Merge V8 at r7668: Initial merge by Git.

Change-Id: I1703c8b4f5c63052451a22cf3fb878abc9a0ec75
diff --git a/src/ia32/codegen-ia32.cc b/src/ia32/codegen-ia32.cc
index cf990a0..572c36c 100644
--- a/src/ia32/codegen-ia32.cc
+++ b/src/ia32/codegen-ia32.cc
@@ -1,4 +1,4 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
+// Copyright 2011 the V8 project authors. All rights reserved.
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
 // met:
@@ -29,81 +29,15 @@
 
 #if defined(V8_TARGET_ARCH_IA32)
 
-#include "codegen-inl.h"
-#include "bootstrapper.h"
-#include "code-stubs.h"
-#include "compiler.h"
-#include "debug.h"
-#include "ic-inl.h"
-#include "parser.h"
-#include "regexp-macro-assembler.h"
-#include "register-allocator-inl.h"
-#include "scopes.h"
-#include "virtual-frame-inl.h"
+#include "codegen.h"
 
 namespace v8 {
 namespace internal {
 
-#define __ ACCESS_MASM(masm)
-
-// -------------------------------------------------------------------------
-// Platform-specific FrameRegisterState functions.
-
-void FrameRegisterState::Save(MacroAssembler* masm) const {
-  for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
-    int action = registers_[i];
-    if (action == kPush) {
-      __ push(RegisterAllocator::ToRegister(i));
-    } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
-      __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i));
-    }
-  }
-}
-
-
-void FrameRegisterState::Restore(MacroAssembler* masm) const {
-  // Restore registers in reverse order due to the stack.
-  for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
-    int action = registers_[i];
-    if (action == kPush) {
-      __ pop(RegisterAllocator::ToRegister(i));
-    } else if (action != kIgnore) {
-      action &= ~kSyncedFlag;
-      __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action));
-    }
-  }
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm_)
-
-// -------------------------------------------------------------------------
-// Platform-specific DeferredCode functions.
-
-void DeferredCode::SaveRegisters() {
-  frame_state_.Save(masm_);
-}
-
-
-void DeferredCode::RestoreRegisters() {
-  frame_state_.Restore(masm_);
-}
-
 
 // -------------------------------------------------------------------------
 // Platform-specific RuntimeCallHelper functions.
 
-void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
-  frame_state_->Save(masm);
-}
-
-
-void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
-  frame_state_->Restore(masm);
-}
-
-
 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
   masm->EnterInternalFrame();
 }
@@ -114,10069 +48,21 @@
 }
 
