Move V8 to external/v8

Change-Id: If68025d67453785a651c5dfb34fad298c16676a4
diff --git a/src/x64/assembler-x64-inl.h b/src/x64/assembler-x64-inl.h
new file mode 100644
index 0000000..f51a3ea
--- /dev/null
+++ b/src/x64/assembler-x64-inl.h
@@ -0,0 +1,314 @@
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_X64_ASSEMBLER_X64_INL_H_
+#define V8_X64_ASSEMBLER_X64_INL_H_
+
+#include "cpu.h"
+#include "memory.h"
+
+namespace v8 {
+namespace internal {
+
+Condition NegateCondition(Condition cc) {
+  return static_cast<Condition>(cc ^ 1);
+}
+
+// -----------------------------------------------------------------------------
+
+Immediate::Immediate(Smi* value) {
+  value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of Assembler
+
+
+
+void Assembler::emitl(uint32_t x) {
+  Memory::uint32_at(pc_) = x;
+  pc_ += sizeof(uint32_t);
+}
+
+
+void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
+  Memory::uint64_at(pc_) = x;
+  if (rmode != RelocInfo::NONE) {
+    RecordRelocInfo(rmode, x);
+  }
+  pc_ += sizeof(uint64_t);
+}
+
+
+void Assembler::emitw(uint16_t x) {
+  Memory::uint16_at(pc_) = x;
+  pc_ += sizeof(uint16_t);
+}
+
+
+void Assembler::emit_rex_64(Register reg, Register rm_reg) {
+  emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
+}
+
+
+void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
+  emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
+}
+
+
+void Assembler::emit_rex_64(Register reg, const Operand& op) {
+  emit(0x48 | reg.high_bit() << 2 | op.rex_);
+}
+
+
+void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
+  emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
+}
+
+
+void Assembler::emit_rex_64(Register rm_reg) {
+  ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
+  emit(0x48 | rm_reg.high_bit());
+}
+
+
+void Assembler::emit_rex_64(const Operand& op) {
+  emit(0x48 | op.rex_);
+}
+
+
+void Assembler::emit_rex_32(Register reg, Register rm_reg) {
+  emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
+}
+
+
+void Assembler::emit_rex_32(Register reg, const Operand& op) {
+  emit(0x40 | reg.high_bit() << 2  | op.rex_);
+}
+
+
+void Assembler::emit_rex_32(Register rm_reg) {
+  emit(0x40 | rm_reg.high_bit());
+}
+
+
+void Assembler::emit_rex_32(const Operand& op) {
+  emit(0x40 | op.rex_);
+}
+
+
+void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
+  byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
+  if (rex_bits != 0) emit(0x40 | rex_bits);
+}
+
+
+void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
+  byte rex_bits =  reg.high_bit() << 2 | op.rex_;
+  if (rex_bits != 0) emit(0x40 | rex_bits);
+}
+
+
+void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
+  byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
+  if (rex_bits != 0) emit(0x40 | rex_bits);
+}
+
+
+void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
+  byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
+  if (rex_bits != 0) emit(0x40 | rex_bits);
+}
+
+
+void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
+  byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
+  if (rex_bits != 0) emit(0x40 | rex_bits);
+}
+
+
+void Assembler::emit_optional_rex_32(Register rm_reg) {
+  if (rm_reg.high_bit()) emit(0x41);
+}
+
+
+void Assembler::emit_optional_rex_32(const Operand& op) {
+  if (op.rex_ != 0) emit(0x40 | op.rex_);
+}
+
+
+Address Assembler::target_address_at(Address pc) {
+  return Memory::Address_at(pc);
+}
+
+
+void Assembler::set_target_address_at(Address pc, Address target) {
+  Memory::Address_at(pc) = target;
+  CPU::FlushICache(pc, sizeof(intptr_t));
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+// The modes possibly affected by apply must be in kApplyMask.
+void RelocInfo::apply(intptr_t delta) {
+  if (IsInternalReference(rmode_)) {
+    // absolute code pointer inside code object moves with the code object.
+    intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
+    *p += delta;  // relocate entry
+  }
+}
+
+
+Address RelocInfo::target_address() {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
+  return Assembler::target_address_at(pc_);
+}
+
+
+Address RelocInfo::target_address_address() {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
+  return reinterpret_cast<Address>(pc_);
+}
+
+
+void RelocInfo::set_target_address(Address target) {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
+  Assembler::set_target_address_at(pc_, target);
+}
+
+
+Object* RelocInfo::target_object() {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  return *reinterpret_cast<Object**>(pc_);
+}
+
+
+Object** RelocInfo::target_object_address() {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  return reinterpret_cast<Object**>(pc_);
+}
+
+
+Address* RelocInfo::target_reference_address() {
+  ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
+  return reinterpret_cast<Address*>(pc_);
+}
+
+
+void RelocInfo::set_target_object(Object* target) {
+  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  *reinterpret_cast<Object**>(pc_) = target;
+}
+
+
+bool RelocInfo::IsCallInstruction() {
+  // The recognized call sequence is:
+  //  movq(kScratchRegister, immediate64); call(kScratchRegister);
+  // It only needs to be distinguished from a return sequence
+  //  movq(rsp, rbp); pop(rbp); ret(n); int3 *6
+  // The 11th byte is int3 (0xCC) in the return sequence and
+  // REX.WB (0x48+register bit) for the call sequence.
+  return pc_[10] != 0xCC;
+}
+
+
+Address RelocInfo::call_address() {
+  ASSERT(IsCallInstruction());
+  return Assembler::target_address_at(
+      pc_ + Assembler::kPatchReturnSequenceAddressOffset);
+}
+
+
+void RelocInfo::set_call_address(Address target) {
+  ASSERT(IsCallInstruction());
+  Assembler::set_target_address_at(
+      pc_ + Assembler::kPatchReturnSequenceAddressOffset,
+      target);
+}
+
+
+Object* RelocInfo::call_object() {
+  ASSERT(IsCallInstruction());
+  return *call_object_address();
+}
+
+
+void RelocInfo::set_call_object(Object* target) {
+  ASSERT(IsCallInstruction());
+  *call_object_address() = target;
+}
+
+
+Object** RelocInfo::call_object_address() {
+  ASSERT(IsCallInstruction());
+  return reinterpret_cast<Object**>(
+      pc_ + Assembler::kPatchReturnSequenceAddressOffset);
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand
+
+void Operand::set_modrm(int mod, Register rm_reg) {
+  ASSERT(is_uint2(mod));
+  buf_[0] = mod << 6 | rm_reg.low_bits();
+  // Set REX.B to the high bit of rm.code().
+  rex_ |= rm_reg.high_bit();
+}
+
+
+void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
+  ASSERT(len_ == 1);
+  ASSERT(is_uint2(scale));
+  // Use SIB with no index register only for base rsp or r12. Otherwise we
+  // would skip the SIB byte entirely.
+  ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
+  buf_[1] = scale << 6 | index.low_bits() << 3 | base.low_bits();
+  rex_ |= index.high_bit() << 1 | base.high_bit();
+  len_ = 2;
+}
+
+void Operand::set_disp8(int disp) {
+  ASSERT(is_int8(disp));
+  ASSERT(len_ == 1 || len_ == 2);
+  int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
+  *p = disp;
+  len_ += sizeof(int8_t);
+}
+
+void Operand::set_disp32(int disp) {
+  ASSERT(len_ == 1 || len_ == 2);
+  int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
+  *p = disp;
+  len_ += sizeof(int32_t);
+}
+
+
+} }  // namespace v8::internal
+
+#endif  // V8_X64_ASSEMBLER_X64_INL_H_