSmiTag == 0);
+    STATIC_ASSERT(kSmiTagMask == 1);
+    __ lea(rcx, Operand(rax, rdx, times_1, 0));
+    __ testb(rcx, Immediate(kSmiTagMask));
+    __ j(not_zero, &not_both_objects);
+    __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
+    __ j(below, &not_both_objects);
+    __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
+    __ j(below, &not_both_objects);
+    __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
+             Immediate(1 << Map::kIsUndetectable));
+    __ j(zero, &return_unequal);
+    __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
+             Immediate(1 << Map::kIsUndetectable));
+    __ j(zero, &return_unequal);
+    // The objects are both undetectable, so they both compare as the value
+    // undefined, and are equal.
+    __ Set(rax, EQUAL);
+    __ bind(&return_unequal);
+    // Return non-equal by returning the non-zero object pointer in eax,
+    // or return equal if we fell through to here.
+    __ ret(0);
+    __ bind(&not_both_objects);
+  }
+
+  // Push arguments below the return address to prepare jump to builtin.
+  __ pop(rcx);
+  __ push(rdx);
+  __ push(rax);
+
+  // Figure out which native to call and setup the arguments.
+  Builtins::JavaScript builtin;
+  if (cc_ == equal) {
+    builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+  } else {
+    builtin = Builtins::COMPARE;
+    __ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
+  }
+
+  // Restore return address on the stack.
+  __ push(rcx);
+
+  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ InvokeBuiltin(builtin, JUMP_FUNCTION);
+}
+
+
+void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
+                                    Label* label,
+                                    Register object,
+                                    Register scratch) {
+  __ JumpIfSmi(object, label);
+  __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
+  __ movzxbq(scratch,
+             FieldOperand(scratch, Map::kInstanceTypeOffset));
+  // Ensure that no non-strings have the symbol bit set.
+  STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
+  STATIC_ASSERT(kSymbolTag != 0);
+  __ testb(scratch, Immediate(kIsSymbolMask));
+  __ j(zero, label);
+}
+
+
+void StackCheckStub::Generate(MacroAssembler* masm) {
+  // Because builtins always remove the receiver from the stack, we
+  // have to fake one to avoid underflowing the stack. The receiver
+  // must be inserted below the return address on the stack so we
+  // temporarily store that in a register.
+  __ pop(rax);
+  __ Push(Smi::FromInt(0));
+  __ push(rax);
+
+  // Do tail-call to runtime routine.
+  __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+  Label slow;
+
+  // If the receiver might be a value (string, number or boolean) check for this
+  // and box it if it is.
+  if (ReceiverMightBeValue()) {
+    // Get the receiver from the stack.
+    // +1 ~ return address
+    Label receiver_is_value, receiver_is_js_object;
+    __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
+
+    // Check if receiver is a smi (which is a number value).
+    __ JumpIfSmi(rax, &receiver_is_value);
+
+    // Check if the receiver is a valid JS object.
+    __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
+    __ j(above_equal, &receiver_is_js_object);
+
+    // Call the runtime to box the value.
+    __ bind(&receiver_is_value);
+    __ EnterInternalFrame();
+    __ push(rax);
+    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+    __ LeaveInternalFrame();
+    __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
+
+    __ bind(&receiver_is_js_object);
+  }
+
+  // Get the function to call from the stack.
+  // +2 ~ receiver, return address
+  __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
+
+  // Check that the function really is a JavaScript function.
+  __ JumpIfSmi(rdi, &slow);
+  // Goto slow case if we do not have a function.
+  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
+  __ j(not_equal, &slow);
+
+  // Fast-case: Just invoke the function.
+  ParameterCount actual(argc_);
+  __ InvokeFunction(rdi, actual, JUMP_FUNCTION);
+
+  // Slow-case: Non-function called.
+  __ bind(&slow);
+  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+  // of the original receiver from the call site).
+  __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
+  __ Set(rax, argc_);
+  __ Set(rbx, 0);
+  __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
+  Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
+  __ Jump(adaptor, RelocInfo::CODE_TARGET);
+}
+
+
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
+  // Check that stack should contain next handler, frame pointer, state and
+  // return address in that order.
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
+            StackHandlerConstants::kStateOffset);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
+            StackHandlerConstants::kPCOffset);
+
+  ExternalReference handler_address(Top::k_handler_address);
+  __ movq(kScratchRegister, handler_address);
+  __ movq(rsp, Operand(kScratchRegister, 0));
+  // get next in chain
+  __ pop(rcx);
+  __ movq(Operand(kScratchRegister, 0), rcx);
+  __ pop(rbp);  // pop frame pointer
+  __ pop(rdx);  // remove state
+
+  // Before returning we restore the context from the frame pointer if not NULL.
+  // The frame pointer is NULL in the exception handler of a JS entry frame.
+  __ xor_(rsi, rsi);  // tentatively set context pointer to NULL
+  Label skip;
+  __ cmpq(rbp, Immediate(0));
+  __ j(equal, &skip);
+  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
+  __ bind(&skip);
+  __ ret(0);
+}
+
+
+void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
+  Label empty_result;
+  Label prologue;
+  Label promote_scheduled_exception;
+  __ EnterApiExitFrame(kStackSpace, 0);
+  ASSERT_EQ(kArgc, 4);
+#ifdef _WIN64
+  // All the parameters should be set up by a caller.
+#else
+  // Set 1st parameter register with property name.
+  __ movq(rsi, rdx);
+  // Second parameter register rdi should be set with pointer to AccessorInfo
+  // by a caller.
+#endif
+  // Call the api function!
+  __ movq(rax,
+          reinterpret_cast<int64_t>(fun()->address()),
+          RelocInfo::RUNTIME_ENTRY);
+  __ call(rax);
+  // Check if the function scheduled an exception.
+  ExternalReference scheduled_exception_address =
+      ExternalReference::scheduled_exception_address();
+  __ movq(rsi, scheduled_exception_address);
+  __ Cmp(Operand(rsi, 0), Factory::the_hole_value());
+  __ j(not_equal, &promote_scheduled_exception);
+#ifdef _WIN64
+  // rax keeps a pointer to v8::Handle, unpack it.
+  __ movq(rax, Operand(rax, 0));
+#endif
+  // Check if the result handle holds 0.
+  __ testq(rax, rax);
+  __ j(zero, &empty_result);
+  // It was non-zero.  Dereference to get the result value.
+  __ movq(rax, Operand(rax, 0));
+  __ bind(&prologue);
+  __ LeaveExitFrame();
+  __ ret(0);
+  __ bind(&promote_scheduled_exception);
+  __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
+  __ bind(&empty_result);
+  // It was zero; the result is undefined.
