Move V8 to external/v8

Change-Id: If68025d67453785a651c5dfb34fad298c16676a4
diff --git a/src/objects.cc b/src/objects.cc
new file mode 100644
index 0000000..e2fa3b5
--- /dev/null
+++ b/src/objects.cc
@@ -0,0 +1,7982 @@
+// Copyright 2006-2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "api.h"
+#include "arguments.h"
+#include "bootstrapper.h"
+#include "debug.h"
+#include "execution.h"
+#include "objects-inl.h"
+#include "macro-assembler.h"
+#include "scanner.h"
+#include "scopeinfo.h"
+#include "string-stream.h"
+
+#ifdef ENABLE_DISASSEMBLER
+#include "disassembler.h"
+#endif
+
+
+namespace v8 {
+namespace internal {
+
+// Getters and setters are stored in a fixed array property.  These are
+// constants for their indices.
+const int kGetterIndex = 0;
+const int kSetterIndex = 1;
+
+
+static Object* CreateJSValue(JSFunction* constructor, Object* value) {
+  Object* result = Heap::AllocateJSObject(constructor);
+  if (result->IsFailure()) return result;
+  JSValue::cast(result)->set_value(value);
+  return result;
+}
+
+
+Object* Object::ToObject(Context* global_context) {
+  if (IsNumber()) {
+    return CreateJSValue(global_context->number_function(), this);
+  } else if (IsBoolean()) {
+    return CreateJSValue(global_context->boolean_function(), this);
+  } else if (IsString()) {
+    return CreateJSValue(global_context->string_function(), this);
+  }
+  ASSERT(IsJSObject());
+  return this;
+}
+
+
+Object* Object::ToObject() {
+  Context* global_context = Top::context()->global_context();
+  if (IsJSObject()) {
+    return this;
+  } else if (IsNumber()) {
+    return CreateJSValue(global_context->number_function(), this);
+  } else if (IsBoolean()) {
+    return CreateJSValue(global_context->boolean_function(), this);
+  } else if (IsString()) {
+    return CreateJSValue(global_context->string_function(), this);
+  }
+
+  // Throw a type error.
+  return Failure::InternalError();
+}
+
+
+Object* Object::ToBoolean() {
+  if (IsTrue()) return Heap::true_value();
+  if (IsFalse()) return Heap::false_value();
+  if (IsSmi()) {
+    return Heap::ToBoolean(Smi::cast(this)->value() != 0);
+  }
+  if (IsUndefined() || IsNull()) return Heap::false_value();
+  // Undetectable object is false
+  if (IsUndetectableObject()) {
+    return Heap::false_value();
+  }
+  if (IsString()) {
+    return Heap::ToBoolean(String::cast(this)->length() != 0);
+  }
+  if (IsHeapNumber()) {
+    return HeapNumber::cast(this)->HeapNumberToBoolean();
+  }
+  return Heap::true_value();
+}
+
+
+void Object::Lookup(String* name, LookupResult* result) {
+  if (IsJSObject()) return JSObject::cast(this)->Lookup(name, result);
+  Object* holder = NULL;
+  Context* global_context = Top::context()->global_context();
+  if (IsString()) {
+    holder = global_context->string_function()->instance_prototype();
+  } else if (IsNumber()) {
+    holder = global_context->number_function()->instance_prototype();
+  } else if (IsBoolean()) {
+    holder = global_context->boolean_function()->instance_prototype();
+  }
+  ASSERT(holder != NULL);  // Cannot handle null or undefined.
+  JSObject::cast(holder)->Lookup(name, result);
+}
+
+
+Object* Object::GetPropertyWithReceiver(Object* receiver,
+                                        String* name,
+                                        PropertyAttributes* attributes) {
+  LookupResult result;
+  Lookup(name, &result);
+  Object* value = GetProperty(receiver, &result, name, attributes);
+  ASSERT(*attributes <= ABSENT);
+  return value;
+}
+
+
+Object* Object::GetPropertyWithCallback(Object* receiver,
+                                        Object* structure,
+                                        String* name,
+                                        Object* holder) {
+  // To accommodate both the old and the new api we switch on the
+  // data structure used to store the callbacks.  Eventually proxy
+  // callbacks should be phased out.
+  if (structure->IsProxy()) {
+    AccessorDescriptor* callback =
+        reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
+    Object* value = (callback->getter)(receiver, callback->data);
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    return value;
+  }
+
+  // api style callbacks.
+  if (structure->IsAccessorInfo()) {
+    AccessorInfo* data = AccessorInfo::cast(structure);
+    Object* fun_obj = data->getter();
+    v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
+    HandleScope scope;
+    JSObject* self = JSObject::cast(receiver);
+    JSObject* holder_handle = JSObject::cast(holder);
+    Handle<String> key(name);
+    LOG(ApiNamedPropertyAccess("load", self, name));
+    CustomArguments args(data->data(), self, holder_handle);
+    v8::AccessorInfo info(args.end());
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = call_fun(v8::Utils::ToLocal(key), info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (result.IsEmpty()) return Heap::undefined_value();
+    return *v8::Utils::OpenHandle(*result);
+  }
+
+  // __defineGetter__ callback
+  if (structure->IsFixedArray()) {
+    Object* getter = FixedArray::cast(structure)->get(kGetterIndex);
+    if (getter->IsJSFunction()) {
+      return Object::GetPropertyWithDefinedGetter(receiver,
+                                                  JSFunction::cast(getter));
+    }
+    // Getter is not a function.
+    return Heap::undefined_value();
+  }
+
+  UNREACHABLE();
+  return 0;
+}
+
+
+Object* Object::GetPropertyWithDefinedGetter(Object* receiver,
+                                             JSFunction* getter) {
+  HandleScope scope;
+  Handle<JSFunction> fun(JSFunction::cast(getter));
+  Handle<Object> self(receiver);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+  // Handle stepping into a getter if step into is active.
+  if (Debug::StepInActive()) {
+    Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false);
+  }
+#endif
+  bool has_pending_exception;
+  Handle<Object> result =
+      Execution::Call(fun, self, 0, NULL, &has_pending_exception);
+  // Check for pending exception and return the result.
+  if (has_pending_exception) return Failure::Exception();
+  return *result;
+}
+
+
+// Only deal with CALLBACKS and INTERCEPTOR
+Object* JSObject::GetPropertyWithFailedAccessCheck(
+    Object* receiver,
+    LookupResult* result,
+    String* name,
+    PropertyAttributes* attributes) {
+  if (result->IsValid()) {
+    switch (result->type()) {
+      case CALLBACKS: {
+        // Only allow API accessors.
+        Object* obj = result->GetCallbackObject();
+        if (obj->IsAccessorInfo()) {
+          AccessorInfo* info = AccessorInfo::cast(obj);
+          if (info->all_can_read()) {
+            *attributes = result->GetAttributes();
+            return GetPropertyWithCallback(receiver,
+                                           result->GetCallbackObject(),
+                                           name,
+                                           result->holder());
+          }
+        }
+        break;
+      }
+      case NORMAL:
+      case FIELD:
+      case CONSTANT_FUNCTION: {
+        // Search ALL_CAN_READ accessors in prototype chain.
+        LookupResult r;
+        result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
+        if (r.IsValid()) {
+          return GetPropertyWithFailedAccessCheck(receiver,
+                                                  &r,
+                                                  name,
+                                                  attributes);
+        }
+        break;
+      }
+      case INTERCEPTOR: {
+        // If the object has an interceptor, try real named properties.
+        // No access check in GetPropertyAttributeWithInterceptor.
+        LookupResult r;
+        result->holder()->LookupRealNamedProperty(name, &r);
+        if (r.IsValid()) {
+          return GetPropertyWithFailedAccessCheck(receiver,
+                                                  &r,
+                                                  name,
+                                                  attributes);
+        }
+      }
+      default: {
+        break;
+      }
+    }
+  }
+
+  // No accessible property found.
+  *attributes = ABSENT;
+  Top::ReportFailedAccessCheck(this, v8::ACCESS_GET);
+  return Heap::undefined_value();
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck(
+    Object* receiver,
+    LookupResult* result,
+    String* name,
+    bool continue_search) {
+  if (result->IsValid()) {
+    switch (result->type()) {
+      case CALLBACKS: {
+        // Only allow API accessors.
+        Object* obj = result->GetCallbackObject();
+        if (obj->IsAccessorInfo()) {
+          AccessorInfo* info = AccessorInfo::cast(obj);
+          if (info->all_can_read()) {
+            return result->GetAttributes();
+          }
+        }
+        break;
+      }
+
+      case NORMAL:
+      case FIELD:
+      case CONSTANT_FUNCTION: {
+        if (!continue_search) break;
+        // Search ALL_CAN_READ accessors in prototype chain.
+        LookupResult r;
+        result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
+        if (r.IsValid()) {
+          return GetPropertyAttributeWithFailedAccessCheck(receiver,
+                                                           &r,
+                                                           name,
+                                                           continue_search);
+        }
+        break;
+      }
+
+      case INTERCEPTOR: {
+        // If the object has an interceptor, try real named properties.
+        // No access check in GetPropertyAttributeWithInterceptor.
+        LookupResult r;
+        if (continue_search) {
+          result->holder()->LookupRealNamedProperty(name, &r);
+        } else {
+          result->holder()->LocalLookupRealNamedProperty(name, &r);
+        }
+        if (r.IsValid()) {
+          return GetPropertyAttributeWithFailedAccessCheck(receiver,
+                                                           &r,
+                                                           name,
+                                                           continue_search);
+        }
+        break;
+      }
+
+      default: {
+        break;
+      }
+    }
+  }
+
+  Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+  return ABSENT;
+}
+
+
+Object* JSObject::GetLazyProperty(Object* receiver,
+                                  LookupResult* result,
+                                  String* name,
+                                  PropertyAttributes* attributes) {
+  HandleScope scope;
+  Handle<Object> this_handle(this);
+  Handle<Object> receiver_handle(receiver);
+  Handle<String> name_handle(name);
+  bool pending_exception;
+  LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
+           &pending_exception);
+  if (pending_exception) return Failure::Exception();
+  return this_handle->GetPropertyWithReceiver(*receiver_handle,
+                                              *name_handle,
+                                              attributes);
+}
+
+
+Object* JSObject::SetLazyProperty(LookupResult* result,
+                                  String* name,
+                                  Object* value,
+                                  PropertyAttributes attributes) {
+  ASSERT(!IsJSGlobalProxy());
+  HandleScope scope;
+  Handle<JSObject> this_handle(this);
+  Handle<String> name_handle(name);
+  Handle<Object> value_handle(value);
+  bool pending_exception;
+  LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
+           &pending_exception);
+  if (pending_exception) return Failure::Exception();
+  return this_handle->SetProperty(*name_handle, *value_handle, attributes);
+}
+
+
+Object* JSObject::DeleteLazyProperty(LookupResult* result,
+                                     String* name,
+                                     DeleteMode mode) {
+  HandleScope scope;
+  Handle<JSObject> this_handle(this);
+  Handle<String> name_handle(name);
+  bool pending_exception;
+  LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
+           &pending_exception);
+  if (pending_exception) return Failure::Exception();
+  return this_handle->DeleteProperty(*name_handle, mode);
+}
+
+
+Object* JSObject::GetNormalizedProperty(LookupResult* result) {
+  ASSERT(!HasFastProperties());
+  Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
+  if (IsGlobalObject()) {
+    value = JSGlobalPropertyCell::cast(value)->value();
+  }
+  ASSERT(!value->IsJSGlobalPropertyCell());
+  return value;
+}
+
+
+Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) {
+  ASSERT(!HasFastProperties());
+  if (IsGlobalObject()) {
+    JSGlobalPropertyCell* cell =
+        JSGlobalPropertyCell::cast(
+            property_dictionary()->ValueAt(result->GetDictionaryEntry()));
+    cell->set_value(value);
+  } else {
+    property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value);
+  }
+  return value;
+}
+
+
+Object* JSObject::SetNormalizedProperty(String* name,
+                                        Object* value,
+                                        PropertyDetails details) {
+  ASSERT(!HasFastProperties());
+  int entry = property_dictionary()->FindEntry(name);
+  if (entry == StringDictionary::kNotFound) {
+    Object* store_value = value;
+    if (IsGlobalObject()) {
+      store_value = Heap::AllocateJSGlobalPropertyCell(value);
+      if (store_value->IsFailure()) return store_value;
+    }
+    Object* dict = property_dictionary()->Add(name, store_value, details);
+    if (dict->IsFailure()) return dict;
+    set_properties(StringDictionary::cast(dict));
+    return value;
+  }
+  // Preserve enumeration index.
+  details = PropertyDetails(details.attributes(),
+                            details.type(),
+                            property_dictionary()->DetailsAt(entry).index());
+  if (IsGlobalObject()) {
+    JSGlobalPropertyCell* cell =
+        JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry));
+    cell->set_value(value);
+    // Please note we have to update the property details.
+    property_dictionary()->DetailsAtPut(entry, details);
+  } else {
+    property_dictionary()->SetEntry(entry, name, value, details);
+  }
+  return value;
+}
+
+
+Object* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) {
+  ASSERT(!HasFastProperties());
+  StringDictionary* dictionary = property_dictionary();
+  int entry = dictionary->FindEntry(name);
+  if (entry != StringDictionary::kNotFound) {
+    // If we have a global object set the cell to the hole.
+    if (IsGlobalObject()) {
+      PropertyDetails details = dictionary->DetailsAt(entry);
+      if (details.IsDontDelete()) {
+        if (mode != FORCE_DELETION) return Heap::false_value();
+        // When forced to delete global properties, we have to make a
+        // map change to invalidate any ICs that think they can load
+        // from the DontDelete cell without checking if it contains
+        // the hole value.
+        Object* new_map = map()->CopyDropDescriptors();
+        if (new_map->IsFailure()) return new_map;
+        set_map(Map::cast(new_map));
+      }
+      JSGlobalPropertyCell* cell =
+          JSGlobalPropertyCell::cast(dictionary->ValueAt(entry));
+      cell->set_value(Heap::the_hole_value());
+      dictionary->DetailsAtPut(entry, details.AsDeleted());
+    } else {
+      return dictionary->DeleteProperty(entry, mode);
+    }
+  }
+  return Heap::true_value();
+}
+
+
+bool JSObject::IsDirty() {
+  Object* cons_obj = map()->constructor();
+  if (!cons_obj->IsJSFunction())
+    return true;
+  JSFunction* fun = JSFunction::cast(cons_obj);
+  if (!fun->shared()->function_data()->IsFunctionTemplateInfo())
+    return true;
+  // If the object is fully fast case and has the same map it was
+  // created with then no changes can have been made to it.
+  return map() != fun->initial_map()
+      || !HasFastElements()
+      || !HasFastProperties();
+}
+
+
+Object* Object::GetProperty(Object* receiver,
+                            LookupResult* result,
+                            String* name,
+                            PropertyAttributes* attributes) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+
+  // Traverse the prototype chain from the current object (this) to
+  // the holder and check for access rights. This avoid traversing the
+  // objects more than once in case of interceptors, because the
+  // holder will always be the interceptor holder and the search may
+  // only continue with a current object just after the interceptor
+  // holder in the prototype chain.
+  Object* last = result->IsValid() ? result->holder() : Heap::null_value();
+  for (Object* current = this; true; current = current->GetPrototype()) {
+    if (current->IsAccessCheckNeeded()) {
+      // Check if we're allowed to read from the current object. Note
+      // that even though we may not actually end up loading the named
+      // property from the current object, we still check that we have
+      // access to it.
+      JSObject* checked = JSObject::cast(current);
+      if (!Top::MayNamedAccess(checked, name, v8::ACCESS_GET)) {
+        return checked->GetPropertyWithFailedAccessCheck(receiver,
+                                                         result,
+                                                         name,
+                                                         attributes);
+      }
+    }
+    // Stop traversing the chain once we reach the last object in the
+    // chain; either the holder of the result or null in case of an
+    // absent property.
+    if (current == last) break;
+  }
+
+  if (!result->IsProperty()) {
+    *attributes = ABSENT;
+    return Heap::undefined_value();
+  }
+  *attributes = result->GetAttributes();
+  if (!result->IsLoaded()) {
+    return JSObject::cast(this)->GetLazyProperty(receiver,
+                                                 result,
+                                                 name,
+                                                 attributes);
+  }
+  Object* value;
+  JSObject* holder = result->holder();
+  switch (result->type()) {
+    case NORMAL:
+      value = holder->GetNormalizedProperty(result);
+      ASSERT(!value->IsTheHole() || result->IsReadOnly());
+      return value->IsTheHole() ? Heap::undefined_value() : value;
+    case FIELD:
+      value = holder->FastPropertyAt(result->GetFieldIndex());
+      ASSERT(!value->IsTheHole() || result->IsReadOnly());
+      return value->IsTheHole() ? Heap::undefined_value() : value;
+    case CONSTANT_FUNCTION:
+      return result->GetConstantFunction();
+    case CALLBACKS:
+      return GetPropertyWithCallback(receiver,
+                                     result->GetCallbackObject(),
+                                     name,
+                                     holder);
+    case INTERCEPTOR: {
+      JSObject* recvr = JSObject::cast(receiver);
+      return holder->GetPropertyWithInterceptor(recvr, name, attributes);
+    }
+    default:
+      UNREACHABLE();
+      return NULL;
+  }
+}
+
+
+Object* Object::GetElementWithReceiver(Object* receiver, uint32_t index) {
+  // Non-JS objects do not have integer indexed properties.
+  if (!IsJSObject()) return Heap::undefined_value();
+  return JSObject::cast(this)->GetElementWithReceiver(JSObject::cast(receiver),
+                                                      index);
+}
+
+
+Object* Object::GetPrototype() {
+  // The object is either a number, a string, a boolean, or a real JS object.
+  if (IsJSObject()) return JSObject::cast(this)->map()->prototype();
+  Context* context = Top::context()->global_context();
+
+  if (IsNumber()) return context->number_function()->instance_prototype();
+  if (IsString()) return context->string_function()->instance_prototype();
+  if (IsBoolean()) {
+    return context->boolean_function()->instance_prototype();
+  } else {
+    return Heap::null_value();
+  }
+}
+
+
+void Object::ShortPrint() {
+  HeapStringAllocator allocator;
+  StringStream accumulator(&allocator);
+  ShortPrint(&accumulator);
+  accumulator.OutputToStdOut();
+}
+
+
+void Object::ShortPrint(StringStream* accumulator) {
+  if (IsSmi()) {
+    Smi::cast(this)->SmiPrint(accumulator);
+  } else if (IsFailure()) {
+    Failure::cast(this)->FailurePrint(accumulator);
+  } else {
+    HeapObject::cast(this)->HeapObjectShortPrint(accumulator);
+  }
+}
+
+
+void Smi::SmiPrint() {
+  PrintF("%d", value());
+}
+
+
+void Smi::SmiPrint(StringStream* accumulator) {
+  accumulator->Add("%d", value());
+}
+
+
+void Failure::FailurePrint(StringStream* accumulator) {
+  accumulator->Add("Failure(%d)", value());
+}
+
+
+void Failure::FailurePrint() {
+  PrintF("Failure(%d)", value());
+}
+
+
+Failure* Failure::RetryAfterGC(int requested_bytes, AllocationSpace space) {
+  ASSERT((space & ~kSpaceTagMask) == 0);
+  // TODO(X64): Stop using Smi validation for non-smi checks, even if they
+  // happen to be identical at the moment.
+
+  int requested = requested_bytes >> kObjectAlignmentBits;
+  int value = (requested << kSpaceTagSize) | space;
+  // We can't very well allocate a heap number in this situation, and if the
+  // requested memory is so large it seems reasonable to say that this is an
+  // out of memory situation.  This fixes a crash in
+  // js1_5/Regress/regress-303213.js.
+  if (value >> kSpaceTagSize != requested ||
+      !Smi::IsValid(value) ||
+      value != ((value << kFailureTypeTagSize) >> kFailureTypeTagSize) ||
+      !Smi::IsValid(value << kFailureTypeTagSize)) {
+    Top::context()->mark_out_of_memory();
+    return Failure::OutOfMemoryException();
+  }
+  return Construct(RETRY_AFTER_GC, value);
+}
+
+
+// Should a word be prefixed by 'a' or 'an' in order to read naturally in
+// English?  Returns false for non-ASCII or words that don't start with
+// a capital letter.  The a/an rule follows pronunciation in English.
+// We don't use the BBC's overcorrect "an historic occasion" though if
+// you speak a dialect you may well say "an 'istoric occasion".
+static bool AnWord(String* str) {
+  if (str->length() == 0) return false;  // A nothing.
+  int c0 = str->Get(0);
+  int c1 = str->length() > 1 ? str->Get(1) : 0;
+  if (c0 == 'U') {
+    if (c1 > 'Z') {
+      return true;  // An Umpire, but a UTF8String, a U.
+    }
+  } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
+    return true;    // An Ape, an ABCBook.
+  } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
+           (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
+            c0 == 'S' || c0 == 'X')) {
+    return true;    // An MP3File, an M.
+  }
+  return false;
+}
+
+
+Object* String::TryFlatten() {
+#ifdef DEBUG
+  // Do not attempt to flatten in debug mode when allocation is not
+  // allowed.  This is to avoid an assertion failure when allocating.
+  // Flattening strings is the only case where we always allow
+  // allocation because no GC is performed if the allocation fails.
+  if (!Heap::IsAllocationAllowed()) return this;
+#endif
+
+  switch (StringShape(this).representation_tag()) {
+    case kSlicedStringTag: {
+      SlicedString* ss = SlicedString::cast(this);
+      // The SlicedString constructor should ensure that there are no
+      // SlicedStrings that are constructed directly on top of other
+      // SlicedStrings.
+      String* buf = ss->buffer();
+      ASSERT(!buf->IsSlicedString());
+      Object* ok = buf->TryFlatten();
+      if (ok->IsFailure()) return ok;
+      // Under certain circumstances (TryFlattenIfNotFlat fails in
+      // String::Slice) we can have a cons string under a slice.
+      // In this case we need to get the flat string out of the cons!
+      if (StringShape(String::cast(ok)).IsCons()) {
+        ss->set_buffer(ConsString::cast(ok)->first());
+      }
+      return this;
+    }
+    case kConsStringTag: {
+      ConsString* cs = ConsString::cast(this);
+      if (cs->second()->length() == 0) {
+        return this;
+      }
+      // There's little point in putting the flat string in new space if the
+      // cons string is in old space.  It can never get GCed until there is
+      // an old space GC.
+      PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED : TENURED;
+      int len = length();
+      Object* object;
+      String* result;
+      if (IsAsciiRepresentation()) {
+        object = Heap::AllocateRawAsciiString(len, tenure);
+        if (object->IsFailure()) return object;
+        result = String::cast(object);
+        String* first = cs->first();
+        int first_length = first->length();
+        char* dest = SeqAsciiString::cast(result)->GetChars();
+        WriteToFlat(first, dest, 0, first_length);
+        String* second = cs->second();
+        WriteToFlat(second,
+                    dest + first_length,
+                    0,
+                    len - first_length);
+      } else {
+        object = Heap::AllocateRawTwoByteString(len, tenure);
+        if (object->IsFailure()) return object;
+        result = String::cast(object);
+        uc16* dest = SeqTwoByteString::cast(result)->GetChars();
+        String* first = cs->first();
+        int first_length = first->length();
+        WriteToFlat(first, dest, 0, first_length);
+        String* second = cs->second();
+        WriteToFlat(second,
+                    dest + first_length,
+                    0,
+                    len - first_length);
+      }
+      cs->set_first(result);
+      cs->set_second(Heap::empty_string());
+      return this;
+    }
+    default:
+      return this;
+  }
+}
+
+
+bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
+#ifdef DEBUG
+  {  // NOLINT (presubmit.py gets confused about if and braces)
+    // Assert that the resource and the string are equivalent.
+    ASSERT(static_cast<size_t>(this->length()) == resource->length());
+    SmartPointer<uc16> smart_chars = this->ToWideCString();
+    ASSERT(memcmp(*smart_chars,
+                  resource->data(),
+                  resource->length() * sizeof(**smart_chars)) == 0);
+  }
+#endif  // DEBUG
+
+  int size = this->Size();  // Byte size of the original string.
+  if (size < ExternalString::kSize) {
+    // The string is too small to fit an external String in its place. This can
+    // only happen for zero length strings.
+    return false;
+  }
+  ASSERT(size >= ExternalString::kSize);
+  bool is_symbol = this->IsSymbol();
+  int length = this->length();
+
+  // Morph the object to an external string by adjusting the map and
+  // reinitializing the fields.
+  this->set_map(ExternalTwoByteString::StringMap(length));
+  ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
+  self->set_length(length);
+  self->set_resource(resource);
+  // Additionally make the object into an external symbol if the original string
+  // was a symbol to start with.
+  if (is_symbol) {
+    self->Hash();  // Force regeneration of the hash value.
+    // Now morph this external string into a external symbol.
+    self->set_map(ExternalTwoByteString::SymbolMap(length));
+  }
+
+  // Fill the remainder of the string with dead wood.
+  int new_size = this->Size();  // Byte size of the external String object.
+  Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size);
+  return true;
+}
+
+
+bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) {
+#ifdef DEBUG
+  {  // NOLINT (presubmit.py gets confused about if and braces)
+    // Assert that the resource and the string are equivalent.
+    ASSERT(static_cast<size_t>(this->length()) == resource->length());
+    SmartPointer<char> smart_chars = this->ToCString();
+    ASSERT(memcmp(*smart_chars,
+                  resource->data(),
+                  resource->length()*sizeof(**smart_chars)) == 0);
+  }
+#endif  // DEBUG
+
+  int size = this->Size();  // Byte size of the original string.
+  if (size < ExternalString::kSize) {
+    // The string is too small to fit an external String in its place. This can
+    // only happen for zero length strings.
+    return false;
+  }
+  ASSERT(size >= ExternalString::kSize);
+  bool is_symbol = this->IsSymbol();
+  int length = this->length();
+
+  // Morph the object to an external string by adjusting the map and
+  // reinitializing the fields.
+  this->set_map(ExternalAsciiString::StringMap(length));
+  ExternalAsciiString* self = ExternalAsciiString::cast(this);
+  self->set_length(length);
+  self->set_resource(resource);
+  // Additionally make the object into an external symbol if the original string
+  // was a symbol to start with.
+  if (is_symbol) {
+    self->Hash();  // Force regeneration of the hash value.
+    // Now morph this external string into a external symbol.
+    self->set_map(ExternalAsciiString::SymbolMap(length));
+  }
+
+  // Fill the remainder of the string with dead wood.
+  int new_size = this->Size();  // Byte size of the external String object.
+  Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size);
+  return true;
+}
+
+
+void String::StringShortPrint(StringStream* accumulator) {
+  int len = length();
+  if (len > kMaxMediumStringSize) {
+    accumulator->Add("<Very long string[%u]>", len);
+    return;
+  }
+
+  if (!LooksValid()) {
+    accumulator->Add("<Invalid String>");
+    return;
+  }
+
+  StringInputBuffer buf(this);
+
+  bool truncated = false;
+  if (len > kMaxShortPrintLength) {
+    len = kMaxShortPrintLength;
+    truncated = true;
+  }
+  bool ascii = true;
+  for (int i = 0; i < len; i++) {
+    int c = buf.GetNext();
+
+    if (c < 32 || c >= 127) {
+      ascii = false;
+    }
+  }
+  buf.Reset(this);
+  if (ascii) {
+    accumulator->Add("<String[%u]: ", length());
+    for (int i = 0; i < len; i++) {
+      accumulator->Put(buf.GetNext());
+    }
+    accumulator->Put('>');
+  } else {
+    // Backslash indicates that the string contains control
+    // characters and that backslashes are therefore escaped.
+    accumulator->Add("<String[%u]\\: ", length());
+    for (int i = 0; i < len; i++) {
+      int c = buf.GetNext();
+      if (c == '\n') {
+        accumulator->Add("\\n");
+      } else if (c == '\r') {
+        accumulator->Add("\\r");
+      } else if (c == '\\') {
+        accumulator->Add("\\\\");
+      } else if (c < 32 || c > 126) {
+        accumulator->Add("\\x%02x", c);
+      } else {
+        accumulator->Put(c);
+      }
+    }
+    if (truncated) {
+      accumulator->Put('.');
+      accumulator->Put('.');
+      accumulator->Put('.');
+    }
+    accumulator->Put('>');
+  }
+  return;
+}
+
+
+void JSObject::JSObjectShortPrint(StringStream* accumulator) {
+  switch (map()->instance_type()) {
+    case JS_ARRAY_TYPE: {
+      double length = JSArray::cast(this)->length()->Number();
+      accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length));
+      break;
+    }
+    case JS_REGEXP_TYPE: {
+      accumulator->Add("<JS RegExp>");
+      break;
+    }
+    case JS_FUNCTION_TYPE: {
+      Object* fun_name = JSFunction::cast(this)->shared()->name();
+      bool printed = false;
+      if (fun_name->IsString()) {
+        String* str = String::cast(fun_name);
+        if (str->length() > 0) {
+          accumulator->Add("<JS Function ");
+          accumulator->Put(str);
+          accumulator->Put('>');
+          printed = true;
+        }
+      }
+      if (!printed) {
+        accumulator->Add("<JS Function>");
+      }
+      break;
+    }
+    // All other JSObjects are rather similar to each other (JSObject,
+    // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
+    default: {
+      Object* constructor = map()->constructor();
+      bool printed = false;
+      if (constructor->IsHeapObject() &&
+          !Heap::Contains(HeapObject::cast(constructor))) {
+        accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
+      } else {
+        bool global_object = IsJSGlobalProxy();
+        if (constructor->IsJSFunction()) {
+          if (!Heap::Contains(JSFunction::cast(constructor)->shared())) {
+            accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
+          } else {
+            Object* constructor_name =
+                JSFunction::cast(constructor)->shared()->name();
+            if (constructor_name->IsString()) {
+              String* str = String::cast(constructor_name);
+              if (str->length() > 0) {
+                bool vowel = AnWord(str);
+                accumulator->Add("<%sa%s ",
+                       global_object ? "Global Object: " : "",
+                       vowel ? "n" : "");
+                accumulator->Put(str);
+                accumulator->Put('>');
+                printed = true;
+              }
+            }
+          }
+        }
+        if (!printed) {
+          accumulator->Add("<JS %sObject", global_object ? "Global " : "");
+        }
+      }
+      if (IsJSValue()) {
+        accumulator->Add(" value = ");
+        JSValue::cast(this)->value()->ShortPrint(accumulator);
+      }
+      accumulator->Put('>');
+      break;
+    }
+  }
+}
+
+
+void HeapObject::HeapObjectShortPrint(StringStream* accumulator) {
+  // if (!Heap::InNewSpace(this)) PrintF("*", this);
+  if (!Heap::Contains(this)) {
+    accumulator->Add("!!!INVALID POINTER!!!");
+    return;
+  }
+  if (!Heap::Contains(map())) {
+    accumulator->Add("!!!INVALID MAP!!!");
+    return;
+  }
+
+  accumulator->Add("%p ", this);
+
+  if (IsString()) {
+    String::cast(this)->StringShortPrint(accumulator);
+    return;
+  }
+  if (IsJSObject()) {
+    JSObject::cast(this)->JSObjectShortPrint(accumulator);
+    return;
+  }
+  switch (map()->instance_type()) {
+    case MAP_TYPE:
+      accumulator->Add("<Map>");
+      break;
+    case FIXED_ARRAY_TYPE:
+      accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length());
+      break;
+    case BYTE_ARRAY_TYPE:
+      accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length());
+      break;
+    case PIXEL_ARRAY_TYPE:
+      accumulator->Add("<PixelArray[%u]>", PixelArray::cast(this)->length());
+      break;
+    case SHARED_FUNCTION_INFO_TYPE:
+      accumulator->Add("<SharedFunctionInfo>");
+      break;
+#define MAKE_STRUCT_CASE(NAME, Name, name) \
+  case NAME##_TYPE:                        \
+    accumulator->Put('<');                 \
+    accumulator->Add(#Name);               \
+    accumulator->Put('>');                 \
+    break;
+  STRUCT_LIST(MAKE_STRUCT_CASE)
+#undef MAKE_STRUCT_CASE
+    case CODE_TYPE:
+      accumulator->Add("<Code>");
+      break;
+    case ODDBALL_TYPE: {
+      if (IsUndefined())
+        accumulator->Add("<undefined>");
+      else if (IsTheHole())
+        accumulator->Add("<the hole>");
+      else if (IsNull())
+        accumulator->Add("<null>");
+      else if (IsTrue())
+        accumulator->Add("<true>");
+      else if (IsFalse())
+        accumulator->Add("<false>");
+      else
+        accumulator->Add("<Odd Oddball>");
+      break;
+    }
+    case HEAP_NUMBER_TYPE:
+      accumulator->Add("<Number: ");
+      HeapNumber::cast(this)->HeapNumberPrint(accumulator);
+      accumulator->Put('>');
+      break;
+    case PROXY_TYPE:
+      accumulator->Add("<Proxy>");
+      break;
+    case JS_GLOBAL_PROPERTY_CELL_TYPE:
+      accumulator->Add("Cell for ");
+      JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator);
+      break;
+    default:
+      accumulator->Add("<Other heap object (%d)>", map()->instance_type());
+      break;
+  }
+}
+
+
+int HeapObject::SlowSizeFromMap(Map* map) {
+  // Avoid calling functions such as FixedArray::cast during GC, which
+  // read map pointer of this object again.
