Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/base/safe_math_impl.h b/src/base/safe_math_impl.h
new file mode 100644
index 0000000..055e2a0
--- /dev/null
+++ b/src/base/safe_math_impl.h
@@ -0,0 +1,531 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Slightly adapted for inclusion in V8.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#ifndef V8_BASE_SAFE_MATH_IMPL_H_
+#define V8_BASE_SAFE_MATH_IMPL_H_
+
+#include <stdint.h>
+
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+
+#include "src/base/macros.h"
+#include "src/base/safe_conversions.h"
+
+namespace v8 {
+namespace base {
+namespace internal {
+
+
+// From Chromium's base/template_util.h:
+
+template<class T, T v>
+struct integral_constant {
+  static const T value = v;
+  typedef T value_type;
+  typedef integral_constant<T, v> type;
+};
+
+template <class T, T v> const T integral_constant<T, v>::value;
+
+typedef integral_constant<bool, true> true_type;
+typedef integral_constant<bool, false> false_type;
+
+template <class T, class U> struct is_same : public false_type {};
+template <class T> struct is_same<T, T> : true_type {};
+
+template<bool B, class T = void>
+struct enable_if {};
+
+template<class T>
+struct enable_if<true, T> { typedef T type; };
+
+// </template_util.h>
+
+
+// Everything from here up to the floating point operations is portable C++,
+// but it may not be fast. This code could be split based on
+// platform/architecture and replaced with potentially faster implementations.
+
+// Integer promotion templates used by the portable checked integer arithmetic.
+template <size_t Size, bool IsSigned>
+struct IntegerForSizeAndSign;
+template <>
+struct IntegerForSizeAndSign<1, true> {
+  typedef int8_t type;
+};
+template <>
+struct IntegerForSizeAndSign<1, false> {
+  typedef uint8_t type;
+};
+template <>
+struct IntegerForSizeAndSign<2, true> {
+  typedef int16_t type;
+};
+template <>
+struct IntegerForSizeAndSign<2, false> {
+  typedef uint16_t type;
+};
+template <>
+struct IntegerForSizeAndSign<4, true> {
+  typedef int32_t type;
+};
+template <>
+struct IntegerForSizeAndSign<4, false> {
+  typedef uint32_t type;
+};
+template <>
+struct IntegerForSizeAndSign<8, true> {
+  typedef int64_t type;
+};
+template <>
+struct IntegerForSizeAndSign<8, false> {
+  typedef uint64_t type;
+};
+
+// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
+// support 128-bit math, then the ArithmeticPromotion template below will need
+// to be updated (or more likely replaced with a decltype expression).
+
+template <typename Integer>
+struct UnsignedIntegerForSize {
+  typedef typename enable_if<
+      std::numeric_limits<Integer>::is_integer,
+      typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
+};
+
+template <typename Integer>
+struct SignedIntegerForSize {
+  typedef typename enable_if<
+      std::numeric_limits<Integer>::is_integer,
+      typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
+};
+
+template <typename Integer>
+struct TwiceWiderInteger {
+  typedef typename enable_if<
+      std::numeric_limits<Integer>::is_integer,
+      typename IntegerForSizeAndSign<
+          sizeof(Integer) * 2,
+          std::numeric_limits<Integer>::is_signed>::type>::type type;
+};
+
+template <typename Integer>
+struct PositionOfSignBit {
+  static const typename enable_if<std::numeric_limits<Integer>::is_integer,
+                                  size_t>::type value = 8 * sizeof(Integer) - 1;
+};
+
+// Helper templates for integer manipulations.
+
+template <typename T>
+bool HasSignBit(T x) {
+  // Cast to unsigned since right shift on signed is undefined.
+  return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
+            PositionOfSignBit<T>::value);
+}
+
+// This wrapper undoes the standard integer promotions.
+template <typename T>
+T BinaryComplement(T x) {
+  return ~x;
+}
+
+// Here are the actual portable checked integer math implementations.
+// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
+// way to coalesce things into the CheckedNumericState specializations below.
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_integer, T>::type
+CheckedAdd(T x, T y, RangeConstraint* validity) {
+  // Since the value of x+y is undefined if we have a signed type, we compute
+  // it using the unsigned type of the same size.
+  typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
+  UnsignedDst ux = static_cast<UnsignedDst>(x);
+  UnsignedDst uy = static_cast<UnsignedDst>(y);
+  UnsignedDst uresult = ux + uy;
+  // Addition is valid if the sign of (x + y) is equal to either that of x or
+  // that of y.
+  if (std::numeric_limits<T>::is_signed) {
+    if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
+      *validity = RANGE_VALID;
+    else  // Direction of wrap is inverse of result sign.
+      *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
+
+  } else {  // Unsigned is either valid or overflow.
+    *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
+  }
+  return static_cast<T>(uresult);
+}
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_integer, T>::type
+CheckedSub(T x, T y, RangeConstraint* validity) {
+  // Since the value of x+y is undefined if we have a signed type, we compute
+  // it using the unsigned type of the same size.