 
-// -------------------------------------------------------------------------
-// CodeGenState implementation.
-
-CodeGenState::CodeGenState(CodeGenerator* owner)
-    : owner_(owner),
-      destination_(NULL),
-      previous_(NULL) {
-  owner_->set_state(this);
-}
-
-
-CodeGenState::CodeGenState(CodeGenerator* owner,
-                           ControlDestination* destination)
-    : owner_(owner),
-      destination_(destination),
-      previous_(owner->state()) {
-  owner_->set_state(this);
-}
-
-
-CodeGenState::~CodeGenState() {
-  ASSERT(owner_->state() == this);
-  owner_->set_state(previous_);
-}
-
-// -------------------------------------------------------------------------
-// CodeGenerator implementation.
-
-CodeGenerator::CodeGenerator(MacroAssembler* masm)
-    : deferred_(8),
-      masm_(masm),
-      info_(NULL),
-      frame_(NULL),
-      allocator_(NULL),
-      state_(NULL),
-      loop_nesting_(0),
-      in_safe_int32_mode_(false),
-      safe_int32_mode_enabled_(true),
-      function_return_is_shadowed_(false),
-      in_spilled_code_(false),
-      jit_cookie_((FLAG_mask_constants_with_cookie) ?
-                  V8::RandomPrivate(Isolate::Current()) : 0) {
-}
-
-
-// Calling conventions:
-// ebp: caller's frame pointer
-// esp: stack pointer
-// edi: called JS function
-// esi: callee's context
-
-void CodeGenerator::Generate(CompilationInfo* info) {
-  // Record the position for debugging purposes.
-  CodeForFunctionPosition(info->function());
-  Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
-
-  // Initialize state.
-  info_ = info;
-  ASSERT(allocator_ == NULL);
-  RegisterAllocator register_allocator(this);
-  allocator_ = &register_allocator;
-  ASSERT(frame_ == NULL);
-  frame_ = new VirtualFrame();
-  set_in_spilled_code(false);
-
-  // Adjust for function-level loop nesting.
-  ASSERT_EQ(0, loop_nesting_);
-  loop_nesting_ = info->is_in_loop() ? 1 : 0;
-
-  masm()->isolate()->set_jump_target_compiling_deferred_code(false);
-
-  {
-    CodeGenState state(this);
-
-    // Entry:
-    // Stack: receiver, arguments, return address.
-    // ebp: caller's frame pointer
-    // esp: stack pointer
-    // edi: called JS function
-    // esi: callee's context
-    allocator_->Initialize();
-
-#ifdef DEBUG
-    if (strlen(FLAG_stop_at) > 0 &&
-        info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
-      frame_->SpillAll();
-      __ int3();
-    }
-#endif
-
-    frame_->Enter();
-
-    // Allocate space for locals and initialize them.
-    frame_->AllocateStackSlots();
-
-    // Allocate the local context if needed.
-    int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
-    if (heap_slots > 0) {
-      Comment cmnt(masm_, "[ allocate local context");
-      // Allocate local context.
-      // Get outer context and create a new context based on it.
-      frame_->PushFunction();
-      Result context;
-      if (heap_slots <= FastNewContextStub::kMaximumSlots) {
-        FastNewContextStub stub(heap_slots);
-        context = frame_->CallStub(&stub, 1);
-      } else {
-        context = frame_->CallRuntime(Runtime::kNewContext, 1);
-      }
-
-      // Update context local.
-      frame_->SaveContextRegister();
-
-      // Verify that the runtime call result and esi agree.
-      if (FLAG_debug_code) {
-        __ cmp(context.reg(), Operand(esi));
-        __ Assert(equal, "Runtime::NewContext should end up in esi");
-      }
-    }
-
-    // TODO(1241774): Improve this code:
-    // 1) only needed if we have a context
-    // 2) no need to recompute context ptr every single time
-    // 3) don't copy parameter operand code from SlotOperand!
-    {
-      Comment cmnt2(masm_, "[ copy context parameters into .context");
-      // Note that iteration order is relevant here! If we have the same
-      // parameter twice (e.g., function (x, y, x)), and that parameter
-      // needs to be copied into the context, it must be the last argument
-      // passed to the parameter that needs to be copied. This is a rare
-      // case so we don't check for it, instead we rely on the copying
-      // order: such a parameter is copied repeatedly into the same
-      // context location and thus the last value is what is seen inside
-      // the function.
-      for (int i = 0; i < scope()->num_parameters(); i++) {
-        Variable* par = scope()->parameter(i);
-        Slot* slot = par->AsSlot();
-        if (slot != NULL && slot->type() == Slot::CONTEXT) {
-          // The use of SlotOperand below is safe in unspilled code
-          // because the slot is guaranteed to be a context slot.
-          //
-          // There are no parameters in the global scope.
-          ASSERT(!scope()->is_global_scope());
-          frame_->PushParameterAt(i);
-          Result value = frame_->Pop();
-          value.ToRegister();
-
-          // SlotOperand loads context.reg() with the context object
-          // stored to, used below in RecordWrite.
-          Result context = allocator_->Allocate();
-          ASSERT(context.is_valid());
-          __ mov(SlotOperand(slot, context.reg()), value.reg());
-          int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
-          Result scratch = allocator_->Allocate();
-          ASSERT(scratch.is_valid());
-          frame_->Spill(context.reg());
-          frame_->Spill(value.reg());
-          __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
-        }
-      }
-    }
-
-    // Store the arguments object.  This must happen after context
-    // initialization because the arguments object may be stored in
-    // the context.
-    if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
-      StoreArgumentsObject(true);
-    }
-
-    // Initialize ThisFunction reference if present.
-    if (scope()->is_function_scope() && scope()->function() != NULL) {
-      frame_->Push(FACTORY->the_hole_value());
-      StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT);
-    }
-
-
-    // Initialize the function return target after the locals are set
-    // up, because it needs the expected frame height from the frame.
-    function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
-    function_return_is_shadowed_ = false;
-
-    // Generate code to 'execute' declarations and initialize functions
-    // (source elements). In case of an illegal redeclaration we need to
-    // handle that instead of processing the declarations.
-    if (scope()->HasIllegalRedeclaration()) {
-      Comment cmnt(masm_, "[ illegal redeclarations");
-      scope()->VisitIllegalRedeclaration(this);
-    } else {
-      Comment cmnt(masm_, "[ declarations");
-      ProcessDeclarations(scope()->declarations());
-      // Bail out if a stack-overflow exception occurred when processing
-      // declarations.
-      if (HasStackOverflow()) return;
-    }
-
-    if (FLAG_trace) {
-      frame_->CallRuntime(Runtime::kTraceEnter, 0);
-      // Ignore the return value.
-    }
-    CheckStack();
-
-    // Compile the body of the function in a vanilla state. Don't
-    // bother compiling all the code if the scope has an illegal
-    // redeclaration.
-    if (!scope()->HasIllegalRedeclaration()) {
-      Comment cmnt(masm_, "[ function body");
-#ifdef DEBUG
-      bool is_builtin = info->isolate()->bootstrapper()->IsActive();
-      bool should_trace =
-          is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
-      if (should_trace) {
-        frame_->CallRuntime(Runtime::kDebugTrace, 0);
-        // Ignore the return value.
-      }
-#endif
-      VisitStatements(info->function()->body());
-
-      // Handle the return from the function.
-      if (has_valid_frame()) {
-        // If there is a valid frame, control flow can fall off the end of
-        // the body.  In that case there is an implicit return statement.
-        ASSERT(!function_return_is_shadowed_);
-        CodeForReturnPosition(info->function());
-        frame_->PrepareForReturn();
-        Result undefined(FACTORY->undefined_value());
-        if (function_return_.is_bound()) {
-          function_return_.Jump(&undefined);
-        } else {
-          function_return_.Bind(&undefined);
-          GenerateReturnSequence(&undefined);
-        }
-      } else if (function_return_.is_linked()) {
-        // If the return target has dangling jumps to it, then we have not
-        // yet generated the return sequence.  This can happen when (a)
-        // control does not flow off the end of the body so we did not
-        // compile an artificial return statement just above, and (b) there
-        // are return statements in the body but (c) they are all shadowed.
-        Result return_value;
-        function_return_.Bind(&return_value);
-        GenerateReturnSequence(&return_value);
-      }
-    }
-  }
-
-  // Adjust for function-level loop nesting.
-  ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0);
-  loop_nesting_ = 0;
-
-  // Code generation state must be reset.
-  ASSERT(state_ == NULL);
-  ASSERT(!function_return_is_shadowed_);
-  function_return_.Unuse();
-  DeleteFrame();
-
-  // Process any deferred code using the register allocator.
-  if (!HasStackOverflow()) {
-    info->isolate()->set_jump_target_compiling_deferred_code(true);
-    ProcessDeferred();
-    info->isolate()->set_jump_target_compiling_deferred_code(false);
-  }
-
-  // There is no need to delete the register allocator, it is a
-  // stack-allocated local.
-  allocator_ = NULL;
-}
-
-
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
-  // Currently, this assertion will fail if we try to assign to
-  // a constant variable that is constant because it is read-only
-  // (such as the variable referring to a named function expression).
-  // We need to implement assignments to read-only variables.
-  // Ideally, we should do this during AST generation (by converting
-  // such assignments into expression statements); however, in general
-  // we may not be able to make the decision until past AST generation,
-  // that is when the entire program is known.
-  ASSERT(slot != NULL);
-  int index = slot->index();
-  switch (slot->type()) {
-    case Slot::PARAMETER:
-      return frame_->ParameterAt(index);
-
-    case Slot::LOCAL:
-      return frame_->LocalAt(index);
-
-    case Slot::CONTEXT: {
-      // Follow the context chain if necessary.
-      ASSERT(!tmp.is(esi));  // do not overwrite context register
-      Register context = esi;
-      int chain_length = scope()->ContextChainLength(slot->var()->scope());
-      for (int i = 0; i < chain_length; i++) {
-        // Load the closure.
-        // (All contexts, even 'with' contexts, have a closure,
-        // and it is the same for all contexts inside a function.
-        // There is no need to go to the function context first.)
-        __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
-        // Load the function context (which is the incoming, outer context).
-        __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
-        context = tmp;
-      }
-      // We may have a 'with' context now. Get the function context.
-      // (In fact this mov may never be the needed, since the scope analysis
-      // may not permit a direct context access in this case and thus we are
-      // always at a function context. However it is safe to dereference be-
-      // cause the function context of a function context is itself. Before
-      // deleting this mov we should try to create a counter-example first,
-      // though...)
-      __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
-      return ContextOperand(tmp, index);
-    }
-
-    default:
-      UNREACHABLE();
-      return Operand(eax);
-  }
-}
-
-
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
-                                                         Result tmp,
-                                                         JumpTarget* slow) {
-  ASSERT(slot->type() == Slot::CONTEXT);
-  ASSERT(tmp.is_register());
-  Register context = esi;
-
-  for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
-    if (s->num_heap_slots() > 0) {
-      if (s->calls_eval()) {
-        // Check that extension is NULL.
-        __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
-               Immediate(0));
-        slow->Branch(not_equal, not_taken);
-      }
-      __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
-      __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
-      context = tmp.reg();
-    }
-  }
-  // Check that last extension is NULL.
-  __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
-  slow->Branch(not_equal, not_taken);
-  __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
-  return ContextOperand(tmp.reg(), slot->index());
-}
-
-
-// Emit code to load the value of an expression to the top of the
-// frame. If the expression is boolean-valued it may be compiled (or
-// partially compiled) into control flow to the control destination.
-// If force_control is true, control flow is forced.
-void CodeGenerator::LoadCondition(Expression* expr,
-                                  ControlDestination* dest,
-                                  bool force_control) {
-  ASSERT(!in_spilled_code());
-  int original_height = frame_->height();
-
-  { CodeGenState new_state(this, dest);
-    Visit(expr);
-
-    // If we hit a stack overflow, we may not have actually visited
-    // the expression.  In that case, we ensure that we have a
-    // valid-looking frame state because we will continue to generate
-    // code as we unwind the C++ stack.
-    //
-    // It's possible to have both a stack overflow and a valid frame
-    // state (eg, a subexpression overflowed, visiting it returned
-    // with a dummied frame state, and visiting this expression
-    // returned with a normal-looking state).
-    if (HasStackOverflow() &&
-        !dest->is_used() &&
-        frame_->height() == original_height) {
-      dest->Goto(true);
-    }
-  }
-
-  if (force_control && !dest->is_used()) {
-    // Convert the TOS value into flow to the control destination.
-    ToBoolean(dest);
-  }
-
-  ASSERT(!(force_control && !dest->is_used()));
-  ASSERT(dest->is_used() || frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadAndSpill(Expression* expression) {
-  ASSERT(in_spilled_code());
-  set_in_spilled_code(false);
-  Load(expression);
-  frame_->SpillAll();
-  set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::LoadInSafeInt32Mode(Expression* expr,
-                                         BreakTarget* unsafe_bailout) {
-  set_unsafe_bailout(unsafe_bailout);
-  set_in_safe_int32_mode(true);
-  Load(expr);
-  Result value = frame_->Pop();
-  ASSERT(frame_->HasNoUntaggedInt32Elements());
-  if (expr->GuaranteedSmiResult()) {
-    ConvertInt32ResultToSmi(&value);
-  } else {
-    ConvertInt32ResultToNumber(&value);
-  }
-  set_in_safe_int32_mode(false);
-  set_unsafe_bailout(NULL);
-  frame_->Push(&value);
-}
-
-
-void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) {
-  set_safe_int32_mode_enabled(false);
-  Load(expr);
-  set_safe_int32_mode_enabled(true);
-}
-
-
-void CodeGenerator::ConvertInt32ResultToSmi(Result* value) {
-  ASSERT(value->is_untagged_int32());
-  if (value->is_register()) {
-    __ add(value->reg(), Operand(value->reg()));
-  } else {
-    ASSERT(value->is_constant());
-    ASSERT(value->handle()->IsSmi());
-  }
-  value->set_untagged_int32(false);
-  value->set_type_info(TypeInfo::Smi());
-}
-
-
-void CodeGenerator::ConvertInt32ResultToNumber(Result* value) {
-  ASSERT(value->is_untagged_int32());
-  if (value->is_register()) {
-    Register val = value->reg();
-    JumpTarget done;
-    __ add(val, Operand(val));
-    done.Branch(no_overflow, value);
-    __ sar(val, 1);
-    // If there was an overflow, bits 30 and 31 of the original number disagree.
-    __ xor_(val, 0x80000000u);
-    if (masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-      CpuFeatures::Scope fscope(SSE2);
-      __ cvtsi2sd(xmm0, Operand(val));
-    } else {
-      // Move val to ST[0] in the FPU
-      // Push and pop are safe with respect to the virtual frame because
-      // all synced elements are below the actual stack pointer.
-      __ push(val);
-      __ fild_s(Operand(esp, 0));
-      __ pop(val);
-    }
-    Result scratch = allocator_->Allocate();
-    ASSERT(scratch.is_register());
-    Label allocation_failed;
-    __ AllocateHeapNumber(val, scratch.reg(),
-                          no_reg, &allocation_failed);
-    VirtualFrame* clone = new VirtualFrame(frame_);
-    scratch.Unuse();
-    if (masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-      CpuFeatures::Scope fscope(SSE2);
-      __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0);
-    } else {
-      __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset));
-    }
-    done.Jump(value);
-
-    // Establish the virtual frame, cloned from where AllocateHeapNumber
-    // jumped to allocation_failed.
-    RegisterFile empty_regs;
-    SetFrame(clone, &empty_regs);
-    __ bind(&allocation_failed);
-    if (!masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-      // Pop the value from the floating point stack.
-      __ fstp(0);
-    }
-    unsafe_bailout_->Jump();
-
-    done.Bind(value);
-  } else {
-    ASSERT(value->is_constant());
-  }
-  value->set_untagged_int32(false);
-  value->set_type_info(TypeInfo::Integer32());
-}
-
-
-void CodeGenerator::Load(Expression* expr) {
-#ifdef DEBUG
-  int original_height = frame_->height();
-#endif
-  ASSERT(!in_spilled_code());
-
-  // If the expression should be a side-effect-free 32-bit int computation,
-  // compile that SafeInt32 path, and a bailout path.
-  if (!in_safe_int32_mode() &&
-      safe_int32_mode_enabled() &&
-      expr->side_effect_free() &&
-      expr->num_bit_ops() > 2 &&
-      masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    BreakTarget unsafe_bailout;
-    JumpTarget done;
-    unsafe_bailout.set_expected_height(frame_->height());
-    LoadInSafeInt32Mode(expr, &unsafe_bailout);
-    done.Jump();
-
-    if (unsafe_bailout.is_linked()) {
-      unsafe_bailout.Bind();
-      LoadWithSafeInt32ModeDisabled(expr);
-    }
-    done.Bind();
-  } else {
-    JumpTarget true_target;
-    JumpTarget false_target;
-    ControlDestination dest(&true_target, &false_target, true);
-    LoadCondition(expr, &dest, false);
-
-    if (dest.false_was_fall_through()) {
-      // The false target was just bound.
-      JumpTarget loaded;
-      frame_->Push(FACTORY->false_value());
-      // There may be dangling jumps to the true target.
-      if (true_target.is_linked()) {
-        loaded.Jump();
-        true_target.Bind();
-        frame_->Push(FACTORY->true_value());
-        loaded.Bind();
-      }
-
-    } else if (dest.is_used()) {
-      // There is true, and possibly false, control flow (with true as
-      // the fall through).
-      JumpTarget loaded;
-      frame_->Push(FACTORY->true_value());
-      if (false_target.is_linked()) {
-        loaded.Jump();
-        false_target.Bind();
-        frame_->Push(FACTORY->false_value());
-        loaded.Bind();
-      }
-
-    } else {
-      // We have a valid value on top of the frame, but we still may
-      // have dangling jumps to the true and false targets from nested
-      // subexpressions (eg, the left subexpressions of the
-      // short-circuited boolean operators).
-      ASSERT(has_valid_frame());
-      if (true_target.is_linked() || false_target.is_linked()) {
-        JumpTarget loaded;
-        loaded.Jump();  // Don't lose the current TOS.
-        if (true_target.is_linked()) {
-          true_target.Bind();
-          frame_->Push(FACTORY->true_value());
-          if (false_target.is_linked()) {
-            loaded.Jump();
-          }
-        }
-        if (false_target.is_linked()) {
-          false_target.Bind();
-          frame_->Push(FACTORY->false_value());
-        }
-        loaded.Bind();
-      }
-    }
-  }
-  ASSERT(has_valid_frame());
-  ASSERT(frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadGlobal() {
-  if (in_spilled_code()) {
-    frame_->EmitPush(GlobalObjectOperand());
-  } else {
-    Result temp = allocator_->Allocate();
-    __ mov(temp.reg(), GlobalObjectOperand());
-    frame_->Push(&temp);
-  }
-}
-
-
-void CodeGenerator::LoadGlobalReceiver() {
-  Result temp = allocator_->Allocate();
-  Register reg = temp.reg();
-  __ mov(reg, GlobalObjectOperand());
-  __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
-  frame_->Push(&temp);
-}
-
-
-void CodeGenerator::LoadTypeofExpression(Expression* expr) {
-  // Special handling of identifiers as subexpressions of typeof.
-  Variable* variable = expr->AsVariableProxy()->AsVariable();
-  if (variable != NULL && !variable->is_this() && variable->is_global()) {
-    // For a global variable we build the property reference
-    // <global>.<variable> and perform a (regular non-contextual) property
-    // load to make sure we do not get reference errors.
-    Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
-    Literal key(variable->name());
-    Property property(&global, &key, RelocInfo::kNoPosition);
-    Reference ref(this, &property);
-    ref.GetValue();
-  } else if (variable != NULL && variable->AsSlot() != NULL) {
-    // For a variable that rewrites to a slot, we signal it is the immediate
-    // subexpression of a typeof.
-    LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF);
-  } else {
-    // Anything else can be handled normally.
-    Load(expr);
-  }
-}
-
-
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
-  if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
-
-  // In strict mode there is no need for shadow arguments.
-  ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode());
-
-  // We don't want to do lazy arguments allocation for functions that
-  // have heap-allocated contexts, because it interfers with the
-  // uninitialized const tracking in the context objects.
-  return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode())
-      ? EAGER_ARGUMENTS_ALLOCATION
-      : LAZY_ARGUMENTS_ALLOCATION;
-}
-
-
-Result CodeGenerator::StoreArgumentsObject(bool initial) {
-  ArgumentsAllocationMode mode = ArgumentsMode();
-  ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
-
-  Comment cmnt(masm_, "[ store arguments object");
-  if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
-    // When using lazy arguments allocation, we store the arguments marker value
-    // as a sentinel indicating that the arguments object hasn't been
-    // allocated yet.
-    frame_->Push(FACTORY->arguments_marker());
-  } else {
-    ArgumentsAccessStub stub(is_strict_mode()
-        ? ArgumentsAccessStub::NEW_STRICT
-        : ArgumentsAccessStub::NEW_NON_STRICT);
-    frame_->PushFunction();
-    frame_->PushReceiverSlotAddress();
-    frame_->Push(Smi::FromInt(scope()->num_parameters()));
-    Result result = frame_->CallStub(&stub, 3);
-    frame_->Push(&result);
-  }
-
-  Variable* arguments = scope()->arguments();
-  Variable* shadow = scope()->arguments_shadow();
-
-  ASSERT(arguments != NULL && arguments->AsSlot() != NULL);
-  ASSERT((shadow != NULL && shadow->AsSlot() != NULL) ||
-         scope()->is_strict_mode());
-
-  JumpTarget done;
-  bool skip_arguments = false;
-  if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
-    // We have to skip storing into the arguments slot if it has
-    // already been written to. This can happen if the a function
-    // has a local variable named 'arguments'.
-    LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF);
-    Result probe = frame_->Pop();
-    if (probe.is_constant()) {
-      // We have to skip updating the arguments object if it has
-      // been assigned a proper value.
-      skip_arguments = !probe.handle()->IsArgumentsMarker();
-    } else {
-      __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker()));
-      probe.Unuse();
-      done.Branch(not_equal);
-    }
-  }
-  if (!skip_arguments) {
-    StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT);
-    if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
-  }
-  if (shadow != NULL) {
-    StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT);
-  }
-  return frame_->Pop();
-}
-
-//------------------------------------------------------------------------------
-// CodeGenerator implementation of variables, lookups, and stores.
-
-Reference::Reference(CodeGenerator* cgen,
-                     Expression* expression,
-                     bool persist_after_get)
-    : cgen_(cgen),
-      expression_(expression),
-      type_(ILLEGAL),
-      persist_after_get_(persist_after_get) {
-  cgen->LoadReference(this);
-}
-
-
-Reference::~Reference() {
-  ASSERT(is_unloaded() || is_illegal());
-}
-
-
-void CodeGenerator::LoadReference(Reference* ref) {
-  // References are loaded from both spilled and unspilled code.  Set the
-  // state to unspilled to allow that (and explicitly spill after
-  // construction at the construction sites).
-  bool was_in_spilled_code = in_spilled_code_;
-  in_spilled_code_ = false;
-
-  Comment cmnt(masm_, "[ LoadReference");
-  Expression* e = ref->expression();
-  Property* property = e->AsProperty();
-  Variable* var = e->AsVariableProxy()->AsVariable();
-
-  if (property != NULL) {
-    // The expression is either a property or a variable proxy that rewrites
-    // to a property.
-    Load(property->obj());
-    if (property->key()->IsPropertyName()) {
-      ref->set_type(Reference::NAMED);
-    } else {
-      Load(property->key());
-      ref->set_type(Reference::KEYED);
-    }
-  } else if (var != NULL) {
-    // The expression is a variable proxy that does not rewrite to a
-    // property.  Global variables are treated as named property references.
-    if (var->is_global()) {
-      // If eax is free, the register allocator prefers it.  Thus the code
-      // generator will load the global object into eax, which is where
-      // LoadIC wants it.  Most uses of Reference call LoadIC directly
-      // after the reference is created.
-      frame_->Spill(eax);
-      LoadGlobal();
-      ref->set_type(Reference::NAMED);
-    } else {
-      ASSERT(var->AsSlot() != NULL);
-      ref->set_type(Reference::SLOT);
-    }
-  } else {
-    // Anything else is a runtime error.
-    Load(e);
-    frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
-  }
-
-  in_spilled_code_ = was_in_spilled_code;
-}
-
-
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
-// convert it to a boolean in the condition code register or jump to
-// 'false_target'/'true_target' as appropriate.
-void CodeGenerator::ToBoolean(ControlDestination* dest) {
-  Comment cmnt(masm_, "[ ToBoolean");
-
-  // The value to convert should be popped from the frame.
-  Result value = frame_->Pop();
-  value.ToRegister();
-
-  if (value.is_integer32()) {  // Also takes Smi case.
-    Comment cmnt(masm_, "ONLY_INTEGER_32");
-    if (FLAG_debug_code) {
-      Label ok;
-      __ AbortIfNotNumber(value.reg());
-      __ test(value.reg(), Immediate(kSmiTagMask));
-      __ j(zero, &ok);
-      __ fldz();
-      __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
-      __ FCmp();
-      __ j(not_zero, &ok);
-      __ Abort("Smi was wrapped in HeapNumber in output from bitop");
-      __ bind(&ok);
-    }
-    // In the integer32 case there are no Smis hidden in heap numbers, so we
-    // need only test for Smi zero.
-    __ test(value.reg(), Operand(value.reg()));
-    dest->false_target()->Branch(zero);
-    value.Unuse();
-    dest->Split(not_zero);
-  } else if (value.is_number()) {
-    Comment cmnt(masm_, "ONLY_NUMBER");
-    // Fast case if TypeInfo indicates only numbers.
-    if (FLAG_debug_code) {
-      __ AbortIfNotNumber(value.reg());
-    }
-    // Smi => false iff zero.
-    STATIC_ASSERT(kSmiTag == 0);
-    __ test(value.reg(), Operand(value.reg()));
-    dest->false_target()->Branch(zero);
-    __ test(value.reg(), Immediate(kSmiTagMask));
-    dest->true_target()->Branch(zero);
-    __ fldz();
-    __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
-    __ FCmp();
-    value.Unuse();
-    dest->Split(not_zero);
-  } else {
-    // Fast case checks.
-    // 'false' => false.
-    __ cmp(value.reg(), FACTORY->false_value());
-    dest->false_target()->Branch(equal);
-
-    // 'true' => true.
-    __ cmp(value.reg(), FACTORY->true_value());
-    dest->true_target()->Branch(equal);
-
-    // 'undefined' => false.
-    __ cmp(value.reg(), FACTORY->undefined_value());
-    dest->false_target()->Branch(equal);
-
-    // Smi => false iff zero.
-    STATIC_ASSERT(kSmiTag == 0);
-    __ test(value.reg(), Operand(value.reg()));
-    dest->false_target()->Branch(zero);
-    __ test(value.reg(), Immediate(kSmiTagMask));
-    dest->true_target()->Branch(zero);
-
-    // Call the stub for all other cases.
-    frame_->Push(&value);  // Undo the Pop() from above.
-    ToBooleanStub stub;
-    Result temp = frame_->CallStub(&stub, 1);
-    // Convert the result to a condition code.
-    __ test(temp.reg(), Operand(temp.reg()));
-    temp.Unuse();
-    dest->Split(not_equal);
-  }
-}
-
-
-// Perform or call the specialized stub for a binary operation.  Requires the
-// three registers left, right and dst to be distinct and spilled.  This
-// deferred operation has up to three entry points:  The main one calls the
-// runtime system.  The second is for when the result is a non-Smi.  The
-// third is for when at least one of the inputs is non-Smi and we have SSE2.
-class DeferredInlineBinaryOperation: public DeferredCode {
- public:
-  DeferredInlineBinaryOperation(Token::Value op,
-                                Register dst,
-                                Register left,
-                                Register right,
-                                TypeInfo left_info,
-                                TypeInfo right_info,
-                                OverwriteMode mode)
-      : op_(op), dst_(dst), left_(left), right_(right),
-        left_info_(left_info), right_info_(right_info), mode_(mode) {
-    set_comment("[ DeferredInlineBinaryOperation");
-    ASSERT(!left.is(right));
-  }
-
-  virtual void Generate();
-
-  // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and
-  // Exit().
-  virtual bool AutoSaveAndRestore() { return false; }
-
-  void JumpToAnswerOutOfRange(Condition cond);
-  void JumpToConstantRhs(Condition cond, Smi* smi_value);
-  Label* NonSmiInputLabel();
-
- private:
-  void GenerateAnswerOutOfRange();
-  void GenerateNonSmiInput();
-
-  Token::Value op_;
-  Register dst_;
-  Register left_;
-  Register right_;
-  TypeInfo left_info_;
-  TypeInfo right_info_;
-  OverwriteMode mode_;
-  Label answer_out_of_range_;
-  Label non_smi_input_;
-  Label constant_rhs_;
-  Smi* smi_value_;
-};
-
-
-Label* DeferredInlineBinaryOperation::NonSmiInputLabel() {
-  if (Token::IsBitOp(op_) &&
-      masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    return &non_smi_input_;
-  } else {
-    return entry_label();
-  }
-}
-
-
-void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) {
-  __ j(cond, &answer_out_of_range_);
-}
-
-
-void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond,
-                                                      Smi* smi_value) {
-  smi_value_ = smi_value;
-  __ j(cond, &constant_rhs_);
-}
-
-
-void DeferredInlineBinaryOperation::Generate() {
-  // Registers are not saved implicitly for this stub, so we should not
-  // tread on the registers that were not passed to us.
-  if (masm()->isolate()->cpu_features()->IsSupported(SSE2) &&
-      ((op_ == Token::ADD) ||
-       (op_ == Token::SUB) ||
-       (op_ == Token::MUL) ||
-       (op_ == Token::DIV))) {
-    CpuFeatures::Scope use_sse2(SSE2);
-    Label call_runtime, after_alloc_failure;
-    Label left_smi, right_smi, load_right, do_op;
-    if (!left_info_.IsSmi()) {
-      __ test(left_, Immediate(kSmiTagMask));
-      __ j(zero, &left_smi);
-      if (!left_info_.IsNumber()) {
-        __ cmp(FieldOperand(left_, HeapObject::kMapOffset),
-               FACTORY->heap_number_map());
-        __ j(not_equal, &call_runtime);
-      }
-      __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
-      if (mode_ == OVERWRITE_LEFT) {
-        __ mov(dst_, left_);
-      }
-      __ jmp(&load_right);
-
-      __ bind(&left_smi);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(left_);
-    }
-    __ SmiUntag(left_);
-    __ cvtsi2sd(xmm0, Operand(left_));
-    __ SmiTag(left_);
-    if (mode_ == OVERWRITE_LEFT) {
-      Label alloc_failure;
-      __ push(left_);
-      __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
-      __ pop(left_);
-    }
-
-    __ bind(&load_right);
-    if (!right_info_.IsSmi()) {
-      __ test(right_, Immediate(kSmiTagMask));
-      __ j(zero, &right_smi);
-      if (!right_info_.IsNumber()) {
-        __ cmp(FieldOperand(right_, HeapObject::kMapOffset),
-               FACTORY->heap_number_map());
-        __ j(not_equal, &call_runtime);
-      }
-      __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
-      if (mode_ == OVERWRITE_RIGHT) {
-        __ mov(dst_, right_);
-      } else if (mode_ == NO_OVERWRITE) {
-        Label alloc_failure;
-        __ push(left_);
-        __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
-        __ pop(left_);
-      }
-      __ jmp(&do_op);
-
-      __ bind(&right_smi);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(right_);
-    }
-    __ SmiUntag(right_);
-    __ cvtsi2sd(xmm1, Operand(right_));
-    __ SmiTag(right_);
-    if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
-      __ push(left_);
-      __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
-      __ pop(left_);
-    }
-
-    __ bind(&do_op);
-    switch (op_) {
-      case Token::ADD: __ addsd(xmm0, xmm1); break;
-      case Token::SUB: __ subsd(xmm0, xmm1); break;
-      case Token::MUL: __ mulsd(xmm0, xmm1); break;
-      case Token::DIV: __ divsd(xmm0, xmm1); break;
-      default: UNREACHABLE();
-    }
-    __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
-    Exit();
-
-
-    __ bind(&after_alloc_failure);
-    __ pop(left_);
-    __ bind(&call_runtime);
-  }
-  // Register spilling is not done implicitly for this stub.
-  // We can't postpone it any more now though.
-  SaveRegisters();
-
-  GenericBinaryOpStub stub(op_,
-                           mode_,
-                           NO_SMI_CODE_IN_STUB,
-                           TypeInfo::Combine(left_info_, right_info_));
-  stub.GenerateCall(masm_, left_, right_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-  RestoreRegisters();
-  Exit();
-
-  if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) {
-    GenerateNonSmiInput();
-  }
-  if (answer_out_of_range_.is_linked()) {
-    GenerateAnswerOutOfRange();
-  }
-}
-
-
-void DeferredInlineBinaryOperation::GenerateNonSmiInput() {
-  // We know at least one of the inputs was not a Smi.
-  // This is a third entry point into the deferred code.
-  // We may not overwrite left_ because we want to be able
-  // to call the handling code for non-smi answer and it
-  // might want to overwrite the heap number in left_.
-  ASSERT(!right_.is(dst_));
-  ASSERT(!left_.is(dst_));
-  ASSERT(!left_.is(right_));
-  // This entry point is used for bit ops where the right hand side
-  // is a constant Smi and the left hand side is a heap object.  It
-  // is also used for bit ops where both sides are unknown, but where
-  // at least one of them is a heap object.
-  bool rhs_is_constant = constant_rhs_.is_linked();
-  // We can't generate code for both cases.
-  ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked());
-
-  if (FLAG_debug_code) {
-    __ int3();  // We don't fall through into this code.
-  }
-
-  __ bind(&non_smi_input_);
-
-  if (rhs_is_constant) {
-    __ bind(&constant_rhs_);
-    // In this case the input is a heap object and it is in the dst_ register.
-    // The left_ and right_ registers have not been initialized yet.
-    __ mov(right_, Immediate(smi_value_));
-    __ mov(left_, Operand(dst_));
-    if (!masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-      __ jmp(entry_label());
-      return;
-    } else {
-      CpuFeatures::Scope use_sse2(SSE2);
-      __ JumpIfNotNumber(dst_, left_info_, entry_label());
-      __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
-      __ SmiUntag(right_);
-    }
-  } else {
-    // We know we have SSE2 here because otherwise the label is not linked (see
-    // NonSmiInputLabel).
-    CpuFeatures::Scope use_sse2(SSE2);
-    // Handle the non-constant right hand side situation:
-    if (left_info_.IsSmi()) {
-      // Right is a heap object.
-      __ JumpIfNotNumber(right_, right_info_, entry_label());
-      __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label());
-      __ mov(dst_, Operand(left_));
-      __ SmiUntag(dst_);
-    } else if (right_info_.IsSmi()) {
-      // Left is a heap object.
-      __ JumpIfNotNumber(left_, left_info_, entry_label());
-      __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
-      __ SmiUntag(right_);
-    } else {
-      // Here we don't know if it's one or both that is a heap object.
-      Label only_right_is_heap_object, got_both;
-      __ mov(dst_, Operand(left_));
-      __ SmiUntag(dst_, &only_right_is_heap_object);
-      // Left was a heap object.
-      __ JumpIfNotNumber(left_, left_info_, entry_label());
-      __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
-      __ SmiUntag(right_, &got_both);
-      // Both were heap objects.
-      __ rcl(right_, 1);  // Put tag back.
-      __ JumpIfNotNumber(right_, right_info_, entry_label());
-      __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
-      __ jmp(&got_both);
-      __ bind(&only_right_is_heap_object);
-      __ JumpIfNotNumber(right_, right_info_, entry_label());
-      __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
-      __ bind(&got_both);
-    }
-  }
-  ASSERT(op_ == Token::BIT_AND ||
-         op_ == Token::BIT_OR ||
-         op_ == Token::BIT_XOR ||
-         right_.is(ecx));
-  switch (op_) {
-    case Token::BIT_AND: __ and_(dst_, Operand(right_));  break;
-    case Token::BIT_OR:   __ or_(dst_, Operand(right_));  break;
-    case Token::BIT_XOR: __ xor_(dst_, Operand(right_));  break;
-    case Token::SHR:     __ shr_cl(dst_);  break;
-    case Token::SAR:     __ sar_cl(dst_);  break;
-    case Token::SHL:     __ shl_cl(dst_);  break;
-    default: UNREACHABLE();
-  }
-  if (op_ == Token::SHR) {
-    // Check that the *unsigned* result fits in a smi.  Neither of
-    // the two high-order bits can be set:
-    //  * 0x80000000: high bit would be lost when smi tagging.
-    //  * 0x40000000: this number would convert to negative when smi
-    //    tagging.
-    __ test(dst_, Immediate(0xc0000000));
-    __ j(not_zero, &answer_out_of_range_);
-  } else {
-    // Check that the *signed* result fits in a smi.
-    __ cmp(dst_, 0xc0000000);
-    __ j(negative, &answer_out_of_range_);
-  }
-  __ SmiTag(dst_);
-  Exit();
-}
-
-
-void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() {
-  Label after_alloc_failure2;
-  Label allocation_ok;
-  __ bind(&after_alloc_failure2);
-  // We have to allocate a number, causing a GC, while keeping hold of
-  // the answer in dst_.  The answer is not a Smi.  We can't just call the
-  // runtime shift function here because we already threw away the inputs.
-  __ xor_(left_, Operand(left_));
-  __ shl(dst_, 1);  // Put top bit in carry flag and Smi tag the low bits.
-  __ rcr(left_, 1);  // Rotate with carry.
-  __ push(dst_);   // Smi tagged low 31 bits.
-  __ push(left_);  // 0 or 0x80000000, which is Smi tagged in both cases.
-  __ CallRuntime(Runtime::kNumberAlloc, 0);
-  if (!left_.is(eax)) {
-    __ mov(left_, eax);
-  }
-  __ pop(right_);   // High bit.
-  __ pop(dst_);     // Low 31 bits.
-  __ shr(dst_, 1);  // Put 0 in top bit.
-  __ or_(dst_, Operand(right_));
-  __ jmp(&allocation_ok);
-
-  // This is the second entry point to the deferred code.  It is used only by
-  // the bit operations.
-  // The dst_ register has the answer.  It is not Smi tagged.  If mode_ is
-  // OVERWRITE_LEFT then left_ must contain either an overwritable heap number
-  // or a Smi.
-  // Put a heap number pointer in left_.
-  __ bind(&answer_out_of_range_);
-  SaveRegisters();
-  if (mode_ == OVERWRITE_LEFT) {
-    __ test(left_, Immediate(kSmiTagMask));
-    __ j(not_zero, &allocation_ok);
-  }
-  // This trashes right_.
-  __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2);
-  __ bind(&allocation_ok);
-  if (masm()->isolate()->cpu_features()->IsSupported(SSE2) &&
-      op_ != Token::SHR) {
-    CpuFeatures::Scope use_sse2(SSE2);
-    ASSERT(Token::IsBitOp(op_));
-    // Signed conversion.
-    __ cvtsi2sd(xmm0, Operand(dst_));
-    __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0);
-  } else {
-    if (op_ == Token::SHR) {
-      __ push(Immediate(0));  // High word of unsigned value.
-      __ push(dst_);
-      __ fild_d(Operand(esp, 0));
-      __ Drop(2);
-    } else {
-      ASSERT(Token::IsBitOp(op_));
-      __ push(dst_);
-      __ fild_s(Operand(esp, 0));  // Signed conversion.
-      __ pop(dst_);
-    }
-    __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset));
-  }
-  __ mov(dst_, left_);
-  RestoreRegisters();
-  Exit();
-}
-
-
-static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
-                                  Token::Value op,
-                                  const Result& right,
-                                  const Result& left) {
-  // Set TypeInfo of result according to the operation performed.
-  // Rely on the fact that smis have a 31 bit payload on ia32.
-  STATIC_ASSERT(kSmiValueSize == 31);
-  switch (op) {
-    case Token::COMMA:
-      return right.type_info();
-    case Token::OR:
-    case Token::AND:
-      // Result type can be either of the two input types.
-      return operands_type;
-    case Token::BIT_AND: {
-      // Anding with positive Smis will give you a Smi.
-      if (right.is_constant() && right.handle()->IsSmi() &&
-          Smi::cast(*right.handle())->value() >= 0) {
-        return TypeInfo::Smi();
-      } else if (left.is_constant() && left.handle()->IsSmi() &&
-          Smi::cast(*left.handle())->value() >= 0) {
-        return TypeInfo::Smi();
-      }
-      return (operands_type.IsSmi())
-          ? TypeInfo::Smi()
-          : TypeInfo::Integer32();
-    }
-    case Token::BIT_OR: {
-      // Oring with negative Smis will give you a Smi.
-      if (right.is_constant() && right.handle()->IsSmi() &&
-          Smi::cast(*right.handle())->value() < 0) {
-        return TypeInfo::Smi();
-      } else if (left.is_constant() && left.handle()->IsSmi() &&
-          Smi::cast(*left.handle())->value() < 0) {
-        return TypeInfo::Smi();
-      }
-      return (operands_type.IsSmi())
-          ? TypeInfo::Smi()
-          : TypeInfo::Integer32();
-    }
-    case Token::BIT_XOR:
-      // Result is always a 32 bit integer. Smi property of inputs is preserved.
-      return (operands_type.IsSmi())
-          ? TypeInfo::Smi()
-          : TypeInfo::Integer32();
-    case Token::SAR:
-      if (left.is_smi()) return TypeInfo::Smi();
-      // Result is a smi if we shift by a constant >= 1, otherwise an integer32.
-      // Shift amount is masked with 0x1F (ECMA standard 11.7.2).
-      return (right.is_constant() && right.handle()->IsSmi()
-              && (Smi::cast(*right.handle())->value() & 0x1F)  >= 1)
-          ? TypeInfo::Smi()
-          : TypeInfo::Integer32();
-    case Token::SHR:
-      // Result is a smi if we shift by a constant >= 2, an integer32 if
-      // we shift by 1, and an unsigned 32-bit integer if we shift by 0.
-      if (right.is_constant() && right.handle()->IsSmi()) {
-        int shift_amount = Smi::cast(*right.handle())->value() & 0x1F;
-        if (shift_amount > 1) {
-          return TypeInfo::Smi();
-        } else if (shift_amount > 0) {
-          return TypeInfo::Integer32();
-        }
-      }
-      return TypeInfo::Number();
-    case Token::ADD:
-      if (operands_type.IsSmi()) {
-        // The Integer32 range is big enough to take the sum of any two Smis.
-        return TypeInfo::Integer32();
-      } else if (operands_type.IsNumber()) {
-        return TypeInfo::Number();
-      } else if (left.type_info().IsString() || right.type_info().IsString()) {
-        return TypeInfo::String();
-      } else {
-        return TypeInfo::Unknown();
-      }
-    case Token::SHL:
-      return TypeInfo::Integer32();
-    case Token::SUB:
-      // The Integer32 range is big enough to take the difference of any two
-      // Smis.
-      return (operands_type.IsSmi()) ?
-                    TypeInfo::Integer32() :
-                    TypeInfo::Number();
-    case Token::MUL:
-    case Token::DIV:
-    case Token::MOD:
-      // Result is always a number.
-      return TypeInfo::Number();
-    default:
-      UNREACHABLE();
-  }
-  UNREACHABLE();
-  return TypeInfo::Unknown();
-}
-
-
-void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
-                                           OverwriteMode overwrite_mode) {
-  Comment cmnt(masm_, "[ BinaryOperation");
-  Token::Value op = expr->op();
-  Comment cmnt_token(masm_, Token::String(op));
-
-  if (op == Token::COMMA) {
-    // Simply discard left value.
-    frame_->Nip(1);
-    return;
-  }
-
-  Result right = frame_->Pop();
-  Result left = frame_->Pop();
-
-  if (op == Token::ADD) {
-    const bool left_is_string = left.type_info().IsString();
-    const bool right_is_string = right.type_info().IsString();
-    // Make sure constant strings have string type info.
-    ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
-           left_is_string);
-    ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
-           right_is_string);
-    if (left_is_string || right_is_string) {
-      frame_->Push(&left);
-      frame_->Push(&right);
-      Result answer;
-      if (left_is_string) {
-        if (right_is_string) {
-          StringAddStub stub(NO_STRING_CHECK_IN_STUB);
-          answer = frame_->CallStub(&stub, 2);
-        } else {
-          StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB);
-          answer = frame_->CallStub(&stub, 2);
-        }
-      } else if (right_is_string) {
-        StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB);
-        answer = frame_->CallStub(&stub, 2);
-      }
-      answer.set_type_info(TypeInfo::String());
-      frame_->Push(&answer);
-      return;
-    }
-    // Neither operand is known to be a string.
-  }
-
-  bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
-  bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
-  bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
-  bool right_is_non_smi_constant =
-      right.is_constant() && !right.handle()->IsSmi();
-
-  if (left_is_smi_constant && right_is_smi_constant) {
-    // Compute the constant result at compile time, and leave it on the frame.
-    int left_int = Smi::cast(*left.handle())->value();
-    int right_int = Smi::cast(*right.handle())->value();
-    if (FoldConstantSmis(op, left_int, right_int)) return;
-  }
-
-  // Get number type of left and right sub-expressions.
-  TypeInfo operands_type =
-      TypeInfo::Combine(left.type_info(), right.type_info());
-
-  TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
-
-  Result answer;
-  if (left_is_non_smi_constant || right_is_non_smi_constant) {
-    // Go straight to the slow case, with no smi code.
-    GenericBinaryOpStub stub(op,
-                             overwrite_mode,
-                             NO_SMI_CODE_IN_STUB,
-                             operands_type);
-    answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
-  } else if (right_is_smi_constant) {
-    answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
-                                        false, overwrite_mode);
-  } else if (left_is_smi_constant) {
-    answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
-                                        true, overwrite_mode);
-  } else {
-    // Set the flags based on the operation, type and loop nesting level.
-    // Bit operations always assume they likely operate on Smis. Still only
-    // generate the inline Smi check code if this operation is part of a loop.
-    // For all other operations only inline the Smi check code for likely smis
-    // if the operation is part of a loop.
-    if (loop_nesting() > 0 &&
-        (Token::IsBitOp(op) ||
-         operands_type.IsInteger32() ||
-         expr->type()->IsLikelySmi())) {
-      answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
-    } else {
-      GenericBinaryOpStub stub(op,
-                               overwrite_mode,
-                               NO_GENERIC_BINARY_FLAGS,
-                               operands_type);
-      answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
-    }
-  }
-
-  answer.set_type_info(result_type);
-  frame_->Push(&answer);
-}
-
-
-Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
-                                                      Result* left,
-                                                      Result* right) {
-  if (stub->ArgsInRegistersSupported()) {
-    stub->SetArgsInRegisters();
-    return frame_->CallStub(stub, left, right);
-  } else {
-    frame_->Push(left);
-    frame_->Push(right);
-    return frame_->CallStub(stub, 2);
-  }
-}
-
-
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
-  Object* answer_object = HEAP->undefined_value();
-  switch (op) {
-    case Token::ADD:
-      if (Smi::IsValid(left + right)) {
-        answer_object = Smi::FromInt(left + right);
-      }
-      break;
-    case Token::SUB:
-      if (Smi::IsValid(left - right)) {
-        answer_object = Smi::FromInt(left - right);
-      }
-      break;
-    case Token::MUL: {
-        double answer = static_cast<double>(left) * right;
-        if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
-          // If the product is zero and the non-zero factor is negative,
-          // the spec requires us to return floating point negative zero.
-          if (answer != 0 || (left >= 0 && right >= 0)) {
-            answer_object = Smi::FromInt(static_cast<int>(answer));
-          }
-        }
-      }
-      break;
-    case Token::DIV:
-    case Token::MOD:
-      break;
-    case Token::BIT_OR:
-      answer_object = Smi::FromInt(left | right);
-      break;
-    case Token::BIT_AND:
-      answer_object = Smi::FromInt(left & right);
-      break;
-    case Token::BIT_XOR:
-      answer_object = Smi::FromInt(left ^ right);
-      break;
-
-    case Token::SHL: {
-        int shift_amount = right & 0x1F;
-        if (Smi::IsValid(left << shift_amount)) {
-          answer_object = Smi::FromInt(left << shift_amount);
-        }
-        break;
-      }
-    case Token::SHR: {
-        int shift_amount = right & 0x1F;
-        unsigned int unsigned_left = left;
-        unsigned_left >>= shift_amount;
-        if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
-          answer_object = Smi::FromInt(unsigned_left);
-        }
-        break;
-      }
-    case Token::SAR: {
-        int shift_amount = right & 0x1F;
-        unsigned int unsigned_left = left;
-        if (left < 0) {
-          // Perform arithmetic shift of a negative number by
-          // complementing number, logical shifting, complementing again.
-          unsigned_left = ~unsigned_left;
-          unsigned_left >>= shift_amount;
-          unsigned_left = ~unsigned_left;
-        } else {
-          unsigned_left >>= shift_amount;
-        }
-        ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
-        answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
-        break;
-      }
-    default:
-      UNREACHABLE();
-      break;
-  }
-  if (answer_object->IsUndefined()) {
-    return false;
-  }
-  frame_->Push(Handle<Object>(answer_object));
-  return true;
-}
-
-
-void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left,
-                                               Result* right,
-                                               JumpTarget* both_smi) {
-  TypeInfo left_info = left->type_info();
-  TypeInfo right_info = right->type_info();
-  if (left_info.IsDouble() || left_info.IsString() ||
-      right_info.IsDouble() || right_info.IsString()) {
-    // We know that left and right are not both smi.  Don't do any tests.
-    return;
-  }
-
-  if (left->reg().is(right->reg())) {
-    if (!left_info.IsSmi()) {
-      __ test(left->reg(), Immediate(kSmiTagMask));
-      both_smi->Branch(zero);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
-      left->Unuse();
-      right->Unuse();
-      both_smi->Jump();
-    }
-  } else if (!left_info.IsSmi()) {
-    if (!right_info.IsSmi()) {
-      Result temp = allocator_->Allocate();
-      ASSERT(temp.is_valid());
-      __ mov(temp.reg(), left->reg());
-      __ or_(temp.reg(), Operand(right->reg()));
-      __ test(temp.reg(), Immediate(kSmiTagMask));
-      temp.Unuse();
-      both_smi->Branch(zero);
-    } else {
-      __ test(left->reg(), Immediate(kSmiTagMask));
-      both_smi->Branch(zero);
-    }
-  } else {
-    if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
-    if (!right_info.IsSmi()) {
-      __ test(right->reg(), Immediate(kSmiTagMask));
-      both_smi->Branch(zero);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
-      left->Unuse();
-      right->Unuse();
-      both_smi->Jump();
-    }
-  }
-}
-
-
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
-                                                  Register right,
-                                                  Register scratch,
-                                                  TypeInfo left_info,
-                                                  TypeInfo right_info,
-                                                  DeferredCode* deferred) {
-  JumpIfNotBothSmiUsingTypeInfo(left,
-                                right,
-                                scratch,
-                                left_info,
-                                right_info,
-                                deferred->entry_label());
-}
-
-
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
-                                                  Register right,
-                                                  Register scratch,
-                                                  TypeInfo left_info,
-                                                  TypeInfo right_info,
-                                                  Label* on_not_smi) {
-  if (left.is(right)) {
-    if (!left_info.IsSmi()) {
-      __ test(left, Immediate(kSmiTagMask));
-      __ j(not_zero, on_not_smi);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(left);
-    }
-  } else if (!left_info.IsSmi()) {
-    if (!right_info.IsSmi()) {
-      __ mov(scratch, left);
-      __ or_(scratch, Operand(right));
-      __ test(scratch, Immediate(kSmiTagMask));
-      __ j(not_zero, on_not_smi);
-    } else {
-      __ test(left, Immediate(kSmiTagMask));
-      __ j(not_zero, on_not_smi);
-      if (FLAG_debug_code) __ AbortIfNotSmi(right);
-    }
-  } else {
-    if (FLAG_debug_code) __ AbortIfNotSmi(left);
-    if (!right_info.IsSmi()) {
-      __ test(right, Immediate(kSmiTagMask));
-      __ j(not_zero, on_not_smi);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(right);
-    }
-  }
-}
-
-
-// Implements a binary operation using a deferred code object and some
-// inline code to operate on smis quickly.
-Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
-                                               Result* left,
-                                               Result* right,
-                                               OverwriteMode overwrite_mode) {
-  // Copy the type info because left and right may be overwritten.
-  TypeInfo left_type_info = left->type_info();
-  TypeInfo right_type_info = right->type_info();
-  Token::Value op = expr->op();
-  Result answer;
-  // Special handling of div and mod because they use fixed registers.
-  if (op == Token::DIV || op == Token::MOD) {
-    // We need eax as the quotient register, edx as the remainder
-    // register, neither left nor right in eax or edx, and left copied
-    // to eax.
-    Result quotient;
-    Result remainder;
-    bool left_is_in_eax = false;
-    // Step 1: get eax for quotient.
-    if ((left->is_register() && left->reg().is(eax)) ||
-        (right->is_register() && right->reg().is(eax))) {
-      // One or both is in eax.  Use a fresh non-edx register for
-      // them.
-      Result fresh = allocator_->Allocate();
-      ASSERT(fresh.is_valid());
-      if (fresh.reg().is(edx)) {
-        remainder = fresh;
-        fresh = allocator_->Allocate();
-        ASSERT(fresh.is_valid());
-      }
-      if (left->is_register() && left->reg().is(eax)) {
-        quotient = *left;
-        *left = fresh;
-        left_is_in_eax = true;
-      }
-      if (right->is_register() && right->reg().is(eax)) {
-        quotient = *right;
-        *right = fresh;
-      }
-      __ mov(fresh.reg(), eax);
-    } else {
-      // Neither left nor right is in eax.
-      quotient = allocator_->Allocate(eax);
-    }
-    ASSERT(quotient.is_register() && quotient.reg().is(eax));
-    ASSERT(!(left->is_register() && left->reg().is(eax)));
-    ASSERT(!(right->is_register() && right->reg().is(eax)));
-
-    // Step 2: get edx for remainder if necessary.
-    if (!remainder.is_valid()) {
-      if ((left->is_register() && left->reg().is(edx)) ||
-          (right->is_register() && right->reg().is(edx))) {
-        Result fresh = allocator_->Allocate();
-        ASSERT(fresh.is_valid());
-        if (left->is_register() && left->reg().is(edx)) {
-          remainder = *left;
-          *left = fresh;
-        }
-        if (right->is_register() && right->reg().is(edx)) {
-          remainder = *right;
-          *right = fresh;
-        }
-        __ mov(fresh.reg(), edx);
-      } else {
-        // Neither left nor right is in edx.
-        remainder = allocator_->Allocate(edx);
-      }
-    }
-    ASSERT(remainder.is_register() && remainder.reg().is(edx));
-    ASSERT(!(left->is_register() && left->reg().is(edx)));
-    ASSERT(!(right->is_register() && right->reg().is(edx)));
-
-    left->ToRegister();
-    right->ToRegister();
-    frame_->Spill(eax);
-    frame_->Spill(edx);
-    // DeferredInlineBinaryOperation requires all the registers that it is
-    // told about to be spilled and distinct.
-    Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
