Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/compiler/register-allocator.cc b/src/compiler/register-allocator.cc
new file mode 100644
index 0000000..972a904
--- /dev/null
+++ b/src/compiler/register-allocator.cc
@@ -0,0 +1,2232 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/register-allocator.h"
+
+#include "src/compiler/linkage.h"
+#include "src/hydrogen.h"
+#include "src/string-stream.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
+  return a.Value() < b.Value() ? a : b;
+}
+
+
+static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
+  return a.Value() > b.Value() ? a : b;
+}
+
+
+UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
+                         InstructionOperand* hint)
+    : operand_(operand),
+      hint_(hint),
+      pos_(pos),
+      next_(NULL),
+      requires_reg_(false),
+      register_beneficial_(true) {
+  if (operand_ != NULL && operand_->IsUnallocated()) {
+    const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_);
+    requires_reg_ = unalloc->HasRegisterPolicy();
+    register_beneficial_ = !unalloc->HasAnyPolicy();
+  }
+  DCHECK(pos_.IsValid());
+}
+
+
+bool UsePosition::HasHint() const {
+  return hint_ != NULL && !hint_->IsUnallocated();
+}
+
+
+bool UsePosition::RequiresRegister() const { return requires_reg_; }
+
+
+bool UsePosition::RegisterIsBeneficial() const { return register_beneficial_; }
+
+
+void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
+  DCHECK(Contains(pos) && pos.Value() != start().Value());
+  UseInterval* after = new (zone) UseInterval(pos, end_);
+  after->next_ = next_;
+  next_ = after;
+  end_ = pos;
+}
+
+
+#ifdef DEBUG
+
+
+void LiveRange::Verify() const {
+  UsePosition* cur = first_pos_;
+  while (cur != NULL) {
+    DCHECK(Start().Value() <= cur->pos().Value() &&
+           cur->pos().Value() <= End().Value());
+    cur = cur->next();
+  }
+}
+
+
+bool LiveRange::HasOverlap(UseInterval* target) const {
+  UseInterval* current_interval = first_interval_;
+  while (current_interval != NULL) {
+    // Intervals overlap if the start of one is contained in the other.
+    if (current_interval->Contains(target->start()) ||
+        target->Contains(current_interval->start())) {
+      return true;
+    }
+    current_interval = current_interval->next();
+  }
+  return false;
+}
+
+
+#endif
+
+
+LiveRange::LiveRange(int id, Zone* zone)
+    : id_(id),
+      spilled_(false),
+      is_phi_(false),
+      is_non_loop_phi_(false),
+      kind_(UNALLOCATED_REGISTERS),
+      assigned_register_(kInvalidAssignment),
+      last_interval_(NULL),
+      first_interval_(NULL),
+      first_pos_(NULL),
+      parent_(NULL),
+      next_(NULL),
+      current_interval_(NULL),
+      last_processed_use_(NULL),
+      current_hint_operand_(NULL),
+      spill_operand_(new (zone) InstructionOperand()),
+      spill_start_index_(kMaxInt) {}
+
+
+void LiveRange::set_assigned_register(int reg, Zone* zone) {
+  DCHECK(!HasRegisterAssigned() && !IsSpilled());
+  assigned_register_ = reg;
+  ConvertOperands(zone);
+}
+
+
+void LiveRange::MakeSpilled(Zone* zone) {
+  DCHECK(!IsSpilled());
+  DCHECK(TopLevel()->HasAllocatedSpillOperand());
+  spilled_ = true;
+  assigned_register_ = kInvalidAssignment;
+  ConvertOperands(zone);
+}
+
+
+bool LiveRange::HasAllocatedSpillOperand() const {
+  DCHECK(spill_operand_ != NULL);
+  return !spill_operand_->IsIgnored();
+}
+
+
+void LiveRange::SetSpillOperand(InstructionOperand* operand) {
+  DCHECK(!operand->IsUnallocated());
+  DCHECK(spill_operand_ != NULL);
+  DCHECK(spill_operand_->IsIgnored());
+  spill_operand_->ConvertTo(operand->kind(), operand->index());
+}
+
+
+UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
+  UsePosition* use_pos = last_processed_use_;
+  if (use_pos == NULL) use_pos = first_pos();
+  while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
+    use_pos = use_pos->next();
+  }
+  last_processed_use_ = use_pos;
+  return use_pos;
+}
+
+
+UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
+    LifetimePosition start) {
+  UsePosition* pos = NextUsePosition(start);
+  while (pos != NULL && !pos->RegisterIsBeneficial()) {
+    pos = pos->next();
+  }
+  return pos;
+}
+
+
+UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
+    LifetimePosition start) {
+  UsePosition* pos = first_pos();
+  UsePosition* prev = NULL;
+  while (pos != NULL && pos->pos().Value() < start.Value()) {
+    if (pos->RegisterIsBeneficial()) prev = pos;
+    pos = pos->next();
+  }
+  return prev;
+}
+
+
+UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
+  UsePosition* pos = NextUsePosition(start);
+  while (pos != NULL && !pos->RequiresRegister()) {
+    pos = pos->next();
+  }
+  return pos;
+}
+
+
+bool LiveRange::CanBeSpilled(LifetimePosition pos) {
+  // We cannot spill a live range that has a use requiring a register
+  // at the current or the immediate next position.
+  UsePosition* use_pos = NextRegisterPosition(pos);
+  if (use_pos == NULL) return true;
+  return use_pos->pos().Value() >
+         pos.NextInstruction().InstructionEnd().Value();
+}
+
+
+InstructionOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
+  InstructionOperand* op = NULL;
+  if (HasRegisterAssigned()) {
+    DCHECK(!IsSpilled());
+    switch (Kind()) {
+      case GENERAL_REGISTERS:
+        op = RegisterOperand::Create(assigned_register(), zone);
+        break;
+      case DOUBLE_REGISTERS:
+        op = DoubleRegisterOperand::Create(assigned_register(), zone);
+        break;
+      default:
+        UNREACHABLE();
+    }
+  } else if (IsSpilled()) {
+    DCHECK(!HasRegisterAssigned());
+    op = TopLevel()->GetSpillOperand();
+    DCHECK(!op->IsUnallocated());
+  } else {
+    UnallocatedOperand* unalloc =
+        new (zone) UnallocatedOperand(UnallocatedOperand::NONE);
+    unalloc->set_virtual_register(id_);
+    op = unalloc;
+  }
+  return op;
+}
+
+
+UseInterval* LiveRange::FirstSearchIntervalForPosition(
+    LifetimePosition position) const {
+  if (current_interval_ == NULL) return first_interval_;
+  if (current_interval_->start().Value() > position.Value()) {
+    current_interval_ = NULL;
+    return first_interval_;
+  }
+  return current_interval_;
+}
+
+
+void LiveRange::AdvanceLastProcessedMarker(
+    UseInterval* to_start_of, LifetimePosition but_not_past) const {
+  if (to_start_of == NULL) return;
+  if (to_start_of->start().Value() > but_not_past.Value()) return;
+  LifetimePosition start = current_interval_ == NULL
+                               ? LifetimePosition::Invalid()
+                               : current_interval_->start();
+  if (to_start_of->start().Value() > start.Value()) {
+    current_interval_ = to_start_of;
+  }
+}
+
+
+void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
+                        Zone* zone) {
+  DCHECK(Start().Value() < position.Value());
+  DCHECK(result->IsEmpty());
+  // Find the last interval that ends before the position. If the
+  // position is contained in one of the intervals in the chain, we
+  // split that interval and use the first part.
+  UseInterval* current = FirstSearchIntervalForPosition(position);
+
+  // If the split position coincides with the beginning of a use interval
+  // we need to split use positons in a special way.
+  bool split_at_start = false;
+
+  if (current->start().Value() == position.Value()) {
+    // When splitting at start we need to locate the previous use interval.
+    current = first_interval_;
+  }
+
+  while (current != NULL) {
+    if (current->Contains(position)) {
+      current->SplitAt(position, zone);
+      break;
+    }
+    UseInterval* next = current->next();
+    if (next->start().Value() >= position.Value()) {
+      split_at_start = (next->start().Value() == position.Value());
+      break;
+    }
+    current = next;
+  }
+
+  // Partition original use intervals to the two live ranges.
+  UseInterval* before = current;
+  UseInterval* after = before->next();
+  result->last_interval_ =
+      (last_interval_ == before)
+          ? after            // Only interval in the range after split.
+          : last_interval_;  // Last interval of the original range.
+  result->first_interval_ = after;
+  last_interval_ = before;
+
+  // Find the last use position before the split and the first use
+  // position after it.
+  UsePosition* use_after = first_pos_;
+  UsePosition* use_before = NULL;
+  if (split_at_start) {
+    // The split position coincides with the beginning of a use interval (the
+    // end of a lifetime hole). Use at this position should be attributed to
+    // the split child because split child owns use interval covering it.
+    while (use_after != NULL && use_after->pos().Value() < position.Value()) {
+      use_before = use_after;
+      use_after = use_after->next();
+    }
+  } else {
+    while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
+      use_before = use_after;
+      use_after = use_after->next();
+    }
+  }
+
+  // Partition original use positions to the two live ranges.
+  if (use_before != NULL) {
+    use_before->next_ = NULL;
+  } else {
+    first_pos_ = NULL;
+  }
+  result->first_pos_ = use_after;
+
+  // Discard cached iteration state. It might be pointing
+  // to the use that no longer belongs to this live range.
+  last_processed_use_ = NULL;
+  current_interval_ = NULL;
+
+  // Link the new live range in the chain before any of the other
+  // ranges linked from the range before the split.
+  result->parent_ = (parent_ == NULL) ? this : parent_;
+  result->kind_ = result->parent_->kind_;
+  result->next_ = next_;
+  next_ = result;
+
+#ifdef DEBUG
+  Verify();
+  result->Verify();
+#endif
+}
+
+
+// This implements an ordering on live ranges so that they are ordered by their
+// start positions.  This is needed for the correctness of the register
+// allocation algorithm.  If two live ranges start at the same offset then there
+// is a tie breaker based on where the value is first used.  This part of the
+// ordering is merely a heuristic.
+bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
+  LifetimePosition start = Start();
+  LifetimePosition other_start = other->Start();
+  if (start.Value() == other_start.Value()) {
+    UsePosition* pos = first_pos();
+    if (pos == NULL) return false;
+    UsePosition* other_pos = other->first_pos();
+    if (other_pos == NULL) return true;
+    return pos->pos().Value() < other_pos->pos().Value();
+  }
+  return start.Value() < other_start.Value();
+}
+
+
+void LiveRange::ShortenTo(LifetimePosition start) {
+  RegisterAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_,
+                                start.Value());
+  DCHECK(first_interval_ != NULL);
+  DCHECK(first_interval_->start().Value() <= start.Value());
+  DCHECK(start.Value() < first_interval_->end().Value());
+  first_interval_->set_start(start);
+}
+
+
+void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end,
+                               Zone* zone) {
+  RegisterAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
+                                id_, start.Value(), end.Value());
+  LifetimePosition new_end = end;
+  while (first_interval_ != NULL &&
+         first_interval_->start().Value() <= end.Value()) {
+    if (first_interval_->end().Value() > end.Value()) {
+      new_end = first_interval_->end();
+    }
+    first_interval_ = first_interval_->next();
+  }
+
+  UseInterval* new_interval = new (zone) UseInterval(start, new_end);
+  new_interval->next_ = first_interval_;
+  first_interval_ = new_interval;
+  if (new_interval->next() == NULL) {
+    last_interval_ = new_interval;
+  }
+}
+
+
+void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end,
+                               Zone* zone) {
+  RegisterAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n", id_,
+                                start.Value(), end.Value());
+  if (first_interval_ == NULL) {
+    UseInterval* interval = new (zone) UseInterval(start, end);
+    first_interval_ = interval;
+    last_interval_ = interval;
+  } else {
+    if (end.Value() == first_interval_->start().Value()) {
+      first_interval_->set_start(start);
+    } else if (end.Value() < first_interval_->start().Value()) {
+      UseInterval* interval = new (zone) UseInterval(start, end);
+      interval->set_next(first_interval_);
+      first_interval_ = interval;
+    } else {
+      // Order of instruction's processing (see ProcessInstructions) guarantees
+      // that each new use interval either precedes or intersects with
+      // last added interval.
+      DCHECK(start.Value() < first_interval_->end().Value());
+      first_interval_->start_ = Min(start, first_interval_->start_);
+      first_interval_->end_ = Max(end, first_interval_->end_);
+    }
+  }
+}
+
+
+void LiveRange::AddUsePosition(LifetimePosition pos,
+                               InstructionOperand* operand,
+                               InstructionOperand* hint, Zone* zone) {
+  RegisterAllocator::TraceAlloc("Add to live range %d use position %d\n", id_,
+                                pos.Value());
+  UsePosition* use_pos = new (zone) UsePosition(pos, operand, hint);
+  UsePosition* prev_hint = NULL;
+  UsePosition* prev = NULL;
+  UsePosition* current = first_pos_;
+  while (current != NULL && current->pos().Value() < pos.Value()) {
+    prev_hint = current->HasHint() ? current : prev_hint;
+    prev = current;
+    current = current->next();
+  }
+
+  if (prev == NULL) {
+    use_pos->set_next(first_pos_);
+    first_pos_ = use_pos;
+  } else {
+    use_pos->next_ = prev->next_;
+    prev->next_ = use_pos;
+  }
+
+  if (prev_hint == NULL && use_pos->HasHint()) {
+    current_hint_operand_ = hint;
+  }
+}
+
+
+void LiveRange::ConvertOperands(Zone* zone) {
+  InstructionOperand* op = CreateAssignedOperand(zone);
+  UsePosition* use_pos = first_pos();
+  while (use_pos != NULL) {
+    DCHECK(Start().Value() <= use_pos->pos().Value() &&
+           use_pos->pos().Value() <= End().Value());
+
+    if (use_pos->HasOperand()) {
+      DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
+             !use_pos->RequiresRegister());
+      use_pos->operand()->ConvertTo(op->kind(), op->index());
+    }
+    use_pos = use_pos->next();
+  }
+}
+
+
+bool LiveRange::CanCover(LifetimePosition position) const {
+  if (IsEmpty()) return false;
+  return Start().Value() <= position.Value() &&
+         position.Value() < End().Value();
+}
+
+
+bool LiveRange::Covers(LifetimePosition position) {
+  if (!CanCover(position)) return false;
+  UseInterval* start_search = FirstSearchIntervalForPosition(position);
+  for (UseInterval* interval = start_search; interval != NULL;
+       interval = interval->next()) {
+    DCHECK(interval->next() == NULL ||
+           interval->next()->start().Value() >= interval->start().Value());
+    AdvanceLastProcessedMarker(interval, position);
+    if (interval->Contains(position)) return true;
+    if (interval->start().Value() > position.Value()) return false;
+  }
+  return false;
+}
+
+
+LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
+  UseInterval* b = other->first_interval();
+  if (b == NULL) return LifetimePosition::Invalid();
+  LifetimePosition advance_last_processed_up_to = b->start();
+  UseInterval* a = FirstSearchIntervalForPosition(b->start());
+  while (a != NULL && b != NULL) {
+    if (a->start().Value() > other->End().Value()) break;
+    if (b->start().Value() > End().Value()) break;
+    LifetimePosition cur_intersection = a->Intersect(b);
+    if (cur_intersection.IsValid()) {
+      return cur_intersection;
+    }
+    if (a->start().Value() < b->start().Value()) {
+      a = a->next();
+      if (a == NULL || a->start().Value() > other->End().Value()) break;
+      AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
+    } else {
+      b = b->next();
+    }
+  }
+  return LifetimePosition::Invalid();
+}
+
+
+RegisterAllocator::RegisterAllocator(InstructionSequence* code)
+    : zone_(code->isolate()),
+      code_(code),
+      live_in_sets_(code->BasicBlockCount(), zone()),
+      live_ranges_(code->VirtualRegisterCount() * 2, zone()),
+      fixed_live_ranges_(NULL),
+      fixed_double_live_ranges_(NULL),
+      unhandled_live_ranges_(code->VirtualRegisterCount() * 2, zone()),
+      active_live_ranges_(8, zone()),
+      inactive_live_ranges_(8, zone()),
+      reusable_slots_(8, zone()),
+      mode_(UNALLOCATED_REGISTERS),
+      num_registers_(-1),
+      allocation_ok_(true) {}
+
+
+void RegisterAllocator::InitializeLivenessAnalysis() {
+  // Initialize the live_in sets for each block to NULL.
+  int block_count = code()->BasicBlockCount();
+  live_in_sets_.Initialize(block_count, zone());
+  live_in_sets_.AddBlock(NULL, block_count, zone());
+}
+
+
+BitVector* RegisterAllocator::ComputeLiveOut(BasicBlock* block) {
+  // Compute live out for the given block, except not including backward
+  // successor edges.
+  BitVector* live_out =
+      new (zone()) BitVector(code()->VirtualRegisterCount(), zone());
+
+  // Process all successor blocks.
+  BasicBlock::Successors successors = block->successors();
+  for (BasicBlock::Successors::iterator i = successors.begin();
+       i != successors.end(); ++i) {
+    // Add values live on entry to the successor. Note the successor's
+    // live_in will not be computed yet for backwards edges.
+    BasicBlock* successor = *i;
+    BitVector* live_in = live_in_sets_[successor->rpo_number_];
+    if (live_in != NULL) live_out->Union(*live_in);
+
+    // All phi input operands corresponding to this successor edge are live
+    // out from this block.
+    int index = successor->PredecessorIndexOf(block);
+    DCHECK(index >= 0);
+    DCHECK(index < static_cast<int>(successor->PredecessorCount()));
+    for (BasicBlock::const_iterator j = successor->begin();
+         j != successor->end(); ++j) {
+      Node* phi = *j;
+      if (phi->opcode() != IrOpcode::kPhi) continue;
+      Node* input = phi->InputAt(index);
+      live_out->Add(input->id());
+    }
+  }
+
+  return live_out;
+}
+
+
+void RegisterAllocator::AddInitialIntervals(BasicBlock* block,
+                                            BitVector* live_out) {
+  // Add an interval that includes the entire block to the live range for
+  // each live_out value.
+  LifetimePosition start =
+      LifetimePosition::FromInstructionIndex(block->first_instruction_index());
+  LifetimePosition end = LifetimePosition::FromInstructionIndex(
+                             block->last_instruction_index()).NextInstruction();
+  BitVector::Iterator iterator(live_out);
+  while (!iterator.Done()) {
+    int operand_index = iterator.Current();
+    LiveRange* range = LiveRangeFor(operand_index);
+    range->AddUseInterval(start, end, zone());
+    iterator.Advance();
+  }
+}
+
+
+int RegisterAllocator::FixedDoubleLiveRangeID(int index) {
+  return -index - 1 - Register::kMaxNumAllocatableRegisters;
+}
+
+
+InstructionOperand* RegisterAllocator::AllocateFixed(
+    UnallocatedOperand* operand, int pos, bool is_tagged) {
+  TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
+  DCHECK(operand->HasFixedPolicy());
+  if (operand->HasFixedSlotPolicy()) {
+    operand->ConvertTo(InstructionOperand::STACK_SLOT,
+                       operand->fixed_slot_index());
+  } else if (operand->HasFixedRegisterPolicy()) {
+    int reg_index = operand->fixed_register_index();
+    operand->ConvertTo(InstructionOperand::REGISTER, reg_index);
+  } else if (operand->HasFixedDoubleRegisterPolicy()) {
+    int reg_index = operand->fixed_register_index();
+    operand->ConvertTo(InstructionOperand::DOUBLE_REGISTER, reg_index);
+  } else {
+    UNREACHABLE();
+  }
+  if (is_tagged) {
+    TraceAlloc("Fixed reg is tagged at %d\n", pos);
+    Instruction* instr = InstructionAt(pos);
+    if (instr->HasPointerMap()) {
+      instr->pointer_map()->RecordPointer(operand, code_zone());
+    }
+  }
+  return operand;
+}
+
+
+LiveRange* RegisterAllocator::FixedLiveRangeFor(int index) {
+  DCHECK(index < Register::kMaxNumAllocatableRegisters);
+  LiveRange* result = fixed_live_ranges_[index];
+  if (result == NULL) {
+    // TODO(titzer): add a utility method to allocate a new LiveRange:
+    // The LiveRange object itself can go in this zone, but the
+    // InstructionOperand needs
+    // to go in the code zone, since it may survive register allocation.
