Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/compiler/x64/instruction-selector-x64.cc b/src/compiler/x64/instruction-selector-x64.cc
new file mode 100644
index 0000000..5fe7bad
--- /dev/null
+++ b/src/compiler/x64/instruction-selector-x64.cc
@@ -0,0 +1,723 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/instruction-selector-impl.h"
+#include "src/compiler/node-matchers.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+// Adds X64-specific methods for generating operands.
+class X64OperandGenerator FINAL : public OperandGenerator {
+ public:
+  explicit X64OperandGenerator(InstructionSelector* selector)
+      : OperandGenerator(selector) {}
+
+  InstructionOperand* TempRegister(Register reg) {
+    return new (zone()) UnallocatedOperand(UnallocatedOperand::FIXED_REGISTER,
+                                           Register::ToAllocationIndex(reg));
+  }
+
+  InstructionOperand* UseByteRegister(Node* node) {
+    // TODO(dcarney): relax constraint.
+    return UseFixed(node, rdx);
+  }
+
+  InstructionOperand* UseImmediate64(Node* node) { return UseImmediate(node); }
+
+  bool CanBeImmediate(Node* node) {
+    switch (node->opcode()) {
+      case IrOpcode::kInt32Constant:
+        return true;
+      default:
+        return false;
+    }
+  }
+
+  bool CanBeImmediate64(Node* node) {
+    switch (node->opcode()) {
+      case IrOpcode::kInt32Constant:
+        return true;
+      case IrOpcode::kNumberConstant:
+        return true;
+      case IrOpcode::kHeapConstant: {
+        // Constants in new space cannot be used as immediates in V8 because
+        // the GC does not scan code objects when collecting the new generation.
+        Unique<HeapObject> value = OpParameter<Unique<HeapObject> >(node);
+        return !isolate()->heap()->InNewSpace(*value.handle());
+      }
+      default:
+        return false;
+    }
+  }
+};
+
+
+void InstructionSelector::VisitLoad(Node* node) {
+  MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
+  MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
+  X64OperandGenerator g(this);
+  Node* base = node->InputAt(0);
+  Node* index = node->InputAt(1);
+
+  ArchOpcode opcode;
+  // TODO(titzer): signed/unsigned small loads
+  switch (rep) {
+    case kRepFloat32:
+      opcode = kX64Movss;
+      break;
+    case kRepFloat64:
+      opcode = kX64Movsd;
+      break;
+    case kRepBit:  // Fall through.
+    case kRepWord8:
+      opcode = typ == kTypeInt32 ? kX64Movsxbl : kX64Movzxbl;
+      break;
+    case kRepWord16:
+      opcode = typ == kTypeInt32 ? kX64Movsxwl : kX64Movzxwl;
+      break;
+    case kRepWord32:
+      opcode = kX64Movl;
+      break;
+    case kRepTagged:  // Fall through.
+    case kRepWord64:
+      opcode = kX64Movq;
+      break;
+    default:
+      UNREACHABLE();
+      return;
+  }
+  if (g.CanBeImmediate(base)) {
+    // load [#base + %index]
+    Emit(opcode | AddressingModeField::encode(kMode_MRI),
+         g.DefineAsRegister(node), g.UseRegister(index), g.UseImmediate(base));
+  } else if (g.CanBeImmediate(index)) {  // load [%base + #index]
+    Emit(opcode | AddressingModeField::encode(kMode_MRI),
+         g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
+  } else {  // load [%base + %index + K]
+    Emit(opcode | AddressingModeField::encode(kMode_MR1I),
+         g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
+  }
+  // TODO(turbofan): addressing modes [r+r*{2,4,8}+K]
+}
+
+
+void InstructionSelector::VisitStore(Node* node) {
+  X64OperandGenerator g(this);
+  Node* base = node->InputAt(0);
+  Node* index = node->InputAt(1);
+  Node* value = node->InputAt(2);
+
+  StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
+  MachineType rep = RepresentationOf(store_rep.machine_type());
+  if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
+    DCHECK(rep == kRepTagged);
+    // TODO(dcarney): refactor RecordWrite function to take temp registers
+    //                and pass them here instead of using fixed regs
+    // TODO(dcarney): handle immediate indices.