+  InstanceType instance_type = map->instance_type();
+  uint32_t type = static_cast<uint32_t>(instance_type);
+
+  if (instance_type < FIRST_NONSTRING_TYPE
+      && (StringShape(instance_type).IsSequential())) {
+    if ((type & kStringEncodingMask) == kAsciiStringTag) {
+      SeqAsciiString* seq_ascii_this = reinterpret_cast<SeqAsciiString*>(this);
+      return seq_ascii_this->SeqAsciiStringSize(instance_type);
+    } else {
+      SeqTwoByteString* self = reinterpret_cast<SeqTwoByteString*>(this);
+      return self->SeqTwoByteStringSize(instance_type);
+    }
+  }
+
+  switch (instance_type) {
+    case FIXED_ARRAY_TYPE:
+      return reinterpret_cast<FixedArray*>(this)->FixedArraySize();
+    case BYTE_ARRAY_TYPE:
+      return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
+    case CODE_TYPE:
+      return reinterpret_cast<Code*>(this)->CodeSize();
+    case MAP_TYPE:
+      return Map::kSize;
+    default:
+      return map->instance_size();
+  }
+}
+
+
+void HeapObject::Iterate(ObjectVisitor* v) {
+  // Handle header
+  IteratePointer(v, kMapOffset);
+  // Handle object body
+  Map* m = map();
+  IterateBody(m->instance_type(), SizeFromMap(m), v);
+}
+
+
+void HeapObject::IterateBody(InstanceType type, int object_size,
+                             ObjectVisitor* v) {
+  // Avoiding <Type>::cast(this) because it accesses the map pointer field.
+  // During GC, the map pointer field is encoded.
+  if (type < FIRST_NONSTRING_TYPE) {
+    switch (type & kStringRepresentationMask) {
+      case kSeqStringTag:
+        break;
+      case kConsStringTag:
+        reinterpret_cast<ConsString*>(this)->ConsStringIterateBody(v);
+        break;
+      case kSlicedStringTag:
+        reinterpret_cast<SlicedString*>(this)->SlicedStringIterateBody(v);
+        break;
+    }
+    return;
+  }
+
+  switch (type) {
+    case FIXED_ARRAY_TYPE:
+      reinterpret_cast<FixedArray*>(this)->FixedArrayIterateBody(v);
+      break;
+    case JS_OBJECT_TYPE:
+    case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
+    case JS_VALUE_TYPE:
+    case JS_ARRAY_TYPE:
+    case JS_REGEXP_TYPE:
+    case JS_FUNCTION_TYPE:
+    case JS_GLOBAL_PROXY_TYPE:
+    case JS_GLOBAL_OBJECT_TYPE:
+    case JS_BUILTINS_OBJECT_TYPE:
+      reinterpret_cast<JSObject*>(this)->JSObjectIterateBody(object_size, v);
+      break;
+    case ODDBALL_TYPE:
+      reinterpret_cast<Oddball*>(this)->OddballIterateBody(v);
+      break;
+    case PROXY_TYPE:
+      reinterpret_cast<Proxy*>(this)->ProxyIterateBody(v);
+      break;
+    case MAP_TYPE:
+      reinterpret_cast<Map*>(this)->MapIterateBody(v);
+      break;
+    case CODE_TYPE:
+      reinterpret_cast<Code*>(this)->CodeIterateBody(v);
+      break;
+    case JS_GLOBAL_PROPERTY_CELL_TYPE:
+      reinterpret_cast<JSGlobalPropertyCell*>(this)
+          ->JSGlobalPropertyCellIterateBody(v);
+      break;
+    case HEAP_NUMBER_TYPE:
+    case FILLER_TYPE:
+    case BYTE_ARRAY_TYPE:
+    case PIXEL_ARRAY_TYPE:
+      break;
+    case SHARED_FUNCTION_INFO_TYPE: {
+      SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(this);
+      shared->SharedFunctionInfoIterateBody(v);
+      break;
+    }
+#define MAKE_STRUCT_CASE(NAME, Name, name) \
+        case NAME##_TYPE:
+      STRUCT_LIST(MAKE_STRUCT_CASE)
+#undef MAKE_STRUCT_CASE
+      IterateStructBody(object_size, v);
+      break;
+    default:
+      PrintF("Unknown type: %d\n", type);
+      UNREACHABLE();
+  }
+}
+
+
+void HeapObject::IterateStructBody(int object_size, ObjectVisitor* v) {
+  IteratePointers(v, HeapObject::kHeaderSize, object_size);
+}
+
+
+Object* HeapNumber::HeapNumberToBoolean() {
+  // NaN, +0, and -0 should return the false object
+  switch (fpclassify(value())) {
+    case FP_NAN:  // fall through
+    case FP_ZERO: return Heap::false_value();
+    default: return Heap::true_value();
+  }
+}
+
+
+void HeapNumber::HeapNumberPrint() {
+  PrintF("%.16g", Number());
+}
+
+
+void HeapNumber::HeapNumberPrint(StringStream* accumulator) {
+  // The Windows version of vsnprintf can allocate when printing a %g string
+  // into a buffer that may not be big enough.  We don't want random memory
+  // allocation when producing post-crash stack traces, so we print into a
+  // buffer that is plenty big enough for any floating point number, then
+  // print that using vsnprintf (which may truncate but never allocate if
+  // there is no more space in the buffer).
+  EmbeddedVector<char, 100> buffer;
+  OS::SNPrintF(buffer, "%.16g", Number());
+  accumulator->Add("%s", buffer.start());
+}
+
+
+String* JSObject::class_name() {
+  if (IsJSFunction()) {
+    return Heap::function_class_symbol();
+  }
+  if (map()->constructor()->IsJSFunction()) {
+    JSFunction* constructor = JSFunction::cast(map()->constructor());
+    return String::cast(constructor->shared()->instance_class_name());
+  }
+  // If the constructor is not present, return "Object".
+  return Heap::Object_symbol();
+}
+
+
+String* JSObject::constructor_name() {
+  if (IsJSFunction()) {
+    return Heap::function_class_symbol();
+  }
+  if (map()->constructor()->IsJSFunction()) {
+    JSFunction* constructor = JSFunction::cast(map()->constructor());
+    String* name = String::cast(constructor->shared()->name());
+    return name->length() > 0 ? name : constructor->shared()->inferred_name();
+  }
+  // If the constructor is not present, return "Object".
+  return Heap::Object_symbol();
+}
+
+
+void JSObject::JSObjectIterateBody(int object_size, ObjectVisitor* v) {
+  // Iterate over all fields in the body. Assumes all are Object*.
+  IteratePointers(v, kPropertiesOffset, object_size);
+}
+
+
+Object* JSObject::AddFastPropertyUsingMap(Map* new_map,
+                                          String* name,
+                                          Object* value) {
+  int index = new_map->PropertyIndexFor(name);
+  if (map()->unused_property_fields() == 0) {
+    ASSERT(map()->unused_property_fields() == 0);
+    int new_unused = new_map->unused_property_fields();
+    Object* values =
+        properties()->CopySize(properties()->length() + new_unused + 1);
+    if (values->IsFailure()) return values;
+    set_properties(FixedArray::cast(values));
+  }
+  set_map(new_map);
+  return FastPropertyAtPut(index, value);
+}
+
+
+Object* JSObject::AddFastProperty(String* name,
+                                  Object* value,
+                                  PropertyAttributes attributes) {
+  // Normalize the object if the name is an actual string (not the
+  // hidden symbols) and is not a real identifier.
+  StringInputBuffer buffer(name);
+  if (!Scanner::IsIdentifier(&buffer) && name != Heap::hidden_symbol()) {
+    Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+    if (obj->IsFailure()) return obj;
+    return AddSlowProperty(name, value, attributes);
+  }
+
+  DescriptorArray* old_descriptors = map()->instance_descriptors();
+  // Compute the new index for new field.
+  int index = map()->NextFreePropertyIndex();
+
+  // Allocate new instance descriptors with (name, index) added
+  FieldDescriptor new_field(name, index, attributes);
+  Object* new_descriptors =
+      old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS);
+  if (new_descriptors->IsFailure()) return new_descriptors;
+
+  // Only allow map transition if the object's map is NOT equal to the
+  // global object_function's map and there is not a transition for name.
+  bool allow_map_transition =
+        !old_descriptors->Contains(name) &&
+        (Top::context()->global_context()->object_function()->map() != map());
+
+  ASSERT(index < map()->inobject_properties() ||
+         (index - map()->inobject_properties()) < properties()->length() ||
+         map()->unused_property_fields() == 0);
+  // Allocate a new map for the object.
+  Object* r = map()->CopyDropDescriptors();
+  if (r->IsFailure()) return r;
+  Map* new_map = Map::cast(r);
+  if (allow_map_transition) {
+    // Allocate new instance descriptors for the old map with map transition.
+    MapTransitionDescriptor d(name, Map::cast(new_map), attributes);
+    Object* r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS);
+    if (r->IsFailure()) return r;
+    old_descriptors = DescriptorArray::cast(r);
+  }
+
+  if (map()->unused_property_fields() == 0) {
+    if (properties()->length() > kMaxFastProperties) {
+      Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+      if (obj->IsFailure()) return obj;
+      return AddSlowProperty(name, value, attributes);
+    }
+    // Make room for the new value
+    Object* values =
+        properties()->CopySize(properties()->length() + kFieldsAdded);
+    if (values->IsFailure()) return values;
+    set_properties(FixedArray::cast(values));
+    new_map->set_unused_property_fields(kFieldsAdded - 1);
+  } else {
+    new_map->set_unused_property_fields(map()->unused_property_fields() - 1);
+  }
+  // We have now allocated all the necessary objects.
+  // All the changes can be applied at once, so they are atomic.
+  map()->set_instance_descriptors(old_descriptors);
+  new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
+  set_map(new_map);
+  return FastPropertyAtPut(index, value);
+}
+
+
+Object* JSObject::AddConstantFunctionProperty(String* name,
+                                              JSFunction* function,
+                                              PropertyAttributes attributes) {
+  // Allocate new instance descriptors with (name, function) added
+  ConstantFunctionDescriptor d(name, function, attributes);
+  Object* new_descriptors =
+      map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS);
+  if (new_descriptors->IsFailure()) return new_descriptors;
+
+  // Allocate a new map for the object.
+  Object* new_map = map()->CopyDropDescriptors();
+  if (new_map->IsFailure()) return new_map;
+
+  DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors);
+  Map::cast(new_map)->set_instance_descriptors(descriptors);
+  Map* old_map = map();
+  set_map(Map::cast(new_map));
+
+  // If the old map is the global object map (from new Object()),
+  // then transitions are not added to it, so we are done.
+  if (old_map == Top::context()->global_context()->object_function()->map()) {
+    return function;
+  }
+
+  // Do not add CONSTANT_TRANSITIONS to global objects
+  if (IsGlobalObject()) {
+    return function;
+  }
+
+  // Add a CONSTANT_TRANSITION descriptor to the old map,
+  // so future assignments to this property on other objects
+  // of the same type will create a normal field, not a constant function.
+  // Don't do this for special properties, with non-trival attributes.
+  if (attributes != NONE) {
+    return function;
+  }
+  ConstTransitionDescriptor mark(name);
+  new_descriptors =
+      old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS);
+  if (new_descriptors->IsFailure()) {
+    return function;  // We have accomplished the main goal, so return success.
+  }
+  old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
+
+  return function;
+}
+
+
+// Add property in slow mode
+Object* JSObject::AddSlowProperty(String* name,
+                                  Object* value,
+                                  PropertyAttributes attributes) {
+  ASSERT(!HasFastProperties());
+  StringDictionary* dict = property_dictionary();
+  Object* store_value = value;
+  if (IsGlobalObject()) {
+    // In case name is an orphaned property reuse the cell.
+    int entry = dict->FindEntry(name);
+    if (entry != StringDictionary::kNotFound) {
+      store_value = dict->ValueAt(entry);
+      JSGlobalPropertyCell::cast(store_value)->set_value(value);
+      // Assign an enumeration index to the property and update
+      // SetNextEnumerationIndex.
+      int index = dict->NextEnumerationIndex();
+      PropertyDetails details = PropertyDetails(attributes, NORMAL, index);
+      dict->SetNextEnumerationIndex(index + 1);
+      dict->SetEntry(entry, name, store_value, details);
+      return value;
+    }
+    store_value = Heap::AllocateJSGlobalPropertyCell(value);
+    if (store_value->IsFailure()) return store_value;
+    JSGlobalPropertyCell::cast(store_value)->set_value(value);
+  }
+  PropertyDetails details = PropertyDetails(attributes, NORMAL);
+  Object* result = dict->Add(name, store_value, details);
+  if (result->IsFailure()) return result;
+  if (dict != result) set_properties(StringDictionary::cast(result));
+  return value;
+}
+
+
+Object* JSObject::AddProperty(String* name,
+                              Object* value,
+                              PropertyAttributes attributes) {
+  ASSERT(!IsJSGlobalProxy());
+  if (HasFastProperties()) {
+    // Ensure the descriptor array does not get too big.
+    if (map()->instance_descriptors()->number_of_descriptors() <
+        DescriptorArray::kMaxNumberOfDescriptors) {
+      if (value->IsJSFunction()) {
+        return AddConstantFunctionProperty(name,
+                                           JSFunction::cast(value),
+                                           attributes);
+      } else {
+        return AddFastProperty(name, value, attributes);
+      }
+    } else {
+      // Normalize the object to prevent very large instance descriptors.
+      // This eliminates unwanted N^2 allocation and lookup behavior.
+      Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+      if (obj->IsFailure()) return obj;
+    }
+  }
+  return AddSlowProperty(name, value, attributes);
+}
+
+
+Object* JSObject::SetPropertyPostInterceptor(String* name,
+                                             Object* value,
+                                             PropertyAttributes attributes) {
+  // Check local property, ignore interceptor.
+  LookupResult result;
+  LocalLookupRealNamedProperty(name, &result);
+  if (result.IsValid()) return SetProperty(&result, name, value, attributes);
+  // Add real property.
+  return AddProperty(name, value, attributes);
+}
+
+
+Object* JSObject::ReplaceSlowProperty(String* name,
+                                       Object* value,
+                                       PropertyAttributes attributes) {
+  StringDictionary* dictionary = property_dictionary();
+  int old_index = dictionary->FindEntry(name);
+  int new_enumeration_index = 0;  // 0 means "Use the next available index."
+  if (old_index != -1) {
+    // All calls to ReplaceSlowProperty have had all transitions removed.
+    ASSERT(!dictionary->DetailsAt(old_index).IsTransition());
+    new_enumeration_index = dictionary->DetailsAt(old_index).index();
+  }
+
+  PropertyDetails new_details(attributes, NORMAL, new_enumeration_index);
+  return SetNormalizedProperty(name, value, new_details);
+}
+
+Object* JSObject::ConvertDescriptorToFieldAndMapTransition(
+    String* name,
+    Object* new_value,
+    PropertyAttributes attributes) {
+  Map* old_map = map();
+  Object* result = ConvertDescriptorToField(name, new_value, attributes);
+  if (result->IsFailure()) return result;
+  // If we get to this point we have succeeded - do not return failure
+  // after this point.  Later stuff is optional.
+  if (!HasFastProperties()) {
+    return result;
+  }
+  // Do not add transitions to the map of "new Object()".
+  if (map() == Top::context()->global_context()->object_function()->map()) {
+    return result;
+  }
+
+  MapTransitionDescriptor transition(name,
+                                     map(),
+                                     attributes);
+  Object* new_descriptors =
+      old_map->instance_descriptors()->
+          CopyInsert(&transition, KEEP_TRANSITIONS);
+  if (new_descriptors->IsFailure()) return result;  // Yes, return _result_.
+  old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
+  return result;
+}
+
+
+Object* JSObject::ConvertDescriptorToField(String* name,
+                                           Object* new_value,
+                                           PropertyAttributes attributes) {
+  if (map()->unused_property_fields() == 0 &&
+      properties()->length() > kMaxFastProperties) {
+    Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+    if (obj->IsFailure()) return obj;
+    return ReplaceSlowProperty(name, new_value, attributes);
+  }
+
+  int index = map()->NextFreePropertyIndex();
+  FieldDescriptor new_field(name, index, attributes);
+  // Make a new DescriptorArray replacing an entry with FieldDescriptor.
+  Object* descriptors_unchecked = map()->instance_descriptors()->
+      CopyInsert(&new_field, REMOVE_TRANSITIONS);
+  if (descriptors_unchecked->IsFailure()) return descriptors_unchecked;
+  DescriptorArray* new_descriptors =
+      DescriptorArray::cast(descriptors_unchecked);
+
+  // Make a new map for the object.
+  Object* new_map_unchecked = map()->CopyDropDescriptors();
+  if (new_map_unchecked->IsFailure()) return new_map_unchecked;
+  Map* new_map = Map::cast(new_map_unchecked);
+  new_map->set_instance_descriptors(new_descriptors);
+
+  // Make new properties array if necessary.
+  FixedArray* new_properties = 0;  // Will always be NULL or a valid pointer.
+  int new_unused_property_fields = map()->unused_property_fields() - 1;
+  if (map()->unused_property_fields() == 0) {
+     new_unused_property_fields = kFieldsAdded - 1;
+     Object* new_properties_unchecked =
+        properties()->CopySize(properties()->length() + kFieldsAdded);
+    if (new_properties_unchecked->IsFailure()) return new_properties_unchecked;
+    new_properties = FixedArray::cast(new_properties_unchecked);
+  }
+
+  // Update pointers to commit changes.
+  // Object points to the new map.
+  new_map->set_unused_property_fields(new_unused_property_fields);
+  set_map(new_map);
+  if (new_properties) {
+    set_properties(FixedArray::cast(new_properties));
+  }
+  return FastPropertyAtPut(index, new_value);
+}
+
+
+
+Object* JSObject::SetPropertyWithInterceptor(String* name,
+                                             Object* value,
+                                             PropertyAttributes attributes) {
+  HandleScope scope;
+  Handle<JSObject> this_handle(this);
+  Handle<String> name_handle(name);
+  Handle<Object> value_handle(value);
+  Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
+  if (!interceptor->setter()->IsUndefined()) {
+    LOG(ApiNamedPropertyAccess("interceptor-named-set", this, name));
+    CustomArguments args(interceptor->data(), this, this);
+    v8::AccessorInfo info(args.end());
+    v8::NamedPropertySetter setter =
+        v8::ToCData<v8::NamedPropertySetter>(interceptor->setter());
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      Handle<Object> value_unhole(value->IsTheHole() ?
+                                  Heap::undefined_value() :
+                                  value);
+      result = setter(v8::Utils::ToLocal(name_handle),
+                      v8::Utils::ToLocal(value_unhole),
+                      info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (!result.IsEmpty()) return *value_handle;
+  }
+  Object* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle,
+                                                               *value_handle,
+                                                               attributes);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return raw_result;
+}
+
+
+Object* JSObject::SetProperty(String* name,
+                              Object* value,
+                              PropertyAttributes attributes) {
+  LookupResult result;
+  LocalLookup(name, &result);
+  return SetProperty(&result, name, value, attributes);
+}
+
+
+Object* JSObject::SetPropertyWithCallback(Object* structure,
+                                          String* name,
+                                          Object* value,
+                                          JSObject* holder) {
+  HandleScope scope;
+
+  // We should never get here to initialize a const with the hole
+  // value since a const declaration would conflict with the setter.
+  ASSERT(!value->IsTheHole());
+  Handle<Object> value_handle(value);
+
+  // To accommodate both the old and the new api we switch on the
+  // data structure used to store the callbacks.  Eventually proxy
+  // callbacks should be phased out.
+  if (structure->IsProxy()) {
+    AccessorDescriptor* callback =
+        reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
+    Object* obj = (callback->setter)(this,  value, callback->data);
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (obj->IsFailure()) return obj;
+    return *value_handle;
+  }
+
+  if (structure->IsAccessorInfo()) {
+    // api style callbacks
+    AccessorInfo* data = AccessorInfo::cast(structure);
+    Object* call_obj = data->setter();
+    v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
+    if (call_fun == NULL) return value;
+    Handle<String> key(name);
+    LOG(ApiNamedPropertyAccess("store", this, name));
+    CustomArguments args(data->data(), this, JSObject::cast(holder));
+    v8::AccessorInfo info(args.end());
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      call_fun(v8::Utils::ToLocal(key),
+               v8::Utils::ToLocal(value_handle),
+               info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    return *value_handle;
+  }
+
+  if (structure->IsFixedArray()) {
+    Object* setter = FixedArray::cast(structure)->get(kSetterIndex);
+    if (setter->IsJSFunction()) {
+     return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
+    } else {
+      Handle<String> key(name);
+      Handle<Object> holder_handle(holder);
+      Handle<Object> args[2] = { key, holder_handle };
+      return Top::Throw(*Factory::NewTypeError("no_setter_in_callback",
+                                               HandleVector(args, 2)));
+    }
+  }
+
+  UNREACHABLE();
+  return 0;
+}
+
+
+Object* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter,
+                                               Object* value) {
+  Handle<Object> value_handle(value);
+  Handle<JSFunction> fun(JSFunction::cast(setter));
+  Handle<JSObject> self(this);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+  // Handle stepping into a setter if step into is active.
+  if (Debug::StepInActive()) {
+    Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false);
+  }
+#endif
+  bool has_pending_exception;
+  Object** argv[] = { value_handle.location() };
+  Execution::Call(fun, self, 1, argv, &has_pending_exception);
+  // Check for pending exception and return the result.
+  if (has_pending_exception) return Failure::Exception();
+  return *value_handle;
+}
+
+
+void JSObject::LookupCallbackSetterInPrototypes(String* name,
+                                                LookupResult* result) {
+  for (Object* pt = GetPrototype();
+       pt != Heap::null_value();
+       pt = pt->GetPrototype()) {
+    JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
+    if (result->IsValid()) {
+      if (!result->IsTransitionType() && result->IsReadOnly()) {
+        result->NotFound();
+        return;
+      }
+      if (result->type() == CALLBACKS) {
+        return;
+      }
+    }
+  }
+  result->NotFound();
+}
+
+
+Object* JSObject::LookupCallbackSetterInPrototypes(uint32_t index) {
+  for (Object* pt = GetPrototype();
+       pt != Heap::null_value();
+       pt = pt->GetPrototype()) {
+    if (!JSObject::cast(pt)->HasDictionaryElements()) {
+        continue;
+    }
+    NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary();
+    int entry = dictionary->FindEntry(index);
+    if (entry != NumberDictionary::kNotFound) {
+      Object* element = dictionary->ValueAt(entry);
+      PropertyDetails details = dictionary->DetailsAt(entry);
+      if (details.type() == CALLBACKS) {
+        // Only accessors allowed as elements.
+        return FixedArray::cast(element)->get(kSetterIndex);
+      }
+    }
+  }
+  return Heap::undefined_value();
+}
+
+
+void JSObject::LookupInDescriptor(String* name, LookupResult* result) {
+  DescriptorArray* descriptors = map()->instance_descriptors();
+  int number = DescriptorLookupCache::Lookup(descriptors, name);
+  if (number == DescriptorLookupCache::kAbsent) {
+    number = descriptors->Search(name);
+    DescriptorLookupCache::Update(descriptors, name, number);
+  }
+  if (number != DescriptorArray::kNotFound) {
+    result->DescriptorResult(this, descriptors->GetDetails(number), number);
+  } else {
+    result->NotFound();
+  }
+}
+
+
+void JSObject::LocalLookupRealNamedProperty(String* name,
+                                            LookupResult* result) {
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return result->NotFound();
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result);
+  }
+
+  if (HasFastProperties()) {
+    LookupInDescriptor(name, result);
+    if (result->IsValid()) {
+      ASSERT(result->holder() == this && result->type() != NORMAL);
+      // Disallow caching for uninitialized constants. These can only
+      // occur as fields.
+      if (result->IsReadOnly() && result->type() == FIELD &&
+          FastPropertyAt(result->GetFieldIndex())->IsTheHole()) {
+        result->DisallowCaching();
+      }
+      return;
+    }
+  } else {
+    int entry = property_dictionary()->FindEntry(name);
+    if (entry != StringDictionary::kNotFound) {
+      Object* value = property_dictionary()->ValueAt(entry);
+      if (IsGlobalObject()) {
+        PropertyDetails d = property_dictionary()->DetailsAt(entry);
+        if (d.IsDeleted()) {
+          result->NotFound();
+          return;
+        }
+        value = JSGlobalPropertyCell::cast(value)->value();
+        ASSERT(result->IsLoaded());
+      }
+      // Make sure to disallow caching for uninitialized constants
+      // found in the dictionary-mode objects.
+      if (value->IsTheHole()) result->DisallowCaching();
+      result->DictionaryResult(this, entry);
+      return;
+    }
+    // Slow case object skipped during lookup. Do not use inline caching.
+    if (!IsGlobalObject()) result->DisallowCaching();
+  }
+  result->NotFound();
+}
+
+
+void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) {
+  LocalLookupRealNamedProperty(name, result);
+  if (result->IsProperty()) return;
+
+  LookupRealNamedPropertyInPrototypes(name, result);
+}
+
+
+void JSObject::LookupRealNamedPropertyInPrototypes(String* name,
+                                                   LookupResult* result) {
+  for (Object* pt = GetPrototype();
+       pt != Heap::null_value();
+       pt = JSObject::cast(pt)->GetPrototype()) {
+    JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
+    if (result->IsValid()) {
+      switch (result->type()) {
+        case NORMAL:
+        case FIELD:
+        case CONSTANT_FUNCTION:
+        case CALLBACKS:
+          return;
+        default: break;
+      }
+    }
+  }
+  result->NotFound();
+}
+
+
+// We only need to deal with CALLBACKS and INTERCEPTORS
+Object* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result,
+                                                   String* name,
+                                                   Object* value) {
+  if (!result->IsProperty()) {
+    LookupCallbackSetterInPrototypes(name, result);
+  }
+
+  if (result->IsProperty()) {
+    if (!result->IsReadOnly()) {
+      switch (result->type()) {
+        case CALLBACKS: {
+          Object* obj = result->GetCallbackObject();
+          if (obj->IsAccessorInfo()) {
+            AccessorInfo* info = AccessorInfo::cast(obj);
+            if (info->all_can_write()) {
+              return SetPropertyWithCallback(result->GetCallbackObject(),
+                                             name,
+                                             value,
+                                             result->holder());
+            }
+          }
+          break;
+        }
+        case INTERCEPTOR: {
+          // Try lookup real named properties. Note that only property can be
+          // set is callbacks marked as ALL_CAN_WRITE on the prototype chain.
+          LookupResult r;
+          LookupRealNamedProperty(name, &r);
+          if (r.IsProperty()) {
+            return SetPropertyWithFailedAccessCheck(&r, name, value);
+          }
+          break;
+        }
+        default: {
+          break;
+        }
+      }
+    }
+  }
+
+  Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
+  return value;
+}
+
+
+Object* JSObject::SetProperty(LookupResult* result,
+                              String* name,
+                              Object* value,
+                              PropertyAttributes attributes) {
+  // Make sure that the top context does not change when doing callbacks or
+  // interceptor calls.
+  AssertNoContextChange ncc;
+
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded()
+      && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
+    return SetPropertyWithFailedAccessCheck(result, name, value);
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return value;
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->SetProperty(result, name, value, attributes);
+  }
+
+  if (!result->IsProperty() && !IsJSContextExtensionObject()) {
+    // We could not find a local property so let's check whether there is an
+    // accessor that wants to handle the property.
+    LookupResult accessor_result;
+    LookupCallbackSetterInPrototypes(name, &accessor_result);
+    if (accessor_result.IsValid()) {
+      return SetPropertyWithCallback(accessor_result.GetCallbackObject(),
+                                     name,
+                                     value,
+                                     accessor_result.holder());
+    }
+  }
+  if (result->IsNotFound()) {
+    return AddProperty(name, value, attributes);
+  }
+  if (!result->IsLoaded()) {
+    return SetLazyProperty(result, name, value, attributes);
+  }
+  if (result->IsReadOnly() && result->IsProperty()) return value;
+  // This is a real property that is not read-only, or it is a
+  // transition or null descriptor and there are no setters in the prototypes.
+  switch (result->type()) {
+    case NORMAL:
+      return SetNormalizedProperty(result, value);
+    case FIELD:
+      return FastPropertyAtPut(result->GetFieldIndex(), value);
+    case MAP_TRANSITION:
+      if (attributes == result->GetAttributes()) {
+        // Only use map transition if the attributes match.
+        return AddFastPropertyUsingMap(result->GetTransitionMap(),
+                                       name,
+                                       value);
+      }
+      return ConvertDescriptorToField(name, value, attributes);
+    case CONSTANT_FUNCTION:
+      // Only replace the function if necessary.
+      if (value == result->GetConstantFunction()) return value;
+      // Preserve the attributes of this existing property.
+      attributes = result->GetAttributes();
+      return ConvertDescriptorToField(name, value, attributes);
+    case CALLBACKS:
+      return SetPropertyWithCallback(result->GetCallbackObject(),
+                                     name,
+                                     value,
+                                     result->holder());
+    case INTERCEPTOR:
+      return SetPropertyWithInterceptor(name, value, attributes);
+    case CONSTANT_TRANSITION:
+      // Replace with a MAP_TRANSITION to a new map with a FIELD, even
+      // if the value is a function.
+      return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
+    case NULL_DESCRIPTOR:
+      return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
+    default:
+      UNREACHABLE();
+  }
+  UNREACHABLE();
+  return value;
+}
+
+
+// Set a real local property, even if it is READ_ONLY.  If the property is not
+// present, add it with attributes NONE.  This code is an exact clone of
+// SetProperty, with the check for IsReadOnly and the check for a
+// callback setter removed.  The two lines looking up the LookupResult
+// result are also added.  If one of the functions is changed, the other
+// should be.
+Object* JSObject::IgnoreAttributesAndSetLocalProperty(
+    String* name,
+    Object* value,
+    PropertyAttributes attributes) {
+  // Make sure that the top context does not change when doing callbacks or
+  // interceptor calls.
