Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/heap/heap-inl.h b/src/heap/heap-inl.h
new file mode 100644
index 0000000..e658224
--- /dev/null
+++ b/src/heap/heap-inl.h
@@ -0,0 +1,780 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_HEAP_HEAP_INL_H_
+#define V8_HEAP_HEAP_INL_H_
+
+#include <cmath>
+
+#include "src/base/platform/platform.h"
+#include "src/cpu-profiler.h"
+#include "src/heap/heap.h"
+#include "src/heap/store-buffer.h"
+#include "src/heap/store-buffer-inl.h"
+#include "src/heap-profiler.h"
+#include "src/isolate.h"
+#include "src/list-inl.h"
+#include "src/msan.h"
+#include "src/objects.h"
+
+namespace v8 {
+namespace internal {
+
+void PromotionQueue::insert(HeapObject* target, int size) {
+  if (emergency_stack_ != NULL) {
+    emergency_stack_->Add(Entry(target, size));
+    return;
+  }
+
+  if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
+    NewSpacePage* rear_page =
+        NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
+    DCHECK(!rear_page->prev_page()->is_anchor());
+    rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
+  }
+
+  if ((rear_ - 2) < limit_) {
+    RelocateQueueHead();
+    emergency_stack_->Add(Entry(target, size));
+    return;
+  }
+
+  *(--rear_) = reinterpret_cast<intptr_t>(target);
+  *(--rear_) = size;
+// Assert no overflow into live objects.
+#ifdef DEBUG
+  SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
+                              reinterpret_cast<Address>(rear_));
+#endif
+}
+
+
+template <>
+bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
+  // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
+  return chars == str.length();
+}
+
+
+template <>
+bool inline Heap::IsOneByte(String* str, int chars) {
+  return str->IsOneByteRepresentation();
+}
+
+
+AllocationResult Heap::AllocateInternalizedStringFromUtf8(
+    Vector<const char> str, int chars, uint32_t hash_field) {
+  if (IsOneByte(str, chars)) {
+    return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
+                                             hash_field);
+  }
+  return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
+}
+
+
+template <typename T>
+AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
+                                                      uint32_t hash_field) {
+  if (IsOneByte(t, chars)) {
+    return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
+  }
+  return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
+}
+
+
+AllocationResult Heap::AllocateOneByteInternalizedString(
+    Vector<const uint8_t> str, uint32_t hash_field) {
+  CHECK_GE(String::kMaxLength, str.length());
+  // Compute map and object size.
+  Map* map = one_byte_internalized_string_map();
+  int size = SeqOneByteString::SizeFor(str.length());
+  AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
+
+  // Allocate string.
+  HeapObject* result;
+  {
+    AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
+    if (!allocation.To(&result)) return allocation;
+  }
+
+  // String maps are all immortal immovable objects.
+  result->set_map_no_write_barrier(map);
+  // Set length and hash fields of the allocated string.
+  String* answer = String::cast(result);
+  answer->set_length(str.length());
+  answer->set_hash_field(hash_field);
+
+  DCHECK_EQ(size, answer->Size());
+
+  // Fill in the characters.
+  MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
+          str.length());
+
+  return answer;
+}
+
+
+AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
+                                                         uint32_t hash_field) {
+  CHECK_GE(String::kMaxLength, str.length());
+  // Compute map and object size.
+  Map* map = internalized_string_map();
+  int size = SeqTwoByteString::SizeFor(str.length());
+  AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
+
+  // Allocate string.
+  HeapObject* result;
+  {
+    AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
+    if (!allocation.To(&result)) return allocation;
+  }
+
+  result->set_map(map);
+  // Set length and hash fields of the allocated string.
+  String* answer = String::cast(result);
+  answer->set_length(str.length());
+  answer->set_hash_field(hash_field);
+
+  DCHECK_EQ(size, answer->Size());
+
+  // Fill in the characters.