+    InstructionOperand* temps[] = {g.TempRegister(rcx), g.TempRegister(rdx)};
+    Emit(kX64StoreWriteBarrier, NULL, g.UseFixed(base, rbx),
+         g.UseFixed(index, rcx), g.UseFixed(value, rdx), arraysize(temps),
+         temps);
+    return;
+  }
+  DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
+  InstructionOperand* val;
+  if (g.CanBeImmediate(value)) {
+    val = g.UseImmediate(value);
+  } else if (rep == kRepWord8 || rep == kRepBit) {
+    val = g.UseByteRegister(value);
+  } else {
+    val = g.UseRegister(value);
+  }
+  ArchOpcode opcode;
+  switch (rep) {
+    case kRepFloat32:
+      opcode = kX64Movss;
+      break;
+    case kRepFloat64:
+      opcode = kX64Movsd;
+      break;
+    case kRepBit:  // Fall through.
+    case kRepWord8:
+      opcode = kX64Movb;
+      break;
+    case kRepWord16:
+      opcode = kX64Movw;
+      break;
+    case kRepWord32:
+      opcode = kX64Movl;
+      break;
+    case kRepTagged:  // Fall through.
+    case kRepWord64:
+      opcode = kX64Movq;
+      break;
+    default:
+      UNREACHABLE();
+      return;
+  }
+  if (g.CanBeImmediate(base)) {
+    // store [#base + %index], %|#value
+    Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
+         g.UseRegister(index), g.UseImmediate(base), val);
+  } else if (g.CanBeImmediate(index)) {  // store [%base + #index], %|#value
+    Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
+         g.UseRegister(base), g.UseImmediate(index), val);
+  } else {  // store [%base + %index], %|#value
+    Emit(opcode | AddressingModeField::encode(kMode_MR1I), NULL,
+         g.UseRegister(base), g.UseRegister(index), val);
+  }
+  // TODO(turbofan): addressing modes [r+r*{2,4,8}+K]
+}
+
+
+// Shared routine for multiple binary operations.
+static void VisitBinop(InstructionSelector* selector, Node* node,
+                       InstructionCode opcode, FlagsContinuation* cont) {
+  X64OperandGenerator g(selector);
+  Int32BinopMatcher m(node);
+  InstructionOperand* inputs[4];
+  size_t input_count = 0;
+  InstructionOperand* outputs[2];
+  size_t output_count = 0;
+
+  // TODO(turbofan): match complex addressing modes.
+  // TODO(turbofan): if commutative, pick the non-live-in operand as the left as
+  // this might be the last use and therefore its register can be reused.
+  if (g.CanBeImmediate(m.right().node())) {
+    inputs[input_count++] = g.Use(m.left().node());
+    inputs[input_count++] = g.UseImmediate(m.right().node());
+  } else {
+    inputs[input_count++] = g.UseRegister(m.left().node());
+    inputs[input_count++] = g.Use(m.right().node());
+  }
+
+  if (cont->IsBranch()) {
+    inputs[input_count++] = g.Label(cont->true_block());
+    inputs[input_count++] = g.Label(cont->false_block());
+  }
+
+  outputs[output_count++] = g.DefineSameAsFirst(node);
+  if (cont->IsSet()) {
+    outputs[output_count++] = g.DefineAsRegister(cont->result());
+  }
+
+  DCHECK_NE(0, input_count);
+  DCHECK_NE(0, output_count);
+  DCHECK_GE(arraysize(inputs), input_count);
+  DCHECK_GE(arraysize(outputs), output_count);
+
+  Instruction* instr = selector->Emit(cont->Encode(opcode), output_count,
+                                      outputs, input_count, inputs);
+  if (cont->IsBranch()) instr->MarkAsControl();
+}
+
+
+// Shared routine for multiple binary operations.
+static void VisitBinop(InstructionSelector* selector, Node* node,
+                       InstructionCode opcode) {
+  FlagsContinuation cont;
+  VisitBinop(selector, node, opcode, &cont);
+}
+
+
+void InstructionSelector::VisitWord32And(Node* node) {
+  VisitBinop(this, node, kX64And32);
+}
+
+
+void InstructionSelector::VisitWord64And(Node* node) {
+  VisitBinop(this, node, kX64And);
+}
+
+
+void InstructionSelector::VisitWord32Or(Node* node) {
+  VisitBinop(this, node, kX64Or32);
+}
+
+
+void InstructionSelector::VisitWord64Or(Node* node) {
+  VisitBinop(this, node, kX64Or);
+}
+
+
+void InstructionSelector::VisitWord32Xor(Node* node) {
+  X64OperandGenerator g(this);
+  Uint32BinopMatcher m(node);
+  if (m.right().Is(-1)) {
+    Emit(kX64Not32, g.DefineSameAsFirst(node), g.Use(m.left().node()));
+  } else {
+    VisitBinop(this, node, kX64Xor32);
+  }
+}
+
+
+void InstructionSelector::VisitWord64Xor(Node* node) {
+  X64OperandGenerator g(this);
+  Uint64BinopMatcher m(node);
+  if (m.right().Is(-1)) {
+    Emit(kX64Not, g.DefineSameAsFirst(node), g.Use(m.left().node()));
+  } else {
+    VisitBinop(this, node, kX64Xor);
+  }
+}
+
+
+// Shared routine for multiple 32-bit shift operations.