-
-    // Check that left and right are smi tagged.
-    DeferredInlineBinaryOperation* deferred =
-        new DeferredInlineBinaryOperation(op,
-                                          (op == Token::DIV) ? eax : edx,
-                                          left->reg(),
-                                          distinct_right.reg(),
-                                          left_type_info,
-                                          right_type_info,
-                                          overwrite_mode);
-    JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx,
-                                  left_type_info, right_type_info, deferred);
-    if (!left_is_in_eax) {
-      __ mov(eax, left->reg());
-    }
-    // Sign extend eax into edx:eax.
-    __ cdq();
-    // Check for 0 divisor.
-    __ test(right->reg(), Operand(right->reg()));
-    deferred->Branch(zero);
-    // Divide edx:eax by the right operand.
-    __ idiv(right->reg());
-
-    // Complete the operation.
-    if (op == Token::DIV) {
-      // Check for negative zero result.  If result is zero, and divisor
-      // is negative, return a floating point negative zero.  The
-      // virtual frame is unchanged in this block, so local control flow
-      // can use a Label rather than a JumpTarget.  If the context of this
-      // expression will treat -0 like 0, do not do this test.
-      if (!expr->no_negative_zero()) {
-        Label non_zero_result;
-        __ test(left->reg(), Operand(left->reg()));
-        __ j(not_zero, &non_zero_result);
-        __ test(right->reg(), Operand(right->reg()));
-        deferred->Branch(negative);
-        __ bind(&non_zero_result);
-      }
-      // Check for the corner case of dividing the most negative smi by
-      // -1. We cannot use the overflow flag, since it is not set by
-      // idiv instruction.
-      STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
-      __ cmp(eax, 0x40000000);
-      deferred->Branch(equal);
-      // Check that the remainder is zero.
-      __ test(edx, Operand(edx));
-      deferred->Branch(not_zero);
-      // Tag the result and store it in the quotient register.
-      __ SmiTag(eax);
-      deferred->BindExit();
-      left->Unuse();
-      right->Unuse();
-      answer = quotient;
-    } else {
-      ASSERT(op == Token::MOD);
-      // Check for a negative zero result.  If the result is zero, and
-      // the dividend is negative, return a floating point negative
-      // zero.  The frame is unchanged in this block, so local control
-      // flow can use a Label rather than a JumpTarget.
-      if (!expr->no_negative_zero()) {
-        Label non_zero_result;
-        __ test(edx, Operand(edx));
-        __ j(not_zero, &non_zero_result, taken);
-        __ test(left->reg(), Operand(left->reg()));
-        deferred->Branch(negative);
-        __ bind(&non_zero_result);
-      }
-      deferred->BindExit();
-      left->Unuse();
-      right->Unuse();
-      answer = remainder;
-    }
-    ASSERT(answer.is_valid());
-    return answer;
-  }
-
-  // Special handling of shift operations because they use fixed
-  // registers.
-  if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
-    // Move left out of ecx if necessary.
-    if (left->is_register() && left->reg().is(ecx)) {
-      *left = allocator_->Allocate();
-      ASSERT(left->is_valid());
-      __ mov(left->reg(), ecx);
-    }
-    right->ToRegister(ecx);
-    left->ToRegister();
-    ASSERT(left->is_register() && !left->reg().is(ecx));
-    ASSERT(right->is_register() && right->reg().is(ecx));
-    if (left_type_info.IsSmi()) {
-      if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
-    }
-    if (right_type_info.IsSmi()) {
-      if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
-    }
-
-    // We will modify right, it must be spilled.
-    frame_->Spill(ecx);
-    // DeferredInlineBinaryOperation requires all the registers that it is told
-    // about to be spilled and distinct.  We know that right is ecx and left is
-    // not ecx.
-    frame_->Spill(left->reg());
-
-    // Use a fresh answer register to avoid spilling the left operand.
-    answer = allocator_->Allocate();
-    ASSERT(answer.is_valid());
-
-    DeferredInlineBinaryOperation* deferred =
-        new DeferredInlineBinaryOperation(op,
-                                          answer.reg(),
-                                          left->reg(),
-                                          ecx,
-                                          left_type_info,
-                                          right_type_info,
-                                          overwrite_mode);
-    JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
-                                  left_type_info, right_type_info,
-                                  deferred->NonSmiInputLabel());
-
-    // Untag both operands.
-    __ mov(answer.reg(), left->reg());
-    __ SmiUntag(answer.reg());
-    __ SmiUntag(right->reg());  // Right is ecx.
-
-    // Perform the operation.
-    ASSERT(right->reg().is(ecx));
-    switch (op) {
-      case Token::SAR: {
-        __ sar_cl(answer.reg());
-        if (!left_type_info.IsSmi()) {
-          // Check that the *signed* result fits in a smi.
-          __ cmp(answer.reg(), 0xc0000000);
-          deferred->JumpToAnswerOutOfRange(negative);
-        }
-        break;
-      }
-      case Token::SHR: {
-        __ shr_cl(answer.reg());
-        // Check that the *unsigned* result fits in a smi.  Neither of
-        // the two high-order bits can be set:
-        //  * 0x80000000: high bit would be lost when smi tagging.
-        //  * 0x40000000: this number would convert to negative when smi
-        //    tagging.
-        // These two cases can only happen with shifts by 0 or 1 when
-        // handed a valid smi.  If the answer cannot be represented by a
-        // smi, restore the left and right arguments, and jump to slow
-        // case.  The low bit of the left argument may be lost, but only
-        // in a case where it is dropped anyway.
-        __ test(answer.reg(), Immediate(0xc0000000));
-        deferred->JumpToAnswerOutOfRange(not_zero);
-        break;
-      }
-      case Token::SHL: {
-        __ shl_cl(answer.reg());
-        // Check that the *signed* result fits in a smi.
-        __ cmp(answer.reg(), 0xc0000000);
-        deferred->JumpToAnswerOutOfRange(negative);
-        break;
-      }
-      default:
-        UNREACHABLE();
-    }
-    // Smi-tag the result in answer.
-    __ SmiTag(answer.reg());
-    deferred->BindExit();
-    left->Unuse();
-    right->Unuse();
-    ASSERT(answer.is_valid());
-    return answer;
-  }
-
-  // Handle the other binary operations.
-  left->ToRegister();
-  right->ToRegister();
-  // DeferredInlineBinaryOperation requires all the registers that it is told
-  // about to be spilled.
-  Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
-  // A newly allocated register answer is used to hold the answer.  The
-  // registers containing left and right are not modified so they don't
-  // need to be spilled in the fast case.
-  answer = allocator_->Allocate();
-  ASSERT(answer.is_valid());
-
-  // Perform the smi tag check.
-  DeferredInlineBinaryOperation* deferred =
-      new DeferredInlineBinaryOperation(op,
-                                        answer.reg(),
-                                        left->reg(),
-                                        distinct_right.reg(),
-                                        left_type_info,
-                                        right_type_info,
-                                        overwrite_mode);
-  Label non_smi_bit_op;
-  if (op != Token::BIT_OR) {
-    JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
-                                  left_type_info, right_type_info,
-                                  deferred->NonSmiInputLabel());
-  }
-
-  __ mov(answer.reg(), left->reg());
-  switch (op) {
-    case Token::ADD:
-      __ add(answer.reg(), Operand(right->reg()));
-      deferred->Branch(overflow);
-      break;
-
-    case Token::SUB:
-      __ sub(answer.reg(), Operand(right->reg()));
-      deferred->Branch(overflow);
-      break;
-
-    case Token::MUL: {
-      // If the smi tag is 0 we can just leave the tag on one operand.
-      STATIC_ASSERT(kSmiTag == 0);  // Adjust code below if not the case.
-      // Remove smi tag from the left operand (but keep sign).
-      // Left-hand operand has been copied into answer.
-      __ SmiUntag(answer.reg());
-      // Do multiplication of smis, leaving result in answer.
-      __ imul(answer.reg(), Operand(right->reg()));
-      // Go slow on overflows.
-      deferred->Branch(overflow);
-      // Check for negative zero result.  If product is zero, and one
-      // argument is negative, go to slow case.  The frame is unchanged
-      // in this block, so local control flow can use a Label rather
-      // than a JumpTarget.
-      if (!expr->no_negative_zero()) {
-        Label non_zero_result;
-        __ test(answer.reg(), Operand(answer.reg()));
-        __ j(not_zero, &non_zero_result, taken);
-        __ mov(answer.reg(), left->reg());
-        __ or_(answer.reg(), Operand(right->reg()));
-        deferred->Branch(negative);
-        __ xor_(answer.reg(), Operand(answer.reg()));  // Positive 0 is correct.
-        __ bind(&non_zero_result);
-      }
-      break;
-    }
-
-    case Token::BIT_OR:
-      __ or_(answer.reg(), Operand(right->reg()));
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      __ j(not_zero, deferred->NonSmiInputLabel());
-      break;
-
-    case Token::BIT_AND:
-      __ and_(answer.reg(), Operand(right->reg()));
-      break;
-
-    case Token::BIT_XOR:
-      __ xor_(answer.reg(), Operand(right->reg()));
-      break;
-
-    default:
-      UNREACHABLE();
-      break;
-  }
-
-  deferred->BindExit();
-  left->Unuse();
-  right->Unuse();
-  ASSERT(answer.is_valid());
-  return answer;
-}
-
-
-// Call the appropriate binary operation stub to compute src op value
-// and leave the result in dst.
-class DeferredInlineSmiOperation: public DeferredCode {
- public:
-  DeferredInlineSmiOperation(Token::Value op,
-                             Register dst,
-                             Register src,
-                             TypeInfo type_info,
-                             Smi* value,
-                             OverwriteMode overwrite_mode)
-      : op_(op),
-        dst_(dst),
-        src_(src),
-        type_info_(type_info),
-        value_(value),
-        overwrite_mode_(overwrite_mode) {
-    if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
-    set_comment("[ DeferredInlineSmiOperation");
-  }
-
-  virtual void Generate();
-
- private:
-  Token::Value op_;
-  Register dst_;
-  Register src_;
-  TypeInfo type_info_;
-  Smi* value_;
-  OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperation::Generate() {
-  // For mod we don't generate all the Smi code inline.
-  GenericBinaryOpStub stub(
-      op_,
-      overwrite_mode_,
-      (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB,
-      TypeInfo::Combine(TypeInfo::Smi(), type_info_));
-  stub.GenerateCall(masm_, src_, value_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// Call the appropriate binary operation stub to compute value op src
-// and leave the result in dst.
-class DeferredInlineSmiOperationReversed: public DeferredCode {
- public:
-  DeferredInlineSmiOperationReversed(Token::Value op,
-                                     Register dst,
-                                     Smi* value,
-                                     Register src,
-                                     TypeInfo type_info,
-                                     OverwriteMode overwrite_mode)
-      : op_(op),
-        dst_(dst),
-        type_info_(type_info),
-        value_(value),
-        src_(src),
-        overwrite_mode_(overwrite_mode) {
-    set_comment("[ DeferredInlineSmiOperationReversed");
-  }
-
-  virtual void Generate();
-
- private:
-  Token::Value op_;
-  Register dst_;
-  TypeInfo type_info_;
-  Smi* value_;
-  Register src_;
-  OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperationReversed::Generate() {
-  GenericBinaryOpStub stub(
-      op_,
-      overwrite_mode_,
-      NO_SMI_CODE_IN_STUB,
-      TypeInfo::Combine(TypeInfo::Smi(), type_info_));
-  stub.GenerateCall(masm_, value_, src_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of src + value is in dst.  It either overflowed or was not
-// smi tagged.  Undo the speculative addition and call the appropriate
-// specialized stub for add.  The result is left in dst.
-class DeferredInlineSmiAdd: public DeferredCode {
- public:
-  DeferredInlineSmiAdd(Register dst,
-                       TypeInfo type_info,
-                       Smi* value,
-                       OverwriteMode overwrite_mode)
-      : dst_(dst),
-        type_info_(type_info),
-        value_(value),
-        overwrite_mode_(overwrite_mode) {
-    if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
-    set_comment("[ DeferredInlineSmiAdd");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;
-  TypeInfo type_info_;
-  Smi* value_;
-  OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAdd::Generate() {
-  // Undo the optimistic add operation and call the shared stub.
-  __ sub(Operand(dst_), Immediate(value_));
-  GenericBinaryOpStub igostub(
-      Token::ADD,
-      overwrite_mode_,
-      NO_SMI_CODE_IN_STUB,
-      TypeInfo::Combine(TypeInfo::Smi(), type_info_));
-  igostub.GenerateCall(masm_, dst_, value_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of value + src is in dst.  It either overflowed or was not
-// smi tagged.  Undo the speculative addition and call the appropriate
-// specialized stub for add.  The result is left in dst.
-class DeferredInlineSmiAddReversed: public DeferredCode {
- public:
-  DeferredInlineSmiAddReversed(Register dst,
-                               TypeInfo type_info,
-                               Smi* value,
-                               OverwriteMode overwrite_mode)
-      : dst_(dst),
-        type_info_(type_info),
-        value_(value),
-        overwrite_mode_(overwrite_mode) {
-    set_comment("[ DeferredInlineSmiAddReversed");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;
-  TypeInfo type_info_;
-  Smi* value_;
-  OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAddReversed::Generate() {
-  // Undo the optimistic add operation and call the shared stub.
-  __ sub(Operand(dst_), Immediate(value_));
-  GenericBinaryOpStub igostub(
-      Token::ADD,
-      overwrite_mode_,
-      NO_SMI_CODE_IN_STUB,
-      TypeInfo::Combine(TypeInfo::Smi(), type_info_));
-  igostub.GenerateCall(masm_, value_, dst_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of src - value is in dst.  It either overflowed or was not
-// smi tagged.  Undo the speculative subtraction and call the
-// appropriate specialized stub for subtract.  The result is left in
-// dst.
-class DeferredInlineSmiSub: public DeferredCode {
- public:
-  DeferredInlineSmiSub(Register dst,
-                       TypeInfo type_info,
-                       Smi* value,
-                       OverwriteMode overwrite_mode)
-      : dst_(dst),
-        type_info_(type_info),
-        value_(value),
-        overwrite_mode_(overwrite_mode) {
-    if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
-    set_comment("[ DeferredInlineSmiSub");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;
-  TypeInfo type_info_;
-  Smi* value_;
-  OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiSub::Generate() {
-  // Undo the optimistic sub operation and call the shared stub.
-  __ add(Operand(dst_), Immediate(value_));
-  GenericBinaryOpStub igostub(
-      Token::SUB,
-      overwrite_mode_,
-      NO_SMI_CODE_IN_STUB,
-      TypeInfo::Combine(TypeInfo::Smi(), type_info_));
-  igostub.GenerateCall(masm_, dst_, value_);
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
-                                                 Result* operand,
-                                                 Handle<Object> value,
-                                                 bool reversed,
-                                                 OverwriteMode overwrite_mode) {
-  // Generate inline code for a binary operation when one of the
-  // operands is a constant smi.  Consumes the argument "operand".
-  if (IsUnsafeSmi(value)) {
-    Result unsafe_operand(value);
-    if (reversed) {
-      return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
-                                      overwrite_mode);
-    } else {
-      return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
-                                      overwrite_mode);
-    }
-  }
-
-  // Get the literal value.
-  Smi* smi_value = Smi::cast(*value);
-  int int_value = smi_value->value();
-
-  Token::Value op = expr->op();
-  Result answer;
-  switch (op) {
-    case Token::ADD: {
-      operand->ToRegister();
-      frame_->Spill(operand->reg());
-
-      // Optimistically add.  Call the specialized add stub if the
-      // result is not a smi or overflows.
-      DeferredCode* deferred = NULL;
-      if (reversed) {
-        deferred = new DeferredInlineSmiAddReversed(operand->reg(),
-                                                    operand->type_info(),
-                                                    smi_value,
-                                                    overwrite_mode);
-      } else {
-        deferred = new DeferredInlineSmiAdd(operand->reg(),
-                                            operand->type_info(),
-                                            smi_value,
-                                            overwrite_mode);
-      }
-      __ add(Operand(operand->reg()), Immediate(value));
-      deferred->Branch(overflow);
-      if (!operand->type_info().IsSmi()) {
-        __ test(operand->reg(), Immediate(kSmiTagMask));
-        deferred->Branch(not_zero);
-      } else if (FLAG_debug_code) {
-        __ AbortIfNotSmi(operand->reg());
-      }
-      deferred->BindExit();
-      answer = *operand;
-      break;
-    }
-
-    case Token::SUB: {
-      DeferredCode* deferred = NULL;
-      if (reversed) {
-        // The reversed case is only hit when the right operand is not a
-        // constant.
-        ASSERT(operand->is_register());
-        answer = allocator()->Allocate();
-        ASSERT(answer.is_valid());
-        __ Set(answer.reg(), Immediate(value));
-        deferred =
-            new DeferredInlineSmiOperationReversed(op,
-                                                   answer.reg(),
-                                                   smi_value,
-                                                   operand->reg(),
-                                                   operand->type_info(),
-                                                   overwrite_mode);
-        __ sub(answer.reg(), Operand(operand->reg()));
-      } else {
-        operand->ToRegister();
-        frame_->Spill(operand->reg());
-        answer = *operand;
-        deferred = new DeferredInlineSmiSub(operand->reg(),
-                                            operand->type_info(),
-                                            smi_value,
-                                            overwrite_mode);
-        __ sub(Operand(operand->reg()), Immediate(value));
-      }
-      deferred->Branch(overflow);
-      if (!operand->type_info().IsSmi()) {
-        __ test(answer.reg(), Immediate(kSmiTagMask));
-        deferred->Branch(not_zero);
-      } else if (FLAG_debug_code) {
-        __ AbortIfNotSmi(operand->reg());
-      }
-      deferred->BindExit();
-      operand->Unuse();
-      break;
-    }
-
-    case Token::SAR:
-      if (reversed) {
-        Result constant_operand(value);
-        answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
-                                          overwrite_mode);
-      } else {
-        // Only the least significant 5 bits of the shift value are used.
-        // In the slow case, this masking is done inside the runtime call.
-        int shift_value = int_value & 0x1f;
-        operand->ToRegister();
-        frame_->Spill(operand->reg());
-        if (!operand->type_info().IsSmi()) {
-          DeferredInlineSmiOperation* deferred =
-              new DeferredInlineSmiOperation(op,
-                                             operand->reg(),
-                                             operand->reg(),
-                                             operand->type_info(),
-                                             smi_value,
-                                             overwrite_mode);
-          __ test(operand->reg(), Immediate(kSmiTagMask));
-          deferred->Branch(not_zero);
-          if (shift_value > 0) {
-            __ sar(operand->reg(), shift_value);
-            __ and_(operand->reg(), ~kSmiTagMask);
-          }
-          deferred->BindExit();
-        } else {
-          if (FLAG_debug_code) {
-            __ AbortIfNotSmi(operand->reg());
-          }
-          if (shift_value > 0) {
-            __ sar(operand->reg(), shift_value);
-            __ and_(operand->reg(), ~kSmiTagMask);
-          }
-        }
-        answer = *operand;
-      }
-      break;
-
-    case Token::SHR:
-      if (reversed) {
-        Result constant_operand(value);
-        answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
-                                          overwrite_mode);
-      } else {
-        // Only the least significant 5 bits of the shift value are used.
-        // In the slow case, this masking is done inside the runtime call.
-        int shift_value = int_value & 0x1f;
-        operand->ToRegister();
-        answer = allocator()->Allocate();
-        ASSERT(answer.is_valid());
-        DeferredInlineSmiOperation* deferred =
-            new DeferredInlineSmiOperation(op,
-                                           answer.reg(),
-                                           operand->reg(),
-                                           operand->type_info(),
-                                           smi_value,
-                                           overwrite_mode);
-        if (!operand->type_info().IsSmi()) {
-          __ test(operand->reg(), Immediate(kSmiTagMask));
-          deferred->Branch(not_zero);
-        } else if (FLAG_debug_code) {
-          __ AbortIfNotSmi(operand->reg());
-        }
-        __ mov(answer.reg(), operand->reg());
-        __ SmiUntag(answer.reg());
-        __ shr(answer.reg(), shift_value);
-        // A negative Smi shifted right two is in the positive Smi range.
-        if (shift_value < 2) {
-          __ test(answer.reg(), Immediate(0xc0000000));
-          deferred->Branch(not_zero);
-        }
-        operand->Unuse();
-        __ SmiTag(answer.reg());
-        deferred->BindExit();
-      }
-      break;
-
-    case Token::SHL:
-      if (reversed) {
-        // Move operand into ecx and also into a second register.
-        // If operand is already in a register, take advantage of that.
-        // This lets us modify ecx, but still bail out to deferred code.
-        Result right;
-        Result right_copy_in_ecx;
-        TypeInfo right_type_info = operand->type_info();
-        operand->ToRegister();
-        if (operand->reg().is(ecx)) {
-          right = allocator()->Allocate();
-          __ mov(right.reg(), ecx);
-          frame_->Spill(ecx);
-          right_copy_in_ecx = *operand;
-        } else {
-          right_copy_in_ecx = allocator()->Allocate(ecx);
-          __ mov(ecx, operand->reg());
-          right = *operand;
-        }
-        operand->Unuse();
-
-        answer = allocator()->Allocate();
-        DeferredInlineSmiOperationReversed* deferred =
-            new DeferredInlineSmiOperationReversed(op,
-                                                   answer.reg(),
-                                                   smi_value,
-                                                   right.reg(),
-                                                   right_type_info,
-                                                   overwrite_mode);
-        __ mov(answer.reg(), Immediate(int_value));
-        __ sar(ecx, kSmiTagSize);
-        if (!right_type_info.IsSmi()) {
-          deferred->Branch(carry);
-        } else if (FLAG_debug_code) {
-          __ AbortIfNotSmi(right.reg());
-        }
-        __ shl_cl(answer.reg());
-        __ cmp(answer.reg(), 0xc0000000);
-        deferred->Branch(sign);
-        __ SmiTag(answer.reg());
-
-        deferred->BindExit();
-      } else {
-        // Only the least significant 5 bits of the shift value are used.
-        // In the slow case, this masking is done inside the runtime call.
-        int shift_value = int_value & 0x1f;
-        operand->ToRegister();
-        if (shift_value == 0) {
-          // Spill operand so it can be overwritten in the slow case.
-          frame_->Spill(operand->reg());
-          DeferredInlineSmiOperation* deferred =
-              new DeferredInlineSmiOperation(op,
-                                             operand->reg(),
-                                             operand->reg(),
-                                             operand->type_info(),
-                                             smi_value,
-                                             overwrite_mode);
-          __ test(operand->reg(), Immediate(kSmiTagMask));
-          deferred->Branch(not_zero);
-          deferred->BindExit();
-          answer = *operand;
-        } else {
-          // Use a fresh temporary for nonzero shift values.
-          answer = allocator()->Allocate();
-          ASSERT(answer.is_valid());
-          DeferredInlineSmiOperation* deferred =
-              new DeferredInlineSmiOperation(op,
-                                             answer.reg(),
-                                             operand->reg(),
-                                             operand->type_info(),
-                                             smi_value,
-                                             overwrite_mode);
-          if (!operand->type_info().IsSmi()) {
-            __ test(operand->reg(), Immediate(kSmiTagMask));
-            deferred->Branch(not_zero);
-          } else if (FLAG_debug_code) {
-            __ AbortIfNotSmi(operand->reg());
-          }
-          __ mov(answer.reg(), operand->reg());
-          STATIC_ASSERT(kSmiTag == 0);  // adjust code if not the case
-          // We do no shifts, only the Smi conversion, if shift_value is 1.
-          if (shift_value > 1) {
-            __ shl(answer.reg(), shift_value - 1);
-          }
-          // Convert int result to Smi, checking that it is in int range.
-          STATIC_ASSERT(kSmiTagSize == 1);  // adjust code if not the case
-          __ add(answer.reg(), Operand(answer.reg()));
-          deferred->Branch(overflow);
-          deferred->BindExit();
-          operand->Unuse();
-        }
-      }
-      break;
-
-    case Token::BIT_OR:
-    case Token::BIT_XOR:
-    case Token::BIT_AND: {
-      operand->ToRegister();
-      // DeferredInlineBinaryOperation requires all the registers that it is
-      // told about to be spilled.
-      frame_->Spill(operand->reg());
-      DeferredInlineBinaryOperation* deferred = NULL;
-      if (!operand->type_info().IsSmi()) {
-        Result left = allocator()->Allocate();
-        ASSERT(left.is_valid());
-        Result right = allocator()->Allocate();
-        ASSERT(right.is_valid());
-        deferred = new DeferredInlineBinaryOperation(
-            op,
-            operand->reg(),
-            left.reg(),
-            right.reg(),
-            operand->type_info(),
-            TypeInfo::Smi(),
-            overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT);
-        __ test(operand->reg(), Immediate(kSmiTagMask));
-        deferred->JumpToConstantRhs(not_zero, smi_value);
-      } else if (FLAG_debug_code) {
-        __ AbortIfNotSmi(operand->reg());
-      }
-      if (op == Token::BIT_AND) {
-        __ and_(Operand(operand->reg()), Immediate(value));
-      } else if (op == Token::BIT_XOR) {
-        if (int_value != 0) {
-          __ xor_(Operand(operand->reg()), Immediate(value));
-        }
-      } else {
-        ASSERT(op == Token::BIT_OR);
-        if (int_value != 0) {
-          __ or_(Operand(operand->reg()), Immediate(value));
-        }
-      }
-      if (deferred != NULL) deferred->BindExit();
-      answer = *operand;
-      break;
-    }
-
-    case Token::DIV:
-      if (!reversed && int_value == 2) {
-        operand->ToRegister();
-        frame_->Spill(operand->reg());
-
-        DeferredInlineSmiOperation* deferred =
-            new DeferredInlineSmiOperation(op,
-                                           operand->reg(),
-                                           operand->reg(),
-                                           operand->type_info(),
-                                           smi_value,
-                                           overwrite_mode);
-        // Check that lowest log2(value) bits of operand are zero, and test
-        // smi tag at the same time.
-        STATIC_ASSERT(kSmiTag == 0);
-        STATIC_ASSERT(kSmiTagSize == 1);
-        __ test(operand->reg(), Immediate(3));
-        deferred->Branch(not_zero);  // Branch if non-smi or odd smi.
-        __ sar(operand->reg(), 1);
-        deferred->BindExit();
-        answer = *operand;
-      } else {
-        // Cannot fall through MOD to default case, so we duplicate the
-        // default case here.
-        Result constant_operand(value);
-        if (reversed) {
-          answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
-                                            overwrite_mode);
-        } else {
-          answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
-                                            overwrite_mode);
-        }
-      }
-      break;
-
-    // Generate inline code for mod of powers of 2 and negative powers of 2.
-    case Token::MOD:
-      if (!reversed &&
-          int_value != 0 &&
-          (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
-        operand->ToRegister();
-        frame_->Spill(operand->reg());
-        DeferredCode* deferred =
-            new DeferredInlineSmiOperation(op,
-                                           operand->reg(),
-                                           operand->reg(),
-                                           operand->type_info(),
-                                           smi_value,
-                                           overwrite_mode);
-        // Check for negative or non-Smi left hand side.
-        __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask));
-        deferred->Branch(not_zero);
-        if (int_value < 0) int_value = -int_value;
-        if (int_value == 1) {
-          __ mov(operand->reg(), Immediate(Smi::FromInt(0)));
-        } else {
-          __ and_(operand->reg(), (int_value << kSmiTagSize) - 1);
-        }
-        deferred->BindExit();
-        answer = *operand;
-        break;
-      }
-      // Fall through if we did not find a power of 2 on the right hand side!
-      // The next case must be the default.
-
-    default: {
-      Result constant_operand(value);
-      if (reversed) {
-        answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
-                                          overwrite_mode);
-      } else {
-        answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
-                                          overwrite_mode);
-      }
-      break;
-    }
-  }
-  ASSERT(answer.is_valid());
-  return answer;
-}
-
-
-static bool CouldBeNaN(const Result& result) {
-  if (result.type_info().IsSmi()) return false;
-  if (result.type_info().IsInteger32()) return false;
-  if (!result.is_constant()) return true;
-  if (!result.handle()->IsHeapNumber()) return false;
-  return isnan(HeapNumber::cast(*result.handle())->value());
-}
-
-
-// Convert from signed to unsigned comparison to match the way EFLAGS are set
-// by FPU and XMM compare instructions.
-static Condition DoubleCondition(Condition cc) {
-  switch (cc) {
-    case less:          return below;
-    case equal:         return equal;
-    case less_equal:    return below_equal;
-    case greater:       return above;
-    case greater_equal: return above_equal;
-    default:            UNREACHABLE();
-  }
-  UNREACHABLE();
-  return equal;
-}
-
-
-static CompareFlags ComputeCompareFlags(NaNInformation nan_info,
-                                        bool inline_number_compare) {
-  CompareFlags flags = NO_SMI_COMPARE_IN_STUB;
-  if (nan_info == kCantBothBeNaN) {
-    flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN);
-  }
-  if (inline_number_compare) {
-    flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB);
-  }
-  return flags;
-}
-
-
-void CodeGenerator::Comparison(AstNode* node,
-                               Condition cc,
-                               bool strict,
-                               ControlDestination* dest) {
-  // Strict only makes sense for equality comparisons.
-  ASSERT(!strict || cc == equal);
-
-  Result left_side;
-  Result right_side;
-  // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
-  if (cc == greater || cc == less_equal) {
-    cc = ReverseCondition(cc);
-    left_side = frame_->Pop();
-    right_side = frame_->Pop();
-  } else {
-    right_side = frame_->Pop();
-    left_side = frame_->Pop();
-  }
-  ASSERT(cc == less || cc == equal || cc == greater_equal);
-
-  // If either side is a constant smi, optimize the comparison.
-  bool left_side_constant_smi = false;
-  bool left_side_constant_null = false;
-  bool left_side_constant_1_char_string = false;
-  if (left_side.is_constant()) {
-    left_side_constant_smi = left_side.handle()->IsSmi();
-    left_side_constant_null = left_side.handle()->IsNull();
-    left_side_constant_1_char_string =
-        (left_side.handle()->IsString() &&
-         String::cast(*left_side.handle())->length() == 1 &&
-         String::cast(*left_side.handle())->IsAsciiRepresentation());
-  }
-  bool right_side_constant_smi = false;
-  bool right_side_constant_null = false;
-  bool right_side_constant_1_char_string = false;
-  if (right_side.is_constant()) {
-    right_side_constant_smi = right_side.handle()->IsSmi();
-    right_side_constant_null = right_side.handle()->IsNull();
-    right_side_constant_1_char_string =
-        (right_side.handle()->IsString() &&
-         String::cast(*right_side.handle())->length() == 1 &&
-         String::cast(*right_side.handle())->IsAsciiRepresentation());
-  }
-
-  if (left_side_constant_smi || right_side_constant_smi) {
-    bool is_loop_condition = (node->AsExpression() != NULL) &&
-        node->AsExpression()->is_loop_condition();
-    ConstantSmiComparison(cc, strict, dest, &left_side, &right_side,
-                          left_side_constant_smi, right_side_constant_smi,
-                          is_loop_condition);
-  } else if (left_side_constant_1_char_string ||
-             right_side_constant_1_char_string) {
-    if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
-      // Trivial case, comparing two constants.
-      int left_value = String::cast(*left_side.handle())->Get(0);
-      int right_value = String::cast(*right_side.handle())->Get(0);
-      switch (cc) {
-        case less:
-          dest->Goto(left_value < right_value);
-          break;
-        case equal:
-          dest->Goto(left_value == right_value);
-          break;
-        case greater_equal:
-          dest->Goto(left_value >= right_value);
-          break;
-        default:
-          UNREACHABLE();
-      }
-    } else {
-      // Only one side is a constant 1 character string.
-      // If left side is a constant 1-character string, reverse the operands.
-      // Since one side is a constant string, conversion order does not matter.
-      if (left_side_constant_1_char_string) {
-        Result temp = left_side;
-        left_side = right_side;
-        right_side = temp;
-        cc = ReverseCondition(cc);
-        // This may reintroduce greater or less_equal as the value of cc.
-        // CompareStub and the inline code both support all values of cc.
-      }
-      // Implement comparison against a constant string, inlining the case
-      // where both sides are strings.
-      left_side.ToRegister();
-
-      // Here we split control flow to the stub call and inlined cases
-      // before finally splitting it to the control destination.  We use
-      // a jump target and branching to duplicate the virtual frame at
-      // the first split.  We manually handle the off-frame references
-      // by reconstituting them on the non-fall-through path.
-      JumpTarget is_not_string, is_string;
-      Register left_reg = left_side.reg();
-      Handle<Object> right_val = right_side.handle();
-      ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
-      __ test(left_side.reg(), Immediate(kSmiTagMask));
-      is_not_string.Branch(zero, &left_side);
-      Result temp = allocator_->Allocate();
-      ASSERT(temp.is_valid());
-      __ mov(temp.reg(),
-             FieldOperand(left_side.reg(), HeapObject::kMapOffset));
-      __ movzx_b(temp.reg(),
-                 FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
-      // If we are testing for equality then make use of the symbol shortcut.
-      // Check if the right left hand side has the same type as the left hand
-      // side (which is always a symbol).
-      if (cc == equal) {
-        Label not_a_symbol;
-        STATIC_ASSERT(kSymbolTag != 0);
-        // Ensure that no non-strings have the symbol bit set.
-        STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
-        __ test(temp.reg(), Immediate(kIsSymbolMask));  // Test the symbol bit.
-        __ j(zero, &not_a_symbol);
-        // They are symbols, so do identity compare.
-        __ cmp(left_side.reg(), right_side.handle());
-        dest->true_target()->Branch(equal);
-        dest->false_target()->Branch(not_equal);
-        __ bind(&not_a_symbol);
-      }
-      // Call the compare stub if the left side is not a flat ascii string.
-      __ and_(temp.reg(),
-          kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
-      __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag);
-      temp.Unuse();
-      is_string.Branch(equal, &left_side);
-
-      // Setup and call the compare stub.
-      is_not_string.Bind(&left_side);
-      CompareFlags flags =
-          static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB);
-      CompareStub stub(cc, strict, flags);
-      Result result = frame_->CallStub(&stub, &left_side, &right_side);
-      result.ToRegister();
-      __ cmp(result.reg(), 0);
-      result.Unuse();
-      dest->true_target()->Branch(cc);
-      dest->false_target()->Jump();
-
-      is_string.Bind(&left_side);
-      // left_side is a sequential ASCII string.
-      left_side = Result(left_reg);
-      right_side = Result(right_val);
-      // Test string equality and comparison.
-      Label comparison_done;
-      if (cc == equal) {
-        __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
-               Immediate(Smi::FromInt(1)));
-        __ j(not_equal, &comparison_done);
-        uint8_t char_value =
-            static_cast<uint8_t>(String::cast(*right_val)->Get(0));
-        __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
-                char_value);
-      } else {
-        __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
-               Immediate(Smi::FromInt(1)));
-        // If the length is 0 then the jump is taken and the flags
-        // correctly represent being less than the one-character string.
-        __ j(below, &comparison_done);
-        // Compare the first character of the string with the
-        // constant 1-character string.
-        uint8_t char_value =
-            static_cast<uint8_t>(String::cast(*right_val)->Get(0));
-        __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
-                char_value);
-        __ j(not_equal, &comparison_done);
-        // If the first character is the same then the long string sorts after
-        // the short one.
-        __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
-               Immediate(Smi::FromInt(1)));
-      }
-      __ bind(&comparison_done);
-      left_side.Unuse();
-      right_side.Unuse();
-      dest->Split(cc);
-    }
-  } else {
-    // Neither side is a constant Smi, constant 1-char string or constant null.
-    // If either side is a non-smi constant, or known to be a heap number,
-    // skip the smi check.
-    bool known_non_smi =
-        (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
-        (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
-        left_side.type_info().IsDouble() ||
-        right_side.type_info().IsDouble();
-
-    NaNInformation nan_info =
-        (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
-        kBothCouldBeNaN :
-        kCantBothBeNaN;
-
-    // Inline number comparison handling any combination of smi's and heap
-    // numbers if:
-    //   code is in a loop
-    //   the compare operation is different from equal
-    //   compare is not a for-loop comparison
-    // The reason for excluding equal is that it will most likely be done
-    // with smi's (not heap numbers) and the code to comparing smi's is inlined
-    // separately. The same reason applies for for-loop comparison which will
-    // also most likely be smi comparisons.
-    bool is_loop_condition = (node->AsExpression() != NULL)
-        && node->AsExpression()->is_loop_condition();
-    bool inline_number_compare =
-        loop_nesting() > 0 && cc != equal && !is_loop_condition;
-
-    // Left and right needed in registers for the following code.
-    left_side.ToRegister();
-    right_side.ToRegister();
-
-    if (known_non_smi) {
-      // Inlined equality check:
-      // If at least one of the objects is not NaN, then if the objects
-      // are identical, they are equal.
-      if (nan_info == kCantBothBeNaN && cc == equal) {
-        __ cmp(left_side.reg(), Operand(right_side.reg()));
-        dest->true_target()->Branch(equal);
-      }
-
-      // Inlined number comparison:
-      if (inline_number_compare) {
-        GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
-      }
-
-      // End of in-line compare, call out to the compare stub. Don't include
-      // number comparison in the stub if it was inlined.
-      CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare);
-      CompareStub stub(cc, strict, flags);
-      Result answer = frame_->CallStub(&stub, &left_side, &right_side);
-      __ test(answer.reg(), Operand(answer.reg()));
-      answer.Unuse();
-      dest->Split(cc);
-    } else {
-      // Here we split control flow to the stub call and inlined cases
-      // before finally splitting it to the control destination.  We use
-      // a jump target and branching to duplicate the virtual frame at
-      // the first split.  We manually handle the off-frame references
-      // by reconstituting them on the non-fall-through path.
-      JumpTarget is_smi;
-      Register left_reg = left_side.reg();
-      Register right_reg = right_side.reg();
-
-      // In-line check for comparing two smis.
-      JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi);
-
-      if (has_valid_frame()) {
-        // Inline the equality check if both operands can't be a NaN. If both
-        // objects are the same they are equal.
-        if (nan_info == kCantBothBeNaN && cc == equal) {
-          __ cmp(left_side.reg(), Operand(right_side.reg()));
-          dest->true_target()->Branch(equal);
-        }
-
-        // Inlined number comparison:
-        if (inline_number_compare) {
-          GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
-        }
-
-        // End of in-line compare, call out to the compare stub. Don't include
-        // number comparison in the stub if it was inlined.
-        CompareFlags flags =
-            ComputeCompareFlags(nan_info, inline_number_compare);
-        CompareStub stub(cc, strict, flags);
-        Result answer = frame_->CallStub(&stub, &left_side, &right_side);
-        __ test(answer.reg(), Operand(answer.reg()));
-        answer.Unuse();
-        if (is_smi.is_linked()) {
-          dest->true_target()->Branch(cc);
-          dest->false_target()->Jump();
-        } else {
-          dest->Split(cc);
-        }
-      }
-
-      if (is_smi.is_linked()) {
-        is_smi.Bind();
-        left_side = Result(left_reg);
-        right_side = Result(right_reg);
-        __ cmp(left_side.reg(), Operand(right_side.reg()));
-        right_side.Unuse();
-        left_side.Unuse();
-        dest->Split(cc);
-      }
-    }
-  }
-}
-
-
-void CodeGenerator::ConstantSmiComparison(Condition cc,
-                                          bool strict,
-                                          ControlDestination* dest,
-                                          Result* left_side,
-                                          Result* right_side,
-                                          bool left_side_constant_smi,
-                                          bool right_side_constant_smi,
-                                          bool is_loop_condition) {
-  if (left_side_constant_smi && right_side_constant_smi) {
-    // Trivial case, comparing two constants.
-    int left_value = Smi::cast(*left_side->handle())->value();
-    int right_value = Smi::cast(*right_side->handle())->value();
-    switch (cc) {
-      case less:
-        dest->Goto(left_value < right_value);
-        break;
-      case equal:
-        dest->Goto(left_value == right_value);
-        break;
-      case greater_equal:
-        dest->Goto(left_value >= right_value);
-        break;
-      default:
-        UNREACHABLE();
-    }
-  } else {
-    // Only one side is a constant Smi.
-    // If left side is a constant Smi, reverse the operands.
-    // Since one side is a constant Smi, conversion order does not matter.
-    if (left_side_constant_smi) {
-      Result* temp = left_side;
-      left_side = right_side;
-      right_side = temp;
-      cc = ReverseCondition(cc);
-      // This may re-introduce greater or less_equal as the value of cc.
-      // CompareStub and the inline code both support all values of cc.
-    }
-    // Implement comparison against a constant Smi, inlining the case
-    // where both sides are Smis.
-    left_side->ToRegister();
-    Register left_reg = left_side->reg();
-    Handle<Object> right_val = right_side->handle();
-
-    if (left_side->is_smi()) {
-      if (FLAG_debug_code) {
-        __ AbortIfNotSmi(left_reg);
-      }
-      // Test smi equality and comparison by signed int comparison.
-      if (IsUnsafeSmi(right_side->handle())) {
-        right_side->ToRegister();
-        __ cmp(left_reg, Operand(right_side->reg()));
-      } else {
-        __ cmp(Operand(left_reg), Immediate(right_side->handle()));
-      }
-      left_side->Unuse();
-      right_side->Unuse();
-      dest->Split(cc);
-    } else {
-      // Only the case where the left side could possibly be a non-smi is left.
-      JumpTarget is_smi;
-      if (cc == equal) {
-        // We can do the equality comparison before the smi check.
-        __ cmp(Operand(left_reg), Immediate(right_side->handle()));
-        dest->true_target()->Branch(equal);
-        __ test(left_reg, Immediate(kSmiTagMask));
-        dest->false_target()->Branch(zero);
-      } else {
-        // Do the smi check, then the comparison.
-        __ test(left_reg, Immediate(kSmiTagMask));
-        is_smi.Branch(zero, left_side, right_side);
-      }
-
-      // Jump or fall through to here if we are comparing a non-smi to a
-      // constant smi.  If the non-smi is a heap number and this is not
-      // a loop condition, inline the floating point code.
-      if (!is_loop_condition &&
-          masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-        // Right side is a constant smi and left side has been checked
-        // not to be a smi.
-        CpuFeatures::Scope use_sse2(SSE2);
-        JumpTarget not_number;
-        __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
-               Immediate(FACTORY->heap_number_map()));
-        not_number.Branch(not_equal, left_side);
-        __ movdbl(xmm1,
-                  FieldOperand(left_reg, HeapNumber::kValueOffset));
-        int value = Smi::cast(*right_val)->value();
-        if (value == 0) {
-          __ xorpd(xmm0, xmm0);
-        } else {
-          Result temp = allocator()->Allocate();
-          __ mov(temp.reg(), Immediate(value));
-          __ cvtsi2sd(xmm0, Operand(temp.reg()));
-          temp.Unuse();
-        }
-        __ ucomisd(xmm1, xmm0);
-        // Jump to builtin for NaN.
-        not_number.Branch(parity_even, left_side);
-        left_side->Unuse();
-        dest->true_target()->Branch(DoubleCondition(cc));
-        dest->false_target()->Jump();
-        not_number.Bind(left_side);
-      }
-
-      // Setup and call the compare stub.
-      CompareFlags flags =
-          static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
-      CompareStub stub(cc, strict, flags);
-      Result result = frame_->CallStub(&stub, left_side, right_side);
-      result.ToRegister();
-      __ test(result.reg(), Operand(result.reg()));
-      result.Unuse();
-      if (cc == equal) {
-        dest->Split(cc);
-      } else {
-        dest->true_target()->Branch(cc);
-        dest->false_target()->Jump();
-
-        // It is important for performance for this case to be at the end.
-        is_smi.Bind(left_side, right_side);
-        if (IsUnsafeSmi(right_side->handle())) {
-          right_side->ToRegister();
-          __ cmp(left_reg, Operand(right_side->reg()));
-        } else {
-          __ cmp(Operand(left_reg), Immediate(right_side->handle()));
-        }
-        left_side->Unuse();
-        right_side->Unuse();
-        dest->Split(cc);
-      }
-    }
-  }
-}
-
-
-// Check that the comparison operand is a number. Jump to not_numbers jump
-// target passing the left and right result if the operand is not a number.
-static void CheckComparisonOperand(MacroAssembler* masm_,
-                                   Result* operand,
-                                   Result* left_side,
-                                   Result* right_side,
-                                   JumpTarget* not_numbers) {
-  // Perform check if operand is not known to be a number.
-  if (!operand->type_info().IsNumber()) {
-    Label done;
-    __ test(operand->reg(), Immediate(kSmiTagMask));
-    __ j(zero, &done);
-    __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
-           Immediate(FACTORY->heap_number_map()));
-    not_numbers->Branch(not_equal, left_side, right_side, not_taken);
-    __ bind(&done);
-  }
-}
-
-
-// Load a comparison operand to the FPU stack. This assumes that the operand has
-// already been checked and is a number.
-static void LoadComparisonOperand(MacroAssembler* masm_,
-                                  Result* operand) {
-  Label done;
-  if (operand->type_info().IsDouble()) {
-    // Operand is known to be a heap number, just load it.
-    __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
-  } else if (operand->type_info().IsSmi()) {
-    // Operand is known to be a smi. Convert it to double and keep the original
-    // smi.
-    __ SmiUntag(operand->reg());
-    __ push(operand->reg());
-    __ fild_s(Operand(esp, 0));
-    __ pop(operand->reg());
-    __ SmiTag(operand->reg());
-  } else {
-    // Operand type not known, check for smi otherwise assume heap number.
-    Label smi;
-    __ test(operand->reg(), Immediate(kSmiTagMask));
-    __ j(zero, &smi);
-    __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
-    __ jmp(&done);
-    __ bind(&smi);
-    __ SmiUntag(operand->reg());
-    __ push(operand->reg());
-    __ fild_s(Operand(esp, 0));
-    __ pop(operand->reg());
-    __ SmiTag(operand->reg());
-    __ jmp(&done);
-  }
-  __ bind(&done);
-}
-
-
-// Load a comparison operand into into a XMM register. Jump to not_numbers jump
-// target passing the left and right result if the operand is not a number.
-static void LoadComparisonOperandSSE2(MacroAssembler* masm_,
-                                      Result* operand,
-                                      XMMRegister xmm_reg,
-                                      Result* left_side,
-                                      Result* right_side,
-                                      JumpTarget* not_numbers) {
-  Label done;
-  if (operand->type_info().IsDouble()) {
-    // Operand is known to be a heap number, just load it.
-    __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
-  } else if (operand->type_info().IsSmi()) {
-    // Operand is known to be a smi. Convert it to double and keep the original
-    // smi.
-    __ SmiUntag(operand->reg());
-    __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
-    __ SmiTag(operand->reg());
-  } else {
-    // Operand type not known, check for smi or heap number.
-    Label smi;
-    __ test(operand->reg(), Immediate(kSmiTagMask));
-    __ j(zero, &smi);
-    if (!operand->type_info().IsNumber()) {
-      __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
-             Immediate(FACTORY->heap_number_map()));
-      not_numbers->Branch(not_equal, left_side, right_side, taken);
-    }
-    __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
-    __ jmp(&done);
-
-    __ bind(&smi);
-    // Comvert smi to float and keep the original smi.
-    __ SmiUntag(operand->reg());
-    __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
-    __ SmiTag(operand->reg());
-    __ jmp(&done);
-  }
-  __ bind(&done);
-}
-
-
-void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
-                                                   Result* right_side,
-                                                   Condition cc,
-                                                   ControlDestination* dest) {
-  ASSERT(left_side->is_register());
-  ASSERT(right_side->is_register());
-
-  JumpTarget not_numbers;
-  if (masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    CpuFeatures::Scope use_sse2(SSE2);
-
-    // Load left and right operand into registers xmm0 and xmm1 and compare.
-    LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side,
-                              &not_numbers);
-    LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side,
-                              &not_numbers);
-    __ ucomisd(xmm0, xmm1);
-  } else {
-    Label check_right, compare;
-
-    // Make sure that both comparison operands are numbers.
-    CheckComparisonOperand(masm_, left_side, left_side, right_side,
-                           &not_numbers);
-    CheckComparisonOperand(masm_, right_side, left_side, right_side,
-                           &not_numbers);
-
-    // Load right and left operand to FPU stack and compare.
-    LoadComparisonOperand(masm_, right_side);
-    LoadComparisonOperand(masm_, left_side);
-    __ FCmp();
-  }
-
-  // Bail out if a NaN is involved.
-  not_numbers.Branch(parity_even, left_side, right_side, not_taken);
-
-  // Split to destination targets based on comparison.
-  left_side->Unuse();
-  right_side->Unuse();
-  dest->true_target()->Branch(DoubleCondition(cc));
-  dest->false_target()->Jump();
-
-  not_numbers.Bind(left_side, right_side);
-}
-
-
-// Call the function just below TOS on the stack with the given
-// arguments. The receiver is the TOS.
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
-                                      CallFunctionFlags flags,
-                                      int position) {
-  // Push the arguments ("left-to-right") on the stack.
-  int arg_count = args->length();
-  for (int i = 0; i < arg_count; i++) {
-    Load(args->at(i));
-    frame_->SpillTop();
-  }
-
-  // Record the position for debugging purposes.
-  CodeForSourcePosition(position);
-
-  // Use the shared code stub to call the function.
-  InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
-  CallFunctionStub call_function(arg_count, in_loop, flags);
-  Result answer = frame_->CallStub(&call_function, arg_count + 1);
-  // Restore context and replace function on the stack with the
-  // result of the stub invocation.
-  frame_->RestoreContextRegister();
-  frame_->SetElementAt(0, &answer);
-}
-
-
-void CodeGenerator::CallApplyLazy(Expression* applicand,
-                                  Expression* receiver,
-                                  VariableProxy* arguments,
-                                  int position) {
-  // An optimized implementation of expressions of the form
-  // x.apply(y, arguments).
-  // If the arguments object of the scope has not been allocated,
-  // and x.apply is Function.prototype.apply, this optimization
-  // just copies y and the arguments of the current function on the
-  // stack, as receiver and arguments, and calls x.
-  // In the implementation comments, we call x the applicand
-  // and y the receiver.
-  ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
-  ASSERT(arguments->IsArguments());
-
-  // Load applicand.apply onto the stack. This will usually
-  // give us a megamorphic load site. Not super, but it works.
-  Load(applicand);
-  frame()->Dup();
-  Handle<String> name = FACTORY->LookupAsciiSymbol("apply");
-  frame()->Push(name);
-  Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
-  __ nop();
-  frame()->Push(&answer);
-
-  // Load the receiver and the existing arguments object onto the
-  // expression stack. Avoid allocating the arguments object here.
-  Load(receiver);
-  LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF);
-
-  // Emit the source position information after having loaded the
-  // receiver and the arguments.
-  CodeForSourcePosition(position);
-  // Contents of frame at this point:
-  // Frame[0]: arguments object of the current function or the hole.
-  // Frame[1]: receiver
-  // Frame[2]: applicand.apply
-  // Frame[3]: applicand.
-
-  // Check if the arguments object has been lazily allocated
-  // already. If so, just use that instead of copying the arguments
-  // from the stack. This also deals with cases where a local variable
-  // named 'arguments' has been introduced.
-  frame_->Dup();
-  Result probe = frame_->Pop();
-  { VirtualFrame::SpilledScope spilled_scope;
-    Label slow, done;