+    result = new (zone()) LiveRange(FixedLiveRangeID(index), code_zone());
+    DCHECK(result->IsFixed());
+    result->kind_ = GENERAL_REGISTERS;
+    SetLiveRangeAssignedRegister(result, index);
+    fixed_live_ranges_[index] = result;
+  }
+  return result;
+}
+
+
+LiveRange* RegisterAllocator::FixedDoubleLiveRangeFor(int index) {
+  DCHECK(index < DoubleRegister::NumAllocatableRegisters());
+  LiveRange* result = fixed_double_live_ranges_[index];
+  if (result == NULL) {
+    result = new (zone()) LiveRange(FixedDoubleLiveRangeID(index), code_zone());
+    DCHECK(result->IsFixed());
+    result->kind_ = DOUBLE_REGISTERS;
+    SetLiveRangeAssignedRegister(result, index);
+    fixed_double_live_ranges_[index] = result;
+  }
+  return result;
+}
+
+
+LiveRange* RegisterAllocator::LiveRangeFor(int index) {
+  if (index >= live_ranges_.length()) {
+    live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
+  }
+  LiveRange* result = live_ranges_[index];
+  if (result == NULL) {
+    result = new (zone()) LiveRange(index, code_zone());
+    live_ranges_[index] = result;
+  }
+  return result;
+}
+
+
+GapInstruction* RegisterAllocator::GetLastGap(BasicBlock* block) {
+  int last_instruction = block->last_instruction_index();
+  return code()->GapAt(last_instruction - 1);
+}
+
+
+LiveRange* RegisterAllocator::LiveRangeFor(InstructionOperand* operand) {
+  if (operand->IsUnallocated()) {
+    return LiveRangeFor(UnallocatedOperand::cast(operand)->virtual_register());
+  } else if (operand->IsRegister()) {
+    return FixedLiveRangeFor(operand->index());
+  } else if (operand->IsDoubleRegister()) {
+    return FixedDoubleLiveRangeFor(operand->index());
+  } else {
+    return NULL;
+  }
+}
+
+
+void RegisterAllocator::Define(LifetimePosition position,
+                               InstructionOperand* operand,
+                               InstructionOperand* hint) {
+  LiveRange* range = LiveRangeFor(operand);
+  if (range == NULL) return;
+
+  if (range->IsEmpty() || range->Start().Value() > position.Value()) {
+    // Can happen if there is a definition without use.
+    range->AddUseInterval(position, position.NextInstruction(), zone());
+    range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
+  } else {
+    range->ShortenTo(position);
+  }
+
+  if (operand->IsUnallocated()) {
+    UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
+    range->AddUsePosition(position, unalloc_operand, hint, zone());
+  }
+}
+
+
+void RegisterAllocator::Use(LifetimePosition block_start,
+                            LifetimePosition position,
+                            InstructionOperand* operand,
+                            InstructionOperand* hint) {
+  LiveRange* range = LiveRangeFor(operand);
+  if (range == NULL) return;
+  if (operand->IsUnallocated()) {
+    UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
+    range->AddUsePosition(position, unalloc_operand, hint, zone());
+  }
+  range->AddUseInterval(block_start, position, zone());
+}
+
+
+void RegisterAllocator::AddConstraintsGapMove(int index,
+                                              InstructionOperand* from,
+                                              InstructionOperand* to) {
+  GapInstruction* gap = code()->GapAt(index);
+  ParallelMove* move =
+      gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
+  if (from->IsUnallocated()) {
+    const ZoneList<MoveOperands>* move_operands = move->move_operands();
+    for (int i = 0; i < move_operands->length(); ++i) {
+      MoveOperands cur = move_operands->at(i);
+      InstructionOperand* cur_to = cur.destination();
+      if (cur_to->IsUnallocated()) {
+        if (UnallocatedOperand::cast(cur_to)->virtual_register() ==
+            UnallocatedOperand::cast(from)->virtual_register()) {
+          move->AddMove(cur.source(), to, code_zone());
+          return;
+        }
+      }
+    }
+  }
+  move->AddMove(from, to, code_zone());
+}
+
+
+void RegisterAllocator::MeetRegisterConstraints(BasicBlock* block) {
+  int start = block->first_instruction_index();
+  int end = block->last_instruction_index();
+  DCHECK_NE(-1, start);
+  for (int i = start; i <= end; ++i) {
+    if (code()->IsGapAt(i)) {
+      Instruction* instr = NULL;
+      Instruction* prev_instr = NULL;
+      if (i < end) instr = InstructionAt(i + 1);
+      if (i > start) prev_instr = InstructionAt(i - 1);
+      MeetConstraintsBetween(prev_instr, instr, i);
+      if (!AllocationOk()) return;
+    }
+  }
+
+  // Meet register constraints for the instruction in the end.
+  if (!code()->IsGapAt(end)) {
+    MeetRegisterConstraintsForLastInstructionInBlock(block);
+  }
+}
+
+
+void RegisterAllocator::MeetRegisterConstraintsForLastInstructionInBlock(
+    BasicBlock* block) {
+  int end = block->last_instruction_index();
+  Instruction* last_instruction = InstructionAt(end);
+  for (size_t i = 0; i < last_instruction->OutputCount(); i++) {
+    InstructionOperand* output_operand = last_instruction->OutputAt(i);
+    DCHECK(!output_operand->IsConstant());
+    UnallocatedOperand* output = UnallocatedOperand::cast(output_operand);
+    int output_vreg = output->virtual_register();
+    LiveRange* range = LiveRangeFor(output_vreg);
+    bool assigned = false;
+    if (output->HasFixedPolicy()) {
+      AllocateFixed(output, -1, false);
+      // This value is produced on the stack, we never need to spill it.
+      if (output->IsStackSlot()) {
+        range->SetSpillOperand(output);
+        range->SetSpillStartIndex(end);
+        assigned = true;
+      }
+
+      BasicBlock::Successors successors = block->successors();
+      for (BasicBlock::Successors::iterator succ = successors.begin();
+           succ != successors.end(); ++succ) {
+        DCHECK((*succ)->PredecessorCount() == 1);
+        int gap_index = (*succ)->first_instruction_index() + 1;
+        DCHECK(code()->IsGapAt(gap_index));
+
+        // Create an unconstrained operand for the same virtual register
+        // and insert a gap move from the fixed output to the operand.
+        UnallocatedOperand* output_copy =
+            new (code_zone()) UnallocatedOperand(UnallocatedOperand::ANY);
+        output_copy->set_virtual_register(output_vreg);
+
+        code()->AddGapMove(gap_index, output, output_copy);
+      }
+    }
+
+    if (!assigned) {
+      BasicBlock::Successors successors = block->successors();
+      for (BasicBlock::Successors::iterator succ = successors.begin();
+           succ != successors.end(); ++succ) {
+        DCHECK((*succ)->PredecessorCount() == 1);
+        int gap_index = (*succ)->first_instruction_index() + 1;
+        range->SetSpillStartIndex(gap_index);
+
+        // This move to spill operand is not a real use. Liveness analysis
+        // and splitting of live ranges do not account for it.
+        // Thus it should be inserted to a lifetime position corresponding to
+        // the instruction end.
+        GapInstruction* gap = code()->GapAt(gap_index);
+        ParallelMove* move =
+            gap->GetOrCreateParallelMove(GapInstruction::BEFORE, code_zone());
+        move->AddMove(output, range->GetSpillOperand(), code_zone());
+      }
+    }
+  }
+}
+
+
+void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
+                                               Instruction* second,
+                                               int gap_index) {
+  if (first != NULL) {
+    // Handle fixed temporaries.
+    for (size_t i = 0; i < first->TempCount(); i++) {
+      UnallocatedOperand* temp = UnallocatedOperand::cast(first->TempAt(i));
+      if (temp->HasFixedPolicy()) {
+        AllocateFixed(temp, gap_index - 1, false);
+      }
+    }
+
+    // Handle constant/fixed output operands.
+    for (size_t i = 0; i < first->OutputCount(); i++) {
+      InstructionOperand* output = first->OutputAt(i);
+      if (output->IsConstant()) {
+        int output_vreg = output->index();
+        LiveRange* range = LiveRangeFor(output_vreg);
+        range->SetSpillStartIndex(gap_index - 1);
+        range->SetSpillOperand(output);
+      } else {
+        UnallocatedOperand* first_output = UnallocatedOperand::cast(output);
+        LiveRange* range = LiveRangeFor(first_output->virtual_register());
+        bool assigned = false;
+        if (first_output->HasFixedPolicy()) {
+          UnallocatedOperand* output_copy =
+              first_output->CopyUnconstrained(code_zone());
+          bool is_tagged = HasTaggedValue(first_output->virtual_register());
+          AllocateFixed(first_output, gap_index, is_tagged);
+
+          // This value is produced on the stack, we never need to spill it.
+          if (first_output->IsStackSlot()) {
+            range->SetSpillOperand(first_output);
+            range->SetSpillStartIndex(gap_index - 1);
+            assigned = true;
+          }
+          code()->AddGapMove(gap_index, first_output, output_copy);
+        }
+
+        // Make sure we add a gap move for spilling (if we have not done
+        // so already).