+// TODO(bmeurer): Merge this with VisitWord64Shift using template magic?
+static void VisitWord32Shift(InstructionSelector* selector, Node* node,
+                             ArchOpcode opcode) {
+  X64OperandGenerator g(selector);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+
+  // TODO(turbofan): assembler only supports some addressing modes for shifts.
+  if (g.CanBeImmediate(right)) {
+    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+                   g.UseImmediate(right));
+  } else {
+    Int32BinopMatcher m(node);
+    if (m.right().IsWord32And()) {
+      Int32BinopMatcher mright(right);
+      if (mright.right().Is(0x1F)) {
+        right = mright.left().node();
+      }
+    }
+    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+                   g.UseFixed(right, rcx));
+  }
+}
+
+
+// Shared routine for multiple 64-bit shift operations.
+// TODO(bmeurer): Merge this with VisitWord32Shift using template magic?
+static void VisitWord64Shift(InstructionSelector* selector, Node* node,
+                             ArchOpcode opcode) {
+  X64OperandGenerator g(selector);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+
+  // TODO(turbofan): assembler only supports some addressing modes for shifts.
+  if (g.CanBeImmediate(right)) {
+    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+                   g.UseImmediate(right));
+  } else {
+    Int64BinopMatcher m(node);
+    if (m.right().IsWord64And()) {
+      Int64BinopMatcher mright(right);
+      if (mright.right().Is(0x3F)) {
+        right = mright.left().node();
+      }
+    }
+    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+                   g.UseFixed(right, rcx));
+  }
+}
+
+
+void InstructionSelector::VisitWord32Shl(Node* node) {
+  VisitWord32Shift(this, node, kX64Shl32);
+}
+
+
+void InstructionSelector::VisitWord64Shl(Node* node) {
+  VisitWord64Shift(this, node, kX64Shl);
+}
+
+
+void InstructionSelector::VisitWord32Shr(Node* node) {
+  VisitWord32Shift(this, node, kX64Shr32);
+}
+
+
+void InstructionSelector::VisitWord64Shr(Node* node) {
+  VisitWord64Shift(this, node, kX64Shr);
+}
+
+
+void InstructionSelector::VisitWord32Sar(Node* node) {
+  VisitWord32Shift(this, node, kX64Sar32);
+}
+
+
+void InstructionSelector::VisitWord64Sar(Node* node) {
+  VisitWord64Shift(this, node, kX64Sar);
+}
+
+
+void InstructionSelector::VisitWord32Ror(Node* node) {
+  VisitWord32Shift(this, node, kX64Ror32);
+}
+
+
+void InstructionSelector::VisitWord64Ror(Node* node) {
+  VisitWord64Shift(this, node, kX64Ror);
+}
+
+
+void InstructionSelector::VisitInt32Add(Node* node) {
+  VisitBinop(this, node, kX64Add32);
+}
+
+
+void InstructionSelector::VisitInt64Add(Node* node) {
+  VisitBinop(this, node, kX64Add);
+}
+
+
+void InstructionSelector::VisitInt32Sub(Node* node) {
+  X64OperandGenerator g(this);
+  Int32BinopMatcher m(node);
+  if (m.left().Is(0)) {
+    Emit(kX64Neg32, g.DefineSameAsFirst(node), g.Use(m.right().node()));
+  } else {
+    VisitBinop(this, node, kX64Sub32);
+  }
+}
+
+
+void InstructionSelector::VisitInt64Sub(Node* node) {
+  X64OperandGenerator g(this);
+  Int64BinopMatcher m(node);
+  if (m.left().Is(0)) {
+    Emit(kX64Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
+  } else {
+    VisitBinop(this, node, kX64Sub);
+  }
+}
+
+
+static void VisitMul(InstructionSelector* selector, Node* node,
+                     ArchOpcode opcode) {
+  X64OperandGenerator g(selector);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+  if (g.CanBeImmediate(right)) {
+    selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left),
+                   g.UseImmediate(right));
+  } else if (g.CanBeImmediate(left)) {
+    selector->Emit(opcode, g.DefineAsRegister(node), g.Use(right),
+                   g.UseImmediate(left));
+  } else {
+    // TODO(turbofan): select better left operand.