+  AssertNoContextChange ncc;
+  // ADDED TO CLONE
+  LookupResult result_struct;
+  LocalLookup(name, &result_struct);
+  LookupResult* result = &result_struct;
+  // END ADDED TO CLONE
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded()
+    && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
+    return SetPropertyWithFailedAccessCheck(result, name, value);
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return value;
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->IgnoreAttributesAndSetLocalProperty(
+        name,
+        value,
+        attributes);
+  }
+
+  // Check for accessor in prototype chain removed here in clone.
+  if (result->IsNotFound()) {
+    return AddProperty(name, value, attributes);
+  }
+  if (!result->IsLoaded()) {
+    return SetLazyProperty(result, name, value, attributes);
+  }
+  // Check of IsReadOnly removed from here in clone.
+  switch (result->type()) {
+    case NORMAL:
+      return SetNormalizedProperty(result, value);
+    case FIELD:
+      return FastPropertyAtPut(result->GetFieldIndex(), value);
+    case MAP_TRANSITION:
+      if (attributes == result->GetAttributes()) {
+        // Only use map transition if the attributes match.
+        return AddFastPropertyUsingMap(result->GetTransitionMap(),
+                                       name,
+                                       value);
+      }
+      return ConvertDescriptorToField(name, value, attributes);
+    case CONSTANT_FUNCTION:
+      // Only replace the function if necessary.
+      if (value == result->GetConstantFunction()) return value;
+      // Preserve the attributes of this existing property.
+      attributes = result->GetAttributes();
+      return ConvertDescriptorToField(name, value, attributes);
+    case CALLBACKS:
+    case INTERCEPTOR:
+      // Override callback in clone
+      return ConvertDescriptorToField(name, value, attributes);
+    case CONSTANT_TRANSITION:
+      // Replace with a MAP_TRANSITION to a new map with a FIELD, even
+      // if the value is a function.
+      return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
+    case NULL_DESCRIPTOR:
+      return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
+    default:
+      UNREACHABLE();
+  }
+  UNREACHABLE();
+  return value;
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttributePostInterceptor(
+      JSObject* receiver,
+      String* name,
+      bool continue_search) {
+  // Check local property, ignore interceptor.
+  LookupResult result;
+  LocalLookupRealNamedProperty(name, &result);
+  if (result.IsProperty()) return result.GetAttributes();
+
+  if (continue_search) {
+    // Continue searching via the prototype chain.
+    Object* pt = GetPrototype();
+    if (pt != Heap::null_value()) {
+      return JSObject::cast(pt)->
+        GetPropertyAttributeWithReceiver(receiver, name);
+    }
+  }
+  return ABSENT;
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor(
+      JSObject* receiver,
+      String* name,
+      bool continue_search) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
+  Handle<JSObject> receiver_handle(receiver);
+  Handle<JSObject> holder_handle(this);
+  Handle<String> name_handle(name);
+  CustomArguments args(interceptor->data(), receiver, this);
+  v8::AccessorInfo info(args.end());
+  if (!interceptor->query()->IsUndefined()) {
+    v8::NamedPropertyQuery query =
+        v8::ToCData<v8::NamedPropertyQuery>(interceptor->query());
+    LOG(ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name));
+    v8::Handle<v8::Boolean> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = query(v8::Utils::ToLocal(name_handle), info);
+    }
+    if (!result.IsEmpty()) {
+      // Convert the boolean result to a property attribute
+      // specification.
+      return result->IsTrue() ? NONE : ABSENT;
+    }
+  } else if (!interceptor->getter()->IsUndefined()) {
+    v8::NamedPropertyGetter getter =
+        v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
+    LOG(ApiNamedPropertyAccess("interceptor-named-get-has", this, name));
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = getter(v8::Utils::ToLocal(name_handle), info);
+    }
+    if (!result.IsEmpty()) return NONE;
+  }
+  return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle,
+                                                            *name_handle,
+                                                            continue_search);
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttributeWithReceiver(
+      JSObject* receiver,
+      String* key) {
+  uint32_t index = 0;
+  if (key->AsArrayIndex(&index)) {
+    if (HasElementWithReceiver(receiver, index)) return NONE;
+    return ABSENT;
+  }
+  // Named property.
+  LookupResult result;
+  Lookup(key, &result);
+  return GetPropertyAttribute(receiver, &result, key, true);
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver,
+                                                  LookupResult* result,
+                                                  String* name,
+                                                  bool continue_search) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
+    return GetPropertyAttributeWithFailedAccessCheck(receiver,
+                                                     result,
+                                                     name,
+                                                     continue_search);
+  }
+  if (result->IsValid()) {
+    switch (result->type()) {
+      case NORMAL:  // fall through
+      case FIELD:
+      case CONSTANT_FUNCTION:
+      case CALLBACKS:
+        return result->GetAttributes();
+      case INTERCEPTOR:
+        return result->holder()->
+          GetPropertyAttributeWithInterceptor(receiver, name, continue_search);
+      case MAP_TRANSITION:
+      case CONSTANT_TRANSITION:
+      case NULL_DESCRIPTOR:
+        return ABSENT;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+  return ABSENT;
+}
+
+
+PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) {
+  // Check whether the name is an array index.
+  uint32_t index = 0;
+  if (name->AsArrayIndex(&index)) {
+    if (HasLocalElement(index)) return NONE;
+    return ABSENT;
+  }
+  // Named property.
+  LookupResult result;
+  LocalLookup(name, &result);
+  return GetPropertyAttribute(this, &result, name, false);
+}
+
+
+Object* JSObject::NormalizeProperties(PropertyNormalizationMode mode,
+                                      int expected_additional_properties) {
+  if (!HasFastProperties()) return this;
+
+  // The global object is always normalized.
+  ASSERT(!IsGlobalObject());
+
+  // Allocate new content.
+  int property_count = map()->NumberOfDescribedProperties();
+  if (expected_additional_properties > 0) {
+    property_count += expected_additional_properties;
+  } else {
+    property_count += 2;  // Make space for two more properties.
+  }
+  Object* obj =
+      StringDictionary::Allocate(property_count * 2);
+  if (obj->IsFailure()) return obj;
+  StringDictionary* dictionary = StringDictionary::cast(obj);
+
+  DescriptorArray* descs = map()->instance_descriptors();
+  for (int i = 0; i < descs->number_of_descriptors(); i++) {
+    PropertyDetails details = descs->GetDetails(i);
+    switch (details.type()) {
+      case CONSTANT_FUNCTION: {
+        PropertyDetails d =
+            PropertyDetails(details.attributes(), NORMAL, details.index());
+        Object* value = descs->GetConstantFunction(i);
+        Object* result = dictionary->Add(descs->GetKey(i), value, d);
+        if (result->IsFailure()) return result;
+        dictionary = StringDictionary::cast(result);
+        break;
+      }
+      case FIELD: {
+        PropertyDetails d =
+            PropertyDetails(details.attributes(), NORMAL, details.index());
+        Object* value = FastPropertyAt(descs->GetFieldIndex(i));
+        Object* result = dictionary->Add(descs->GetKey(i), value, d);
+        if (result->IsFailure()) return result;
+        dictionary = StringDictionary::cast(result);
+        break;
+      }
+      case CALLBACKS: {
+        PropertyDetails d =
+            PropertyDetails(details.attributes(), CALLBACKS, details.index());
+        Object* value = descs->GetCallbacksObject(i);
+        Object* result = dictionary->Add(descs->GetKey(i), value, d);
+        if (result->IsFailure()) return result;
+        dictionary = StringDictionary::cast(result);
+        break;
+      }
+      case MAP_TRANSITION:
+      case CONSTANT_TRANSITION:
+      case NULL_DESCRIPTOR:
+      case INTERCEPTOR:
+        break;
+      default:
+        UNREACHABLE();
+    }
+  }
+
+  // Copy the next enumeration index from instance descriptor.
+  int index = map()->instance_descriptors()->NextEnumerationIndex();
+  dictionary->SetNextEnumerationIndex(index);
+
+  // Allocate new map.
+  obj = map()->CopyDropDescriptors();
+  if (obj->IsFailure()) return obj;
+  Map* new_map = Map::cast(obj);
+
+  // Clear inobject properties if needed by adjusting the instance size and
+  // putting in a filler object instead of the inobject properties.
+  if (mode == CLEAR_INOBJECT_PROPERTIES && map()->inobject_properties() > 0) {
+    int instance_size_delta = map()->inobject_properties() * kPointerSize;
+    int new_instance_size = map()->instance_size() - instance_size_delta;
+    new_map->set_inobject_properties(0);
+    new_map->set_instance_size(new_instance_size);
+    Heap::CreateFillerObjectAt(this->address() + new_instance_size,
+                               instance_size_delta);
+  }
+  new_map->set_unused_property_fields(0);
+
+  // We have now successfully allocated all the necessary objects.
+  // Changes can now be made with the guarantee that all of them take effect.
+  set_map(new_map);
+  map()->set_instance_descriptors(Heap::empty_descriptor_array());
+
+  set_properties(dictionary);
+
+  Counters::props_to_dictionary.Increment();
+
+#ifdef DEBUG
+  if (FLAG_trace_normalization) {
+    PrintF("Object properties have been normalized:\n");
+    Print();
+  }
+#endif
+  return this;
+}
+
+
+Object* JSObject::TransformToFastProperties(int unused_property_fields) {
+  if (HasFastProperties()) return this;
+  ASSERT(!IsGlobalObject());
+  return property_dictionary()->
+      TransformPropertiesToFastFor(this, unused_property_fields);
+}
+
+
+Object* JSObject::NormalizeElements() {
+  ASSERT(!HasPixelElements());
+  if (HasDictionaryElements()) return this;
+
+  // Get number of entries.
+  FixedArray* array = FixedArray::cast(elements());
+
+  // Compute the effective length.
+  int length = IsJSArray() ?
+               Smi::cast(JSArray::cast(this)->length())->value() :
+               array->length();
+  Object* obj = NumberDictionary::Allocate(length);
+  if (obj->IsFailure()) return obj;
+  NumberDictionary* dictionary = NumberDictionary::cast(obj);
+  // Copy entries.
+  for (int i = 0; i < length; i++) {
+    Object* value = array->get(i);
+    if (!value->IsTheHole()) {
+      PropertyDetails details = PropertyDetails(NONE, NORMAL);
+      Object* result = dictionary->AddNumberEntry(i, array->get(i), details);
+      if (result->IsFailure()) return result;
+      dictionary = NumberDictionary::cast(result);
+    }
+  }
+  // Switch to using the dictionary as the backing storage for elements.
+  set_elements(dictionary);
+
+  Counters::elements_to_dictionary.Increment();
+
+#ifdef DEBUG
+  if (FLAG_trace_normalization) {
+    PrintF("Object elements have been normalized:\n");
+    Print();
+  }
+#endif
+
+  return this;
+}
+
+
+Object* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) {
+  // Check local property, ignore interceptor.
+  LookupResult result;
+  LocalLookupRealNamedProperty(name, &result);
+  if (!result.IsValid()) return Heap::true_value();
+
+  // Normalize object if needed.
+  Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+  if (obj->IsFailure()) return obj;
+
+  return DeleteNormalizedProperty(name, mode);
+}
+
+
+Object* JSObject::DeletePropertyWithInterceptor(String* name) {
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
+  Handle<String> name_handle(name);
+  Handle<JSObject> this_handle(this);
+  if (!interceptor->deleter()->IsUndefined()) {
+    v8::NamedPropertyDeleter deleter =
+        v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter());
+    LOG(ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name));
+    CustomArguments args(interceptor->data(), this, this);
+    v8::AccessorInfo info(args.end());
+    v8::Handle<v8::Boolean> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = deleter(v8::Utils::ToLocal(name_handle), info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (!result.IsEmpty()) {
+      ASSERT(result->IsBoolean());
+      return *v8::Utils::OpenHandle(*result);
+    }
+  }
+  Object* raw_result =
+      this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return raw_result;
+}
+
+
+Object* JSObject::DeleteElementPostInterceptor(uint32_t index,
+                                               DeleteMode mode) {
+  ASSERT(!HasPixelElements());
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+      static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
+      static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      if (index < length) {
+        FixedArray::cast(elements())->set_the_hole(index);
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = element_dictionary();
+      int entry = dictionary->FindEntry(index);
+      if (entry != NumberDictionary::kNotFound) {
+        return dictionary->DeleteProperty(entry, mode);
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  return Heap::true_value();
+}
+
+
+Object* JSObject::DeleteElementWithInterceptor(uint32_t index) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
+  if (interceptor->deleter()->IsUndefined()) return Heap::false_value();
+  v8::IndexedPropertyDeleter deleter =
+      v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter());
+  Handle<JSObject> this_handle(this);
+  LOG(ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index));
+  CustomArguments args(interceptor->data(), this, this);
+  v8::AccessorInfo info(args.end());
+  v8::Handle<v8::Boolean> result;
+  {
+    // Leaving JavaScript.
+    VMState state(EXTERNAL);
+    result = deleter(index, info);
+  }
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  if (!result.IsEmpty()) {
+    ASSERT(result->IsBoolean());
+    return *v8::Utils::OpenHandle(*result);
+  }
+  Object* raw_result =
+      this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return raw_result;
+}
+
+
+Object* JSObject::DeleteElement(uint32_t index, DeleteMode mode) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_DELETE)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
+    return Heap::false_value();
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return Heap::false_value();
+    ASSERT(proto->IsJSGlobalObject());
+    return JSGlobalObject::cast(proto)->DeleteElement(index, mode);
+  }
+
+  if (HasIndexedInterceptor()) {
+    // Skip interceptor if forcing deletion.
+    if (mode == FORCE_DELETION) {
+      return DeleteElementPostInterceptor(index, mode);
+    }
+    return DeleteElementWithInterceptor(index);
+  }
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+      static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
+      static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      if (index < length) {
+        FixedArray::cast(elements())->set_the_hole(index);
+      }
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      // Pixel elements cannot be deleted. Just silently ignore here.
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = element_dictionary();
+      int entry = dictionary->FindEntry(index);
+      if (entry != NumberDictionary::kNotFound) {
+        return dictionary->DeleteProperty(entry, mode);
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  return Heap::true_value();
+}
+
+
+Object* JSObject::DeleteProperty(String* name, DeleteMode mode) {
+  // ECMA-262, 3rd, 8.6.2.5
+  ASSERT(name->IsString());
+
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, name, v8::ACCESS_DELETE)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
+    return Heap::false_value();
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return Heap::false_value();
+    ASSERT(proto->IsJSGlobalObject());
+    return JSGlobalObject::cast(proto)->DeleteProperty(name, mode);
+  }
+
+  uint32_t index = 0;
+  if (name->AsArrayIndex(&index)) {
+    return DeleteElement(index, mode);
+  } else {
+    LookupResult result;
+    LocalLookup(name, &result);
+    if (!result.IsValid()) return Heap::true_value();
+    // Ignore attributes if forcing a deletion.
+    if (result.IsDontDelete() && mode != FORCE_DELETION) {
+      return Heap::false_value();
+    }
+    // Check for interceptor.
+    if (result.type() == INTERCEPTOR) {
+      // Skip interceptor if forcing a deletion.
+      if (mode == FORCE_DELETION) {
+        return DeletePropertyPostInterceptor(name, mode);
+      }
+      return DeletePropertyWithInterceptor(name);
+    }
+    if (!result.IsLoaded()) {
+      return JSObject::cast(this)->DeleteLazyProperty(&result,
+                                                      name,
+                                                      mode);
+    }
+    // Normalize object if needed.
+    Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+    if (obj->IsFailure()) return obj;
+    // Make sure the properties are normalized before removing the entry.
+    return DeleteNormalizedProperty(name, mode);
+  }
+}
+
+
+// Check whether this object references another object.
+bool JSObject::ReferencesObject(Object* obj) {
+  AssertNoAllocation no_alloc;
+
+  // Is the object the constructor for this object?
+  if (map()->constructor() == obj) {
+    return true;
+  }
+
+  // Is the object the prototype for this object?
+  if (map()->prototype() == obj) {
+    return true;
+  }
+
+  // Check if the object is among the named properties.
+  Object* key = SlowReverseLookup(obj);
+  if (key != Heap::undefined_value()) {
+    return true;
+  }
+
+  // Check if the object is among the indexed properties.
+  switch (GetElementsKind()) {
+    case PIXEL_ELEMENTS:
+      // Raw pixels do not reference other objects.
+      break;
+    case FAST_ELEMENTS: {
+      int length = IsJSArray() ?
+          Smi::cast(JSArray::cast(this)->length())->value() :
+          FixedArray::cast(elements())->length();
+      for (int i = 0; i < length; i++) {
+        Object* element = FixedArray::cast(elements())->get(i);
+        if (!element->IsTheHole() && element == obj) {
+          return true;
+        }
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      key = element_dictionary()->SlowReverseLookup(obj);
+      if (key != Heap::undefined_value()) {
+        return true;
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  // For functions check the context. Boilerplate functions do
+  // not have to be traversed since they have no real context.
+  if (IsJSFunction() && !JSFunction::cast(this)->IsBoilerplate()) {
+    // Get the constructor function for arguments array.
+    JSObject* arguments_boilerplate =
+        Top::context()->global_context()->arguments_boilerplate();
+    JSFunction* arguments_function =
+        JSFunction::cast(arguments_boilerplate->map()->constructor());
+
+    // Get the context and don't check if it is the global context.
+    JSFunction* f = JSFunction::cast(this);
+    Context* context = f->context();
+    if (context->IsGlobalContext()) {
+      return false;
+    }
+
+    // Check the non-special context slots.
+    for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
+      // Only check JS objects.
+      if (context->get(i)->IsJSObject()) {
+        JSObject* ctxobj = JSObject::cast(context->get(i));
+        // If it is an arguments array check the content.
+        if (ctxobj->map()->constructor() == arguments_function) {
+          if (ctxobj->ReferencesObject(obj)) {
+            return true;
+          }
+        } else if (ctxobj == obj) {
+          return true;
+        }
+      }
+    }
+
+    // Check the context extension if any.
+    if (context->has_extension()) {
+      return context->extension()->ReferencesObject(obj);
+    }
+  }
+
+  // No references to object.
+  return false;
+}
+
+
+// Tests for the fast common case for property enumeration:
+// - this object has an enum cache
+// - this object has no elements
+// - no prototype has enumerable properties/elements
+// - neither this object nor any prototype has interceptors
+bool JSObject::IsSimpleEnum() {
+  JSObject* arguments_boilerplate =
+      Top::context()->global_context()->arguments_boilerplate();
+  JSFunction* arguments_function =
+      JSFunction::cast(arguments_boilerplate->map()->constructor());
+  if (IsAccessCheckNeeded()) return false;
+  if (map()->constructor() == arguments_function) return false;
+
+  for (Object* o = this;
+       o != Heap::null_value();
+       o = JSObject::cast(o)->GetPrototype()) {
+    JSObject* curr = JSObject::cast(o);
+    if (!curr->HasFastProperties()) return false;
+    if (!curr->map()->instance_descriptors()->HasEnumCache()) return false;
+    if (curr->NumberOfEnumElements() > 0) return false;
+    if (curr->HasNamedInterceptor()) return false;
+    if (curr->HasIndexedInterceptor()) return false;
+    if (curr != this) {
+      FixedArray* curr_fixed_array =
+          FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache());
+      if (curr_fixed_array->length() > 0) {
+        return false;
+      }
+    }
+  }
+  return true;
+}
+
+
+int Map::NumberOfDescribedProperties() {
+  int result = 0;
+  DescriptorArray* descs = instance_descriptors();
+  for (int i = 0; i < descs->number_of_descriptors(); i++) {
+    if (descs->IsProperty(i)) result++;
+  }
+  return result;
+}
+
+
+int Map::PropertyIndexFor(String* name) {
+  DescriptorArray* descs = instance_descriptors();
+  for (int i = 0; i < descs->number_of_descriptors(); i++) {
+    if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) {
+      return descs->GetFieldIndex(i);
+    }
+  }
+  return -1;
+}
+
+
+int Map::NextFreePropertyIndex() {
+  int max_index = -1;
+  DescriptorArray* descs = instance_descriptors();
+  for (int i = 0; i < descs->number_of_descriptors(); i++) {
+    if (descs->GetType(i) == FIELD) {
+      int current_index = descs->GetFieldIndex(i);
+      if (current_index > max_index) max_index = current_index;
+    }
+  }
+  return max_index + 1;
+}
+
+
+AccessorDescriptor* Map::FindAccessor(String* name) {
+  DescriptorArray* descs = instance_descriptors();
+  for (int i = 0; i < descs->number_of_descriptors(); i++) {
+    if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) {
+      return descs->GetCallbacks(i);
+    }
+  }
+  return NULL;
+}
+
+
+void JSObject::LocalLookup(String* name, LookupResult* result) {
+  ASSERT(name->IsString());
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return result->NotFound();
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->LocalLookup(name, result);
+  }
+
+  // Do not use inline caching if the object is a non-global object
+  // that requires access checks.
+  if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) {
+    result->DisallowCaching();
+  }
+
+  // Check __proto__ before interceptor.
+  if (name->Equals(Heap::Proto_symbol()) && !IsJSContextExtensionObject()) {
+    result->ConstantResult(this);
+    return;
+  }
+
+  // Check for lookup interceptor except when bootstrapping.
+  if (HasNamedInterceptor() && !Bootstrapper::IsActive()) {
+    result->InterceptorResult(this);
+    return;
+  }
+
+  LocalLookupRealNamedProperty(name, result);
+}
+
+
+void JSObject::Lookup(String* name, LookupResult* result) {
+  // Ecma-262 3rd 8.6.2.4
+  for (Object* current = this;
+       current != Heap::null_value();
+       current = JSObject::cast(current)->GetPrototype()) {
+    JSObject::cast(current)->LocalLookup(name, result);
+    if (result->IsValid() && !result->IsTransitionType()) return;
+  }
+  result->NotFound();
+}
+
+
+// Search object and it's prototype chain for callback properties.
+void JSObject::LookupCallback(String* name, LookupResult* result) {
+  for (Object* current = this;
+       current != Heap::null_value();
+       current = JSObject::cast(current)->GetPrototype()) {
+    JSObject::cast(current)->LocalLookupRealNamedProperty(name, result);
+    if (result->IsValid() && result->type() == CALLBACKS) return;
+  }
+  result->NotFound();
+}
+
+
+Object* JSObject::DefineGetterSetter(String* name,
+                                     PropertyAttributes attributes) {
+  // Make sure that the top context does not change when doing callbacks or
+  // interceptor calls.
+  AssertNoContextChange ncc;
+
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
+    return Heap::undefined_value();
+  }
+
+  // Try to flatten before operating on the string.
+  name->TryFlattenIfNotFlat();
+
+  // Check if there is an API defined callback object which prohibits
+  // callback overwriting in this object or it's prototype chain.
+  // This mechanism is needed for instance in a browser setting, where
+  // certain accessors such as window.location should not be allowed
+  // to be overwritten because allowing overwriting could potentially
+  // cause security problems.
+  LookupResult callback_result;
+  LookupCallback(name, &callback_result);
+  if (callback_result.IsValid()) {
+    Object* obj = callback_result.GetCallbackObject();
+    if (obj->IsAccessorInfo() &&
+        AccessorInfo::cast(obj)->prohibits_overwriting()) {
+      return Heap::undefined_value();
+    }
+  }
+
+  uint32_t index;
+  bool is_element = name->AsArrayIndex(&index);
+  if (is_element && IsJSArray()) return Heap::undefined_value();
+
+  if (is_element) {
+    switch (GetElementsKind()) {
+      case FAST_ELEMENTS:
+        break;
+      case PIXEL_ELEMENTS:
+        // Ignore getters and setters on pixel elements.
+        return Heap::undefined_value();
+      case DICTIONARY_ELEMENTS: {
+        // Lookup the index.
+        NumberDictionary* dictionary = element_dictionary();
+        int entry = dictionary->FindEntry(index);
+        if (entry != NumberDictionary::kNotFound) {
+          Object* result = dictionary->ValueAt(entry);
+          PropertyDetails details = dictionary->DetailsAt(entry);
+          if (details.IsReadOnly()) return Heap::undefined_value();
+          if (details.type() == CALLBACKS) {
+            // Only accessors allowed as elements.
+            ASSERT(result->IsFixedArray());
+            return result;
+          }
+        }
+        break;
+      }
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    // Lookup the name.
+    LookupResult result;
+    LocalLookup(name, &result);
+    if (result.IsValid()) {
+      if (result.IsReadOnly()) return Heap::undefined_value();
+      if (result.type() == CALLBACKS) {
+        Object* obj = result.GetCallbackObject();
+        if (obj->IsFixedArray()) return obj;
+      }
+    }
+  }
+
+  // Allocate the fixed array to hold getter and setter.
+  Object* structure = Heap::AllocateFixedArray(2, TENURED);
+  if (structure->IsFailure()) return structure;
+  PropertyDetails details = PropertyDetails(attributes, CALLBACKS);
+
+  if (is_element) {
+    // Normalize object to make this operation simple.
+    Object* ok = NormalizeElements();
+    if (ok->IsFailure()) return ok;
+
+    // Update the dictionary with the new CALLBACKS property.
+    Object* dict =
+        element_dictionary()->Set(index, structure, details);
+    if (dict->IsFailure()) return dict;
+
+    // If name is an index we need to stay in slow case.
+    NumberDictionary* elements = NumberDictionary::cast(dict);
+    elements->set_requires_slow_elements();
+    // Set the potential new dictionary on the object.
+    set_elements(NumberDictionary::cast(dict));
+  } else {
+    // Normalize object to make this operation simple.
+    Object* ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
+    if (ok->IsFailure()) return ok;
+
+    // For the global object allocate a new map to invalidate the global inline
+    // caches which have a global property cell reference directly in the code.
+    if (IsGlobalObject()) {
+      Object* new_map = map()->CopyDropDescriptors();
+      if (new_map->IsFailure()) return new_map;
+      set_map(Map::cast(new_map));
+    }
+
+    // Update the dictionary with the new CALLBACKS property.
+    return SetNormalizedProperty(name, structure, details);
+  }
+
+  return structure;
+}
+
+
+Object* JSObject::DefineAccessor(String* name, bool is_getter, JSFunction* fun,
+                                 PropertyAttributes attributes) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return Heap::undefined_value();
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return this;
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->DefineAccessor(name, is_getter,
+                                                 fun, attributes);
+  }
+
+  Object* array = DefineGetterSetter(name, attributes);
+  if (array->IsFailure() || array->IsUndefined()) return array;
+  FixedArray::cast(array)->set(is_getter ? 0 : 1, fun);
+  return this;
+}
+
+
+Object* JSObject::LookupAccessor(String* name, bool is_getter) {
+  // Make sure that the top context does not change when doing callbacks or
+  // interceptor calls.
+  AssertNoContextChange ncc;
+
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return Heap::undefined_value();
+  }
+
+  // Make the lookup and include prototypes.
+  int accessor_index = is_getter ? kGetterIndex : kSetterIndex;
+  uint32_t index;
+  if (name->AsArrayIndex(&index)) {
+    for (Object* obj = this;
+         obj != Heap::null_value();
+         obj = JSObject::cast(obj)->GetPrototype()) {
+      JSObject* js_object = JSObject::cast(obj);
+      if (js_object->HasDictionaryElements()) {
+        NumberDictionary* dictionary = js_object->element_dictionary();
+        int entry = dictionary->FindEntry(index);
+        if (entry != NumberDictionary::kNotFound) {
+          Object* element = dictionary->ValueAt(entry);
+          PropertyDetails details = dictionary->DetailsAt(entry);
+          if (details.type() == CALLBACKS) {
+            // Only accessors allowed as elements.
+            return FixedArray::cast(element)->get(accessor_index);
+          }
+        }
+      }
+    }
+  } else {
+    for (Object* obj = this;
+         obj != Heap::null_value();
+         obj = JSObject::cast(obj)->GetPrototype()) {
+      LookupResult result;
+      JSObject::cast(obj)->LocalLookup(name, &result);
+      if (result.IsValid()) {
+        if (result.IsReadOnly()) return Heap::undefined_value();
+        if (result.type() == CALLBACKS) {
+          Object* obj = result.GetCallbackObject();
+          if (obj->IsFixedArray()) {
+            return FixedArray::cast(obj)->get(accessor_index);
+          }
+        }
+      }
+    }
+  }
+  return Heap::undefined_value();
+}
+
+
+Object* JSObject::SlowReverseLookup(Object* value) {
+  if (HasFastProperties()) {
+    DescriptorArray* descs = map()->instance_descriptors();
+    for (int i = 0; i < descs->number_of_descriptors(); i++) {
+      if (descs->GetType(i) == FIELD) {
+        if (FastPropertyAt(descs->GetFieldIndex(i)) == value) {
+          return descs->GetKey(i);
+        }
+      } else if (descs->GetType(i) == CONSTANT_FUNCTION) {
+        if (descs->GetConstantFunction(i) == value) {
+          return descs->GetKey(i);
+        }
+      }
+    }
+    return Heap::undefined_value();
+  } else {
+    return property_dictionary()->SlowReverseLookup(value);
+  }
+}
+
+
+Object* Map::CopyDropDescriptors() {
+  Object* result = Heap::AllocateMap(instance_type(), instance_size());
+  if (result->IsFailure()) return result;
+  Map::cast(result)->set_prototype(prototype());
+  Map::cast(result)->set_constructor(constructor());
+  // Don't copy descriptors, so map transitions always remain a forest.
+  // If we retained the same descriptors we would have two maps
+  // pointing to the same transition which is bad because the garbage
+  // collector relies on being able to reverse pointers from transitions
+  // to maps.  If properties need to be retained use CopyDropTransitions.
+  Map::cast(result)->set_instance_descriptors(Heap::empty_descriptor_array());
+  // Please note instance_type and instance_size are set when allocated.
+  Map::cast(result)->set_inobject_properties(inobject_properties());
+  Map::cast(result)->set_unused_property_fields(unused_property_fields());
+
+  // If the map has pre-allocated properties always start out with a descriptor
+  // array describing these properties.
+  if (pre_allocated_property_fields() > 0) {
+    ASSERT(constructor()->IsJSFunction());
+    JSFunction* ctor = JSFunction::cast(constructor());
+    Object* descriptors =
+        ctor->initial_map()->instance_descriptors()->RemoveTransitions();
+    if (descriptors->IsFailure()) return descriptors;
+    Map::cast(result)->set_instance_descriptors(
+        DescriptorArray::cast(descriptors));
+    Map::cast(result)->set_pre_allocated_property_fields(
+        pre_allocated_property_fields());
+  }
+  Map::cast(result)->set_bit_field(bit_field());
+  Map::cast(result)->set_bit_field2(bit_field2());
+  Map::cast(result)->ClearCodeCache();
+  return result;
+}
+
+
+Object* Map::CopyDropTransitions() {
+  Object* new_map = CopyDropDescriptors();
+  if (new_map->IsFailure()) return new_map;
+  Object* descriptors = instance_descriptors()->RemoveTransitions();
+  if (descriptors->IsFailure()) return descriptors;
+  cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors));
+  return cast(new_map);
+}
+
+
+Object* Map::UpdateCodeCache(String* name, Code* code) {
+  ASSERT(code->ic_state() == MONOMORPHIC);
+  FixedArray* cache = code_cache();
+
+  // When updating the code cache we disregard the type encoded in the
+  // flags. This allows call constant stubs to overwrite call field
+  // stubs, etc.
+  Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
+
+  // First check whether we can update existing code cache without
+  // extending it.
+  int length = cache->length();
+  int deleted_index = -1;
+  for (int i = 0; i < length; i += 2) {
+    Object* key = cache->get(i);
+    if (key->IsNull()) {
+      if (deleted_index < 0) deleted_index = i;
+      continue;
+    }
+    if (key->IsUndefined()) {
+      if (deleted_index >= 0) i = deleted_index;
+      cache->set(i + 0, name);
+      cache->set(i + 1, code);
+      return this;
+    }
+    if (name->Equals(String::cast(key))) {
+      Code::Flags found = Code::cast(cache->get(i + 1))->flags();
+      if (Code::RemoveTypeFromFlags(found) == flags) {
+        cache->set(i + 1, code);
+        return this;
+      }
+    }
+  }
+
+  // Reached the end of the code cache.  If there were deleted
+  // elements, reuse the space for the first of them.