-    bool try_lazy = true;
-    if (probe.is_constant()) {
-      try_lazy = probe.handle()->IsArgumentsMarker();
-    } else {
-      __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker()));
-      probe.Unuse();
-      __ j(not_equal, &slow);
-    }
-
-    if (try_lazy) {
-      Label build_args;
-      // Get rid of the arguments object probe.
-      frame_->Drop();  // Can be called on a spilled frame.
-      // Stack now has 3 elements on it.
-      // Contents of stack at this point:
-      // esp[0]: receiver
-      // esp[1]: applicand.apply
-      // esp[2]: applicand.
-
-      // Check that the receiver really is a JavaScript object.
-      __ mov(eax, Operand(esp, 0));
-      __ test(eax, Immediate(kSmiTagMask));
-      __ j(zero, &build_args);
-      // We allow all JSObjects including JSFunctions.  As long as
-      // JS_FUNCTION_TYPE is the last instance type and it is right
-      // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
-      // bound.
-      STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
-      STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
-      __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
-      __ j(below, &build_args);
-
-      // Check that applicand.apply is Function.prototype.apply.
-      __ mov(eax, Operand(esp, kPointerSize));
-      __ test(eax, Immediate(kSmiTagMask));
-      __ j(zero, &build_args);
-      __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx);
-      __ j(not_equal, &build_args);
-      __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset));
-      __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag));
-      Handle<Code> apply_code(masm()->isolate()->builtins()->builtin(
-          Builtins::kFunctionApply));
-      __ cmp(Operand(ecx), Immediate(apply_code));
-      __ j(not_equal, &build_args);
-
-      // Check that applicand is a function.
-      __ mov(edi, Operand(esp, 2 * kPointerSize));
-      __ test(edi, Immediate(kSmiTagMask));
-      __ j(zero, &build_args);
-      __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
-      __ j(not_equal, &build_args);
-
-      // Copy the arguments to this function possibly from the
-      // adaptor frame below it.
-      Label invoke, adapted;
-      __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
-      __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
-      __ cmp(Operand(ecx),
-             Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
-      __ j(equal, &adapted);
-
-      // No arguments adaptor frame. Copy fixed number of arguments.
-      __ mov(eax, Immediate(scope()->num_parameters()));
-      for (int i = 0; i < scope()->num_parameters(); i++) {
-        __ push(frame_->ParameterAt(i));
-      }
-      __ jmp(&invoke);
-
-      // Arguments adaptor frame present. Copy arguments from there, but
-      // avoid copying too many arguments to avoid stack overflows.
-      __ bind(&adapted);
-      static const uint32_t kArgumentsLimit = 1 * KB;
-      __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
-      __ SmiUntag(eax);
-      __ mov(ecx, Operand(eax));
-      __ cmp(eax, kArgumentsLimit);
-      __ j(above, &build_args);
-
-      // Loop through the arguments pushing them onto the execution
-      // stack. We don't inform the virtual frame of the push, so we don't
-      // have to worry about getting rid of the elements from the virtual
-      // frame.
-      Label loop;
-      // ecx is a small non-negative integer, due to the test above.
-      __ test(ecx, Operand(ecx));
-      __ j(zero, &invoke);
-      __ bind(&loop);
-      __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize));
-      __ dec(ecx);
-      __ j(not_zero, &loop);
-
-      // Invoke the function.
-      __ bind(&invoke);
-      ParameterCount actual(eax);
-      __ InvokeFunction(edi, actual, CALL_FUNCTION);
-      // Drop applicand.apply and applicand from the stack, and push
-      // the result of the function call, but leave the spilled frame
-      // unchanged, with 3 elements, so it is correct when we compile the
-      // slow-case code.
-      __ add(Operand(esp), Immediate(2 * kPointerSize));
-      __ push(eax);
-      // Stack now has 1 element:
-      //   esp[0]: result
-      __ jmp(&done);
-
-      // Slow-case: Allocate the arguments object since we know it isn't
-      // there, and fall-through to the slow-case where we call
-      // applicand.apply.
-      __ bind(&build_args);
-      // Stack now has 3 elements, because we have jumped from where:
-      // esp[0]: receiver
-      // esp[1]: applicand.apply
-      // esp[2]: applicand.
-
-      // StoreArgumentsObject requires a correct frame, and may modify it.
-      Result arguments_object = StoreArgumentsObject(false);
-      frame_->SpillAll();
-      arguments_object.ToRegister();
-      frame_->EmitPush(arguments_object.reg());
-      arguments_object.Unuse();
-      // Stack and frame now have 4 elements.
-      __ bind(&slow);
-    }
-
-    // Generic computation of x.apply(y, args) with no special optimization.
-    // Flip applicand.apply and applicand on the stack, so
-    // applicand looks like the receiver of the applicand.apply call.
-    // Then process it as a normal function call.
-    __ mov(eax, Operand(esp, 3 * kPointerSize));
-    __ mov(ebx, Operand(esp, 2 * kPointerSize));
-    __ mov(Operand(esp, 2 * kPointerSize), eax);
-    __ mov(Operand(esp, 3 * kPointerSize), ebx);
-
-    CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
-    Result res = frame_->CallStub(&call_function, 3);
-    // The function and its two arguments have been dropped.
-    frame_->Drop(1);  // Drop the receiver as well.
-    res.ToRegister();
-    frame_->EmitPush(res.reg());
-    // Stack now has 1 element:
-    //   esp[0]: result
-    if (try_lazy) __ bind(&done);
-  }  // End of spilled scope.
-  // Restore the context register after a call.
-  frame_->RestoreContextRegister();
-}
-
-
-class DeferredStackCheck: public DeferredCode {
- public:
-  DeferredStackCheck() {
-    set_comment("[ DeferredStackCheck");
-  }
-
-  virtual void Generate();
-};
-
-
-void DeferredStackCheck::Generate() {
-  StackCheckStub stub;
-  __ CallStub(&stub);
-}
-
-
-void CodeGenerator::CheckStack() {
-  DeferredStackCheck* deferred = new DeferredStackCheck;
-  ExternalReference stack_limit =
-      ExternalReference::address_of_stack_limit(masm()->isolate());
-  __ cmp(esp, Operand::StaticVariable(stack_limit));
-  deferred->Branch(below);
-  deferred->BindExit();
-}
-
-
-void CodeGenerator::VisitAndSpill(Statement* statement) {
-  ASSERT(in_spilled_code());
-  set_in_spilled_code(false);
-  Visit(statement);
-  if (frame_ != NULL) {
-    frame_->SpillAll();
-  }
-  set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
-#ifdef DEBUG
-  int original_height = frame_->height();
-#endif
-  ASSERT(in_spilled_code());
-  set_in_spilled_code(false);
-  VisitStatements(statements);
-  if (frame_ != NULL) {
-    frame_->SpillAll();
-  }
-  set_in_spilled_code(true);
-
-  ASSERT(!has_valid_frame() || frame_->height() == original_height);
-}
-
-
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
-#ifdef DEBUG
-  int original_height = frame_->height();
-#endif
-  ASSERT(!in_spilled_code());
-  for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
-    Visit(statements->at(i));
-  }
-  ASSERT(!has_valid_frame() || frame_->height() == original_height);
-}
-
-
-void CodeGenerator::VisitBlock(Block* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ Block");
-  CodeForStatementPosition(node);
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-  VisitStatements(node->statements());
-  if (node->break_target()->is_linked()) {
-    node->break_target()->Bind();
-  }
-  node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
-  // Call the runtime to declare the globals.  The inevitable call
-  // will sync frame elements to memory anyway, so we do it eagerly to
-  // allow us to push the arguments directly into place.
-  frame_->SyncRange(0, frame_->element_count() - 1);
-
-  frame_->EmitPush(esi);  // The context is the first argument.
-  frame_->EmitPush(Immediate(pairs));
-  frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
-  frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag())));
-  Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4);
-  // Return value is ignored.
-}
-
-
-void CodeGenerator::VisitDeclaration(Declaration* node) {
-  Comment cmnt(masm_, "[ Declaration");
-  Variable* var = node->proxy()->var();
-  ASSERT(var != NULL);  // must have been resolved
-  Slot* slot = var->AsSlot();
-
-  // If it was not possible to allocate the variable at compile time,
-  // we need to "declare" it at runtime to make sure it actually
-  // exists in the local context.
-  if (slot != NULL && slot->type() == Slot::LOOKUP) {
-    // Variables with a "LOOKUP" slot were introduced as non-locals
-    // during variable resolution and must have mode DYNAMIC.
-    ASSERT(var->is_dynamic());
-    // For now, just do a runtime call.  Sync the virtual frame eagerly
-    // so we can simply push the arguments into place.
-    frame_->SyncRange(0, frame_->element_count() - 1);
-    frame_->EmitPush(esi);
-    frame_->EmitPush(Immediate(var->name()));
-    // Declaration nodes are always introduced in one of two modes.
-    ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
-    PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
-    frame_->EmitPush(Immediate(Smi::FromInt(attr)));
-    // Push initial value, if any.
-    // Note: For variables we must not push an initial value (such as
-    // 'undefined') because we may have a (legal) redeclaration and we
-    // must not destroy the current value.
-    if (node->mode() == Variable::CONST) {
-      frame_->EmitPush(Immediate(FACTORY->the_hole_value()));
-    } else if (node->fun() != NULL) {
-      Load(node->fun());
-    } else {
-      frame_->EmitPush(Immediate(Smi::FromInt(0)));  // no initial value!
-    }
-    Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
-    // Ignore the return value (declarations are statements).
-    return;
-  }
-
-  ASSERT(!var->is_global());
-
-  // If we have a function or a constant, we need to initialize the variable.
-  Expression* val = NULL;
-  if (node->mode() == Variable::CONST) {
-    val = new Literal(FACTORY->the_hole_value());
-  } else {
-    val = node->fun();  // NULL if we don't have a function
-  }
-
-  if (val != NULL) {
-    {
-      // Set the initial value.
-      Reference target(this, node->proxy());
-      Load(val);
-      target.SetValue(NOT_CONST_INIT);
-      // The reference is removed from the stack (preserving TOS) when
-      // it goes out of scope.
-    }
-    // Get rid of the assigned value (declarations are statements).
-    frame_->Drop();
-  }
-}
-
-
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ ExpressionStatement");
-  CodeForStatementPosition(node);
-  Expression* expression = node->expression();
-  expression->MarkAsStatement();
-  Load(expression);
-  // Remove the lingering expression result from the top of stack.
-  frame_->Drop();
-}
-
-
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "// EmptyStatement");
-  CodeForStatementPosition(node);
-  // nothing to do
-}
-
-
-void CodeGenerator::VisitIfStatement(IfStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ IfStatement");
-  // Generate different code depending on which parts of the if statement
-  // are present or not.
-  bool has_then_stm = node->HasThenStatement();
-  bool has_else_stm = node->HasElseStatement();
-
-  CodeForStatementPosition(node);
-  JumpTarget exit;
-  if (has_then_stm && has_else_stm) {
-    JumpTarget then;
-    JumpTarget else_;
-    ControlDestination dest(&then, &else_, true);
-    LoadCondition(node->condition(), &dest, true);
-
-    if (dest.false_was_fall_through()) {
-      // The else target was bound, so we compile the else part first.
-      Visit(node->else_statement());
-
-      // We may have dangling jumps to the then part.
-      if (then.is_linked()) {
-        if (has_valid_frame()) exit.Jump();
-        then.Bind();
-        Visit(node->then_statement());
-      }
-    } else {
-      // The then target was bound, so we compile the then part first.
-      Visit(node->then_statement());
-
-      if (else_.is_linked()) {
-        if (has_valid_frame()) exit.Jump();
-        else_.Bind();
-        Visit(node->else_statement());
-      }
-    }
-
-  } else if (has_then_stm) {
-    ASSERT(!has_else_stm);
-    JumpTarget then;
-    ControlDestination dest(&then, &exit, true);
-    LoadCondition(node->condition(), &dest, true);
-
-    if (dest.false_was_fall_through()) {
-      // The exit label was bound.  We may have dangling jumps to the
-      // then part.
-      if (then.is_linked()) {
-        exit.Unuse();
-        exit.Jump();
-        then.Bind();
-        Visit(node->then_statement());
-      }
-    } else {
-      // The then label was bound.
-      Visit(node->then_statement());
-    }
-
-  } else if (has_else_stm) {
-    ASSERT(!has_then_stm);
-    JumpTarget else_;
-    ControlDestination dest(&exit, &else_, false);
-    LoadCondition(node->condition(), &dest, true);
-
-    if (dest.true_was_fall_through()) {
-      // The exit label was bound.  We may have dangling jumps to the
-      // else part.
-      if (else_.is_linked()) {
-        exit.Unuse();
-        exit.Jump();
-        else_.Bind();
-        Visit(node->else_statement());
-      }
-    } else {
-      // The else label was bound.
-      Visit(node->else_statement());
-    }
-
-  } else {
-    ASSERT(!has_then_stm && !has_else_stm);
-    // We only care about the condition's side effects (not its value
-    // or control flow effect).  LoadCondition is called without
-    // forcing control flow.
-    ControlDestination dest(&exit, &exit, true);
-    LoadCondition(node->condition(), &dest, false);
-    if (!dest.is_used()) {
-      // We got a value on the frame rather than (or in addition to)
-      // control flow.
-      frame_->Drop();
-    }
-  }
-
-  if (exit.is_linked()) {
-    exit.Bind();
-  }
-}
-
-
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ ContinueStatement");
-  CodeForStatementPosition(node);
-  node->target()->continue_target()->Jump();
-}
-
-
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ BreakStatement");
-  CodeForStatementPosition(node);
-  node->target()->break_target()->Jump();
-}
-
-
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ ReturnStatement");
-
-  CodeForStatementPosition(node);
-  Load(node->expression());
-  Result return_value = frame_->Pop();
-  masm()->positions_recorder()->WriteRecordedPositions();
-  if (function_return_is_shadowed_) {
-    function_return_.Jump(&return_value);
-  } else {
-    frame_->PrepareForReturn();
-    if (function_return_.is_bound()) {
-      // If the function return label is already bound we reuse the
-      // code by jumping to the return site.
-      function_return_.Jump(&return_value);
-    } else {
-      function_return_.Bind(&return_value);
-      GenerateReturnSequence(&return_value);
-    }
-  }
-}
-
-
-void CodeGenerator::GenerateReturnSequence(Result* return_value) {
-  // The return value is a live (but not currently reference counted)
-  // reference to eax.  This is safe because the current frame does not
-  // contain a reference to eax (it is prepared for the return by spilling
-  // all registers).
-  if (FLAG_trace) {
-    frame_->Push(return_value);
-    *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
-  }
-  return_value->ToRegister(eax);
-
-  // Add a label for checking the size of the code used for returning.
-#ifdef DEBUG
-  Label check_exit_codesize;
-  masm_->bind(&check_exit_codesize);
-#endif
-
-  // Leave the frame and return popping the arguments and the
-  // receiver.
-  frame_->Exit();
-  int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize;
-  __ Ret(arguments_bytes, ecx);
-  DeleteFrame();
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
-  // Check that the size of the code used for returning is large enough
-  // for the debugger's requirements.
-  ASSERT(Assembler::kJSReturnSequenceLength <=
-         masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
-#endif
-}
-
-
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ WithEnterStatement");
-  CodeForStatementPosition(node);
-  Load(node->expression());
-  Result context;
-  if (node->is_catch_block()) {
-    context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
-  } else {
-    context = frame_->CallRuntime(Runtime::kPushContext, 1);
-  }
-
-  // Update context local.
-  frame_->SaveContextRegister();
-
-  // Verify that the runtime call result and esi agree.
-  if (FLAG_debug_code) {
-    __ cmp(context.reg(), Operand(esi));
-    __ Assert(equal, "Runtime::NewContext should end up in esi");
-  }
-}
-
-
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ WithExitStatement");
-  CodeForStatementPosition(node);
-  // Pop context.
-  __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX));
-  // Update context local.
-  frame_->SaveContextRegister();
-}
-
-
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ SwitchStatement");
-  CodeForStatementPosition(node);
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
-  // Compile the switch value.
-  Load(node->tag());
-
-  ZoneList<CaseClause*>* cases = node->cases();
-  int length = cases->length();
-  CaseClause* default_clause = NULL;
-
-  JumpTarget next_test;
-  // Compile the case label expressions and comparisons.  Exit early
-  // if a comparison is unconditionally true.  The target next_test is
-  // bound before the loop in order to indicate control flow to the
-  // first comparison.
-  next_test.Bind();
-  for (int i = 0; i < length && !next_test.is_unused(); i++) {
-    CaseClause* clause = cases->at(i);
-    // The default is not a test, but remember it for later.
-    if (clause->is_default()) {
-      default_clause = clause;
-      continue;
-    }
-
-    Comment cmnt(masm_, "[ Case comparison");
-    // We recycle the same target next_test for each test.  Bind it if
-    // the previous test has not done so and then unuse it for the
-    // loop.
-    if (next_test.is_linked()) {
-      next_test.Bind();
-    }
-    next_test.Unuse();
-
-    // Duplicate the switch value.
-    frame_->Dup();
-
-    // Compile the label expression.
-    Load(clause->label());
-
-    // Compare and branch to the body if true or the next test if
-    // false.  Prefer the next test as a fall through.
-    ControlDestination dest(clause->body_target(), &next_test, false);
-    Comparison(node, equal, true, &dest);
-
-    // If the comparison fell through to the true target, jump to the
-    // actual body.
-    if (dest.true_was_fall_through()) {
-      clause->body_target()->Unuse();
-      clause->body_target()->Jump();
-    }
-  }
-
-  // If there was control flow to a next test from the last one
-  // compiled, compile a jump to the default or break target.
-  if (!next_test.is_unused()) {
-    if (next_test.is_linked()) {
-      next_test.Bind();
-    }
-    // Drop the switch value.
-    frame_->Drop();
-    if (default_clause != NULL) {
-      default_clause->body_target()->Jump();
-    } else {
-      node->break_target()->Jump();
-    }
-  }
-
-  // The last instruction emitted was a jump, either to the default
-  // clause or the break target, or else to a case body from the loop
-  // that compiles the tests.
-  ASSERT(!has_valid_frame());
-  // Compile case bodies as needed.
-  for (int i = 0; i < length; i++) {
-    CaseClause* clause = cases->at(i);
-
-    // There are two ways to reach the body: from the corresponding
-    // test or as the fall through of the previous body.
-    if (clause->body_target()->is_linked() || has_valid_frame()) {
-      if (clause->body_target()->is_linked()) {
-        if (has_valid_frame()) {
-          // If we have both a jump to the test and a fall through, put
-          // a jump on the fall through path to avoid the dropping of
-          // the switch value on the test path.  The exception is the
-          // default which has already had the switch value dropped.
-          if (clause->is_default()) {
-            clause->body_target()->Bind();
-          } else {
-            JumpTarget body;
-            body.Jump();
-            clause->body_target()->Bind();
-            frame_->Drop();
-            body.Bind();
-          }
-        } else {
-          // No fall through to worry about.
-          clause->body_target()->Bind();
-          if (!clause->is_default()) {
-            frame_->Drop();
-          }
-        }
-      } else {
-        // Otherwise, we have only fall through.
-        ASSERT(has_valid_frame());
-      }
-
-      // We are now prepared to compile the body.
-      Comment cmnt(masm_, "[ Case body");
-      VisitStatements(clause->statements());
-    }
-    clause->body_target()->Unuse();
-  }
-
-  // We may not have a valid frame here so bind the break target only
-  // if needed.
-  if (node->break_target()->is_linked()) {
-    node->break_target()->Bind();
-  }
-  node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ DoWhileStatement");
-  CodeForStatementPosition(node);
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-  JumpTarget body(JumpTarget::BIDIRECTIONAL);
-  IncrementLoopNesting();
-
-  ConditionAnalysis info = AnalyzeCondition(node->cond());
-  // Label the top of the loop for the backward jump if necessary.
-  switch (info) {
-    case ALWAYS_TRUE:
-      // Use the continue target.
-      node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
-      node->continue_target()->Bind();
-      break;
-    case ALWAYS_FALSE:
-      // No need to label it.
-      node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-      break;
-    case DONT_KNOW:
-      // Continue is the test, so use the backward body target.
-      node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-      body.Bind();
-      break;
-  }
-
-  CheckStack();  // TODO(1222600): ignore if body contains calls.
-  Visit(node->body());
-
-  // Compile the test.
-  switch (info) {
-    case ALWAYS_TRUE:
-      // If control flow can fall off the end of the body, jump back
-      // to the top and bind the break target at the exit.
-      if (has_valid_frame()) {
-        node->continue_target()->Jump();
-      }
-      if (node->break_target()->is_linked()) {
-        node->break_target()->Bind();
-      }
-      break;
-    case ALWAYS_FALSE:
-      // We may have had continues or breaks in the body.
-      if (node->continue_target()->is_linked()) {
-        node->continue_target()->Bind();
-      }
-      if (node->break_target()->is_linked()) {
-        node->break_target()->Bind();
-      }
-      break;
-    case DONT_KNOW:
-      // We have to compile the test expression if it can be reached by
-      // control flow falling out of the body or via continue.
-      if (node->continue_target()->is_linked()) {
-        node->continue_target()->Bind();
-      }
-      if (has_valid_frame()) {
-        Comment cmnt(masm_, "[ DoWhileCondition");
-        CodeForDoWhileConditionPosition(node);
-        ControlDestination dest(&body, node->break_target(), false);
-        LoadCondition(node->cond(), &dest, true);
-      }
-      if (node->break_target()->is_linked()) {
-        node->break_target()->Bind();
-      }
-      break;
-  }
-
-  DecrementLoopNesting();
-  node->continue_target()->Unuse();
-  node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ WhileStatement");
-  CodeForStatementPosition(node);
-
-  // If the condition is always false and has no side effects, we do not
-  // need to compile anything.
-  ConditionAnalysis info = AnalyzeCondition(node->cond());
-  if (info == ALWAYS_FALSE) return;
-
-  // Do not duplicate conditions that may have function literal
-  // subexpressions.  This can cause us to compile the function literal
-  // twice.
-  bool test_at_bottom = !node->may_have_function_literal();
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-  IncrementLoopNesting();
-  JumpTarget body;
-  if (test_at_bottom) {
-    body.set_direction(JumpTarget::BIDIRECTIONAL);
-  }
-
-  // Based on the condition analysis, compile the test as necessary.
-  switch (info) {
-    case ALWAYS_TRUE:
-      // We will not compile the test expression.  Label the top of the
-      // loop with the continue target.
-      node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
-      node->continue_target()->Bind();
-      break;
-    case DONT_KNOW: {
-      if (test_at_bottom) {
-        // Continue is the test at the bottom, no need to label the test
-        // at the top.  The body is a backward target.
-        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-      } else {
-        // Label the test at the top as the continue target.  The body
-        // is a forward-only target.
-        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
-        node->continue_target()->Bind();
-      }
-      // Compile the test with the body as the true target and preferred
-      // fall-through and with the break target as the false target.
-      ControlDestination dest(&body, node->break_target(), true);
-      LoadCondition(node->cond(), &dest, true);
-
-      if (dest.false_was_fall_through()) {
-        // If we got the break target as fall-through, the test may have
-        // been unconditionally false (if there are no jumps to the
-        // body).
-        if (!body.is_linked()) {
-          DecrementLoopNesting();
-          return;
-        }
-
-        // Otherwise, jump around the body on the fall through and then
-        // bind the body target.
-        node->break_target()->Unuse();
-        node->break_target()->Jump();
-        body.Bind();
-      }
-      break;
-    }
-    case ALWAYS_FALSE:
-      UNREACHABLE();
-      break;
-  }
-
-  CheckStack();  // TODO(1222600): ignore if body contains calls.
-  Visit(node->body());
-
-  // Based on the condition analysis, compile the backward jump as
-  // necessary.
-  switch (info) {
-    case ALWAYS_TRUE:
-      // The loop body has been labeled with the continue target.
-      if (has_valid_frame()) {
-        node->continue_target()->Jump();
-      }
-      break;
-    case DONT_KNOW:
-      if (test_at_bottom) {
-        // If we have chosen to recompile the test at the bottom,
-        // then it is the continue target.
-        if (node->continue_target()->is_linked()) {
-          node->continue_target()->Bind();
-        }
-        if (has_valid_frame()) {
-          // The break target is the fall-through (body is a backward
-          // jump from here and thus an invalid fall-through).
-          ControlDestination dest(&body, node->break_target(), false);
-          LoadCondition(node->cond(), &dest, true);
-        }
-      } else {
-        // If we have chosen not to recompile the test at the bottom,
-        // jump back to the one at the top.
-        if (has_valid_frame()) {
-          node->continue_target()->Jump();
-        }
-      }
-      break;
-    case ALWAYS_FALSE:
-      UNREACHABLE();
-      break;
-  }
-
-  // The break target may be already bound (by the condition), or there
-  // may not be a valid frame.  Bind it only if needed.
-  if (node->break_target()->is_linked()) {
-    node->break_target()->Bind();
-  }
-  DecrementLoopNesting();
-}
-
-
-void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
-  ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
-  if (slot->type() == Slot::LOCAL) {
-    frame_->SetTypeForLocalAt(slot->index(), info);
-  } else {
-    frame_->SetTypeForParamAt(slot->index(), info);
-  }
-  if (FLAG_debug_code && info.IsSmi()) {
-    if (slot->type() == Slot::LOCAL) {
-      frame_->PushLocalAt(slot->index());
-    } else {
-      frame_->PushParameterAt(slot->index());
-    }
-    Result var = frame_->Pop();
-    var.ToRegister();
-    __ AbortIfNotSmi(var.reg());
-  }
-}
-
-
-void CodeGenerator::VisitForStatement(ForStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ ForStatement");
-  CodeForStatementPosition(node);
-
-  // Compile the init expression if present.
-  if (node->init() != NULL) {
-    Visit(node->init());
-  }
-
-  // If the condition is always false and has no side effects, we do not
-  // need to compile anything else.
-  ConditionAnalysis info = AnalyzeCondition(node->cond());
-  if (info == ALWAYS_FALSE) return;
-
-  // Do not duplicate conditions that may have function literal
-  // subexpressions.  This can cause us to compile the function literal
-  // twice.
-  bool test_at_bottom = !node->may_have_function_literal();
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-  IncrementLoopNesting();
-
-  // Target for backward edge if no test at the bottom, otherwise
-  // unused.
-  JumpTarget loop(JumpTarget::BIDIRECTIONAL);
-
-  // Target for backward edge if there is a test at the bottom,
-  // otherwise used as target for test at the top.
-  JumpTarget body;
-  if (test_at_bottom) {
-    body.set_direction(JumpTarget::BIDIRECTIONAL);
-  }
-
-  // Based on the condition analysis, compile the test as necessary.
-  switch (info) {
-    case ALWAYS_TRUE:
-      // We will not compile the test expression.  Label the top of the
-      // loop.
-      if (node->next() == NULL) {
-        // Use the continue target if there is no update expression.
-        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
-        node->continue_target()->Bind();
-      } else {
-        // Otherwise use the backward loop target.
-        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-        loop.Bind();
-      }
-      break;
-    case DONT_KNOW: {
-      if (test_at_bottom) {
-        // Continue is either the update expression or the test at the
-        // bottom, no need to label the test at the top.
-        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-      } else if (node->next() == NULL) {
-        // We are not recompiling the test at the bottom and there is no
-        // update expression.
-        node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
-        node->continue_target()->Bind();
-      } else {
-        // We are not recompiling the test at the bottom and there is an
-        // update expression.
-        node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-        loop.Bind();
-      }
-
-      // Compile the test with the body as the true target and preferred
-      // fall-through and with the break target as the false target.
-      ControlDestination dest(&body, node->break_target(), true);
-      LoadCondition(node->cond(), &dest, true);
-
-      if (dest.false_was_fall_through()) {
-        // If we got the break target as fall-through, the test may have
-        // been unconditionally false (if there are no jumps to the
-        // body).
-        if (!body.is_linked()) {
-          DecrementLoopNesting();
-          return;
-        }
-
-        // Otherwise, jump around the body on the fall through and then
-        // bind the body target.
-        node->break_target()->Unuse();
-        node->break_target()->Jump();
-        body.Bind();
-      }
-      break;
-    }
-    case ALWAYS_FALSE:
-      UNREACHABLE();
-      break;
-  }
-
-  CheckStack();  // TODO(1222600): ignore if body contains calls.
-
-  // We know that the loop index is a smi if it is not modified in the
-  // loop body and it is checked against a constant limit in the loop
-  // condition.  In this case, we reset the static type information of the
-  // loop index to smi before compiling the body, the update expression, and
-  // the bottom check of the loop condition.
-  if (node->is_fast_smi_loop()) {
-    // Set number type of the loop variable to smi.
-    SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
-  }
-
-  Visit(node->body());
-
-  // If there is an update expression, compile it if necessary.
-  if (node->next() != NULL) {
-    if (node->continue_target()->is_linked()) {
-      node->continue_target()->Bind();
-    }
-
-    // Control can reach the update by falling out of the body or by a
-    // continue.
-    if (has_valid_frame()) {
-      // Record the source position of the statement as this code which
-      // is after the code for the body actually belongs to the loop
-      // statement and not the body.
-      CodeForStatementPosition(node);
-      Visit(node->next());
-    }
-  }
-
-  // Set the type of the loop variable to smi before compiling the test
-  // expression if we are in a fast smi loop condition.
-  if (node->is_fast_smi_loop() && has_valid_frame()) {
-    // Set number type of the loop variable to smi.
-    SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
-  }
-
-  // Based on the condition analysis, compile the backward jump as
-  // necessary.
-  switch (info) {
-    case ALWAYS_TRUE:
-      if (has_valid_frame()) {
-        if (node->next() == NULL) {
-          node->continue_target()->Jump();
-        } else {
-          loop.Jump();
-        }
-      }
-      break;
-    case DONT_KNOW:
-      if (test_at_bottom) {
-        if (node->continue_target()->is_linked()) {
-          // We can have dangling jumps to the continue target if there
-          // was no update expression.
-          node->continue_target()->Bind();
-        }
-        // Control can reach the test at the bottom by falling out of
-        // the body, by a continue in the body, or from the update
-        // expression.
-        if (has_valid_frame()) {
-          // The break target is the fall-through (body is a backward
-          // jump from here).
-          ControlDestination dest(&body, node->break_target(), false);
-          LoadCondition(node->cond(), &dest, true);
-        }
-      } else {
-        // Otherwise, jump back to the test at the top.
-        if (has_valid_frame()) {
-          if (node->next() == NULL) {
-            node->continue_target()->Jump();
-          } else {
-            loop.Jump();
-          }
-        }
-      }
-      break;
-    case ALWAYS_FALSE:
-      UNREACHABLE();
-      break;
-  }
-
-  // The break target may be already bound (by the condition), or there
-  // may not be a valid frame.  Bind it only if needed.
-  if (node->break_target()->is_linked()) {
-    node->break_target()->Bind();
-  }
-  DecrementLoopNesting();
-}
-
-
-void CodeGenerator::VisitForInStatement(ForInStatement* node) {
-  ASSERT(!in_spilled_code());
-  VirtualFrame::SpilledScope spilled_scope;
-  Comment cmnt(masm_, "[ ForInStatement");
-  CodeForStatementPosition(node);
-
-  JumpTarget primitive;
-  JumpTarget jsobject;
-  JumpTarget fixed_array;
-  JumpTarget entry(JumpTarget::BIDIRECTIONAL);
-  JumpTarget end_del_check;
-  JumpTarget exit;
-
-  // Get the object to enumerate over (converted to JSObject).
-  LoadAndSpill(node->enumerable());
-
-  // Both SpiderMonkey and kjs ignore null and undefined in contrast
-  // to the specification.  12.6.4 mandates a call to ToObject.
-  frame_->EmitPop(eax);
-
-  // eax: value to be iterated over
-  __ cmp(eax, FACTORY->undefined_value());
-  exit.Branch(equal);
-  __ cmp(eax, FACTORY->null_value());
-  exit.Branch(equal);
-
-  // Stack layout in body:
-  // [iteration counter (smi)] <- slot 0
-  // [length of array]         <- slot 1
-  // [FixedArray]              <- slot 2
-  // [Map or 0]                <- slot 3
-  // [Object]                  <- slot 4
-
-  // Check if enumerable is already a JSObject
-  // eax: value to be iterated over
-  __ test(eax, Immediate(kSmiTagMask));
-  primitive.Branch(zero);
-  __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
-  jsobject.Branch(above_equal);
-
-  primitive.Bind();
-  frame_->EmitPush(eax);
-  frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
-  // function call returns the value in eax, which is where we want it below
-
-  jsobject.Bind();
-  // Get the set of properties (as a FixedArray or Map).
-  // eax: value to be iterated over
-  frame_->EmitPush(eax);  // Push the object being iterated over.
-
-  // Check cache validity in generated code. This is a fast case for
-  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
-  // guarantee cache validity, call the runtime system to check cache
-  // validity or get the property names in a fixed array.
-  JumpTarget call_runtime;
-  JumpTarget loop(JumpTarget::BIDIRECTIONAL);
-  JumpTarget check_prototype;
-  JumpTarget use_cache;
-  __ mov(ecx, eax);
-  loop.Bind();
-  // Check that there are no elements.
-  __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset));
-  __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array()));
-  call_runtime.Branch(not_equal);
-  // Check that instance descriptors are not empty so that we can
-  // check for an enum cache.  Leave the map in ebx for the subsequent
-  // prototype load.
-  __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
-  __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset));
-  __ cmp(Operand(edx), Immediate(FACTORY->empty_descriptor_array()));
-  call_runtime.Branch(equal);
-  // Check that there in an enum cache in the non-empty instance
-  // descriptors.  This is the case if the next enumeration index
-  // field does not contain a smi.
-  __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset));
-  __ test(edx, Immediate(kSmiTagMask));
-  call_runtime.Branch(zero);
-  // For all objects but the receiver, check that the cache is empty.
-  __ cmp(ecx, Operand(eax));
-  check_prototype.Branch(equal);
-  __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset));
-  __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array()));
-  call_runtime.Branch(not_equal);
-  check_prototype.Bind();
-  // Load the prototype from the map and loop if non-null.
-  __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
-  __ cmp(Operand(ecx), Immediate(FACTORY->null_value()));
-  loop.Branch(not_equal);
-  // The enum cache is valid.  Load the map of the object being
-  // iterated over and use the cache for the iteration.
-  __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
-  use_cache.Jump();
-
-  call_runtime.Bind();
-  // Call the runtime to get the property names for the object.
-  frame_->EmitPush(eax);  // push the Object (slot 4) for the runtime call
-  frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
-
-  // If we got a map from the runtime call, we can do a fast
-  // modification check. Otherwise, we got a fixed array, and we have
-  // to do a slow check.
-  // eax: map or fixed array (result from call to
-  // Runtime::kGetPropertyNamesFast)
-  __ mov(edx, Operand(eax));
-  __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
-  __ cmp(ecx, FACTORY->meta_map());
-  fixed_array.Branch(not_equal);
-
-  use_cache.Bind();
-  // Get enum cache
-  // eax: map (either the result from a call to
-  // Runtime::kGetPropertyNamesFast or has been fetched directly from
-  // the object)
-  __ mov(ecx, Operand(eax));
-
-  __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset));
-  // Get the bridge array held in the enumeration index field.
-  __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
-  // Get the cache from the bridge array.
-  __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
-
-  frame_->EmitPush(eax);  // <- slot 3
-  frame_->EmitPush(edx);  // <- slot 2
-  __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
-  frame_->EmitPush(eax);  // <- slot 1
-  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 0
-  entry.Jump();
-
-  fixed_array.Bind();
-  // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
-  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 3
-  frame_->EmitPush(eax);  // <- slot 2
-
-  // Push the length of the array and the initial index onto the stack.
-  __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
-  frame_->EmitPush(eax);  // <- slot 1
-  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 0
-
-  // Condition.
-  entry.Bind();
-  // Grab the current frame's height for the break and continue
-  // targets only after all the state is pushed on the frame.
-  node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-  node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
-  __ mov(eax, frame_->ElementAt(0));  // load the current count
-  __ cmp(eax, frame_->ElementAt(1));  // compare to the array length
-  node->break_target()->Branch(above_equal);
-
-  // Get the i'th entry of the array.
-  __ mov(edx, frame_->ElementAt(2));
-  __ mov(ebx, FixedArrayElementOperand(edx, eax));
-
-  // Get the expected map from the stack or a zero map in the
-  // permanent slow case eax: current iteration count ebx: i'th entry
-  // of the enum cache
-  __ mov(edx, frame_->ElementAt(3));
-  // Check if the expected map still matches that of the enumerable.
-  // If not, we have to filter the key.
-  // eax: current iteration count
-  // ebx: i'th entry of the enum cache
-  // edx: expected map value
-  __ mov(ecx, frame_->ElementAt(4));
-  __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
-  __ cmp(ecx, Operand(edx));
-  end_del_check.Branch(equal);
-
-  // Convert the entry to a string (or null if it isn't a property anymore).
-  frame_->EmitPush(frame_->ElementAt(4));  // push enumerable
-  frame_->EmitPush(ebx);  // push entry
-  frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
-  __ mov(ebx, Operand(eax));
-
-  // If the property has been removed while iterating, we just skip it.
-  __ test(ebx, Operand(ebx));
-  node->continue_target()->Branch(equal);
-
-  end_del_check.Bind();
-  // Store the entry in the 'each' expression and take another spin in the
-  // loop.  edx: i'th entry of the enum cache (or string there of)
-  frame_->EmitPush(ebx);
-  { Reference each(this, node->each());
-    if (!each.is_illegal()) {
-      if (each.size() > 0) {
-        // Loading a reference may leave the frame in an unspilled state.
-        frame_->SpillAll();
-        // Get the value (under the reference on the stack) from memory.
-        frame_->EmitPush(frame_->ElementAt(each.size()));
-        each.SetValue(NOT_CONST_INIT);
-        frame_->Drop(2);
-      } else {
-        // If the reference was to a slot we rely on the convenient property
-        // that it doesn't matter whether a value (eg, ebx pushed above) is
-        // right on top of or right underneath a zero-sized reference.
-        each.SetValue(NOT_CONST_INIT);
-        frame_->Drop();
-      }
-    }
-  }
-  // Unloading a reference may leave the frame in an unspilled state.
-  frame_->SpillAll();
-
-  // Body.
-  CheckStack();  // TODO(1222600): ignore if body contains calls.
-  VisitAndSpill(node->body());
-
-  // Next.  Reestablish a spilled frame in case we are coming here via
-  // a continue in the body.
-  node->continue_target()->Bind();
-  frame_->SpillAll();
-  frame_->EmitPop(eax);
-  __ add(Operand(eax), Immediate(Smi::FromInt(1)));
-  frame_->EmitPush(eax);
-  entry.Jump();
-
-  // Cleanup.  No need to spill because VirtualFrame::Drop is safe for
-  // any frame.
-  node->break_target()->Bind();
-  frame_->Drop(5);
-
-  // Exit.
-  exit.Bind();
-
-  node->continue_target()->Unuse();
-  node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
-  ASSERT(!in_spilled_code());
-  VirtualFrame::SpilledScope spilled_scope;
-  Comment cmnt(masm_, "[ TryCatchStatement");
-  CodeForStatementPosition(node);
-
-  JumpTarget try_block;
-  JumpTarget exit;
-
-  try_block.Call();
-  // --- Catch block ---
-  frame_->EmitPush(eax);
-
-  // Store the caught exception in the catch variable.
-  Variable* catch_var = node->catch_var()->var();
-  ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL);
-  StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT);
-
-  // Remove the exception from the stack.
-  frame_->Drop();
-
-  VisitStatementsAndSpill(node->catch_block()->statements());
-  if (has_valid_frame()) {
-    exit.Jump();
-  }
-
-
-  // --- Try block ---
-  try_block.Bind();
-
-  frame_->PushTryHandler(TRY_CATCH_HANDLER);
-  int handler_height = frame_->height();
-
-  // Shadow the jump targets for all escapes from the try block, including
-  // returns.  During shadowing, the original target is hidden as the
-  // ShadowTarget and operations on the original actually affect the
-  // shadowing target.
-  //
-  // We should probably try to unify the escaping targets and the return
-  // target.
-  int nof_escapes = node->escaping_targets()->length();
-  List<ShadowTarget*> shadows(1 + nof_escapes);
-
-  // Add the shadow target for the function return.
-  static const int kReturnShadowIndex = 0;
-  shadows.Add(new ShadowTarget(&function_return_));
-  bool function_return_was_shadowed = function_return_is_shadowed_;
-  function_return_is_shadowed_ = true;
-  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
-  // Add the remaining shadow targets.
-  for (int i = 0; i < nof_escapes; i++) {
-    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
-  }
-
-  // Generate code for the statements in the try block.
-  VisitStatementsAndSpill(node->try_block()->statements());
-
-  // Stop the introduced shadowing and count the number of required unlinks.
-  // After shadowing stops, the original targets are unshadowed and the
-  // ShadowTargets represent the formerly shadowing targets.
-  bool has_unlinks = false;
-  for (int i = 0; i < shadows.length(); i++) {
-    shadows[i]->StopShadowing();
-    has_unlinks = has_unlinks || shadows[i]->is_linked();
-  }
-  function_return_is_shadowed_ = function_return_was_shadowed;
-
-  // Get an external reference to the handler address.
-  ExternalReference handler_address(Isolate::k_handler_address,
-                                    masm()->isolate());
-
-  // Make sure that there's nothing left on the stack above the
-  // handler structure.
-  if (FLAG_debug_code) {
-    __ mov(eax, Operand::StaticVariable(handler_address));
-    __ cmp(esp, Operand(eax));
-    __ Assert(equal, "stack pointer should point to top handler");
-  }
-
-  // If we can fall off the end of the try block, unlink from try chain.
-  if (has_valid_frame()) {
-    // The next handler address is on top of the frame.  Unlink from
-    // the handler list and drop the rest of this handler from the
-    // frame.
-    STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
-    frame_->EmitPop(Operand::StaticVariable(handler_address));
-    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-    if (has_unlinks) {
-      exit.Jump();
-    }
-  }
-
-  // Generate unlink code for the (formerly) shadowing targets that
-  // have been jumped to.  Deallocate each shadow target.
-  Result return_value;
-  for (int i = 0; i < shadows.length(); i++) {
-    if (shadows[i]->is_linked()) {
-      // Unlink from try chain; be careful not to destroy the TOS if
-      // there is one.
-      if (i == kReturnShadowIndex) {
-        shadows[i]->Bind(&return_value);
-        return_value.ToRegister(eax);
-      } else {
-        shadows[i]->Bind();
-      }
-      // Because we can be jumping here (to spilled code) from
-      // unspilled code, we need to reestablish a spilled frame at
-      // this block.
-      frame_->SpillAll();
-
-      // Reload sp from the top handler, because some statements that we
-      // break from (eg, for...in) may have left stuff on the stack.
-      __ mov(esp, Operand::StaticVariable(handler_address));
-      frame_->Forget(frame_->height() - handler_height);
-
-      STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
-      frame_->EmitPop(Operand::StaticVariable(handler_address));
-      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
-      if (i == kReturnShadowIndex) {
-        if (!function_return_is_shadowed_) frame_->PrepareForReturn();
-        shadows[i]->other_target()->Jump(&return_value);
-      } else {
-        shadows[i]->other_target()->Jump();
-      }
-    }
-  }
-
-  exit.Bind();
-}
-
-
-void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
-  ASSERT(!in_spilled_code());
-  VirtualFrame::SpilledScope spilled_scope;
-  Comment cmnt(masm_, "[ TryFinallyStatement");
-  CodeForStatementPosition(node);
-
-  // State: Used to keep track of reason for entering the finally
-  // block. Should probably be extended to hold information for
-  // break/continue from within the try block.
-  enum { FALLING, THROWING, JUMPING };
-
-  JumpTarget try_block;
-  JumpTarget finally_block;
-
-  try_block.Call();
-
-  frame_->EmitPush(eax);
-  // In case of thrown exceptions, this is where we continue.
-  __ Set(ecx, Immediate(Smi::FromInt(THROWING)));
-  finally_block.Jump();
-
-  // --- Try block ---
-  try_block.Bind();
-
-  frame_->PushTryHandler(TRY_FINALLY_HANDLER);
-  int handler_height = frame_->height();
-
-  // Shadow the jump targets for all escapes from the try block, including
-  // returns.  During shadowing, the original target is hidden as the
-  // ShadowTarget and operations on the original actually affect the
-  // shadowing target.
-  //
-  // We should probably try to unify the escaping targets and the return
-  // target.
-  int nof_escapes = node->escaping_targets()->length();
-  List<ShadowTarget*> shadows(1 + nof_escapes);
-
-  // Add the shadow target for the function return.
-  static const int kReturnShadowIndex = 0;
-  shadows.Add(new ShadowTarget(&function_return_));
-  bool function_return_was_shadowed = function_return_is_shadowed_;
-  function_return_is_shadowed_ = true;
-  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
-  // Add the remaining shadow targets.
-  for (int i = 0; i < nof_escapes; i++) {
-    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
-  }
-
-  // Generate code for the statements in the try block.
-  VisitStatementsAndSpill(node->try_block()->statements());
-
-  // Stop the introduced shadowing and count the number of required unlinks.
-  // After shadowing stops, the original targets are unshadowed and the
-  // ShadowTargets represent the formerly shadowing targets.
-  int nof_unlinks = 0;
-  for (int i = 0; i < shadows.length(); i++) {
-    shadows[i]->StopShadowing();
-    if (shadows[i]->is_linked()) nof_unlinks++;
-  }
-  function_return_is_shadowed_ = function_return_was_shadowed;
-
-  // Get an external reference to the handler address.
-  ExternalReference handler_address(Isolate::k_handler_address,
-                                    masm()->isolate());
-
-  // If we can fall off the end of the try block, unlink from the try
-  // chain and set the state on the frame to FALLING.
-  if (has_valid_frame()) {
-    // The next handler address is on top of the frame.
-    STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
-    frame_->EmitPop(Operand::StaticVariable(handler_address));
-    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
-    // Fake a top of stack value (unneeded when FALLING) and set the
-    // state in ecx, then jump around the unlink blocks if any.
-    frame_->EmitPush(Immediate(FACTORY->undefined_value()));
-    __ Set(ecx, Immediate(Smi::FromInt(FALLING)));
-    if (nof_unlinks > 0) {
-      finally_block.Jump();
-    }
-  }
-
-  // Generate code to unlink and set the state for the (formerly)
-  // shadowing targets that have been jumped to.
-  for (int i = 0; i < shadows.length(); i++) {
-    if (shadows[i]->is_linked()) {
-      // If we have come from the shadowed return, the return value is
-      // on the virtual frame.  We must preserve it until it is
-      // pushed.
-      if (i == kReturnShadowIndex) {
-        Result return_value;
-        shadows[i]->Bind(&return_value);
-        return_value.ToRegister(eax);
-      } else {
-        shadows[i]->Bind();
-      }
-      // Because we can be jumping here (to spilled code) from
-      // unspilled code, we need to reestablish a spilled frame at
-      // this block.
-      frame_->SpillAll();
-
-      // Reload sp from the top handler, because some statements that
-      // we break from (eg, for...in) may have left stuff on the
-      // stack.
-      __ mov(esp, Operand::StaticVariable(handler_address));
-      frame_->Forget(frame_->height() - handler_height);
-
-      // Unlink this handler and drop it from the frame.
-      STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
-      frame_->EmitPop(Operand::StaticVariable(handler_address));
-      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
-      if (i == kReturnShadowIndex) {
-        // If this target shadowed the function return, materialize
-        // the return value on the stack.
-        frame_->EmitPush(eax);
-      } else {
-        // Fake TOS for targets that shadowed breaks and continues.
-        frame_->EmitPush(Immediate(FACTORY->undefined_value()));
-      }
-      __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i)));
-      if (--nof_unlinks > 0) {
-        // If this is not the last unlink block, jump around the next.
-        finally_block.Jump();
-      }
-    }
-  }
-
-  // --- Finally block ---
-  finally_block.Bind();
-
-  // Push the state on the stack.
-  frame_->EmitPush(ecx);
-
-  // We keep two elements on the stack - the (possibly faked) result
-  // and the state - while evaluating the finally block.
-  //
-  // Generate code for the statements in the finally block.
-  VisitStatementsAndSpill(node->finally_block()->statements());
-
-  if (has_valid_frame()) {
-    // Restore state and return value or faked TOS.
-    frame_->EmitPop(ecx);
-    frame_->EmitPop(eax);
-  }
-
-  // Generate code to jump to the right destination for all used
-  // formerly shadowing targets.  Deallocate each shadow target.
-  for (int i = 0; i < shadows.length(); i++) {
-    if (has_valid_frame() && shadows[i]->is_bound()) {
-      BreakTarget* original = shadows[i]->other_target();
-      __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i)));
-      if (i == kReturnShadowIndex) {
-        // The return value is (already) in eax.
-        Result return_value = allocator_->Allocate(eax);
-        ASSERT(return_value.is_valid());
-        if (function_return_is_shadowed_) {
-          original->Branch(equal, &return_value);
-        } else {
-          // Branch around the preparation for return which may emit
-          // code.
-          JumpTarget skip;
-          skip.Branch(not_equal);
-          frame_->PrepareForReturn();
-          original->Jump(&return_value);
-          skip.Bind();
-        }
-      } else {
-        original->Branch(equal);
-      }
-    }
-  }
-
-  if (has_valid_frame()) {
-    // Check if we need to rethrow the exception.
-    JumpTarget exit;
-    __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING)));
-    exit.Branch(not_equal);
-
-    // Rethrow exception.
-    frame_->EmitPush(eax);  // undo pop from above
-    frame_->CallRuntime(Runtime::kReThrow, 1);
-
-    // Done.
-    exit.Bind();
-  }
-}
-
-
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
-  ASSERT(!in_spilled_code());
-  Comment cmnt(masm_, "[ DebuggerStatement");
-  CodeForStatementPosition(node);
-#ifdef ENABLE_DEBUGGER_SUPPORT
-  // Spill everything, even constants, to the frame.
-  frame_->SpillAll();
-
-  frame_->DebugBreak();
-  // Ignore the return value.
-#endif
-}
-
-
-Result CodeGenerator::InstantiateFunction(
-    Handle<SharedFunctionInfo> function_info,
-    bool pretenure) {
-  // The inevitable call will sync frame elements to memory anyway, so
-  // we do it eagerly to allow us to push the arguments directly into
-  // place.
-  frame()->SyncRange(0, frame()->element_count() - 1);
-
-  // Use the fast case closure allocation code that allocates in new
-  // space for nested functions that don't need literals cloning.
-  if (!pretenure &&
-      scope()->is_function_scope() &&
-      function_info->num_literals() == 0) {
-    FastNewClosureStub stub(
-        function_info->strict_mode() ? kStrictMode : kNonStrictMode);
-    frame()->EmitPush(Immediate(function_info));
-    return frame()->CallStub(&stub, 1);
-  } else {
-    // Call the runtime to instantiate the function based on the
-    // shared function info.
-    frame()->EmitPush(esi);
-    frame()->EmitPush(Immediate(function_info));
-    frame()->EmitPush(Immediate(pretenure
-                                ? FACTORY->true_value()
-                                : FACTORY->false_value()));
-    return frame()->CallRuntime(Runtime::kNewClosure, 3);
-  }
-}
-
-
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
-  Comment cmnt(masm_, "[ FunctionLiteral");
-  ASSERT(!in_safe_int32_mode());
-  // Build the function info and instantiate it.
-  Handle<SharedFunctionInfo> function_info =
-      Compiler::BuildFunctionInfo(node, script());
-  // Check for stack-overflow exception.
-  if (function_info.is_null()) {
-    SetStackOverflow();
-    return;
-  }
-  Result result = InstantiateFunction(function_info, node->pretenure());
-  frame()->Push(&result);
-}
-
-
-void CodeGenerator::VisitSharedFunctionInfoLiteral(
-    SharedFunctionInfoLiteral* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
-  Result result = InstantiateFunction(node->shared_function_info(), false);
-  frame()->Push(&result);
-}
-
-
-void CodeGenerator::VisitConditional(Conditional* node) {
-  Comment cmnt(masm_, "[ Conditional");
-  ASSERT(!in_safe_int32_mode());
-  JumpTarget then;
-  JumpTarget else_;
-  JumpTarget exit;
-  ControlDestination dest(&then, &else_, true);
-  LoadCondition(node->condition(), &dest, true);
-
-  if (dest.false_was_fall_through()) {
-    // The else target was bound, so we compile the else part first.
-    Load(node->else_expression());
-
-    if (then.is_linked()) {
-      exit.Jump();
-      then.Bind();
-      Load(node->then_expression());
-    }
-  } else {
-    // The then target was bound, so we compile the then part first.
-    Load(node->then_expression());
-
-    if (else_.is_linked()) {
-      exit.Jump();
-      else_.Bind();
-      Load(node->else_expression());
-    }
-  }
-
-  exit.Bind();
-}
-
-
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
-  if (slot->type() == Slot::LOOKUP) {
-    ASSERT(slot->var()->is_dynamic());
-    JumpTarget slow;
-    JumpTarget done;
-    Result value;
-
-    // Generate fast case for loading from slots that correspond to
-    // local/global variables or arguments unless they are shadowed by
-    // eval-introduced bindings.
-    EmitDynamicLoadFromSlotFastCase(slot,
-                                    typeof_state,
-                                    &value,
-                                    &slow,
-                                    &done);
-
-    slow.Bind();
-    // A runtime call is inevitable.  We eagerly sync frame elements
-    // to memory so that we can push the arguments directly into place
-    // on top of the frame.
-    frame()->SyncRange(0, frame()->element_count() - 1);
