Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/heap/mark-compact.cc b/src/heap/mark-compact.cc
new file mode 100644
index 0000000..9f9a658
--- /dev/null
+++ b/src/heap/mark-compact.cc
@@ -0,0 +1,4562 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/base/atomicops.h"
+#include "src/base/bits.h"
+#include "src/code-stubs.h"
+#include "src/compilation-cache.h"
+#include "src/cpu-profiler.h"
+#include "src/deoptimizer.h"
+#include "src/execution.h"
+#include "src/gdb-jit.h"
+#include "src/global-handles.h"
+#include "src/heap/incremental-marking.h"
+#include "src/heap/mark-compact.h"
+#include "src/heap/objects-visiting.h"
+#include "src/heap/objects-visiting-inl.h"
+#include "src/heap/spaces-inl.h"
+#include "src/heap/sweeper-thread.h"
+#include "src/heap-profiler.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+const char* Marking::kWhiteBitPattern = "00";
+const char* Marking::kBlackBitPattern = "10";
+const char* Marking::kGreyBitPattern = "11";
+const char* Marking::kImpossibleBitPattern = "01";
+
+
+// -------------------------------------------------------------------------
+// MarkCompactCollector
+
+MarkCompactCollector::MarkCompactCollector(Heap* heap)
+    :  // NOLINT
+#ifdef DEBUG
+      state_(IDLE),
+#endif
+      reduce_memory_footprint_(false),
+      abort_incremental_marking_(false),
+      marking_parity_(ODD_MARKING_PARITY),
+      compacting_(false),
+      was_marked_incrementally_(false),
+      sweeping_in_progress_(false),
+      pending_sweeper_jobs_semaphore_(0),
+      sequential_sweeping_(false),
+      migration_slots_buffer_(NULL),
+      heap_(heap),
+      code_flusher_(NULL),
+      have_code_to_deoptimize_(false) {
+}
+
+#ifdef VERIFY_HEAP
+class VerifyMarkingVisitor : public ObjectVisitor {
+ public:
+  explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
+
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** current = start; current < end; current++) {
+      if ((*current)->IsHeapObject()) {
+        HeapObject* object = HeapObject::cast(*current);
+        CHECK(heap_->mark_compact_collector()->IsMarked(object));
+      }
+    }
+  }
+
+  void VisitEmbeddedPointer(RelocInfo* rinfo) {
+    DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
+    if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
+      Object* p = rinfo->target_object();
+      VisitPointer(&p);
+    }
+  }
+
+  void VisitCell(RelocInfo* rinfo) {
+    Code* code = rinfo->host();
+    DCHECK(rinfo->rmode() == RelocInfo::CELL);
+    if (!code->IsWeakObject(rinfo->target_cell())) {
+      ObjectVisitor::VisitCell(rinfo);
+    }
+  }
+
+ private:
+  Heap* heap_;
+};
+
+
+static void VerifyMarking(Heap* heap, Address bottom, Address top) {
+  VerifyMarkingVisitor visitor(heap);
+  HeapObject* object;
+  Address next_object_must_be_here_or_later = bottom;
+
+  for (Address current = bottom; current < top; current += kPointerSize) {
+    object = HeapObject::FromAddress(current);
+    if (MarkCompactCollector::IsMarked(object)) {
+      CHECK(current >= next_object_must_be_here_or_later);
+      object->Iterate(&visitor);
+      next_object_must_be_here_or_later = current + object->Size();
+    }
+  }
+}
+
+
+static void VerifyMarking(NewSpace* space) {
+  Address end = space->top();
+  NewSpacePageIterator it(space->bottom(), end);
+  // The bottom position is at the start of its page. Allows us to use
+  // page->area_start() as start of range on all pages.