+  if (deleted_index >= 0) {
+    cache->set(deleted_index + 0, name);
+    cache->set(deleted_index + 1, code);
+    return this;
+  }
+
+  // Extend the code cache with some new entries (at least one).
+  int new_length = length + ((length >> 1) & ~1) + 2;
+  ASSERT((new_length & 1) == 0);  // must be a multiple of two
+  Object* result = cache->CopySize(new_length);
+  if (result->IsFailure()) return result;
+
+  // Add the (name, code) pair to the new cache.
+  cache = FixedArray::cast(result);
+  cache->set(length + 0, name);
+  cache->set(length + 1, code);
+  set_code_cache(cache);
+  return this;
+}
+
+
+Object* Map::FindInCodeCache(String* name, Code::Flags flags) {
+  FixedArray* cache = code_cache();
+  int length = cache->length();
+  for (int i = 0; i < length; i += 2) {
+    Object* key = cache->get(i);
+    // Skip deleted elements.
+    if (key->IsNull()) continue;
+    if (key->IsUndefined()) return key;
+    if (name->Equals(String::cast(key))) {
+      Code* code = Code::cast(cache->get(i + 1));
+      if (code->flags() == flags) return code;
+    }
+  }
+  return Heap::undefined_value();
+}
+
+
+int Map::IndexInCodeCache(Code* code) {
+  FixedArray* array = code_cache();
+  int len = array->length();
+  for (int i = 0; i < len; i += 2) {
+    if (array->get(i + 1) == code) return i + 1;
+  }
+  return -1;
+}
+
+
+void Map::RemoveFromCodeCache(int index) {
+  FixedArray* array = code_cache();
+  ASSERT(array->length() >= index && array->get(index)->IsCode());
+  // Use null instead of undefined for deleted elements to distinguish
+  // deleted elements from unused elements.  This distinction is used
+  // when looking up in the cache and when updating the cache.
+  array->set_null(index - 1);  // key
+  array->set_null(index);  // code
+}
+
+
+void FixedArray::FixedArrayIterateBody(ObjectVisitor* v) {
+  IteratePointers(v, kHeaderSize, kHeaderSize + length() * kPointerSize);
+}
+
+
+static bool HasKey(FixedArray* array, Object* key) {
+  int len0 = array->length();
+  for (int i = 0; i < len0; i++) {
+    Object* element = array->get(i);
+    if (element->IsSmi() && key->IsSmi() && (element == key)) return true;
+    if (element->IsString() &&
+        key->IsString() && String::cast(element)->Equals(String::cast(key))) {
+      return true;
+    }
+  }
+  return false;
+}
+
+
+Object* FixedArray::AddKeysFromJSArray(JSArray* array) {
+  ASSERT(!array->HasPixelElements());
+  switch (array->GetElementsKind()) {
+    case JSObject::FAST_ELEMENTS:
+      return UnionOfKeys(FixedArray::cast(array->elements()));
+    case JSObject::DICTIONARY_ELEMENTS: {
+      NumberDictionary* dict = array->element_dictionary();
+      int size = dict->NumberOfElements();
+
+      // Allocate a temporary fixed array.
+      Object* object = Heap::AllocateFixedArray(size);
+      if (object->IsFailure()) return object;
+      FixedArray* key_array = FixedArray::cast(object);
+
+      int capacity = dict->Capacity();
+      int pos = 0;
+      // Copy the elements from the JSArray to the temporary fixed array.
+      for (int i = 0; i < capacity; i++) {
+        if (dict->IsKey(dict->KeyAt(i))) {
+          key_array->set(pos++, dict->ValueAt(i));
+        }
+      }
+      // Compute the union of this and the temporary fixed array.
+      return UnionOfKeys(key_array);
+    }
+    default:
+      UNREACHABLE();
+  }
+  UNREACHABLE();
+  return Heap::null_value();  // Failure case needs to "return" a value.
+}
+
+
+Object* FixedArray::UnionOfKeys(FixedArray* other) {
+  int len0 = length();
+  int len1 = other->length();
+  // Optimize if either is empty.
+  if (len0 == 0) return other;
+  if (len1 == 0) return this;
+
+  // Compute how many elements are not in this.
+  int extra = 0;
+  for (int y = 0; y < len1; y++) {
+    Object* value = other->get(y);
+    if (!value->IsTheHole() && !HasKey(this, value)) extra++;
+  }
+
+  if (extra == 0) return this;
+
+  // Allocate the result
+  Object* obj = Heap::AllocateFixedArray(len0 + extra);
+  if (obj->IsFailure()) return obj;
+  // Fill in the content
+  FixedArray* result = FixedArray::cast(obj);
+  WriteBarrierMode mode = result->GetWriteBarrierMode();
+  for (int i = 0; i < len0; i++) {
+    result->set(i, get(i), mode);
+  }
+  // Fill in the extra keys.
+  int index = 0;
+  for (int y = 0; y < len1; y++) {
+    Object* value = other->get(y);
+    if (!value->IsTheHole() && !HasKey(this, value)) {
+      result->set(len0 + index, other->get(y), mode);
+      index++;
+    }
+  }
+  ASSERT(extra == index);
+  return result;
+}
+
+
+Object* FixedArray::CopySize(int new_length) {
+  if (new_length == 0) return Heap::empty_fixed_array();
+  Object* obj = Heap::AllocateFixedArray(new_length);
+  if (obj->IsFailure()) return obj;
+  FixedArray* result = FixedArray::cast(obj);
+  // Copy the content
+  int len = length();
+  if (new_length < len) len = new_length;
+  result->set_map(map());
+  WriteBarrierMode mode = result->GetWriteBarrierMode();
+  for (int i = 0; i < len; i++) {
+    result->set(i, get(i), mode);
+  }
+  return result;
+}
+
+
+void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
+  WriteBarrierMode mode = dest->GetWriteBarrierMode();
+  for (int index = 0; index < len; index++) {
+    dest->set(dest_pos+index, get(pos+index), mode);
+  }
+}
+
+
+#ifdef DEBUG
+bool FixedArray::IsEqualTo(FixedArray* other) {
+  if (length() != other->length()) return false;
+  for (int i = 0 ; i < length(); ++i) {
+    if (get(i) != other->get(i)) return false;
+  }
+  return true;
+}
+#endif
+
+
+Object* DescriptorArray::Allocate(int number_of_descriptors) {
+  if (number_of_descriptors == 0) {
+    return Heap::empty_descriptor_array();
+  }
+  // Allocate the array of keys.
+  Object* array = Heap::AllocateFixedArray(ToKeyIndex(number_of_descriptors));
+  if (array->IsFailure()) return array;
+  // Do not use DescriptorArray::cast on incomplete object.
+  FixedArray* result = FixedArray::cast(array);
+
+  // Allocate the content array and set it in the descriptor array.
+  array = Heap::AllocateFixedArray(number_of_descriptors << 1);
+  if (array->IsFailure()) return array;
+  result->set(kContentArrayIndex, array);
+  result->set(kEnumerationIndexIndex,
+              Smi::FromInt(PropertyDetails::kInitialIndex),
+              SKIP_WRITE_BARRIER);
+  return result;
+}
+
+
+void DescriptorArray::SetEnumCache(FixedArray* bridge_storage,
+                                   FixedArray* new_cache) {
+  ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength);
+  if (HasEnumCache()) {
+    FixedArray::cast(get(kEnumerationIndexIndex))->
+      set(kEnumCacheBridgeCacheIndex, new_cache);
+  } else {
+    if (IsEmpty()) return;  // Do nothing for empty descriptor array.
+    FixedArray::cast(bridge_storage)->
+      set(kEnumCacheBridgeCacheIndex, new_cache);
+    fast_set(FixedArray::cast(bridge_storage),
+             kEnumCacheBridgeEnumIndex,
+             get(kEnumerationIndexIndex));
+    set(kEnumerationIndexIndex, bridge_storage);
+  }
+}
+
+
+Object* DescriptorArray::CopyInsert(Descriptor* descriptor,
+                                    TransitionFlag transition_flag) {
+  // Transitions are only kept when inserting another transition.
+  // This precondition is not required by this function's implementation, but
+  // is currently required by the semantics of maps, so we check it.
+  // Conversely, we filter after replacing, so replacing a transition and
+  // removing all other transitions is not supported.
+  bool remove_transitions = transition_flag == REMOVE_TRANSITIONS;
+  ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition());
+  ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR);
+
+  // Ensure the key is a symbol.
+  Object* result = descriptor->KeyToSymbol();
+  if (result->IsFailure()) return result;
+
+  int transitions = 0;
+  int null_descriptors = 0;
+  if (remove_transitions) {
+    for (int i = 0; i < number_of_descriptors(); i++) {
+      if (IsTransition(i)) transitions++;
+      if (IsNullDescriptor(i)) null_descriptors++;
+    }
+  } else {
+    for (int i = 0; i < number_of_descriptors(); i++) {
+      if (IsNullDescriptor(i)) null_descriptors++;
+    }
+  }
+  int new_size = number_of_descriptors() - transitions - null_descriptors;
+
+  // If key is in descriptor, we replace it in-place when filtering.
+  // Count a null descriptor for key as inserted, not replaced.
+  int index = Search(descriptor->GetKey());
+  const bool inserting = (index == kNotFound);
+  const bool replacing = !inserting;
+  bool keep_enumeration_index = false;
+  if (inserting) {
+    ++new_size;
+  }
+  if (replacing) {
+    // We are replacing an existing descriptor.  We keep the enumeration
+    // index of a visible property.
+    PropertyType t = PropertyDetails(GetDetails(index)).type();
+    if (t == CONSTANT_FUNCTION ||
+        t == FIELD ||
+        t == CALLBACKS ||
+        t == INTERCEPTOR) {
+      keep_enumeration_index = true;
+    } else if (remove_transitions) {
+     // Replaced descriptor has been counted as removed if it is
+     // a transition that will be replaced.  Adjust count in this case.
+      ++new_size;
+    }
+  }
+  result = Allocate(new_size);
+  if (result->IsFailure()) return result;
+  DescriptorArray* new_descriptors = DescriptorArray::cast(result);
+  // Set the enumeration index in the descriptors and set the enumeration index
+  // in the result.
+  int enumeration_index = NextEnumerationIndex();
+  if (!descriptor->GetDetails().IsTransition()) {
+    if (keep_enumeration_index) {
+      descriptor->SetEnumerationIndex(
+          PropertyDetails(GetDetails(index)).index());
+    } else {
+      descriptor->SetEnumerationIndex(enumeration_index);
+      ++enumeration_index;
+    }
+  }
+  new_descriptors->SetNextEnumerationIndex(enumeration_index);
+
+  // Copy the descriptors, filtering out transitions and null descriptors,
+  // and inserting or replacing a descriptor.
+  uint32_t descriptor_hash = descriptor->GetKey()->Hash();
+  int from_index = 0;
+  int to_index = 0;
+
+  for (; from_index < number_of_descriptors(); from_index++) {
+    String* key = GetKey(from_index);
+    if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) {
+      break;
+    }
+    if (IsNullDescriptor(from_index)) continue;
+    if (remove_transitions && IsTransition(from_index)) continue;
+    new_descriptors->CopyFrom(to_index++, this, from_index);
+  }
+
+  new_descriptors->Set(to_index++, descriptor);
+  if (replacing) from_index++;
+
+  for (; from_index < number_of_descriptors(); from_index++) {
+    if (IsNullDescriptor(from_index)) continue;
+    if (remove_transitions && IsTransition(from_index)) continue;
+    new_descriptors->CopyFrom(to_index++, this, from_index);
+  }
+
+  ASSERT(to_index == new_descriptors->number_of_descriptors());
+  SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates());
+
+  return new_descriptors;
+}
+
+
+Object* DescriptorArray::RemoveTransitions() {
+  // Remove all transitions and null descriptors. Return a copy of the array
+  // with all transitions removed, or a Failure object if the new array could
+  // not be allocated.
+
+  // Compute the size of the map transition entries to be removed.
+  int num_removed = 0;
+  for (int i = 0; i < number_of_descriptors(); i++) {
+    if (!IsProperty(i)) num_removed++;
+  }
+
+  // Allocate the new descriptor array.
+  Object* result = Allocate(number_of_descriptors() - num_removed);
+  if (result->IsFailure()) return result;
+  DescriptorArray* new_descriptors = DescriptorArray::cast(result);
+
+  // Copy the content.
+  int next_descriptor = 0;
+  for (int i = 0; i < number_of_descriptors(); i++) {
+    if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i);
+  }
+  ASSERT(next_descriptor == new_descriptors->number_of_descriptors());
+
+  return new_descriptors;
+}
+
+
+void DescriptorArray::Sort() {
+  // In-place heap sort.
+  int len = number_of_descriptors();
+
+  // Bottom-up max-heap construction.
+  for (int i = 1; i < len; ++i) {
+    int child_index = i;
+    while (child_index > 0) {
+      int parent_index = ((child_index + 1) >> 1) - 1;
+      uint32_t parent_hash = GetKey(parent_index)->Hash();
+      uint32_t child_hash = GetKey(child_index)->Hash();
+      if (parent_hash < child_hash) {
+        Swap(parent_index, child_index);
+      } else {
+        break;
+      }
+      child_index = parent_index;
+    }
+  }
+
+  // Extract elements and create sorted array.
+  for (int i = len - 1; i > 0; --i) {
+    // Put max element at the back of the array.
+    Swap(0, i);
+    // Sift down the new top element.
+    int parent_index = 0;
+    while (true) {
+      int child_index = ((parent_index + 1) << 1) - 1;
+      if (child_index >= i) break;
+      uint32_t child1_hash = GetKey(child_index)->Hash();
+      uint32_t child2_hash = GetKey(child_index + 1)->Hash();
+      uint32_t parent_hash = GetKey(parent_index)->Hash();
+      if (child_index + 1 >= i || child1_hash > child2_hash) {
+        if (parent_hash > child1_hash) break;
+        Swap(parent_index, child_index);
+        parent_index = child_index;
+      } else {
+        if (parent_hash > child2_hash) break;
+        Swap(parent_index, child_index + 1);
+        parent_index = child_index + 1;
+      }
+    }
+  }
+
+  SLOW_ASSERT(IsSortedNoDuplicates());
+}
+
+
+int DescriptorArray::BinarySearch(String* name, int low, int high) {
+  uint32_t hash = name->Hash();
+
+  while (low <= high) {
+    int mid = (low + high) / 2;
+    String* mid_name = GetKey(mid);
+    uint32_t mid_hash = mid_name->Hash();
+
+    if (mid_hash > hash) {
+      high = mid - 1;
+      continue;
+    }
+    if (mid_hash < hash) {
+      low = mid + 1;
+      continue;
+    }
+    // Found an element with the same hash-code.
+    ASSERT(hash == mid_hash);
+    // There might be more, so we find the first one and
+    // check them all to see if we have a match.
+    if (name == mid_name  && !is_null_descriptor(mid)) return mid;
+    while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--;
+    for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) {
+      if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid;
+    }
+    break;
+  }
+  return kNotFound;
+}
+
+
+int DescriptorArray::LinearSearch(String* name, int len) {
+  uint32_t hash = name->Hash();
+  for (int number = 0; number < len; number++) {
+    String* entry = GetKey(number);
+    if ((entry->Hash() == hash) &&
+        name->Equals(entry) &&
+        !is_null_descriptor(number)) {
+      return number;
+    }
+  }
+  return kNotFound;
+}
+
+
+#ifdef DEBUG
+bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
+  if (IsEmpty()) return other->IsEmpty();
+  if (other->IsEmpty()) return false;
+  if (length() != other->length()) return false;
+  for (int i = 0; i < length(); ++i) {
+    if (get(i) != other->get(i) && i != kContentArrayIndex) return false;
+  }
+  return GetContentArray()->IsEqualTo(other->GetContentArray());
+}
+#endif
+
+
+static StaticResource<StringInputBuffer> string_input_buffer;
+
+
+bool String::LooksValid() {
+  if (!Heap::Contains(this)) return false;
+  return true;
+}
+
+
+int String::Utf8Length() {
+  if (IsAsciiRepresentation()) return length();
+  // Attempt to flatten before accessing the string.  It probably
+  // doesn't make Utf8Length faster, but it is very likely that
+  // the string will be accessed later (for example by WriteUtf8)
+  // so it's still a good idea.
+  TryFlattenIfNotFlat();
+  Access<StringInputBuffer> buffer(&string_input_buffer);
+  buffer->Reset(0, this);
+  int result = 0;
+  while (buffer->has_more())
+    result += unibrow::Utf8::Length(buffer->GetNext());
+  return result;
+}
+
+
+Vector<const char> String::ToAsciiVector() {
+  ASSERT(IsAsciiRepresentation());
+  ASSERT(IsFlat());
+
+  int offset = 0;
+  int length = this->length();
+  StringRepresentationTag string_tag = StringShape(this).representation_tag();
+  String* string = this;
+  if (string_tag == kSlicedStringTag) {
+    SlicedString* sliced = SlicedString::cast(string);
+    offset += sliced->start();
+    string = sliced->buffer();
+    string_tag = StringShape(string).representation_tag();
+  } else if (string_tag == kConsStringTag) {
+    ConsString* cons = ConsString::cast(string);
+    ASSERT(cons->second()->length() == 0);
+    string = cons->first();
+    string_tag = StringShape(string).representation_tag();
+  }
+  if (string_tag == kSeqStringTag) {
+    SeqAsciiString* seq = SeqAsciiString::cast(string);
+    char* start = seq->GetChars();
+    return Vector<const char>(start + offset, length);
+  }
+  ASSERT(string_tag == kExternalStringTag);
+  ExternalAsciiString* ext = ExternalAsciiString::cast(string);
+  const char* start = ext->resource()->data();
+  return Vector<const char>(start + offset, length);
+}
+
+
+Vector<const uc16> String::ToUC16Vector() {
+  ASSERT(IsTwoByteRepresentation());
+  ASSERT(IsFlat());
+
+  int offset = 0;
+  int length = this->length();
+  StringRepresentationTag string_tag = StringShape(this).representation_tag();
+  String* string = this;
+  if (string_tag == kSlicedStringTag) {
+    SlicedString* sliced = SlicedString::cast(string);
+    offset += sliced->start();
+    string = String::cast(sliced->buffer());
+    string_tag = StringShape(string).representation_tag();
+  } else if (string_tag == kConsStringTag) {
+    ConsString* cons = ConsString::cast(string);
+    ASSERT(cons->second()->length() == 0);
+    string = cons->first();
+    string_tag = StringShape(string).representation_tag();
+  }
+  if (string_tag == kSeqStringTag) {
+    SeqTwoByteString* seq = SeqTwoByteString::cast(string);
+    return Vector<const uc16>(seq->GetChars() + offset, length);
+  }
+  ASSERT(string_tag == kExternalStringTag);
+  ExternalTwoByteString* ext = ExternalTwoByteString::cast(string);
+  const uc16* start =
+      reinterpret_cast<const uc16*>(ext->resource()->data());
+  return Vector<const uc16>(start + offset, length);
+}
+
+
+SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
+                                     RobustnessFlag robust_flag,
+                                     int offset,
+                                     int length,
+                                     int* length_return) {
+  ASSERT(NativeAllocationChecker::allocation_allowed());
+  if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
+    return SmartPointer<char>(NULL);
+  }
+
+  // Negative length means the to the end of the string.
+  if (length < 0) length = kMaxInt - offset;
+
+  // Compute the size of the UTF-8 string. Start at the specified offset.
+  Access<StringInputBuffer> buffer(&string_input_buffer);
+  buffer->Reset(offset, this);
+  int character_position = offset;
+  int utf8_bytes = 0;
+  while (buffer->has_more()) {
+    uint16_t character = buffer->GetNext();
+    if (character_position < offset + length) {
+      utf8_bytes += unibrow::Utf8::Length(character);
+    }
+    character_position++;
+  }
+
+  if (length_return) {
+    *length_return = utf8_bytes;
+  }
+
+  char* result = NewArray<char>(utf8_bytes + 1);
+
+  // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
+  buffer->Rewind();
+  buffer->Seek(offset);
+  character_position = offset;
+  int utf8_byte_position = 0;
+  while (buffer->has_more()) {
+    uint16_t character = buffer->GetNext();
+    if (character_position < offset + length) {
+      if (allow_nulls == DISALLOW_NULLS && character == 0) {
+        character = ' ';
+      }
+      utf8_byte_position +=
+          unibrow::Utf8::Encode(result + utf8_byte_position, character);
+    }
+    character_position++;
+  }
+  result[utf8_byte_position] = 0;
+  return SmartPointer<char>(result);
+}
+
+
+SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
+                                     RobustnessFlag robust_flag,
+                                     int* length_return) {
+  return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
+}
+
+
+const uc16* String::GetTwoByteData() {
+  return GetTwoByteData(0);
+}
+
+
+const uc16* String::GetTwoByteData(unsigned start) {
+  ASSERT(!IsAsciiRepresentation());
+  switch (StringShape(this).representation_tag()) {
+    case kSeqStringTag:
+      return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
+    case kExternalStringTag:
+      return ExternalTwoByteString::cast(this)->
+        ExternalTwoByteStringGetData(start);
+    case kSlicedStringTag: {
+      SlicedString* sliced_string = SlicedString::cast(this);
+      String* buffer = sliced_string->buffer();
+      if (StringShape(buffer).IsCons()) {
+        ConsString* cs = ConsString::cast(buffer);
+        // Flattened string.
+        ASSERT(cs->second()->length() == 0);
+        buffer = cs->first();
+      }
+      return buffer->GetTwoByteData(start + sliced_string->start());
+    }
+    case kConsStringTag:
+      UNREACHABLE();
+      return NULL;
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+
+SmartPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) {
+  ASSERT(NativeAllocationChecker::allocation_allowed());
+
+  if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
+    return SmartPointer<uc16>();
+  }
+
+  Access<StringInputBuffer> buffer(&string_input_buffer);
+  buffer->Reset(this);
+
+  uc16* result = NewArray<uc16>(length() + 1);
+
+  int i = 0;
+  while (buffer->has_more()) {
+    uint16_t character = buffer->GetNext();
+    result[i++] = character;
+  }
+  result[i] = 0;
+  return SmartPointer<uc16>(result);
+}
+
+
+const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
+  return reinterpret_cast<uc16*>(
+      reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
+}
+
+
+void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
+                                                           unsigned* offset_ptr,
+                                                           unsigned max_chars) {
+  unsigned chars_read = 0;
+  unsigned offset = *offset_ptr;
+  while (chars_read < max_chars) {
+    uint16_t c = *reinterpret_cast<uint16_t*>(
+        reinterpret_cast<char*>(this) -
+            kHeapObjectTag + kHeaderSize + offset * kShortSize);
+    if (c <= kMaxAsciiCharCode) {
+      // Fast case for ASCII characters.   Cursor is an input output argument.
+      if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
+                                                          rbb->util_buffer,
+                                                          rbb->capacity,
+                                                          rbb->cursor)) {
+        break;
+      }
+    } else {
+      if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
+                                                             rbb->util_buffer,
+                                                             rbb->capacity,
+                                                             rbb->cursor)) {
+        break;
+      }
+    }
+    offset++;
+    chars_read++;
+  }
+  *offset_ptr = offset;
+  rbb->remaining += chars_read;
+}
+
+
+const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock(
+    unsigned* remaining,
+    unsigned* offset_ptr,
+    unsigned max_chars) {
+  const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) -
+      kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize;
+  *remaining = max_chars;
+  *offset_ptr += max_chars;
+  return b;
+}
+
+
+// This will iterate unless the block of string data spans two 'halves' of
+// a ConsString, in which case it will recurse.  Since the block of string
+// data to be read has a maximum size this limits the maximum recursion
+// depth to something sane.  Since C++ does not have tail call recursion
+// elimination, the iteration must be explicit. Since this is not an
+// -IntoBuffer method it can delegate to one of the efficient
+// *AsciiStringReadBlock routines.
+const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb,
+                                                     unsigned* offset_ptr,
+                                                     unsigned max_chars) {
+  ConsString* current = this;
+  unsigned offset = *offset_ptr;
+  int offset_correction = 0;
+
+  while (true) {
+    String* left = current->first();
+    unsigned left_length = (unsigned)left->length();
+    if (left_length > offset &&
+        (max_chars <= left_length - offset ||
+         (rbb->capacity <= left_length - offset &&
+          (max_chars = left_length - offset, true)))) {  // comma operator!
+      // Left hand side only - iterate unless we have reached the bottom of
+      // the cons tree.  The assignment on the left of the comma operator is
+      // in order to make use of the fact that the -IntoBuffer routines can
+      // produce at most 'capacity' characters.  This enables us to postpone
+      // the point where we switch to the -IntoBuffer routines (below) in order
+      // to maximize the chances of delegating a big chunk of work to the
+      // efficient *AsciiStringReadBlock routines.
+      if (StringShape(left).IsCons()) {
+        current = ConsString::cast(left);
+        continue;
+      } else {
+        const unibrow::byte* answer =
+            String::ReadBlock(left, rbb, &offset, max_chars);
+        *offset_ptr = offset + offset_correction;
+        return answer;
+      }
+    } else if (left_length <= offset) {
+      // Right hand side only - iterate unless we have reached the bottom of
+      // the cons tree.
+      String* right = current->second();
+      offset -= left_length;
+      offset_correction += left_length;
+      if (StringShape(right).IsCons()) {
+        current = ConsString::cast(right);
+        continue;
+      } else {
+        const unibrow::byte* answer =
+            String::ReadBlock(right, rbb, &offset, max_chars);
+        *offset_ptr = offset + offset_correction;
+        return answer;
+      }
+    } else {
+      // The block to be read spans two sides of the ConsString, so we call the
+      // -IntoBuffer version, which will recurse.  The -IntoBuffer methods
+      // are able to assemble data from several part strings because they use
+      // the util_buffer to store their data and never return direct pointers
+      // to their storage.  We don't try to read more than the buffer capacity
+      // here or we can get too much recursion.
+      ASSERT(rbb->remaining == 0);
+      ASSERT(rbb->cursor == 0);
+      current->ConsStringReadBlockIntoBuffer(
+          rbb,
+          &offset,
+          max_chars > rbb->capacity ? rbb->capacity : max_chars);
+      *offset_ptr = offset + offset_correction;
+      return rbb->util_buffer;
+    }
+  }
+}
+
+
+const unibrow::byte* SlicedString::SlicedStringReadBlock(ReadBlockBuffer* rbb,
+                                                         unsigned* offset_ptr,
+                                                         unsigned max_chars) {
+  String* backing = buffer();
+  unsigned offset = start() + *offset_ptr;
+  unsigned length = backing->length();
+  if (max_chars > length - offset) {
+    max_chars = length - offset;
+  }
+  const unibrow::byte* answer =
+      String::ReadBlock(backing, rbb, &offset, max_chars);
+  *offset_ptr = offset - start();
+  return answer;
+}
+
+
+uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) {
+  ASSERT(index >= 0 && index < length());
+  return resource()->data()[index];
+}
+
+
+const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock(
+      unsigned* remaining,
+      unsigned* offset_ptr,
+      unsigned max_chars) {
+  // Cast const char* to unibrow::byte* (signedness difference).
+  const unibrow::byte* b =
+      reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr;
+  *remaining = max_chars;
+  *offset_ptr += max_chars;
+  return b;
+}
+
+
+const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData(
+      unsigned start) {
+  return resource()->data() + start;
+}
+
+
+uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
+  ASSERT(index >= 0 && index < length());
+  return resource()->data()[index];
+}
+
+
+void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer(
+      ReadBlockBuffer* rbb,
+      unsigned* offset_ptr,
+      unsigned max_chars) {
+  unsigned chars_read = 0;
+  unsigned offset = *offset_ptr;
+  const uint16_t* data = resource()->data();
+  while (chars_read < max_chars) {
+    uint16_t c = data[offset];
+    if (c <= kMaxAsciiCharCode) {
+      // Fast case for ASCII characters. Cursor is an input output argument.
+      if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
+                                                          rbb->util_buffer,
+                                                          rbb->capacity,
+                                                          rbb->cursor))
+        break;
+    } else {
+      if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
+                                                             rbb->util_buffer,
+                                                             rbb->capacity,
+                                                             rbb->cursor))
+        break;
+    }
+    offset++;
+    chars_read++;
+  }
+  *offset_ptr = offset;
+  rbb->remaining += chars_read;
+}
+
+
+void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
+                                                 unsigned* offset_ptr,
+                                                 unsigned max_chars) {
+  unsigned capacity = rbb->capacity - rbb->cursor;
+  if (max_chars > capacity) max_chars = capacity;
+  memcpy(rbb->util_buffer + rbb->cursor,
+         reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize +
+             *offset_ptr * kCharSize,
+         max_chars);
+  rbb->remaining += max_chars;
+  *offset_ptr += max_chars;
+  rbb->cursor += max_chars;
+}
+
+
+void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer(
+      ReadBlockBuffer* rbb,
+      unsigned* offset_ptr,
+      unsigned max_chars) {
+  unsigned capacity = rbb->capacity - rbb->cursor;
+  if (max_chars > capacity) max_chars = capacity;
+  memcpy(rbb->util_buffer + rbb->cursor,
+         resource()->data() + *offset_ptr,
+         max_chars);
+  rbb->remaining += max_chars;
+  *offset_ptr += max_chars;
+  rbb->cursor += max_chars;
+}
+
+
+// This method determines the type of string involved and then copies
+// a whole chunk of characters into a buffer, or returns a pointer to a buffer
+// where they can be found.  The pointer is not necessarily valid across a GC
+// (see AsciiStringReadBlock).
+const unibrow::byte* String::ReadBlock(String* input,
+                                       ReadBlockBuffer* rbb,
+                                       unsigned* offset_ptr,
+                                       unsigned max_chars) {
+  ASSERT(*offset_ptr <= static_cast<unsigned>(input->length()));
+  if (max_chars == 0) {
+    rbb->remaining = 0;
+    return NULL;
+  }
+  switch (StringShape(input).representation_tag()) {
+    case kSeqStringTag:
+      if (input->IsAsciiRepresentation()) {
+        SeqAsciiString* str = SeqAsciiString::cast(input);
+        return str->SeqAsciiStringReadBlock(&rbb->remaining,
+                                            offset_ptr,
+                                            max_chars);
+      } else {
+        SeqTwoByteString* str = SeqTwoByteString::cast(input);
+        str->SeqTwoByteStringReadBlockIntoBuffer(rbb,
+                                                 offset_ptr,
+                                                 max_chars);
+        return rbb->util_buffer;
+      }
+    case kConsStringTag:
+      return ConsString::cast(input)->ConsStringReadBlock(rbb,
+                                                          offset_ptr,
+                                                          max_chars);
+    case kSlicedStringTag:
+      return SlicedString::cast(input)->SlicedStringReadBlock(rbb,
+                                                              offset_ptr,
+                                                              max_chars);
+    case kExternalStringTag:
+      if (input->IsAsciiRepresentation()) {
+        return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock(
+            &rbb->remaining,
+            offset_ptr,
+            max_chars);
+      } else {
+        ExternalTwoByteString::cast(input)->
+            ExternalTwoByteStringReadBlockIntoBuffer(rbb,
+                                                     offset_ptr,
+                                                     max_chars);
+        return rbb->util_buffer;
+      }
+    default:
+      break;
+  }
+
+  UNREACHABLE();
+  return 0;
+}
+
+
+Relocatable* Relocatable::top_ = NULL;
+
+
+void Relocatable::PostGarbageCollectionProcessing() {
+  Relocatable* current = top_;
+  while (current != NULL) {
+    current->PostGarbageCollection();
+    current = current->prev_;
+  }
+}
+
+
+// Reserve space for statics needing saving and restoring.