+  MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
+          str.length() * kUC16Size);
+
+  return answer;
+}
+
+AllocationResult Heap::CopyFixedArray(FixedArray* src) {
+  if (src->length() == 0) return src;
+  return CopyFixedArrayWithMap(src, src->map());
+}
+
+
+AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
+  if (src->length() == 0) return src;
+  return CopyFixedDoubleArrayWithMap(src, src->map());
+}
+
+
+AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
+  if (src->length() == 0) return src;
+  return CopyConstantPoolArrayWithMap(src, src->map());
+}
+
+
+AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
+                                   AllocationSpace retry_space) {
+  DCHECK(AllowHandleAllocation::IsAllowed());
+  DCHECK(AllowHeapAllocation::IsAllowed());
+  DCHECK(gc_state_ == NOT_IN_GC);
+#ifdef DEBUG
+  if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) &&
+      Heap::allocation_timeout_-- <= 0) {
+    return AllocationResult::Retry(space);
+  }
+  isolate_->counters()->objs_since_last_full()->Increment();
+  isolate_->counters()->objs_since_last_young()->Increment();
+#endif
+
+  HeapObject* object;
+  AllocationResult allocation;
+  if (NEW_SPACE == space) {
+    allocation = new_space_.AllocateRaw(size_in_bytes);
+    if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) {
+      space = retry_space;
+    } else {
+      if (allocation.To(&object)) {
+        OnAllocationEvent(object, size_in_bytes);
+      }
+      return allocation;
+    }
+  }
+
+  if (OLD_POINTER_SPACE == space) {
+    allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
+  } else if (OLD_DATA_SPACE == space) {
+    allocation = old_data_space_->AllocateRaw(size_in_bytes);
+  } else if (CODE_SPACE == space) {
+    if (size_in_bytes <= code_space()->AreaSize()) {
+      allocation = code_space_->AllocateRaw(size_in_bytes);
+    } else {
+      // Large code objects are allocated in large object space.
+      allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
+    }
+  } else if (LO_SPACE == space) {
+    allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
+  } else if (CELL_SPACE == space) {
+    allocation = cell_space_->AllocateRaw(size_in_bytes);
+  } else if (PROPERTY_CELL_SPACE == space) {
+    allocation = property_cell_space_->AllocateRaw(size_in_bytes);
+  } else {
+    DCHECK(MAP_SPACE == space);
+    allocation = map_space_->AllocateRaw(size_in_bytes);
+  }
+  if (allocation.To(&object)) {
+    OnAllocationEvent(object, size_in_bytes);
+  } else {
+    old_gen_exhausted_ = true;
+  }
+  return allocation;
+}
+
+
+void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
+  HeapProfiler* profiler = isolate_->heap_profiler();
+  if (profiler->is_tracking_allocations()) {
+    profiler->AllocationEvent(object->address(), size_in_bytes);
+  }
+
+  if (FLAG_verify_predictable) {
+    ++allocations_count_;
+
+    UpdateAllocationsHash(object);
+    UpdateAllocationsHash(size_in_bytes);
+
+    if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
+        (--dump_allocations_hash_countdown_ == 0)) {
+      dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
+      PrintAlloctionsHash();
+    }
+  }
+}
+
+
+void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
+                       int size_in_bytes) {
+  HeapProfiler* heap_profiler = isolate_->heap_profiler();
+  if (heap_profiler->is_tracking_object_moves()) {
+    heap_profiler->ObjectMoveEvent(source->address(), target->address(),
+                                   size_in_bytes);
+  }
+
+  if (isolate_->logger()->is_logging_code_events() ||
+      isolate_->cpu_profiler()->is_profiling()) {
+    if (target->IsSharedFunctionInfo()) {
+      PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(),
+                                                    target->address()));
+    }
+  }
+
+  if (FLAG_verify_predictable) {
+    ++allocations_count_;
+
+    UpdateAllocationsHash(source);
+    UpdateAllocationsHash(target);
+    UpdateAllocationsHash(size_in_bytes);
+