+  CHECK_EQ(space->bottom(),
+           NewSpacePage::FromAddress(space->bottom())->area_start());
+  while (it.has_next()) {
+    NewSpacePage* page = it.next();
+    Address limit = it.has_next() ? page->area_end() : end;
+    CHECK(limit == end || !page->Contains(end));
+    VerifyMarking(space->heap(), page->area_start(), limit);
+  }
+}
+
+
+static void VerifyMarking(PagedSpace* space) {
+  PageIterator it(space);
+
+  while (it.has_next()) {
+    Page* p = it.next();
+    VerifyMarking(space->heap(), p->area_start(), p->area_end());
+  }
+}
+
+
+static void VerifyMarking(Heap* heap) {
+  VerifyMarking(heap->old_pointer_space());
+  VerifyMarking(heap->old_data_space());
+  VerifyMarking(heap->code_space());
+  VerifyMarking(heap->cell_space());
+  VerifyMarking(heap->property_cell_space());
+  VerifyMarking(heap->map_space());
+  VerifyMarking(heap->new_space());
+
+  VerifyMarkingVisitor visitor(heap);
+
+  LargeObjectIterator it(heap->lo_space());
+  for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
+    if (MarkCompactCollector::IsMarked(obj)) {
+      obj->Iterate(&visitor);
+    }
+  }
+
+  heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
+}
+
+
+class VerifyEvacuationVisitor : public ObjectVisitor {
+ public:
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** current = start; current < end; current++) {
+      if ((*current)->IsHeapObject()) {
+        HeapObject* object = HeapObject::cast(*current);
+        CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
+      }
+    }
+  }
+};
+
+
+static void VerifyEvacuation(Page* page) {
+  VerifyEvacuationVisitor visitor;
+  HeapObjectIterator iterator(page, NULL);
+  for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
+       heap_object = iterator.Next()) {
+    // We skip free space objects.
+    if (!heap_object->IsFiller()) {
+      heap_object->Iterate(&visitor);
+    }
+  }
+}
+
+
+static void VerifyEvacuation(NewSpace* space) {
+  NewSpacePageIterator it(space->bottom(), space->top());
+  VerifyEvacuationVisitor visitor;
+
+  while (it.has_next()) {
+    NewSpacePage* page = it.next();
+    Address current = page->area_start();
+    Address limit = it.has_next() ? page->area_end() : space->top();
+    CHECK(limit == space->top() || !page->Contains(space->top()));
+    while (current < limit) {
+      HeapObject* object = HeapObject::FromAddress(current);
+      object->Iterate(&visitor);
+      current += object->Size();
+    }
+  }
+}
+
+
+static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
+  if (FLAG_use_allocation_folding &&
+      (space == heap->old_pointer_space() || space == heap->old_data_space())) {
+    return;
+  }
+  PageIterator it(space);
+
+  while (it.has_next()) {
+    Page* p = it.next();
+    if (p->IsEvacuationCandidate()) continue;
+    VerifyEvacuation(p);
+  }
+}
+
+
+static void VerifyEvacuation(Heap* heap) {
+  VerifyEvacuation(heap, heap->old_pointer_space());
+  VerifyEvacuation(heap, heap->old_data_space());
+  VerifyEvacuation(heap, heap->code_space());
+  VerifyEvacuation(heap, heap->cell_space());
+  VerifyEvacuation(heap, heap->property_cell_space());
+  VerifyEvacuation(heap, heap->map_space());
+  VerifyEvacuation(heap->new_space());
+
+  VerifyEvacuationVisitor visitor;
+  heap->IterateStrongRoots(&visitor, VISIT_ALL);
+}
+#endif  // VERIFY_HEAP
+
+
+#ifdef DEBUG
+class VerifyNativeContextSeparationVisitor : public ObjectVisitor {
+ public:
+  VerifyNativeContextSeparationVisitor() : current_native_context_(NULL) {}
+
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** current = start; current < end; current++) {
+      if ((*current)->IsHeapObject()) {
+        HeapObject* object = HeapObject::cast(*current);
+        if (object->IsString()) continue;
+        switch (object->map()->instance_type()) {
+          case JS_FUNCTION_TYPE:
+            CheckContext(JSFunction::cast(object)->context());
+            break;
+          case JS_GLOBAL_PROXY_TYPE:
+            CheckContext(JSGlobalProxy::cast(object)->native_context());
+            break;
+          case JS_GLOBAL_OBJECT_TYPE:
+          case JS_BUILTINS_OBJECT_TYPE:
+            CheckContext(GlobalObject::cast(object)->native_context());
+            break;
+          case JS_ARRAY_TYPE:
+          case JS_DATE_TYPE:
+          case JS_OBJECT_TYPE:
+          case JS_REGEXP_TYPE:
+            VisitPointer(HeapObject::RawField(object, JSObject::kMapOffset));
+            break;
+          case MAP_TYPE:
+            VisitPointer(HeapObject::RawField(object, Map::kPrototypeOffset));
+            VisitPointer(HeapObject::RawField(object, Map::kConstructorOffset));
+            break;
+          case FIXED_ARRAY_TYPE:
+            if (object->IsContext()) {
+              CheckContext(object);
+            } else {
+              FixedArray* array = FixedArray::cast(object);
+              int length = array->length();
+              // Set array length to zero to prevent cycles while iterating
+              // over array bodies, this is easier than intrusive marking.