+    selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+                   g.Use(right));
+  }
+}
+
+
+void InstructionSelector::VisitInt32Mul(Node* node) {
+  VisitMul(this, node, kX64Imul32);
+}
+
+
+void InstructionSelector::VisitInt64Mul(Node* node) {
+  VisitMul(this, node, kX64Imul);
+}
+
+
+static void VisitDiv(InstructionSelector* selector, Node* node,
+                     ArchOpcode opcode) {
+  X64OperandGenerator g(selector);
+  InstructionOperand* temps[] = {g.TempRegister(rdx)};
+  selector->Emit(
+      opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax),
+      g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
+}
+
+
+void InstructionSelector::VisitInt32Div(Node* node) {
+  VisitDiv(this, node, kX64Idiv32);
+}
+
+
+void InstructionSelector::VisitInt64Div(Node* node) {
+  VisitDiv(this, node, kX64Idiv);
+}
+
+
+void InstructionSelector::VisitInt32UDiv(Node* node) {
+  VisitDiv(this, node, kX64Udiv32);
+}
+
+
+void InstructionSelector::VisitInt64UDiv(Node* node) {
+  VisitDiv(this, node, kX64Udiv);
+}
+
+
+static void VisitMod(InstructionSelector* selector, Node* node,
+                     ArchOpcode opcode) {
+  X64OperandGenerator g(selector);
+  InstructionOperand* temps[] = {g.TempRegister(rax), g.TempRegister(rdx)};
+  selector->Emit(
+      opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax),
+      g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
+}
+
+
+void InstructionSelector::VisitInt32Mod(Node* node) {
+  VisitMod(this, node, kX64Idiv32);
+}
+
+
+void InstructionSelector::VisitInt64Mod(Node* node) {
+  VisitMod(this, node, kX64Idiv);
+}
+
+
+void InstructionSelector::VisitInt32UMod(Node* node) {
+  VisitMod(this, node, kX64Udiv32);
+}
+
+
+void InstructionSelector::VisitInt64UMod(Node* node) {
+  VisitMod(this, node, kX64Udiv);
+}
+
+
+void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEInt32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
+  X64OperandGenerator g(this);
+  // TODO(turbofan): X64 SSE cvtqsi2sd should support operands.
+  Emit(kSSEUint32ToFloat64, g.DefineAsRegister(node),
+       g.UseRegister(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kX64Movl, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kX64Movl, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64Add(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64Add, g.DefineSameAsFirst(node),
+       g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
+}
+
+
+void InstructionSelector::VisitFloat64Sub(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64Sub, g.DefineSameAsFirst(node),
+       g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
+}
+
+
+void InstructionSelector::VisitFloat64Mul(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64Mul, g.DefineSameAsFirst(node),
+       g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
+}
+
+
+void InstructionSelector::VisitFloat64Div(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64Div, g.DefineSameAsFirst(node),
+       g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
+}
+
+
+void InstructionSelector::VisitFloat64Mod(Node* node) {
+  X64OperandGenerator g(this);
+  InstructionOperand* temps[] = {g.TempRegister(rax)};
+  Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
+       g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
+       temps);
+}
+
+
+void InstructionSelector::VisitFloat64Sqrt(Node* node) {
+  X64OperandGenerator g(this);
+  Emit(kSSEFloat64Sqrt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitInt32AddWithOverflow(Node* node,
+                                                    FlagsContinuation* cont) {
+  VisitBinop(this, node, kX64Add32, cont);
+}
+
+
+void InstructionSelector::VisitInt32SubWithOverflow(Node* node,
+                                                    FlagsContinuation* cont) {
+  VisitBinop(this, node, kX64Sub32, cont);
+}
+
+
+// Shared routine for multiple compare operations.
+static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
+                         InstructionOperand* left, InstructionOperand* right,
+                         FlagsContinuation* cont) {
+  X64OperandGenerator g(selector);
+  opcode = cont->Encode(opcode);
+  if (cont->IsBranch()) {
+    selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()),
+                   g.Label(cont->false_block()))->MarkAsControl();
+  } else {
+    DCHECK(cont->IsSet());
+    selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
+  }
+}
+
+
+// Shared routine for multiple word compare operations.
+static void VisitWordCompare(InstructionSelector* selector, Node* node,
+                             InstructionCode opcode, FlagsContinuation* cont,
+                             bool commutative) {
+  X64OperandGenerator g(selector);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+
+  // Match immediates on left or right side of comparison.