+        if (!assigned) {
+          range->SetSpillStartIndex(gap_index);
+
+          // This move to spill operand is not a real use. Liveness analysis
+          // and splitting of live ranges do not account for it.
+          // Thus it should be inserted to a lifetime position corresponding to
+          // the instruction end.
+          GapInstruction* gap = code()->GapAt(gap_index);
+          ParallelMove* move =
+              gap->GetOrCreateParallelMove(GapInstruction::BEFORE, code_zone());
+          move->AddMove(first_output, range->GetSpillOperand(), code_zone());
+        }
+      }
+    }
+  }
+
+  if (second != NULL) {
+    // Handle fixed input operands of second instruction.
+    for (size_t i = 0; i < second->InputCount(); i++) {
+      InstructionOperand* input = second->InputAt(i);
+      if (input->IsImmediate()) continue;  // Ignore immediates.
+      UnallocatedOperand* cur_input = UnallocatedOperand::cast(input);
+      if (cur_input->HasFixedPolicy()) {
+        UnallocatedOperand* input_copy =
+            cur_input->CopyUnconstrained(code_zone());
+        bool is_tagged = HasTaggedValue(cur_input->virtual_register());
+        AllocateFixed(cur_input, gap_index + 1, is_tagged);
+        AddConstraintsGapMove(gap_index, input_copy, cur_input);
+      }
+    }
+
+    // Handle "output same as input" for second instruction.
+    for (size_t i = 0; i < second->OutputCount(); i++) {
+      InstructionOperand* output = second->OutputAt(i);
+      if (!output->IsUnallocated()) continue;
+      UnallocatedOperand* second_output = UnallocatedOperand::cast(output);
+      if (second_output->HasSameAsInputPolicy()) {
+        DCHECK(i == 0);  // Only valid for first output.
+        UnallocatedOperand* cur_input =
+            UnallocatedOperand::cast(second->InputAt(0));
+        int output_vreg = second_output->virtual_register();
+        int input_vreg = cur_input->virtual_register();
+
+        UnallocatedOperand* input_copy =
+            cur_input->CopyUnconstrained(code_zone());
+        cur_input->set_virtual_register(second_output->virtual_register());
+        AddConstraintsGapMove(gap_index, input_copy, cur_input);
+
+        if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
+          int index = gap_index + 1;
+          Instruction* instr = InstructionAt(index);
+          if (instr->HasPointerMap()) {
+            instr->pointer_map()->RecordPointer(input_copy, code_zone());
+          }
+        } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
+          // The input is assumed to immediately have a tagged representation,
+          // before the pointer map can be used. I.e. the pointer map at the
+          // instruction will include the output operand (whose value at the
+          // beginning of the instruction is equal to the input operand). If
+          // this is not desired, then the pointer map at this instruction needs
+          // to be adjusted manually.
+        }
+      }
+    }
+  }
+}
+
+
+bool RegisterAllocator::IsOutputRegisterOf(Instruction* instr, int index) {
+  for (size_t i = 0; i < instr->OutputCount(); i++) {
+    InstructionOperand* output = instr->OutputAt(i);
+    if (output->IsRegister() && output->index() == index) return true;
+  }
+  return false;
+}
+
+
+bool RegisterAllocator::IsOutputDoubleRegisterOf(Instruction* instr,
+                                                 int index) {
+  for (size_t i = 0; i < instr->OutputCount(); i++) {
+    InstructionOperand* output = instr->OutputAt(i);
+    if (output->IsDoubleRegister() && output->index() == index) return true;
+  }
+  return false;
+}
+
+
+void RegisterAllocator::ProcessInstructions(BasicBlock* block,
+                                            BitVector* live) {
+  int block_start = block->first_instruction_index();
+
+  LifetimePosition block_start_position =
+      LifetimePosition::FromInstructionIndex(block_start);
+
+  for (int index = block->last_instruction_index(); index >= block_start;
+       index--) {
+    LifetimePosition curr_position =
+        LifetimePosition::FromInstructionIndex(index);
+
+    Instruction* instr = InstructionAt(index);
+    DCHECK(instr != NULL);
+    if (instr->IsGapMoves()) {
+      // Process the moves of the gap instruction, making their sources live.
+      GapInstruction* gap = code()->GapAt(index);
+
+      // TODO(titzer): no need to create the parallel move if it doesn't exist.
+      ParallelMove* move =
+          gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
+      const ZoneList<MoveOperands>* move_operands = move->move_operands();
+      for (int i = 0; i < move_operands->length(); ++i) {
+        MoveOperands* cur = &move_operands->at(i);
+        if (cur->IsIgnored()) continue;
+        InstructionOperand* from = cur->source();
+        InstructionOperand* to = cur->destination();
+        InstructionOperand* hint = to;
+        if (to->IsUnallocated()) {
+          int to_vreg = UnallocatedOperand::cast(to)->virtual_register();
+          LiveRange* to_range = LiveRangeFor(to_vreg);
+          if (to_range->is_phi()) {
+            if (to_range->is_non_loop_phi()) {
+              hint = to_range->current_hint_operand();
+            }
+          } else {
+            if (live->Contains(to_vreg)) {
+              Define(curr_position, to, from);
+              live->Remove(to_vreg);
+            } else {
+              cur->Eliminate();
+              continue;
+            }
+          }
+        } else {
+          Define(curr_position, to, from);
+        }
+        Use(block_start_position, curr_position, from, hint);
+        if (from->IsUnallocated()) {
+          live->Add(UnallocatedOperand::cast(from)->virtual_register());
+        }
+      }
+    } else {
+      // Process output, inputs, and temps of this non-gap instruction.
+      for (size_t i = 0; i < instr->OutputCount(); i++) {
+        InstructionOperand* output = instr->OutputAt(i);
+        if (output->IsUnallocated()) {
+          int out_vreg = UnallocatedOperand::cast(output)->virtual_register();
+          live->Remove(out_vreg);
+        } else if (output->IsConstant()) {
+          int out_vreg = output->index();
+          live->Remove(out_vreg);
+        }
+        Define(curr_position, output, NULL);
+      }
+
+      if (instr->ClobbersRegisters()) {
+        for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) {
+          if (!IsOutputRegisterOf(instr, i)) {
+            LiveRange* range = FixedLiveRangeFor(i);
+            range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
+                                  zone());
+          }
+        }
+      }
+
+      if (instr->ClobbersDoubleRegisters()) {
+        for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
+          if (!IsOutputDoubleRegisterOf(instr, i)) {
+            LiveRange* range = FixedDoubleLiveRangeFor(i);
+            range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
+                                  zone());
+          }
+        }
+      }
+
+      for (size_t i = 0; i < instr->InputCount(); i++) {
+        InstructionOperand* input = instr->InputAt(i);
+        if (input->IsImmediate()) continue;  // Ignore immediates.
+        LifetimePosition use_pos;
+        if (input->IsUnallocated() &&
+            UnallocatedOperand::cast(input)->IsUsedAtStart()) {
+          use_pos = curr_position;
+        } else {
+          use_pos = curr_position.InstructionEnd();
+        }
+
+        Use(block_start_position, use_pos, input, NULL);
+        if (input->IsUnallocated()) {
+          live->Add(UnallocatedOperand::cast(input)->virtual_register());
+        }
+      }
+
+      for (size_t i = 0; i < instr->TempCount(); i++) {
+        InstructionOperand* temp = instr->TempAt(i);
+        if (instr->ClobbersTemps()) {
+          if (temp->IsRegister()) continue;
+          if (temp->IsUnallocated()) {
+            UnallocatedOperand* temp_unalloc = UnallocatedOperand::cast(temp);
+            if (temp_unalloc->HasFixedPolicy()) {
+              continue;
+            }
+          }
+        }
+        Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
+        Define(curr_position, temp, NULL);
+      }
+    }
+  }
+}
+
+
+void RegisterAllocator::ResolvePhis(BasicBlock* block) {
+  for (BasicBlock::const_iterator i = block->begin(); i != block->end(); ++i) {
+    Node* phi = *i;
+    if (phi->opcode() != IrOpcode::kPhi) continue;
+
+    UnallocatedOperand* phi_operand =
+        new (code_zone()) UnallocatedOperand(UnallocatedOperand::NONE);
+    phi_operand->set_virtual_register(phi->id());
+
+    int j = 0;
+    Node::Inputs inputs = phi->inputs();
+    for (Node::Inputs::iterator iter(inputs.begin()); iter != inputs.end();
+         ++iter, ++j) {
+      Node* op = *iter;
+      // TODO(mstarzinger): Use a ValueInputIterator instead.
+      if (j >= block->PredecessorCount()) continue;
+      UnallocatedOperand* operand =
+          new (code_zone()) UnallocatedOperand(UnallocatedOperand::ANY);
+      operand->set_virtual_register(op->id());
+      BasicBlock* cur_block = block->PredecessorAt(j);
+      // The gap move must be added without any special processing as in
+      // the AddConstraintsGapMove.
+      code()->AddGapMove(cur_block->last_instruction_index() - 1, operand,
+                         phi_operand);
+
+      Instruction* branch = InstructionAt(cur_block->last_instruction_index());
+      DCHECK(!branch->HasPointerMap());
+      USE(branch);
+    }
+
+    LiveRange* live_range = LiveRangeFor(phi->id());
+    BlockStartInstruction* block_start = code()->GetBlockStart(block);
+    block_start->GetOrCreateParallelMove(GapInstruction::START, code_zone())
+        ->AddMove(phi_operand, live_range->GetSpillOperand(), code_zone());
+    live_range->SetSpillStartIndex(block->first_instruction_index());
+
+    // We use the phi-ness of some nodes in some later heuristics.