+int Relocatable::ArchiveSpacePerThread() {
+  return sizeof(top_);
+}
+
+
+// Archive statics that are thread local.
+char* Relocatable::ArchiveState(char* to) {
+  *reinterpret_cast<Relocatable**>(to) = top_;
+  top_ = NULL;
+  return to + ArchiveSpacePerThread();
+}
+
+
+// Restore statics that are thread local.
+char* Relocatable::RestoreState(char* from) {
+  top_ = *reinterpret_cast<Relocatable**>(from);
+  return from + ArchiveSpacePerThread();
+}
+
+
+char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
+  Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
+  Iterate(v, top);
+  return thread_storage + ArchiveSpacePerThread();
+}
+
+
+void Relocatable::Iterate(ObjectVisitor* v) {
+  Iterate(v, top_);
+}
+
+
+void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
+  Relocatable* current = top;
+  while (current != NULL) {
+    current->IterateInstance(v);
+    current = current->prev_;
+  }
+}
+
+
+FlatStringReader::FlatStringReader(Handle<String> str)
+    : str_(str.location()),
+      length_(str->length()) {
+  PostGarbageCollection();
+}
+
+
+FlatStringReader::FlatStringReader(Vector<const char> input)
+    : str_(0),
+      is_ascii_(true),
+      length_(input.length()),
+      start_(input.start()) { }
+
+
+void FlatStringReader::PostGarbageCollection() {
+  if (str_ == NULL) return;
+  Handle<String> str(str_);
+  ASSERT(str->IsFlat());
+  is_ascii_ = str->IsAsciiRepresentation();
+  if (is_ascii_) {
+    start_ = str->ToAsciiVector().start();
+  } else {
+    start_ = str->ToUC16Vector().start();
+  }
+}
+
+
+void StringInputBuffer::Seek(unsigned pos) {
+  Reset(pos, input_);
+}
+
+
+void SafeStringInputBuffer::Seek(unsigned pos) {
+  Reset(pos, input_);
+}
+
+
+// This method determines the type of string involved and then copies
+// a whole chunk of characters into a buffer.  It can be used with strings
+// that have been glued together to form a ConsString and which must cooperate
+// to fill up a buffer.
+void String::ReadBlockIntoBuffer(String* input,
+                                 ReadBlockBuffer* rbb,
+                                 unsigned* offset_ptr,
+                                 unsigned max_chars) {
+  ASSERT(*offset_ptr <= (unsigned)input->length());
+  if (max_chars == 0) return;
+
+  switch (StringShape(input).representation_tag()) {
+    case kSeqStringTag:
+      if (input->IsAsciiRepresentation()) {
+        SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb,
+                                                                 offset_ptr,
+                                                                 max_chars);
+        return;
+      } else {
+        SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb,
+                                                                     offset_ptr,
+                                                                     max_chars);
+        return;
+      }
+    case kConsStringTag:
+      ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb,
+                                                             offset_ptr,
+                                                             max_chars);
+      return;
+    case kSlicedStringTag:
+      SlicedString::cast(input)->SlicedStringReadBlockIntoBuffer(rbb,
+                                                                 offset_ptr,
+                                                                 max_chars);
+      return;
+    case kExternalStringTag:
+      if (input->IsAsciiRepresentation()) {
+         ExternalAsciiString::cast(input)->
+             ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars);
+       } else {
+         ExternalTwoByteString::cast(input)->
+             ExternalTwoByteStringReadBlockIntoBuffer(rbb,
+                                                      offset_ptr,
+                                                      max_chars);
+       }
+       return;
+    default:
+      break;
+  }
+
+  UNREACHABLE();
+  return;
+}
+
+
+const unibrow::byte* String::ReadBlock(String* input,
+                                       unibrow::byte* util_buffer,
+                                       unsigned capacity,
+                                       unsigned* remaining,
+                                       unsigned* offset_ptr) {
+  ASSERT(*offset_ptr <= (unsigned)input->length());
+  unsigned chars = input->length() - *offset_ptr;
+  ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
+  const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars);
+  ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
+  *remaining = rbb.remaining;
+  return answer;
+}
+
+
+const unibrow::byte* String::ReadBlock(String** raw_input,
+                                       unibrow::byte* util_buffer,
+                                       unsigned capacity,
+                                       unsigned* remaining,
+                                       unsigned* offset_ptr) {
+  Handle<String> input(raw_input);
+  ASSERT(*offset_ptr <= (unsigned)input->length());
+  unsigned chars = input->length() - *offset_ptr;
+  if (chars > capacity) chars = capacity;
+  ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
+  ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars);
+  ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
+  *remaining = rbb.remaining;
+  return rbb.util_buffer;
+}
+
+
+// This will iterate unless the block of string data spans two 'halves' of
+// a ConsString, in which case it will recurse.  Since the block of string
+// data to be read has a maximum size this limits the maximum recursion
+// depth to something sane.  Since C++ does not have tail call recursion
+// elimination, the iteration must be explicit.
+void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
+                                               unsigned* offset_ptr,
+                                               unsigned max_chars) {
+  ConsString* current = this;
+  unsigned offset = *offset_ptr;
+  int offset_correction = 0;
+
+  while (true) {
+    String* left = current->first();
+    unsigned left_length = (unsigned)left->length();
+    if (left_length > offset &&
+      max_chars <= left_length - offset) {
+      // Left hand side only - iterate unless we have reached the bottom of
+      // the cons tree.
+      if (StringShape(left).IsCons()) {
+        current = ConsString::cast(left);
+        continue;
+      } else {
+        String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars);
+        *offset_ptr = offset + offset_correction;
+        return;
+      }
+    } else if (left_length <= offset) {
+      // Right hand side only - iterate unless we have reached the bottom of
+      // the cons tree.
+      offset -= left_length;
+      offset_correction += left_length;
+      String* right = current->second();
+      if (StringShape(right).IsCons()) {
+        current = ConsString::cast(right);
+        continue;
+      } else {
+        String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
+        *offset_ptr = offset + offset_correction;
+        return;
+      }
+    } else {
+      // The block to be read spans two sides of the ConsString, so we recurse.
+      // First recurse on the left.
+      max_chars -= left_length - offset;
+      String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset);
+      // We may have reached the max or there may not have been enough space
+      // in the buffer for the characters in the left hand side.
+      if (offset == left_length) {
+        // Recurse on the right.
+        String* right = String::cast(current->second());
+        offset -= left_length;
+        offset_correction += left_length;
+        String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
+      }
+      *offset_ptr = offset + offset_correction;
+      return;
+    }
+  }
+}
+
+
+void SlicedString::SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
+                                                   unsigned* offset_ptr,
+                                                   unsigned max_chars) {
+  String* backing = buffer();
+  unsigned offset = start() + *offset_ptr;
+  unsigned length = backing->length();
+  if (max_chars > length - offset) {
+    max_chars = length - offset;
+  }
+  String::ReadBlockIntoBuffer(backing, rbb, &offset, max_chars);
+  *offset_ptr = offset - start();
+}
+
+
+void ConsString::ConsStringIterateBody(ObjectVisitor* v) {
+  IteratePointers(v, kFirstOffset, kSecondOffset + kPointerSize);
+}
+
+
+void JSGlobalPropertyCell::JSGlobalPropertyCellIterateBody(ObjectVisitor* v) {
+  IteratePointers(v, kValueOffset, kValueOffset + kPointerSize);
+}
+
+
+uint16_t ConsString::ConsStringGet(int index) {
+  ASSERT(index >= 0 && index < this->length());
+
+  // Check for a flattened cons string
+  if (second()->length() == 0) {
+    String* left = first();
+    return left->Get(index);
+  }
+
+  String* string = String::cast(this);
+
+  while (true) {
+    if (StringShape(string).IsCons()) {
+      ConsString* cons_string = ConsString::cast(string);
+      String* left = cons_string->first();
+      if (left->length() > index) {
+        string = left;
+      } else {
+        index -= left->length();
+        string = cons_string->second();
+      }
+    } else {
+      return string->Get(index);
+    }
+  }
+
+  UNREACHABLE();
+  return 0;
+}
+
+
+template <typename sinkchar>
+void String::WriteToFlat(String* src,
+                         sinkchar* sink,
+                         int f,
+                         int t) {
+  String* source = src;
+  int from = f;
+  int to = t;
+  while (true) {
+    ASSERT(0 <= from && from <= to && to <= source->length());
+    switch (StringShape(source).full_representation_tag()) {
+      case kAsciiStringTag | kExternalStringTag: {
+        CopyChars(sink,
+                  ExternalAsciiString::cast(source)->resource()->data() + from,
+                  to - from);
+        return;
+      }
+      case kTwoByteStringTag | kExternalStringTag: {
+        const uc16* data =
+            ExternalTwoByteString::cast(source)->resource()->data();
+        CopyChars(sink,
+                  data + from,
+                  to - from);
+        return;
+      }
+      case kAsciiStringTag | kSeqStringTag: {
+        CopyChars(sink,
+                  SeqAsciiString::cast(source)->GetChars() + from,
+                  to - from);
+        return;
+      }
+      case kTwoByteStringTag | kSeqStringTag: {
+        CopyChars(sink,
+                  SeqTwoByteString::cast(source)->GetChars() + from,
+                  to - from);
+        return;
+      }
+      case kAsciiStringTag | kSlicedStringTag:
+      case kTwoByteStringTag | kSlicedStringTag: {
+        SlicedString* sliced_string = SlicedString::cast(source);
+        int start = sliced_string->start();
+        from += start;
+        to += start;
+        source = String::cast(sliced_string->buffer());
+        break;
+      }
+      case kAsciiStringTag | kConsStringTag:
+      case kTwoByteStringTag | kConsStringTag: {
+        ConsString* cons_string = ConsString::cast(source);
+        String* first = cons_string->first();
+        int boundary = first->length();
+        if (to - boundary >= boundary - from) {
+          // Right hand side is longer.  Recurse over left.
+          if (from < boundary) {
+            WriteToFlat(first, sink, from, boundary);
+            sink += boundary - from;
+            from = 0;
+          } else {
+            from -= boundary;
+          }
+          to -= boundary;
+          source = cons_string->second();
+        } else {
+          // Left hand side is longer.  Recurse over right.
+          if (to > boundary) {
+            String* second = cons_string->second();
+            WriteToFlat(second,
+                        sink + boundary - from,
+                        0,
+                        to - boundary);
+            to = boundary;
+          }
+          source = first;
+        }
+        break;
+      }
+    }
+  }
+}
+
+
+void SlicedString::SlicedStringIterateBody(ObjectVisitor* v) {
+  IteratePointer(v, kBufferOffset);
+}
+
+
+uint16_t SlicedString::SlicedStringGet(int index) {
+  ASSERT(index >= 0 && index < this->length());
+  // Delegate to the buffer string.
+  String* underlying = buffer();
+  return underlying->Get(start() + index);
+}
+
+
+template <typename IteratorA, typename IteratorB>
+static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) {
+  // General slow case check.  We know that the ia and ib iterators
+  // have the same length.
+  while (ia->has_more()) {
+    uc32 ca = ia->GetNext();
+    uc32 cb = ib->GetNext();
+    if (ca != cb)
+      return false;
+  }
+  return true;
+}
+
+
+// Compares the contents of two strings by reading and comparing
+// int-sized blocks of characters.
+template <typename Char>
+static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) {
+  int length = a.length();
+  ASSERT_EQ(length, b.length());
+  const Char* pa = a.start();
+  const Char* pb = b.start();
+  int i = 0;
+#ifndef V8_HOST_CAN_READ_UNALIGNED
+  // If this architecture isn't comfortable reading unaligned ints
+  // then we have to check that the strings are aligned before
+  // comparing them blockwise.
+  const int kAlignmentMask = sizeof(uint32_t) - 1;  // NOLINT
+  uint32_t pa_addr = reinterpret_cast<uint32_t>(pa);
+  uint32_t pb_addr = reinterpret_cast<uint32_t>(pb);
+  if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) {
+#endif
+    const int kStepSize = sizeof(int) / sizeof(Char);  // NOLINT
+    int endpoint = length - kStepSize;
+    // Compare blocks until we reach near the end of the string.
+    for (; i <= endpoint; i += kStepSize) {
+      uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i);
+      uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i);
+      if (wa != wb) {
+        return false;
+      }
+    }
+#ifndef V8_HOST_CAN_READ_UNALIGNED
+  }
+#endif
+  // Compare the remaining characters that didn't fit into a block.
+  for (; i < length; i++) {
+    if (a[i] != b[i]) {
+      return false;
+    }
+  }
+  return true;
+}
+
+
+static StringInputBuffer string_compare_buffer_b;
+
+
+template <typename IteratorA>
+static inline bool CompareStringContentsPartial(IteratorA* ia, String* b) {
+  if (b->IsFlat()) {
+    if (b->IsAsciiRepresentation()) {
+      VectorIterator<char> ib(b->ToAsciiVector());
+      return CompareStringContents(ia, &ib);
+    } else {
+      VectorIterator<uc16> ib(b->ToUC16Vector());
+      return CompareStringContents(ia, &ib);
+    }
+  } else {
+    string_compare_buffer_b.Reset(0, b);
+    return CompareStringContents(ia, &string_compare_buffer_b);
+  }
+}
+
+
+static StringInputBuffer string_compare_buffer_a;
+
+
+bool String::SlowEquals(String* other) {
+  // Fast check: negative check with lengths.
+  int len = length();
+  if (len != other->length()) return false;
+  if (len == 0) return true;
+
+  // Fast check: if hash code is computed for both strings
+  // a fast negative check can be performed.
+  if (HasHashCode() && other->HasHashCode()) {
+    if (Hash() != other->Hash()) return false;
+  }
+
+  if (StringShape(this).IsSequentialAscii() &&
+      StringShape(other).IsSequentialAscii()) {
+    const char* str1 = SeqAsciiString::cast(this)->GetChars();
+    const char* str2 = SeqAsciiString::cast(other)->GetChars();
+    return CompareRawStringContents(Vector<const char>(str1, len),
+                                    Vector<const char>(str2, len));
+  }
+
+  if (this->IsFlat()) {
+    if (IsAsciiRepresentation()) {
+      Vector<const char> vec1 = this->ToAsciiVector();
+      if (other->IsFlat()) {
+        if (other->IsAsciiRepresentation()) {
+          Vector<const char> vec2 = other->ToAsciiVector();
+          return CompareRawStringContents(vec1, vec2);
+        } else {
+          VectorIterator<char> buf1(vec1);
+          VectorIterator<uc16> ib(other->ToUC16Vector());
+          return CompareStringContents(&buf1, &ib);
+        }
+      } else {
+        VectorIterator<char> buf1(vec1);
+        string_compare_buffer_b.Reset(0, other);
+        return CompareStringContents(&buf1, &string_compare_buffer_b);
+      }
+    } else {
+      Vector<const uc16> vec1 = this->ToUC16Vector();
+      if (other->IsFlat()) {
+        if (other->IsAsciiRepresentation()) {
+          VectorIterator<uc16> buf1(vec1);
+          VectorIterator<char> ib(other->ToAsciiVector());
+          return CompareStringContents(&buf1, &ib);
+        } else {
+          Vector<const uc16> vec2(other->ToUC16Vector());
+          return CompareRawStringContents(vec1, vec2);
+        }
+      } else {
+        VectorIterator<uc16> buf1(vec1);
+        string_compare_buffer_b.Reset(0, other);
+        return CompareStringContents(&buf1, &string_compare_buffer_b);
+      }
+    }
+  } else {
+    string_compare_buffer_a.Reset(0, this);
+    return CompareStringContentsPartial(&string_compare_buffer_a, other);
+  }
+}
+
+
+bool String::MarkAsUndetectable() {
+  if (StringShape(this).IsSymbol()) return false;
+
+  Map* map = this->map();
+  if (map == Heap::short_string_map()) {
+    this->set_map(Heap::undetectable_short_string_map());
+    return true;
+  } else if (map == Heap::medium_string_map()) {
+    this->set_map(Heap::undetectable_medium_string_map());
+    return true;
+  } else if (map == Heap::long_string_map()) {
+    this->set_map(Heap::undetectable_long_string_map());
+    return true;
+  } else if (map == Heap::short_ascii_string_map()) {
+    this->set_map(Heap::undetectable_short_ascii_string_map());
+    return true;
+  } else if (map == Heap::medium_ascii_string_map()) {
+    this->set_map(Heap::undetectable_medium_ascii_string_map());
+    return true;
+  } else if (map == Heap::long_ascii_string_map()) {
+    this->set_map(Heap::undetectable_long_ascii_string_map());
+    return true;
+  }
+  // Rest cannot be marked as undetectable
+  return false;
+}
+
+
+bool String::IsEqualTo(Vector<const char> str) {
+  int slen = length();
+  Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
+  decoder->Reset(str.start(), str.length());
+  int i;
+  for (i = 0; i < slen && decoder->has_more(); i++) {
+    uc32 r = decoder->GetNext();
+    if (Get(i) != r) return false;
+  }
+  return i == slen && !decoder->has_more();
+}
+
+
+uint32_t String::ComputeAndSetHash() {
+  // Should only be called if hash code has not yet been computed.
+  ASSERT(!(length_field() & kHashComputedMask));
+
+  // Compute the hash code.
+  StringInputBuffer buffer(this);
+  uint32_t field = ComputeLengthAndHashField(&buffer, length());
+
+  // Store the hash code in the object.
+  set_length_field(field);
+
+  // Check the hash code is there.
+  ASSERT(length_field() & kHashComputedMask);
+  uint32_t result = field >> kHashShift;
+  ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
+  return result;
+}
+
+
+bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer,
+                               uint32_t* index,
+                               int length) {
+  if (length == 0 || length > kMaxArrayIndexSize) return false;
+  uc32 ch = buffer->GetNext();
+
+  // If the string begins with a '0' character, it must only consist
+  // of it to be a legal array index.
+  if (ch == '0') {
+    *index = 0;
+    return length == 1;
+  }
+
+  // Convert string to uint32 array index; character by character.
+  int d = ch - '0';
+  if (d < 0 || d > 9) return false;
+  uint32_t result = d;
+  while (buffer->has_more()) {
+    d = buffer->GetNext() - '0';
+    if (d < 0 || d > 9) return false;
+    // Check that the new result is below the 32 bit limit.
+    if (result > 429496729U - ((d > 5) ? 1 : 0)) return false;
+    result = (result * 10) + d;
+  }
+
+  *index = result;
+  return true;
+}
+
+
+bool String::SlowAsArrayIndex(uint32_t* index) {
+  if (length() <= kMaxCachedArrayIndexLength) {
+    Hash();  // force computation of hash code
+    uint32_t field = length_field();
+    if ((field & kIsArrayIndexMask) == 0) return false;
+    *index = (field & ((1 << kShortLengthShift) - 1)) >> kLongLengthShift;
+    return true;
+  } else {
+    StringInputBuffer buffer(this);
+    return ComputeArrayIndex(&buffer, index, length());
+  }
+}
+
+
+static inline uint32_t HashField(uint32_t hash, bool is_array_index) {
+  uint32_t result =
+      (hash << String::kLongLengthShift) | String::kHashComputedMask;
+  if (is_array_index) result |= String::kIsArrayIndexMask;
+  return result;
+}
+
+
+uint32_t StringHasher::GetHashField() {
+  ASSERT(is_valid());
+  if (length_ <= String::kMaxShortStringSize) {
+    uint32_t payload;
+    if (is_array_index()) {
+      payload = v8::internal::HashField(array_index(), true);
+    } else {
+      payload = v8::internal::HashField(GetHash(), false);
+    }
+    return (payload & ((1 << String::kShortLengthShift) - 1)) |
+           (length_ << String::kShortLengthShift);
+  } else if (length_ <= String::kMaxMediumStringSize) {
+    uint32_t payload = v8::internal::HashField(GetHash(), false);
+    return (payload & ((1 << String::kMediumLengthShift) - 1)) |
+           (length_ << String::kMediumLengthShift);
+  } else {
+    return v8::internal::HashField(length_, false);
+  }
+}
+
+
+uint32_t String::ComputeLengthAndHashField(unibrow::CharacterStream* buffer,
+                                           int length) {
+  StringHasher hasher(length);
+
+  // Very long strings have a trivial hash that doesn't inspect the
+  // string contents.
+  if (hasher.has_trivial_hash()) {
+    return hasher.GetHashField();
+  }
+
+  // Do the iterative array index computation as long as there is a
+  // chance this is an array index.
+  while (buffer->has_more() && hasher.is_array_index()) {
+    hasher.AddCharacter(buffer->GetNext());
+  }
+
+  // Process the remaining characters without updating the array
+  // index.
+  while (buffer->has_more()) {
+    hasher.AddCharacterNoIndex(buffer->GetNext());
+  }
+
+  return hasher.GetHashField();
+}
+
+
+Object* String::Slice(int start, int end) {
+  if (start == 0 && end == length()) return this;
+  if (StringShape(this).representation_tag() == kSlicedStringTag) {
+    // Translate slices of a SlicedString into slices of the
+    // underlying string buffer.
+    SlicedString* str = SlicedString::cast(this);
+    String* buf = str->buffer();
+    return Heap::AllocateSlicedString(buf,
+                                      str->start() + start,
+                                      str->start() + end);
+  }
+  Object* result = Heap::AllocateSlicedString(this, start, end);
+  if (result->IsFailure()) {
+    return result;
+  }
+  // Due to the way we retry after GC on allocation failure we are not allowed
+  // to fail on allocation after this point.  This is the one-allocation rule.
+
+  // Try to flatten a cons string that is under the sliced string.
+  // This is to avoid memory leaks and possible stack overflows caused by
+  // building 'towers' of sliced strings on cons strings.
+  // This may fail due to an allocation failure (when a GC is needed), but it
+  // will succeed often enough to avoid the problem.  We only have to do this
+  // if Heap::AllocateSlicedString actually returned a SlicedString.  It will
+  // return flat strings for small slices for efficiency reasons.
+  String* answer = String::cast(result);
+  if (StringShape(answer).IsSliced() &&
+      StringShape(this).representation_tag() == kConsStringTag) {
+    TryFlatten();
+    // If the flatten succeeded we might as well make the sliced string point
+    // to the flat string rather than the cons string.
+    String* second = ConsString::cast(this)->second();
+    if (second->length() == 0) {
+      SlicedString::cast(answer)->set_buffer(ConsString::cast(this)->first());
+    }
+  }
+  return answer;
+}
+
+
+void String::PrintOn(FILE* file) {
+  int length = this->length();
+  for (int i = 0; i < length; i++) {
+    fprintf(file, "%c", Get(i));
+  }
+}
+
+
+void Map::CreateBackPointers() {
+  DescriptorArray* descriptors = instance_descriptors();
+  for (int i = 0; i < descriptors->number_of_descriptors(); i++) {
+    if (descriptors->GetType(i) == MAP_TRANSITION) {
+      // Get target.
+      Map* target = Map::cast(descriptors->GetValue(i));
+#ifdef DEBUG
+      // Verify target.
+      Object* source_prototype = prototype();
+      Object* target_prototype = target->prototype();
+      ASSERT(source_prototype->IsJSObject() ||
+             source_prototype->IsMap() ||
+             source_prototype->IsNull());
+      ASSERT(target_prototype->IsJSObject() ||
+             target_prototype->IsNull());
+      ASSERT(source_prototype->IsMap() ||
+             source_prototype == target_prototype);
+#endif
+      // Point target back to source.  set_prototype() will not let us set
+      // the prototype to a map, as we do here.
+      *RawField(target, kPrototypeOffset) = this;
+    }
+  }
+}
+
+
+void Map::ClearNonLiveTransitions(Object* real_prototype) {
+  // Live DescriptorArray objects will be marked, so we must use
+  // low-level accessors to get and modify their data.
+  DescriptorArray* d = reinterpret_cast<DescriptorArray*>(
+      *RawField(this, Map::kInstanceDescriptorsOffset));
+  if (d == Heap::raw_unchecked_empty_descriptor_array()) return;
+  Smi* NullDescriptorDetails =
+    PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi();
+  FixedArray* contents = reinterpret_cast<FixedArray*>(
+      d->get(DescriptorArray::kContentArrayIndex));
+  ASSERT(contents->length() >= 2);
+  for (int i = 0; i < contents->length(); i += 2) {
+    // If the pair (value, details) is a map transition,
+    // check if the target is live.  If not, null the descriptor.
+    // Also drop the back pointer for that map transition, so that this
+    // map is not reached again by following a back pointer from a
+    // non-live object.
+    PropertyDetails details(Smi::cast(contents->get(i + 1)));
+    if (details.type() == MAP_TRANSITION) {
+      Map* target = reinterpret_cast<Map*>(contents->get(i));
+      ASSERT(target->IsHeapObject());
+      if (!target->IsMarked()) {
+        ASSERT(target->IsMap());
+        contents->set(i + 1, NullDescriptorDetails, SKIP_WRITE_BARRIER);
+        contents->set(i, Heap::null_value(), SKIP_WRITE_BARRIER);
+        ASSERT(target->prototype() == this ||
+               target->prototype() == real_prototype);
+        // Getter prototype() is read-only, set_prototype() has side effects.
+        *RawField(target, Map::kPrototypeOffset) = real_prototype;
+      }
+    }
+  }
+}
+
+
+void Map::MapIterateBody(ObjectVisitor* v) {
+  // Assumes all Object* members are contiguously allocated!
+  IteratePointers(v, kPrototypeOffset, kCodeCacheOffset + kPointerSize);
+}
+
+
+Object* JSFunction::SetInstancePrototype(Object* value) {
+  ASSERT(value->IsJSObject());
+
+  if (has_initial_map()) {
+    initial_map()->set_prototype(value);
+  } else {
+    // Put the value in the initial map field until an initial map is
+    // needed.  At that point, a new initial map is created and the
+    // prototype is put into the initial map where it belongs.
+    set_prototype_or_initial_map(value);
+  }
+  return value;
+}
+
+
+
+Object* JSFunction::SetPrototype(Object* value) {
+  Object* construct_prototype = value;
+
+  // If the value is not a JSObject, store the value in the map's
+  // constructor field so it can be accessed.  Also, set the prototype
+  // used for constructing objects to the original object prototype.
+  // See ECMA-262 13.2.2.
+  if (!value->IsJSObject()) {
+    // Copy the map so this does not affect unrelated functions.
+    // Remove map transitions because they point to maps with a
+    // different prototype.
+    Object* new_map = map()->CopyDropTransitions();
+    if (new_map->IsFailure()) return new_map;
+    set_map(Map::cast(new_map));
+    map()->set_constructor(value);
+    map()->set_non_instance_prototype(true);
+    construct_prototype =
+        Top::context()->global_context()->initial_object_prototype();
+  } else {
+    map()->set_non_instance_prototype(false);
+  }
+
+  return SetInstancePrototype(construct_prototype);
+}
+
+
+Object* JSFunction::SetInstanceClassName(String* name) {
+  shared()->set_instance_class_name(name);
+  return this;
+}
+
+
+Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) {
+  return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex));
+}
+
+
+void Oddball::OddballIterateBody(ObjectVisitor* v) {
+  // Assumes all Object* members are contiguously allocated!
+  IteratePointers(v, kToStringOffset, kToNumberOffset + kPointerSize);
+}
+
+
+Object* Oddball::Initialize(const char* to_string, Object* to_number) {
+  Object* symbol = Heap::LookupAsciiSymbol(to_string);
+  if (symbol->IsFailure()) return symbol;
+  set_to_string(String::cast(symbol));
+  set_to_number(to_number);
+  return this;
+}
+
+
+bool SharedFunctionInfo::HasSourceCode() {
+  return !script()->IsUndefined() &&
+         !Script::cast(script())->source()->IsUndefined();
+}
+
+
+Object* SharedFunctionInfo::GetSourceCode() {
+  HandleScope scope;
+  if (script()->IsUndefined()) return Heap::undefined_value();
+  Object* source = Script::cast(script())->source();
+  if (source->IsUndefined()) return Heap::undefined_value();
+  return *SubString(Handle<String>(String::cast(source)),
+                    start_position(), end_position());
+}
+
+
+int SharedFunctionInfo::CalculateInstanceSize() {
+  int instance_size =
+      JSObject::kHeaderSize +
+      expected_nof_properties() * kPointerSize;
+  if (instance_size > JSObject::kMaxInstanceSize) {
+    instance_size = JSObject::kMaxInstanceSize;
+  }
+  return instance_size;
+}
+
+
+int SharedFunctionInfo::CalculateInObjectProperties() {
+  return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize;
+}
+
+
+void SharedFunctionInfo::SetThisPropertyAssignmentsInfo(
+    bool only_this_property_assignments,
+    bool only_simple_this_property_assignments,
+    FixedArray* assignments) {
+  set_compiler_hints(BooleanBit::set(compiler_hints(),
+                                     kHasOnlyThisPropertyAssignments,
+                                     only_this_property_assignments));
+  set_compiler_hints(BooleanBit::set(compiler_hints(),
+                                     kHasOnlySimpleThisPropertyAssignments,
+                                     only_simple_this_property_assignments));
+  set_this_property_assignments(assignments);
+  set_this_property_assignments_count(assignments->length() / 3);
+}
+
+
+void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() {
+  set_compiler_hints(BooleanBit::set(compiler_hints(),
+                                     kHasOnlyThisPropertyAssignments,
+                                     false));
+  set_compiler_hints(BooleanBit::set(compiler_hints(),
+                                     kHasOnlySimpleThisPropertyAssignments,
+                                     false));
+  set_this_property_assignments(Heap::undefined_value());
+  set_this_property_assignments_count(0);
+}
+
+
+String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) {
+  Object* obj = this_property_assignments();
+  ASSERT(obj->IsFixedArray());
+  ASSERT(index < this_property_assignments_count());
+  obj = FixedArray::cast(obj)->get(index * 3);
+  ASSERT(obj->IsString());
+  return String::cast(obj);
+}
+
+
+bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) {
+  Object* obj = this_property_assignments();
+  ASSERT(obj->IsFixedArray());
+  ASSERT(index < this_property_assignments_count());
+  obj = FixedArray::cast(obj)->get(index * 3 + 1);
+  return Smi::cast(obj)->value() != -1;
+}
+
+
+int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) {
+  ASSERT(IsThisPropertyAssignmentArgument(index));
+  Object* obj =
+      FixedArray::cast(this_property_assignments())->get(index * 3 + 1);
+  return Smi::cast(obj)->value();
+}
+
+
+Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) {
+  ASSERT(!IsThisPropertyAssignmentArgument(index));
+  Object* obj =
+      FixedArray::cast(this_property_assignments())->get(index * 3 + 2);
+  return obj;
+}
+
+
+
+// Support function for printing the source code to a StringStream
+// without any allocation in the heap.
+void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator,
+                                         int max_length) {
+  // For some native functions there is no source.
+  if (script()->IsUndefined() ||
+      Script::cast(script())->source()->IsUndefined()) {
+    accumulator->Add("<No Source>");
+    return;
+  }
+
+  // Get the slice of the source for this function.
+  // Don't use String::cast because we don't want more assertion errors while
+  // we are already creating a stack dump.