+              array->set_length(0);
+              array->IterateBody(FIXED_ARRAY_TYPE, FixedArray::SizeFor(length),
+                                 this);
+              array->set_length(length);
+            }
+            break;
+          case CELL_TYPE:
+          case JS_PROXY_TYPE:
+          case JS_VALUE_TYPE:
+          case TYPE_FEEDBACK_INFO_TYPE:
+            object->Iterate(this);
+            break;
+          case DECLARED_ACCESSOR_INFO_TYPE:
+          case EXECUTABLE_ACCESSOR_INFO_TYPE:
+          case BYTE_ARRAY_TYPE:
+          case CALL_HANDLER_INFO_TYPE:
+          case CODE_TYPE:
+          case FIXED_DOUBLE_ARRAY_TYPE:
+          case HEAP_NUMBER_TYPE:
+          case MUTABLE_HEAP_NUMBER_TYPE:
+          case INTERCEPTOR_INFO_TYPE:
+          case ODDBALL_TYPE:
+          case SCRIPT_TYPE:
+          case SHARED_FUNCTION_INFO_TYPE:
+            break;
+          default:
+            UNREACHABLE();
+        }
+      }
+    }
+  }
+
+ private:
+  void CheckContext(Object* context) {
+    if (!context->IsContext()) return;
+    Context* native_context = Context::cast(context)->native_context();
+    if (current_native_context_ == NULL) {
+      current_native_context_ = native_context;
+    } else {
+      CHECK_EQ(current_native_context_, native_context);
+    }
+  }
+
+  Context* current_native_context_;
+};
+
+
+static void VerifyNativeContextSeparation(Heap* heap) {
+  HeapObjectIterator it(heap->code_space());
+
+  for (Object* object = it.Next(); object != NULL; object = it.Next()) {
+    VerifyNativeContextSeparationVisitor visitor;
+    Code::cast(object)->CodeIterateBody(&visitor);
+  }
+}
+#endif
+
+
+void MarkCompactCollector::SetUp() {
+  free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
+  free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
+}
+
+
+void MarkCompactCollector::TearDown() { AbortCompaction(); }
+
+
+void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
+  p->MarkEvacuationCandidate();
+  evacuation_candidates_.Add(p);
+}
+
+
+static void TraceFragmentation(PagedSpace* space) {
+  int number_of_pages = space->CountTotalPages();
+  intptr_t reserved = (number_of_pages * space->AreaSize());
+  intptr_t free = reserved - space->SizeOfObjects();
+  PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
+         AllocationSpaceName(space->identity()), number_of_pages,
+         static_cast<int>(free), static_cast<double>(free) * 100 / reserved);
+}
+
+
+bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
+  if (!compacting_) {
+    DCHECK(evacuation_candidates_.length() == 0);
+
+#ifdef ENABLE_GDB_JIT_INTERFACE
+    // If GDBJIT interface is active disable compaction.