+    live_range->set_is_phi(true);
+    if (!block->IsLoopHeader()) {
+      live_range->set_is_non_loop_phi(true);
+    }
+  }
+}
+
+
+bool RegisterAllocator::Allocate() {
+  assigned_registers_ = new (code_zone())
+      BitVector(Register::NumAllocatableRegisters(), code_zone());
+  assigned_double_registers_ = new (code_zone())
+      BitVector(DoubleRegister::NumAllocatableRegisters(), code_zone());
+  MeetRegisterConstraints();
+  if (!AllocationOk()) return false;
+  ResolvePhis();
+  BuildLiveRanges();
+  AllocateGeneralRegisters();
+  if (!AllocationOk()) return false;
+  AllocateDoubleRegisters();
+  if (!AllocationOk()) return false;
+  PopulatePointerMaps();
+  ConnectRanges();
+  ResolveControlFlow();
+  code()->frame()->SetAllocatedRegisters(assigned_registers_);
+  code()->frame()->SetAllocatedDoubleRegisters(assigned_double_registers_);
+  return true;
+}
+
+
+void RegisterAllocator::MeetRegisterConstraints() {
+  RegisterAllocatorPhase phase("L_Register constraints", this);
+  for (int i = 0; i < code()->BasicBlockCount(); ++i) {
+    MeetRegisterConstraints(code()->BlockAt(i));
+    if (!AllocationOk()) return;
+  }
+}
+
+
+void RegisterAllocator::ResolvePhis() {
+  RegisterAllocatorPhase phase("L_Resolve phis", this);
+
+  // Process the blocks in reverse order.
+  for (int i = code()->BasicBlockCount() - 1; i >= 0; --i) {
+    ResolvePhis(code()->BlockAt(i));
+  }
+}
+
+
+void RegisterAllocator::ResolveControlFlow(LiveRange* range, BasicBlock* block,
+                                           BasicBlock* pred) {
+  LifetimePosition pred_end =
+      LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
+  LifetimePosition cur_start =
+      LifetimePosition::FromInstructionIndex(block->first_instruction_index());
+  LiveRange* pred_cover = NULL;
+  LiveRange* cur_cover = NULL;
+  LiveRange* cur_range = range;
+  while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
+    if (cur_range->CanCover(cur_start)) {
+      DCHECK(cur_cover == NULL);
+      cur_cover = cur_range;
+    }
+    if (cur_range->CanCover(pred_end)) {
+      DCHECK(pred_cover == NULL);
+      pred_cover = cur_range;
+    }
+    cur_range = cur_range->next();
+  }
+
+  if (cur_cover->IsSpilled()) return;
+  DCHECK(pred_cover != NULL && cur_cover != NULL);
+  if (pred_cover != cur_cover) {
+    InstructionOperand* pred_op =
+        pred_cover->CreateAssignedOperand(code_zone());
+    InstructionOperand* cur_op = cur_cover->CreateAssignedOperand(code_zone());
+    if (!pred_op->Equals(cur_op)) {
+      GapInstruction* gap = NULL;
+      if (block->PredecessorCount() == 1) {
+        gap = code()->GapAt(block->first_instruction_index());
+      } else {
+        DCHECK(pred->SuccessorCount() == 1);
+        gap = GetLastGap(pred);
+
+        Instruction* branch = InstructionAt(pred->last_instruction_index());
+        DCHECK(!branch->HasPointerMap());
+        USE(branch);
+      }
+      gap->GetOrCreateParallelMove(GapInstruction::START, code_zone())
+          ->AddMove(pred_op, cur_op, code_zone());
+    }
+  }
+}
+
+
+ParallelMove* RegisterAllocator::GetConnectingParallelMove(
+    LifetimePosition pos) {
+  int index = pos.InstructionIndex();
+  if (code()->IsGapAt(index)) {
+    GapInstruction* gap = code()->GapAt(index);
+    return gap->GetOrCreateParallelMove(
+        pos.IsInstructionStart() ? GapInstruction::START : GapInstruction::END,
+        code_zone());
+  }
+  int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
+  return code()->GapAt(gap_pos)->GetOrCreateParallelMove(
+      (gap_pos < index) ? GapInstruction::AFTER : GapInstruction::BEFORE,
+      code_zone());
+}
+
+
+BasicBlock* RegisterAllocator::GetBlock(LifetimePosition pos) {
+  return code()->GetBasicBlock(pos.InstructionIndex());
+}
+
+
+void RegisterAllocator::ConnectRanges() {
+  RegisterAllocatorPhase phase("L_Connect ranges", this);
+  for (int i = 0; i < live_ranges()->length(); ++i) {
+    LiveRange* first_range = live_ranges()->at(i);
+    if (first_range == NULL || first_range->parent() != NULL) continue;
+
+    LiveRange* second_range = first_range->next();
+    while (second_range != NULL) {
+      LifetimePosition pos = second_range->Start();
+
+      if (!second_range->IsSpilled()) {
+        // Add gap move if the two live ranges touch and there is no block
+        // boundary.
+        if (first_range->End().Value() == pos.Value()) {
+          bool should_insert = true;
+          if (IsBlockBoundary(pos)) {
+            should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
+          }
+          if (should_insert) {
+            ParallelMove* move = GetConnectingParallelMove(pos);
+            InstructionOperand* prev_operand =
+                first_range->CreateAssignedOperand(code_zone());
+            InstructionOperand* cur_operand =
+                second_range->CreateAssignedOperand(code_zone());
+            move->AddMove(prev_operand, cur_operand, code_zone());
+          }
+        }
+      }
+
+      first_range = second_range;
+      second_range = second_range->next();
+    }
+  }
+}
+
+
+bool RegisterAllocator::CanEagerlyResolveControlFlow(BasicBlock* block) const {
+  if (block->PredecessorCount() != 1) return false;
+  return block->PredecessorAt(0)->rpo_number_ == block->rpo_number_ - 1;
+}
+
+
+void RegisterAllocator::ResolveControlFlow() {
+  RegisterAllocatorPhase phase("L_Resolve control flow", this);
+  for (int block_id = 1; block_id < code()->BasicBlockCount(); ++block_id) {
+    BasicBlock* block = code()->BlockAt(block_id);
+    if (CanEagerlyResolveControlFlow(block)) continue;
+    BitVector* live = live_in_sets_[block->rpo_number_];
+    BitVector::Iterator iterator(live);
+    while (!iterator.Done()) {
+      int operand_index = iterator.Current();
+      BasicBlock::Predecessors predecessors = block->predecessors();
+      for (BasicBlock::Predecessors::iterator i = predecessors.begin();
+           i != predecessors.end(); ++i) {
+        BasicBlock* cur = *i;
+        LiveRange* cur_range = LiveRangeFor(operand_index);
+        ResolveControlFlow(cur_range, block, cur);
+      }
+      iterator.Advance();
+    }
+  }
+}
+
+
+void RegisterAllocator::BuildLiveRanges() {
+  RegisterAllocatorPhase phase("L_Build live ranges", this);
+  InitializeLivenessAnalysis();
+  // Process the blocks in reverse order.
+  for (int block_id = code()->BasicBlockCount() - 1; block_id >= 0;
+       --block_id) {
+    BasicBlock* block = code()->BlockAt(block_id);
+    BitVector* live = ComputeLiveOut(block);
+    // Initially consider all live_out values live for the entire block. We
+    // will shorten these intervals if necessary.
+    AddInitialIntervals(block, live);
+
+    // Process the instructions in reverse order, generating and killing
+    // live values.
+    ProcessInstructions(block, live);
+    // All phi output operands are killed by this block.
+    for (BasicBlock::const_iterator i = block->begin(); i != block->end();
+         ++i) {
+      Node* phi = *i;
+      if (phi->opcode() != IrOpcode::kPhi) continue;
+
+      // The live range interval already ends at the first instruction of the
+      // block.
+      live->Remove(phi->id());
+
+      InstructionOperand* hint = NULL;
+      InstructionOperand* phi_operand = NULL;
+      GapInstruction* gap = GetLastGap(block->PredecessorAt(0));
+
+      // TODO(titzer): no need to create the parallel move if it doesn't exit.
+      ParallelMove* move =
+          gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
+      for (int j = 0; j < move->move_operands()->length(); ++j) {
+        InstructionOperand* to = move->move_operands()->at(j).destination();
+        if (to->IsUnallocated() &&
+            UnallocatedOperand::cast(to)->virtual_register() == phi->id()) {
+          hint = move->move_operands()->at(j).source();
+          phi_operand = to;
+          break;
+        }
+      }
+      DCHECK(hint != NULL);
+
+      LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
+          block->first_instruction_index());
+      Define(block_start, phi_operand, hint);
+    }
+
+    // Now live is live_in for this block except not including values live
+    // out on backward successor edges.
+    live_in_sets_[block_id] = live;
+
+    if (block->IsLoopHeader()) {
+      // Add a live range stretching from the first loop instruction to the last
+      // for each value live on entry to the header.
+      BitVector::Iterator iterator(live);
+      LifetimePosition start = LifetimePosition::FromInstructionIndex(
+          block->first_instruction_index());
+      int end_index =
+          code()->BlockAt(block->loop_end_)->last_instruction_index();
+      LifetimePosition end =
+          LifetimePosition::FromInstructionIndex(end_index).NextInstruction();
+      while (!iterator.Done()) {
+        int operand_index = iterator.Current();
+        LiveRange* range = LiveRangeFor(operand_index);
+        range->EnsureInterval(start, end, zone());
+        iterator.Advance();
+      }
+
+      // Insert all values into the live in sets of all blocks in the loop.