-    frame()->EmitPush(esi);
-    frame()->EmitPush(Immediate(slot->var()->name()));
-    if (typeof_state == INSIDE_TYPEOF) {
-      value =
-          frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
-    } else {
-      value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2);
-    }
-
-    done.Bind(&value);
-    frame_->Push(&value);
-
-  } else if (slot->var()->mode() == Variable::CONST) {
-    // Const slots may contain 'the hole' value (the constant hasn't been
-    // initialized yet) which needs to be converted into the 'undefined'
-    // value.
-    //
-    // We currently spill the virtual frame because constants use the
-    // potentially unsafe direct-frame access of SlotOperand.
-    VirtualFrame::SpilledScope spilled_scope;
-    Comment cmnt(masm_, "[ Load const");
-    Label exit;
-    __ mov(ecx, SlotOperand(slot, ecx));
-    __ cmp(ecx, FACTORY->the_hole_value());
-    __ j(not_equal, &exit);
-    __ mov(ecx, FACTORY->undefined_value());
-    __ bind(&exit);
-    frame()->EmitPush(ecx);
-
-  } else if (slot->type() == Slot::PARAMETER) {
-    frame()->PushParameterAt(slot->index());
-
-  } else if (slot->type() == Slot::LOCAL) {
-    frame()->PushLocalAt(slot->index());
-
-  } else {
-    // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
-    // here.
-    //
-    // The use of SlotOperand below is safe for an unspilled frame
-    // because it will always be a context slot.
-    ASSERT(slot->type() == Slot::CONTEXT);
-    Result temp = allocator()->Allocate();
-    ASSERT(temp.is_valid());
-    __ mov(temp.reg(), SlotOperand(slot, temp.reg()));
-    frame()->Push(&temp);
-  }
-}
-
-
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
-                                                    TypeofState state) {
-  LoadFromSlot(slot, state);
-
-  // Bail out quickly if we're not using lazy arguments allocation.
-  if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
-
-  // ... or if the slot isn't a non-parameter arguments slot.
-  if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
-
-  // If the loaded value is a constant, we know if the arguments
-  // object has been lazily loaded yet.
-  Result result = frame()->Pop();
-  if (result.is_constant()) {
-    if (result.handle()->IsArgumentsMarker()) {
-      result = StoreArgumentsObject(false);
-    }
-    frame()->Push(&result);
-    return;
-  }
-  ASSERT(result.is_register());
-  // The loaded value is in a register. If it is the sentinel that
-  // indicates that we haven't loaded the arguments object yet, we
-  // need to do it now.
-  JumpTarget exit;
-  __ cmp(Operand(result.reg()), Immediate(FACTORY->arguments_marker()));
-  frame()->Push(&result);
-  exit.Branch(not_equal);
-
-  result = StoreArgumentsObject(false);
-  frame()->SetElementAt(0, &result);
-  result.Unuse();
-  exit.Bind();
-  return;
-}
-
-
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
-    Slot* slot,
-    TypeofState typeof_state,
-    JumpTarget* slow) {
-  ASSERT(!in_safe_int32_mode());
-  // Check that no extension objects have been created by calls to
-  // eval from the current scope to the global scope.
-  Register context = esi;
-  Result tmp = allocator_->Allocate();
-  ASSERT(tmp.is_valid());  // All non-reserved registers were available.
-
-  Scope* s = scope();
-  while (s != NULL) {
-    if (s->num_heap_slots() > 0) {
-      if (s->calls_eval()) {
-        // Check that extension is NULL.
-        __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
-               Immediate(0));
-        slow->Branch(not_equal, not_taken);
-      }
-      // Load next context in chain.
-      __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
-      __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
-      context = tmp.reg();
-    }
-    // If no outer scope calls eval, we do not need to check more
-    // context extensions.  If we have reached an eval scope, we check
-    // all extensions from this point.
-    if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
-    s = s->outer_scope();
-  }
-
-  if (s != NULL && s->is_eval_scope()) {
-    // Loop up the context chain.  There is no frame effect so it is
-    // safe to use raw labels here.
-    Label next, fast;
-    if (!context.is(tmp.reg())) {
-      __ mov(tmp.reg(), context);
-    }
-    __ bind(&next);
-    // Terminate at global context.
-    __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
-           Immediate(FACTORY->global_context_map()));
-    __ j(equal, &fast);
-    // Check that extension is NULL.
-    __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
-    slow->Branch(not_equal, not_taken);
-    // Load next context in chain.
-    __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
-    __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
-    __ jmp(&next);
-    __ bind(&fast);
-  }
-  tmp.Unuse();
-
-  // All extension objects were empty and it is safe to use a global
-  // load IC call.
-  // The register allocator prefers eax if it is free, so the code generator
-  // will load the global object directly into eax, which is where the LoadIC
-  // expects it.
-  frame_->Spill(eax);
-  LoadGlobal();
-  frame_->Push(slot->var()->name());
-  RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
-                         ? RelocInfo::CODE_TARGET
-                         : RelocInfo::CODE_TARGET_CONTEXT;
-  Result answer = frame_->CallLoadIC(mode);
-  // A test eax instruction following the call signals that the inobject
-  // property case was inlined.  Ensure that there is not a test eax
-  // instruction here.
-  __ nop();
-  return answer;
-}
-
-
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
-                                                    TypeofState typeof_state,
-                                                    Result* result,
-                                                    JumpTarget* slow,
-                                                    JumpTarget* done) {
-  // Generate fast-case code for variables that might be shadowed by
-  // eval-introduced variables.  Eval is used a lot without
-  // introducing variables.  In those cases, we do not want to
-  // perform a runtime call for all variables in the scope
-  // containing the eval.
-  if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
-    *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
-    done->Jump(result);
-
-  } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
-    Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
-    Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
-    if (potential_slot != NULL) {
-      // Generate fast case for locals that rewrite to slots.
-      // Allocate a fresh register to use as a temp in
-      // ContextSlotOperandCheckExtensions and to hold the result
-      // value.
-      *result = allocator()->Allocate();
-      ASSERT(result->is_valid());
-      __ mov(result->reg(),
-             ContextSlotOperandCheckExtensions(potential_slot, *result, slow));
-      if (potential_slot->var()->mode() == Variable::CONST) {
-        __ cmp(result->reg(), FACTORY->the_hole_value());
-        done->Branch(not_equal, result);
-        __ mov(result->reg(), FACTORY->undefined_value());
-      }
-      done->Jump(result);
-    } else if (rewrite != NULL) {
-      // Generate fast case for calls of an argument function.
-      Property* property = rewrite->AsProperty();
-      if (property != NULL) {
-        VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
-        Literal* key_literal = property->key()->AsLiteral();
-        if (obj_proxy != NULL &&
-            key_literal != NULL &&
-            obj_proxy->IsArguments() &&
-            key_literal->handle()->IsSmi()) {
-          // Load arguments object if there are no eval-introduced
-          // variables. Then load the argument from the arguments
-          // object using keyed load.
-          Result arguments = allocator()->Allocate();
-          ASSERT(arguments.is_valid());
-          __ mov(arguments.reg(),
-                 ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
-                                                   arguments,
-                                                   slow));
-          frame_->Push(&arguments);
-          frame_->Push(key_literal->handle());
-          *result = EmitKeyedLoad();
-          done->Jump(result);
-        }
-      }
-    }
-  }
-}
-
-
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
-  if (slot->type() == Slot::LOOKUP) {
-    ASSERT(slot->var()->is_dynamic());
-
-    // For now, just do a runtime call.  Since the call is inevitable,
-    // we eagerly sync the virtual frame so we can directly push the
-    // arguments into place.
-    frame_->SyncRange(0, frame_->element_count() - 1);
-
-    frame_->EmitPush(esi);
-    frame_->EmitPush(Immediate(slot->var()->name()));
-
-    Result value;
-    if (init_state == CONST_INIT) {
-      // Same as the case for a normal store, but ignores attribute
-      // (e.g. READ_ONLY) of context slot so that we can initialize const
-      // properties (introduced via eval("const foo = (some expr);")). Also,
-      // uses the current function context instead of the top context.
-      //
-      // Note that we must declare the foo upon entry of eval(), via a
-      // context slot declaration, but we cannot initialize it at the same
-      // time, because the const declaration may be at the end of the eval
-      // code (sigh...) and the const variable may have been used before
-      // (where its value is 'undefined'). Thus, we can only do the
-      // initialization when we actually encounter the expression and when
-      // the expression operands are defined and valid, and thus we need the
-      // split into 2 operations: declaration of the context slot followed
-      // by initialization.
-      value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
-    } else {
-      frame_->Push(Smi::FromInt(strict_mode_flag()));
-      value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4);
-    }
-    // Storing a variable must keep the (new) value on the expression
-    // stack. This is necessary for compiling chained assignment
-    // expressions.
-    frame_->Push(&value);
-
-  } else {
-    ASSERT(!slot->var()->is_dynamic());
-
-    JumpTarget exit;
-    if (init_state == CONST_INIT) {
-      ASSERT(slot->var()->mode() == Variable::CONST);
-      // Only the first const initialization must be executed (the slot
-      // still contains 'the hole' value). When the assignment is executed,
-      // the code is identical to a normal store (see below).
-      //
-      // We spill the frame in the code below because the direct-frame
-      // access of SlotOperand is potentially unsafe with an unspilled
-      // frame.
-      VirtualFrame::SpilledScope spilled_scope;
-      Comment cmnt(masm_, "[ Init const");
-      __ mov(ecx, SlotOperand(slot, ecx));
-      __ cmp(ecx, FACTORY->the_hole_value());
-      exit.Branch(not_equal);
-    }
-
-    // We must execute the store.  Storing a variable must keep the (new)
-    // value on the stack. This is necessary for compiling assignment
-    // expressions.
-    //
-    // Note: We will reach here even with slot->var()->mode() ==
-    // Variable::CONST because of const declarations which will initialize
-    // consts to 'the hole' value and by doing so, end up calling this code.
-    if (slot->type() == Slot::PARAMETER) {
-      frame_->StoreToParameterAt(slot->index());
-    } else if (slot->type() == Slot::LOCAL) {
-      frame_->StoreToLocalAt(slot->index());
-    } else {
-      // The other slot types (LOOKUP and GLOBAL) cannot reach here.
-      //
-      // The use of SlotOperand below is safe for an unspilled frame
-      // because the slot is a context slot.
-      ASSERT(slot->type() == Slot::CONTEXT);
-      frame_->Dup();
-      Result value = frame_->Pop();
-      value.ToRegister();
-      Result start = allocator_->Allocate();
-      ASSERT(start.is_valid());
-      __ mov(SlotOperand(slot, start.reg()), value.reg());
-      // RecordWrite may destroy the value registers.
-      //
-      // TODO(204): Avoid actually spilling when the value is not
-      // needed (probably the common case).
-      frame_->Spill(value.reg());
-      int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
-      Result temp = allocator_->Allocate();
-      ASSERT(temp.is_valid());
-      __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
-      // The results start, value, and temp are unused by going out of
-      // scope.
-    }
-
-    exit.Bind();
-  }
-}
-
-
-void CodeGenerator::VisitSlot(Slot* slot) {
-  Comment cmnt(masm_, "[ Slot");
-  if (in_safe_int32_mode()) {
-    if ((slot->type() == Slot::LOCAL  && !slot->is_arguments())) {
-      frame()->UntaggedPushLocalAt(slot->index());
-    } else if (slot->type() == Slot::PARAMETER) {
-      frame()->UntaggedPushParameterAt(slot->index());
-    } else {
-      UNREACHABLE();
-    }
-  } else {
-    LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
-  }
-}
-
-
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
-  Comment cmnt(masm_, "[ VariableProxy");
-  Variable* var = node->var();
-  Expression* expr = var->rewrite();
-  if (expr != NULL) {
-    Visit(expr);
-  } else {
-    ASSERT(var->is_global());
-    ASSERT(!in_safe_int32_mode());
-    Reference ref(this, node);
-    ref.GetValue();
-  }
-}
-
-
-void CodeGenerator::VisitLiteral(Literal* node) {
-  Comment cmnt(masm_, "[ Literal");
-  if (frame_->ConstantPoolOverflowed()) {
-    Result temp = allocator_->Allocate();
-    ASSERT(temp.is_valid());
-    if (in_safe_int32_mode()) {
-      temp.set_untagged_int32(true);
-    }
-    __ Set(temp.reg(), Immediate(node->handle()));
-    frame_->Push(&temp);
-  } else {
-    if (in_safe_int32_mode()) {
-      frame_->PushUntaggedElement(node->handle());
-    } else {
-      frame_->Push(node->handle());
-    }
-  }
-}
-
-
-void CodeGenerator::PushUnsafeSmi(Handle<Object> value) {
-  ASSERT(value->IsSmi());
-  int bits = reinterpret_cast<int>(*value);
-  __ push(Immediate(bits ^ jit_cookie_));
-  __ xor_(Operand(esp, 0), Immediate(jit_cookie_));
-}
-
-
-void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) {
-  ASSERT(value->IsSmi());
-  int bits = reinterpret_cast<int>(*value);
-  __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_));
-  __ xor_(Operand(ebp, offset), Immediate(jit_cookie_));
-}
-
-
-void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) {
-  ASSERT(target.is_valid());
-  ASSERT(value->IsSmi());
-  int bits = reinterpret_cast<int>(*value);
-  __ Set(target, Immediate(bits ^ jit_cookie_));
-  __ xor_(target, jit_cookie_);
-}
-
-
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
-  if (!value->IsSmi()) return false;
-  int int_value = Smi::cast(*value)->value();
-  return !is_intn(int_value, kMaxSmiInlinedBits);
-}
-
-
-// Materialize the regexp literal 'node' in the literals array
-// 'literals' of the function.  Leave the regexp boilerplate in
-// 'boilerplate'.
-class DeferredRegExpLiteral: public DeferredCode {
- public:
-  DeferredRegExpLiteral(Register boilerplate,
-                        Register literals,
-                        RegExpLiteral* node)
-      : boilerplate_(boilerplate), literals_(literals), node_(node) {
-    set_comment("[ DeferredRegExpLiteral");
-  }
-
-  void Generate();
-
- private:
-  Register boilerplate_;
-  Register literals_;
-  RegExpLiteral* node_;
-};
-
-
-void DeferredRegExpLiteral::Generate() {
-  // Since the entry is undefined we call the runtime system to
-  // compute the literal.
-  // Literal array (0).
-  __ push(literals_);
-  // Literal index (1).
-  __ push(Immediate(Smi::FromInt(node_->literal_index())));
-  // RegExp pattern (2).
-  __ push(Immediate(node_->pattern()));
-  // RegExp flags (3).
-  __ push(Immediate(node_->flags()));
-  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
-  if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax);
-}
-
-
-class DeferredAllocateInNewSpace: public DeferredCode {
- public:
-  DeferredAllocateInNewSpace(int size,
-                             Register target,
-                             int registers_to_save = 0)
-    : size_(size), target_(target), registers_to_save_(registers_to_save) {
-    ASSERT(size >= kPointerSize && size <= HEAP->MaxObjectSizeInNewSpace());
-    ASSERT_EQ(0, registers_to_save & target.bit());
-    set_comment("[ DeferredAllocateInNewSpace");
-  }
-  void Generate();
-
- private:
-  int size_;
-  Register target_;
-  int registers_to_save_;
-};
-
-
-void DeferredAllocateInNewSpace::Generate() {
-  for (int i = 0; i < kNumRegs; i++) {
-    if (registers_to_save_ & (1 << i)) {
-      Register save_register = { i };
-      __ push(save_register);
-    }
-  }
-  __ push(Immediate(Smi::FromInt(size_)));
-  __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
-  if (!target_.is(eax)) {
-    __ mov(target_, eax);
-  }
-  for (int i = kNumRegs - 1; i >= 0; i--) {
-    if (registers_to_save_ & (1 << i)) {
-      Register save_register = { i };
-      __ pop(save_register);
-    }
-  }
-}
-
-
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ RegExp Literal");
-
-  // Retrieve the literals array and check the allocated entry.  Begin
-  // with a writable copy of the function of this activation in a
-  // register.
-  frame_->PushFunction();
-  Result literals = frame_->Pop();
-  literals.ToRegister();
-  frame_->Spill(literals.reg());
-
-  // Load the literals array of the function.
-  __ mov(literals.reg(),
-         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
-  // Load the literal at the ast saved index.
-  Result boilerplate = allocator_->Allocate();
-  ASSERT(boilerplate.is_valid());
-  int literal_offset =
-      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
-  __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
-  // Check whether we need to materialize the RegExp object.  If so,
-  // jump to the deferred code passing the literals array.
-  DeferredRegExpLiteral* deferred =
-      new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
-  __ cmp(boilerplate.reg(), FACTORY->undefined_value());
-  deferred->Branch(equal);
-  deferred->BindExit();
-
-  // Register of boilerplate contains RegExp object.
-
-  Result tmp = allocator()->Allocate();
-  ASSERT(tmp.is_valid());
-
-  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
-
-  DeferredAllocateInNewSpace* allocate_fallback =
-      new DeferredAllocateInNewSpace(size, literals.reg());
-  frame_->Push(&boilerplate);
-  frame_->SpillTop();
-  __ AllocateInNewSpace(size,
-                        literals.reg(),
-                        tmp.reg(),
-                        no_reg,
-                        allocate_fallback->entry_label(),
-                        TAG_OBJECT);
-  allocate_fallback->BindExit();
-  boilerplate = frame_->Pop();
-  // Copy from boilerplate to clone and return clone.
-
-  for (int i = 0; i < size; i += kPointerSize) {
-    __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i));
-    __ mov(FieldOperand(literals.reg(), i), tmp.reg());
-  }
-  frame_->Push(&literals);
-}
-
-
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ ObjectLiteral");
-
-  // Load a writable copy of the function of this activation in a
-  // register.
-  frame_->PushFunction();
-  Result literals = frame_->Pop();
-  literals.ToRegister();
-  frame_->Spill(literals.reg());
-
-  // Load the literals array of the function.
-  __ mov(literals.reg(),
-         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-  // Literal array.
-  frame_->Push(&literals);
-  // Literal index.
-  frame_->Push(Smi::FromInt(node->literal_index()));
-  // Constant properties.
-  frame_->Push(node->constant_properties());
-  // Should the object literal have fast elements?
-  frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
-  Result clone;
-  if (node->depth() > 1) {
-    clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
-  } else {
-    clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
-  }
-  frame_->Push(&clone);
-
-  // Mark all computed expressions that are bound to a key that
-  // is shadowed by a later occurrence of the same key. For the
-  // marked expressions, no store code is emitted.
-  node->CalculateEmitStore();
-
-  for (int i = 0; i < node->properties()->length(); i++) {
-    ObjectLiteral::Property* property = node->properties()->at(i);
-    switch (property->kind()) {
-      case ObjectLiteral::Property::CONSTANT:
-        break;
-      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
-        if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
-        // else fall through.
-      case ObjectLiteral::Property::COMPUTED: {
-        Handle<Object> key(property->key()->handle());
-        if (key->IsSymbol()) {
-          // Duplicate the object as the IC receiver.
-          frame_->Dup();
-          Load(property->value());
-          if (property->emit_store()) {
-            Result ignored =
-                frame_->CallStoreIC(Handle<String>::cast(key), false,
-                                    strict_mode_flag());
-            // A test eax instruction following the store IC call would
-            // indicate the presence of an inlined version of the
-            // store. Add a nop to indicate that there is no such
-            // inlined version.
-            __ nop();
-          } else {
-            frame_->Drop(2);
-          }
-          break;
-        }
-        // Fall through
-      }
-      case ObjectLiteral::Property::PROTOTYPE: {
-          // Duplicate the object as an argument to the runtime call.
-          frame_->Dup();
-          Load(property->key());
-          Load(property->value());
-          if (property->emit_store()) {
-            frame_->Push(Smi::FromInt(NONE));   // PropertyAttributes
-            // Ignore the result.
-            Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4);
-          } else {
-            frame_->Drop(3);
-          }
-        break;
-      }
-      case ObjectLiteral::Property::SETTER: {
-        // Duplicate the object as an argument to the runtime call.
-        frame_->Dup();
-        Load(property->key());
-        frame_->Push(Smi::FromInt(1));
-        Load(property->value());
-        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
-        // Ignore the result.
-        break;
-      }
-      case ObjectLiteral::Property::GETTER: {
-        // Duplicate the object as an argument to the runtime call.
-        frame_->Dup();
-        Load(property->key());
-        frame_->Push(Smi::FromInt(0));
-        Load(property->value());
-        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
-        // Ignore the result.
-        break;
-      }
-      default: UNREACHABLE();
-    }
-  }
-}
-
-
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ ArrayLiteral");
-
-  // Load a writable copy of the function of this activation in a
-  // register.
-  frame_->PushFunction();
-  Result literals = frame_->Pop();
-  literals.ToRegister();
-  frame_->Spill(literals.reg());
-
-  // Load the literals array of the function.
-  __ mov(literals.reg(),
-         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
-  frame_->Push(&literals);
-  frame_->Push(Smi::FromInt(node->literal_index()));
-  frame_->Push(node->constant_elements());
-  int length = node->values()->length();
-  Result clone;
-  if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) {
-    FastCloneShallowArrayStub stub(
-        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
-    clone = frame_->CallStub(&stub, 3);
-    Counters* counters = masm()->isolate()->counters();
-    __ IncrementCounter(counters->cow_arrays_created_stub(), 1);
-  } else if (node->depth() > 1) {
-    clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
-  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
-    clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
-  } else {
-    FastCloneShallowArrayStub stub(
-        FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
-    clone = frame_->CallStub(&stub, 3);
-  }
-  frame_->Push(&clone);
-
-  // Generate code to set the elements in the array that are not
-  // literals.
-  for (int i = 0; i < length; i++) {
-    Expression* value = node->values()->at(i);
-
-    if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) {
-      continue;
-    }
-
-    // The property must be set by generated code.
-    Load(value);
-
-    // Get the property value off the stack.
-    Result prop_value = frame_->Pop();
-    prop_value.ToRegister();
-
-    // Fetch the array literal while leaving a copy on the stack and
-    // use it to get the elements array.
-    frame_->Dup();
-    Result elements = frame_->Pop();
-    elements.ToRegister();
-    frame_->Spill(elements.reg());
-    // Get the elements array.
-    __ mov(elements.reg(),
-           FieldOperand(elements.reg(), JSObject::kElementsOffset));
-
-    // Write to the indexed properties array.
-    int offset = i * kPointerSize + FixedArray::kHeaderSize;
-    __ mov(FieldOperand(elements.reg(), offset), prop_value.reg());
-
-    // Update the write barrier for the array address.
-    frame_->Spill(prop_value.reg());  // Overwritten by the write barrier.
-    Result scratch = allocator_->Allocate();
-    ASSERT(scratch.is_valid());
-    __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
-  }
-}
-
-
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
-  ASSERT(!in_safe_int32_mode());
-  ASSERT(!in_spilled_code());
-  // Call runtime routine to allocate the catch extension object and
-  // assign the exception value to the catch variable.
-  Comment cmnt(masm_, "[ CatchExtensionObject");
-  Load(node->key());
-  Load(node->value());
-  Result result =
-      frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::EmitSlotAssignment(Assignment* node) {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Comment cmnt(masm(), "[ Variable Assignment");
-  Variable* var = node->target()->AsVariableProxy()->AsVariable();
-  ASSERT(var != NULL);
-  Slot* slot = var->AsSlot();
-  ASSERT(slot != NULL);
-
-  // Evaluate the right-hand side.
-  if (node->is_compound()) {
-    // For a compound assignment the right-hand side is a binary operation
-    // between the current property value and the actual right-hand side.
-    LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
-    Load(node->value());
-
-    // Perform the binary operation.
-    bool overwrite_value = node->value()->ResultOverwriteAllowed();
-    // Construct the implicit binary operation.
-    BinaryOperation expr(node);
-    GenericBinaryOperation(&expr,
-                           overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
-  } else {
-    // For non-compound assignment just load the right-hand side.
-    Load(node->value());
-  }
-
-  // Perform the assignment.
-  if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
-    CodeForSourcePosition(node->position());
-    StoreToSlot(slot,
-                node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
-  }
-  ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Comment cmnt(masm(), "[ Named Property Assignment");
-  Variable* var = node->target()->AsVariableProxy()->AsVariable();
-  Property* prop = node->target()->AsProperty();
-  ASSERT(var == NULL || (prop == NULL && var->is_global()));
-
-  // Initialize name and evaluate the receiver sub-expression if necessary. If
-  // the receiver is trivial it is not placed on the stack at this point, but
-  // loaded whenever actually needed.
-  Handle<String> name;
-  bool is_trivial_receiver = false;
-  if (var != NULL) {
-    name = var->name();
-  } else {
-    Literal* lit = prop->key()->AsLiteral();
-    ASSERT_NOT_NULL(lit);
-    name = Handle<String>::cast(lit->handle());
-    // Do not materialize the receiver on the frame if it is trivial.
-    is_trivial_receiver = prop->obj()->IsTrivial();
-    if (!is_trivial_receiver) Load(prop->obj());
-  }
-
-  // Change to slow case in the beginning of an initialization block to
-  // avoid the quadratic behavior of repeatedly adding fast properties.
-  if (node->starts_initialization_block()) {
-    // Initialization block consists of assignments of the form expr.x = ..., so
-    // this will never be an assignment to a variable, so there must be a
-    // receiver object.
-    ASSERT_EQ(NULL, var);
-    if (is_trivial_receiver) {
-      frame()->Push(prop->obj());
-    } else {
-      frame()->Dup();
-    }
-    Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1);
-  }
-
-  // Change to fast case at the end of an initialization block. To prepare for
-  // that add an extra copy of the receiver to the frame, so that it can be
-  // converted back to fast case after the assignment.
-  if (node->ends_initialization_block() && !is_trivial_receiver) {
-    frame()->Dup();
-  }
-
-  // Stack layout:
-  // [tos]   : receiver (only materialized if non-trivial)
-  // [tos+1] : receiver if at the end of an initialization block
-
-  // Evaluate the right-hand side.
-  if (node->is_compound()) {
-    // For a compound assignment the right-hand side is a binary operation
-    // between the current property value and the actual right-hand side.
-    if (is_trivial_receiver) {
-      frame()->Push(prop->obj());
-    } else if (var != NULL) {
-      // The LoadIC stub expects the object in eax.
-      // Freeing eax causes the code generator to load the global into it.
-      frame_->Spill(eax);
-      LoadGlobal();
-    } else {
-      frame()->Dup();
-    }
-    Result value = EmitNamedLoad(name, var != NULL);
-    frame()->Push(&value);
-    Load(node->value());
-
-    bool overwrite_value = node->value()->ResultOverwriteAllowed();
-    // Construct the implicit binary operation.
-    BinaryOperation expr(node);
-    GenericBinaryOperation(&expr,
-                           overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
-  } else {
-    // For non-compound assignment just load the right-hand side.
-    Load(node->value());
-  }
-
-  // Stack layout:
-  // [tos]   : value
-  // [tos+1] : receiver (only materialized if non-trivial)
-  // [tos+2] : receiver if at the end of an initialization block
-
-  // Perform the assignment.  It is safe to ignore constants here.
-  ASSERT(var == NULL || var->mode() != Variable::CONST);
-  ASSERT_NE(Token::INIT_CONST, node->op());
-  if (is_trivial_receiver) {
-    Result value = frame()->Pop();
-    frame()->Push(prop->obj());
-    frame()->Push(&value);
-  }
-  CodeForSourcePosition(node->position());
-  bool is_contextual = (var != NULL);
-  Result answer = EmitNamedStore(name, is_contextual);
-  frame()->Push(&answer);
-
-  // Stack layout:
-  // [tos]   : result
-  // [tos+1] : receiver if at the end of an initialization block
-
-  if (node->ends_initialization_block()) {
-    ASSERT_EQ(NULL, var);
-    // The argument to the runtime call is the receiver.
-    if (is_trivial_receiver) {
-      frame()->Push(prop->obj());
-    } else {
-      // A copy of the receiver is below the value of the assignment.  Swap
-      // the receiver and the value of the assignment expression.
-      Result result = frame()->Pop();
-      Result receiver = frame()->Pop();
-      frame()->Push(&result);
-      frame()->Push(&receiver);
-    }
-    Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
-  }
-
-  // Stack layout:
-  // [tos]   : result
-
-  ASSERT_EQ(frame()->height(), original_height + 1);
-}
-
-
-void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Comment cmnt(masm_, "[ Keyed Property Assignment");
-  Property* prop = node->target()->AsProperty();
-  ASSERT_NOT_NULL(prop);
-
-  // Evaluate the receiver subexpression.
-  Load(prop->obj());
-
-  // Change to slow case in the beginning of an initialization block to
-  // avoid the quadratic behavior of repeatedly adding fast properties.
-  if (node->starts_initialization_block()) {
-    frame_->Dup();
-    Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
-  }
-
-  // Change to fast case at the end of an initialization block. To prepare for
-  // that add an extra copy of the receiver to the frame, so that it can be
-  // converted back to fast case after the assignment.
-  if (node->ends_initialization_block()) {
-    frame_->Dup();
-  }
-
-  // Evaluate the key subexpression.
-  Load(prop->key());
-
-  // Stack layout:
-  // [tos]   : key
-  // [tos+1] : receiver
-  // [tos+2] : receiver if at the end of an initialization block
-
-  // Evaluate the right-hand side.
-  if (node->is_compound()) {
-    // For a compound assignment the right-hand side is a binary operation
-    // between the current property value and the actual right-hand side.
-    // Duplicate receiver and key for loading the current property value.
-    frame()->PushElementAt(1);
-    frame()->PushElementAt(1);
-    Result value = EmitKeyedLoad();
-    frame()->Push(&value);
-    Load(node->value());
-
-    // Perform the binary operation.
-    bool overwrite_value = node->value()->ResultOverwriteAllowed();
-    BinaryOperation expr(node);
-    GenericBinaryOperation(&expr,
-                           overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
-  } else {
-    // For non-compound assignment just load the right-hand side.
-    Load(node->value());
-  }
-
-  // Stack layout:
-  // [tos]   : value
-  // [tos+1] : key
-  // [tos+2] : receiver
-  // [tos+3] : receiver if at the end of an initialization block
-
-  // Perform the assignment.  It is safe to ignore constants here.
-  ASSERT(node->op() != Token::INIT_CONST);
-  CodeForSourcePosition(node->position());
-  Result answer = EmitKeyedStore(prop->key()->type());
-  frame()->Push(&answer);
-
-  // Stack layout:
-  // [tos]   : result
-  // [tos+1] : receiver if at the end of an initialization block
-
-  // Change to fast case at the end of an initialization block.
-  if (node->ends_initialization_block()) {
-    // The argument to the runtime call is the extra copy of the receiver,
-    // which is below the value of the assignment.  Swap the receiver and
-    // the value of the assignment expression.
-    Result result = frame()->Pop();
-    Result receiver = frame()->Pop();
-    frame()->Push(&result);
-    frame()->Push(&receiver);
-    Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
-  }
-
-  // Stack layout:
-  // [tos]   : result
-
-  ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::VisitAssignment(Assignment* node) {
-  ASSERT(!in_safe_int32_mode());
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Variable* var = node->target()->AsVariableProxy()->AsVariable();
-  Property* prop = node->target()->AsProperty();
-
-  if (var != NULL && !var->is_global()) {
-    EmitSlotAssignment(node);
-
-  } else if ((prop != NULL && prop->key()->IsPropertyName()) ||
-             (var != NULL && var->is_global())) {
-    // Properties whose keys are property names and global variables are
-    // treated as named property references.  We do not need to consider
-    // global 'this' because it is not a valid left-hand side.
-    EmitNamedPropertyAssignment(node);
-
-  } else if (prop != NULL) {
-    // Other properties (including rewritten parameters for a function that
-    // uses arguments) are keyed property assignments.
-    EmitKeyedPropertyAssignment(node);
-
-  } else {
-    // Invalid left-hand side.
-    Load(node->target());
-    Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1);
-    // The runtime call doesn't actually return but the code generator will
-    // still generate code and expects a certain frame height.
-    frame()->Push(&result);
-  }
-
-  ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::VisitThrow(Throw* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ Throw");
-  Load(node->exception());
-  Result result = frame_->CallRuntime(Runtime::kThrow, 1);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitProperty(Property* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ Property");
-  Reference property(this, node);
-  property.GetValue();
-}
-
-
-void CodeGenerator::VisitCall(Call* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ Call");
-
-  Expression* function = node->expression();
-  ZoneList<Expression*>* args = node->arguments();
-
-  // Check if the function is a variable or a property.
-  Variable* var = function->AsVariableProxy()->AsVariable();
-  Property* property = function->AsProperty();
-
-  // ------------------------------------------------------------------------
-  // Fast-case: Use inline caching.
-  // ---
-  // According to ECMA-262, section 11.2.3, page 44, the function to call
-  // must be resolved after the arguments have been evaluated. The IC code
-  // automatically handles this by loading the arguments before the function
-  // is resolved in cache misses (this also holds for megamorphic calls).
-  // ------------------------------------------------------------------------
-
-  if (var != NULL && var->is_possibly_eval()) {
-    // ----------------------------------
-    // JavaScript example: 'eval(arg)'  // eval is not known to be shadowed
-    // ----------------------------------
-
-    // In a call to eval, we first call %ResolvePossiblyDirectEval to
-    // resolve the function we need to call and the receiver of the
-    // call.  Then we call the resolved function using the given
-    // arguments.
-
-    // Prepare the stack for the call to the resolved function.
-    Load(function);
-
-    // Allocate a frame slot for the receiver.
-    frame_->Push(FACTORY->undefined_value());
-
-    // Load the arguments.
-    int arg_count = args->length();
-    for (int i = 0; i < arg_count; i++) {
-      Load(args->at(i));
-      frame_->SpillTop();
-    }
-
-    // Result to hold the result of the function resolution and the
-    // final result of the eval call.
-    Result result;
-
-    // If we know that eval can only be shadowed by eval-introduced
-    // variables we attempt to load the global eval function directly
-    // in generated code. If we succeed, there is no need to perform a
-    // context lookup in the runtime system.
-    JumpTarget done;
-    if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
-      ASSERT(var->AsSlot()->type() == Slot::LOOKUP);
-      JumpTarget slow;
-      // Prepare the stack for the call to
-      // ResolvePossiblyDirectEvalNoLookup by pushing the loaded
-      // function, the first argument to the eval call and the
-      // receiver.
-      Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(),
-                                                     NOT_INSIDE_TYPEOF,
-                                                     &slow);
-      frame_->Push(&fun);
-      if (arg_count > 0) {
-        frame_->PushElementAt(arg_count);
-      } else {
-        frame_->Push(FACTORY->undefined_value());
-      }
-      frame_->PushParameterAt(-1);
-
-      // Push the strict mode flag.
-      frame_->Push(Smi::FromInt(strict_mode_flag()));
-
-      // Resolve the call.
-      result =
-          frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4);
-
-      done.Jump(&result);
-      slow.Bind();
-    }
-
-    // Prepare the stack for the call to ResolvePossiblyDirectEval by
-    // pushing the loaded function, the first argument to the eval
-    // call and the receiver.
-    frame_->PushElementAt(arg_count + 1);
-    if (arg_count > 0) {
-      frame_->PushElementAt(arg_count);
-    } else {
-      frame_->Push(FACTORY->undefined_value());
-    }
-    frame_->PushParameterAt(-1);
-
-    // Push the strict mode flag.
-    frame_->Push(Smi::FromInt(strict_mode_flag()));
-
-    // Resolve the call.
-    result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4);
-
-    // If we generated fast-case code bind the jump-target where fast
-    // and slow case merge.
-    if (done.is_linked()) done.Bind(&result);
-
-    // The runtime call returns a pair of values in eax (function) and
-    // edx (receiver). Touch up the stack with the right values.
-    Result receiver = allocator_->Allocate(edx);
-    frame_->SetElementAt(arg_count + 1, &result);
-    frame_->SetElementAt(arg_count, &receiver);
-    receiver.Unuse();
-
-    // Call the function.
-    CodeForSourcePosition(node->position());
-    InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
-    CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
-    result = frame_->CallStub(&call_function, arg_count + 1);
-
-    // Restore the context and overwrite the function on the stack with
-    // the result.
-    frame_->RestoreContextRegister();
-    frame_->SetElementAt(0, &result);
-
-  } else if (var != NULL && !var->is_this() && var->is_global()) {
-    // ----------------------------------
-    // JavaScript example: 'foo(1, 2, 3)'  // foo is global
-    // ----------------------------------
-
-    // Pass the global object as the receiver and let the IC stub
-    // patch the stack to use the global proxy as 'this' in the
-    // invoked function.
-    LoadGlobal();
-
-    // Load the arguments.
-    int arg_count = args->length();
-    for (int i = 0; i < arg_count; i++) {
-      Load(args->at(i));
-      frame_->SpillTop();
-    }
-
-    // Push the name of the function onto the frame.
-    frame_->Push(var->name());
-
-    // Call the IC initialization code.
-    CodeForSourcePosition(node->position());
-    Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
-                                       arg_count,
-                                       loop_nesting());
-    frame_->RestoreContextRegister();
-    frame_->Push(&result);
-
-  } else if (var != NULL && var->AsSlot() != NULL &&
-             var->AsSlot()->type() == Slot::LOOKUP) {
-    // ----------------------------------
-    // JavaScript examples:
-    //
-    //  with (obj) foo(1, 2, 3)  // foo may be in obj.
-    //
-    //  function f() {};
-    //  function g() {
-    //    eval(...);
-    //    f();  // f could be in extension object.
-    //  }
-    // ----------------------------------
-
-    JumpTarget slow, done;
-    Result function;
-
-    // Generate fast case for loading functions from slots that
-    // correspond to local/global variables or arguments unless they
-    // are shadowed by eval-introduced bindings.
-    EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
-                                    NOT_INSIDE_TYPEOF,
-                                    &function,
-                                    &slow,
-                                    &done);
-
-    slow.Bind();
-    // Enter the runtime system to load the function from the context.
-    // Sync the frame so we can push the arguments directly into
-    // place.
-    frame_->SyncRange(0, frame_->element_count() - 1);
-    frame_->EmitPush(esi);
-    frame_->EmitPush(Immediate(var->name()));
-    frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
-    // The runtime call returns a pair of values in eax and edx.  The
-    // looked-up function is in eax and the receiver is in edx.  These
-    // register references are not ref counted here.  We spill them
-    // eagerly since they are arguments to an inevitable call (and are
-    // not sharable by the arguments).
-    ASSERT(!allocator()->is_used(eax));
-    frame_->EmitPush(eax);
-
-    // Load the receiver.
-    ASSERT(!allocator()->is_used(edx));
-    frame_->EmitPush(edx);
-
-    // If fast case code has been generated, emit code to push the
-    // function and receiver and have the slow path jump around this
-    // code.
-    if (done.is_linked()) {
-      JumpTarget call;
-      call.Jump();
-      done.Bind(&function);
-      frame_->Push(&function);
-      LoadGlobalReceiver();
-      call.Bind();
-    }
-
-    // Call the function.
-    CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
-
-  } else if (property != NULL) {
-    // Check if the key is a literal string.
-    Literal* literal = property->key()->AsLiteral();
-
-    if (literal != NULL && literal->handle()->IsSymbol()) {
-      // ------------------------------------------------------------------
-      // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
-      // ------------------------------------------------------------------
-
-      Handle<String> name = Handle<String>::cast(literal->handle());
-
-      if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
-          name->IsEqualTo(CStrVector("apply")) &&
-          args->length() == 2 &&
-          args->at(1)->AsVariableProxy() != NULL &&
-          args->at(1)->AsVariableProxy()->IsArguments()) {
-        // Use the optimized Function.prototype.apply that avoids
-        // allocating lazily allocated arguments objects.
-        CallApplyLazy(property->obj(),
-                      args->at(0),
-                      args->at(1)->AsVariableProxy(),
-                      node->position());
-
-      } else {
-        // Push the receiver onto the frame.
-        Load(property->obj());
-
-        // Load the arguments.
-        int arg_count = args->length();
-        for (int i = 0; i < arg_count; i++) {
-          Load(args->at(i));
-          frame_->SpillTop();
-        }
-
-        // Push the name of the function onto the frame.
-        frame_->Push(name);
-
-        // Call the IC initialization code.
-        CodeForSourcePosition(node->position());
-        Result result =
-            frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count,
-                               loop_nesting());
-        frame_->RestoreContextRegister();
-        frame_->Push(&result);
-      }
-
-    } else {
-      // -------------------------------------------
-      // JavaScript example: 'array[index](1, 2, 3)'
-      // -------------------------------------------
-
-      // Load the function to call from the property through a reference.
-
-      // Pass receiver to called function.
-      if (property->is_synthetic()) {
-        Reference ref(this, property);
-        ref.GetValue();
-        // Use global object as receiver.
-        LoadGlobalReceiver();
-        // Call the function.
-        CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
-      } else {
-        // Push the receiver onto the frame.
-        Load(property->obj());
-
-        // Load the name of the function.
-        Load(property->key());
-
-        // Swap the name of the function and the receiver on the stack to follow
-        // the calling convention for call ICs.
-        Result key = frame_->Pop();
-        Result receiver = frame_->Pop();
-        frame_->Push(&key);
-        frame_->Push(&receiver);
-        key.Unuse();
-        receiver.Unuse();
-
-        // Load the arguments.
-        int arg_count = args->length();
-        for (int i = 0; i < arg_count; i++) {
-          Load(args->at(i));
-          frame_->SpillTop();
-        }
-
-        // Place the key on top of stack and call the IC initialization code.
-        frame_->PushElementAt(arg_count + 1);
-        CodeForSourcePosition(node->position());
-        Result result =
-            frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
-                                    arg_count,
-                                    loop_nesting());
-        frame_->Drop();  // Drop the key still on the stack.
-        frame_->RestoreContextRegister();
-        frame_->Push(&result);
-      }
-    }
-
-  } else {
-    // ----------------------------------
-    // JavaScript example: 'foo(1, 2, 3)'  // foo is not global
-    // ----------------------------------
-
-    // Load the function.
-    Load(function);
-
-    // Pass the global proxy as the receiver.
-    LoadGlobalReceiver();
-
-    // Call the function.
-    CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
-  }
-}
-
-
-void CodeGenerator::VisitCallNew(CallNew* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ CallNew");
-
-  // According to ECMA-262, section 11.2.2, page 44, the function
-  // expression in new calls must be evaluated before the
-  // arguments. This is different from ordinary calls, where the
-  // actual function to call is resolved after the arguments have been
-  // evaluated.
-
-  // Push constructor on the stack.  If it's not a function it's used as
-  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
-  // ignored.
-  Load(node->expression());
-
-  // Push the arguments ("left-to-right") on the stack.
-  ZoneList<Expression*>* args = node->arguments();
-  int arg_count = args->length();
-  for (int i = 0; i < arg_count; i++) {
-    Load(args->at(i));
-  }
-
-  // Call the construct call builtin that handles allocation and
-  // constructor invocation.
-  CodeForSourcePosition(node->position());
-  Result result = frame_->CallConstructor(arg_count);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  __ test(value.reg(), Immediate(kSmiTagMask));
-  value.Unuse();
-  destination()->Split(zero);
-}
-
-
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
-  // Conditionally generate a log call.
-  // Args:
-  //   0 (literal string): The type of logging (corresponds to the flags).
-  //     This is used to determine whether or not to generate the log call.
-  //   1 (string): Format string.  Access the string at argument index 2
-  //     with '%2s' (see Logger::LogRuntime for all the formats).
-  //   2 (array): Arguments to the format string.
-  ASSERT_EQ(args->length(), 3);
-#ifdef ENABLE_LOGGING_AND_PROFILING
-  if (ShouldGenerateLog(args->at(0))) {
-    Load(args->at(1));
-    Load(args->at(2));
-    frame_->CallRuntime(Runtime::kLog, 2);
-  }
-#endif
-  // Finally, we're expected to leave a value on the top of the stack.
-  frame_->Push(FACTORY->undefined_value());
-}
-
-
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask));
-  value.Unuse();
-  destination()->Split(zero);
-}
-
-
-class DeferredStringCharCodeAt : public DeferredCode {
- public:
-  DeferredStringCharCodeAt(Register object,
-                           Register index,
-                           Register scratch,
-                           Register result)
-      : result_(result),
-        char_code_at_generator_(object,
-                                index,
-                                scratch,
-                                result,
-                                &need_conversion_,
-                                &need_conversion_,
-                                &index_out_of_range_,
-                                STRING_INDEX_IS_NUMBER) {}
-
-  StringCharCodeAtGenerator* fast_case_generator() {
-    return &char_code_at_generator_;
-  }
-
-  virtual void Generate() {
-    VirtualFrameRuntimeCallHelper call_helper(frame_state());
-    char_code_at_generator_.GenerateSlow(masm(), call_helper);
-
-    __ bind(&need_conversion_);
-    // Move the undefined value into the result register, which will
-    // trigger conversion.
-    __ Set(result_, Immediate(FACTORY->undefined_value()));
-    __ jmp(exit_label());
-
-    __ bind(&index_out_of_range_);
-    // When the index is out of range, the spec requires us to return
-    // NaN.
-    __ Set(result_, Immediate(FACTORY->nan_value()));
-    __ jmp(exit_label());
-  }
-
- private:
-  Register result_;
-
-  Label need_conversion_;
-  Label index_out_of_range_;
-
-  StringCharCodeAtGenerator char_code_at_generator_;
-};
-
-
-// This generates code that performs a String.prototype.charCodeAt() call
-// or returns a smi in order to trigger conversion.
-void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
-  Comment(masm_, "[ GenerateStringCharCodeAt");
-  ASSERT(args->length() == 2);
-
-  Load(args->at(0));
-  Load(args->at(1));
-  Result index = frame_->Pop();
-  Result object = frame_->Pop();
-  object.ToRegister();
-  index.ToRegister();
-  // We might mutate the object register.
-  frame_->Spill(object.reg());
-
-  // We need two extra registers.
-  Result result = allocator()->Allocate();
-  ASSERT(result.is_valid());
-  Result scratch = allocator()->Allocate();
-  ASSERT(scratch.is_valid());
-
-  DeferredStringCharCodeAt* deferred =
-      new DeferredStringCharCodeAt(object.reg(),
-                                   index.reg(),
-                                   scratch.reg(),
-                                   result.reg());
-  deferred->fast_case_generator()->GenerateFast(masm_);
-  deferred->BindExit();
-  frame_->Push(&result);
-}
-
-
-class DeferredStringCharFromCode : public DeferredCode {
- public:
-  DeferredStringCharFromCode(Register code,
-                             Register result)
-      : char_from_code_generator_(code, result) {}
-
-  StringCharFromCodeGenerator* fast_case_generator() {
-    return &char_from_code_generator_;
-  }
-
-  virtual void Generate() {
-    VirtualFrameRuntimeCallHelper call_helper(frame_state());
-    char_from_code_generator_.GenerateSlow(masm(), call_helper);
-  }
-
- private:
-  StringCharFromCodeGenerator char_from_code_generator_;
-};
-
-
-// Generates code for creating a one-char string from a char code.
-void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
-  Comment(masm_, "[ GenerateStringCharFromCode");
-  ASSERT(args->length() == 1);
-
-  Load(args->at(0));
-
-  Result code = frame_->Pop();
-  code.ToRegister();
-  ASSERT(code.is_valid());
-
-  Result result = allocator()->Allocate();
-  ASSERT(result.is_valid());
-
-  DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
-      code.reg(), result.reg());
-  deferred->fast_case_generator()->GenerateFast(masm_);
-  deferred->BindExit();
-  frame_->Push(&result);
-}
-
-
-class DeferredStringCharAt : public DeferredCode {
- public:
-  DeferredStringCharAt(Register object,
-                       Register index,
-                       Register scratch1,
-                       Register scratch2,
-                       Register result)
-      : result_(result),
-        char_at_generator_(object,
-                           index,
-                           scratch1,
-                           scratch2,
-                           result,
-                           &need_conversion_,
-                           &need_conversion_,
-                           &index_out_of_range_,
-                           STRING_INDEX_IS_NUMBER) {}
-
-  StringCharAtGenerator* fast_case_generator() {
-    return &char_at_generator_;
-  }
-
-  virtual void Generate() {
-    VirtualFrameRuntimeCallHelper call_helper(frame_state());
-    char_at_generator_.GenerateSlow(masm(), call_helper);
-
-    __ bind(&need_conversion_);
-    // Move smi zero into the result register, which will trigger
-    // conversion.
-    __ Set(result_, Immediate(Smi::FromInt(0)));
-    __ jmp(exit_label());
-
-    __ bind(&index_out_of_range_);
-    // When the index is out of range, the spec requires us to return
-    // the empty string.
-    __ Set(result_, Immediate(FACTORY->empty_string()));
-    __ jmp(exit_label());
-  }
-
- private:
-  Register result_;
-
-  Label need_conversion_;
-  Label index_out_of_range_;
-
-  StringCharAtGenerator char_at_generator_;
-};
-
-
-// This generates code that performs a String.prototype.charAt() call
-// or returns a smi in order to trigger conversion.
-void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
-  Comment(masm_, "[ GenerateStringCharAt");
-  ASSERT(args->length() == 2);
-
-  Load(args->at(0));
-  Load(args->at(1));
-  Result index = frame_->Pop();
-  Result object = frame_->Pop();
-  object.ToRegister();
-  index.ToRegister();
-  // We might mutate the object register.
-  frame_->Spill(object.reg());
-
-  // We need three extra registers.
-  Result result = allocator()->Allocate();
-  ASSERT(result.is_valid());
-  Result scratch1 = allocator()->Allocate();
-  ASSERT(scratch1.is_valid());
-  Result scratch2 = allocator()->Allocate();
-  ASSERT(scratch2.is_valid());
-
-  DeferredStringCharAt* deferred =
-      new DeferredStringCharAt(object.reg(),
-                               index.reg(),
-                               scratch1.reg(),
-                               scratch2.reg(),
-                               result.reg());
-  deferred->fast_case_generator()->GenerateFast(masm_);
-  deferred->BindExit();
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  __ test(value.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(equal);
-  // It is a heap object - get map.
-  Result temp = allocator()->Allocate();
-  ASSERT(temp.is_valid());
-  // Check if the object is a JS array or not.
-  __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg());
-  value.Unuse();
-  temp.Unuse();
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) {
-  Label bailout, done, one_char_separator, long_separator,
-      non_trivial_array, not_size_one_array, loop, loop_condition,
-      loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
-
-  ASSERT(args->length() == 2);
-  // We will leave the separator on the stack until the end of the function.
-  Load(args->at(1));
-  // Load this to eax (= array)
-  Load(args->at(0));
-  Result array_result = frame_->Pop();
-  array_result.ToRegister(eax);
-  frame_->SpillAll();
-
-  // All aliases of the same register have disjoint lifetimes.
-  Register array = eax;
-  Register elements = no_reg;  // Will be eax.
-
-  Register index = edx;
-
-  Register string_length = ecx;
-
-  Register string = esi;
-
-  Register scratch = ebx;
-
-  Register array_length = edi;
-  Register result_pos = no_reg;  // Will be edi.
-
-  // Separator operand is already pushed.
-  Operand separator_operand = Operand(esp, 2 * kPointerSize);
-  Operand result_operand = Operand(esp, 1 * kPointerSize);
-  Operand array_length_operand = Operand(esp, 0);
-  __ sub(Operand(esp), Immediate(2 * kPointerSize));
-  __ cld();
-  // Check that the array is a JSArray
-  __ test(array, Immediate(kSmiTagMask));
-  __ j(zero, &bailout);
-  __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
-  __ j(not_equal, &bailout);
-
-  // Check that the array has fast elements.
-  __ test_b(FieldOperand(scratch, Map::kBitField2Offset),
-            1 << Map::kHasFastElements);
-  __ j(zero, &bailout);
-
-  // If the array has length zero, return the empty string.
-  __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
-  __ sar(array_length, 1);
-  __ j(not_zero, &non_trivial_array);
-  __ mov(result_operand, FACTORY->empty_string());
-  __ jmp(&done);
-
-  // Save the array length.
-  __ bind(&non_trivial_array);
-  __ mov(array_length_operand, array_length);
-
-  // Save the FixedArray containing array's elements.
-  // End of array's live range.
-  elements = array;
-  __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
-  array = no_reg;
-
-
-  // Check that all array elements are sequential ASCII strings, and
-  // accumulate the sum of their lengths, as a smi-encoded value.
-  __ Set(index, Immediate(0));