+  if (g.CanBeImmediate(right)) {
+    VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont);
+  } else if (g.CanBeImmediate(left)) {
+    if (!commutative) cont->Commute();
+    VisitCompare(selector, opcode, g.Use(right), g.UseImmediate(left), cont);
+  } else {
+    VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
+  }
+}
+
+
+void InstructionSelector::VisitWord32Test(Node* node, FlagsContinuation* cont) {
+  switch (node->opcode()) {
+    case IrOpcode::kInt32Sub:
+      return VisitWordCompare(this, node, kX64Cmp32, cont, false);
+    case IrOpcode::kWord32And:
+      return VisitWordCompare(this, node, kX64Test32, cont, true);
+    default:
+      break;
+  }
+
+  X64OperandGenerator g(this);
+  VisitCompare(this, kX64Test32, g.Use(node), g.TempImmediate(-1), cont);
+}
+
+
+void InstructionSelector::VisitWord64Test(Node* node, FlagsContinuation* cont) {
+  switch (node->opcode()) {
+    case IrOpcode::kInt64Sub:
+      return VisitWordCompare(this, node, kX64Cmp, cont, false);
+    case IrOpcode::kWord64And:
+      return VisitWordCompare(this, node, kX64Test, cont, true);
+    default:
+      break;
+  }
+
+  X64OperandGenerator g(this);
+  VisitCompare(this, kX64Test, g.Use(node), g.TempImmediate(-1), cont);
+}
+
+
+void InstructionSelector::VisitWord32Compare(Node* node,
+                                             FlagsContinuation* cont) {
+  VisitWordCompare(this, node, kX64Cmp32, cont, false);
+}
+
+
+void InstructionSelector::VisitWord64Compare(Node* node,
+                                             FlagsContinuation* cont) {
+  VisitWordCompare(this, node, kX64Cmp, cont, false);
+}
+
+
+void InstructionSelector::VisitFloat64Compare(Node* node,
+                                              FlagsContinuation* cont) {
+  X64OperandGenerator g(this);
+  Node* left = node->InputAt(0);
+  Node* right = node->InputAt(1);
+  VisitCompare(this, kSSEFloat64Cmp, g.UseRegister(left), g.Use(right), cont);
+}
+
+
+void InstructionSelector::VisitCall(Node* call, BasicBlock* continuation,
+                                    BasicBlock* deoptimization) {
+  X64OperandGenerator g(this);
+  CallDescriptor* descriptor = OpParameter<CallDescriptor*>(call);
+
+  FrameStateDescriptor* frame_state_descriptor = NULL;
+  if (descriptor->NeedsFrameState()) {
+    frame_state_descriptor = GetFrameStateDescriptor(
+        call->InputAt(static_cast<int>(descriptor->InputCount())));
+  }
+
+  CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
+
+  // Compute InstructionOperands for inputs and outputs.
+  InitializeCallBuffer(call, &buffer, true, true);
+
+  // TODO(dcarney): stack alignment for c calls.
+  // TODO(dcarney): shadow space on window for c calls.
+  // Push any stack arguments.
+  for (NodeVectorRIter input = buffer.pushed_nodes.rbegin();
+       input != buffer.pushed_nodes.rend(); input++) {
+    // TODO(titzer): handle pushing double parameters.
+    Emit(kX64Push, NULL,
+         g.CanBeImmediate(*input) ? g.UseImmediate(*input) : g.Use(*input));
+  }
+
+  // Select the appropriate opcode based on the call type.
+  InstructionCode opcode;
+  switch (descriptor->kind()) {
+    case CallDescriptor::kCallCodeObject: {
+      opcode = kArchCallCodeObject;
+      break;
+    }
+    case CallDescriptor::kCallJSFunction:
+      opcode = kArchCallJSFunction;
+      break;
+    default:
+      UNREACHABLE();
+      return;
+  }
+  opcode |= MiscField::encode(descriptor->flags());
+
+  // Emit the call instruction.
+  Instruction* call_instr =
+      Emit(opcode, buffer.outputs.size(), &buffer.outputs.front(),
+           buffer.instruction_args.size(), &buffer.instruction_args.front());
+
+  call_instr->MarkAsCall();
+  if (deoptimization != NULL) {
+    DCHECK(continuation != NULL);
+    call_instr->MarkAsControl();
+  }
+}
+
+}  // namespace compiler
+}  // namespace internal
+}  // namespace v8