+    if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
+        (--dump_allocations_hash_countdown_ == 0)) {
+      dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
+      PrintAlloctionsHash();
+    }
+  }
+}
+
+
+void Heap::UpdateAllocationsHash(HeapObject* object) {
+  Address object_address = object->address();
+  MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
+  AllocationSpace allocation_space = memory_chunk->owner()->identity();
+
+  STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
+  uint32_t value =
+      static_cast<uint32_t>(object_address - memory_chunk->address()) |
+      (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
+
+  UpdateAllocationsHash(value);
+}
+
+
+void Heap::UpdateAllocationsHash(uint32_t value) {
+  uint16_t c1 = static_cast<uint16_t>(value);
+  uint16_t c2 = static_cast<uint16_t>(value >> 16);
+  raw_allocations_hash_ =
+      StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
+  raw_allocations_hash_ =
+      StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
+}
+
+
+void Heap::PrintAlloctionsHash() {
+  uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
+  PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
+}
+
+
+void Heap::FinalizeExternalString(String* string) {
+  DCHECK(string->IsExternalString());
+  v8::String::ExternalStringResourceBase** resource_addr =
+      reinterpret_cast<v8::String::ExternalStringResourceBase**>(
+          reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
+          kHeapObjectTag);
+
+  // Dispose of the C++ object if it has not already been disposed.
+  if (*resource_addr != NULL) {
+    (*resource_addr)->Dispose();
+    *resource_addr = NULL;
+  }
+}
+
+
+bool Heap::InNewSpace(Object* object) {
+  bool result = new_space_.Contains(object);
+  DCHECK(!result ||                 // Either not in new space
+         gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
+         InToSpace(object));        // ... or in to-space (where we allocate).
+  return result;
+}
+
+
+bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); }
+
+
+bool Heap::InFromSpace(Object* object) {
+  return new_space_.FromSpaceContains(object);
+}
+
+
+bool Heap::InToSpace(Object* object) {
+  return new_space_.ToSpaceContains(object);
+}
+
+
+bool Heap::InOldPointerSpace(Address address) {
+  return old_pointer_space_->Contains(address);
+}
+
+
+bool Heap::InOldPointerSpace(Object* object) {
+  return InOldPointerSpace(reinterpret_cast<Address>(object));
+}
+
+
+bool Heap::InOldDataSpace(Address address) {
+  return old_data_space_->Contains(address);
+}
+
+
+bool Heap::InOldDataSpace(Object* object) {
+  return InOldDataSpace(reinterpret_cast<Address>(object));
+}
+
+
+bool Heap::OldGenerationAllocationLimitReached() {
+  if (!incremental_marking()->IsStopped()) return false;
+  return OldGenerationSpaceAvailable() < 0;
+}
+
+
+bool Heap::ShouldBePromoted(Address old_address, int object_size) {
+  NewSpacePage* page = NewSpacePage::FromAddress(old_address);
+  Address age_mark = new_space_.age_mark();
+  return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
+         (!page->ContainsLimit(age_mark) || old_address < age_mark);
+}
+
+
+void Heap::RecordWrite(Address address, int offset) {
+  if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
+}
+
+
+void Heap::RecordWrites(Address address, int start, int len) {
+  if (!InNewSpace(address)) {
+    for (int i = 0; i < len; i++) {
+      store_buffer_.Mark(address + start + i * kPointerSize);
+    }
+  }
+}
+
+
+OldSpace* Heap::TargetSpace(HeapObject* object) {
+  InstanceType type = object->map()->instance_type();
+  AllocationSpace space = TargetSpaceId(type);
+  return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_;
+}
+
+
+AllocationSpace Heap::TargetSpaceId(InstanceType type) {
+  // Heap numbers and sequential strings are promoted to old data space, all
+  // other object types are promoted to old pointer space.  We do not use
+  // object->IsHeapNumber() and object->IsSeqString() because we already
+  // know that object has the heap object tag.