+  __ Move(rax, Factory::undefined_value());
+  __ jmp(&prologue);
+}
+
+
+void CEntryStub::GenerateCore(MacroAssembler* masm,
+                              Label* throw_normal_exception,
+                              Label* throw_termination_exception,
+                              Label* throw_out_of_memory_exception,
+                              bool do_gc,
+                              bool always_allocate_scope,
+                              int /* alignment_skew */) {
+  // rax: result parameter for PerformGC, if any.
+  // rbx: pointer to C function  (C callee-saved).
+  // rbp: frame pointer  (restored after C call).
+  // rsp: stack pointer  (restored after C call).
+  // r14: number of arguments including receiver (C callee-saved).
+  // r12: pointer to the first argument (C callee-saved).
+  //      This pointer is reused in LeaveExitFrame(), so it is stored in a
+  //      callee-saved register.
+
+  // Simple results returned in rax (both AMD64 and Win64 calling conventions).
+  // Complex results must be written to address passed as first argument.
+  // AMD64 calling convention: a struct of two pointers in rax+rdx
+
+  // Check stack alignment.
+  if (FLAG_debug_code) {
+    __ CheckStackAlignment();
+  }
+
+  if (do_gc) {
+    // Pass failure code returned from last attempt as first argument to
+    // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
+    // stack is known to be aligned. This function takes one argument which is
+    // passed in register.
+#ifdef _WIN64
+    __ movq(rcx, rax);
+#else  // _WIN64
+    __ movq(rdi, rax);
+#endif
+    __ movq(kScratchRegister,
+            FUNCTION_ADDR(Runtime::PerformGC),
+            RelocInfo::RUNTIME_ENTRY);
+    __ call(kScratchRegister);
+  }
+
+  ExternalReference scope_depth =
+      ExternalReference::heap_always_allocate_scope_depth();
+  if (always_allocate_scope) {
+    __ movq(kScratchRegister, scope_depth);
+    __ incl(Operand(kScratchRegister, 0));
+  }
+
+  // Call C function.
+#ifdef _WIN64
+  // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
+  // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
+  __ movq(Operand(rsp, 4 * kPointerSize), r14);  // argc.
+  __ movq(Operand(rsp, 5 * kPointerSize), r12);  // argv.
+  if (result_size_ < 2) {
+    // Pass a pointer to the Arguments object as the first argument.
+    // Return result in single register (rax).
+    __ lea(rcx, Operand(rsp, 4 * kPointerSize));
+  } else {
+    ASSERT_EQ(2, result_size_);
+    // Pass a pointer to the result location as the first argument.
+    __ lea(rcx, Operand(rsp, 6 * kPointerSize));
+    // Pass a pointer to the Arguments object as the second argument.
+    __ lea(rdx, Operand(rsp, 4 * kPointerSize));
+  }
+
+#else  // _WIN64
+  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
+  __ movq(rdi, r14);  // argc.
+  __ movq(rsi, r12);  // argv.
+#endif
+  __ call(rbx);
+  // Result is in rax - do not destroy this register!
+
+  if (always_allocate_scope) {
+    __ movq(kScratchRegister, scope_depth);
+    __ decl(Operand(kScratchRegister, 0));
+  }
+
+  // Check for failure result.
+  Label failure_returned;
+  STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+#ifdef _WIN64
+  // If return value is on the stack, pop it to registers.
+  if (result_size_ > 1) {
+    ASSERT_EQ(2, result_size_);
+    // Read result values stored on stack. Result is stored
+    // above the four argument mirror slots and the two
+    // Arguments object slots.
+    __ movq(rax, Operand(rsp, 6 * kPointerSize));
+    __ movq(rdx, Operand(rsp, 7 * kPointerSize));
+  }
+#endif
+  __ lea(rcx, Operand(rax, 1));
+  // Lower 2 bits of rcx are 0 iff rax has failure tag.
+  __ testl(rcx, Immediate(kFailureTagMask));
+  __ j(zero, &failure_returned);
+
+  // Exit the JavaScript to C++ exit frame.
+  __ LeaveExitFrame(result_size_);
+  __ ret(0);
+
+  // Handling of failure.
+  __ bind(&failure_returned);
+
+  Label retry;
+  // If the returned exception is RETRY_AFTER_GC continue at retry label
+  STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
+  __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
+  __ j(zero, &retry);
+
+  // Special handling of out of memory exceptions.
+  __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
+  __ cmpq(rax, kScratchRegister);
+  __ j(equal, throw_out_of_memory_exception);
+
+  // Retrieve the pending exception and clear the variable.
+  ExternalReference pending_exception_address(Top::k_pending_exception_address);
+  __ movq(kScratchRegister, pending_exception_address);
+  __ movq(rax, Operand(kScratchRegister, 0));
+  __ movq(rdx, ExternalReference::the_hole_value_location());
+  __ movq(rdx, Operand(rdx, 0));
+  __ movq(Operand(kScratchRegister, 0), rdx);
+
+  // Special handling of termination exceptions which are uncatchable
+  // by javascript code.
+  __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
+  __ j(equal, throw_termination_exception);
+
+  // Handle normal exception.
+  __ jmp(throw_normal_exception);
+
+  // Retry.
+  __ bind(&retry);
+}
+
+
+void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
+                                          UncatchableExceptionType type) {
+  // Fetch top stack handler.
+  ExternalReference handler_address(Top::k_handler_address);
+  __ movq(kScratchRegister, handler_address);
+  __ movq(rsp, Operand(kScratchRegister, 0));
+
+  // Unwind the handlers until the ENTRY handler is found.
+  Label loop, done;
+  __ bind(&loop);
+  // Load the type of the current stack handler.
+  const int kStateOffset = StackHandlerConstants::kStateOffset;
+  __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
+  __ j(equal, &done);
+  // Fetch the next handler in the list.
+  const int kNextOffset = StackHandlerConstants::kNextOffset;
+  __ movq(rsp, Operand(rsp, kNextOffset));
+  __ jmp(&loop);
+  __ bind(&done);
+
+  // Set the top handler address to next handler past the current ENTRY handler.
+  __ movq(kScratchRegister, handler_address);
+  __ pop(Operand(kScratchRegister, 0));
+
+  if (type == OUT_OF_MEMORY) {
+    // Set external caught exception to false.
+    ExternalReference external_caught(Top::k_external_caught_exception_address);
+    __ movq(rax, Immediate(false));
+    __ store_rax(external_caught);
+
+    // Set pending exception and rax to out of memory exception.
+    ExternalReference pending_exception(Top::k_pending_exception_address);
+    __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
+    __ store_rax(pending_exception);
+  }
+
+  // Clear the context pointer.
+  __ xor_(rsi, rsi);
+
+  // Restore registers from handler.