+  String* script_source =
+      reinterpret_cast<String*>(Script::cast(script())->source());
+
+  if (!script_source->LooksValid()) {
+    accumulator->Add("<Invalid Source>");
+    return;
+  }
+
+  if (!is_toplevel()) {
+    accumulator->Add("function ");
+    Object* name = this->name();
+    if (name->IsString() && String::cast(name)->length() > 0) {
+      accumulator->PrintName(name);
+    }
+  }
+
+  int len = end_position() - start_position();
+  if (len > max_length) {
+    accumulator->Put(script_source,
+                     start_position(),
+                     start_position() + max_length);
+    accumulator->Add("...\n");
+  } else {
+    accumulator->Put(script_source, start_position(), end_position());
+  }
+}
+
+
+void SharedFunctionInfo::SharedFunctionInfoIterateBody(ObjectVisitor* v) {
+  IteratePointers(v, kNameOffset, kConstructStubOffset + kPointerSize);
+  IteratePointers(v, kInstanceClassNameOffset, kScriptOffset + kPointerSize);
+  IteratePointers(v, kDebugInfoOffset, kInferredNameOffset + kPointerSize);
+  IteratePointers(v, kThisPropertyAssignmentsOffset,
+      kThisPropertyAssignmentsOffset + kPointerSize);
+}
+
+
+void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
+  ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
+  Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
+  Object* old_target = target;
+  VisitPointer(&target);
+  CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
+}
+
+
+void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
+  ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsCallInstruction());
+  Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
+  Object* old_target = target;
+  VisitPointer(&target);
+  CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
+}
+
+
+void Code::CodeIterateBody(ObjectVisitor* v) {
+  int mode_mask = RelocInfo::kCodeTargetMask |
+                  RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
+                  RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
+                  RelocInfo::ModeMask(RelocInfo::JS_RETURN) |
+                  RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
+
+  for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
+    RelocInfo::Mode rmode = it.rinfo()->rmode();
+    if (rmode == RelocInfo::EMBEDDED_OBJECT) {
+      v->VisitPointer(it.rinfo()->target_object_address());
+    } else if (RelocInfo::IsCodeTarget(rmode)) {
+      v->VisitCodeTarget(it.rinfo());
+    } else if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
+      v->VisitExternalReference(it.rinfo()->target_reference_address());
+#ifdef ENABLE_DEBUGGER_SUPPORT
+    } else if (Debug::has_break_points() &&
+               RelocInfo::IsJSReturn(rmode) &&
+               it.rinfo()->IsCallInstruction()) {
+      v->VisitDebugTarget(it.rinfo());
+#endif
+    } else if (rmode == RelocInfo::RUNTIME_ENTRY) {
+      v->VisitRuntimeEntry(it.rinfo());
+    }
+  }
+
+  ScopeInfo<>::IterateScopeInfo(this, v);
+}
+
+
+void Code::Relocate(int delta) {
+  for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
+    it.rinfo()->apply(delta);
+  }
+  CPU::FlushICache(instruction_start(), instruction_size());
+}
+
+
+void Code::CopyFrom(const CodeDesc& desc) {
+  // copy code
+  memmove(instruction_start(), desc.buffer, desc.instr_size);
+
+  // fill gap with zero bytes
+  { byte* p = instruction_start() + desc.instr_size;
+    byte* q = relocation_start();
+    while (p < q) {
+      *p++ = 0;
+    }
+  }
+
+  // copy reloc info
+  memmove(relocation_start(),
+          desc.buffer + desc.buffer_size - desc.reloc_size,
+          desc.reloc_size);
+
+  // unbox handles and relocate
+  int delta = instruction_start() - desc.buffer;
+  int mode_mask = RelocInfo::kCodeTargetMask |
+                  RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
+                  RelocInfo::kApplyMask;
+  for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
+    RelocInfo::Mode mode = it.rinfo()->rmode();
+    if (mode == RelocInfo::EMBEDDED_OBJECT) {
+      Object** p = reinterpret_cast<Object**>(it.rinfo()->target_object());
+      it.rinfo()->set_target_object(*p);
+    } else if (RelocInfo::IsCodeTarget(mode)) {
+      // rewrite code handles in inline cache targets to direct
+      // pointers to the first instruction in the code object
+      Object** p = reinterpret_cast<Object**>(it.rinfo()->target_object());
+      Code* code = Code::cast(*p);
+      it.rinfo()->set_target_address(code->instruction_start());
+    } else {
+      it.rinfo()->apply(delta);
+    }
+  }
+  CPU::FlushICache(instruction_start(), instruction_size());
+}
+
+
+// Locate the source position which is closest to the address in the code. This
+// is using the source position information embedded in the relocation info.
+// The position returned is relative to the beginning of the script where the
+// source for this function is found.
+int Code::SourcePosition(Address pc) {
+  int distance = kMaxInt;
+  int position = RelocInfo::kNoPosition;  // Initially no position found.
+  // Run through all the relocation info to find the best matching source
+  // position. All the code needs to be considered as the sequence of the
+  // instructions in the code does not necessarily follow the same order as the
+  // source.
+  RelocIterator it(this, RelocInfo::kPositionMask);
+  while (!it.done()) {
+    // Only look at positions after the current pc.
+    if (it.rinfo()->pc() < pc) {
+      // Get position and distance.
+      int dist = pc - it.rinfo()->pc();
+      int pos = it.rinfo()->data();
+      // If this position is closer than the current candidate or if it has the
+      // same distance as the current candidate and the position is higher then
+      // this position is the new candidate.
+      if ((dist < distance) ||
+          (dist == distance && pos > position)) {
+        position = pos;
+        distance = dist;
+      }
+    }
+    it.next();
+  }
+  return position;
+}
+
+
+// Same as Code::SourcePosition above except it only looks for statement
+// positions.
+int Code::SourceStatementPosition(Address pc) {
+  // First find the position as close as possible using all position
+  // information.
+  int position = SourcePosition(pc);
+  // Now find the closest statement position before the position.
+  int statement_position = 0;
+  RelocIterator it(this, RelocInfo::kPositionMask);
+  while (!it.done()) {
+    if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
+      int p = it.rinfo()->data();
+      if (statement_position < p && p <= position) {
+        statement_position = p;
+      }
+    }
+    it.next();
+  }
+  return statement_position;
+}
+
+
+#ifdef ENABLE_DISASSEMBLER
+// Identify kind of code.
+const char* Code::Kind2String(Kind kind) {
+  switch (kind) {
+    case FUNCTION: return "FUNCTION";
+    case STUB: return "STUB";
+    case BUILTIN: return "BUILTIN";
+    case LOAD_IC: return "LOAD_IC";
+    case KEYED_LOAD_IC: return "KEYED_LOAD_IC";
+    case STORE_IC: return "STORE_IC";
+    case KEYED_STORE_IC: return "KEYED_STORE_IC";
+    case CALL_IC: return "CALL_IC";
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+
+const char* Code::ICState2String(InlineCacheState state) {
+  switch (state) {
+    case UNINITIALIZED: return "UNINITIALIZED";
+    case PREMONOMORPHIC: return "PREMONOMORPHIC";
+    case MONOMORPHIC: return "MONOMORPHIC";
+    case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE";
+    case MEGAMORPHIC: return "MEGAMORPHIC";
+    case DEBUG_BREAK: return "DEBUG_BREAK";
+    case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN";
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+
+const char* Code::PropertyType2String(PropertyType type) {
+  switch (type) {
+    case NORMAL: return "NORMAL";
+    case FIELD: return "FIELD";
+    case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION";
+    case CALLBACKS: return "CALLBACKS";
+    case INTERCEPTOR: return "INTERCEPTOR";
+    case MAP_TRANSITION: return "MAP_TRANSITION";
+    case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION";
+    case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR";
+  }
+  UNREACHABLE();
+  return NULL;
+}
+
+void Code::Disassemble(const char* name) {
+  PrintF("kind = %s\n", Kind2String(kind()));
+  if (is_inline_cache_stub()) {
+    PrintF("ic_state = %s\n", ICState2String(ic_state()));
+    PrintF("ic_in_loop = %d\n", ic_in_loop() == IN_LOOP);
+    if (ic_state() == MONOMORPHIC) {
+      PrintF("type = %s\n", PropertyType2String(type()));
+    }
+  }
+  if ((name != NULL) && (name[0] != '\0')) {
+    PrintF("name = %s\n", name);
+  }
+
+  PrintF("Instructions (size = %d)\n", instruction_size());
+  Disassembler::Decode(NULL, this);
+  PrintF("\n");
+
+  PrintF("RelocInfo (size = %d)\n", relocation_size());
+  for (RelocIterator it(this); !it.done(); it.next())
+    it.rinfo()->Print();
+  PrintF("\n");
+}
+#endif  // ENABLE_DISASSEMBLER
+
+
+void JSObject::SetFastElements(FixedArray* elems) {
+  // We should never end in here with a pixel array.
+  ASSERT(!HasPixelElements());
+#ifdef DEBUG
+  // Check the provided array is filled with the_hole.
+  uint32_t len = static_cast<uint32_t>(elems->length());
+  for (uint32_t i = 0; i < len; i++) ASSERT(elems->get(i)->IsTheHole());
+#endif
+  WriteBarrierMode mode = elems->GetWriteBarrierMode();
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      FixedArray* old_elements = FixedArray::cast(elements());
+      uint32_t old_length = static_cast<uint32_t>(old_elements->length());
+      // Fill out the new array with this content and array holes.
+      for (uint32_t i = 0; i < old_length; i++) {
+        elems->set(i, old_elements->get(i), mode);
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = NumberDictionary::cast(elements());
+      for (int i = 0; i < dictionary->Capacity(); i++) {
+        Object* key = dictionary->KeyAt(i);
+        if (key->IsNumber()) {
+          uint32_t entry = static_cast<uint32_t>(key->Number());
+          elems->set(entry, dictionary->ValueAt(i), mode);
+        }
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  set_elements(elems);
+}
+
+
+Object* JSObject::SetSlowElements(Object* len) {
+  // We should never end in here with a pixel array.
+  ASSERT(!HasPixelElements());
+
+  uint32_t new_length = static_cast<uint32_t>(len->Number());
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      // Make sure we never try to shrink dense arrays into sparse arrays.
+      ASSERT(static_cast<uint32_t>(FixedArray::cast(elements())->length()) <=
+                                   new_length);
+      Object* obj = NormalizeElements();
+      if (obj->IsFailure()) return obj;
+
+      // Update length for JSArrays.
+      if (IsJSArray()) JSArray::cast(this)->set_length(len);
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      if (IsJSArray()) {
+        uint32_t old_length =
+        static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
+        element_dictionary()->RemoveNumberEntries(new_length, old_length),
+        JSArray::cast(this)->set_length(len);
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  return this;
+}
+
+
+Object* JSArray::Initialize(int capacity) {
+  ASSERT(capacity >= 0);
+  set_length(Smi::FromInt(0), SKIP_WRITE_BARRIER);
+  FixedArray* new_elements;
+  if (capacity == 0) {
+    new_elements = Heap::empty_fixed_array();
+  } else {
+    Object* obj = Heap::AllocateFixedArrayWithHoles(capacity);
+    if (obj->IsFailure()) return obj;
+    new_elements = FixedArray::cast(obj);
+  }
+  set_elements(new_elements);
+  return this;
+}
+
+
+void JSArray::Expand(int required_size) {
+  Handle<JSArray> self(this);
+  Handle<FixedArray> old_backing(FixedArray::cast(elements()));
+  int old_size = old_backing->length();
+  // Doubling in size would be overkill, but leave some slack to avoid
+  // constantly growing.
+  int new_size = required_size + (required_size >> 3);
+  Handle<FixedArray> new_backing = Factory::NewFixedArray(new_size);
+  // Can't use this any more now because we may have had a GC!
+  for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i));
+  self->SetContent(*new_backing);
+}
+
+
+// Computes the new capacity when expanding the elements of a JSObject.
+static int NewElementsCapacity(int old_capacity) {
+  // (old_capacity + 50%) + 16
+  return old_capacity + (old_capacity >> 1) + 16;
+}
+
+
+static Object* ArrayLengthRangeError() {
+  HandleScope scope;
+  return Top::Throw(*Factory::NewRangeError("invalid_array_length",
+                                            HandleVector<Object>(NULL, 0)));
+}
+
+
+Object* JSObject::SetElementsLength(Object* len) {
+  // We should never end in here with a pixel array.
+  ASSERT(!HasPixelElements());
+
+  Object* smi_length = len->ToSmi();
+  if (smi_length->IsSmi()) {
+    int value = Smi::cast(smi_length)->value();
+    if (value < 0) return ArrayLengthRangeError();
+    switch (GetElementsKind()) {
+      case FAST_ELEMENTS: {
+        int old_capacity = FixedArray::cast(elements())->length();
+        if (value <= old_capacity) {
+          if (IsJSArray()) {
+            int old_length = FastD2I(JSArray::cast(this)->length()->Number());
+            // NOTE: We may be able to optimize this by removing the
+            // last part of the elements backing storage array and
+            // setting the capacity to the new size.
+            for (int i = value; i < old_length; i++) {
+              FixedArray::cast(elements())->set_the_hole(i);
+            }
+            JSArray::cast(this)->set_length(smi_length, SKIP_WRITE_BARRIER);
+          }
+          return this;
+        }
+        int min = NewElementsCapacity(old_capacity);
+        int new_capacity = value > min ? value : min;
+        if (new_capacity <= kMaxFastElementsLength ||
+            !ShouldConvertToSlowElements(new_capacity)) {
+          Object* obj = Heap::AllocateFixedArrayWithHoles(new_capacity);
+          if (obj->IsFailure()) return obj;
+          if (IsJSArray()) JSArray::cast(this)->set_length(smi_length,
+                                                           SKIP_WRITE_BARRIER);
+          SetFastElements(FixedArray::cast(obj));
+          return this;
+        }
+        break;
+      }
+      case DICTIONARY_ELEMENTS: {
+        if (IsJSArray()) {
+          if (value == 0) {
+            // If the length of a slow array is reset to zero, we clear
+            // the array and flush backing storage. This has the added
+            // benefit that the array returns to fast mode.
+            initialize_elements();
+          } else {
+            // Remove deleted elements.
+            uint32_t old_length =
+            static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
+            element_dictionary()->RemoveNumberEntries(value, old_length);
+          }
+          JSArray::cast(this)->set_length(smi_length, SKIP_WRITE_BARRIER);
+        }
+        return this;
+      }
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+
+  // General slow case.
+  if (len->IsNumber()) {
+    uint32_t length;
+    if (Array::IndexFromObject(len, &length)) {
+      return SetSlowElements(len);
+    } else {
+      return ArrayLengthRangeError();
+    }
+  }
+
+  // len is not a number so make the array size one and
+  // set only element to len.
+  Object* obj = Heap::AllocateFixedArray(1);
+  if (obj->IsFailure()) return obj;
+  FixedArray::cast(obj)->set(0, len);
+  if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1),
+                                                   SKIP_WRITE_BARRIER);
+  set_elements(FixedArray::cast(obj));
+  return this;
+}
+
+
+bool JSObject::HasElementPostInterceptor(JSObject* receiver, uint32_t index) {
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+          static_cast<uint32_t>
+              (Smi::cast(JSArray::cast(this)->length())->value()) :
+          static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      if ((index < length) &&
+          !FixedArray::cast(elements())->get(index)->IsTheHole()) {
+        return true;
+      }
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      // TODO(iposva): Add testcase.
+      PixelArray* pixels = PixelArray::cast(elements());
+      if (index < static_cast<uint32_t>(pixels->length())) {
+        return true;
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      if (element_dictionary()->FindEntry(index)
+          != NumberDictionary::kNotFound) {
+        return true;
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  // Handle [] on String objects.
+  if (this->IsStringObjectWithCharacterAt(index)) return true;
+
+  Object* pt = GetPrototype();
+  if (pt == Heap::null_value()) return false;
+  return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
+}
+
+
+bool JSObject::HasElementWithInterceptor(JSObject* receiver, uint32_t index) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
+  Handle<JSObject> receiver_handle(receiver);
+  Handle<JSObject> holder_handle(this);
+  CustomArguments args(interceptor->data(), receiver, this);
+  v8::AccessorInfo info(args.end());
+  if (!interceptor->query()->IsUndefined()) {
+    v8::IndexedPropertyQuery query =
+        v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query());
+    LOG(ApiIndexedPropertyAccess("interceptor-indexed-has", this, index));
+    v8::Handle<v8::Boolean> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = query(index, info);
+    }
+    if (!result.IsEmpty()) return result->IsTrue();
+  } else if (!interceptor->getter()->IsUndefined()) {
+    v8::IndexedPropertyGetter getter =
+        v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
+    LOG(ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index));
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = getter(index, info);
+    }
+    if (!result.IsEmpty()) return true;
+  }
+  return holder_handle->HasElementPostInterceptor(*receiver_handle, index);
+}
+
+
+bool JSObject::HasLocalElement(uint32_t index) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return false;
+  }
+
+  // Check for lookup interceptor
+  if (HasIndexedInterceptor()) {
+    return HasElementWithInterceptor(this, index);
+  }
+
+  // Handle [] on String objects.
+  if (this->IsStringObjectWithCharacterAt(index)) return true;
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+          static_cast<uint32_t>
+              (Smi::cast(JSArray::cast(this)->length())->value()) :
+          static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      return (index < length) &&
+          !FixedArray::cast(elements())->get(index)->IsTheHole();
+    }
+    case PIXEL_ELEMENTS: {
+      PixelArray* pixels = PixelArray::cast(elements());
+      return (index < static_cast<uint32_t>(pixels->length()));
+    }
+    case DICTIONARY_ELEMENTS: {
+      return element_dictionary()->FindEntry(index)
+          != NumberDictionary::kNotFound;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  UNREACHABLE();
+  return Heap::null_value();
+}
+
+
+bool JSObject::HasElementWithReceiver(JSObject* receiver, uint32_t index) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return false;
+  }
+
+  // Check for lookup interceptor
+  if (HasIndexedInterceptor()) {
+    return HasElementWithInterceptor(receiver, index);
+  }
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+          static_cast<uint32_t>
+              (Smi::cast(JSArray::cast(this)->length())->value()) :
+          static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      if ((index < length) &&
+          !FixedArray::cast(elements())->get(index)->IsTheHole()) return true;
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      PixelArray* pixels = PixelArray::cast(elements());
+      if (index < static_cast<uint32_t>(pixels->length())) {
+        return true;
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      if (element_dictionary()->FindEntry(index)
+          != NumberDictionary::kNotFound) {
+        return true;
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  // Handle [] on String objects.
+  if (this->IsStringObjectWithCharacterAt(index)) return true;
+
+  Object* pt = GetPrototype();
+  if (pt == Heap::null_value()) return false;
+  return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
+}
+
+
+Object* JSObject::SetElementWithInterceptor(uint32_t index, Object* value) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
+  Handle<JSObject> this_handle(this);
+  Handle<Object> value_handle(value);
+  if (!interceptor->setter()->IsUndefined()) {
+    v8::IndexedPropertySetter setter =
+        v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter());
+    LOG(ApiIndexedPropertyAccess("interceptor-indexed-set", this, index));
+    CustomArguments args(interceptor->data(), this, this);
+    v8::AccessorInfo info(args.end());
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = setter(index, v8::Utils::ToLocal(value_handle), info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (!result.IsEmpty()) return *value_handle;
+  }
+  Object* raw_result =
+      this_handle->SetElementWithoutInterceptor(index, *value_handle);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return raw_result;
+}
+
+
+// Adding n elements in fast case is O(n*n).
+// Note: revisit design to have dual undefined values to capture absent
+// elements.
+Object* JSObject::SetFastElement(uint32_t index, Object* value) {
+  ASSERT(HasFastElements());
+
+  FixedArray* elms = FixedArray::cast(elements());
+  uint32_t elms_length = static_cast<uint32_t>(elms->length());
+
+  if (!IsJSArray() && (index >= elms_length || elms->get(index)->IsTheHole())) {
+    Object* setter = LookupCallbackSetterInPrototypes(index);
+    if (setter->IsJSFunction()) {
+      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
+    }
+  }
+
+  // Check whether there is extra space in fixed array..
+  if (index < elms_length) {
+    elms->set(index, value);
+    if (IsJSArray()) {
+      // Update the length of the array if needed.
+      uint32_t array_length = 0;
+      CHECK(Array::IndexFromObject(JSArray::cast(this)->length(),
+                                   &array_length));
+      if (index >= array_length) {
+        JSArray::cast(this)->set_length(Smi::FromInt(index + 1),
+                                        SKIP_WRITE_BARRIER);
+      }
+    }
+    return value;
+  }
+
+  // Allow gap in fast case.
+  if ((index - elms_length) < kMaxGap) {
+    // Try allocating extra space.
+    int new_capacity = NewElementsCapacity(index+1);
+    if (new_capacity <= kMaxFastElementsLength ||
+        !ShouldConvertToSlowElements(new_capacity)) {
+      ASSERT(static_cast<uint32_t>(new_capacity) > index);
+      Object* obj = Heap::AllocateFixedArrayWithHoles(new_capacity);
+      if (obj->IsFailure()) return obj;
+      SetFastElements(FixedArray::cast(obj));
+      if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(index + 1),
+                                                       SKIP_WRITE_BARRIER);
+      FixedArray::cast(elements())->set(index, value);
+      return value;
+    }
+  }
+
+  // Otherwise default to slow case.
+  Object* obj = NormalizeElements();
+  if (obj->IsFailure()) return obj;
+  ASSERT(HasDictionaryElements());
+  return SetElement(index, value);
+}
+
+Object* JSObject::SetElement(uint32_t index, Object* value) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_SET)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
+    return value;
+  }
+
+  if (IsJSGlobalProxy()) {
+    Object* proto = GetPrototype();
+    if (proto->IsNull()) return value;
+    ASSERT(proto->IsJSGlobalObject());
+    return JSObject::cast(proto)->SetElement(index, value);
+  }
+
+  // Check for lookup interceptor
+  if (HasIndexedInterceptor()) {
+    return SetElementWithInterceptor(index, value);
+  }
+
+  return SetElementWithoutInterceptor(index, value);
+}
+
+
+Object* JSObject::SetElementWithoutInterceptor(uint32_t index, Object* value) {
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS:
+      // Fast case.
+      return SetFastElement(index, value);
+    case PIXEL_ELEMENTS: {
+      PixelArray* pixels = PixelArray::cast(elements());
+      return pixels->SetValue(index, value);
+    }
+    case DICTIONARY_ELEMENTS: {
+      // Insert element in the dictionary.
+      FixedArray* elms = FixedArray::cast(elements());
+      NumberDictionary* dictionary = NumberDictionary::cast(elms);
+
+      int entry = dictionary->FindEntry(index);
+      if (entry != NumberDictionary::kNotFound) {
+        Object* element = dictionary->ValueAt(entry);
+        PropertyDetails details = dictionary->DetailsAt(entry);
+        if (details.type() == CALLBACKS) {
+          // Only accessors allowed as elements.
+          FixedArray* structure = FixedArray::cast(element);
+          if (structure->get(kSetterIndex)->IsJSFunction()) {
+            JSFunction* setter = JSFunction::cast(structure->get(kSetterIndex));
+            return SetPropertyWithDefinedSetter(setter, value);
+          } else {
+            Handle<Object> self(this);
+            Handle<Object> key(Factory::NewNumberFromUint(index));
+            Handle<Object> args[2] = { key, self };
+            return Top::Throw(*Factory::NewTypeError("no_setter_in_callback",
+                                                     HandleVector(args, 2)));
+          }
+        } else {
+          dictionary->UpdateMaxNumberKey(index);
+          dictionary->ValueAtPut(entry, value);
+        }
+      } else {
+        // Index not already used. Look for an accessor in the prototype chain.
+        if (!IsJSArray()) {
+          Object* setter = LookupCallbackSetterInPrototypes(index);
+          if (setter->IsJSFunction()) {
+            return SetPropertyWithDefinedSetter(JSFunction::cast(setter),
+                                                value);
+          }
+        }
+        Object* result = dictionary->AtNumberPut(index, value);
+        if (result->IsFailure()) return result;
+        if (elms != FixedArray::cast(result)) {
+          set_elements(FixedArray::cast(result));
+        }
+      }
+
+      // Update the array length if this JSObject is an array.
+      if (IsJSArray()) {
+        JSArray* array = JSArray::cast(this);
+        Object* return_value = array->JSArrayUpdateLengthFromIndex(index,
+                                                                   value);
+        if (return_value->IsFailure()) return return_value;
+      }
+
+      // Attempt to put this object back in fast case.
+      if (ShouldConvertToFastElements()) {
+        uint32_t new_length = 0;
+        if (IsJSArray()) {
+          CHECK(Array::IndexFromObject(JSArray::cast(this)->length(),
+                                       &new_length));
+          JSArray::cast(this)->set_length(Smi::FromInt(new_length));
+        } else {
+          new_length = NumberDictionary::cast(elements())->max_number_key() + 1;
+        }
+        Object* obj = Heap::AllocateFixedArrayWithHoles(new_length);
+        if (obj->IsFailure()) return obj;
+        SetFastElements(FixedArray::cast(obj));
+#ifdef DEBUG
+        if (FLAG_trace_normalization) {
+          PrintF("Object elements are fast case again:\n");
+          Print();
+        }
+#endif
+      }
+
+      return value;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  // All possible cases have been handled above. Add a return to avoid the
+  // complaints from the compiler.
+  UNREACHABLE();
+  return Heap::null_value();
+}
+
+
+Object* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, Object* value) {
+  uint32_t old_len = 0;
+  CHECK(Array::IndexFromObject(length(), &old_len));
+  // Check to see if we need to update the length. For now, we make
+  // sure that the length stays within 32-bits (unsigned).
+  if (index >= old_len && index != 0xffffffff) {
+    Object* len =
+        Heap::NumberFromDouble(static_cast<double>(index) + 1);
+    if (len->IsFailure()) return len;
+    set_length(len);
+  }
+  return value;
+}
+
+
+Object* JSObject::GetElementPostInterceptor(JSObject* receiver,
+                                            uint32_t index) {
+  // Get element works for both JSObject and JSArray since
+  // JSArray::length cannot change.
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      FixedArray* elms = FixedArray::cast(elements());
+      if (index < static_cast<uint32_t>(elms->length())) {
+        Object* value = elms->get(index);
+        if (!value->IsTheHole()) return value;
+      }
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      // TODO(iposva): Add testcase and implement.
+      UNIMPLEMENTED();
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = element_dictionary();
+      int entry = dictionary->FindEntry(index);
+      if (entry != NumberDictionary::kNotFound) {
+        Object* element = dictionary->ValueAt(entry);
+        PropertyDetails details = dictionary->DetailsAt(entry);
+        if (details.type() == CALLBACKS) {
+          // Only accessors allowed as elements.
+          FixedArray* structure = FixedArray::cast(element);
+          Object* getter = structure->get(kGetterIndex);
+          if (getter->IsJSFunction()) {
+            return GetPropertyWithDefinedGetter(receiver,
+                                                JSFunction::cast(getter));
+          } else {
+            // Getter is not a function.
+            return Heap::undefined_value();
+          }
+        }
+        return element;
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  // Continue searching via the prototype chain.
+  Object* pt = GetPrototype();
+  if (pt == Heap::null_value()) return Heap::undefined_value();
+  return pt->GetElementWithReceiver(receiver, index);
+}
+
+
+Object* JSObject::GetElementWithInterceptor(JSObject* receiver,
+                                            uint32_t index) {
+  // Make sure that the top context does not change when doing
+  // callbacks or interceptor calls.
+  AssertNoContextChange ncc;
+  HandleScope scope;
+  Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
+  Handle<JSObject> this_handle(receiver);
+  Handle<JSObject> holder_handle(this);
+
+  if (!interceptor->getter()->IsUndefined()) {
+    v8::IndexedPropertyGetter getter =
+        v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
+    LOG(ApiIndexedPropertyAccess("interceptor-indexed-get", this, index));
+    CustomArguments args(interceptor->data(), receiver, this);
+    v8::AccessorInfo info(args.end());
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = getter(index, info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
+  }
+
+  Object* raw_result =
+      holder_handle->GetElementPostInterceptor(*this_handle, index);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return raw_result;
+}
+
+
+Object* JSObject::GetElementWithReceiver(JSObject* receiver, uint32_t index) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_GET)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_GET);
+    return Heap::undefined_value();
+  }
+
+  if (HasIndexedInterceptor()) {
+    return GetElementWithInterceptor(receiver, index);
+  }
+
+  // Get element works for both JSObject and JSArray since
+  // JSArray::length cannot change.
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      FixedArray* elms = FixedArray::cast(elements());
+      if (index < static_cast<uint32_t>(elms->length())) {
+        Object* value = elms->get(index);
+        if (!value->IsTheHole()) return value;
+      }
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      PixelArray* pixels = PixelArray::cast(elements());
+      if (index < static_cast<uint32_t>(pixels->length())) {
+        uint8_t value = pixels->get(index);
+        return Smi::FromInt(value);
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = element_dictionary();
+      int entry = dictionary->FindEntry(index);
+      if (entry != NumberDictionary::kNotFound) {
+        Object* element = dictionary->ValueAt(entry);
+        PropertyDetails details = dictionary->DetailsAt(entry);
+        if (details.type() == CALLBACKS) {
+          // Only accessors allowed as elements.
+          FixedArray* structure = FixedArray::cast(element);
+          Object* getter = structure->get(kGetterIndex);
+          if (getter->IsJSFunction()) {
+            return GetPropertyWithDefinedGetter(receiver,
+                                                JSFunction::cast(getter));
+          } else {
+            // Getter is not a function.
+            return Heap::undefined_value();
+          }
+        }
+        return element;
+      }
+      break;
+    }
+  }
+
+  Object* pt = GetPrototype();
+  if (pt == Heap::null_value()) return Heap::undefined_value();
+  return pt->GetElementWithReceiver(receiver, index);
+}
+
+
+bool JSObject::HasDenseElements() {
+  int capacity = 0;
+  int number_of_elements = 0;
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      FixedArray* elms = FixedArray::cast(elements());
+      capacity = elms->length();
+      for (int i = 0; i < capacity; i++) {
+        if (!elms->get(i)->IsTheHole()) number_of_elements++;
+      }
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      return true;
+    }
+    case DICTIONARY_ELEMENTS: {
+      NumberDictionary* dictionary = NumberDictionary::cast(elements());
+      capacity = dictionary->Capacity();
+      number_of_elements = dictionary->NumberOfElements();
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  if (capacity == 0) return true;
+  return (number_of_elements > (capacity / 2));
+}
+
+
+bool JSObject::ShouldConvertToSlowElements(int new_capacity) {
+  ASSERT(HasFastElements());
+  // Keep the array in fast case if the current backing storage is
+  // almost filled and if the new capacity is no more than twice the
+  // old capacity.
+  int elements_length = FixedArray::cast(elements())->length();
+  return !HasDenseElements() || ((new_capacity / 2) > elements_length);
+}
+
+
+bool JSObject::ShouldConvertToFastElements() {
+  ASSERT(HasDictionaryElements());
+  NumberDictionary* dictionary = NumberDictionary::cast(elements());
+  // If the elements are sparse, we should not go back to fast case.
+  if (!HasDenseElements()) return false;
+  // If an element has been added at a very high index in the elements
+  // dictionary, we cannot go back to fast case.
+  if (dictionary->requires_slow_elements()) return false;
+  // An object requiring access checks is never allowed to have fast
+  // elements.  If it had fast elements we would skip security checks.
+  if (IsAccessCheckNeeded()) return false;
+  // If the dictionary backing storage takes up roughly half as much
+  // space as a fast-case backing storage would the array should have
+  // fast elements.
+  uint32_t length = 0;
+  if (IsJSArray()) {
+    CHECK(Array::IndexFromObject(JSArray::cast(this)->length(), &length));
+  } else {
+    length = dictionary->max_number_key();
+  }
+  return static_cast<uint32_t>(dictionary->Capacity()) >=
+      (length / (2 * NumberDictionary::kEntrySize));
+}
+
+
+// Certain compilers request function template instantiation when they
+// see the definition of the other template functions in the
+// class. This requires us to have the template functions put
+// together, so even though this function belongs in objects-debug.cc,
+// we keep it here instead to satisfy certain compilers.