-  __ Set(string_length, Immediate(0));
-  // Loop condition: while (index < length).
-  // Live loop registers: index, array_length, string,
-  //                      scratch, string_length, elements.
-  __ jmp(&loop_condition);
-  __ bind(&loop);
-  __ cmp(index, Operand(array_length));
-  __ j(greater_equal, &done);
-
-  __ mov(string, FieldOperand(elements, index,
-                                      times_pointer_size,
-                                      FixedArray::kHeaderSize));
-  __ test(string, Immediate(kSmiTagMask));
-  __ j(zero, &bailout);
-  __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
-  __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
-  __ and_(scratch, Immediate(
-      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
-  __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
-  __ j(not_equal, &bailout);
-  __ add(string_length,
-         FieldOperand(string, SeqAsciiString::kLengthOffset));
-  __ j(overflow, &bailout);
-  __ add(Operand(index), Immediate(1));
-  __ bind(&loop_condition);
-  __ cmp(index, Operand(array_length));
-  __ j(less, &loop);
-
-  // If array_length is 1, return elements[0], a string.
-  __ cmp(array_length, 1);
-  __ j(not_equal, &not_size_one_array);
-  __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
-  __ mov(result_operand, scratch);
-  __ jmp(&done);
-
-  __ bind(&not_size_one_array);
-
-  // End of array_length live range.
-  result_pos = array_length;
-  array_length = no_reg;
-
-  // Live registers:
-  // string_length: Sum of string lengths, as a smi.
-  // elements: FixedArray of strings.
-
-  // Check that the separator is a flat ASCII string.
-  __ mov(string, separator_operand);
-  __ test(string, Immediate(kSmiTagMask));
-  __ j(zero, &bailout);
-  __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
-  __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
-  __ and_(scratch, Immediate(
-      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
-  __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
-  __ j(not_equal, &bailout);
-
-  // Add (separator length times array_length) - separator length
-  // to string_length.
-  __ mov(scratch, separator_operand);
-  __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset));
-  __ sub(string_length, Operand(scratch));  // May be negative, temporarily.
-  __ imul(scratch, array_length_operand);
-  __ j(overflow, &bailout);
-  __ add(string_length, Operand(scratch));
-  __ j(overflow, &bailout);
-
-  __ shr(string_length, 1);
-  // Live registers and stack values:
-  //   string_length
-  //   elements
-  __ AllocateAsciiString(result_pos, string_length, scratch,
-                         index, string, &bailout);
-  __ mov(result_operand, result_pos);
-  __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize));
-
-
-  __ mov(string, separator_operand);
-  __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset),
-         Immediate(Smi::FromInt(1)));
-  __ j(equal, &one_char_separator);
-  __ j(greater, &long_separator);
-
-
-  // Empty separator case
-  __ mov(index, Immediate(0));
-  __ jmp(&loop_1_condition);
-  // Loop condition: while (index < length).
-  __ bind(&loop_1);
-  // Each iteration of the loop concatenates one string to the result.
-  // Live values in registers:
-  //   index: which element of the elements array we are adding to the result.
-  //   result_pos: the position to which we are currently copying characters.
-  //   elements: the FixedArray of strings we are joining.
-
-  // Get string = array[index].
-  __ mov(string, FieldOperand(elements, index,
-                              times_pointer_size,
-                              FixedArray::kHeaderSize));
-  __ mov(string_length,
-         FieldOperand(string, String::kLengthOffset));
-  __ shr(string_length, 1);
-  __ lea(string,
-         FieldOperand(string, SeqAsciiString::kHeaderSize));
-  __ CopyBytes(string, result_pos, string_length, scratch);
-  __ add(Operand(index), Immediate(1));
-  __ bind(&loop_1_condition);
-  __ cmp(index, array_length_operand);
-  __ j(less, &loop_1);  // End while (index < length).
-  __ jmp(&done);
-
-
-
-  // One-character separator case
-  __ bind(&one_char_separator);
-  // Replace separator with its ascii character value.
-  __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize));
-  __ mov_b(separator_operand, scratch);
-
-  __ Set(index, Immediate(0));
-  // Jump into the loop after the code that copies the separator, so the first
-  // element is not preceded by a separator
-  __ jmp(&loop_2_entry);
-  // Loop condition: while (index < length).
-  __ bind(&loop_2);
-  // Each iteration of the loop concatenates one string to the result.
-  // Live values in registers:
-  //   index: which element of the elements array we are adding to the result.
-  //   result_pos: the position to which we are currently copying characters.
-
-  // Copy the separator character to the result.
-  __ mov_b(scratch, separator_operand);
-  __ mov_b(Operand(result_pos, 0), scratch);
-  __ inc(result_pos);
-
-  __ bind(&loop_2_entry);
-  // Get string = array[index].
-  __ mov(string, FieldOperand(elements, index,
-                              times_pointer_size,
-                              FixedArray::kHeaderSize));
-  __ mov(string_length,
-         FieldOperand(string, String::kLengthOffset));
-  __ shr(string_length, 1);
-  __ lea(string,
-         FieldOperand(string, SeqAsciiString::kHeaderSize));
-  __ CopyBytes(string, result_pos, string_length, scratch);
-  __ add(Operand(index), Immediate(1));
-
-  __ cmp(index, array_length_operand);
-  __ j(less, &loop_2);  // End while (index < length).
-  __ jmp(&done);
-
-
-  // Long separator case (separator is more than one character).
-  __ bind(&long_separator);
-
-  __ Set(index, Immediate(0));
-  // Jump into the loop after the code that copies the separator, so the first
-  // element is not preceded by a separator
-  __ jmp(&loop_3_entry);
-  // Loop condition: while (index < length).
-  __ bind(&loop_3);
-  // Each iteration of the loop concatenates one string to the result.
-  // Live values in registers:
-  //   index: which element of the elements array we are adding to the result.
-  //   result_pos: the position to which we are currently copying characters.
-
-  // Copy the separator to the result.
-  __ mov(string, separator_operand);
-  __ mov(string_length,
-         FieldOperand(string, String::kLengthOffset));
-  __ shr(string_length, 1);
-  __ lea(string,
-         FieldOperand(string, SeqAsciiString::kHeaderSize));
-  __ CopyBytes(string, result_pos, string_length, scratch);
-
-  __ bind(&loop_3_entry);
-  // Get string = array[index].
-  __ mov(string, FieldOperand(elements, index,
-                              times_pointer_size,
-                              FixedArray::kHeaderSize));
-  __ mov(string_length,
-         FieldOperand(string, String::kLengthOffset));
-  __ shr(string_length, 1);
-  __ lea(string,
-         FieldOperand(string, SeqAsciiString::kHeaderSize));
-  __ CopyBytes(string, result_pos, string_length, scratch);
-  __ add(Operand(index), Immediate(1));
-
-  __ cmp(index, array_length_operand);
-  __ j(less, &loop_3);  // End while (index < length).
-  __ jmp(&done);
-
-
-  __ bind(&bailout);
-  __ mov(result_operand, FACTORY->undefined_value());
-  __ bind(&done);
-  __ mov(eax, result_operand);
-  // Drop temp values from the stack, and restore context register.
-  __ add(Operand(esp), Immediate(2 * kPointerSize));
-
-  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
-  frame_->Drop(1);
-  frame_->Push(&array_result);
-}
-
-
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  __ test(value.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(equal);
-  // It is a heap object - get map.
-  Result temp = allocator()->Allocate();
-  ASSERT(temp.is_valid());
-  // Check if the object is a regexp.
-  __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg());
-  value.Unuse();
-  temp.Unuse();
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
-  // This generates a fast version of:
-  // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result obj = frame_->Pop();
-  obj.ToRegister();
-
-  __ test(obj.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(zero);
-  __ cmp(obj.reg(), FACTORY->null_value());
-  destination()->true_target()->Branch(equal);
-
-  Result map = allocator()->Allocate();
-  ASSERT(map.is_valid());
-  __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
-  // Undetectable objects behave like undefined when tested with typeof.
-  __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
-            1 << Map::kIsUndetectable);
-  destination()->false_target()->Branch(not_zero);
-  // Do a range test for JSObject type.  We can't use
-  // MacroAssembler::IsInstanceJSObjectType, because we are using a
-  // ControlDestination, so we copy its implementation here.
-  __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
-  __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
-  __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
-  obj.Unuse();
-  map.Unuse();
-  destination()->Split(below_equal);
-}
-
-
-void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) {
-  // This generates a fast version of:
-  // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' ||
-  // typeof(arg) == function).
-  // It includes undetectable objects (as opposed to IsObject).
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  __ test(value.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(equal);
-
-  // Check that this is an object.
-  frame_->Spill(value.reg());
-  __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg());
-  value.Unuse();
-  destination()->Split(above_equal);
-}
-
-
-// Deferred code to check whether the String JavaScript object is safe for using
-// default value of. This code is called after the bit caching this information
-// in the map has been checked with the map for the object in the map_result_
-// register. On return the register map_result_ contains 1 for true and 0 for
-// false.
-class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode {
- public:
-  DeferredIsStringWrapperSafeForDefaultValueOf(Register object,
-                                               Register map_result,
-                                               Register scratch1,
-                                               Register scratch2)
-      : object_(object),
-        map_result_(map_result),
-        scratch1_(scratch1),
-        scratch2_(scratch2) { }
-
-  virtual void Generate() {
-    Label false_result;
-
-    // Check that map is loaded as expected.
-    if (FLAG_debug_code) {
-      __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
-      __ Assert(equal, "Map not in expected register");
-    }
-
-    // Check for fast case object. Generate false result for slow case object.
-    __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset));
-    __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
-    __ cmp(scratch1_, FACTORY->hash_table_map());
-    __ j(equal, &false_result);
-
-    // Look for valueOf symbol in the descriptor array, and indicate false if
-    // found. The type is not checked, so if it is a transition it is a false
-    // negative.
-    __ mov(map_result_,
-           FieldOperand(map_result_, Map::kInstanceDescriptorsOffset));
-    __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset));
-    // map_result_: descriptor array
-    // scratch1_: length of descriptor array
-    // Calculate the end of the descriptor array.
-    STATIC_ASSERT(kSmiTag == 0);
-    STATIC_ASSERT(kSmiTagSize == 1);
-    STATIC_ASSERT(kPointerSize == 4);
-    __ lea(scratch1_,
-           Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize));
-    // Calculate location of the first key name.
-    __ add(Operand(map_result_),
-           Immediate(FixedArray::kHeaderSize +
-                     DescriptorArray::kFirstIndex * kPointerSize));
-    // Loop through all the keys in the descriptor array. If one of these is the
-    // symbol valueOf the result is false.
-    Label entry, loop;
-    __ jmp(&entry);
-    __ bind(&loop);
-    __ mov(scratch2_, FieldOperand(map_result_, 0));
-    __ cmp(scratch2_, FACTORY->value_of_symbol());
-    __ j(equal, &false_result);
-    __ add(Operand(map_result_), Immediate(kPointerSize));
-    __ bind(&entry);
-    __ cmp(map_result_, Operand(scratch1_));
-    __ j(not_equal, &loop);
-
-    // Reload map as register map_result_ was used as temporary above.
-    __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
-
-    // If a valueOf property is not found on the object check that it's
-    // prototype is the un-modified String prototype. If not result is false.
-    __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset));
-    __ test(scratch1_, Immediate(kSmiTagMask));
-    __ j(zero, &false_result);
-    __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
-    __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
-    __ mov(scratch2_,
-           FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset));
-    __ cmp(scratch1_,
-           ContextOperand(scratch2_,
-                          Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
-    __ j(not_equal, &false_result);
-    // Set the bit in the map to indicate that it has been checked safe for
-    // default valueOf and set true result.
-    __ or_(FieldOperand(map_result_, Map::kBitField2Offset),
-           Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
-    __ Set(map_result_, Immediate(1));
-    __ jmp(exit_label());
-    __ bind(&false_result);
-    // Set false result.
-    __ Set(map_result_, Immediate(0));
-  }
-
- private:
-  Register object_;
-  Register map_result_;
-  Register scratch1_;
-  Register scratch2_;
-};
-
-
-void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf(
-    ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result obj = frame_->Pop();  // Pop the string wrapper.
-  obj.ToRegister();
-  ASSERT(obj.is_valid());
-  if (FLAG_debug_code) {
-    __ AbortIfSmi(obj.reg());
-  }
-
-  // Check whether this map has already been checked to be safe for default
-  // valueOf.
-  Result map_result = allocator()->Allocate();
-  ASSERT(map_result.is_valid());
-  __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
-  __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset),
-            1 << Map::kStringWrapperSafeForDefaultValueOf);
-  destination()->true_target()->Branch(not_zero);
-
-  // We need an additional two scratch registers for the deferred code.
-  Result temp1 = allocator()->Allocate();
-  ASSERT(temp1.is_valid());
-  Result temp2 = allocator()->Allocate();
-  ASSERT(temp2.is_valid());
-
-  DeferredIsStringWrapperSafeForDefaultValueOf* deferred =
-      new DeferredIsStringWrapperSafeForDefaultValueOf(
-          obj.reg(), map_result.reg(), temp1.reg(), temp2.reg());
-  deferred->Branch(zero);
-  deferred->BindExit();
-  __ test(map_result.reg(), Operand(map_result.reg()));
-  obj.Unuse();
-  map_result.Unuse();
-  temp1.Unuse();
-  temp2.Unuse();
-  destination()->Split(not_equal);
-}
-
-
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
-  // This generates a fast version of:
-  // (%_ClassOf(arg) === 'Function')
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result obj = frame_->Pop();
-  obj.ToRegister();
-  __ test(obj.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(zero);
-  Result temp = allocator()->Allocate();
-  ASSERT(temp.is_valid());
-  __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg());
-  obj.Unuse();
-  temp.Unuse();
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result obj = frame_->Pop();
-  obj.ToRegister();
-  __ test(obj.reg(), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(zero);
-  Result temp = allocator()->Allocate();
-  ASSERT(temp.is_valid());
-  __ mov(temp.reg(),
-         FieldOperand(obj.reg(), HeapObject::kMapOffset));
-  __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
-            1 << Map::kIsUndetectable);
-  obj.Unuse();
-  temp.Unuse();
-  destination()->Split(not_zero);
-}
-
-
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 0);
-
-  // Get the frame pointer for the calling frame.
-  Result fp = allocator()->Allocate();
-  __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
-
-  // Skip the arguments adaptor frame if it exists.
-  Label check_frame_marker;
-  __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
-         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
-  __ j(not_equal, &check_frame_marker);
-  __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
-
-  // Check the marker in the calling frame.
-  __ bind(&check_frame_marker);
-  __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
-         Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
-  fp.Unuse();
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 0);
-
-  Result fp = allocator_->Allocate();
-  Result result = allocator_->Allocate();
-  ASSERT(fp.is_valid() && result.is_valid());
-
-  Label exit;
-
-  // Get the number of formal parameters.
-  __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters())));
-
-  // Check if the calling frame is an arguments adaptor frame.
-  __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
-  __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
-         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
-  __ j(not_equal, &exit);
-
-  // Arguments adaptor case: Read the arguments length from the
-  // adaptor frame.
-  __ mov(result.reg(),
-         Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
-
-  __ bind(&exit);
-  result.set_type_info(TypeInfo::Smi());
-  if (FLAG_debug_code) __ AbortIfNotSmi(result.reg());
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  JumpTarget leave, null, function, non_function_constructor;
-  Load(args->at(0));  // Load the object.
-  Result obj = frame_->Pop();
-  obj.ToRegister();
-  frame_->Spill(obj.reg());
-
-  // If the object is a smi, we return null.
-  __ test(obj.reg(), Immediate(kSmiTagMask));
-  null.Branch(zero);
-
-  // Check that the object is a JS object but take special care of JS
-  // functions to make sure they have 'Function' as their class.
-  __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
-  null.Branch(below);
-
-  // As long as JS_FUNCTION_TYPE is the last instance type and it is
-  // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
-  // LAST_JS_OBJECT_TYPE.
-  STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
-  STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
-  __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
-  function.Branch(equal);
-
-  // Check if the constructor in the map is a function.
-  { Result tmp = allocator()->Allocate();
-    __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
-    __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg());
-    non_function_constructor.Branch(not_equal);
-  }
-
-  // The map register now contains the constructor function. Grab the
-  // instance class name from there.
-  __ mov(obj.reg(),
-         FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
-  __ mov(obj.reg(),
-         FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset));
-  frame_->Push(&obj);
-  leave.Jump();
-
-  // Functions have class 'Function'.
-  function.Bind();
-  frame_->Push(FACTORY->function_class_symbol());
-  leave.Jump();
-
-  // Objects with a non-function constructor have class 'Object'.
-  non_function_constructor.Bind();
-  frame_->Push(FACTORY->Object_symbol());
-  leave.Jump();
-
-  // Non-JS objects have class null.
-  null.Bind();
-  frame_->Push(FACTORY->null_value());
-
-  // All done.
-  leave.Bind();
-}
-
-
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  JumpTarget leave;
-  Load(args->at(0));  // Load the object.
-  frame_->Dup();
-  Result object = frame_->Pop();
-  object.ToRegister();
-  ASSERT(object.is_valid());
-  // if (object->IsSmi()) return object.
-  __ test(object.reg(), Immediate(kSmiTagMask));
-  leave.Branch(zero, taken);
-  // It is a heap object - get map.
-  Result temp = allocator()->Allocate();
-  ASSERT(temp.is_valid());
-  // if (!object->IsJSValue()) return object.
-  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
-  leave.Branch(not_equal, not_taken);
-  __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
-  object.Unuse();
-  frame_->SetElementAt(0, &temp);
-  leave.Bind();
-}
-
-
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 2);
-  JumpTarget leave;
-  Load(args->at(0));  // Load the object.
-  Load(args->at(1));  // Load the value.
-  Result value = frame_->Pop();
-  Result object = frame_->Pop();
-  value.ToRegister();
-  object.ToRegister();
-
-  // if (object->IsSmi()) return value.
-  __ test(object.reg(), Immediate(kSmiTagMask));
-  leave.Branch(zero, &value, taken);
-
-  // It is a heap object - get its map.
-  Result scratch = allocator_->Allocate();
-  ASSERT(scratch.is_valid());
-  // if (!object->IsJSValue()) return value.
-  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
-  leave.Branch(not_equal, &value, not_taken);
-
-  // Store the value.
-  __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
-  // Update the write barrier.  Save the value as it will be
-  // overwritten by the write barrier code and is needed afterward.
-  Result duplicate_value = allocator_->Allocate();
-  ASSERT(duplicate_value.is_valid());
-  __ mov(duplicate_value.reg(), value.reg());
-  // The object register is also overwritten by the write barrier and
-  // possibly aliased in the frame.
-  frame_->Spill(object.reg());
-  __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
-                 scratch.reg());
-  object.Unuse();
-  scratch.Unuse();
-  duplicate_value.Unuse();
-
-  // Leave.
-  leave.Bind(&value);
-  frame_->Push(&value);
-}
-
-
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-
-  // ArgumentsAccessStub expects the key in edx and the formal
-  // parameter count in eax.
-  Load(args->at(0));
-  Result key = frame_->Pop();
-  // Explicitly create a constant result.
-  Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
-  // Call the shared stub to get to arguments[key].
-  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
-  Result result = frame_->CallStub(&stub, &key, &count);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 2);
-
-  // Load the two objects into registers and perform the comparison.
-  Load(args->at(0));
-  Load(args->at(1));
-  Result right = frame_->Pop();
-  Result left = frame_->Pop();
-  right.ToRegister();
-  left.ToRegister();
-  __ cmp(right.reg(), Operand(left.reg()));
-  right.Unuse();
-  left.Unuse();
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 0);
-  STATIC_ASSERT(kSmiTag == 0);  // EBP value is aligned, so it looks like a Smi.
-  Result ebp_as_smi = allocator_->Allocate();
-  ASSERT(ebp_as_smi.is_valid());
-  __ mov(ebp_as_smi.reg(), Operand(ebp));
-  frame_->Push(&ebp_as_smi);
-}
-
-
-void CodeGenerator::GenerateRandomHeapNumber(
-    ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 0);
-  frame_->SpillAll();
-
-  Label slow_allocate_heapnumber;
-  Label heapnumber_allocated;
-
-  __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber);
-  __ jmp(&heapnumber_allocated);
-
-  __ bind(&slow_allocate_heapnumber);
-  // Allocate a heap number.
-  __ CallRuntime(Runtime::kNumberAlloc, 0);
-  __ mov(edi, eax);
-
-  __ bind(&heapnumber_allocated);
-
-  __ PrepareCallCFunction(0, ebx);
-  __ CallCFunction(ExternalReference::random_uint32_function(masm()->isolate()),
-                   0);
-
-  // Convert 32 random bits in eax to 0.(32 random bits) in a double
-  // by computing:
-  // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
-  // This is implemented on both SSE2 and FPU.
-  if (masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    CpuFeatures::Scope fscope(SSE2);
-    __ mov(ebx, Immediate(0x49800000));  // 1.0 x 2^20 as single.
-    __ movd(xmm1, Operand(ebx));
-    __ movd(xmm0, Operand(eax));
-    __ cvtss2sd(xmm1, xmm1);
-    __ pxor(xmm0, xmm1);
-    __ subsd(xmm0, xmm1);
-    __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0);
-  } else {
-    // 0x4130000000000000 is 1.0 x 2^20 as a double.
-    __ mov(FieldOperand(edi, HeapNumber::kExponentOffset),
-           Immediate(0x41300000));
-    __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax);
-    __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
-    __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0));
-    __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
-    __ fsubp(1);
-    __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset));
-  }
-  __ mov(eax, edi);
-
-  Result result = allocator_->Allocate(eax);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
-  ASSERT_EQ(2, args->length());
-
-  Load(args->at(0));
-  Load(args->at(1));
-
-  StringAddStub stub(NO_STRING_ADD_FLAGS);
-  Result answer = frame_->CallStub(&stub, 2);
-  frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
-  ASSERT_EQ(3, args->length());
-
-  Load(args->at(0));
-  Load(args->at(1));
-  Load(args->at(2));
-
-  SubStringStub stub;
-  Result answer = frame_->CallStub(&stub, 3);
-  frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
-  ASSERT_EQ(2, args->length());
-
-  Load(args->at(0));
-  Load(args->at(1));
-
-  StringCompareStub stub;
-  Result answer = frame_->CallStub(&stub, 2);
-  frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
-  ASSERT_EQ(4, args->length());
-
-  // Load the arguments on the stack and call the stub.
-  Load(args->at(0));
-  Load(args->at(1));
-  Load(args->at(2));
-  Load(args->at(3));
-
-  RegExpExecStub stub;
-  Result result = frame_->CallStub(&stub, 4);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
-  ASSERT_EQ(3, args->length());
-
-  Load(args->at(0));  // Size of array, smi.
-  Load(args->at(1));  // "index" property value.
-  Load(args->at(2));  // "input" property value.
-
-  RegExpConstructResultStub stub;
-  Result result = frame_->CallStub(&stub, 3);
-  frame_->Push(&result);
-}
-
-
-class DeferredSearchCache: public DeferredCode {
- public:
-  DeferredSearchCache(Register dst, Register cache, Register key)
-      : dst_(dst), cache_(cache), key_(key) {
-    set_comment("[ DeferredSearchCache");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;    // on invocation Smi index of finger, on exit
-                    // holds value being looked up.
-  Register cache_;  // instance of JSFunctionResultCache.
-  Register key_;    // key being looked up.
-};
-
-
-void DeferredSearchCache::Generate() {
-  Label first_loop, search_further, second_loop, cache_miss;
-
-  // Smi-tagging is equivalent to multiplying by 2.
-  STATIC_ASSERT(kSmiTag == 0);
-  STATIC_ASSERT(kSmiTagSize == 1);
-
-  Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize);
-  Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex);
-
-  // Check the cache from finger to start of the cache.
-  __ bind(&first_loop);
-  __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
-  __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi));
-  __ j(less, &search_further);
-
-  __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
-  __ j(not_equal, &first_loop);
-
-  __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
-  __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
-  __ jmp(exit_label());
-
-  __ bind(&search_further);
-
-  // Check the cache from end of cache up to finger.
-  __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset));
-
-  __ bind(&second_loop);
-  __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
-    // Consider prefetching into some reg.
-  __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
-  __ j(less_equal, &cache_miss);
-
-  __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
-  __ j(not_equal, &second_loop);
-
-  __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
-  __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
-  __ jmp(exit_label());
-
-  __ bind(&cache_miss);
-  __ push(cache_);  // store a reference to cache
-  __ push(key_);  // store a key
-  __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
-  __ push(key_);
-  // On ia32 function must be in edi.
-  __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
-  ParameterCount expected(1);
-  __ InvokeFunction(edi, expected, CALL_FUNCTION);
-
-  // Find a place to put new cached value into.
-  Label add_new_entry, update_cache;
-  __ mov(ecx, Operand(esp, kPointerSize));  // restore the cache
-  // Possible optimization: cache size is constant for the given cache
-  // so technically we could use a constant here.  However, if we have
-  // cache miss this optimization would hardly matter much.
-
-  // Check if we could add new entry to cache.
-  __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
-  __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
-  __ j(greater, &add_new_entry);
-
-  // Check if we could evict entry after finger.
-  __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
-  __ add(Operand(edx), Immediate(kEntrySizeSmi));
-  __ cmp(ebx, Operand(edx));
-  __ j(greater, &update_cache);
-
-  // Need to wrap over the cache.
-  __ mov(edx, Immediate(kEntriesIndexSmi));
-  __ jmp(&update_cache);
-
-  __ bind(&add_new_entry);
-  __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
-  __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1));
-  __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx);
-
-  // Update the cache itself.
-  // edx holds the index.
-  __ bind(&update_cache);
-  __ pop(ebx);  // restore the key
-  __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx);
-  // Store key.
-  __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
-  __ RecordWrite(ecx, 0, ebx, edx);
-
-  // Store value.
-  __ pop(ecx);  // restore the cache.
-  __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
-  __ add(Operand(edx), Immediate(Smi::FromInt(1)));
-  __ mov(ebx, eax);
-  __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
-  __ RecordWrite(ecx, 0, ebx, edx);
-
-  if (!dst_.is(eax)) {
-    __ mov(dst_, eax);
-  }
-}
-
-
-void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
-  ASSERT_EQ(2, args->length());
-
-  ASSERT_NE(NULL, args->at(0)->AsLiteral());
-  int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
-
-  Handle<FixedArray> jsfunction_result_caches(
-      masm()->isolate()->global_context()->jsfunction_result_caches());
-  if (jsfunction_result_caches->length() <= cache_id) {
-    __ Abort("Attempt to use undefined cache.");
-    frame_->Push(FACTORY->undefined_value());
-    return;
-  }
-
-  Load(args->at(1));
-  Result key = frame_->Pop();
-  key.ToRegister();
-
-  Result cache = allocator()->Allocate();
-  ASSERT(cache.is_valid());
-  __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX));
-  __ mov(cache.reg(),
-         FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
-  __ mov(cache.reg(),
-         ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
-  __ mov(cache.reg(),
-         FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
-
-  Result tmp = allocator()->Allocate();
-  ASSERT(tmp.is_valid());
-
-  DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
-                                                          cache.reg(),
-                                                          key.reg());
-
-  // tmp.reg() now holds finger offset as a smi.
-  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
-  __ mov(tmp.reg(), FieldOperand(cache.reg(),
-                                 JSFunctionResultCache::kFingerOffset));
-  __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg()));
-  deferred->Branch(not_equal);
-
-  __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1));
-
-  deferred->BindExit();
-  frame_->Push(&tmp);
-}
-
-
-void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
-  ASSERT_EQ(args->length(), 1);
-
-  // Load the argument on the stack and call the stub.
-  Load(args->at(0));
-  NumberToStringStub stub;
-  Result result = frame_->CallStub(&stub, 1);
-  frame_->Push(&result);
-}
-
-
-class DeferredSwapElements: public DeferredCode {
- public:
-  DeferredSwapElements(Register object, Register index1, Register index2)
-      : object_(object), index1_(index1), index2_(index2) {
-    set_comment("[ DeferredSwapElements");
-  }
-
-  virtual void Generate();
-
- private:
-  Register object_, index1_, index2_;
-};
-
-
-void DeferredSwapElements::Generate() {
-  __ push(object_);
-  __ push(index1_);
-  __ push(index2_);
-  __ CallRuntime(Runtime::kSwapElements, 3);
-}
-
-
-void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
-  // Note: this code assumes that indices are passed are within
-  // elements' bounds and refer to valid (not holes) values.
-  Comment cmnt(masm_, "[ GenerateSwapElements");
-
-  ASSERT_EQ(3, args->length());
-
-  Load(args->at(0));
-  Load(args->at(1));
-  Load(args->at(2));
-
-  Result index2 = frame_->Pop();
-  index2.ToRegister();
-
-  Result index1 = frame_->Pop();
-  index1.ToRegister();
-
-  Result object = frame_->Pop();
-  object.ToRegister();
-
-  Result tmp1 = allocator()->Allocate();
-  tmp1.ToRegister();
-  Result tmp2 = allocator()->Allocate();
-  tmp2.ToRegister();
-
-  frame_->Spill(object.reg());
-  frame_->Spill(index1.reg());
-  frame_->Spill(index2.reg());
-
-  DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
-                                                            index1.reg(),
-                                                            index2.reg());
-
-  // Fetch the map and check if array is in fast case.
-  // Check that object doesn't require security checks and
-  // has no indexed interceptor.
-  __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg());
-  deferred->Branch(below);
-  __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
-            KeyedLoadIC::kSlowCaseBitFieldMask);
-  deferred->Branch(not_zero);
-
-  // Check the object's elements are in fast case and writable.
-  __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
-  __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
-         Immediate(FACTORY->fixed_array_map()));
-  deferred->Branch(not_equal);
-
-  // Smi-tagging is equivalent to multiplying by 2.
-  STATIC_ASSERT(kSmiTag == 0);
-  STATIC_ASSERT(kSmiTagSize == 1);
-
-  // Check that both indices are smis.
-  __ mov(tmp2.reg(), index1.reg());
-  __ or_(tmp2.reg(), Operand(index2.reg()));
-  __ test(tmp2.reg(), Immediate(kSmiTagMask));
-  deferred->Branch(not_zero);
-
-  // Check that both indices are valid.
-  __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset));
-  __ cmp(tmp2.reg(), Operand(index1.reg()));
-  deferred->Branch(below_equal);
-  __ cmp(tmp2.reg(), Operand(index2.reg()));
-  deferred->Branch(below_equal);
-
-  // Bring addresses into index1 and index2.
-  __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg()));
-  __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg()));
-
-  // Swap elements.
-  __ mov(object.reg(), Operand(index1.reg(), 0));
-  __ mov(tmp2.reg(),   Operand(index2.reg(), 0));
-  __ mov(Operand(index2.reg(), 0), object.reg());
-  __ mov(Operand(index1.reg(), 0), tmp2.reg());
-
-  Label done;
-  __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
-  // Possible optimization: do a check that both values are Smis
-  // (or them and test against Smi mask.)
-
-  __ mov(tmp2.reg(), tmp1.reg());
-  __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg());
-  __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg());
-  __ bind(&done);
-
-  deferred->BindExit();
-  frame_->Push(FACTORY->undefined_value());
-}
-
-
-void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
-  Comment cmnt(masm_, "[ GenerateCallFunction");
-
-  ASSERT(args->length() >= 2);
-
-  int n_args = args->length() - 2;  // for receiver and function.
-  Load(args->at(0));  // receiver
-  for (int i = 0; i < n_args; i++) {
-    Load(args->at(i + 1));
-  }
-  Load(args->at(n_args + 1));  // function
-  Result result = frame_->CallJSFunction(n_args);
-  frame_->Push(&result);
-}
-
-
-// Generates the Math.pow method. Only handles special cases and
-// branches to the runtime system for everything else. Please note
-// that this function assumes that the callsite has executed ToNumber
-// on both arguments.
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 2);
-  Load(args->at(0));
-  Load(args->at(1));
-  if (!masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
-    frame_->Push(&res);
-  } else {
-    CpuFeatures::Scope use_sse2(SSE2);
-    Label allocate_return;
-    // Load the two operands while leaving the values on the frame.
-    frame()->Dup();
-    Result exponent = frame()->Pop();
-    exponent.ToRegister();
-    frame()->Spill(exponent.reg());
-    frame()->PushElementAt(1);
-    Result base = frame()->Pop();
-    base.ToRegister();
-    frame()->Spill(base.reg());
-
-    Result answer = allocator()->Allocate();
-    ASSERT(answer.is_valid());
-    ASSERT(!exponent.reg().is(base.reg()));
-    JumpTarget call_runtime;
-
-    // Save 1 in xmm3 - we need this several times later on.
-    __ mov(answer.reg(), Immediate(1));
-    __ cvtsi2sd(xmm3, Operand(answer.reg()));
-
-    Label exponent_nonsmi;
-    Label base_nonsmi;
-    // If the exponent is a heap number go to that specific case.
-    __ test(exponent.reg(), Immediate(kSmiTagMask));
-    __ j(not_zero, &exponent_nonsmi);
-    __ test(base.reg(), Immediate(kSmiTagMask));
-    __ j(not_zero, &base_nonsmi);
-
-    // Optimized version when y is an integer.
-    Label powi;
-    __ SmiUntag(base.reg());
-    __ cvtsi2sd(xmm0, Operand(base.reg()));
-    __ jmp(&powi);
-    // exponent is smi and base is a heapnumber.
-    __ bind(&base_nonsmi);
-    __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
-           FACTORY->heap_number_map());
-    call_runtime.Branch(not_equal);
-
-    __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
-
-    // Optimized version of pow if y is an integer.
-    __ bind(&powi);
-    __ SmiUntag(exponent.reg());
-
-    // Save exponent in base as we need to check if exponent is negative later.
-    // We know that base and exponent are in different registers.
-    __ mov(base.reg(), exponent.reg());
-
-    // Get absolute value of exponent.
-    Label no_neg;
-    __ cmp(exponent.reg(), 0);
-    __ j(greater_equal, &no_neg);
-    __ neg(exponent.reg());
-    __ bind(&no_neg);
-
-    // Load xmm1 with 1.
-    __ movsd(xmm1, xmm3);
-    Label while_true;
-    Label no_multiply;
-
-    __ bind(&while_true);
-    __ shr(exponent.reg(), 1);
-    __ j(not_carry, &no_multiply);
-    __ mulsd(xmm1, xmm0);
-    __ bind(&no_multiply);
-    __ test(exponent.reg(), Operand(exponent.reg()));
-    __ mulsd(xmm0, xmm0);
-    __ j(not_zero, &while_true);
-
-    // x has the original value of y - if y is negative return 1/result.
-    __ test(base.reg(), Operand(base.reg()));
-    __ j(positive, &allocate_return);
-    // Special case if xmm1 has reached infinity.
-    __ mov(answer.reg(), Immediate(0x7FB00000));
-    __ movd(xmm0, Operand(answer.reg()));
-    __ cvtss2sd(xmm0, xmm0);
-    __ ucomisd(xmm0, xmm1);
-    call_runtime.Branch(equal);
-    __ divsd(xmm3, xmm1);
-    __ movsd(xmm1, xmm3);
-    __ jmp(&allocate_return);
-
-    // exponent (or both) is a heapnumber - no matter what we should now work
-    // on doubles.
-    __ bind(&exponent_nonsmi);
-    __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
-           FACTORY->heap_number_map());
-    call_runtime.Branch(not_equal);
-    __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
-    // Test if exponent is nan.
-    __ ucomisd(xmm1, xmm1);
-    call_runtime.Branch(parity_even);
-
-    Label base_not_smi;
-    Label handle_special_cases;
-    __ test(base.reg(), Immediate(kSmiTagMask));
-    __ j(not_zero, &base_not_smi);
-    __ SmiUntag(base.reg());
-    __ cvtsi2sd(xmm0, Operand(base.reg()));
-    __ jmp(&handle_special_cases);
-    __ bind(&base_not_smi);
-    __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
-           FACTORY->heap_number_map());
-    call_runtime.Branch(not_equal);
-    __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
-    __ and_(answer.reg(), HeapNumber::kExponentMask);
-    __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask));
-    // base is NaN or +/-Infinity
-    call_runtime.Branch(greater_equal);
-    __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
-
-    // base is in xmm0 and exponent is in xmm1.
-    __ bind(&handle_special_cases);
-    Label not_minus_half;
-    // Test for -0.5.
-    // Load xmm2 with -0.5.
-    __ mov(answer.reg(), Immediate(0xBF000000));
-    __ movd(xmm2, Operand(answer.reg()));
-    __ cvtss2sd(xmm2, xmm2);
-    // xmm2 now has -0.5.
-    __ ucomisd(xmm2, xmm1);
-    __ j(not_equal, &not_minus_half);
-
-    // Calculates reciprocal of square root.
-    // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
-    __ xorpd(xmm1, xmm1);
-    __ addsd(xmm1, xmm0);
-    __ sqrtsd(xmm1, xmm1);
-    __ divsd(xmm3, xmm1);
-    __ movsd(xmm1, xmm3);
-    __ jmp(&allocate_return);
-
-    // Test for 0.5.
-    __ bind(&not_minus_half);
-    // Load xmm2 with 0.5.
-    // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
-    __ addsd(xmm2, xmm3);
-    // xmm2 now has 0.5.
-    __ ucomisd(xmm2, xmm1);
-    call_runtime.Branch(not_equal);
-    // Calculates square root.
-    // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
-    __ xorpd(xmm1, xmm1);
-    __ addsd(xmm1, xmm0);
-    __ sqrtsd(xmm1, xmm1);
-
-    JumpTarget done;
-    Label failure, success;
-    __ bind(&allocate_return);
-    // Make a copy of the frame to enable us to handle allocation
-    // failure after the JumpTarget jump.
-    VirtualFrame* clone = new VirtualFrame(frame());
-    __ AllocateHeapNumber(answer.reg(), exponent.reg(),
-                          base.reg(), &failure);
-    __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
-    // Remove the two original values from the frame - we only need those
-    // in the case where we branch to runtime.
-    frame()->Drop(2);
-    exponent.Unuse();
-    base.Unuse();
-    done.Jump(&answer);
-    // Use the copy of the original frame as our current frame.
-    RegisterFile empty_regs;
-    SetFrame(clone, &empty_regs);
-    // If we experience an allocation failure we branch to runtime.
-    __ bind(&failure);
-    call_runtime.Bind();
-    answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
-
-    done.Bind(&answer);
-    frame()->Push(&answer);
-  }
-}
-
-
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
-  ASSERT_EQ(args->length(), 1);
-  Load(args->at(0));
-  TranscendentalCacheStub stub(TranscendentalCache::SIN,
-                               TranscendentalCacheStub::TAGGED);
-  Result result = frame_->CallStub(&stub, 1);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
-  ASSERT_EQ(args->length(), 1);
-  Load(args->at(0));
-  TranscendentalCacheStub stub(TranscendentalCache::COS,
-                               TranscendentalCacheStub::TAGGED);
-  Result result = frame_->CallStub(&stub, 1);
-  frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) {
-  ASSERT_EQ(args->length(), 1);
-  Load(args->at(0));
-  TranscendentalCacheStub stub(TranscendentalCache::LOG,
-                               TranscendentalCacheStub::TAGGED);
-  Result result = frame_->CallStub(&stub, 1);
-  frame_->Push(&result);
-}
-
-
-// Generates the Math.sqrt method. Please note - this function assumes that
-// the callsite has executed ToNumber on the argument.
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
-  ASSERT_EQ(args->length(), 1);
-  Load(args->at(0));
-
-  if (!masm()->isolate()->cpu_features()->IsSupported(SSE2)) {
-    Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
-    frame()->Push(&result);
-  } else {
-    CpuFeatures::Scope use_sse2(SSE2);
-    // Leave original value on the frame if we need to call runtime.
-    frame()->Dup();
-    Result result = frame()->Pop();
-    result.ToRegister();
-    frame()->Spill(result.reg());
-    Label runtime;
-    Label non_smi;
-    Label load_done;
-    JumpTarget end;
-
-    __ test(result.reg(), Immediate(kSmiTagMask));
-    __ j(not_zero, &non_smi);
-    __ SmiUntag(result.reg());
-    __ cvtsi2sd(xmm0, Operand(result.reg()));
-    __ jmp(&load_done);
-    __ bind(&non_smi);
-    __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
-           FACTORY->heap_number_map());
-    __ j(not_equal, &runtime);
-    __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
-
-    __ bind(&load_done);
-    __ sqrtsd(xmm0, xmm0);
-    // A copy of the virtual frame to allow us to go to runtime after the
-    // JumpTarget jump.
-    Result scratch = allocator()->Allocate();
-    VirtualFrame* clone = new VirtualFrame(frame());
-    __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime);
-
-    __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
-    frame()->Drop(1);
-    scratch.Unuse();
-    end.Jump(&result);
-    // We only branch to runtime if we have an allocation error.
-    // Use the copy of the original frame as our current frame.
-    RegisterFile empty_regs;
-    SetFrame(clone, &empty_regs);
-    __ bind(&runtime);
-    result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
-
-    end.Bind(&result);
-    frame()->Push(&result);
-  }
-}
-
-
-void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) {
-  ASSERT_EQ(2, args->length());
-  Load(args->at(0));
-  Load(args->at(1));
-  Result right_res = frame_->Pop();
-  Result left_res = frame_->Pop();
-  right_res.ToRegister();
-  left_res.ToRegister();
-  Result tmp_res = allocator()->Allocate();
-  ASSERT(tmp_res.is_valid());
-  Register right = right_res.reg();
-  Register left = left_res.reg();
-  Register tmp = tmp_res.reg();
-  right_res.Unuse();
-  left_res.Unuse();
-  tmp_res.Unuse();
-  __ cmp(left, Operand(right));
-  destination()->true_target()->Branch(equal);
-  // Fail if either is a non-HeapObject.
-  __ mov(tmp, left);
-  __ and_(Operand(tmp), right);
-  __ test(Operand(tmp), Immediate(kSmiTagMask));
-  destination()->false_target()->Branch(equal);
-  __ CmpObjectType(left, JS_REGEXP_TYPE, tmp);
-  destination()->false_target()->Branch(not_equal);
-  __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset));
-  destination()->false_target()->Branch(not_equal);
-  __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset));
-  __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset));
-  destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result value = frame_->Pop();
-  value.ToRegister();
-  ASSERT(value.is_valid());
-  if (FLAG_debug_code) {
-    __ AbortIfNotString(value.reg());
-  }
-
-  __ test(FieldOperand(value.reg(), String::kHashFieldOffset),
-          Immediate(String::kContainsCachedArrayIndexMask));
-
-  value.Unuse();
-  destination()->Split(zero);
-}
-
-
-void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) {
-  ASSERT(args->length() == 1);
-  Load(args->at(0));
-  Result string = frame_->Pop();
-  string.ToRegister();
-  if (FLAG_debug_code) {
-    __ AbortIfNotString(string.reg());
-  }
-
-  Result number = allocator()->Allocate();
-  ASSERT(number.is_valid());
-  __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset));
-  __ IndexFromHash(number.reg(), number.reg());
-  string.Unuse();
-  frame_->Push(&number);
-}
-
-
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
-  ASSERT(!in_safe_int32_mode());
-  if (CheckForInlineRuntimeCall(node)) {
-    return;
-  }
-
-  ZoneList<Expression*>* args = node->arguments();
-  Comment cmnt(masm_, "[ CallRuntime");
-  const Runtime::Function* function = node->function();
-
-  if (function == NULL) {
-    // Push the builtins object found in the current global object.
-    Result temp = allocator()->Allocate();
-    ASSERT(temp.is_valid());
-    __ mov(temp.reg(), GlobalObjectOperand());
-    __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
-    frame_->Push(&temp);
-  }
-
-  // Push the arguments ("left-to-right").
-  int arg_count = args->length();
-  for (int i = 0; i < arg_count; i++) {
-    Load(args->at(i));
-  }
-
-  if (function == NULL) {
-    // Call the JS runtime function.
-    frame_->Push(node->name());
-    Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
-                                       arg_count,
-                                       loop_nesting_);
-    frame_->RestoreContextRegister();
-    frame_->Push(&answer);
-  } else {
-    // Call the C runtime function.
-    Result answer = frame_->CallRuntime(function, arg_count);
-    frame_->Push(&answer);
-  }
-}
-
-
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
-  Comment cmnt(masm_, "[ UnaryOperation");
-
-  Token::Value op = node->op();
-
-  if (op == Token::NOT) {
-    // Swap the true and false targets but keep the same actual label
-    // as the fall through.
-    destination()->Invert();
-    LoadCondition(node->expression(), destination(), true);
-    // Swap the labels back.
-    destination()->Invert();
-
-  } else if (op == Token::DELETE) {
-    Property* property = node->expression()->AsProperty();
-    if (property != NULL) {
-      Load(property->obj());
-      Load(property->key());
-      frame_->Push(Smi::FromInt(strict_mode_flag()));
-      Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3);
-      frame_->Push(&answer);
-      return;
-    }
-
-    Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
-    if (variable != NULL) {
-      // Delete of an unqualified identifier is disallowed in strict mode
-      // but "delete this" is.
-      ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this());
-      Slot* slot = variable->AsSlot();
-      if (variable->is_global()) {
-        LoadGlobal();
-        frame_->Push(variable->name());
-        frame_->Push(Smi::FromInt(kNonStrictMode));
-        Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
-                                              CALL_FUNCTION, 3);
-        frame_->Push(&answer);
-
-      } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
-        // Call the runtime to delete from the context holding the named
-        // variable.  Sync the virtual frame eagerly so we can push the
-        // arguments directly into place.
-        frame_->SyncRange(0, frame_->element_count() - 1);
-        frame_->EmitPush(esi);
-        frame_->EmitPush(Immediate(variable->name()));
-        Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2);
-        frame_->Push(&answer);
-      } else {
-        // Default: Result of deleting non-global, not dynamically
-        // introduced variables is false.
-        frame_->Push(FACTORY->false_value());
-      }
-    } else {
-      // Default: Result of deleting expressions is true.
-      Load(node->expression());  // may have side-effects
-      frame_->SetElementAt(0, FACTORY->true_value());
-    }
-
-  } else if (op == Token::TYPEOF) {
-    // Special case for loading the typeof expression; see comment on
-    // LoadTypeofExpression().
-    LoadTypeofExpression(node->expression());
-    Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
-    frame_->Push(&answer);
-
-  } else if (op == Token::VOID) {
-    Expression* expression = node->expression();
-    if (expression && expression->AsLiteral() && (
-        expression->AsLiteral()->IsTrue() ||
-        expression->AsLiteral()->IsFalse() ||
-        expression->AsLiteral()->handle()->IsNumber() ||
-        expression->AsLiteral()->handle()->IsString() ||
-        expression->AsLiteral()->handle()->IsJSRegExp() ||
-        expression->AsLiteral()->IsNull())) {
-      // Omit evaluating the value of the primitive literal.
-      // It will be discarded anyway, and can have no side effect.
-      frame_->Push(FACTORY->undefined_value());
-    } else {
-      Load(node->expression());
-      frame_->SetElementAt(0, FACTORY->undefined_value());
-    }
-
-  } else {
-    if (in_safe_int32_mode()) {
-      Visit(node->expression());
-      Result value = frame_->Pop();
-      ASSERT(value.is_untagged_int32());
-      // Registers containing an int32 value are not multiply used.
-      ASSERT(!value.is_register() || !frame_->is_used(value.reg()));
-      value.ToRegister();
-      switch (op) {
-        case Token::SUB: {
-          __ neg(value.reg());
-          frame_->Push(&value);
-          if (node->no_negative_zero()) {
-            // -MIN_INT is MIN_INT with the overflow flag set.
-            unsafe_bailout_->Branch(overflow);
-          } else {
-            // MIN_INT and 0 both have bad negations.  They both have 31 zeros.
-            __ test(value.reg(), Immediate(0x7FFFFFFF));
-            unsafe_bailout_->Branch(zero);
-          }
-          break;
-        }
-        case Token::BIT_NOT: {
-          __ not_(value.reg());
-          frame_->Push(&value);
-          break;
-        }
-        case Token::ADD: {
-          // Unary plus has no effect on int32 values.
-          frame_->Push(&value);
-          break;
-        }
-        default:
-          UNREACHABLE();
-          break;
-      }
-    } else {
-      Load(node->expression());
-      bool can_overwrite = node->expression()->ResultOverwriteAllowed();
-      UnaryOverwriteMode overwrite =
-          can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
-      bool no_negative_zero = node->expression()->no_negative_zero();
-      switch (op) {
-        case Token::NOT:
-        case Token::DELETE:
-        case Token::TYPEOF:
-          UNREACHABLE();  // handled above
-          break;
-
-        case Token::SUB: {
-          GenericUnaryOpStub stub(
-              Token::SUB,
-              overwrite,
-              NO_UNARY_FLAGS,
-              no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
-          Result operand = frame_->Pop();
-          Result answer = frame_->CallStub(&stub, &operand);
-          answer.set_type_info(TypeInfo::Number());
-          frame_->Push(&answer);
-          break;
-        }
-        case Token::BIT_NOT: {
-          // Smi check.
-          JumpTarget smi_label;
-          JumpTarget continue_label;
-          Result operand = frame_->Pop();
-          TypeInfo operand_info = operand.type_info();
-          operand.ToRegister();
-          if (operand_info.IsSmi()) {
-            if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg());
-            frame_->Spill(operand.reg());
-            // Set smi tag bit. It will be reset by the not operation.
-            __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask));
-            __ not_(operand.reg());
-            Result answer = operand;
-            answer.set_type_info(TypeInfo::Smi());
-            frame_->Push(&answer);
-          } else {
-            __ test(operand.reg(), Immediate(kSmiTagMask));
-            smi_label.Branch(zero, &operand, taken);
-
-            GenericUnaryOpStub stub(Token::BIT_NOT,
-                                    overwrite,
-                                    NO_UNARY_SMI_CODE_IN_STUB);
-            Result answer = frame_->CallStub(&stub, &operand);
-            continue_label.Jump(&answer);
-
-            smi_label.Bind(&answer);
-            answer.ToRegister();
-            frame_->Spill(answer.reg());
-            // Set smi tag bit. It will be reset by the not operation.
-            __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask));
-            __ not_(answer.reg());
-
-            continue_label.Bind(&answer);
-            answer.set_type_info(TypeInfo::Integer32());
-            frame_->Push(&answer);
-          }
-          break;
-        }
-        case Token::ADD: {
-          // Smi check.
-          JumpTarget continue_label;
-          Result operand = frame_->Pop();
-          TypeInfo operand_info = operand.type_info();
-          operand.ToRegister();
-          __ test(operand.reg(), Immediate(kSmiTagMask));
-          continue_label.Branch(zero, &operand, taken);
-
-          frame_->Push(&operand);
-          Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
-                                              CALL_FUNCTION, 1);
-
-          continue_label.Bind(&answer);
-          if (operand_info.IsSmi()) {
-            answer.set_type_info(TypeInfo::Smi());
-          } else if (operand_info.IsInteger32()) {
-            answer.set_type_info(TypeInfo::Integer32());
-          } else {
-            answer.set_type_info(TypeInfo::Number());
-          }
-          frame_->Push(&answer);
-          break;
-        }
-        default:
-          UNREACHABLE();
-      }
-    }
-  }
-}
-
-
-// The value in dst was optimistically incremented or decremented.  The
-// result overflowed or was not smi tagged.  Undo the operation, call
-// into the runtime to convert the argument to a number, and call the
-// specialized add or subtract stub.  The result is left in dst.
-class DeferredPrefixCountOperation: public DeferredCode {
- public:
-  DeferredPrefixCountOperation(Register dst,
-                               bool is_increment,
-                               TypeInfo input_type)
-      : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
-    set_comment("[ DeferredCountOperation");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;
-  bool is_increment_;
-  TypeInfo input_type_;
-};
-
-
-void DeferredPrefixCountOperation::Generate() {
-  // Undo the optimistic smi operation.
-  if (is_increment_) {
-    __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
-  } else {
-    __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
-  }
-  Register left;
-  if (input_type_.IsNumber()) {
-    left = dst_;
-  } else {
-    __ push(dst_);
-    __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
-    left = eax;
-  }
-
-  GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
-                           NO_OVERWRITE,
-                           NO_GENERIC_BINARY_FLAGS,
-                           TypeInfo::Number());
-  stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The value in dst was optimistically incremented or decremented.  The
-// result overflowed or was not smi tagged.  Undo the operation and call
-// into the runtime to convert the argument to a number.  Update the
-// original value in old.  Call the specialized add or subtract stub.
-// The result is left in dst.
-class DeferredPostfixCountOperation: public DeferredCode {
- public:
-  DeferredPostfixCountOperation(Register dst,
-                                Register old,
-                                bool is_increment,
-                                TypeInfo input_type)
-      : dst_(dst),
-        old_(old),
-        is_increment_(is_increment),
-        input_type_(input_type) {