+      for (int i = block->rpo_number_ + 1; i < block->loop_end_; ++i) {
+        live_in_sets_[i]->Union(*live);
+      }
+    }
+
+#ifdef DEBUG
+    if (block_id == 0) {
+      BitVector::Iterator iterator(live);
+      bool found = false;
+      while (!iterator.Done()) {
+        found = true;
+        int operand_index = iterator.Current();
+        PrintF("Register allocator error: live v%d reached first block.\n",
+               operand_index);
+        LiveRange* range = LiveRangeFor(operand_index);
+        PrintF("  (first use is at %d)\n", range->first_pos()->pos().Value());
+        CompilationInfo* info = code()->linkage()->info();
+        if (info->IsStub()) {
+          if (info->code_stub() == NULL) {
+            PrintF("\n");
+          } else {
+            CodeStub::Major major_key = info->code_stub()->MajorKey();
+            PrintF("  (function: %s)\n", CodeStub::MajorName(major_key, false));
+          }
+        } else {
+          DCHECK(info->IsOptimizing());
+          AllowHandleDereference allow_deref;
+          PrintF("  (function: %s)\n",
+                 info->function()->debug_name()->ToCString().get());
+        }
+        iterator.Advance();
+      }
+      DCHECK(!found);
+    }
+#endif
+  }
+
+  for (int i = 0; i < live_ranges_.length(); ++i) {
+    if (live_ranges_[i] != NULL) {
+      live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
+
+      // TODO(bmeurer): This is a horrible hack to make sure that for constant
+      // live ranges, every use requires the constant to be in a register.
+      // Without this hack, all uses with "any" policy would get the constant
+      // operand assigned.
+      LiveRange* range = live_ranges_[i];
+      if (range->HasAllocatedSpillOperand() &&
+          range->GetSpillOperand()->IsConstant()) {
+        for (UsePosition* pos = range->first_pos(); pos != NULL;
+             pos = pos->next_) {
+          pos->register_beneficial_ = true;
+          pos->requires_reg_ = true;
+        }
+      }
+    }
+  }
+}
+
+
+bool RegisterAllocator::SafePointsAreInOrder() const {
+  int safe_point = 0;
+  const PointerMapDeque* pointer_maps = code()->pointer_maps();
+  for (PointerMapDeque::const_iterator it = pointer_maps->begin();
+       it != pointer_maps->end(); ++it) {
+    PointerMap* map = *it;
+    if (safe_point > map->instruction_position()) return false;
+    safe_point = map->instruction_position();
+  }
+  return true;
+}
+
+
+void RegisterAllocator::PopulatePointerMaps() {
+  RegisterAllocatorPhase phase("L_Populate pointer maps", this);
+
+  DCHECK(SafePointsAreInOrder());
+
+  // Iterate over all safe point positions and record a pointer
+  // for all spilled live ranges at this point.
+  int last_range_start = 0;
+  const PointerMapDeque* pointer_maps = code()->pointer_maps();
+  PointerMapDeque::const_iterator first_it = pointer_maps->begin();
+  for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
+    LiveRange* range = live_ranges()->at(range_idx);
+    if (range == NULL) continue;
+    // Iterate over the first parts of multi-part live ranges.
+    if (range->parent() != NULL) continue;
+    // Skip non-reference values.
+    if (!HasTaggedValue(range->id())) continue;
+    // Skip empty live ranges.
+    if (range->IsEmpty()) continue;
+
+    // Find the extent of the range and its children.
+    int start = range->Start().InstructionIndex();
+    int end = 0;
+    for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
+      LifetimePosition this_end = cur->End();
+      if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
+      DCHECK(cur->Start().InstructionIndex() >= start);
+    }
+
+    // Most of the ranges are in order, but not all.  Keep an eye on when they
+    // step backwards and reset the first_it so we don't miss any safe points.
+    if (start < last_range_start) first_it = pointer_maps->begin();
+    last_range_start = start;
+
+    // Step across all the safe points that are before the start of this range,
+    // recording how far we step in order to save doing this for the next range.
+    for (; first_it != pointer_maps->end(); ++first_it) {
+      PointerMap* map = *first_it;
+      if (map->instruction_position() >= start) break;
+    }
+
+    // Step through the safe points to see whether they are in the range.
+    for (PointerMapDeque::const_iterator it = first_it;
+         it != pointer_maps->end(); ++it) {
+      PointerMap* map = *it;
+      int safe_point = map->instruction_position();
+
+      // The safe points are sorted so we can stop searching here.
+      if (safe_point - 1 > end) break;
+
+      // Advance to the next active range that covers the current
+      // safe point position.
+      LifetimePosition safe_point_pos =
+          LifetimePosition::FromInstructionIndex(safe_point);
+      LiveRange* cur = range;
+      while (cur != NULL && !cur->Covers(safe_point_pos)) {
+        cur = cur->next();
+      }
+      if (cur == NULL) continue;
+
+      // Check if the live range is spilled and the safe point is after
+      // the spill position.
+      if (range->HasAllocatedSpillOperand() &&
+          safe_point >= range->spill_start_index() &&
+          !range->GetSpillOperand()->IsConstant()) {
+        TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
+                   range->id(), range->spill_start_index(), safe_point);
+        map->RecordPointer(range->GetSpillOperand(), code_zone());
+      }
+
+      if (!cur->IsSpilled()) {
+        TraceAlloc(
+            "Pointer in register for range %d (start at %d) "
+            "at safe point %d\n",
+            cur->id(), cur->Start().Value(), safe_point);
+        InstructionOperand* operand = cur->CreateAssignedOperand(code_zone());
+        DCHECK(!operand->IsStackSlot());
+        map->RecordPointer(operand, code_zone());
+      }
+    }
+  }
+}
+
+
+void RegisterAllocator::AllocateGeneralRegisters() {
+  RegisterAllocatorPhase phase("L_Allocate general registers", this);
+  num_registers_ = Register::NumAllocatableRegisters();
+  mode_ = GENERAL_REGISTERS;
+  AllocateRegisters();
+}
+
+
+void RegisterAllocator::AllocateDoubleRegisters() {
+  RegisterAllocatorPhase phase("L_Allocate double registers", this);
+  num_registers_ = DoubleRegister::NumAllocatableRegisters();
+  mode_ = DOUBLE_REGISTERS;
+  AllocateRegisters();
+}
+
+
+void RegisterAllocator::AllocateRegisters() {
+  DCHECK(unhandled_live_ranges_.is_empty());
+
+  for (int i = 0; i < live_ranges_.length(); ++i) {
+    if (live_ranges_[i] != NULL) {
+      if (live_ranges_[i]->Kind() == mode_) {
+        AddToUnhandledUnsorted(live_ranges_[i]);
+      }
+    }
+  }
+  SortUnhandled();
+  DCHECK(UnhandledIsSorted());
+
+  DCHECK(reusable_slots_.is_empty());
+  DCHECK(active_live_ranges_.is_empty());
+  DCHECK(inactive_live_ranges_.is_empty());
+
+  if (mode_ == DOUBLE_REGISTERS) {
+    for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
+      LiveRange* current = fixed_double_live_ranges_.at(i);
+      if (current != NULL) {
+        AddToInactive(current);
+      }
+    }
+  } else {
+    DCHECK(mode_ == GENERAL_REGISTERS);
+    for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
+      LiveRange* current = fixed_live_ranges_.at(i);
+      if (current != NULL) {
+        AddToInactive(current);
+      }
+    }
+  }
+
+  while (!unhandled_live_ranges_.is_empty()) {
+    DCHECK(UnhandledIsSorted());
+    LiveRange* current = unhandled_live_ranges_.RemoveLast();
+    DCHECK(UnhandledIsSorted());
+    LifetimePosition position = current->Start();
+#ifdef DEBUG
+    allocation_finger_ = position;
+#endif
+    TraceAlloc("Processing interval %d start=%d\n", current->id(),
+               position.Value());
+
+    if (current->HasAllocatedSpillOperand()) {
+      TraceAlloc("Live range %d already has a spill operand\n", current->id());
+      LifetimePosition next_pos = position;
+      if (code()->IsGapAt(next_pos.InstructionIndex())) {
+        next_pos = next_pos.NextInstruction();
+      }
+      UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
+      // If the range already has a spill operand and it doesn't need a
+      // register immediately, split it and spill the first part of the range.
+      if (pos == NULL) {
+        Spill(current);
+        continue;
+      } else if (pos->pos().Value() >
+                 current->Start().NextInstruction().Value()) {
+        // Do not spill live range eagerly if use position that can benefit from
+        // the register is too close to the start of live range.
+        SpillBetween(current, current->Start(), pos->pos());
+        if (!AllocationOk()) return;
+        DCHECK(UnhandledIsSorted());
+        continue;
+      }
+    }
+
+    for (int i = 0; i < active_live_ranges_.length(); ++i) {
+      LiveRange* cur_active = active_live_ranges_.at(i);
+      if (cur_active->End().Value() <= position.Value()) {
+        ActiveToHandled(cur_active);
+        --i;  // The live range was removed from the list of active live ranges.
+      } else if (!cur_active->Covers(position)) {
+        ActiveToInactive(cur_active);
+        --i;  // The live range was removed from the list of active live ranges.
+      }
+    }
+
+    for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
+      LiveRange* cur_inactive = inactive_live_ranges_.at(i);
+      if (cur_inactive->End().Value() <= position.Value()) {
+        InactiveToHandled(cur_inactive);
+        --i;  // Live range was removed from the list of inactive live ranges.
+      } else if (cur_inactive->Covers(position)) {
+        InactiveToActive(cur_inactive);
+        --i;  // Live range was removed from the list of inactive live ranges.