+
+  // These objects are never allocated in new space.
+  DCHECK(type != MAP_TYPE);
+  DCHECK(type != CODE_TYPE);
+  DCHECK(type != ODDBALL_TYPE);
+  DCHECK(type != CELL_TYPE);
+  DCHECK(type != PROPERTY_CELL_TYPE);
+
+  if (type <= LAST_NAME_TYPE) {
+    if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
+    DCHECK(type < FIRST_NONSTRING_TYPE);
+    // There are four string representations: sequential strings, external
+    // strings, cons strings, and sliced strings.
+    // Only the latter two contain non-map-word pointers to heap objects.
+    return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
+               ? OLD_POINTER_SPACE
+               : OLD_DATA_SPACE;
+  } else {
+    return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
+  }
+}
+
+
+bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
+  // Object migration is governed by the following rules:
+  //
+  // 1) Objects in new-space can be migrated to one of the old spaces
+  //    that matches their target space or they stay in new-space.
+  // 2) Objects in old-space stay in the same space when migrating.
+  // 3) Fillers (two or more words) can migrate due to left-trimming of
+  //    fixed arrays in new-space, old-data-space and old-pointer-space.
+  // 4) Fillers (one word) can never migrate, they are skipped by
+  //    incremental marking explicitly to prevent invalid pattern.
+  // 5) Short external strings can end up in old pointer space when a cons
+  //    string in old pointer space is made external (String::MakeExternal).
+  //
+  // Since this function is used for debugging only, we do not place
+  // asserts here, but check everything explicitly.
+  if (obj->map() == one_pointer_filler_map()) return false;
+  InstanceType type = obj->map()->instance_type();
+  MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
+  AllocationSpace src = chunk->owner()->identity();
+  switch (src) {
+    case NEW_SPACE:
+      return dst == src || dst == TargetSpaceId(type);
+    case OLD_POINTER_SPACE:
+      return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
+                            obj->IsExternalString());
+    case OLD_DATA_SPACE:
+      return dst == src && dst == TargetSpaceId(type);
+    case CODE_SPACE:
+      return dst == src && type == CODE_TYPE;
+    case MAP_SPACE:
+    case CELL_SPACE:
+    case PROPERTY_CELL_SPACE:
+    case LO_SPACE:
+      return false;
+    case INVALID_SPACE:
+      break;
+  }
+  UNREACHABLE();
+  return false;
+}
+
+
+void Heap::CopyBlock(Address dst, Address src, int byte_size) {
+  CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
+            static_cast<size_t>(byte_size / kPointerSize));
+}
+
+
+void Heap::MoveBlock(Address dst, Address src, int byte_size) {
+  DCHECK(IsAligned(byte_size, kPointerSize));
+
+  int size_in_words = byte_size / kPointerSize;
+
+  if ((dst < src) || (dst >= (src + byte_size))) {
+    Object** src_slot = reinterpret_cast<Object**>(src);
+    Object** dst_slot = reinterpret_cast<Object**>(dst);
+    Object** end_slot = src_slot + size_in_words;
+
+    while (src_slot != end_slot) {
+      *dst_slot++ = *src_slot++;
+    }
+  } else {
+    MemMove(dst, src, static_cast<size_t>(byte_size));
+  }
+}
+
+
+void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); }
+
+
+AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
+  // Check if there is potentially a memento behind the object. If
+  // the last word of the memento is on another page we return
+  // immediately.
+  Address object_address = object->address();
+  Address memento_address = object_address + object->Size();
+  Address last_memento_word_address = memento_address + kPointerSize;
+  if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) {
+    return NULL;
+  }
+
+  HeapObject* candidate = HeapObject::FromAddress(memento_address);
+  Map* candidate_map = candidate->map();
+  // This fast check may peek at an uninitialized word. However, the slow check
+  // below (memento_address == top) ensures that this is safe. Mark the word as
+  // initialized to silence MemorySanitizer warnings.