+#ifdef DEBUG
+template<typename Shape, typename Key>
+void Dictionary<Shape, Key>::Print() {
+  int capacity = HashTable<Shape, Key>::Capacity();
+  for (int i = 0; i < capacity; i++) {
+    Object* k = HashTable<Shape, Key>::KeyAt(i);
+    if (HashTable<Shape, Key>::IsKey(k)) {
+      PrintF(" ");
+      if (k->IsString()) {
+        String::cast(k)->StringPrint();
+      } else {
+        k->ShortPrint();
+      }
+      PrintF(": ");
+      ValueAt(i)->ShortPrint();
+      PrintF("\n");
+    }
+  }
+}
+#endif
+
+
+template<typename Shape, typename Key>
+void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) {
+  int pos = 0;
+  int capacity = HashTable<Shape, Key>::Capacity();
+  WriteBarrierMode mode = elements->GetWriteBarrierMode();
+  for (int i = 0; i < capacity; i++) {
+    Object* k =  Dictionary<Shape, Key>::KeyAt(i);
+    if (Dictionary<Shape, Key>::IsKey(k)) {
+      elements->set(pos++, ValueAt(i), mode);
+    }
+  }
+  ASSERT(pos == elements->length());
+}
+
+
+InterceptorInfo* JSObject::GetNamedInterceptor() {
+  ASSERT(map()->has_named_interceptor());
+  JSFunction* constructor = JSFunction::cast(map()->constructor());
+  Object* template_info = constructor->shared()->function_data();
+  Object* result =
+      FunctionTemplateInfo::cast(template_info)->named_property_handler();
+  return InterceptorInfo::cast(result);
+}
+
+
+InterceptorInfo* JSObject::GetIndexedInterceptor() {
+  ASSERT(map()->has_indexed_interceptor());
+  JSFunction* constructor = JSFunction::cast(map()->constructor());
+  Object* template_info = constructor->shared()->function_data();
+  Object* result =
+      FunctionTemplateInfo::cast(template_info)->indexed_property_handler();
+  return InterceptorInfo::cast(result);
+}
+
+
+Object* JSObject::GetPropertyPostInterceptor(JSObject* receiver,
+                                             String* name,
+                                             PropertyAttributes* attributes) {
+  // Check local property in holder, ignore interceptor.
+  LookupResult result;
+  LocalLookupRealNamedProperty(name, &result);
+  if (result.IsValid()) return GetProperty(receiver, &result, name, attributes);
+  // Continue searching via the prototype chain.
+  Object* pt = GetPrototype();
+  *attributes = ABSENT;
+  if (pt == Heap::null_value()) return Heap::undefined_value();
+  return pt->GetPropertyWithReceiver(receiver, name, attributes);
+}
+
+
+Object* JSObject::GetPropertyWithInterceptor(
+    JSObject* receiver,
+    String* name,
+    PropertyAttributes* attributes) {
+  InterceptorInfo* interceptor = GetNamedInterceptor();
+  HandleScope scope;
+  Handle<JSObject> receiver_handle(receiver);
+  Handle<JSObject> holder_handle(this);
+  Handle<String> name_handle(name);
+
+  if (!interceptor->getter()->IsUndefined()) {
+    v8::NamedPropertyGetter getter =
+        v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
+    LOG(ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name));
+    CustomArguments args(interceptor->data(), receiver, this);
+    v8::AccessorInfo info(args.end());
+    v8::Handle<v8::Value> result;
+    {
+      // Leaving JavaScript.
+      VMState state(EXTERNAL);
+      result = getter(v8::Utils::ToLocal(name_handle), info);
+    }
+    RETURN_IF_SCHEDULED_EXCEPTION();
+    if (!result.IsEmpty()) {
+      *attributes = NONE;
+      return *v8::Utils::OpenHandle(*result);
+    }
+  }
+
+  Object* result = holder_handle->GetPropertyPostInterceptor(
+      *receiver_handle,
+      *name_handle,
+      attributes);
+  RETURN_IF_SCHEDULED_EXCEPTION();
+  return result;
+}
+
+
+bool JSObject::HasRealNamedProperty(String* key) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return false;
+  }
+
+  LookupResult result;
+  LocalLookupRealNamedProperty(key, &result);
+  if (result.IsValid()) {
+    switch (result.type()) {
+      case NORMAL:    // fall through.
+      case FIELD:     // fall through.
+      case CALLBACKS:  // fall through.
+      case CONSTANT_FUNCTION:
+        return true;
+      case INTERCEPTOR:
+      case MAP_TRANSITION:
+      case CONSTANT_TRANSITION:
+      case NULL_DESCRIPTOR:
+        return false;
+      default:
+        UNREACHABLE();
+    }
+  }
+
+  return false;
+}
+
+
+bool JSObject::HasRealElementProperty(uint32_t index) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return false;
+  }
+
+  // Handle [] on String objects.
+  if (this->IsStringObjectWithCharacterAt(index)) return true;
+
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      uint32_t length = IsJSArray() ?
+          static_cast<uint32_t>(
+              Smi::cast(JSArray::cast(this)->length())->value()) :
+          static_cast<uint32_t>(FixedArray::cast(elements())->length());
+      return (index < length) &&
+          !FixedArray::cast(elements())->get(index)->IsTheHole();
+    }
+    case PIXEL_ELEMENTS: {
+      PixelArray* pixels = PixelArray::cast(elements());
+      return index < static_cast<uint32_t>(pixels->length());
+    }
+    case DICTIONARY_ELEMENTS: {
+      return element_dictionary()->FindEntry(index)
+          != NumberDictionary::kNotFound;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+  // All possibilities have been handled above already.
+  UNREACHABLE();
+  return Heap::null_value();
+}
+
+
+bool JSObject::HasRealNamedCallbackProperty(String* key) {
+  // Check access rights if needed.
+  if (IsAccessCheckNeeded() &&
+      !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) {
+    Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
+    return false;
+  }
+
+  LookupResult result;
+  LocalLookupRealNamedProperty(key, &result);
+  return result.IsValid() && (result.type() == CALLBACKS);
+}
+
+
+int JSObject::NumberOfLocalProperties(PropertyAttributes filter) {
+  if (HasFastProperties()) {
+    DescriptorArray* descs = map()->instance_descriptors();
+    int result = 0;
+    for (int i = 0; i < descs->number_of_descriptors(); i++) {
+      PropertyDetails details = descs->GetDetails(i);
+      if (details.IsProperty() && (details.attributes() & filter) == 0) {
+        result++;
+      }
+    }
+    return result;
+  } else {
+    return property_dictionary()->NumberOfElementsFilterAttributes(filter);
+  }
+}
+
+
+int JSObject::NumberOfEnumProperties() {
+  return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM));
+}
+
+
+void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
+  Object* temp = get(i);
+  set(i, get(j));
+  set(j, temp);
+  if (this != numbers) {
+    temp = numbers->get(i);
+    numbers->set(i, numbers->get(j));
+    numbers->set(j, temp);
+  }
+}
+
+
+static void InsertionSortPairs(FixedArray* content,
+                               FixedArray* numbers,
+                               int len) {
+  for (int i = 1; i < len; i++) {
+    int j = i;
+    while (j > 0 &&
+           (NumberToUint32(numbers->get(j - 1)) >
+            NumberToUint32(numbers->get(j)))) {
+      content->SwapPairs(numbers, j - 1, j);
+      j--;
+    }
+  }
+}
+
+
+void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
+  // In-place heap sort.
+  ASSERT(content->length() == numbers->length());
+
+  // Bottom-up max-heap construction.
+  for (int i = 1; i < len; ++i) {
+    int child_index = i;
+    while (child_index > 0) {
+      int parent_index = ((child_index + 1) >> 1) - 1;
+      uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
+      uint32_t child_value = NumberToUint32(numbers->get(child_index));
+      if (parent_value < child_value) {
+        content->SwapPairs(numbers, parent_index, child_index);
+      } else {
+        break;
+      }
+      child_index = parent_index;
+    }
+  }
+
+  // Extract elements and create sorted array.
+  for (int i = len - 1; i > 0; --i) {
+    // Put max element at the back of the array.
+    content->SwapPairs(numbers, 0, i);
+    // Sift down the new top element.
+    int parent_index = 0;
+    while (true) {
+      int child_index = ((parent_index + 1) << 1) - 1;
+      if (child_index >= i) break;
+      uint32_t child1_value = NumberToUint32(numbers->get(child_index));
+      uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
+      uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
+      if (child_index + 1 >= i || child1_value > child2_value) {
+        if (parent_value > child1_value) break;
+        content->SwapPairs(numbers, parent_index, child_index);
+        parent_index = child_index;
+      } else {
+        if (parent_value > child2_value) break;
+        content->SwapPairs(numbers, parent_index, child_index + 1);
+        parent_index = child_index + 1;
+      }
+    }
+  }
+}
+
+
+// Sort this array and the numbers as pairs wrt. the (distinct) numbers.
+void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
+  ASSERT(this->length() == numbers->length());
+  // For small arrays, simply use insertion sort.
+  if (len <= 10) {
+    InsertionSortPairs(this, numbers, len);
+    return;
+  }
+  // Check the range of indices.
+  uint32_t min_index = NumberToUint32(numbers->get(0));
+  uint32_t max_index = min_index;
+  uint32_t i;
+  for (i = 1; i < len; i++) {
+    if (NumberToUint32(numbers->get(i)) < min_index) {
+      min_index = NumberToUint32(numbers->get(i));
+    } else if (NumberToUint32(numbers->get(i)) > max_index) {
+      max_index = NumberToUint32(numbers->get(i));
+    }
+  }
+  if (max_index - min_index + 1 == len) {
+    // Indices form a contiguous range, unless there are duplicates.
+    // Do an in-place linear time sort assuming distinct numbers, but
+    // avoid hanging in case they are not.
+    for (i = 0; i < len; i++) {
+      uint32_t p;
+      uint32_t j = 0;
+      // While the current element at i is not at its correct position p,
+      // swap the elements at these two positions.
+      while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
+             j++ < len) {
+        SwapPairs(numbers, i, p);
+      }
+    }
+  } else {
+    HeapSortPairs(this, numbers, len);
+    return;
+  }
+}
+
+
+// Fill in the names of local properties into the supplied storage. The main
+// purpose of this function is to provide reflection information for the object
+// mirrors.
+void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) {
+  ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index));
+  if (HasFastProperties()) {
+    DescriptorArray* descs = map()->instance_descriptors();
+    for (int i = 0; i < descs->number_of_descriptors(); i++) {
+      if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i));
+    }
+    ASSERT(storage->length() >= index);
+  } else {
+    property_dictionary()->CopyKeysTo(storage);
+  }
+}
+
+
+int JSObject::NumberOfLocalElements(PropertyAttributes filter) {
+  return GetLocalElementKeys(NULL, filter);
+}
+
+
+int JSObject::NumberOfEnumElements() {
+  return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM));
+}
+
+
+int JSObject::GetLocalElementKeys(FixedArray* storage,
+                                  PropertyAttributes filter) {
+  int counter = 0;
+  switch (GetElementsKind()) {
+    case FAST_ELEMENTS: {
+      int length = IsJSArray() ?
+          Smi::cast(JSArray::cast(this)->length())->value() :
+          FixedArray::cast(elements())->length();
+      for (int i = 0; i < length; i++) {
+        if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
+          if (storage != NULL) {
+            storage->set(counter, Smi::FromInt(i), SKIP_WRITE_BARRIER);
+          }
+          counter++;
+        }
+      }
+      ASSERT(!storage || storage->length() >= counter);
+      break;
+    }
+    case PIXEL_ELEMENTS: {
+      int length = PixelArray::cast(elements())->length();
+      while (counter < length) {
+        if (storage != NULL) {
+          storage->set(counter, Smi::FromInt(counter), SKIP_WRITE_BARRIER);
+        }
+        counter++;
+      }
+      ASSERT(!storage || storage->length() >= counter);
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      if (storage != NULL) {
+        element_dictionary()->CopyKeysTo(storage, filter);
+      }
+      counter = element_dictionary()->NumberOfElementsFilterAttributes(filter);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+
+  if (this->IsJSValue()) {
+    Object* val = JSValue::cast(this)->value();
+    if (val->IsString()) {
+      String* str = String::cast(val);
+      if (storage) {
+        for (int i = 0; i < str->length(); i++) {
+          storage->set(counter + i, Smi::FromInt(i), SKIP_WRITE_BARRIER);
+        }
+      }
+      counter += str->length();
+    }
+  }
+  ASSERT(!storage || storage->length() == counter);
+  return counter;
+}
+
+
+int JSObject::GetEnumElementKeys(FixedArray* storage) {
+  return GetLocalElementKeys(storage,
+                             static_cast<PropertyAttributes>(DONT_ENUM));
+}
+
+
+bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
+  ASSERT(other->IsNumber());
+  return key == static_cast<uint32_t>(other->Number());
+}
+
+
+uint32_t NumberDictionaryShape::Hash(uint32_t key) {
+  return ComputeIntegerHash(key);
+}
+
+
+uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) {
+  ASSERT(other->IsNumber());
+  return ComputeIntegerHash(static_cast<uint32_t>(other->Number()));
+}
+
+
+Object* NumberDictionaryShape::AsObject(uint32_t key) {
+  return Heap::NumberFromUint32(key);
+}
+
+
+bool StringDictionaryShape::IsMatch(String* key, Object* other) {
+  // We know that all entries in a hash table had their hash keys created.
+  // Use that knowledge to have fast failure.
+  if (key->Hash() != String::cast(other)->Hash()) return false;
+  return key->Equals(String::cast(other));
+}
+
+
+uint32_t StringDictionaryShape::Hash(String* key) {
+  return key->Hash();
+}
+
+
+uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
+  return String::cast(other)->Hash();
+}
+
+
+Object* StringDictionaryShape::AsObject(String* key) {
+  return key;
+}
+
+
+// StringKey simply carries a string object as key.
+class StringKey : public HashTableKey {
+ public:
+  explicit StringKey(String* string) :
+      string_(string),
+      hash_(HashForObject(string)) { }
+
+  bool IsMatch(Object* string) {
+    // We know that all entries in a hash table had their hash keys created.
+    // Use that knowledge to have fast failure.
+    if (hash_ != HashForObject(string)) {
+      return false;
+    }
+    return string_->Equals(String::cast(string));
+  }
+
+  uint32_t Hash() { return hash_; }
+
+  uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); }
+
+  Object* AsObject() { return string_; }
+
+  String* string_;
+  uint32_t hash_;
+};
+
+
+// StringSharedKeys are used as keys in the eval cache.
+class StringSharedKey : public HashTableKey {
+ public:
+  StringSharedKey(String* source, SharedFunctionInfo* shared)
+      : source_(source), shared_(shared) { }
+
+  bool IsMatch(Object* other) {
+    if (!other->IsFixedArray()) return false;
+    FixedArray* pair = FixedArray::cast(other);
+    SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
+    if (shared != shared_) return false;
+    String* source = String::cast(pair->get(1));
+    return source->Equals(source_);
+  }
+
+  static uint32_t StringSharedHashHelper(String* source,
+                                         SharedFunctionInfo* shared) {
+    uint32_t hash = source->Hash();
+    if (shared->HasSourceCode()) {
+      // Instead of using the SharedFunctionInfo pointer in the hash
+      // code computation, we use a combination of the hash of the
+      // script source code and the start and end positions.  We do
+      // this to ensure that the cache entries can survive garbage
+      // collection.
+      Script* script = Script::cast(shared->script());
+      hash ^= String::cast(script->source())->Hash();
+      hash += shared->start_position();
+    }
+    return hash;
+  }
+
+  uint32_t Hash() {
+    return StringSharedHashHelper(source_, shared_);
+  }
+
+  uint32_t HashForObject(Object* obj) {
+    FixedArray* pair = FixedArray::cast(obj);
+    SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
+    String* source = String::cast(pair->get(1));
+    return StringSharedHashHelper(source, shared);
+  }
+
+  Object* AsObject() {
+    Object* obj = Heap::AllocateFixedArray(2);
+    if (obj->IsFailure()) return obj;
+    FixedArray* pair = FixedArray::cast(obj);
+    pair->set(0, shared_);
+    pair->set(1, source_);
+    return pair;
+  }
+
+ private:
+  String* source_;
+  SharedFunctionInfo* shared_;
+};
+
+
+// RegExpKey carries the source and flags of a regular expression as key.
+class RegExpKey : public HashTableKey {
+ public:
+  RegExpKey(String* string, JSRegExp::Flags flags)
+      : string_(string),
+        flags_(Smi::FromInt(flags.value())) { }
+
+  bool IsMatch(Object* obj) {
+    FixedArray* val = FixedArray::cast(obj);
+    return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
+        && (flags_ == val->get(JSRegExp::kFlagsIndex));
+  }
+
+  uint32_t Hash() { return RegExpHash(string_, flags_); }
+
+  Object* AsObject() {
+    // Plain hash maps, which is where regexp keys are used, don't
+    // use this function.
+    UNREACHABLE();
+    return NULL;
+  }
+
+  uint32_t HashForObject(Object* obj) {
+    FixedArray* val = FixedArray::cast(obj);
+    return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
+                      Smi::cast(val->get(JSRegExp::kFlagsIndex)));
+  }
+
+  static uint32_t RegExpHash(String* string, Smi* flags) {
+    return string->Hash() + flags->value();
+  }
+
+  String* string_;
+  Smi* flags_;
+};
+
+// Utf8SymbolKey carries a vector of chars as key.
+class Utf8SymbolKey : public HashTableKey {
+ public:
+  explicit Utf8SymbolKey(Vector<const char> string)
+      : string_(string), length_field_(0) { }
+
+  bool IsMatch(Object* string) {
+    return String::cast(string)->IsEqualTo(string_);
+  }
+
+  uint32_t Hash() {
+    if (length_field_ != 0) return length_field_ >> String::kHashShift;
+    unibrow::Utf8InputBuffer<> buffer(string_.start(),
+                                      static_cast<unsigned>(string_.length()));
+    chars_ = buffer.Length();
+    length_field_ = String::ComputeLengthAndHashField(&buffer, chars_);
+    uint32_t result = length_field_ >> String::kHashShift;
+    ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
+    return result;
+  }
+
+  uint32_t HashForObject(Object* other) {
+    return String::cast(other)->Hash();
+  }
+
+  Object* AsObject() {
+    if (length_field_ == 0) Hash();
+    return Heap::AllocateSymbol(string_, chars_, length_field_);
+  }
+
+  Vector<const char> string_;
+  uint32_t length_field_;
+  int chars_;  // Caches the number of characters when computing the hash code.
+};
+
+
+// SymbolKey carries a string/symbol object as key.
+class SymbolKey : public HashTableKey {
+ public:
+  explicit SymbolKey(String* string) : string_(string) { }
+
+  bool IsMatch(Object* string) {
+    return String::cast(string)->Equals(string_);
+  }
+
+  uint32_t Hash() { return string_->Hash(); }
+
+  uint32_t HashForObject(Object* other) {
+    return String::cast(other)->Hash();
+  }
+
+  Object* AsObject() {
+    // If the string is a cons string, attempt to flatten it so that
+    // symbols will most often be flat strings.
+    if (StringShape(string_).IsCons()) {
+      ConsString* cons_string = ConsString::cast(string_);
+      cons_string->TryFlatten();
+      if (cons_string->second()->length() == 0) {
+        string_ = cons_string->first();
+      }
+    }
+    // Transform string to symbol if possible.
+    Map* map = Heap::SymbolMapForString(string_);
+    if (map != NULL) {
+      string_->set_map(map);
+      ASSERT(string_->IsSymbol());
+      return string_;
+    }
+    // Otherwise allocate a new symbol.
+    StringInputBuffer buffer(string_);
+    return Heap::AllocateInternalSymbol(&buffer,
+                                        string_->length(),
+                                        string_->length_field());
+  }
+
+  static uint32_t StringHash(Object* obj) {
+    return String::cast(obj)->Hash();
+  }
+
+  String* string_;
+};
+
+
+template<typename Shape, typename Key>
+void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) {
+  IteratePointers(v, 0, kElementsStartOffset);
+}
+
+
+template<typename Shape, typename Key>
+void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) {
+  IteratePointers(v,
+                  kElementsStartOffset,
+                  kHeaderSize + length() * kPointerSize);
+}
+
+
+template<typename Shape, typename Key>
+Object* HashTable<Shape, Key>::Allocate(
+    int at_least_space_for) {
+  int capacity = RoundUpToPowerOf2(at_least_space_for);
+  if (capacity < 4) capacity = 4;  // Guarantee min capacity.
+  Object* obj = Heap::AllocateHashTable(EntryToIndex(capacity));
+  if (!obj->IsFailure()) {
+    HashTable::cast(obj)->SetNumberOfElements(0);
+    HashTable::cast(obj)->SetCapacity(capacity);
+  }
+  return obj;
+}
+
+
+
+// Find entry for key otherwise return -1.
+template<typename Shape, typename Key>
+int HashTable<Shape, Key>::FindEntry(Key key) {
+  uint32_t nof = NumberOfElements();
+  if (nof == 0) return kNotFound;  // Bail out if empty.
+
+  uint32_t capacity = Capacity();
+  uint32_t hash = Shape::Hash(key);
+  uint32_t entry = GetProbe(hash, 0, capacity);
+
+  Object* element = KeyAt(entry);
+  uint32_t passed_elements = 0;
+  if (!element->IsNull()) {
+    if (!element->IsUndefined() && Shape::IsMatch(key, element)) return entry;
+    if (++passed_elements == nof) return kNotFound;
+  }
+  for (uint32_t i = 1; !element->IsUndefined(); i++) {
+    entry = GetProbe(hash, i, capacity);
+    element = KeyAt(entry);
+    if (!element->IsNull()) {
+      if (!element->IsUndefined() && Shape::IsMatch(key, element)) return entry;
+      if (++passed_elements == nof) return kNotFound;
+    }
+  }
+  return kNotFound;
+}
+
+
+template<typename Shape, typename Key>
+Object* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) {
+  int capacity = Capacity();
+  int nof = NumberOfElements() + n;
+  // Make sure 50% is free
+  if (nof + (nof >> 1) <= capacity) return this;
+
+  Object* obj = Allocate(nof * 2);
+  if (obj->IsFailure()) return obj;
+  HashTable* table = HashTable::cast(obj);
+  WriteBarrierMode mode = table->GetWriteBarrierMode();
+
+  // Copy prefix to new array.
+  for (int i = kPrefixStartIndex;
+       i < kPrefixStartIndex + Shape::kPrefixSize;
+       i++) {
+    table->set(i, get(i), mode);
+  }
+  // Rehash the elements.
+  for (int i = 0; i < capacity; i++) {
+    uint32_t from_index = EntryToIndex(i);
+    Object* k = get(from_index);
+    if (IsKey(k)) {
+      uint32_t hash = Shape::HashForObject(key, k);
+      uint32_t insertion_index =
+          EntryToIndex(table->FindInsertionEntry(hash));
+      for (int j = 0; j < Shape::kEntrySize; j++) {
+        table->set(insertion_index + j, get(from_index + j), mode);
+      }
+    }
+  }
+  table->SetNumberOfElements(NumberOfElements());
+  return table;
+}
+
+
+template<typename Shape, typename Key>
+uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) {
+  uint32_t capacity = Capacity();
+  uint32_t entry = GetProbe(hash, 0, capacity);
+  Object* element = KeyAt(entry);
+
+  for (uint32_t i = 1; !(element->IsUndefined() || element->IsNull()); i++) {
+    entry = GetProbe(hash, i, capacity);
+    element = KeyAt(entry);
+  }
+
+  return entry;
+}
+
+// Force instantiation of template instances class.
+// Please note this list is compiler dependent.
+
+template class HashTable<SymbolTableShape, HashTableKey*>;
+
+template class HashTable<CompilationCacheShape, HashTableKey*>;
+
+template class HashTable<MapCacheShape, HashTableKey*>;
+
+template class Dictionary<StringDictionaryShape, String*>;
+
+template class Dictionary<NumberDictionaryShape, uint32_t>;
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::Allocate(
+    int);
+
+template Object* Dictionary<StringDictionaryShape, String*>::Allocate(
+    int);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::AtPut(
+    uint32_t, Object*);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::SlowReverseLookup(
+    Object*);
+
+template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup(
+    Object*);
+
+template void Dictionary<NumberDictionaryShape, uint32_t>::CopyKeysTo(
+    FixedArray*, PropertyAttributes);
+
+template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty(
+    int, JSObject::DeleteMode);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::DeleteProperty(
+    int, JSObject::DeleteMode);
+
+template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo(
+    FixedArray*);
+
+template int
+Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes(
+    PropertyAttributes);
+
+template Object* Dictionary<StringDictionaryShape, String*>::Add(
+    String*, Object*, PropertyDetails);
+
+template Object*
+Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices();
+
+template int
+Dictionary<NumberDictionaryShape, uint32_t>::NumberOfElementsFilterAttributes(
+    PropertyAttributes);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::Add(
+    uint32_t, Object*, PropertyDetails);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::EnsureCapacity(
+    int, uint32_t);
+
+template Object* Dictionary<StringDictionaryShape, String*>::EnsureCapacity(
+    int, String*);
+
+template Object* Dictionary<NumberDictionaryShape, uint32_t>::AddEntry(
+    uint32_t, Object*, PropertyDetails, uint32_t);
+
+template Object* Dictionary<StringDictionaryShape, String*>::AddEntry(
+    String*, Object*, PropertyDetails, uint32_t);
+
+template
+int Dictionary<NumberDictionaryShape, uint32_t>::NumberOfEnumElements();
+
+template
+int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements();
+
+// Collates undefined and unexisting elements below limit from position
+// zero of the elements. The object stays in Dictionary mode.
+Object* JSObject::PrepareSlowElementsForSort(uint32_t limit) {
+  ASSERT(HasDictionaryElements());
+  // Must stay in dictionary mode, either because of requires_slow_elements,
+  // or because we are not going to sort (and therefore compact) all of the
+  // elements.
+  NumberDictionary* dict = element_dictionary();
+  HeapNumber* result_double = NULL;
+  if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
+    // Allocate space for result before we start mutating the object.
+    Object* new_double = Heap::AllocateHeapNumber(0.0);
+    if (new_double->IsFailure()) return new_double;
+    result_double = HeapNumber::cast(new_double);
+  }
+
+  int capacity = dict->Capacity();
+  Object* obj = NumberDictionary::Allocate(dict->Capacity());
+  if (obj->IsFailure()) return obj;
+  NumberDictionary* new_dict = NumberDictionary::cast(obj);
+
+  AssertNoAllocation no_alloc;
+
+  uint32_t pos = 0;
+  uint32_t undefs = 0;
+  for (int i = 0; i < capacity; i++) {
+    Object* k = dict->KeyAt(i);
+    if (dict->IsKey(k)) {
+      ASSERT(k->IsNumber());
+      ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0);
+      ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
+      ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
+      Object* value = dict->ValueAt(i);
+      PropertyDetails details = dict->DetailsAt(i);
+      if (details.type() == CALLBACKS) {
+        // Bail out and do the sorting of undefineds and array holes in JS.
+        return Smi::FromInt(-1);
+      }
+      uint32_t key = NumberToUint32(k);
+      if (key < limit) {
+        if (value->IsUndefined()) {
+          undefs++;
+        } else {
+          new_dict->AddNumberEntry(pos, value, details);
+          pos++;
+        }
+      } else {
+        new_dict->AddNumberEntry(key, value, details);
+      }
+    }
+  }
+
+  uint32_t result = pos;
+  PropertyDetails no_details = PropertyDetails(NONE, NORMAL);
+  while (undefs > 0) {
+    new_dict->AddNumberEntry(pos, Heap::undefined_value(), no_details);
+    pos++;
+    undefs--;
+  }
+
+  set_elements(new_dict);
+
+  if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
+    return Smi::FromInt(static_cast<int>(result));
+  }
+
+  ASSERT_NE(NULL, result_double);
+  result_double->set_value(static_cast<double>(result));
+  return result_double;
+}
+
+
+// Collects all defined (non-hole) and non-undefined (array) elements at
+// the start of the elements array.
+// If the object is in dictionary mode, it is converted to fast elements
+// mode.
+Object* JSObject::PrepareElementsForSort(uint32_t limit) {
+  ASSERT(!HasPixelElements());
+
+  if (HasDictionaryElements()) {
+    // Convert to fast elements containing only the existing properties.
+    // Ordering is irrelevant, since we are going to sort anyway.
+    NumberDictionary* dict = element_dictionary();
+    if (IsJSArray() || dict->requires_slow_elements() ||
+        dict->max_number_key() >= limit) {
+      return PrepareSlowElementsForSort(limit);
+    }
+    // Convert to fast elements.
+
+    PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED: TENURED;
+    Object* new_array =
+        Heap::AllocateFixedArray(dict->NumberOfElements(), tenure);
+    if (new_array->IsFailure()) {
+      return new_array;
+    }
+    FixedArray* fast_elements = FixedArray::cast(new_array);
+    dict->CopyValuesTo(fast_elements);
+    set_elements(fast_elements);
+  }
+  ASSERT(HasFastElements());
+
+  // Collect holes at the end, undefined before that and the rest at the
+  // start, and return the number of non-hole, non-undefined values.
+
+  FixedArray* elements = FixedArray::cast(this->elements());
+  uint32_t elements_length = static_cast<uint32_t>(elements->length());
+  if (limit > elements_length) {
+    limit = elements_length ;
+  }
+  if (limit == 0) {
+    return Smi::FromInt(0);
+  }
+
+  HeapNumber* result_double = NULL;
+  if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
+    // Pessimistically allocate space for return value before
+    // we start mutating the array.
+    Object* new_double = Heap::AllocateHeapNumber(0.0);
+    if (new_double->IsFailure()) return new_double;
+    result_double = HeapNumber::cast(new_double);
+  }
+
+  AssertNoAllocation no_alloc;
+
+  // Split elements into defined, undefined and the_hole, in that order.
+  // Only count locations for undefined and the hole, and fill them afterwards.
+  WriteBarrierMode write_barrier = elements->GetWriteBarrierMode();
+  unsigned int undefs = limit;
+  unsigned int holes = limit;
+  // Assume most arrays contain no holes and undefined values, so minimize the
+  // number of stores of non-undefined, non-the-hole values.
+  for (unsigned int i = 0; i < undefs; i++) {
+    Object* current = elements->get(i);
+    if (current->IsTheHole()) {
+      holes--;
+      undefs--;
+    } else if (current->IsUndefined()) {
+      undefs--;
+    } else {
+      continue;
+    }
+    // Position i needs to be filled.
+    while (undefs > i) {
+      current = elements->get(undefs);
+      if (current->IsTheHole()) {
+        holes--;
+        undefs--;
+      } else if (current->IsUndefined()) {
+        undefs--;
+      } else {
+        elements->set(i, current, write_barrier);
+        break;
+      }
+    }
+  }
+  uint32_t result = undefs;
+  while (undefs < holes) {
+    elements->set_undefined(undefs);
+    undefs++;
+  }
+  while (holes < limit) {
+    elements->set_the_hole(holes);
+    holes++;
+  }
+
+  if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
+    return Smi::FromInt(static_cast<int>(result));
+  }
+  ASSERT_NE(NULL, result_double);
+  result_double->set_value(static_cast<double>(result));
+  return result_double;
+}
+
+
+Object* PixelArray::SetValue(uint32_t index, Object* value) {
+  uint8_t clamped_value = 0;
+  if (index < static_cast<uint32_t>(length())) {
+    if (value->IsSmi()) {
+      int int_value = Smi::cast(value)->value();
+      if (int_value < 0) {
+        clamped_value = 0;
+      } else if (int_value > 255) {
+        clamped_value = 255;
+      } else {
+        clamped_value = static_cast<uint8_t>(int_value);
+      }
+    } else if (value->IsHeapNumber()) {
+      double double_value = HeapNumber::cast(value)->value();
+      if (!(double_value > 0)) {
+        // NaN and less than zero clamp to zero.