-    set_comment("[ DeferredCountOperation");
-  }
-
-  virtual void Generate();
-
- private:
-  Register dst_;
-  Register old_;
-  bool is_increment_;
-  TypeInfo input_type_;
-};
-
-
-void DeferredPostfixCountOperation::Generate() {
-  // Undo the optimistic smi operation.
-  if (is_increment_) {
-    __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
-  } else {
-    __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
-  }
-  Register left;
-  if (input_type_.IsNumber()) {
-    __ push(dst_);  // Save the input to use as the old value.
-    left = dst_;
-  } else {
-    __ push(dst_);
-    __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
-    __ push(eax);  // Save the result of ToNumber to use as the old value.
-    left = eax;
-  }
-
-  GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
-                           NO_OVERWRITE,
-                           NO_GENERIC_BINARY_FLAGS,
-                           TypeInfo::Number());
-  stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-  __ pop(old_);
-}
-
-
-void CodeGenerator::VisitCountOperation(CountOperation* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ CountOperation");
-
-  bool is_postfix = node->is_postfix();
-  bool is_increment = node->op() == Token::INC;
-
-  Variable* var = node->expression()->AsVariableProxy()->AsVariable();
-  bool is_const = (var != NULL && var->mode() == Variable::CONST);
-
-  // Postfix operations need a stack slot under the reference to hold
-  // the old value while the new value is being stored.  This is so that
-  // in the case that storing the new value requires a call, the old
-  // value will be in the frame to be spilled.
-  if (is_postfix) frame_->Push(Smi::FromInt(0));
-
-  // A constant reference is not saved to, so a constant reference is not a
-  // compound assignment reference.
-  { Reference target(this, node->expression(), !is_const);
-    if (target.is_illegal()) {
-      // Spoof the virtual frame to have the expected height (one higher
-      // than on entry).
-      if (!is_postfix) frame_->Push(Smi::FromInt(0));
-      return;
-    }
-    target.TakeValue();
-
-    Result new_value = frame_->Pop();
-    new_value.ToRegister();
-
-    Result old_value;  // Only allocated in the postfix case.
-    if (is_postfix) {
-      // Allocate a temporary to preserve the old value.
-      old_value = allocator_->Allocate();
-      ASSERT(old_value.is_valid());
-      __ mov(old_value.reg(), new_value.reg());
-
-      // The return value for postfix operations is ToNumber(input).
-      // Keep more precise type info if the input is some kind of
-      // number already. If the input is not a number we have to wait
-      // for the deferred code to convert it.
-      if (new_value.type_info().IsNumber()) {
-        old_value.set_type_info(new_value.type_info());
-      }
-    }
-
-    // Ensure the new value is writable.
-    frame_->Spill(new_value.reg());
-
-    Result tmp;
-    if (new_value.is_smi()) {
-      if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg());
-    } else {
-      // We don't know statically if the input is a smi.
-      // In order to combine the overflow and the smi tag check, we need
-      // to be able to allocate a byte register.  We attempt to do so
-      // without spilling.  If we fail, we will generate separate overflow
-      // and smi tag checks.
-      // We allocate and clear a temporary byte register before performing
-      // the count operation since clearing the register using xor will clear
-      // the overflow flag.
-      tmp = allocator_->AllocateByteRegisterWithoutSpilling();
-      if (tmp.is_valid()) {
-        __ Set(tmp.reg(), Immediate(0));
-      }
-    }
-
-    if (is_increment) {
-      __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
-    } else {
-      __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
-    }
-
-    DeferredCode* deferred = NULL;
-    if (is_postfix) {
-      deferred = new DeferredPostfixCountOperation(new_value.reg(),
-                                                   old_value.reg(),
-                                                   is_increment,
-                                                   new_value.type_info());
-    } else {
-      deferred = new DeferredPrefixCountOperation(new_value.reg(),
-                                                  is_increment,
-                                                  new_value.type_info());
-    }
-
-    if (new_value.is_smi()) {
-      // In case we have a smi as input just check for overflow.
-      deferred->Branch(overflow);
-    } else {
-      // If the count operation didn't overflow and the result is a valid
-      // smi, we're done. Otherwise, we jump to the deferred slow-case
-      // code.
-      // We combine the overflow and the smi tag check if we could
-      // successfully allocate a temporary byte register.
-      if (tmp.is_valid()) {
-        __ setcc(overflow, tmp.reg());
-        __ or_(Operand(tmp.reg()), new_value.reg());
-        __ test(tmp.reg(), Immediate(kSmiTagMask));
-        tmp.Unuse();
-        deferred->Branch(not_zero);
-      } else {
-        // Otherwise we test separately for overflow and smi tag.
-        deferred->Branch(overflow);
-        __ test(new_value.reg(), Immediate(kSmiTagMask));
-        deferred->Branch(not_zero);
-      }
-    }
-    deferred->BindExit();
-
-    // Postfix count operations return their input converted to
-    // number. The case when the input is already a number is covered
-    // above in the allocation code for old_value.
-    if (is_postfix && !new_value.type_info().IsNumber()) {
-      old_value.set_type_info(TypeInfo::Number());
-    }
-
-    // The result of ++ or -- is an Integer32 if the
-    // input is a smi. Otherwise it is a number.
-    if (new_value.is_smi()) {
-      new_value.set_type_info(TypeInfo::Integer32());
-    } else {
-      new_value.set_type_info(TypeInfo::Number());
-    }
-
-    // Postfix: store the old value in the allocated slot under the
-    // reference.
-    if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
-
-    frame_->Push(&new_value);
-    // Non-constant: update the reference.
-    if (!is_const) target.SetValue(NOT_CONST_INIT);
-  }
-
-  // Postfix: drop the new value and use the old.
-  if (is_postfix) frame_->Drop();
-}
-
-
-void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) {
-  Token::Value op = node->op();
-  Comment cmnt(masm_, "[ Int32BinaryOperation");
-  ASSERT(in_safe_int32_mode());
-  ASSERT(safe_int32_mode_enabled());
-  ASSERT(FLAG_safe_int32_compiler);
-
-  if (op == Token::COMMA) {
-    // Discard left value.
-    frame_->Nip(1);
-    return;
-  }
-
-  Result right = frame_->Pop();
-  Result left = frame_->Pop();
-
-  ASSERT(right.is_untagged_int32());
-  ASSERT(left.is_untagged_int32());
-  // Registers containing an int32 value are not multiply used.
-  ASSERT(!left.is_register() || !frame_->is_used(left.reg()));
-  ASSERT(!right.is_register() || !frame_->is_used(right.reg()));
-
-  switch (op) {
-    case Token::COMMA:
-    case Token::OR:
-    case Token::AND:
-      UNREACHABLE();
-      break;
-    case Token::BIT_OR:
-    case Token::BIT_XOR:
-    case Token::BIT_AND:
-      if (left.is_constant() || right.is_constant()) {
-        int32_t value;  // Put constant in value, non-constant in left.
-        // Constants are known to be int32 values, from static analysis,
-        // or else will be converted to int32 by implicit ECMA [[ToInt32]].
-        if (left.is_constant()) {
-          ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
-          value = NumberToInt32(*left.handle());
-          left = right;
-        } else {
-          ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
-          value = NumberToInt32(*right.handle());
-        }
-
-        left.ToRegister();
-        if (op == Token::BIT_OR) {
-          __ or_(Operand(left.reg()), Immediate(value));
-        } else if (op == Token::BIT_XOR) {
-          __ xor_(Operand(left.reg()), Immediate(value));
-        } else {
-          ASSERT(op == Token::BIT_AND);
-          __ and_(Operand(left.reg()), Immediate(value));
-        }
-      } else {
-        ASSERT(left.is_register());
-        ASSERT(right.is_register());
-        if (op == Token::BIT_OR) {
-          __ or_(left.reg(), Operand(right.reg()));
-        } else if (op == Token::BIT_XOR) {
-          __ xor_(left.reg(), Operand(right.reg()));
-        } else {
-          ASSERT(op == Token::BIT_AND);
-          __ and_(left.reg(), Operand(right.reg()));
-        }
-      }
-      frame_->Push(&left);
-      right.Unuse();
-      break;
-    case Token::SAR:
-    case Token::SHL:
-    case Token::SHR: {
-      bool test_shr_overflow = false;
-      left.ToRegister();
-      if (right.is_constant()) {
-        ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
-        int shift_amount = NumberToInt32(*right.handle()) & 0x1F;
-        if (op == Token::SAR) {
-          __ sar(left.reg(), shift_amount);
-        } else if (op == Token::SHL) {
-          __ shl(left.reg(), shift_amount);
-        } else {
-          ASSERT(op == Token::SHR);
-          __ shr(left.reg(), shift_amount);
-          if (shift_amount == 0) test_shr_overflow = true;
-        }
-      } else {
-        // Move right to ecx
-        if (left.is_register() && left.reg().is(ecx)) {
-          right.ToRegister();
-          __ xchg(left.reg(), right.reg());
-          left = right;  // Left is unused here, copy of right unused by Push.
-        } else {
-          right.ToRegister(ecx);
-          left.ToRegister();
-        }
-        if (op == Token::SAR) {
-          __ sar_cl(left.reg());
-        } else if (op == Token::SHL) {
-          __ shl_cl(left.reg());
-        } else {
-          ASSERT(op == Token::SHR);
-          __ shr_cl(left.reg());
-          test_shr_overflow = true;
-        }
-      }
-      {
-        Register left_reg = left.reg();
-        frame_->Push(&left);
-        right.Unuse();
-        if (test_shr_overflow && !node->to_int32()) {
-          // Uint32 results with top bit set are not Int32 values.
-          // If they will be forced to Int32, skip the test.
-          // Test is needed because shr with shift amount 0 does not set flags.
-          __ test(left_reg, Operand(left_reg));
-          unsafe_bailout_->Branch(sign);
-        }
-      }
-      break;
-    }
-    case Token::ADD:
-    case Token::SUB:
-    case Token::MUL:
-      if ((left.is_constant() && op != Token::SUB) || right.is_constant()) {
-        int32_t value;  // Put constant in value, non-constant in left.
-        if (right.is_constant()) {
-          ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
-          value = NumberToInt32(*right.handle());
-        } else {
-          ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
-          value = NumberToInt32(*left.handle());
-          left = right;
-        }
-
-        left.ToRegister();
-        if (op == Token::ADD) {
-          __ add(Operand(left.reg()), Immediate(value));
-        } else if (op == Token::SUB) {
-          __ sub(Operand(left.reg()), Immediate(value));
-        } else {
-          ASSERT(op == Token::MUL);
-          __ imul(left.reg(), left.reg(), value);
-        }
-      } else {
-        left.ToRegister();
-        ASSERT(left.is_register());
-        ASSERT(right.is_register());
-        if (op == Token::ADD) {
-          __ add(left.reg(), Operand(right.reg()));
-        } else if (op == Token::SUB) {
-          __ sub(left.reg(), Operand(right.reg()));
-        } else {
-          ASSERT(op == Token::MUL);
-          // We have statically verified that a negative zero can be ignored.
-          __ imul(left.reg(), Operand(right.reg()));
-        }
-      }
-      right.Unuse();
-      frame_->Push(&left);
-      if (!node->to_int32() || op == Token::MUL) {
-        // If ToInt32 is called on the result of ADD, SUB, we don't
-        // care about overflows.
-        // Result of MUL can be non-representable precisely in double so
-        // we have to check for overflow.
-        unsafe_bailout_->Branch(overflow);
-      }
-      break;
-    case Token::DIV:
-    case Token::MOD: {
-      if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) {
-        if (left.is_register() && left.reg().is(edi)) {
-          right.ToRegister(ebx);
-        } else {
-          right.ToRegister(edi);
-        }
-      }
-      left.ToRegister(eax);
-      Result edx_reg = allocator_->Allocate(edx);
-      right.ToRegister();
-      // The results are unused here because BreakTarget::Branch cannot handle
-      // live results.
-      Register right_reg = right.reg();
-      left.Unuse();
-      right.Unuse();
-      edx_reg.Unuse();
-      __ cmp(right_reg, 0);
-      // Ensure divisor is positive: no chance of non-int32 or -0 result.
-      unsafe_bailout_->Branch(less_equal);
-      __ cdq();  // Sign-extend eax into edx:eax
-      __ idiv(right_reg);
-      if (op == Token::MOD) {
-        // Negative zero can arise as a negative divident with a zero result.
-        if (!node->no_negative_zero()) {
-          Label not_negative_zero;
-          __ test(edx, Operand(edx));
-          __ j(not_zero, &not_negative_zero);
-          __ test(eax, Operand(eax));
-          unsafe_bailout_->Branch(negative);
-          __ bind(&not_negative_zero);
-        }
-        Result edx_result(edx, TypeInfo::Integer32());
-        edx_result.set_untagged_int32(true);
-        frame_->Push(&edx_result);
-      } else {
-        ASSERT(op == Token::DIV);
-        __ test(edx, Operand(edx));
-        unsafe_bailout_->Branch(not_equal);
-        Result eax_result(eax, TypeInfo::Integer32());
-        eax_result.set_untagged_int32(true);
-        frame_->Push(&eax_result);
-      }
-      break;
-    }
-    default:
-      UNREACHABLE();
-      break;
-  }
-}
-
-
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
-  // According to ECMA-262 section 11.11, page 58, the binary logical
-  // operators must yield the result of one of the two expressions
-  // before any ToBoolean() conversions. This means that the value
-  // produced by a && or || operator is not necessarily a boolean.
-
-  // NOTE: If the left hand side produces a materialized value (not
-  // control flow), we force the right hand side to do the same. This
-  // is necessary because we assume that if we get control flow on the
-  // last path out of an expression we got it on all paths.
-  if (node->op() == Token::AND) {
-    ASSERT(!in_safe_int32_mode());
-    JumpTarget is_true;
-    ControlDestination dest(&is_true, destination()->false_target(), true);
-    LoadCondition(node->left(), &dest, false);
-
-    if (dest.false_was_fall_through()) {
-      // The current false target was used as the fall-through.  If
-      // there are no dangling jumps to is_true then the left
-      // subexpression was unconditionally false.  Otherwise we have
-      // paths where we do have to evaluate the right subexpression.
-      if (is_true.is_linked()) {
-        // We need to compile the right subexpression.  If the jump to
-        // the current false target was a forward jump then we have a
-        // valid frame, we have just bound the false target, and we
-        // have to jump around the code for the right subexpression.
-        if (has_valid_frame()) {
-          destination()->false_target()->Unuse();
-          destination()->false_target()->Jump();
-        }
-        is_true.Bind();
-        // The left subexpression compiled to control flow, so the
-        // right one is free to do so as well.
-        LoadCondition(node->right(), destination(), false);
-      } else {
-        // We have actually just jumped to or bound the current false
-        // target but the current control destination is not marked as
-        // used.
-        destination()->Use(false);
-      }
-
-    } else if (dest.is_used()) {
-      // The left subexpression compiled to control flow (and is_true
-      // was just bound), so the right is free to do so as well.
-      LoadCondition(node->right(), destination(), false);
-
-    } else {
-      // We have a materialized value on the frame, so we exit with
-      // one on all paths.  There are possibly also jumps to is_true
-      // from nested subexpressions.
-      JumpTarget pop_and_continue;
-      JumpTarget exit;
-
-      // Avoid popping the result if it converts to 'false' using the
-      // standard ToBoolean() conversion as described in ECMA-262,
-      // section 9.2, page 30.
-      //
-      // Duplicate the TOS value. The duplicate will be popped by
-      // ToBoolean.
-      frame_->Dup();
-      ControlDestination dest(&pop_and_continue, &exit, true);
-      ToBoolean(&dest);
-
-      // Pop the result of evaluating the first part.
-      frame_->Drop();
-
-      // Compile right side expression.
-      is_true.Bind();
-      Load(node->right());
-
-      // Exit (always with a materialized value).
-      exit.Bind();
-    }
-
-  } else {
-    ASSERT(node->op() == Token::OR);
-    ASSERT(!in_safe_int32_mode());
-    JumpTarget is_false;
-    ControlDestination dest(destination()->true_target(), &is_false, false);
-    LoadCondition(node->left(), &dest, false);
-
-    if (dest.true_was_fall_through()) {
-      // The current true target was used as the fall-through.  If
-      // there are no dangling jumps to is_false then the left
-      // subexpression was unconditionally true.  Otherwise we have
-      // paths where we do have to evaluate the right subexpression.
-      if (is_false.is_linked()) {
-        // We need to compile the right subexpression.  If the jump to
-        // the current true target was a forward jump then we have a
-        // valid frame, we have just bound the true target, and we
-        // have to jump around the code for the right subexpression.
-        if (has_valid_frame()) {
-          destination()->true_target()->Unuse();
-          destination()->true_target()->Jump();
-        }
-        is_false.Bind();
-        // The left subexpression compiled to control flow, so the
-        // right one is free to do so as well.
-        LoadCondition(node->right(), destination(), false);
-      } else {
-        // We have just jumped to or bound the current true target but
-        // the current control destination is not marked as used.
-        destination()->Use(true);
-      }
-
-    } else if (dest.is_used()) {
-      // The left subexpression compiled to control flow (and is_false
-      // was just bound), so the right is free to do so as well.
-      LoadCondition(node->right(), destination(), false);
-
-    } else {
-      // We have a materialized value on the frame, so we exit with
-      // one on all paths.  There are possibly also jumps to is_false
-      // from nested subexpressions.
-      JumpTarget pop_and_continue;
-      JumpTarget exit;
-
-      // Avoid popping the result if it converts to 'true' using the
-      // standard ToBoolean() conversion as described in ECMA-262,
-      // section 9.2, page 30.
-      //
-      // Duplicate the TOS value. The duplicate will be popped by
-      // ToBoolean.
-      frame_->Dup();
-      ControlDestination dest(&exit, &pop_and_continue, false);
-      ToBoolean(&dest);
-
-      // Pop the result of evaluating the first part.
-      frame_->Drop();
-
-      // Compile right side expression.
-      is_false.Bind();
-      Load(node->right());
-
-      // Exit (always with a materialized value).
-      exit.Bind();
-    }
-  }
-}
-
-
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
-  Comment cmnt(masm_, "[ BinaryOperation");
-
-  if (node->op() == Token::AND || node->op() == Token::OR) {
-    GenerateLogicalBooleanOperation(node);
-  } else if (in_safe_int32_mode()) {
-    Visit(node->left());
-    Visit(node->right());
-    Int32BinaryOperation(node);
-  } else {
-    // NOTE: The code below assumes that the slow cases (calls to runtime)
-    // never return a constant/immutable object.
-    OverwriteMode overwrite_mode = NO_OVERWRITE;
-    if (node->left()->ResultOverwriteAllowed()) {
-      overwrite_mode = OVERWRITE_LEFT;
-    } else if (node->right()->ResultOverwriteAllowed()) {
-      overwrite_mode = OVERWRITE_RIGHT;
-    }
-
-    if (node->left()->IsTrivial()) {
-      Load(node->right());
-      Result right = frame_->Pop();
-      frame_->Push(node->left());
-      frame_->Push(&right);
-    } else {
-      Load(node->left());
-      Load(node->right());
-    }
-    GenericBinaryOperation(node, overwrite_mode);
-  }
-}
-
-
-void CodeGenerator::VisitThisFunction(ThisFunction* node) {
-  ASSERT(!in_safe_int32_mode());
-  frame_->PushFunction();
-}
-
-
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ CompareOperation");
-
-  bool left_already_loaded = false;
-
-  // Get the expressions from the node.
-  Expression* left = node->left();
-  Expression* right = node->right();
-  Token::Value op = node->op();
-  // To make typeof testing for natives implemented in JavaScript really
-  // efficient, we generate special code for expressions of the form:
-  // 'typeof <expression> == <string>'.
-  UnaryOperation* operation = left->AsUnaryOperation();
-  if ((op == Token::EQ || op == Token::EQ_STRICT) &&
-      (operation != NULL && operation->op() == Token::TYPEOF) &&
-      (right->AsLiteral() != NULL &&
-       right->AsLiteral()->handle()->IsString())) {
-    Handle<String> check(String::cast(*right->AsLiteral()->handle()));
-
-    // Load the operand and move it to a register.
-    LoadTypeofExpression(operation->expression());
-    Result answer = frame_->Pop();
-    answer.ToRegister();
-
-    if (check->Equals(HEAP->number_symbol())) {
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      destination()->true_target()->Branch(zero);
-      frame_->Spill(answer.reg());
-      __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
-      __ cmp(answer.reg(), FACTORY->heap_number_map());
-      answer.Unuse();
-      destination()->Split(equal);
-
-    } else if (check->Equals(HEAP->string_symbol())) {
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      destination()->false_target()->Branch(zero);
-
-      // It can be an undetectable string object.
-      Result temp = allocator()->Allocate();
-      ASSERT(temp.is_valid());
-      __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
-      __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
-                1 << Map::kIsUndetectable);
-      destination()->false_target()->Branch(not_zero);
-      __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE);
-      temp.Unuse();
-      answer.Unuse();
-      destination()->Split(below);
-
-    } else if (check->Equals(HEAP->boolean_symbol())) {
-      __ cmp(answer.reg(), FACTORY->true_value());
-      destination()->true_target()->Branch(equal);
-      __ cmp(answer.reg(), FACTORY->false_value());
-      answer.Unuse();
-      destination()->Split(equal);
-
-    } else if (check->Equals(HEAP->undefined_symbol())) {
-      __ cmp(answer.reg(), FACTORY->undefined_value());
-      destination()->true_target()->Branch(equal);
-
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      destination()->false_target()->Branch(zero);
-
-      // It can be an undetectable object.
-      frame_->Spill(answer.reg());
-      __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
-      __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset),
-                1 << Map::kIsUndetectable);
-      answer.Unuse();
-      destination()->Split(not_zero);
-
-    } else if (check->Equals(HEAP->function_symbol())) {
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      destination()->false_target()->Branch(zero);
-      frame_->Spill(answer.reg());
-      __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
-      destination()->true_target()->Branch(equal);
-      // Regular expressions are callable so typeof == 'function'.
-      __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
-      answer.Unuse();
-      destination()->Split(equal);
-    } else if (check->Equals(HEAP->object_symbol())) {
-      __ test(answer.reg(), Immediate(kSmiTagMask));
-      destination()->false_target()->Branch(zero);
-      __ cmp(answer.reg(), FACTORY->null_value());
-      destination()->true_target()->Branch(equal);
-
-      Result map = allocator()->Allocate();
-      ASSERT(map.is_valid());
-      // Regular expressions are typeof == 'function', not 'object'.
-      __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg());
-      destination()->false_target()->Branch(equal);
-
-      // It can be an undetectable object.
-      __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
-                1 << Map::kIsUndetectable);
-      destination()->false_target()->Branch(not_zero);
-      // Do a range test for JSObject type.  We can't use
-      // MacroAssembler::IsInstanceJSObjectType, because we are using a
-      // ControlDestination, so we copy its implementation here.
-      __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
-      __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
-      __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
-      answer.Unuse();
-      map.Unuse();
-      destination()->Split(below_equal);
-    } else {
-      // Uncommon case: typeof testing against a string literal that is
-      // never returned from the typeof operator.
-      answer.Unuse();
-      destination()->Goto(false);
-    }
-    return;
-  } else if (op == Token::LT &&
-             right->AsLiteral() != NULL &&
-             right->AsLiteral()->handle()->IsHeapNumber()) {
-    Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle()));
-    if (check->value() == 2147483648.0) {  // 0x80000000.
-      Load(left);
-      left_already_loaded = true;
-      Result lhs = frame_->Pop();
-      lhs.ToRegister();
-      __ test(lhs.reg(), Immediate(kSmiTagMask));
-      destination()->true_target()->Branch(zero);  // All Smis are less.
-      Result scratch = allocator()->Allocate();
-      ASSERT(scratch.is_valid());
-      __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset));
-      __ cmp(scratch.reg(), FACTORY->heap_number_map());
-      JumpTarget not_a_number;
-      not_a_number.Branch(not_equal, &lhs);
-      __ mov(scratch.reg(),
-             FieldOperand(lhs.reg(), HeapNumber::kExponentOffset));
-      __ cmp(Operand(scratch.reg()), Immediate(0xfff00000));
-      not_a_number.Branch(above_equal, &lhs);  // It's a negative NaN or -Inf.
-      const uint32_t borderline_exponent =
-          (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
-      __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent));
-      scratch.Unuse();
-      lhs.Unuse();
-      destination()->true_target()->Branch(less);
-      destination()->false_target()->Jump();
-
-      not_a_number.Bind(&lhs);
-      frame_->Push(&lhs);
-    }
-  }
-
-  Condition cc = no_condition;
-  bool strict = false;
-  switch (op) {
-    case Token::EQ_STRICT:
-      strict = true;
-      // Fall through
-    case Token::EQ:
-      cc = equal;
-      break;
-    case Token::LT:
-      cc = less;
-      break;
-    case Token::GT:
-      cc = greater;
-      break;
-    case Token::LTE:
-      cc = less_equal;
-      break;
-    case Token::GTE:
-      cc = greater_equal;
-      break;
-    case Token::IN: {
-      if (!left_already_loaded) Load(left);
-      Load(right);
-      Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
-      frame_->Push(&answer);  // push the result
-      return;
-    }
-    case Token::INSTANCEOF: {
-      if (!left_already_loaded) Load(left);
-      Load(right);
-      InstanceofStub stub(InstanceofStub::kNoFlags);
-      Result answer = frame_->CallStub(&stub, 2);
-      answer.ToRegister();
-      __ test(answer.reg(), Operand(answer.reg()));
-      answer.Unuse();
-      destination()->Split(zero);
-      return;
-    }
-    default:
-      UNREACHABLE();
-  }
-
-  if (left->IsTrivial()) {
-    if (!left_already_loaded) {
-      Load(right);
-      Result right_result = frame_->Pop();
-      frame_->Push(left);
-      frame_->Push(&right_result);
-    } else {
-      Load(right);
-    }
-  } else {
-    if (!left_already_loaded) Load(left);
-    Load(right);
-  }
-  Comparison(node, cc, strict, destination());
-}
-
-
-void CodeGenerator::VisitCompareToNull(CompareToNull* node) {
-  ASSERT(!in_safe_int32_mode());
-  Comment cmnt(masm_, "[ CompareToNull");
-
-  Load(node->expression());
-  Result operand = frame_->Pop();
-  operand.ToRegister();
-  __ cmp(operand.reg(), FACTORY->null_value());
-  if (node->is_strict()) {
-    operand.Unuse();
-    destination()->Split(equal);
-  } else {
-    // The 'null' value is only equal to 'undefined' if using non-strict
-    // comparisons.
-    destination()->true_target()->Branch(equal);
-    __ cmp(operand.reg(), FACTORY->undefined_value());
-    destination()->true_target()->Branch(equal);
-    __ test(operand.reg(), Immediate(kSmiTagMask));
-    destination()->false_target()->Branch(equal);
-
-    // It can be an undetectable object.
-    // Use a scratch register in preference to spilling operand.reg().
-    Result temp = allocator()->Allocate();
-    ASSERT(temp.is_valid());
-    __ mov(temp.reg(),
-           FieldOperand(operand.reg(), HeapObject::kMapOffset));
-    __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
-              1 << Map::kIsUndetectable);
-    temp.Unuse();
-    operand.Unuse();
-    destination()->Split(not_zero);
-  }
-}
-
-
-#ifdef DEBUG
-bool CodeGenerator::HasValidEntryRegisters() {
-  return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0))
-      && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0))
-      && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0))
-      && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0))
-      && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0));
-}
-#endif
-
-
-// Emit a LoadIC call to get the value from receiver and leave it in
-// dst.
-class DeferredReferenceGetNamedValue: public DeferredCode {
- public:
-  DeferredReferenceGetNamedValue(Register dst,
-                                 Register receiver,
-                                 Handle<String> name,
-                                 bool is_contextual)
-      : dst_(dst),
-        receiver_(receiver),
-        name_(name),
-        is_contextual_(is_contextual),
-        is_dont_delete_(false) {
-    set_comment(is_contextual
-                ? "[ DeferredReferenceGetNamedValue (contextual)"
-                : "[ DeferredReferenceGetNamedValue");
-  }
-
-  virtual void Generate();
-
-  Label* patch_site() { return &patch_site_; }
-
-  void set_is_dont_delete(bool value) {
-    ASSERT(is_contextual_);
-    is_dont_delete_ = value;
-  }
-
- private:
-  Label patch_site_;
-  Register dst_;
-  Register receiver_;
-  Handle<String> name_;
-  bool is_contextual_;
-  bool is_dont_delete_;
-};
-
-
-void DeferredReferenceGetNamedValue::Generate() {
-  if (!receiver_.is(eax)) {
-    __ mov(eax, receiver_);
-  }
-  __ Set(ecx, Immediate(name_));
-  Handle<Code> ic(masm()->isolate()->builtins()->builtin(
-      Builtins::kLoadIC_Initialize));
-  RelocInfo::Mode mode = is_contextual_
-      ? RelocInfo::CODE_TARGET_CONTEXT
-      : RelocInfo::CODE_TARGET;
-  __ call(ic, mode);
-  // The call must be followed by:
-  // - a test eax instruction to indicate that the inobject property
-  //   case was inlined.
-  // - a mov ecx or mov edx instruction to indicate that the
-  //   contextual property load was inlined.
-  //
-  // Store the delta to the map check instruction here in the test
-  // instruction.  Use masm_-> instead of the __ macro since the
-  // latter can't return a value.
-  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
-  // Here we use masm_-> instead of the __ macro because this is the
-  // instruction that gets patched and coverage code gets in the way.
-  Counters* counters = masm()->isolate()->counters();
-  if (is_contextual_) {
-    masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site);
-    __ IncrementCounter(counters->named_load_global_inline_miss(), 1);
-    if (is_dont_delete_) {
-      __ IncrementCounter(counters->dont_delete_hint_miss(), 1);
-    }
-  } else {
-    masm_->test(eax, Immediate(-delta_to_patch_site));
-    __ IncrementCounter(counters->named_load_inline_miss(), 1);
-  }
-
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-class DeferredReferenceGetKeyedValue: public DeferredCode {
- public:
-  explicit DeferredReferenceGetKeyedValue(Register dst,
-                                          Register receiver,
-                                          Register key)
-      : dst_(dst), receiver_(receiver), key_(key) {
-    set_comment("[ DeferredReferenceGetKeyedValue");
-  }
-
-  virtual void Generate();
-
-  Label* patch_site() { return &patch_site_; }
-
- private:
-  Label patch_site_;
-  Register dst_;
-  Register receiver_;
-  Register key_;
-};
-
-
-void DeferredReferenceGetKeyedValue::Generate() {
-  if (!receiver_.is(eax)) {
-    // Register eax is available for key.
-    if (!key_.is(eax)) {
-      __ mov(eax, key_);
-    }
-    if (!receiver_.is(edx)) {
-      __ mov(edx, receiver_);
-    }
-  } else if (!key_.is(edx)) {
-    // Register edx is available for receiver.
-    if (!receiver_.is(edx)) {
-      __ mov(edx, receiver_);
-    }
-    if (!key_.is(eax)) {
-      __ mov(eax, key_);
-    }
-  } else {
-    __ xchg(edx, eax);
-  }
-  // Calculate the delta from the IC call instruction to the map check
-  // cmp instruction in the inlined version.  This delta is stored in
-  // a test(eax, delta) instruction after the call so that we can find
-  // it in the IC initialization code and patch the cmp instruction.
-  // This means that we cannot allow test instructions after calls to
-  // KeyedLoadIC stubs in other places.
-  Handle<Code> ic(masm()->isolate()->builtins()->builtin(
-      Builtins::kKeyedLoadIC_Initialize));
-  __ call(ic, RelocInfo::CODE_TARGET);
-  // The delta from the start of the map-compare instruction to the
-  // test instruction.  We use masm_-> directly here instead of the __
-  // macro because the macro sometimes uses macro expansion to turn
-  // into something that can't return a value.  This is encountered
-  // when doing generated code coverage tests.
-  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
-  // Here we use masm_-> instead of the __ macro because this is the
-  // instruction that gets patched and coverage code gets in the way.
-  masm_->test(eax, Immediate(-delta_to_patch_site));
-  Counters* counters = masm()->isolate()->counters();
-  __ IncrementCounter(counters->keyed_load_inline_miss(), 1);
-
-  if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-class DeferredReferenceSetKeyedValue: public DeferredCode {
- public:
-  DeferredReferenceSetKeyedValue(Register value,
-                                 Register key,
-                                 Register receiver,
-                                 Register scratch,
-                                 StrictModeFlag strict_mode)
-      : value_(value),
-        key_(key),
-        receiver_(receiver),
-        scratch_(scratch),
-        strict_mode_(strict_mode) {
-    set_comment("[ DeferredReferenceSetKeyedValue");
-  }
-
-  virtual void Generate();
-
-  Label* patch_site() { return &patch_site_; }
-
- private:
-  Register value_;
-  Register key_;
-  Register receiver_;
-  Register scratch_;
-  Label patch_site_;
-  StrictModeFlag strict_mode_;
-};
-
-
-void DeferredReferenceSetKeyedValue::Generate() {
-  Counters* counters = masm()->isolate()->counters();
-  __ IncrementCounter(counters->keyed_store_inline_miss(), 1);
-  // Move value_ to eax, key_ to ecx, and receiver_ to edx.
-  Register old_value = value_;
-
-  // First, move value to eax.
-  if (!value_.is(eax)) {
-    if (key_.is(eax)) {
-      // Move key_ out of eax, preferably to ecx.
-      if (!value_.is(ecx) && !receiver_.is(ecx)) {
-        __ mov(ecx, key_);
-        key_ = ecx;
-      } else {
-        __ mov(scratch_, key_);
-        key_ = scratch_;
-      }
-    }
-    if (receiver_.is(eax)) {
-      // Move receiver_ out of eax, preferably to edx.
-      if (!value_.is(edx) && !key_.is(edx)) {
-        __ mov(edx, receiver_);
-        receiver_ = edx;
-      } else {
-        // Both moves to scratch are from eax, also, no valid path hits both.
-        __ mov(scratch_, receiver_);
-        receiver_ = scratch_;
-      }
-    }
-    __ mov(eax, value_);
-    value_ = eax;
-  }
-
-  // Now value_ is in eax.  Move the other two to the right positions.
-  // We do not update the variables key_ and receiver_ to ecx and edx.
-  if (key_.is(ecx)) {
-    if (!receiver_.is(edx)) {
-      __ mov(edx, receiver_);
-    }
-  } else if (key_.is(edx)) {
-    if (receiver_.is(ecx)) {
-      __ xchg(edx, ecx);
-    } else {
-      __ mov(ecx, key_);
-      if (!receiver_.is(edx)) {
-        __ mov(edx, receiver_);
-      }
-    }
-  } else {  // Key is not in edx or ecx.
-    if (!receiver_.is(edx)) {
-      __ mov(edx, receiver_);
-    }
-    __ mov(ecx, key_);
-  }
-
-  // Call the IC stub.
-  Handle<Code> ic(masm()->isolate()->builtins()->builtin(
-      (strict_mode_ == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict
-                                    : Builtins::kKeyedStoreIC_Initialize));
-  __ call(ic, RelocInfo::CODE_TARGET);
-  // The delta from the start of the map-compare instruction to the
-  // test instruction.  We use masm_-> directly here instead of the
-  // __ macro because the macro sometimes uses macro expansion to turn
-  // into something that can't return a value.  This is encountered
-  // when doing generated code coverage tests.
-  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
-  // Here we use masm_-> instead of the __ macro because this is the
-  // instruction that gets patched and coverage code gets in the way.
-  masm_->test(eax, Immediate(-delta_to_patch_site));
-  // Restore value (returned from store IC) register.
-  if (!old_value.is(eax)) __ mov(old_value, eax);
-}
-
-
-Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-
-  Isolate* isolate = masm()->isolate();
-  Factory* factory = isolate->factory();
-  Counters* counters = isolate->counters();
-
-  bool contextual_load_in_builtin =
-      is_contextual &&
-      (isolate->bootstrapper()->IsActive() ||
-       (!info_->closure().is_null() && info_->closure()->IsBuiltin()));
-
-  Result result;
-  // Do not inline in the global code or when not in loop.
-  if (scope()->is_global_scope() ||
-      loop_nesting() == 0 ||
-      contextual_load_in_builtin) {
-    Comment cmnt(masm(), "[ Load from named Property");
-    frame()->Push(name);
-
-    RelocInfo::Mode mode = is_contextual
-        ? RelocInfo::CODE_TARGET_CONTEXT
-        : RelocInfo::CODE_TARGET;
-    result = frame()->CallLoadIC(mode);
-    // A test eax instruction following the call signals that the inobject
-    // property case was inlined.  Ensure that there is not a test eax
-    // instruction here.
-    __ nop();
-  } else {
-    // Inline the property load.
-    Comment cmnt(masm(), is_contextual
-                         ? "[ Inlined contextual property load"
-                         : "[ Inlined named property load");
-    Result receiver = frame()->Pop();
-    receiver.ToRegister();
-
-    result = allocator()->Allocate();
-    ASSERT(result.is_valid());
-    DeferredReferenceGetNamedValue* deferred =
-        new DeferredReferenceGetNamedValue(result.reg(),
-                                           receiver.reg(),
-                                           name,
-                                           is_contextual);
-
-    if (!is_contextual) {
-      // Check that the receiver is a heap object.
-      __ test(receiver.reg(), Immediate(kSmiTagMask));
-      deferred->Branch(zero);
-    }
-
-    __ bind(deferred->patch_site());
-    // This is the map check instruction that will be patched (so we can't
-    // use the double underscore macro that may insert instructions).
-    // Initially use an invalid map to force a failure.
-    masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
-                Immediate(factory->null_value()));
-    // This branch is always a forwards branch so it's always a fixed size
-    // which allows the assert below to succeed and patching to work.
-    deferred->Branch(not_equal);
-
-    // The delta from the patch label to the actual load must be
-    // statically known.
-    ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
-           LoadIC::kOffsetToLoadInstruction);
-
-    if (is_contextual) {
-      // Load the (initialy invalid) cell and get its value.
-      masm()->mov(result.reg(), factory->null_value());
-      if (FLAG_debug_code) {
-        __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
-               factory->global_property_cell_map());
-        __ Assert(equal, "Uninitialized inlined contextual load");
-      }
-      __ mov(result.reg(),
-             FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset));
-      __ cmp(result.reg(), factory->the_hole_value());
-      deferred->Branch(equal);
-      bool is_dont_delete = false;
-      if (!info_->closure().is_null()) {
-        // When doing lazy compilation we can check if the global cell
-        // already exists and use its "don't delete" status as a hint.
-        AssertNoAllocation no_gc;
-        v8::internal::GlobalObject* global_object =
-            info_->closure()->context()->global();
-        LookupResult lookup;
-        global_object->LocalLookupRealNamedProperty(*name, &lookup);
-        if (lookup.IsProperty() && lookup.type() == NORMAL) {
-          ASSERT(lookup.holder() == global_object);
-          ASSERT(global_object->property_dictionary()->ValueAt(
-              lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell());
-          is_dont_delete = lookup.IsDontDelete();
-        }
-      }
-      deferred->set_is_dont_delete(is_dont_delete);
-      if (!is_dont_delete) {
-        __ cmp(result.reg(), factory->the_hole_value());
-        deferred->Branch(equal);
-      } else if (FLAG_debug_code) {
-        __ cmp(result.reg(), factory->the_hole_value());
-        __ Check(not_equal, "DontDelete cells can't contain the hole");
-      }
-      __ IncrementCounter(counters->named_load_global_inline(), 1);
-      if (is_dont_delete) {
-        __ IncrementCounter(counters->dont_delete_hint_hit(), 1);
-      }
-    } else {
-      // The initial (invalid) offset has to be large enough to force a 32-bit
-      // instruction encoding to allow patching with an arbitrary offset.  Use
-      // kMaxInt (minus kHeapObjectTag).
-      int offset = kMaxInt;
-      masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset));
-      __ IncrementCounter(counters->named_load_inline(), 1);
-    }
-
-    deferred->BindExit();
-  }
-  ASSERT(frame()->height() == original_height - 1);
-  return result;
-}
-
-
-Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
-#ifdef DEBUG
-  int expected_height = frame()->height() - (is_contextual ? 1 : 2);
-#endif
-
-  Result result;
-  if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
-    result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
-    // A test eax instruction following the call signals that the inobject
-    // property case was inlined.  Ensure that there is not a test eax
-    // instruction here.
-    __ nop();
-  } else {
-    // Inline the in-object property case.
-    JumpTarget slow, done;
-    Label patch_site;
-
-    // Get the value and receiver from the stack.
-    Result value = frame()->Pop();
-    value.ToRegister();
-    Result receiver = frame()->Pop();
-    receiver.ToRegister();
-
-    // Allocate result register.
-    result = allocator()->Allocate();
-    ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid());
-
-    // Check that the receiver is a heap object.
-    __ test(receiver.reg(), Immediate(kSmiTagMask));
-    slow.Branch(zero, &value, &receiver);
-
-    // This is the map check instruction that will be patched (so we can't
-    // use the double underscore macro that may insert instructions).
-    // Initially use an invalid map to force a failure.
-    __ bind(&patch_site);
-    masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
-                Immediate(FACTORY->null_value()));
-    // This branch is always a forwards branch so it's always a fixed size
-    // which allows the assert below to succeed and patching to work.
-    slow.Branch(not_equal, &value, &receiver);
-
-    // The delta from the patch label to the store offset must be
-    // statically known.
-    ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) ==
-           StoreIC::kOffsetToStoreInstruction);
-
-    // The initial (invalid) offset has to be large enough to force a 32-bit
-    // instruction encoding to allow patching with an arbitrary offset.  Use
-    // kMaxInt (minus kHeapObjectTag).
-    int offset = kMaxInt;
-    __ mov(FieldOperand(receiver.reg(), offset), value.reg());
-    __ mov(result.reg(), Operand(value.reg()));
-
-    // Allocate scratch register for write barrier.
-    Result scratch = allocator()->Allocate();
-    ASSERT(scratch.is_valid());
-
-    // The write barrier clobbers all input registers, so spill the
-    // receiver and the value.
-    frame_->Spill(receiver.reg());
-    frame_->Spill(value.reg());
-
-    // If the receiver and the value share a register allocate a new
-    // register for the receiver.
-    if (receiver.reg().is(value.reg())) {
-      receiver = allocator()->Allocate();
-      ASSERT(receiver.is_valid());
-      __ mov(receiver.reg(), Operand(value.reg()));
-    }
-
-    // Update the write barrier. To save instructions in the inlined
-    // version we do not filter smis.
-    Label skip_write_barrier;
-    __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier);
-    int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site);
-    __ lea(scratch.reg(), Operand(receiver.reg(), offset));
-    __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg());
-    if (FLAG_debug_code) {
-      __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue)));
-      __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue)));
-      __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue)));
-    }
-    __ bind(&skip_write_barrier);
-    value.Unuse();
-    scratch.Unuse();
-    receiver.Unuse();
-    done.Jump(&result);
-
-    slow.Bind(&value, &receiver);
-    frame()->Push(&receiver);
-    frame()->Push(&value);
-    result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
-    // Encode the offset to the map check instruction and the offset
-    // to the write barrier store address computation in a test eax
-    // instruction.
-    int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site);
-    __ test(eax,
-            Immediate((delta_to_record_write << 16) | delta_to_patch_site));
-    done.Bind(&result);
-  }
-
-  ASSERT_EQ(expected_height, frame()->height());
-  return result;
-}
-
-
-Result CodeGenerator::EmitKeyedLoad() {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Result result;
-  // Inline array load code if inside of a loop.  We do not know the
-  // receiver map yet, so we initially generate the code with a check
-  // against an invalid map.  In the inline cache code, we patch the map
-  // check if appropriate.
-  if (loop_nesting() > 0) {
-    Comment cmnt(masm_, "[ Inlined load from keyed Property");
-
-    // Use a fresh temporary to load the elements without destroying
-    // the receiver which is needed for the deferred slow case.
-    Result elements = allocator()->Allocate();
-    ASSERT(elements.is_valid());
-
-    Result key = frame_->Pop();
-    Result receiver = frame_->Pop();
-    key.ToRegister();
-    receiver.ToRegister();
-
-    // If key and receiver are shared registers on the frame, their values will
-    // be automatically saved and restored when going to deferred code.
-    // The result is in elements, which is guaranteed non-shared.
-    DeferredReferenceGetKeyedValue* deferred =
-        new DeferredReferenceGetKeyedValue(elements.reg(),
-                                           receiver.reg(),
-                                           key.reg());
-
-    __ test(receiver.reg(), Immediate(kSmiTagMask));
-    deferred->Branch(zero);
-
-    // Check that the receiver has the expected map.
-    // Initially, use an invalid map. The map is patched in the IC
-    // initialization code.
-    __ bind(deferred->patch_site());
-    // Use masm-> here instead of the double underscore macro since extra
-    // coverage code can interfere with the patching.
-    masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
-               Immediate(FACTORY->null_value()));
-    deferred->Branch(not_equal);
-
-    // Check that the key is a smi.
-    if (!key.is_smi()) {
-      __ test(key.reg(), Immediate(kSmiTagMask));
-      deferred->Branch(not_zero);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
-    }
-
-    // Get the elements array from the receiver.
-    __ mov(elements.reg(),
-           FieldOperand(receiver.reg(), JSObject::kElementsOffset));
-    __ AssertFastElements(elements.reg());
-
-    // Check that the key is within bounds.
-    __ cmp(key.reg(),
-           FieldOperand(elements.reg(), FixedArray::kLengthOffset));
-    deferred->Branch(above_equal);
-
-    // Load and check that the result is not the hole.
-    // Key holds a smi.
-    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
-    __ mov(elements.reg(),
-           FieldOperand(elements.reg(),
-                        key.reg(),
-                        times_2,
-                        FixedArray::kHeaderSize));
-    result = elements;
-    __ cmp(Operand(result.reg()), Immediate(FACTORY->the_hole_value()));
-    deferred->Branch(equal);
-    __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), 1);
-
-    deferred->BindExit();
-  } else {
-    Comment cmnt(masm_, "[ Load from keyed Property");
-    result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
-    // Make sure that we do not have a test instruction after the
-    // call.  A test instruction after the call is used to
-    // indicate that we have generated an inline version of the
-    // keyed load.  The explicit nop instruction is here because
-    // the push that follows might be peep-hole optimized away.
-    __ nop();
-  }
-  ASSERT(frame()->height() == original_height - 2);
-  return result;
-}
-
-
-Result CodeGenerator::EmitKeyedStore(StaticType* key_type) {
-#ifdef DEBUG
-  int original_height = frame()->height();
-#endif
-  Result result;
-  // Generate inlined version of the keyed store if the code is in a loop
-  // and the key is likely to be a smi.
-  if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
-    Comment cmnt(masm(), "[ Inlined store to keyed Property");
-
-    // Get the receiver, key and value into registers.
-    result = frame()->Pop();
-    Result key = frame()->Pop();
-    Result receiver = frame()->Pop();
-
-    Result tmp = allocator_->Allocate();
-    ASSERT(tmp.is_valid());
-    Result tmp2 = allocator_->Allocate();
-    ASSERT(tmp2.is_valid());
-
-    // Determine whether the value is a constant before putting it in a
-    // register.
-    bool value_is_constant = result.is_constant();
-
-    // Make sure that value, key and receiver are in registers.
-    result.ToRegister();
-    key.ToRegister();
-    receiver.ToRegister();
-
-    DeferredReferenceSetKeyedValue* deferred =
-        new DeferredReferenceSetKeyedValue(result.reg(),
-                                           key.reg(),
-                                           receiver.reg(),
-                                           tmp.reg(),
-                                           strict_mode_flag());
-
-    // Check that the receiver is not a smi.
-    __ test(receiver.reg(), Immediate(kSmiTagMask));
-    deferred->Branch(zero);
-
-    // Check that the key is a smi.
-    if (!key.is_smi()) {
-      __ test(key.reg(), Immediate(kSmiTagMask));
-      deferred->Branch(not_zero);
-    } else {
-      if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
-    }
-
-    // Check that the receiver is a JSArray.
-    __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg());
-    deferred->Branch(not_equal);
-
-    // Get the elements array from the receiver and check that it is not a
-    // dictionary.
-    __ mov(tmp.reg(),
-           FieldOperand(receiver.reg(), JSArray::kElementsOffset));
-
-    // Check whether it is possible to omit the write barrier. If the elements
-    // array is in new space or the value written is a smi we can safely update
-    // the elements array without write barrier.
-    Label in_new_space;
-    __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
-    if (!value_is_constant) {
-      __ test(result.reg(), Immediate(kSmiTagMask));
-      deferred->Branch(not_zero);
-    }
-
-    __ bind(&in_new_space);
-    // Bind the deferred code patch site to be able to locate the fixed
-    // array map comparison.  When debugging, we patch this comparison to
-    // always fail so that we will hit the IC call in the deferred code
-    // which will allow the debugger to break for fast case stores.
-    __ bind(deferred->patch_site());
-    __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
-           Immediate(FACTORY->fixed_array_map()));
-    deferred->Branch(not_equal);
-
-    // Check that the key is within bounds.  Both the key and the length of
-    // the JSArray are smis (because the fixed array check above ensures the
-    // elements are in fast case). Use unsigned comparison to handle negative
-    // keys.
-    __ cmp(key.reg(),
-           FieldOperand(receiver.reg(), JSArray::kLengthOffset));
-    deferred->Branch(above_equal);
-
-    // Store the value.
-    __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg());
-    __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), 1);
-
-    deferred->BindExit();
-  } else {
-    result = frame()->CallKeyedStoreIC(strict_mode_flag());
-    // Make sure that we do not have a test instruction after the
-    // call.  A test instruction after the call is used to
-    // indicate that we have generated an inline version of the
-    // keyed store.
-    __ nop();
-  }
-  ASSERT(frame()->height() == original_height - 3);
-  return result;
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm)
-
-
-Handle<String> Reference::GetName() {
-  ASSERT(type_ == NAMED);
-  Property* property = expression_->AsProperty();
-  if (property == NULL) {
-    // Global variable reference treated as a named property reference.
-    VariableProxy* proxy = expression_->AsVariableProxy();
-    ASSERT(proxy->AsVariable() != NULL);
-    ASSERT(proxy->AsVariable()->is_global());
-    return proxy->name();
-  } else {
-    Literal* raw_name = property->key()->AsLiteral();
-    ASSERT(raw_name != NULL);
-    return Handle<String>::cast(raw_name->handle());
-  }
-}
-
-
-void Reference::GetValue() {
-  ASSERT(!cgen_->in_spilled_code());
-  ASSERT(cgen_->HasValidEntryRegisters());
-  ASSERT(!is_illegal());
-  MacroAssembler* masm = cgen_->masm();
-
-  // Record the source position for the property load.
-  Property* property = expression_->AsProperty();
-  if (property != NULL) {
-    cgen_->CodeForSourcePosition(property->position());
-  }
-
-  switch (type_) {
-    case SLOT: {
-      Comment cmnt(masm, "[ Load from Slot");
-      Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
-      ASSERT(slot != NULL);
-      cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
-      if (!persist_after_get_) set_unloaded();
-      break;
-    }
-
-    case NAMED: {
-      Variable* var = expression_->AsVariableProxy()->AsVariable();
-      bool is_global = var != NULL;
-      ASSERT(!is_global || var->is_global());
-      if (persist_after_get_) cgen_->frame()->Dup();
-      Result result = cgen_->EmitNamedLoad(GetName(), is_global);
-      if (!persist_after_get_) set_unloaded();
-      cgen_->frame()->Push(&result);
-      break;
-    }
-
-    case KEYED: {
-      if (persist_after_get_) {
-        cgen_->frame()->PushElementAt(1);
-        cgen_->frame()->PushElementAt(1);
-      }
-      Result value = cgen_->EmitKeyedLoad();
-      cgen_->frame()->Push(&value);
-      if (!persist_after_get_) set_unloaded();
-      break;
-    }
-
-    default:
-      UNREACHABLE();
-  }
-}
-
-
-void Reference::TakeValue() {
-  // For non-constant frame-allocated slots, we invalidate the value in the
-  // slot.  For all others, we fall back on GetValue.
-  ASSERT(!cgen_->in_spilled_code());
-  ASSERT(!is_illegal());
-  if (type_ != SLOT) {
-    GetValue();
-    return;
-  }
-
-  Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
-  ASSERT(slot != NULL);
-  if (slot->type() == Slot::LOOKUP ||
-      slot->type() == Slot::CONTEXT ||
-      slot->var()->mode() == Variable::CONST ||
-      slot->is_arguments()) {
-    GetValue();
-    return;
-  }
-
-  // Only non-constant, frame-allocated parameters and locals can
-  // reach here. Be careful not to use the optimizations for arguments
-  // object access since it may not have been initialized yet.
-  ASSERT(!slot->is_arguments());
-  if (slot->type() == Slot::PARAMETER) {
-    cgen_->frame()->TakeParameterAt(slot->index());
-  } else {
-    ASSERT(slot->type() == Slot::LOCAL);
-    cgen_->frame()->TakeLocalAt(slot->index());
-  }
-
-  ASSERT(persist_after_get_);
-  // Do not unload the reference, because it is used in SetValue.
-}
-
-
-void Reference::SetValue(InitState init_state) {
-  ASSERT(cgen_->HasValidEntryRegisters());
-  ASSERT(!is_illegal());
-  MacroAssembler* masm = cgen_->masm();
-  switch (type_) {
-    case SLOT: {
-      Comment cmnt(masm, "[ Store to Slot");
-      Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
-      ASSERT(slot != NULL);
-      cgen_->StoreToSlot(slot, init_state);
-      set_unloaded();
-      break;
-    }
-
-    case NAMED: {
-      Comment cmnt(masm, "[ Store to named Property");
-      Result answer = cgen_->EmitNamedStore(GetName(), false);
-      cgen_->frame()->Push(&answer);
-      set_unloaded();
-      break;
-    }
-
-    case KEYED: {
-      Comment cmnt(masm, "[ Store to keyed Property");
-      Property* property = expression()->AsProperty();
-      ASSERT(property != NULL);
-
-      Result answer = cgen_->EmitKeyedStore(property->key()->type());
-      cgen_->frame()->Push(&answer);
-      set_unloaded();
-      break;
-    }
-
-    case UNLOADED:
-    case ILLEGAL:
-      UNREACHABLE();
-  }
-}
-
-
-#undef __
-
 #define __ masm.
 