+  MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
+  if (candidate_map != allocation_memento_map()) return NULL;
+
+  // Either the object is the last object in the new space, or there is another
+  // object of at least word size (the header map word) following it, so
+  // suffices to compare ptr and top here. Note that technically we do not have
+  // to compare with the current top pointer of the from space page during GC,
+  // since we always install filler objects above the top pointer of a from
+  // space page when performing a garbage collection. However, always performing
+  // the test makes it possible to have a single, unified version of
+  // FindAllocationMemento that is used both by the GC and the mutator.
+  Address top = NewSpaceTop();
+  DCHECK(memento_address == top ||
+         memento_address + HeapObject::kHeaderSize <= top ||
+         !NewSpacePage::OnSamePage(memento_address, top));
+  if (memento_address == top) return NULL;
+
+  AllocationMemento* memento = AllocationMemento::cast(candidate);
+  if (!memento->IsValid()) return NULL;
+  return memento;
+}
+
+
+void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
+                                        ScratchpadSlotMode mode) {
+  Heap* heap = object->GetHeap();
+  DCHECK(heap->InFromSpace(object));
+
+  if (!FLAG_allocation_site_pretenuring ||
+      !AllocationSite::CanTrack(object->map()->instance_type()))
+    return;
+
+  AllocationMemento* memento = heap->FindAllocationMemento(object);
+  if (memento == NULL) return;
+
+  if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
+    heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
+  }
+}
+
+
+void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
+  DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
+
+  // We use the first word (where the map pointer usually is) of a heap
+  // object to record the forwarding pointer.  A forwarding pointer can
+  // point to an old space, the code space, or the to space of the new
+  // generation.
+  MapWord first_word = object->map_word();
+
+  // If the first word is a forwarding address, the object has already been
+  // copied.
+  if (first_word.IsForwardingAddress()) {
+    HeapObject* dest = first_word.ToForwardingAddress();
+    DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
+    *p = dest;
+    return;
+  }
+
+  UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
+
+  // AllocationMementos are unrooted and shouldn't survive a scavenge
+  DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
+  // Call the slow part of scavenge object.
+  return ScavengeObjectSlow(p, object);
+}
+
+
+bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
+                          const v8::GCCallbackFlags callbackFlags) {
+  const char* collector_reason = NULL;
+  GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
+  return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
+}
+
+
+Isolate* Heap::isolate() {
+  return reinterpret_cast<Isolate*>(
+      reinterpret_cast<intptr_t>(this) -
+      reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
+}
+
+
+// Calls the FUNCTION_CALL function and retries it up to three times
+// to guarantee that any allocations performed during the call will
+// succeed if there's enough memory.
+
+// Warning: Do not use the identifiers __object__, __maybe_object__ or
+// __scope__ in a call to this macro.
+
+#define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
+  if (__allocation__.To(&__object__)) {                   \
+    DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
+    RETURN_VALUE;                                         \
+  }
+
+#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)    \
+  do {                                                                        \
+    AllocationResult __allocation__ = FUNCTION_CALL;                          \
+    Object* __object__ = NULL;                                                \
+    RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
+    (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),            \
+                                      "allocation failure");                  \
+    __allocation__ = FUNCTION_CALL;                                           \
+    RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
+    (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
+    (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
+    {                                                                         \
+      AlwaysAllocateScope __scope__(ISOLATE);                                 \
+      __allocation__ = FUNCTION_CALL;                                         \
+    }                                                                         \
+    RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
+    /* TODO(1181417): Fix this. */                                            \
+    v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
+    RETURN_EMPTY;                                                             \
+  } while (false)
+
+#define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \
+                              RETURN_EMPTY)                         \
+  CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)
+
+#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
+  CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL,                               \
+                        return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
+                        return Handle<TYPE>())
+
+
+#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
+  CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
+
+
+void ExternalStringTable::AddString(String* string) {
+  DCHECK(string->IsExternalString());
+  if (heap_->InNewSpace(string)) {
+    new_space_strings_.Add(string);
+  } else {
+    old_space_strings_.Add(string);
+  }
+}
+
+
+void ExternalStringTable::Iterate(ObjectVisitor* v) {
+  if (!new_space_strings_.is_empty()) {
+    Object** start = &new_space_strings_[0];
+    v->VisitPointers(start, start + new_space_strings_.length());
+  }
+  if (!old_space_strings_.is_empty()) {
+    Object** start = &old_space_strings_[0];
+    v->VisitPointers(start, start + old_space_strings_.length());
+  }
+}
+
+
+// Verify() is inline to avoid ifdef-s around its calls in release
+// mode.