+        clamped_value = 0;
+      } else if (double_value > 255) {
+        // Greater than 255 clamp to 255.
+        clamped_value = 255;
+      } else {
+        // Other doubles are rounded to the nearest integer.
+        clamped_value = static_cast<uint8_t>(double_value + 0.5);
+      }
+    } else {
+      // Clamp undefined to zero (default). All other types have been
+      // converted to a number type further up in the call chain.
+      ASSERT(value->IsUndefined());
+    }
+    set(index, clamped_value);
+  }
+  return Smi::FromInt(clamped_value);
+}
+
+
+Object* GlobalObject::GetPropertyCell(LookupResult* result) {
+  ASSERT(!HasFastProperties());
+  Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
+  ASSERT(value->IsJSGlobalPropertyCell());
+  return value;
+}
+
+
+Object* GlobalObject::EnsurePropertyCell(String* name) {
+  ASSERT(!HasFastProperties());
+  int entry = property_dictionary()->FindEntry(name);
+  if (entry == StringDictionary::kNotFound) {
+    Object* cell = Heap::AllocateJSGlobalPropertyCell(Heap::the_hole_value());
+    if (cell->IsFailure()) return cell;
+    PropertyDetails details(NONE, NORMAL);
+    details = details.AsDeleted();
+    Object* dictionary = property_dictionary()->Add(name, cell, details);
+    if (dictionary->IsFailure()) return dictionary;
+    set_properties(StringDictionary::cast(dictionary));
+    return cell;
+  } else {
+    Object* value = property_dictionary()->ValueAt(entry);
+    ASSERT(value->IsJSGlobalPropertyCell());
+    return value;
+  }
+}
+
+
+Object* SymbolTable::LookupString(String* string, Object** s) {
+  SymbolKey key(string);
+  return LookupKey(&key, s);
+}
+
+
+bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) {
+  SymbolKey key(string);
+  int entry = FindEntry(&key);
+  if (entry == kNotFound) {
+    return false;
+  } else {
+    String* result = String::cast(KeyAt(entry));
+    ASSERT(StringShape(result).IsSymbol());
+    *symbol = result;
+    return true;
+  }
+}
+
+
+Object* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) {
+  Utf8SymbolKey key(str);
+  return LookupKey(&key, s);
+}
+
+
+Object* SymbolTable::LookupKey(HashTableKey* key, Object** s) {
+  int entry = FindEntry(key);
+
+  // Symbol already in table.
+  if (entry != kNotFound) {
+    *s = KeyAt(entry);
+    return this;
+  }
+
+  // Adding new symbol. Grow table if needed.
+  Object* obj = EnsureCapacity(1, key);
+  if (obj->IsFailure()) return obj;
+
+  // Create symbol object.
+  Object* symbol = key->AsObject();
+  if (symbol->IsFailure()) return symbol;
+
+  // If the symbol table grew as part of EnsureCapacity, obj is not
+  // the current symbol table and therefore we cannot use
+  // SymbolTable::cast here.
+  SymbolTable* table = reinterpret_cast<SymbolTable*>(obj);
+
+  // Add the new symbol and return it along with the symbol table.
+  entry = table->FindInsertionEntry(key->Hash());
+  table->set(EntryToIndex(entry), symbol);
+  table->ElementAdded();
+  *s = symbol;
+  return table;
+}
+
+
+Object* CompilationCacheTable::Lookup(String* src) {
+  StringKey key(src);
+  int entry = FindEntry(&key);
+  if (entry == kNotFound) return Heap::undefined_value();
+  return get(EntryToIndex(entry) + 1);
+}
+
+
+Object* CompilationCacheTable::LookupEval(String* src, Context* context) {
+  StringSharedKey key(src, context->closure()->shared());
+  int entry = FindEntry(&key);
+  if (entry == kNotFound) return Heap::undefined_value();
+  return get(EntryToIndex(entry) + 1);
+}
+
+
+Object* CompilationCacheTable::LookupRegExp(String* src,
+                                            JSRegExp::Flags flags) {
+  RegExpKey key(src, flags);
+  int entry = FindEntry(&key);
+  if (entry == kNotFound) return Heap::undefined_value();
+  return get(EntryToIndex(entry) + 1);
+}
+
+
+Object* CompilationCacheTable::Put(String* src, Object* value) {
+  StringKey key(src);
+  Object* obj = EnsureCapacity(1, &key);
+  if (obj->IsFailure()) return obj;
+
+  CompilationCacheTable* cache =
+      reinterpret_cast<CompilationCacheTable*>(obj);
+  int entry = cache->FindInsertionEntry(key.Hash());
+  cache->set(EntryToIndex(entry), src);
+  cache->set(EntryToIndex(entry) + 1, value);
+  cache->ElementAdded();
+  return cache;
+}
+
+
+Object* CompilationCacheTable::PutEval(String* src,
+                                       Context* context,
+                                       Object* value) {
+  StringSharedKey key(src, context->closure()->shared());
+  Object* obj = EnsureCapacity(1, &key);
+  if (obj->IsFailure()) return obj;
+
+  CompilationCacheTable* cache =
+      reinterpret_cast<CompilationCacheTable*>(obj);
+  int entry = cache->FindInsertionEntry(key.Hash());
+
+  Object* k = key.AsObject();
+  if (k->IsFailure()) return k;
+
+  cache->set(EntryToIndex(entry), k);
+  cache->set(EntryToIndex(entry) + 1, value);
+  cache->ElementAdded();
+  return cache;
+}
+
+
+Object* CompilationCacheTable::PutRegExp(String* src,
+                                         JSRegExp::Flags flags,
+                                         FixedArray* value) {
+  RegExpKey key(src, flags);
+  Object* obj = EnsureCapacity(1, &key);
+  if (obj->IsFailure()) return obj;
+
+  CompilationCacheTable* cache =
+      reinterpret_cast<CompilationCacheTable*>(obj);
+  int entry = cache->FindInsertionEntry(key.Hash());
+  cache->set(EntryToIndex(entry), value);
+  cache->set(EntryToIndex(entry) + 1, value);
+  cache->ElementAdded();
+  return cache;
+}
+
+
+// SymbolsKey used for HashTable where key is array of symbols.
+class SymbolsKey : public HashTableKey {
+ public:
+  explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { }
+
+  bool IsMatch(Object* symbols) {
+    FixedArray* o = FixedArray::cast(symbols);
+    int len = symbols_->length();
+    if (o->length() != len) return false;
+    for (int i = 0; i < len; i++) {
+      if (o->get(i) != symbols_->get(i)) return false;
+    }
+    return true;
+  }
+
+  uint32_t Hash() { return HashForObject(symbols_); }
+
+  uint32_t HashForObject(Object* obj) {
+    FixedArray* symbols = FixedArray::cast(obj);
+    int len = symbols->length();
+    uint32_t hash = 0;
+    for (int i = 0; i < len; i++) {
+      hash ^= String::cast(symbols->get(i))->Hash();
+    }
+    return hash;
+  }
+
+  Object* AsObject() { return symbols_; }
+
+ private:
+  FixedArray* symbols_;
+};
+
+
+Object* MapCache::Lookup(FixedArray* array) {
+  SymbolsKey key(array);
+  int entry = FindEntry(&key);
+  if (entry == kNotFound) return Heap::undefined_value();
+  return get(EntryToIndex(entry) + 1);
+}
+
+
+Object* MapCache::Put(FixedArray* array, Map* value) {
+  SymbolsKey key(array);
+  Object* obj = EnsureCapacity(1, &key);
+  if (obj->IsFailure()) return obj;
+
+  MapCache* cache = reinterpret_cast<MapCache*>(obj);
+  int entry = cache->FindInsertionEntry(key.Hash());
+  cache->set(EntryToIndex(entry), array);
+  cache->set(EntryToIndex(entry) + 1, value);
+  cache->ElementAdded();
+  return cache;
+}
+
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::Allocate(int at_least_space_for) {
+  Object* obj = HashTable<Shape, Key>::Allocate(at_least_space_for);
+  // Initialize the next enumeration index.
+  if (!obj->IsFailure()) {
+    Dictionary<Shape, Key>::cast(obj)->
+        SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
+  }
+  return obj;
+}
+
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() {
+  int length = HashTable<Shape, Key>::NumberOfElements();
+
+  // Allocate and initialize iteration order array.
+  Object* obj = Heap::AllocateFixedArray(length);
+  if (obj->IsFailure()) return obj;
+  FixedArray* iteration_order = FixedArray::cast(obj);
+  for (int i = 0; i < length; i++) {
+    iteration_order->set(i, Smi::FromInt(i), SKIP_WRITE_BARRIER);
+  }
+
+  // Allocate array with enumeration order.
+  obj = Heap::AllocateFixedArray(length);
+  if (obj->IsFailure()) return obj;
+  FixedArray* enumeration_order = FixedArray::cast(obj);
+
+  // Fill the enumeration order array with property details.
+  int capacity = HashTable<Shape, Key>::Capacity();
+  int pos = 0;
+  for (int i = 0; i < capacity; i++) {
+    if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
+      enumeration_order->set(pos++,
+                             Smi::FromInt(DetailsAt(i).index()),
+                             SKIP_WRITE_BARRIER);
+    }
+  }
+
+  // Sort the arrays wrt. enumeration order.
+  iteration_order->SortPairs(enumeration_order, enumeration_order->length());
+
+  // Overwrite the enumeration_order with the enumeration indices.
+  for (int i = 0; i < length; i++) {
+    int index = Smi::cast(iteration_order->get(i))->value();
+    int enum_index = PropertyDetails::kInitialIndex + i;
+    enumeration_order->set(index,
+                           Smi::FromInt(enum_index),
+                           SKIP_WRITE_BARRIER);
+  }
+
+  // Update the dictionary with new indices.
+  capacity = HashTable<Shape, Key>::Capacity();
+  pos = 0;
+  for (int i = 0; i < capacity; i++) {
+    if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
+      int enum_index = Smi::cast(enumeration_order->get(pos++))->value();
+      PropertyDetails details = DetailsAt(i);
+      PropertyDetails new_details =
+          PropertyDetails(details.attributes(), details.type(), enum_index);
+      DetailsAtPut(i, new_details);
+    }
+  }
+
+  // Set the next enumeration index.
+  SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
+  return this;
+}
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) {
+  // Check whether there are enough enumeration indices to add n elements.
+  if (Shape::kIsEnumerable &&
+      !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) {
+    // If not, we generate new indices for the properties.
+    Object* result = GenerateNewEnumerationIndices();
+    if (result->IsFailure()) return result;
+  }
+  return HashTable<Shape, Key>::EnsureCapacity(n, key);
+}
+
+
+void NumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) {
+  // Do nothing if the interval [from, to) is empty.
+  if (from >= to) return;
+
+  int removed_entries = 0;
+  Object* sentinel = Heap::null_value();
+  int capacity = Capacity();
+  for (int i = 0; i < capacity; i++) {
+    Object* key = KeyAt(i);
+    if (key->IsNumber()) {
+      uint32_t number = static_cast<uint32_t>(key->Number());
+      if (from <= number && number < to) {
+        SetEntry(i, sentinel, sentinel, Smi::FromInt(0));
+        removed_entries++;
+      }
+    }
+  }
+
+  // Update the number of elements.
+  SetNumberOfElements(NumberOfElements() - removed_entries);
+}
+
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::DeleteProperty(int entry,
+                                               JSObject::DeleteMode mode) {
+  PropertyDetails details = DetailsAt(entry);
+  // Ignore attributes if forcing a deletion.
+  if (details.IsDontDelete() && mode == JSObject::NORMAL_DELETION) {
+    return Heap::false_value();
+  }
+  SetEntry(entry, Heap::null_value(), Heap::null_value(), Smi::FromInt(0));
+  HashTable<Shape, Key>::ElementRemoved();
+  return Heap::true_value();
+}
+
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::AtPut(Key key, Object* value) {
+  int entry = FindEntry(key);
+
+  // If the entry is present set the value;
+  if (entry != Dictionary<Shape, Key>::kNotFound) {
+    ValueAtPut(entry, value);
+    return this;
+  }
+
+  // Check whether the dictionary should be extended.
+  Object* obj = EnsureCapacity(1, key);
+  if (obj->IsFailure()) return obj;
+
+  Object* k = Shape::AsObject(key);
+  if (k->IsFailure()) return k;
+  PropertyDetails details = PropertyDetails(NONE, NORMAL);
+  return Dictionary<Shape, Key>::cast(obj)->
+      AddEntry(key, value, details, Shape::Hash(key));
+}
+
+
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::Add(Key key,
+                                    Object* value,
+                                    PropertyDetails details) {
+  // Valdate key is absent.
+  SLOW_ASSERT((FindEntry(key) == Dictionary<Shape, Key>::kNotFound));
+  // Check whether the dictionary should be extended.
+  Object* obj = EnsureCapacity(1, key);
+  if (obj->IsFailure()) return obj;
+  return Dictionary<Shape, Key>::cast(obj)->
+      AddEntry(key, value, details, Shape::Hash(key));
+}
+
+
+// Add a key, value pair to the dictionary.
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::AddEntry(Key key,
+                                         Object* value,
+                                         PropertyDetails details,
+                                         uint32_t hash) {
+  // Compute the key object.
+  Object* k = Shape::AsObject(key);
+  if (k->IsFailure()) return k;
+
+  uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash);
+  // Insert element at empty or deleted entry
+  if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) {
+    // Assign an enumeration index to the property and update
+    // SetNextEnumerationIndex.
+    int index = NextEnumerationIndex();
+    details = PropertyDetails(details.attributes(), details.type(), index);
+    SetNextEnumerationIndex(index + 1);
+  }
+  SetEntry(entry, k, value, details);
+  ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber()
+          || Dictionary<Shape, Key>::KeyAt(entry)->IsString()));
+  HashTable<Shape, Key>::ElementAdded();
+  return this;
+}
+
+
+void NumberDictionary::UpdateMaxNumberKey(uint32_t key) {
+  // If the dictionary requires slow elements an element has already
+  // been added at a high index.
+  if (requires_slow_elements()) return;
+  // Check if this index is high enough that we should require slow
+  // elements.
+  if (key > kRequiresSlowElementsLimit) {
+    set_requires_slow_elements();
+    return;
+  }
+  // Update max key value.
+  Object* max_index_object = get(kMaxNumberKeyIndex);
+  if (!max_index_object->IsSmi() || max_number_key() < key) {
+    FixedArray::set(kMaxNumberKeyIndex,
+                    Smi::FromInt(key << kRequiresSlowElementsTagSize),
+                    SKIP_WRITE_BARRIER);
+  }
+}
+
+
+Object* NumberDictionary::AddNumberEntry(uint32_t key,
+                                         Object* value,
+                                         PropertyDetails details) {
+  UpdateMaxNumberKey(key);
+  SLOW_ASSERT(FindEntry(key) == kNotFound);
+  return Add(key, value, details);
+}
+
+
+Object* NumberDictionary::AtNumberPut(uint32_t key, Object* value) {
+  UpdateMaxNumberKey(key);
+  return AtPut(key, value);
+}
+
+
+Object* NumberDictionary::Set(uint32_t key,
+                              Object* value,
+                              PropertyDetails details) {
+  int entry = FindEntry(key);
+  if (entry == kNotFound) return AddNumberEntry(key, value, details);
+  // Preserve enumeration index.
+  details = PropertyDetails(details.attributes(),
+                            details.type(),
+                            DetailsAt(entry).index());
+  SetEntry(entry, NumberDictionaryShape::AsObject(key), value, details);
+  return this;
+}
+
+
+
+template<typename Shape, typename Key>
+int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes(
+    PropertyAttributes filter) {
+  int capacity = HashTable<Shape, Key>::Capacity();
+  int result = 0;
+  for (int i = 0; i < capacity; i++) {
+    Object* k = HashTable<Shape, Key>::KeyAt(i);
+    if (HashTable<Shape, Key>::IsKey(k)) {
+      PropertyDetails details = DetailsAt(i);
+      if (details.IsDeleted()) continue;
+      PropertyAttributes attr = details.attributes();
+      if ((attr & filter) == 0) result++;
+    }
+  }
+  return result;
+}
+
+
+template<typename Shape, typename Key>
+int Dictionary<Shape, Key>::NumberOfEnumElements() {
+  return NumberOfElementsFilterAttributes(
+      static_cast<PropertyAttributes>(DONT_ENUM));
+}
+
+
+template<typename Shape, typename Key>
+void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage,
+                                        PropertyAttributes filter) {
+  ASSERT(storage->length() >= NumberOfEnumElements());
+  int capacity = HashTable<Shape, Key>::Capacity();
+  int index = 0;
+  for (int i = 0; i < capacity; i++) {
+     Object* k = HashTable<Shape, Key>::KeyAt(i);
+     if (HashTable<Shape, Key>::IsKey(k)) {
+       PropertyDetails details = DetailsAt(i);
+       if (details.IsDeleted()) continue;
+       PropertyAttributes attr = details.attributes();
+       if ((attr & filter) == 0) storage->set(index++, k);
+     }
+  }
+  storage->SortPairs(storage, index);
+  ASSERT(storage->length() >= index);
+}
+
+
+void StringDictionary::CopyEnumKeysTo(FixedArray* storage,
+                                      FixedArray* sort_array) {
+  ASSERT(storage->length() >= NumberOfEnumElements());
+  int capacity = Capacity();
+  int index = 0;
+  for (int i = 0; i < capacity; i++) {
+     Object* k = KeyAt(i);
+     if (IsKey(k)) {
+       PropertyDetails details = DetailsAt(i);
+       if (details.IsDeleted() || details.IsDontEnum()) continue;
+       storage->set(index, k);
+       sort_array->set(index,
+                       Smi::FromInt(details.index()),
+                       SKIP_WRITE_BARRIER);
+       index++;
+     }
+  }
+  storage->SortPairs(sort_array, sort_array->length());
+  ASSERT(storage->length() >= index);
+}
+
+
+template<typename Shape, typename Key>
+void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage) {
+  ASSERT(storage->length() >= NumberOfElementsFilterAttributes(
+      static_cast<PropertyAttributes>(NONE)));
+  int capacity = HashTable<Shape, Key>::Capacity();
+  int index = 0;
+  for (int i = 0; i < capacity; i++) {
+    Object* k = HashTable<Shape, Key>::KeyAt(i);
+    if (HashTable<Shape, Key>::IsKey(k)) {
+      PropertyDetails details = DetailsAt(i);
+      if (details.IsDeleted()) continue;
+      storage->set(index++, k);
+    }
+  }
+  ASSERT(storage->length() >= index);
+}
+
+
+// Backwards lookup (slow).
+template<typename Shape, typename Key>
+Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) {
+  int capacity = HashTable<Shape, Key>::Capacity();
+  for (int i = 0; i < capacity; i++) {
+    Object* k =  HashTable<Shape, Key>::KeyAt(i);
+    if (Dictionary<Shape, Key>::IsKey(k)) {
+      Object* e = ValueAt(i);
+      if (e->IsJSGlobalPropertyCell()) {
+        e = JSGlobalPropertyCell::cast(e)->value();
+      }
+      if (e == value) return k;
+    }
+  }
+  return Heap::undefined_value();
+}
+
+
+Object* StringDictionary::TransformPropertiesToFastFor(
+    JSObject* obj, int unused_property_fields) {
+  // Make sure we preserve dictionary representation if there are too many
+  // descriptors.
+  if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj;
+
+  // Figure out if it is necessary to generate new enumeration indices.
+  int max_enumeration_index =
+      NextEnumerationIndex() +
+          (DescriptorArray::kMaxNumberOfDescriptors -
+           NumberOfElements());
+  if (!PropertyDetails::IsValidIndex(max_enumeration_index)) {
+    Object* result = GenerateNewEnumerationIndices();
+    if (result->IsFailure()) return result;
+  }
+
+  int instance_descriptor_length = 0;
+  int number_of_fields = 0;
+
+  // Compute the length of the instance descriptor.
+  int capacity = Capacity();
+  for (int i = 0; i < capacity; i++) {
+    Object* k = KeyAt(i);
+    if (IsKey(k)) {
+      Object* value = ValueAt(i);
+      PropertyType type = DetailsAt(i).type();
+      ASSERT(type != FIELD);
+      instance_descriptor_length++;
+      if (type == NORMAL && !value->IsJSFunction()) number_of_fields += 1;
+    }
+  }
+
+  // Allocate the instance descriptor.
+  Object* descriptors_unchecked =
+      DescriptorArray::Allocate(instance_descriptor_length);
+  if (descriptors_unchecked->IsFailure()) return descriptors_unchecked;
+  DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked);
+
+  int inobject_props = obj->map()->inobject_properties();
+  int number_of_allocated_fields =
+      number_of_fields + unused_property_fields - inobject_props;
+
+  // Allocate the fixed array for the fields.
+  Object* fields = Heap::AllocateFixedArray(number_of_allocated_fields);
+  if (fields->IsFailure()) return fields;
+
+  // Fill in the instance descriptor and the fields.
+  int next_descriptor = 0;
+  int current_offset = 0;
+  for (int i = 0; i < capacity; i++) {
+    Object* k = KeyAt(i);
+    if (IsKey(k)) {
+      Object* value = ValueAt(i);
+      // Ensure the key is a symbol before writing into the instance descriptor.
+      Object* key = Heap::LookupSymbol(String::cast(k));
+      if (key->IsFailure()) return key;
+      PropertyDetails details = DetailsAt(i);
+      PropertyType type = details.type();
+
+      if (value->IsJSFunction()) {
+        ConstantFunctionDescriptor d(String::cast(key),
+                                     JSFunction::cast(value),
+                                     details.attributes(),
+                                     details.index());
+        descriptors->Set(next_descriptor++, &d);
+      } else if (type == NORMAL) {
+        if (current_offset < inobject_props) {
+          obj->InObjectPropertyAtPut(current_offset,
+                                     value,
+                                     UPDATE_WRITE_BARRIER);
+        } else {
+          int offset = current_offset - inobject_props;
+          FixedArray::cast(fields)->set(offset, value);
+        }
+        FieldDescriptor d(String::cast(key),
+                          current_offset++,
+                          details.attributes(),
+                          details.index());
+        descriptors->Set(next_descriptor++, &d);
+      } else if (type == CALLBACKS) {
+        CallbacksDescriptor d(String::cast(key),
+                              value,
+                              details.attributes(),
+                              details.index());
+        descriptors->Set(next_descriptor++, &d);
+      } else {
+        UNREACHABLE();
+      }
+    }
+  }
+  ASSERT(current_offset == number_of_fields);
+
+  descriptors->Sort();
+  // Allocate new map.
+  Object* new_map = obj->map()->CopyDropDescriptors();
+  if (new_map->IsFailure()) return new_map;
+
+  // Transform the object.
+  obj->set_map(Map::cast(new_map));
+  obj->map()->set_instance_descriptors(descriptors);
+  obj->map()->set_unused_property_fields(unused_property_fields);
+
+  obj->set_properties(FixedArray::cast(fields));
+  ASSERT(obj->IsJSObject());
+
+  descriptors->SetNextEnumerationIndex(NextEnumerationIndex());
+  // Check that it really works.
+  ASSERT(obj->HasFastProperties());
+
+  return obj;
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+// Check if there is a break point at this code position.
+bool DebugInfo::HasBreakPoint(int code_position) {
+  // Get the break point info object for this code position.
+  Object* break_point_info = GetBreakPointInfo(code_position);
+
+  // If there is no break point info object or no break points in the break
+  // point info object there is no break point at this code position.
+  if (break_point_info->IsUndefined()) return false;
+  return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
+}
+
+
+// Get the break point info object for this code position.
+Object* DebugInfo::GetBreakPointInfo(int code_position) {
+  // Find the index of the break point info object for this code position.
+  int index = GetBreakPointInfoIndex(code_position);
+
+  // Return the break point info object if any.
+  if (index == kNoBreakPointInfo) return Heap::undefined_value();
+  return BreakPointInfo::cast(break_points()->get(index));
+}
+
+
+// Clear a break point at the specified code position.
+void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
+                                int code_position,
+                                Handle<Object> break_point_object) {
+  Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
+  if (break_point_info->IsUndefined()) return;
+  BreakPointInfo::ClearBreakPoint(
+      Handle<BreakPointInfo>::cast(break_point_info),
+      break_point_object);
+}
+
+
+void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
+                              int code_position,
+                              int source_position,
+                              int statement_position,
+                              Handle<Object> break_point_object) {
+  Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
+  if (!break_point_info->IsUndefined()) {
+    BreakPointInfo::SetBreakPoint(
+        Handle<BreakPointInfo>::cast(break_point_info),
+        break_point_object);
+    return;
+  }
+
+  // Adding a new break point for a code position which did not have any
+  // break points before. Try to find a free slot.
+  int index = kNoBreakPointInfo;
+  for (int i = 0; i < debug_info->break_points()->length(); i++) {
+    if (debug_info->break_points()->get(i)->IsUndefined()) {
+      index = i;
+      break;
+    }
+  }
+  if (index == kNoBreakPointInfo) {
+    // No free slot - extend break point info array.
+    Handle<FixedArray> old_break_points =
+        Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
+    debug_info->set_break_points(*Factory::NewFixedArray(
+        old_break_points->length() +
+            Debug::kEstimatedNofBreakPointsInFunction));
+    Handle<FixedArray> new_break_points =
+        Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
+    for (int i = 0; i < old_break_points->length(); i++) {
+      new_break_points->set(i, old_break_points->get(i));
+    }
+    index = old_break_points->length();
+  }
+  ASSERT(index != kNoBreakPointInfo);
+
+  // Allocate new BreakPointInfo object and set the break point.
+  Handle<BreakPointInfo> new_break_point_info =
+      Handle<BreakPointInfo>::cast(Factory::NewStruct(BREAK_POINT_INFO_TYPE));
+  new_break_point_info->set_code_position(Smi::FromInt(code_position));
+  new_break_point_info->set_source_position(Smi::FromInt(source_position));
+  new_break_point_info->
+      set_statement_position(Smi::FromInt(statement_position));
+  new_break_point_info->set_break_point_objects(Heap::undefined_value());
+  BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
+  debug_info->break_points()->set(index, *new_break_point_info);
+}
+
+
+// Get the break point objects for a code position.
+Object* DebugInfo::GetBreakPointObjects(int code_position) {
+  Object* break_point_info = GetBreakPointInfo(code_position);
+  if (break_point_info->IsUndefined()) {
+    return Heap::undefined_value();
+  }
+  return BreakPointInfo::cast(break_point_info)->break_point_objects();
+}
+
+
+// Get the total number of break points.
+int DebugInfo::GetBreakPointCount() {
+  if (break_points()->IsUndefined()) return 0;
+  int count = 0;
+  for (int i = 0; i < break_points()->length(); i++) {
+    if (!break_points()->get(i)->IsUndefined()) {
+      BreakPointInfo* break_point_info =
+          BreakPointInfo::cast(break_points()->get(i));
+      count += break_point_info->GetBreakPointCount();
+    }
+  }
+  return count;
+}
+
+
+Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info,
+                                      Handle<Object> break_point_object) {
+  if (debug_info->break_points()->IsUndefined()) return Heap::undefined_value();
+  for (int i = 0; i < debug_info->break_points()->length(); i++) {
+    if (!debug_info->break_points()->get(i)->IsUndefined()) {
+      Handle<BreakPointInfo> break_point_info =
+          Handle<BreakPointInfo>(BreakPointInfo::cast(
+              debug_info->break_points()->get(i)));
+      if (BreakPointInfo::HasBreakPointObject(break_point_info,
+                                              break_point_object)) {
+        return *break_point_info;
+      }
+    }
+  }
+  return Heap::undefined_value();
+}
+
+
+// Find the index of the break point info object for the specified code
+// position.
+int DebugInfo::GetBreakPointInfoIndex(int code_position) {
+  if (break_points()->IsUndefined()) return kNoBreakPointInfo;
+  for (int i = 0; i < break_points()->length(); i++) {
+    if (!break_points()->get(i)->IsUndefined()) {
+      BreakPointInfo* break_point_info =
+          BreakPointInfo::cast(break_points()->get(i));
+      if (break_point_info->code_position()->value() == code_position) {
+        return i;
+      }
+    }
+  }
+  return kNoBreakPointInfo;
+}
+
+
+// Remove the specified break point object.
+void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
+                                     Handle<Object> break_point_object) {
+  // If there are no break points just ignore.
+  if (break_point_info->break_point_objects()->IsUndefined()) return;
+  // If there is a single break point clear it if it is the same.
+  if (!break_point_info->break_point_objects()->IsFixedArray()) {
+    if (break_point_info->break_point_objects() == *break_point_object) {
+      break_point_info->set_break_point_objects(Heap::undefined_value());
+    }
+    return;
+  }
+  // If there are multiple break points shrink the array
+  ASSERT(break_point_info->break_point_objects()->IsFixedArray());
+  Handle<FixedArray> old_array =
+      Handle<FixedArray>(
+          FixedArray::cast(break_point_info->break_point_objects()));
+  Handle<FixedArray> new_array =
+      Factory::NewFixedArray(old_array->length() - 1);
+  int found_count = 0;
+  for (int i = 0; i < old_array->length(); i++) {
+    if (old_array->get(i) == *break_point_object) {
+      ASSERT(found_count == 0);
+      found_count++;
+    } else {
+      new_array->set(i - found_count, old_array->get(i));
+    }
+  }
+  // If the break point was found in the list change it.
+  if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
+}
+
+
+// Add the specified break point object.
+void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
+                                   Handle<Object> break_point_object) {
+  // If there was no break point objects before just set it.
+  if (break_point_info->break_point_objects()->IsUndefined()) {
+    break_point_info->set_break_point_objects(*break_point_object);
+    return;
+  }
+  // If the break point object is the same as before just ignore.
+  if (break_point_info->break_point_objects() == *break_point_object) return;
+  // If there was one break point object before replace with array.
+  if (!break_point_info->break_point_objects()->IsFixedArray()) {
+    Handle<FixedArray> array = Factory::NewFixedArray(2);
+    array->set(0, break_point_info->break_point_objects());
+    array->set(1, *break_point_object);
+    break_point_info->set_break_point_objects(*array);
+    return;
+  }
+  // If there was more than one break point before extend array.
+  Handle<FixedArray> old_array =
+      Handle<FixedArray>(
+          FixedArray::cast(break_point_info->break_point_objects()));
+  Handle<FixedArray> new_array =
+      Factory::NewFixedArray(old_array->length() + 1);
+  for (int i = 0; i < old_array->length(); i++) {
+    // If the break point was there before just ignore.
+    if (old_array->get(i) == *break_point_object) return;
+    new_array->set(i, old_array->get(i));
+  }
+  // Add the new break point.
+  new_array->set(old_array->length(), *break_point_object);
+  break_point_info->set_break_point_objects(*new_array);
+}
+
+
+bool BreakPointInfo::HasBreakPointObject(
+    Handle<BreakPointInfo> break_point_info,
+    Handle<Object> break_point_object) {
+  // No break point.
+  if (break_point_info->break_point_objects()->IsUndefined()) return false;
+  // Single beak point.
+  if (!break_point_info->break_point_objects()->IsFixedArray()) {
+    return break_point_info->break_point_objects() == *break_point_object;
+  }
+  // Multiple break points.
+  FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
+  for (int i = 0; i < array->length(); i++) {
+    if (array->get(i) == *break_point_object) {
+      return true;
+    }
+  }
+  return false;
+}
+
+
+// Get the number of break points.
+int BreakPointInfo::GetBreakPointCount() {
+  // No break point.
+  if (break_point_objects()->IsUndefined()) return 0;
+  // Single beak point.
+  if (!break_point_objects()->IsFixedArray()) return 1;
+  // Multiple break points.
+  return FixedArray::cast(break_point_objects())->length();
+}
+#endif
+
+
+} }  // namespace v8::internal