+      }
+    }
+
+    DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
+
+    bool result = TryAllocateFreeReg(current);
+    if (!AllocationOk()) return;
+
+    if (!result) AllocateBlockedReg(current);
+    if (!AllocationOk()) return;
+
+    if (current->HasRegisterAssigned()) {
+      AddToActive(current);
+    }
+  }
+
+  reusable_slots_.Rewind(0);
+  active_live_ranges_.Rewind(0);
+  inactive_live_ranges_.Rewind(0);
+}
+
+
+const char* RegisterAllocator::RegisterName(int allocation_index) {
+  if (mode_ == GENERAL_REGISTERS) {
+    return Register::AllocationIndexToString(allocation_index);
+  } else {
+    return DoubleRegister::AllocationIndexToString(allocation_index);
+  }
+}
+
+
+void RegisterAllocator::TraceAlloc(const char* msg, ...) {
+  if (FLAG_trace_alloc) {
+    va_list arguments;
+    va_start(arguments, msg);
+    base::OS::VPrint(msg, arguments);
+    va_end(arguments);
+  }
+}
+
+
+bool RegisterAllocator::HasTaggedValue(int virtual_register) const {
+  return code()->IsReference(virtual_register);
+}
+
+
+RegisterKind RegisterAllocator::RequiredRegisterKind(
+    int virtual_register) const {
+  return (code()->IsDouble(virtual_register)) ? DOUBLE_REGISTERS
+                                              : GENERAL_REGISTERS;
+}
+
+
+void RegisterAllocator::AddToActive(LiveRange* range) {
+  TraceAlloc("Add live range %d to active\n", range->id());
+  active_live_ranges_.Add(range, zone());
+}
+
+
+void RegisterAllocator::AddToInactive(LiveRange* range) {
+  TraceAlloc("Add live range %d to inactive\n", range->id());
+  inactive_live_ranges_.Add(range, zone());
+}
+
+
+void RegisterAllocator::AddToUnhandledSorted(LiveRange* range) {
+  if (range == NULL || range->IsEmpty()) return;
+  DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
+  DCHECK(allocation_finger_.Value() <= range->Start().Value());
+  for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
+    LiveRange* cur_range = unhandled_live_ranges_.at(i);
+    if (range->ShouldBeAllocatedBefore(cur_range)) {
+      TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
+      unhandled_live_ranges_.InsertAt(i + 1, range, zone());
+      DCHECK(UnhandledIsSorted());
+      return;
+    }
+  }
+  TraceAlloc("Add live range %d to unhandled at start\n", range->id());
+  unhandled_live_ranges_.InsertAt(0, range, zone());
+  DCHECK(UnhandledIsSorted());
+}
+
+
+void RegisterAllocator::AddToUnhandledUnsorted(LiveRange* range) {
+  if (range == NULL || range->IsEmpty()) return;
+  DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
+  TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
+  unhandled_live_ranges_.Add(range, zone());
+}
+
+
+static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
+  DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
+         !(*b)->ShouldBeAllocatedBefore(*a));
+  if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
+  if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
+  return (*a)->id() - (*b)->id();
+}
+
+
+// Sort the unhandled live ranges so that the ranges to be processed first are
+// at the end of the array list.  This is convenient for the register allocation
+// algorithm because it is efficient to remove elements from the end.
+void RegisterAllocator::SortUnhandled() {
+  TraceAlloc("Sort unhandled\n");
+  unhandled_live_ranges_.Sort(&UnhandledSortHelper);
+}
+
+
+bool RegisterAllocator::UnhandledIsSorted() {
+  int len = unhandled_live_ranges_.length();
+  for (int i = 1; i < len; i++) {
+    LiveRange* a = unhandled_live_ranges_.at(i - 1);
+    LiveRange* b = unhandled_live_ranges_.at(i);
+    if (a->Start().Value() < b->Start().Value()) return false;
+  }
+  return true;
+}
+
+
+void RegisterAllocator::FreeSpillSlot(LiveRange* range) {
+  // Check that we are the last range.
+  if (range->next() != NULL) return;
+
+  if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
+
+  InstructionOperand* spill_operand = range->TopLevel()->GetSpillOperand();
+  if (spill_operand->IsConstant()) return;
+  if (spill_operand->index() >= 0) {
+    reusable_slots_.Add(range, zone());
+  }
+}
+
+
+InstructionOperand* RegisterAllocator::TryReuseSpillSlot(LiveRange* range) {
+  if (reusable_slots_.is_empty()) return NULL;
+  if (reusable_slots_.first()->End().Value() >
+      range->TopLevel()->Start().Value()) {
+    return NULL;
+  }
+  InstructionOperand* result =
+      reusable_slots_.first()->TopLevel()->GetSpillOperand();
+  reusable_slots_.Remove(0);
+  return result;
+}
+
+
+void RegisterAllocator::ActiveToHandled(LiveRange* range) {
+  DCHECK(active_live_ranges_.Contains(range));
+  active_live_ranges_.RemoveElement(range);
+  TraceAlloc("Moving live range %d from active to handled\n", range->id());
+  FreeSpillSlot(range);
+}
+
+
+void RegisterAllocator::ActiveToInactive(LiveRange* range) {
+  DCHECK(active_live_ranges_.Contains(range));
+  active_live_ranges_.RemoveElement(range);
+  inactive_live_ranges_.Add(range, zone());
+  TraceAlloc("Moving live range %d from active to inactive\n", range->id());
+}
+
+
+void RegisterAllocator::InactiveToHandled(LiveRange* range) {
+  DCHECK(inactive_live_ranges_.Contains(range));
+  inactive_live_ranges_.RemoveElement(range);
+  TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
+  FreeSpillSlot(range);
+}
+
+
+void RegisterAllocator::InactiveToActive(LiveRange* range) {
+  DCHECK(inactive_live_ranges_.Contains(range));
+  inactive_live_ranges_.RemoveElement(range);
+  active_live_ranges_.Add(range, zone());
+  TraceAlloc("Moving live range %d from inactive to active\n", range->id());
+}
+
+
+// TryAllocateFreeReg and AllocateBlockedReg assume this
+// when allocating local arrays.
+STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >=
+              Register::kMaxNumAllocatableRegisters);
+
+
+bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
+  LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters];
+
+  for (int i = 0; i < num_registers_; i++) {
+    free_until_pos[i] = LifetimePosition::MaxPosition();
+  }
+
+  for (int i = 0; i < active_live_ranges_.length(); ++i) {
+    LiveRange* cur_active = active_live_ranges_.at(i);
+    free_until_pos[cur_active->assigned_register()] =
+        LifetimePosition::FromInstructionIndex(0);
+  }
+
+  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
+    LiveRange* cur_inactive = inactive_live_ranges_.at(i);
+    DCHECK(cur_inactive->End().Value() > current->Start().Value());
+    LifetimePosition next_intersection =
+        cur_inactive->FirstIntersection(current);
+    if (!next_intersection.IsValid()) continue;
+    int cur_reg = cur_inactive->assigned_register();
+    free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
+  }
+
+  InstructionOperand* hint = current->FirstHint();
+  if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
+    int register_index = hint->index();
+    TraceAlloc(
+        "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
+        RegisterName(register_index), free_until_pos[register_index].Value(),
+        current->id(), current->End().Value());
+
+    // The desired register is free until the end of the current live range.
+    if (free_until_pos[register_index].Value() >= current->End().Value()) {
+      TraceAlloc("Assigning preferred reg %s to live range %d\n",
+                 RegisterName(register_index), current->id());
+      SetLiveRangeAssignedRegister(current, register_index);
+      return true;
+    }
+  }
+
+  // Find the register which stays free for the longest time.
+  int reg = 0;
+  for (int i = 1; i < RegisterCount(); ++i) {
+    if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
+      reg = i;
+    }
+  }
+
+  LifetimePosition pos = free_until_pos[reg];
+
+  if (pos.Value() <= current->Start().Value()) {
+    // All registers are blocked.
+    return false;
+  }
+
+  if (pos.Value() < current->End().Value()) {
+    // Register reg is available at the range start but becomes blocked before
+    // the range end. Split current at position where it becomes blocked.
+    LiveRange* tail = SplitRangeAt(current, pos);
+    if (!AllocationOk()) return false;
+    AddToUnhandledSorted(tail);
+  }
+
+
+  // Register reg is available at the range start and is free until
+  // the range end.
+  DCHECK(pos.Value() >= current->End().Value());
+  TraceAlloc("Assigning free reg %s to live range %d\n", RegisterName(reg),
+             current->id());
+  SetLiveRangeAssignedRegister(current, reg);
+
+  return true;
+}
+
+
+void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
+  UsePosition* register_use = current->NextRegisterPosition(current->Start());
+  if (register_use == NULL) {
+    // There is no use in the current live range that requires a register.
+    // We can just spill it.
+    Spill(current);
+    return;
+  }
+
+
+  LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters];
+  LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters];
+
+  for (int i = 0; i < num_registers_; i++) {
+    use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
+  }
+
+  for (int i = 0; i < active_live_ranges_.length(); ++i) {
+    LiveRange* range = active_live_ranges_[i];
+    int cur_reg = range->assigned_register();
+    if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
+      block_pos[cur_reg] = use_pos[cur_reg] =
+          LifetimePosition::FromInstructionIndex(0);
+    } else {
+      UsePosition* next_use =
+          range->NextUsePositionRegisterIsBeneficial(current->Start());
+      if (next_use == NULL) {
+        use_pos[cur_reg] = range->End();
+      } else {
+        use_pos[cur_reg] = next_use->pos();
+      }
+    }
+  }
+
+  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
+    LiveRange* range = inactive_live_ranges_.at(i);
+    DCHECK(range->End().Value() > current->Start().Value());
+    LifetimePosition next_intersection = range->FirstIntersection(current);
+    if (!next_intersection.IsValid()) continue;
+    int cur_reg = range->assigned_register();
+    if (range->IsFixed()) {
+      block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
+      use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
+    } else {
+      use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
+    }
+  }
+
+  int reg = 0;
+  for (int i = 1; i < RegisterCount(); ++i) {
+    if (use_pos[i].Value() > use_pos[reg].Value()) {
+      reg = i;
+    }
+  }
+
+  LifetimePosition pos = use_pos[reg];
+
+  if (pos.Value() < register_use->pos().Value()) {
+    // All registers are blocked before the first use that requires a register.
+    // Spill starting part of live range up to that use.
+    SpillBetween(current, current->Start(), register_use->pos());
+    return;
+  }
+
+  if (block_pos[reg].Value() < current->End().Value()) {
+    // Register becomes blocked before the current range end. Split before that
+    // position.
+    LiveRange* tail = SplitBetween(current, current->Start(),
+                                   block_pos[reg].InstructionStart());
+    if (!AllocationOk()) return;
+    AddToUnhandledSorted(tail);
+  }
+
+  // Register reg is not blocked for the whole range.