+    if (FLAG_gdbjit) return false;
+#endif
+
+    CollectEvacuationCandidates(heap()->old_pointer_space());
+    CollectEvacuationCandidates(heap()->old_data_space());
+
+    if (FLAG_compact_code_space && (mode == NON_INCREMENTAL_COMPACTION ||
+                                    FLAG_incremental_code_compaction)) {
+      CollectEvacuationCandidates(heap()->code_space());
+    } else if (FLAG_trace_fragmentation) {
+      TraceFragmentation(heap()->code_space());
+    }
+
+    if (FLAG_trace_fragmentation) {
+      TraceFragmentation(heap()->map_space());
+      TraceFragmentation(heap()->cell_space());
+      TraceFragmentation(heap()->property_cell_space());
+    }
+
+    heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
+    heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
+    heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
+
+    compacting_ = evacuation_candidates_.length() > 0;
+  }
+
+  return compacting_;
+}
+
+
+void MarkCompactCollector::CollectGarbage() {
+  // Make sure that Prepare() has been called. The individual steps below will
+  // update the state as they proceed.
+  DCHECK(state_ == PREPARE_GC);
+
+  MarkLiveObjects();
+  DCHECK(heap_->incremental_marking()->IsStopped());
+
+  if (FLAG_collect_maps) ClearNonLiveReferences();
+
+  ClearWeakCollections();
+
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    VerifyMarking(heap_);
+  }
+#endif
+
+  SweepSpaces();
+
+#ifdef DEBUG
+  if (FLAG_verify_native_context_separation) {
+    VerifyNativeContextSeparation(heap_);
+  }
+#endif
+
+#ifdef VERIFY_HEAP
+  if (heap()->weak_embedded_objects_verification_enabled()) {
+    VerifyWeakEmbeddedObjectsInCode();
+  }
+  if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
+    VerifyOmittedMapChecks();
+  }
+#endif
+
+  Finish();
+
+  if (marking_parity_ == EVEN_MARKING_PARITY) {
+    marking_parity_ = ODD_MARKING_PARITY;
+  } else {
+    DCHECK(marking_parity_ == ODD_MARKING_PARITY);
+    marking_parity_ = EVEN_MARKING_PARITY;
+  }
+}
+
+
+#ifdef VERIFY_HEAP
+void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
+  PageIterator it(space);
+
+  while (it.has_next()) {
+    Page* p = it.next();
+    CHECK(p->markbits()->IsClean());
+    CHECK_EQ(0, p->LiveBytes());
+  }
+}
+
+
+void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
+  NewSpacePageIterator it(space->bottom(), space->top());
+
+  while (it.has_next()) {
+    NewSpacePage* p = it.next();
+    CHECK(p->markbits()->IsClean());
+    CHECK_EQ(0, p->LiveBytes());
+  }
+}
+
+
+void MarkCompactCollector::VerifyMarkbitsAreClean() {
+  VerifyMarkbitsAreClean(heap_->old_pointer_space());
+  VerifyMarkbitsAreClean(heap_->old_data_space());
+  VerifyMarkbitsAreClean(heap_->code_space());
+  VerifyMarkbitsAreClean(heap_->cell_space());
+  VerifyMarkbitsAreClean(heap_->property_cell_space());
+  VerifyMarkbitsAreClean(heap_->map_space());
+  VerifyMarkbitsAreClean(heap_->new_space());
+
+  LargeObjectIterator it(heap_->lo_space());
+  for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
+    MarkBit mark_bit = Marking::MarkBitFrom(obj);
+    CHECK(Marking::IsWhite(mark_bit));
+    CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
+  }
+}
+
+
+void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
+  HeapObjectIterator code_iterator(heap()->code_space());
+  for (HeapObject* obj = code_iterator.Next(); obj != NULL;
+       obj = code_iterator.Next()) {
+    Code* code = Code::cast(obj);
+    if (!code->is_optimized_code() && !code->is_weak_stub()) continue;
+    if (WillBeDeoptimized(code)) continue;
+    code->VerifyEmbeddedObjectsDependency();
+  }
+}
+
+
+void MarkCompactCollector::VerifyOmittedMapChecks() {
+  HeapObjectIterator iterator(heap()->map_space());
+  for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) {