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
+            StackHandlerConstants::kFPOffset);
+  __ pop(rbp);  // FP
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
+            StackHandlerConstants::kStateOffset);
+  __ pop(rdx);  // State
+
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
+            StackHandlerConstants::kPCOffset);
+  __ ret(0);
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+  // rax: number of arguments including receiver
+  // rbx: pointer to C function  (C callee-saved)
+  // rbp: frame pointer of calling JS frame (restored after C call)
+  // rsp: stack pointer  (restored after C call)
+  // rsi: current context (restored)
+
+  // NOTE: Invocations of builtins may return failure objects
+  // instead of a proper result. The builtin entry handles
+  // this by performing a garbage collection and retrying the
+  // builtin once.
+
+  // Enter the exit frame that transitions from JavaScript to C++.
+  __ EnterExitFrame(result_size_);
+
+  // rax: Holds the context at this point, but should not be used.
+  //      On entry to code generated by GenerateCore, it must hold
+  //      a failure result if the collect_garbage argument to GenerateCore
+  //      is true.  This failure result can be the result of code
+  //      generated by a previous call to GenerateCore.  The value
+  //      of rax is then passed to Runtime::PerformGC.
+  // rbx: pointer to builtin function  (C callee-saved).
+  // rbp: frame pointer of exit frame  (restored after C call).
+  // rsp: stack pointer (restored after C call).
+  // r14: number of arguments including receiver (C callee-saved).
+  // r12: argv pointer (C callee-saved).
+
+  Label throw_normal_exception;
+  Label throw_termination_exception;
+  Label throw_out_of_memory_exception;
+
+  // Call into the runtime system.
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_termination_exception,
+               &throw_out_of_memory_exception,
+               false,
+               false);
+
+  // Do space-specific GC and retry runtime call.
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_termination_exception,
+               &throw_out_of_memory_exception,
+               true,
+               false);
+
+  // Do full GC and retry runtime call one final time.
+  Failure* failure = Failure::InternalError();
+  __ movq(rax, failure, RelocInfo::NONE);
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_termination_exception,
+               &throw_out_of_memory_exception,
+               true,
+               true);
+
+  __ bind(&throw_out_of_memory_exception);
+  GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
+
+  __ bind(&throw_termination_exception);
+  GenerateThrowUncatchable(masm, TERMINATION);
+
+  __ bind(&throw_normal_exception);
+  GenerateThrowTOS(masm);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+  Label invoke, exit;
+#ifdef ENABLE_LOGGING_AND_PROFILING
+  Label not_outermost_js, not_outermost_js_2;
+#endif
+
+  // Setup frame.
+  __ push(rbp);
+  __ movq(rbp, rsp);
+
+  // Push the stack frame type marker twice.
+  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+  // Scratch register is neither callee-save, nor an argument register on any
+  // platform. It's free to use at this point.
+  // Cannot use smi-register for loading yet.
+  __ movq(kScratchRegister,
+          reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
+          RelocInfo::NONE);
+  __ push(kScratchRegister);  // context slot
+  __ push(kScratchRegister);  // function slot
+  // Save callee-saved registers (X64/Win64 calling conventions).
+  __ push(r12);
+  __ push(r13);
+  __ push(r14);
+  __ push(r15);
+#ifdef _WIN64
+  __ push(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
+  __ push(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
+#endif
+  __ push(rbx);
+  // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
+  // callee save as well.
+
+  // Save copies of the top frame descriptor on the stack.
+  ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
+  __ load_rax(c_entry_fp);
+  __ push(rax);
+
+  // Set up the roots and smi constant registers.
+  // Needs to be done before any further smi loads.
+  ExternalReference roots_address = ExternalReference::roots_address();
+  __ movq(kRootRegister, roots_address);
+  __ InitializeSmiConstantRegister();
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+  // If this is the outermost JS call, set js_entry_sp value.
+  ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
+  __ load_rax(js_entry_sp);
+  __ testq(rax, rax);
+  __ j(not_zero, &not_outermost_js);
+  __ movq(rax, rbp);
+  __ store_rax(js_entry_sp);
+  __ bind(&not_outermost_js);
+#endif
+
+  // Call a faked try-block that does the invoke.
+  __ call(&invoke);
+
+  // Caught exception: Store result (exception) in the pending
+  // exception field in the JSEnv and return a failure sentinel.
+  ExternalReference pending_exception(Top::k_pending_exception_address);
+  __ store_rax(pending_exception);
+  __ movq(rax, Failure::Exception(), RelocInfo::NONE);
+  __ jmp(&exit);
+
+  // Invoke: Link this frame into the handler chain.
+  __ bind(&invoke);
+  __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+
+  // Clear any pending exceptions.
+  __ load_rax(ExternalReference::the_hole_value_location());
+  __ store_rax(pending_exception);
+
+  // Fake a receiver (NULL).
+  __ push(Immediate(0));  // receiver
+
+  // Invoke the function by calling through JS entry trampoline
+  // builtin and pop the faked function when we return. We load the address
+  // from an external reference instead of inlining the call target address
+  // directly in the code, because the builtin stubs may not have been
+  // generated yet at the time this code is generated.
+  if (is_construct) {
+    ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
+    __ load_rax(construct_entry);
+  } else {
+    ExternalReference entry(Builtins::JSEntryTrampoline);
+    __ load_rax(entry);
+  }
+  __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
+  __ call(kScratchRegister);
+
+  // Unlink this frame from the handler chain.
+  __ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
+  __ pop(Operand(kScratchRegister, 0));
+  // Pop next_sp.
+  __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+  // If current EBP value is the same as js_entry_sp value, it means that
+  // the current function is the outermost.
+  __ movq(kScratchRegister, js_entry_sp);
+  __ cmpq(rbp, Operand(kScratchRegister, 0));
+  __ j(not_equal, &not_outermost_js_2);
+  __ movq(Operand(kScratchRegister, 0), Immediate(0));
+  __ bind(&not_outermost_js_2);
+#endif
+
+  // Restore the top frame descriptor from the stack.
+  __ bind(&exit);
+  __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
+  __ pop(Operand(kScratchRegister, 0));
+
+  // Restore callee-saved registers (X64 conventions).
+  __ pop(rbx);
+#ifdef _WIN64
+  // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
+  __ pop(rsi);
+  __ pop(rdi);
+#endif
+  __ pop(r15);
+  __ pop(r14);
+  __ pop(r13);
+  __ pop(r12);
+  __ addq(rsp, Immediate(2 * kPointerSize));  // remove markers
+
+  // Restore frame pointer and return.
+  __ pop(rbp);
+  __ ret(0);
+}
+
+
+void InstanceofStub::Generate(MacroAssembler* masm) {
+  // Implements "value instanceof function" operator.
+  // Expected input state:
+  //   rsp[0] : return address
+  //   rsp[1] : function pointer
+  //   rsp[2] : value
+  // Returns a bitwise zero to indicate that the value
+  // is and instance of the function and anything else to
+  // indicate that the value is not an instance.
+
+  // Get the object - go slow case if it's a smi.
+  Label slow;
+  __ movq(rax, Operand(rsp, 2 * kPointerSize));
+  __ JumpIfSmi(rax, &slow);
+
+  // Check that the left hand is a JS object. Leave its map in rax.