+  typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
+  UnsignedDst ux = static_cast<UnsignedDst>(x);
+  UnsignedDst uy = static_cast<UnsignedDst>(y);
+  UnsignedDst uresult = ux - uy;
+  // Subtraction is valid if either x and y have same sign, or (x-y) and x have
+  // the same sign.
+  if (std::numeric_limits<T>::is_signed) {
+    if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
+      *validity = RANGE_VALID;
+    else  // Direction of wrap is inverse of result sign.
+      *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
+
+  } else {  // Unsigned is either valid or underflow.
+    *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
+  }
+  return static_cast<T>(uresult);
+}
+
+// Integer multiplication is a bit complicated. In the fast case we just
+// we just promote to a twice wider type, and range check the result. In the
+// slow case we need to manually check that the result won't be truncated by
+// checking with division against the appropriate bound.
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
+    T>::type
+CheckedMul(T x, T y, RangeConstraint* validity) {
+  typedef typename TwiceWiderInteger<T>::type IntermediateType;
+  IntermediateType tmp =
+      static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
+  *validity = DstRangeRelationToSrcRange<T>(tmp);
+  return static_cast<T>(tmp);
+}
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_integer &&
+                       std::numeric_limits<T>::is_signed &&
+                       (sizeof(T) * 2 > sizeof(uintmax_t)),
+                   T>::type
+CheckedMul(T x, T y, RangeConstraint* validity) {
+  // if either side is zero then the result will be zero.
+  if (!(x || y)) {
+    return RANGE_VALID;
+
+  } else if (x > 0) {
+    if (y > 0)
+      *validity =
+          x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
+    else
+      *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
+                                                         : RANGE_UNDERFLOW;
+
+  } else {
+    if (y > 0)
+      *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
+                                                         : RANGE_UNDERFLOW;
+    else
+      *validity =
+          y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
+  }
+
+  return x * y;
+}
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_integer &&
+                       !std::numeric_limits<T>::is_signed &&
+                       (sizeof(T) * 2 > sizeof(uintmax_t)),
+                   T>::type
+CheckedMul(T x, T y, RangeConstraint* validity) {
+  *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
+                  ? RANGE_VALID
+                  : RANGE_OVERFLOW;
+  return x * y;
+}
+
+// Division just requires a check for an invalid negation on signed min/-1.
+template <typename T>
+T CheckedDiv(
+    T x,
+    T y,
+    RangeConstraint* validity,
+    typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
+  if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
+      y == static_cast<T>(-1)) {
+    *validity = RANGE_OVERFLOW;
+    return std::numeric_limits<T>::min();
+  }
+
+  *validity = RANGE_VALID;
+  return x / y;
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedMod(T x, T y, RangeConstraint* validity) {
+  *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
+  return x % y;
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedMod(T x, T y, RangeConstraint* validity) {
+  *validity = RANGE_VALID;
+  return x % y;
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedNeg(T value, RangeConstraint* validity) {
+  *validity =
+      value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
+  // The negation of signed min is min, so catch that one.
+  return -value;
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedNeg(T value, RangeConstraint* validity) {
+  // The only legal unsigned negation is zero.
+  *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
+  return static_cast<T>(
+      -static_cast<typename SignedIntegerForSize<T>::type>(value));
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedAbs(T value, RangeConstraint* validity) {
+  *validity =
+      value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
+  return std::abs(value);
+}
+
+template <typename T>
+typename enable_if<
+    std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
+    T>::type
+CheckedAbs(T value, RangeConstraint* validity) {
+  // Absolute value of a positive is just its identiy.
+  *validity = RANGE_VALID;
+  return value;
+}
+
+// These are the floating point stubs that the compiler needs to see. Only the
+// negation operation is ever called.
+#define BASE_FLOAT_ARITHMETIC_STUBS(NAME)                        \
+  template <typename T>                                          \
+  typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
+  Checked##NAME(T, T, RangeConstraint*) {                        \
+    UNREACHABLE();                                               \
+    return 0;                                                    \
+  }
+
+BASE_FLOAT_ARITHMETIC_STUBS(Add)
+BASE_FLOAT_ARITHMETIC_STUBS(Sub)
+BASE_FLOAT_ARITHMETIC_STUBS(Mul)
+BASE_FLOAT_ARITHMETIC_STUBS(Div)
+BASE_FLOAT_ARITHMETIC_STUBS(Mod)
+
+#undef BASE_FLOAT_ARITHMETIC_STUBS
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
+    T value,
+    RangeConstraint*) {
+  return -value;
+}
+
+template <typename T>
+typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
+    T value,
+    RangeConstraint*) {
+  return std::abs(value);
+}
+
+// Floats carry around their validity state with them, but integers do not. So,
+// we wrap the underlying value in a specialization in order to hide that detail
+// and expose an interface via accessors.