-
 static void MemCopyWrapper(void* dest, const void* src, size_t size) {
   memcpy(dest, src, size);
 }
 
 
-MemCopyFunction CreateMemCopyFunction() {
-  HandleScope scope;
-  MacroAssembler masm(NULL, 1 * KB);
+OS::MemCopyFunction CreateMemCopyFunction() {
+  size_t actual_size;
+  // Allocate buffer in executable space.
+  byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
+                                                 &actual_size,
+                                                 true));
+  if (buffer == NULL) return &MemCopyWrapper;
+  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
 
   // Generated code is put into a fixed, unmovable, buffer, and not into
   // the V8 heap. We can't, and don't, refer to any relocatable addresses
@@ -10198,13 +84,13 @@
 
   if (FLAG_debug_code) {
     __ cmp(Operand(esp, kSizeOffset + stack_offset),
-           Immediate(kMinComplexMemCopy));
+           Immediate(OS::kMinComplexMemCopy));
     Label ok;
     __ j(greater_equal, &ok);
     __ int3();
     __ bind(&ok);
   }
-  if (masm.isolate()->cpu_features()->IsSupported(SSE2)) {
+  if (CpuFeatures::IsSupported(SSE2)) {
     CpuFeatures::Scope enable(SSE2);
     __ push(edi);
     __ push(esi);
@@ -10232,7 +118,6 @@
     __ test(Operand(src), Immediate(0x0F));
     __ j(not_zero, &unaligned_source);
     {
-      __ IncrementCounter(masm.isolate()->counters()->memcopy_aligned(), 1);
       // Copy loop for aligned source and destination.
       __ mov(edx, count);
       Register loop_count = ecx;
@@ -10280,7 +165,6 @@
       // Copy loop for unaligned source and aligned destination.
       // If source is not aligned, we can't read it as efficiently.
       __ bind(&unaligned_source);
-      __ IncrementCounter(masm.isolate()->counters()->memcopy_unaligned(), 1);
       __ mov(edx, ecx);
       Register loop_count = ecx;
       Register count = edx;
@@ -10324,7 +208,6 @@
     }
 
   } else {
-    __ IncrementCounter(masm.isolate()->counters()->memcopy_noxmm(), 1);
     // SSE2 not supported. Unlikely to happen in practice.
     __ push(edi);
     __ push(esi);
@@ -10371,13 +254,8 @@
   masm.GetCode(&desc);
   ASSERT(desc.reloc_size == 0);
 
-  // Copy the generated code into an executable chunk and return a pointer
-  // to the first instruction in it as a C++ function pointer.
-  LargeObjectChunk* chunk = LargeObjectChunk::New(desc.instr_size, EXECUTABLE);
-  if (chunk == NULL) return &MemCopyWrapper;
-  memcpy(chunk->GetStartAddress(), desc.buffer, desc.instr_size);
-  CPU::FlushICache(chunk->GetStartAddress(), desc.instr_size);
-  return FUNCTION_CAST<MemCopyFunction>(chunk->GetStartAddress());
+  CPU::FlushICache(buffer, actual_size);
+  return FUNCTION_CAST<OS::MemCopyFunction>(buffer);
 }
 
 #undef __