+  __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
+  __ j(below, &slow);
+  __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
+  __ j(above, &slow);
+
+  // Get the prototype of the function.
+  __ movq(rdx, Operand(rsp, 1 * kPointerSize));
+  // rdx is function, rax is map.
+
+  // Look up the function and the map in the instanceof cache.
+  Label miss;
+  __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
+  __ j(not_equal, &miss);
+  __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
+  __ j(not_equal, &miss);
+  __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&miss);
+  __ TryGetFunctionPrototype(rdx, rbx, &slow);
+
+  // Check that the function prototype is a JS object.
+  __ JumpIfSmi(rbx, &slow);
+  __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
+  __ j(below, &slow);
+  __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
+  __ j(above, &slow);
+
+  // Register mapping:
+  //   rax is object map.
+  //   rdx is function.
+  //   rbx is function prototype.
+  __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
+  __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
+
+  __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
+
+  // Loop through the prototype chain looking for the function prototype.
+  Label loop, is_instance, is_not_instance;
+  __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
+  __ bind(&loop);
+  __ cmpq(rcx, rbx);
+  __ j(equal, &is_instance);
+  __ cmpq(rcx, kScratchRegister);
+  // The code at is_not_instance assumes that kScratchRegister contains a
+  // non-zero GCable value (the null object in this case).
+  __ j(equal, &is_not_instance);
+  __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
+  __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
+  __ jmp(&loop);
+
+  __ bind(&is_instance);
+  __ xorl(rax, rax);
+  // Store bitwise zero in the cache.  This is a Smi in GC terms.
+  STATIC_ASSERT(kSmiTag == 0);
+  __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&is_not_instance);
+  // We have to store a non-zero value in the cache.
+  __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
+  __ ret(2 * kPointerSize);
+
+  // Slow-case: Go through the JavaScript implementation.
+  __ bind(&slow);
+  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+}
+
+
+int CompareStub::MinorKey() {
+  // Encode the three parameters in a unique 16 bit value. To avoid duplicate
+  // stubs the never NaN NaN condition is only taken into account if the
+  // condition is equals.
+  ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
+  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+  return ConditionField::encode(static_cast<unsigned>(cc_))
+         | RegisterField::encode(false)    // lhs_ and rhs_ are not used
+         | StrictField::encode(strict_)
+         | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
+         | IncludeNumberCompareField::encode(include_number_compare_);
+}
+
+
+// Unfortunately you have to run without snapshots to see most of these
+// names in the profile since most compare stubs end up in the snapshot.
+const char* CompareStub::GetName() {
+  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+
+  if (name_ != NULL) return name_;
+  const int kMaxNameLength = 100;
+  name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
+  if (name_ == NULL) return "OOM";
+
+  const char* cc_name;
+  switch (cc_) {
+    case less: cc_name = "LT"; break;
+    case greater: cc_name = "GT"; break;
+    case less_equal: cc_name = "LE"; break;
+    case greater_equal: cc_name = "GE"; break;
+    case equal: cc_name = "EQ"; break;
+    case not_equal: cc_name = "NE"; break;
+    default: cc_name = "UnknownCondition"; break;
+  }
+
+  const char* strict_name = "";
+  if (strict_ && (cc_ == equal || cc_ == not_equal)) {
+    strict_name = "_STRICT";
+  }
+
+  const char* never_nan_nan_name = "";
+  if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
+    never_nan_nan_name = "_NO_NAN";
+  }
+
+  const char* include_number_compare_name = "";
+  if (!include_number_compare_) {
+    include_number_compare_name = "_NO_NUMBER";
+  }
+
+  OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+               "CompareStub_%s%s%s%s",
+               cc_name,
+               strict_name,
+               never_nan_nan_name,
+               include_number_compare_name);
+  return name_;
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharCodeAtGenerator
+
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+  Label flat_string;
+  Label ascii_string;
+  Label got_char_code;
+
+  // If the receiver is a smi trigger the non-string case.
+  __ JumpIfSmi(object_, receiver_not_string_);
+
+  // Fetch the instance type of the receiver into result register.
+  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
+  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+  // If the receiver is not a string trigger the non-string case.
+  __ testb(result_, Immediate(kIsNotStringMask));
+  __ j(not_zero, receiver_not_string_);
+
+  // If the index is non-smi trigger the non-smi case.
+  __ JumpIfNotSmi(index_, &index_not_smi_);
+
+  // Put smi-tagged index into scratch register.
+  __ movq(scratch_, index_);
+  __ bind(&got_smi_index_);
+
+  // Check for index out of range.
+  __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
+  __ j(above_equal, index_out_of_range_);
+
+  // We need special handling for non-flat strings.
+  STATIC_ASSERT(kSeqStringTag == 0);
+  __ testb(result_, Immediate(kStringRepresentationMask));
+  __ j(zero, &flat_string);
+
+  // Handle non-flat strings.
+  __ testb(result_, Immediate(kIsConsStringMask));
+  __ j(zero, &call_runtime_);
+
+  // ConsString.
+  // Check whether the right hand side is the empty string (i.e. if
+  // this is really a flat string in a cons string). If that is not
+  // the case we would rather go to the runtime system now to flatten
+  // the string.
+  __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
+                 Heap::kEmptyStringRootIndex);
+  __ j(not_equal, &call_runtime_);
+  // Get the first of the two strings and load its instance type.
+  __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
+  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
+  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+  // If the first cons component is also non-flat, then go to runtime.
+  STATIC_ASSERT(kSeqStringTag == 0);
+  __ testb(result_, Immediate(kStringRepresentationMask));
+  __ j(not_zero, &call_runtime_);
+
+  // Check for 1-byte or 2-byte string.
+  __ bind(&flat_string);
+  STATIC_ASSERT(kAsciiStringTag != 0);
+  __ testb(result_, Immediate(kStringEncodingMask));
+  __ j(not_zero, &ascii_string);
+
+  // 2-byte string.
+  // Load the 2-byte character code into the result register.
+  __ SmiToInteger32(scratch_, scratch_);
+  __ movzxwl(result_, FieldOperand(object_,
+                                   scratch_, times_2,
+                                   SeqTwoByteString::kHeaderSize));
+  __ jmp(&got_char_code);
+
+  // ASCII string.
+  // Load the byte into the result register.
+  __ bind(&ascii_string);
+  __ SmiToInteger32(scratch_, scratch_);
+  __ movzxbl(result_, FieldOperand(object_,
+                                   scratch_, times_1,
+                                   SeqAsciiString::kHeaderSize));
+  __ bind(&got_char_code);
+  __ Integer32ToSmi(result_, result_);
+  __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+  __ Abort("Unexpected fallthrough to CharCodeAt slow case");
+
+  // Index is not a smi.