+enum NumericRepresentation {
+  NUMERIC_INTEGER,
+  NUMERIC_FLOATING,
+  NUMERIC_UNKNOWN
+};
+
+template <typename NumericType>
+struct GetNumericRepresentation {
+  static const NumericRepresentation value =
+      std::numeric_limits<NumericType>::is_integer
+          ? NUMERIC_INTEGER
+          : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
+                                                         : NUMERIC_UNKNOWN);
+};
+
+template <typename T, NumericRepresentation type =
+                          GetNumericRepresentation<T>::value>
+class CheckedNumericState {};
+
+// Integrals require quite a bit of additional housekeeping to manage state.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_INTEGER> {
+ private:
+  T value_;
+  RangeConstraint validity_;
+
+ public:
+  template <typename Src, NumericRepresentation type>
+  friend class CheckedNumericState;
+
+  CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
+
+  template <typename Src>
+  CheckedNumericState(Src value, RangeConstraint validity)
+      : value_(value),
+        validity_(GetRangeConstraint(validity |
+                                     DstRangeRelationToSrcRange<T>(value))) {
+    // Argument must be numeric.
+    STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
+  }
+
+  // Copy constructor.
+  template <typename Src>
+  CheckedNumericState(const CheckedNumericState<Src>& rhs)
+      : value_(static_cast<T>(rhs.value())),
+        validity_(GetRangeConstraint(
+            rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
+
+  template <typename Src>
+  explicit CheckedNumericState(
+      Src value,
+      typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
+          0)
+      : value_(static_cast<T>(value)),
+        validity_(DstRangeRelationToSrcRange<T>(value)) {}
+
+  RangeConstraint validity() const { return validity_; }
+  T value() const { return value_; }
+};
+
+// Floating points maintain their own validity, but need translation wrappers.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_FLOATING> {
+ private:
+  T value_;
+
+ public:
+  template <typename Src, NumericRepresentation type>
+  friend class CheckedNumericState;
+
+  CheckedNumericState() : value_(0.0) {}
+
+  template <typename Src>
+  CheckedNumericState(
+      Src value,
+      RangeConstraint validity,
+      typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
+    switch (DstRangeRelationToSrcRange<T>(value)) {
+      case RANGE_VALID:
+        value_ = static_cast<T>(value);
+        break;
+
+      case RANGE_UNDERFLOW:
+        value_ = -std::numeric_limits<T>::infinity();
+        break;
+
+      case RANGE_OVERFLOW:
+        value_ = std::numeric_limits<T>::infinity();
+        break;
+
+      case RANGE_INVALID:
+        value_ = std::numeric_limits<T>::quiet_NaN();
+        break;
+    }
+  }
+
+  template <typename Src>
+  explicit CheckedNumericState(
+      Src value,
+      typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
+          0)
+      : value_(static_cast<T>(value)) {}
+
+  // Copy constructor.
+  template <typename Src>
+  CheckedNumericState(const CheckedNumericState<Src>& rhs)
+      : value_(static_cast<T>(rhs.value())) {}
+
+  RangeConstraint validity() const {
+    return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
+                              value_ >= -std::numeric_limits<T>::max());
+  }
+  T value() const { return value_; }
+};
+
+// For integers less than 128-bit and floats 32-bit or larger, we can distil
+// C/C++ arithmetic promotions down to two simple rules:
+// 1. The type with the larger maximum exponent always takes precedence.
+// 2. The resulting type must be promoted to at least an int.
+// The following template specializations implement that promotion logic.
+enum ArithmeticPromotionCategory {
+  LEFT_PROMOTION,
+  RIGHT_PROMOTION,
+  DEFAULT_PROMOTION
+};
+
+template <typename Lhs,
+          typename Rhs = Lhs,
+          ArithmeticPromotionCategory Promotion =
+              (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
+                  ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
+                         ? LEFT_PROMOTION
+                         : DEFAULT_PROMOTION)
+                  : (MaxExponent<Rhs>::value > MaxExponent<int>::value
+                         ? RIGHT_PROMOTION
+                         : DEFAULT_PROMOTION) >
+struct ArithmeticPromotion;
+
+template <typename Lhs, typename Rhs>
+struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
+  typedef Lhs type;
+};
+
+template <typename Lhs, typename Rhs>
+struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+  typedef Rhs type;
+};
+
+template <typename Lhs, typename Rhs>
+struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
+  typedef int type;
+};
+
+// We can statically check if operations on the provided types can wrap, so we
+// can skip the checked operations if they're not needed. So, for an integer we
+// care if the destination type preserves the sign and is twice the width of
+// the source.
+template <typename T, typename Lhs, typename Rhs>
+struct IsIntegerArithmeticSafe {
+  static const bool value = !std::numeric_limits<T>::is_iec559 &&
+                            StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
+                                NUMERIC_RANGE_CONTAINED &&
+                            sizeof(T) >= (2 * sizeof(Lhs)) &&
+                            StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
+                                NUMERIC_RANGE_CONTAINED &&
+                            sizeof(T) >= (2 * sizeof(Rhs));
+};
+
+}  // namespace internal
+}  // namespace base
+}  // namespace v8
+
+#endif  // V8_BASE_SAFE_MATH_IMPL_H_