+  DCHECK(block_pos[reg].Value() >= current->End().Value());
+  TraceAlloc("Assigning blocked reg %s to live range %d\n", RegisterName(reg),
+             current->id());
+  SetLiveRangeAssignedRegister(current, reg);
+
+  // This register was not free. Thus we need to find and spill
+  // parts of active and inactive live regions that use the same register
+  // at the same lifetime positions as current.
+  SplitAndSpillIntersecting(current);
+}
+
+
+LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
+    LiveRange* range, LifetimePosition pos) {
+  BasicBlock* block = GetBlock(pos.InstructionStart());
+  BasicBlock* loop_header =
+      block->IsLoopHeader() ? block : code()->GetContainingLoop(block);
+
+  if (loop_header == NULL) return pos;
+
+  UsePosition* prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos);
+
+  while (loop_header != NULL) {
+    // We are going to spill live range inside the loop.
+    // If possible try to move spilling position backwards to loop header.
+    // This will reduce number of memory moves on the back edge.
+    LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
+        loop_header->first_instruction_index());
+
+    if (range->Covers(loop_start)) {
+      if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
+        // No register beneficial use inside the loop before the pos.
+        pos = loop_start;
+      }
+    }
+
+    // Try hoisting out to an outer loop.
+    loop_header = code()->GetContainingLoop(loop_header);
+  }
+
+  return pos;
+}
+
+
+void RegisterAllocator::SplitAndSpillIntersecting(LiveRange* current) {
+  DCHECK(current->HasRegisterAssigned());
+  int reg = current->assigned_register();
+  LifetimePosition split_pos = current->Start();
+  for (int i = 0; i < active_live_ranges_.length(); ++i) {
+    LiveRange* range = active_live_ranges_[i];
+    if (range->assigned_register() == reg) {
+      UsePosition* next_pos = range->NextRegisterPosition(current->Start());
+      LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
+      if (next_pos == NULL) {
+        SpillAfter(range, spill_pos);
+      } else {
+        // When spilling between spill_pos and next_pos ensure that the range
+        // remains spilled at least until the start of the current live range.
+        // This guarantees that we will not introduce new unhandled ranges that
+        // start before the current range as this violates allocation invariant
+        // and will lead to an inconsistent state of active and inactive
+        // live-ranges: ranges are allocated in order of their start positions,
+        // ranges are retired from active/inactive when the start of the
+        // current live-range is larger than their end.
+        SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
+      }
+      if (!AllocationOk()) return;
+      ActiveToHandled(range);
+      --i;
+    }
+  }
+
+  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
+    LiveRange* range = inactive_live_ranges_[i];
+    DCHECK(range->End().Value() > current->Start().Value());
+    if (range->assigned_register() == reg && !range->IsFixed()) {
+      LifetimePosition next_intersection = range->FirstIntersection(current);
+      if (next_intersection.IsValid()) {
+        UsePosition* next_pos = range->NextRegisterPosition(current->Start());
+        if (next_pos == NULL) {
+          SpillAfter(range, split_pos);
+        } else {
+          next_intersection = Min(next_intersection, next_pos->pos());
+          SpillBetween(range, split_pos, next_intersection);
+        }
+        if (!AllocationOk()) return;
+        InactiveToHandled(range);
+        --i;
+      }
+    }
+  }
+}
+
+
+bool RegisterAllocator::IsBlockBoundary(LifetimePosition pos) {
+  return pos.IsInstructionStart() &&
+         InstructionAt(pos.InstructionIndex())->IsBlockStart();
+}
+
+
+LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range,
+                                           LifetimePosition pos) {
+  DCHECK(!range->IsFixed());
+  TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
+
+  if (pos.Value() <= range->Start().Value()) return range;
+
+  // We can't properly connect liveranges if split occured at the end
+  // of control instruction.
+  DCHECK(pos.IsInstructionStart() ||
+         !InstructionAt(pos.InstructionIndex())->IsControl());
+
+  int vreg = GetVirtualRegister();
+  if (!AllocationOk()) return NULL;
+  LiveRange* result = LiveRangeFor(vreg);
+  range->SplitAt(pos, result, zone());
+  return result;
+}
+
+
+LiveRange* RegisterAllocator::SplitBetween(LiveRange* range,
+                                           LifetimePosition start,
+                                           LifetimePosition end) {
+  DCHECK(!range->IsFixed());
+  TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
+             range->id(), start.Value(), end.Value());
+
+  LifetimePosition split_pos = FindOptimalSplitPos(start, end);
+  DCHECK(split_pos.Value() >= start.Value());
+  return SplitRangeAt(range, split_pos);
+}
+
+
+LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
+                                                        LifetimePosition end) {
+  int start_instr = start.InstructionIndex();
+  int end_instr = end.InstructionIndex();
+  DCHECK(start_instr <= end_instr);
+
+  // We have no choice
+  if (start_instr == end_instr) return end;
+
+  BasicBlock* start_block = GetBlock(start);
+  BasicBlock* end_block = GetBlock(end);
+
+  if (end_block == start_block) {
+    // The interval is split in the same basic block. Split at the latest
+    // possible position.
+    return end;
+  }
+
+  BasicBlock* block = end_block;
+  // Find header of outermost loop.
+  // TODO(titzer): fix redundancy below.
+  while (code()->GetContainingLoop(block) != NULL &&
+         code()->GetContainingLoop(block)->rpo_number_ >
+             start_block->rpo_number_) {
+    block = code()->GetContainingLoop(block);
+  }
+
+  // We did not find any suitable outer loop. Split at the latest possible
+  // position unless end_block is a loop header itself.
+  if (block == end_block && !end_block->IsLoopHeader()) return end;
+
+  return LifetimePosition::FromInstructionIndex(
+      block->first_instruction_index());
+}
+
+
+void RegisterAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
+  LiveRange* second_part = SplitRangeAt(range, pos);
+  if (!AllocationOk()) return;
+  Spill(second_part);
+}
+
+
+void RegisterAllocator::SpillBetween(LiveRange* range, LifetimePosition start,
+                                     LifetimePosition end) {
+  SpillBetweenUntil(range, start, start, end);
+}
+
+
+void RegisterAllocator::SpillBetweenUntil(LiveRange* range,
+                                          LifetimePosition start,
+                                          LifetimePosition until,
+                                          LifetimePosition end) {
+  CHECK(start.Value() < end.Value());
+  LiveRange* second_part = SplitRangeAt(range, start);
+  if (!AllocationOk()) return;
+
+  if (second_part->Start().Value() < end.Value()) {
+    // The split result intersects with [start, end[.
+    // Split it at position between ]start+1, end[, spill the middle part
+    // and put the rest to unhandled.
+    LiveRange* third_part = SplitBetween(
+        second_part, Max(second_part->Start().InstructionEnd(), until),
+        end.PrevInstruction().InstructionEnd());
+    if (!AllocationOk()) return;
+
+    DCHECK(third_part != second_part);
+
+    Spill(second_part);
+    AddToUnhandledSorted(third_part);
+  } else {
+    // The split result does not intersect with [start, end[.
+    // Nothing to spill. Just put it to unhandled as whole.
+    AddToUnhandledSorted(second_part);
+  }
+}
+
+
+void RegisterAllocator::Spill(LiveRange* range) {
+  DCHECK(!range->IsSpilled());
+  TraceAlloc("Spilling live range %d\n", range->id());
+  LiveRange* first = range->TopLevel();
+
+  if (!first->HasAllocatedSpillOperand()) {
+    InstructionOperand* op = TryReuseSpillSlot(range);
+    if (op == NULL) {
+      // Allocate a new operand referring to the spill slot.
+      RegisterKind kind = range->Kind();
+      int index = code()->frame()->AllocateSpillSlot(kind == DOUBLE_REGISTERS);
+      if (kind == DOUBLE_REGISTERS) {
+        op = DoubleStackSlotOperand::Create(index, zone());
+      } else {
+        DCHECK(kind == GENERAL_REGISTERS);
+        op = StackSlotOperand::Create(index, zone());
+      }
+    }
+    first->SetSpillOperand(op);
+  }
+  range->MakeSpilled(code_zone());
+}
+
+
+int RegisterAllocator::RegisterCount() const { return num_registers_; }
+
+
+#ifdef DEBUG
+
+
+void RegisterAllocator::Verify() const {
+  for (int i = 0; i < live_ranges()->length(); ++i) {
+    LiveRange* current = live_ranges()->at(i);
+    if (current != NULL) current->Verify();
+  }
+}
+
+
+#endif
+
+
+void RegisterAllocator::SetLiveRangeAssignedRegister(LiveRange* range,
+                                                     int reg) {
+  if (range->Kind() == DOUBLE_REGISTERS) {
+    assigned_double_registers_->Add(reg);
+  } else {
+    DCHECK(range->Kind() == GENERAL_REGISTERS);
+    assigned_registers_->Add(reg);
+  }
+  range->set_assigned_register(reg, code_zone());
+}
+
+
+RegisterAllocatorPhase::RegisterAllocatorPhase(const char* name,
+                                               RegisterAllocator* allocator)
+    : CompilationPhase(name, allocator->code()->linkage()->info()),
+      allocator_(allocator) {
+  if (FLAG_turbo_stats) {
+    allocator_zone_start_allocation_size_ =
+        allocator->zone()->allocation_size();
+  }
+}
+
+
+RegisterAllocatorPhase::~RegisterAllocatorPhase() {
+  if (FLAG_turbo_stats) {
+    unsigned size = allocator_->zone()->allocation_size() -
+                    allocator_zone_start_allocation_size_;
+    isolate()->GetTStatistics()->SaveTiming(name(), base::TimeDelta(), size);
+  }
+#ifdef DEBUG
+  if (allocator_ != NULL) allocator_->Verify();
+#endif
+}
+}
+}
+}  // namespace v8::internal::compiler