+  __ bind(&index_not_smi_);
+  // If index is a heap number, try converting it to an integer.
+  __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
+  call_helper.BeforeCall(masm);
+  __ push(object_);
+  __ push(index_);
+  __ push(index_);  // Consumed by runtime conversion function.
+  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+  } else {
+    ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+    // NumberToSmi discards numbers that are not exact integers.
+    __ CallRuntime(Runtime::kNumberToSmi, 1);
+  }
+  if (!scratch_.is(rax)) {
+    // Save the conversion result before the pop instructions below
+    // have a chance to overwrite it.
+    __ movq(scratch_, rax);
+  }
+  __ pop(index_);
+  __ pop(object_);
+  // Reload the instance type.
+  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
+  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+  call_helper.AfterCall(masm);
+  // If index is still not a smi, it must be out of range.
+  __ JumpIfNotSmi(scratch_, index_out_of_range_);
+  // Otherwise, return to the fast path.
+  __ jmp(&got_smi_index_);
+
+  // Call runtime. We get here when the receiver is a string and the
+  // index is a number, but the code of getting the actual character
+  // is too complex (e.g., when the string needs to be flattened).
+  __ bind(&call_runtime_);
+  call_helper.BeforeCall(masm);
+  __ push(object_);
+  __ push(index_);
+  __ CallRuntime(Runtime::kStringCharCodeAt, 2);
+  if (!result_.is(rax)) {
+    __ movq(result_, rax);
+  }
+  call_helper.AfterCall(masm);
+  __ jmp(&exit_);
+
+  __ Abort("Unexpected fallthrough from CharCodeAt slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+  // Fast case of Heap::LookupSingleCharacterStringFromCode.
+  __ JumpIfNotSmi(code_, &slow_case_);
+  __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
+  __ j(above, &slow_case_);
+
+  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
+  SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
+  __ movq(result_, FieldOperand(result_, index.reg, index.scale,
+                                FixedArray::kHeaderSize));
+  __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
+  __ j(equal, &slow_case_);
+  __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+  __ Abort("Unexpected fallthrough to CharFromCode slow case");
+
+  __ bind(&slow_case_);
+  call_helper.BeforeCall(masm);
+  __ push(code_);
+  __ CallRuntime(Runtime::kCharFromCode, 1);
+  if (!result_.is(rax)) {
+    __ movq(result_, rax);
+  }
+  call_helper.AfterCall(masm);
+  __ jmp(&exit_);
+
+  __ Abort("Unexpected fallthrough from CharFromCode slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharAtGenerator
+
+void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
+  char_code_at_generator_.GenerateFast(masm);
+  char_from_code_generator_.GenerateFast(masm);
+}
+
+
+void StringCharAtGenerator::GenerateSlow(
+    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+  char_code_at_generator_.GenerateSlow(masm, call_helper);
+  char_from_code_generator_.GenerateSlow(masm, call_helper);
+}
+
+
+void StringAddStub::Generate(MacroAssembler* masm) {
+  Label string_add_runtime;
+
+  // Load the two arguments.
+  __ movq(rax, Operand(rsp, 2 * kPointerSize));  // First argument.
+  __ movq(rdx, Operand(rsp, 1 * kPointerSize));  // Second argument.
+
+  // Make sure that both arguments are strings if not known in advance.
+  if (string_check_) {
+    Condition is_smi;
+    is_smi = masm->CheckSmi(rax);
+    __ j(is_smi, &string_add_runtime);
+    __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
+    __ j(above_equal, &string_add_runtime);
+
+    // First argument is a a string, test second.
+    is_smi = masm->CheckSmi(rdx);
+    __ j(is_smi, &string_add_runtime);
+    __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
+    __ j(above_equal, &string_add_runtime);
+  }
+
+  // Both arguments are strings.
+  // rax: first string
+  // rdx: second string
+  // Check if either of the strings are empty. In that case return the other.
+  Label second_not_zero_length, both_not_zero_length;
+  __ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
+  __ SmiTest(rcx);
+  __ j(not_zero, &second_not_zero_length);
+  // Second string is empty, result is first string which is already in rax.
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+  __ bind(&second_not_zero_length);
+  __ movq(rbx, FieldOperand(rax, String::kLengthOffset));
+  __ SmiTest(rbx);
+  __ j(not_zero, &both_not_zero_length);
+  // First string is empty, result is second string which is in rdx.
+  __ movq(rax, rdx);
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+
+  // Both strings are non-empty.
+  // rax: first string
+  // rbx: length of first string
+  // rcx: length of second string
+  // rdx: second string
+  // r8: map of first string if string check was performed above
+  // r9: map of second string if string check was performed above
+  Label string_add_flat_result, longer_than_two;
+  __ bind(&both_not_zero_length);
+
+  // If arguments where known to be strings, maps are not loaded to r8 and r9
+  // by the code above.
+  if (!string_check_) {
+    __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
+    __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
+  }
+  // Get the instance types of the two strings as they will be needed soon.
+  __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
+  __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
+
+  // Look at the length of the result of adding the two strings.
+  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
+  __ SmiAdd(rbx, rbx, rcx, NULL);
+  // Use the runtime system when adding two one character strings, as it
+  // contains optimizations for this specific case using the symbol table.
+  __ SmiCompare(rbx, Smi::FromInt(2));
+  __ j(not_equal, &longer_than_two);
+
+  // Check that both strings are non-external ascii strings.
+  __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
+                                                  &string_add_runtime);
+
+  // Get the two characters forming the sub string.
+  __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
+  __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
+
+  // Try to lookup two character string in symbol table. If it is not found
+  // just allocate a new one.
+  Label make_two_character_string, make_flat_ascii_string;
+  StringHelper::GenerateTwoCharacterSymbolTableProbe(
+      masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&make_two_character_string);
+  __ Set(rbx, 2);
+  __ jmp(&make_flat_ascii_string);
+
+  __ bind(&longer_than_two);
+  // Check if resulting string will be flat.
+  __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
+  __ j(below, &string_add_flat_result);
+  // Handle exceptionally long strings in the runtime system.
+  STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
+  __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
+  __ j(above, &string_add_runtime);
+
+  // If result is not supposed to be flat, allocate a cons string object. If
+  // both strings are ascii the result is an ascii cons string.
+  // rax: first string
+  // rbx: length of resulting flat string
+  // rdx: second string
+  // r8: instance type of first string
+  // r9: instance type of second string
+  Label non_ascii, allocated, ascii_data;
+  __ movl(rcx, r8);
+  __ and_(rcx, r9);
+  STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
+  __ testl(rcx, Immediate(kAsciiStringTag));
+  __ j(zero, &non_ascii);
+  __ bind(&ascii_data);
+  // Allocate an acsii cons string.
+  __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
+  __ bind(&allocated);
+  // Fill the fields of the cons string.