+void ExternalStringTable::Verify() {
+#ifdef DEBUG
+  for (int i = 0; i < new_space_strings_.length(); ++i) {
+    Object* obj = Object::cast(new_space_strings_[i]);
+    DCHECK(heap_->InNewSpace(obj));
+    DCHECK(obj != heap_->the_hole_value());
+  }
+  for (int i = 0; i < old_space_strings_.length(); ++i) {
+    Object* obj = Object::cast(old_space_strings_[i]);
+    DCHECK(!heap_->InNewSpace(obj));
+    DCHECK(obj != heap_->the_hole_value());
+  }
+#endif
+}
+
+
+void ExternalStringTable::AddOldString(String* string) {
+  DCHECK(string->IsExternalString());
+  DCHECK(!heap_->InNewSpace(string));
+  old_space_strings_.Add(string);
+}
+
+
+void ExternalStringTable::ShrinkNewStrings(int position) {
+  new_space_strings_.Rewind(position);
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    Verify();
+  }
+#endif
+}
+
+
+void Heap::ClearInstanceofCache() {
+  set_instanceof_cache_function(the_hole_value());
+}
+
+
+Object* Heap::ToBoolean(bool condition) {
+  return condition ? true_value() : false_value();
+}
+
+
+void Heap::CompletelyClearInstanceofCache() {
+  set_instanceof_cache_map(the_hole_value());
+  set_instanceof_cache_function(the_hole_value());
+}
+
+
+AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
+    : heap_(isolate->heap()), daf_(isolate) {
+  // We shouldn't hit any nested scopes, because that requires
+  // non-handle code to call handle code. The code still works but
+  // performance will degrade, so we want to catch this situation
+  // in debug mode.
+  DCHECK(heap_->always_allocate_scope_depth_ == 0);
+  heap_->always_allocate_scope_depth_++;
+}
+
+
+AlwaysAllocateScope::~AlwaysAllocateScope() {
+  heap_->always_allocate_scope_depth_--;
+  DCHECK(heap_->always_allocate_scope_depth_ == 0);
+}
+
+
+#ifdef VERIFY_HEAP
+NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
+  Isolate* isolate = Isolate::Current();
+  isolate->heap()->no_weak_object_verification_scope_depth_++;
+}
+
+
+NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
+  Isolate* isolate = Isolate::Current();
+  isolate->heap()->no_weak_object_verification_scope_depth_--;
+}
+#endif
+
+
+GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
+  heap_->gc_callbacks_depth_++;
+}
+
+
+GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; }
+
+
+bool GCCallbacksScope::CheckReenter() {
+  return heap_->gc_callbacks_depth_ == 1;
+}
+
+
+void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
+  for (Object** current = start; current < end; current++) {
+    if ((*current)->IsHeapObject()) {
+      HeapObject* object = HeapObject::cast(*current);
+      CHECK(object->GetIsolate()->heap()->Contains(object));
+      CHECK(object->map()->IsMap());
+    }
+  }
+}
+
+
+void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
+  for (Object** current = start; current < end; current++) {
+    CHECK((*current)->IsSmi());
+  }
+}
+}
+}  // namespace v8::internal
+
+#endif  // V8_HEAP_HEAP_INL_H_