+  __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
+  __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
+          Immediate(String::kEmptyHashField));
+  __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
+  __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
+  __ movq(rax, rcx);
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+  __ bind(&non_ascii);
+  // At least one of the strings is two-byte. Check whether it happens
+  // to contain only ascii characters.
+  // rcx: first instance type AND second instance type.
+  // r8: first instance type.
+  // r9: second instance type.
+  __ testb(rcx, Immediate(kAsciiDataHintMask));
+  __ j(not_zero, &ascii_data);
+  __ xor_(r8, r9);
+  STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
+  __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
+  __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
+  __ j(equal, &ascii_data);
+  // Allocate a two byte cons string.
+  __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
+  __ jmp(&allocated);
+
+  // Handle creating a flat result. First check that both strings are not
+  // external strings.
+  // rax: first string
+  // rbx: length of resulting flat string as smi
+  // rdx: second string
+  // r8: instance type of first string
+  // r9: instance type of first string
+  __ bind(&string_add_flat_result);
+  __ SmiToInteger32(rbx, rbx);
+  __ movl(rcx, r8);
+  __ and_(rcx, Immediate(kStringRepresentationMask));
+  __ cmpl(rcx, Immediate(kExternalStringTag));
+  __ j(equal, &string_add_runtime);
+  __ movl(rcx, r9);
+  __ and_(rcx, Immediate(kStringRepresentationMask));
+  __ cmpl(rcx, Immediate(kExternalStringTag));
+  __ j(equal, &string_add_runtime);
+  // Now check if both strings are ascii strings.
+  // rax: first string
+  // rbx: length of resulting flat string
+  // rdx: second string
+  // r8: instance type of first string
+  // r9: instance type of second string
+  Label non_ascii_string_add_flat_result;
+  STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
+  __ testl(r8, Immediate(kAsciiStringTag));
+  __ j(zero, &non_ascii_string_add_flat_result);
+  __ testl(r9, Immediate(kAsciiStringTag));
+  __ j(zero, &string_add_runtime);
+
+  __ bind(&make_flat_ascii_string);
+  // Both strings are ascii strings. As they are short they are both flat.
+  __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
+  // rcx: result string
+  __ movq(rbx, rcx);
+  // Locate first character of result.
+  __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  // Locate first character of first argument
+  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
+  __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  // rax: first char of first argument
+  // rbx: result string
+  // rcx: first character of result
+  // rdx: second string
+  // rdi: length of first argument
+  StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
+  // Locate first character of second argument.
+  __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
+  __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  // rbx: result string
+  // rcx: next character of result
+  // rdx: first char of second argument
+  // rdi: length of second argument
+  StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
+  __ movq(rax, rbx);
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+
+  // Handle creating a flat two byte result.
+  // rax: first string - known to be two byte
+  // rbx: length of resulting flat string
+  // rdx: second string
+  // r8: instance type of first string
+  // r9: instance type of first string
+  __ bind(&non_ascii_string_add_flat_result);
+  __ and_(r9, Immediate(kAsciiStringTag));
+  __ j(not_zero, &string_add_runtime);
+  // Both strings are two byte strings. As they are short they are both
+  // flat.
+  __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
+  // rcx: result string
+  __ movq(rbx, rcx);
+  // Locate first character of result.
+  __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  // Locate first character of first argument.
+  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
+  __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  // rax: first char of first argument
+  // rbx: result string
+  // rcx: first character of result
+  // rdx: second argument
+  // rdi: length of first argument
+  StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
+  // Locate first character of second argument.
+  __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
+  __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  // rbx: result string
+  // rcx: next character of result
+  // rdx: first char of second argument
+  // rdi: length of second argument
+  StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
+  __ movq(rax, rbx);
+  __ IncrementCounter(&Counters::string_add_native, 1);
+  __ ret(2 * kPointerSize);
+
+  // Just jump to runtime to add the two strings.
+  __ bind(&string_add_runtime);
+  __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
+}
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
+                                          Register dest,
+                                          Register src,
+                                          Register count,
+                                          bool ascii) {
+  Label loop;
+  __ bind(&loop);
+  // This loop just copies one character at a time, as it is only used for very
+  // short strings.
+  if (ascii) {
+    __ movb(kScratchRegister, Operand(src, 0));
+    __ movb(Operand(dest, 0), kScratchRegister);
+    __ incq(src);
+    __ incq(dest);
+  } else {
+    __ movzxwl(kScratchRegister, Operand(src, 0));
+    __ movw(Operand(dest, 0), kScratchRegister);
+    __ addq(src, Immediate(2));
+    __ addq(dest, Immediate(2));
+  }
+  __ decl(count);
+  __ j(not_zero, &loop);
+}
+
+
+void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
+                                             Register dest,
+                                             Register src,
+                                             Register count,
+                                             bool ascii) {
+  // Copy characters using rep movs of doublewords. Align destination on 4 byte
+  // boundary before starting rep movs. Copy remaining characters after running
+  // rep movs.
+  // Count is positive int32, dest and src are character pointers.
+  ASSERT(dest.is(rdi));  // rep movs destination
+  ASSERT(src.is(rsi));  // rep movs source
+  ASSERT(count.is(rcx));  // rep movs count
+
+  // Nothing to do for zero characters.
+  Label done;
+  __ testl(count, count);
+  __ j(zero, &done);
+
+  // Make count the number of bytes to copy.
+  if (!ascii) {
+    STATIC_ASSERT(2 == sizeof(uc16));
+    __ addl(count, count);
+  }
+
+  // Don't enter the rep movs if there are less than 4 bytes to copy.
+  Label last_bytes;
+  __ testl(count, Immediate(~7));
+  __ j(zero, &last_bytes);
+
+  // Copy from edi to esi using rep movs instruction.
+  __ movl(kScratchRegister, count);
+  __ shr(count, Immediate(3));  // Number of doublewords to copy.
+  __ repmovsq();
+
+  // Find number of bytes left.
+  __ movl(count, kScratchRegister);
+  __ and_(count, Immediate(7));
+
+  // Check if there are more bytes to copy.
+  __ bind(&last_bytes);
+  __ testl(count, count);
+  __ j(zero, &done);
+
+  // Copy remaining characters.
+  Label loop;
+  __ bind(&loop);
+  __ movb(kScratchRegister, Operand(src, 0));
+  __ movb(Operand(dest, 0), kScratchRegister);
+  __ incq(src);
+  __ incq(dest);
+  __ decl(count);
+  __ j(not_zero, &loop);
+
+  __ bind(&done);
+}
+
+void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
+                                                        Register c1,
+                                                        Register c2,
+                                                        Register scratch1,
+                                                        Register scratch2,
+                                                        Register scratch3,
+                                                        Register scratch4,
+                                                        Label* not_found) {
+  // Register scratch3 is the general scratch register in this function.
+  Register scratch = scratch3;
+
+  // Make sure that both characters are not digits as such strings has a
+  // different hash algorithm. Don't try to look for these in the symbol table.
+  Label not_array_index;
+  __ leal(scratch, Operand(c1, -'0'));
+  __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
+  __ j(above, &not_array_index);
+  __ leal(scratch, Operand(c2, -'0'));
+  __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
+  __ j(below_equal, not_found);
+
+  __ bind(&not_array_index);
+  // Calculate the two character string hash.
+  Register hash = scratch1;
+  GenerateHashInit(masm, hash, c1, scratch);
+  GenerateHashAddCharacter(masm, hash, c2, scratch);
+  GenerateHashGetHash(masm, hash, scratch);
+
+  // Collect the two characters in a register.
+  Register chars = c1;
+  __ shl(c2, Immediate(kBitsPerByte));
+  __ orl(chars, c2);
+
+  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+  // hash:  hash of two character string.
+
+  // Load the symbol table.
+  Register symbol_table = c2;
+  __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
+
+  // Calculate capacity mask from the symbol table capacity.
+  Register mask = scratch2;
+  __ SmiToInteger32(mask,
+                    FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
+  __ decl(mask);
+
+  Register undefined = scratch4;
+  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+  // Registers
+  // chars:        two character string, char 1 in byte 0 and char 2 in byte 1.
+  // hash:         hash of two character string (32-bit int)
+  // symbol_table: symbol table
+  // mask:         capacity mask (32-bit int)
+  // undefined:    undefined value
+  // scratch:      -
+
+  // Perform a number of probes in the symbol table.
+  static const int kProbes = 4;
+  Label found_in_symbol_table;
+  Label next_probe[kProbes];
+  for (int i = 0; i < kProbes; i++) {
+    // Calculate entry in symbol table.
+    __ movl(scratch, hash);
+    if (i > 0) {
+      __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
+    }
+    __ andl(scratch, mask);
+
+    // Load the entry from the symble table.
+    Register candidate = scratch;  // Scratch register contains candidate.
+    STATIC_ASSERT(SymbolTable::kEntrySize == 1);
+    __ movq(candidate,
+            FieldOperand(symbol_table,
+                         scratch,
+                         times_pointer_size,
+                         SymbolTable::kElementsStartOffset));
+
+    // If entry is undefined no string with this hash can be found.
+    __ cmpq(candidate, undefined);
+    __ j(equal, not_found);
+
+    // If length is not 2 the string is not a candidate.
+    __ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
+                  Smi::FromInt(2));
+    __ j(not_equal, &next_probe[i]);
+
+    // We use kScratchRegister as a temporary register in assumption that
+    // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
+    Register temp = kScratchRegister;
+
+    // Check that the candidate is a non-external ascii string.
+    __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
+    __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
+    __ JumpIfInstanceTypeIsNotSequentialAscii(
+        temp, temp, &next_probe[i]);
+
+    // Check if the two characters match.
+    __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
+    __ andl(temp, Immediate(0x0000ffff));
+    __ cmpl(chars, temp);
+    __ j(equal, &found_in_symbol_table);
+    __ bind(&next_probe[i]);
+  }
+
+  // No matching 2 character string found by probing.
+  __ jmp(not_found);
+
+  // Scratch register contains result when we fall through to here.
+  Register result = scratch;
+  __ bind(&found_in_symbol_table);
+  if (!result.is(rax)) {
+    __ movq(rax, result);
+  }
+}
+
+
+void StringHelper::GenerateHashInit(MacroAssembler* masm,
+                                    Register hash,
+                                    Register character,
+                                    Register scratch) {
+  // hash = character + (character << 10);
+  __ movl(hash, character);
+  __ shll(hash, Immediate(10));
+  __ addl(hash, character);
+  // hash ^= hash >> 6;
+  __ movl(scratch, hash);
+  __ sarl(scratch, Immediate(6));
+  __ xorl(hash, scratch);
+}
+
+
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
+                                            Register hash,
+                                            Register character,
+                                            Register scratch) {
+  // hash += character;
+  __ addl(hash, character);
+  // hash += hash << 10;
+  __ movl(scratch, hash);
+  __ shll(scratch, Immediate(10));
+  __ addl(hash, scratch);
+  // hash ^= hash >> 6;
+  __ movl(scratch, hash);
+  __ sarl(scratch, Immediate(6));
+  __ xorl(hash, scratch);
+}
+
+
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
+                                       Register hash,
+                                       Register scratch) {
+  // hash += hash << 3;
+  __ leal(hash, Operand(hash, hash, times_8, 0));
+  // hash ^= hash >> 11;
+  __ movl(scratch, hash);
+  __ sarl(scratch, Immediate(11));
+  __ xorl(hash, scratch);
+  // hash += hash << 15;
+  __ movl(scratch, hash);
+  __ shll(scratch, Immediate(15));
+  __ addl(hash, scratch);
+
+  // if (hash == 0) hash = 27;
+  Label hash_not_zero;
+  __ j(not_zero, &hash_not_zero);
+  __ movl(hash, Immediate(27));
+  __ bind(&hash_not_zero);
+}
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  // Stack frame on entry.
+  //  rsp[0]: return address
+  //  rsp[8]: to
+  //  rsp[16]: from
+  //  rsp[24]: string
+
+  const int kToOffset = 1 * kPointerSize;
+  const int kFromOffset = kToOffset + kPointerSize;
+  const int kStringOffset = kFromOffset + kPointerSize;
+  const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
+
+  // Make sure first argument is a string.
+  __ movq(rax, Operand(rsp, kStringOffset));
+  STATIC_ASSERT(kSmiTag == 0);
+  __ testl(rax, Immediate(kSmiTagMask));
+  __ j(zero, &runtime);
+  Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
+  __ j(NegateCondition(is_string), &runtime);
+
+  // rax: string
+  // rbx: instance type
+  // Calculate length of sub string using the smi values.
+  Label result_longer_than_two;
+  __ movq(rcx, Operand(rsp, kToOffset));
+  __ movq(rdx, Operand(rsp, kFromOffset));
+  __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);
+
+  __ SmiSub(rcx, rcx, rdx, NULL);  // Overflow doesn't happen.
+  __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
+  Label return_rax;
+  __ j(equal, &return_rax);
+  // Special handling of sub-strings of length 1 and 2. One character strings
+  // are handled in the runtime system (looked up in the single character
+  // cache). Two character strings are looked for in the symbol cache.
+  __ SmiToInteger32(rcx, rcx);
+  __ cmpl(rcx, Immediate(2));
+  __ j(greater, &result_longer_than_two);
+  __ j(less, &runtime);
+
+  // Sub string of length 2 requested.
+  // rax: string
+  // rbx: instance type
+  // rcx: sub string length (value is 2)
+  // rdx: from index (smi)
+  __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
+
+  // Get the two characters forming the sub string.
+  __ SmiToInteger32(rdx, rdx);  // From index is no longer smi.
+  __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
+  __ movzxbq(rcx,
+             FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
+
+  // Try to lookup two character string in symbol table.
+  Label make_two_character_string;
+  StringHelper::GenerateTwoCharacterSymbolTableProbe(
+      masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
+  __ ret(3 * kPointerSize);
+
+  __ bind(&make_two_character_string);
+  // Setup registers for allocating the two character string.
+  __ movq(rax, Operand(rsp, kStringOffset));
+  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
+  __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
+  __ Set(rcx, 2);
+
+  __ bind(&result_longer_than_two);
+
+  // rax: string
+  // rbx: instance type
+  // rcx: result string length
+  // Check for flat ascii string
+  Label non_ascii_flat;
+  __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);
+
+  // Allocate the result.
+  __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
+
+  // rax: result string
+  // rcx: result string length
+  __ movq(rdx, rsi);  // esi used by following code.
+  // Locate first character of result.
+  __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
+  // Load string argument and locate character of sub string start.
+  __ movq(rsi, Operand(rsp, kStringOffset));
+  __ movq(rbx, Operand(rsp, kFromOffset));
+  {
+    SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
+    __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
+                        SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  }
+
+  // rax: result string
+  // rcx: result length
+  // rdx: original value of rsi
+  // rdi: first character of result
+  // rsi: character of sub string start
+  StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
+  __ movq(rsi, rdx);  // Restore rsi.
+  __ IncrementCounter(&Counters::sub_string_native, 1);
+  __ ret(kArgumentsSize);
+
+  __ bind(&non_ascii_flat);
+  // rax: string
+  // rbx: instance type & kStringRepresentationMask | kStringEncodingMask
+  // rcx: result string length
+  // Check for sequential two byte string
+  __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
+  __ j(not_equal, &runtime);
+
+  // Allocate the result.
+  __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
+
+  // rax: result string
+  // rcx: result string length
+  __ movq(rdx, rsi);  // esi used by following code.
+  // Locate first character of result.
+  __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
+  // Load string argument and locate character of sub string start.
+  __ movq(rsi, Operand(rsp, kStringOffset));
+  __ movq(rbx, Operand(rsp, kFromOffset));
+  {
+    SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
+    __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
+                        SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  }
+
+  // rax: result string
+  // rcx: result length
+  // rdx: original value of rsi
+  // rdi: first character of result
+  // rsi: character of sub string start
+  StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
+  __ movq(rsi, rdx);  // Restore esi.
+
+  __ bind(&return_rax);
+  __ IncrementCounter(&Counters::sub_string_native, 1);
+  __ ret(kArgumentsSize);
+
+  // Just jump to runtime to create the sub string.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kSubString, 3, 1);
+}
+
+
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
+                                                        Register left,
+                                                        Register right,
+                                                        Register scratch1,
+                                                        Register scratch2,
+                                                        Register scratch3,
+                                                        Register scratch4) {
+  // Ensure that you can always subtract a string length from a non-negative
+  // number (e.g. another length).
+  STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
+
+  // Find minimum length and length difference.
+  __ movq(scratch1, FieldOperand(left, String::kLengthOffset));
+  __ movq(scratch4, scratch1);
+  __ SmiSub(scratch4,
+            scratch4,
+            FieldOperand(right, String::kLengthOffset),
+            NULL);
+  // Register scratch4 now holds left.length - right.length.
+  const Register length_difference = scratch4;
+  Label left_shorter;
+  __ j(less, &left_shorter);
+  // The right string isn't longer that the left one.
+  // Get the right string's length by subtracting the (non-negative) difference
+  // from the left string's length.
+  __ SmiSub(scratch1, scratch1, length_difference, NULL);
+  __ bind(&left_shorter);
+  // Register scratch1 now holds Min(left.length, right.length).
+  const Register min_length = scratch1;
+
+  Label compare_lengths;
+  // If min-length is zero, go directly to comparing lengths.
+  __ SmiTest(min_length);
+  __ j(zero, &compare_lengths);
+
+  __ SmiToInteger32(min_length, min_length);
+
+  // Registers scratch2 and scratch3 are free.
+  Label result_not_equal;
+  Label loop;
+  {
+    // Check characters 0 .. min_length - 1 in a loop.
+    // Use scratch3 as loop index, min_length as limit and scratch2
+    // for computation.
+    const Register index = scratch3;
+    __ movl(index, Immediate(0));  // Index into strings.
+    __ bind(&loop);
+    // Compare characters.
+    // TODO(lrn): Could we load more than one character at a time?
+    __ movb(scratch2, FieldOperand(left,
+                                   index,
+                                   times_1,
+                                   SeqAsciiString::kHeaderSize));
+    // Increment index and use -1 modifier on next load to give
+    // the previous load extra time to complete.
+    __ addl(index, Immediate(1));
+    __ cmpb(scratch2, FieldOperand(right,
+                                   index,
+                                   times_1,
+                                   SeqAsciiString::kHeaderSize - 1));
+    __ j(not_equal, &result_not_equal);
+    __ cmpl(index, min_length);
+    __ j(not_equal, &loop);
+  }
+  // Completed loop without finding different characters.
+  // Compare lengths (precomputed).
+  __ bind(&compare_lengths);
+  __ SmiTest(length_difference);
+  __ j(not_zero, &result_not_equal);
+
+  // Result is EQUAL.
+  __ Move(rax, Smi::FromInt(EQUAL));
+  __ ret(0);
+
+  Label result_greater;
+  __ bind(&result_not_equal);
+  // Unequal comparison of left to right, either character or length.
+  __ j(greater, &result_greater);
+
+  // Result is LESS.
+  __ Move(rax, Smi::FromInt(LESS));
+  __ ret(0);
+
+  // Result is GREATER.
+  __ bind(&result_greater);
+  __ Move(rax, Smi::FromInt(GREATER));
+  __ ret(0);
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  // Stack frame on entry.
+  //  rsp[0]: return address
+  //  rsp[8]: right string
+  //  rsp[16]: left string
+
+  __ movq(rdx, Operand(rsp, 2 * kPointerSize));  // left
+  __ movq(rax, Operand(rsp, 1 * kPointerSize));  // right
+
+  // Check for identity.
+  Label not_same;
+  __ cmpq(rdx, rax);
+  __ j(not_equal, &not_same);
+  __ Move(rax, Smi::FromInt(EQUAL));
+  __ IncrementCounter(&Counters::string_compare_native, 1);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&not_same);
+
+  // Check that both are sequential ASCII strings.
+  __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
+
+  // Inline comparison of ascii strings.
+  __ IncrementCounter(&Counters::string_compare_native, 1);
+  // Drop arguments from the stack
+  __ pop(rcx);
+  __ addq(rsp, Immediate(2 * kPointerSize));
+  __ push(rcx);
+  GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
+
+  // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+#undef __
+
+} }  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_X64