+    Map* map = Map::cast(obj);
+    map->VerifyOmittedMapChecks();
+  }
+}
+#endif  // VERIFY_HEAP
+
+
+static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
+  PageIterator it(space);
+
+  while (it.has_next()) {
+    Bitmap::Clear(it.next());
+  }
+}
+
+
+static void ClearMarkbitsInNewSpace(NewSpace* space) {
+  NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
+
+  while (it.has_next()) {
+    Bitmap::Clear(it.next());
+  }
+}
+
+
+void MarkCompactCollector::ClearMarkbits() {
+  ClearMarkbitsInPagedSpace(heap_->code_space());
+  ClearMarkbitsInPagedSpace(heap_->map_space());
+  ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
+  ClearMarkbitsInPagedSpace(heap_->old_data_space());
+  ClearMarkbitsInPagedSpace(heap_->cell_space());
+  ClearMarkbitsInPagedSpace(heap_->property_cell_space());
+  ClearMarkbitsInNewSpace(heap_->new_space());
+
+  LargeObjectIterator it(heap_->lo_space());
+  for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
+    MarkBit mark_bit = Marking::MarkBitFrom(obj);
+    mark_bit.Clear();
+    mark_bit.Next().Clear();
+    Page::FromAddress(obj->address())->ResetProgressBar();
+    Page::FromAddress(obj->address())->ResetLiveBytes();
+  }
+}
+
+
+class MarkCompactCollector::SweeperTask : public v8::Task {
+ public:
+  SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {}
+
+  virtual ~SweeperTask() {}
+
+ private:
+  // v8::Task overrides.
+  virtual void Run() OVERRIDE {
+    heap_->mark_compact_collector()->SweepInParallel(space_, 0);
+    heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
+  }
+
+  Heap* heap_;
+  PagedSpace* space_;
+
+  DISALLOW_COPY_AND_ASSIGN(SweeperTask);
+};
+
+
+void MarkCompactCollector::StartSweeperThreads() {
+  DCHECK(free_list_old_pointer_space_.get()->IsEmpty());
+  DCHECK(free_list_old_data_space_.get()->IsEmpty());
+  sweeping_in_progress_ = true;
+  for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
+    isolate()->sweeper_threads()[i]->StartSweeping();
+  }
+  if (FLAG_job_based_sweeping) {
+    V8::GetCurrentPlatform()->CallOnBackgroundThread(
+        new SweeperTask(heap(), heap()->old_data_space()),
+        v8::Platform::kShortRunningTask);
+    V8::GetCurrentPlatform()->CallOnBackgroundThread(
+        new SweeperTask(heap(), heap()->old_pointer_space()),
+        v8::Platform::kShortRunningTask);
+  }
+}
+
+
+void MarkCompactCollector::EnsureSweepingCompleted() {
+  DCHECK(sweeping_in_progress_ == true);
+
+  // If sweeping is not completed, we try to complete it here. If we do not
+  // have sweeper threads we have to complete since we do not have a good
+  // indicator for a swept space in that case.
+  if (!AreSweeperThreadsActivated() || !IsSweepingCompleted()) {
+    SweepInParallel(heap()->paged_space(OLD_DATA_SPACE), 0);
+    SweepInParallel(heap()->paged_space(OLD_POINTER_SPACE), 0);
+  }
+
+  for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
+    isolate()->sweeper_threads()[i]->WaitForSweeperThread();
+  }
+  if (FLAG_job_based_sweeping) {
+    // Wait twice for both jobs.
+    pending_sweeper_jobs_semaphore_.Wait();
+    pending_sweeper_jobs_semaphore_.Wait();
+  }
+  ParallelSweepSpacesComplete();
+  sweeping_in_progress_ = false;
+  RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
+  RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
+  heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
+  heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
+
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    VerifyEvacuation(heap_);
+  }
+#endif
+}
+
+
+bool MarkCompactCollector::IsSweepingCompleted() {
+  for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
+    if (!isolate()->sweeper_threads()[i]->SweepingCompleted()) {
+      return false;
+    }
+  }
+
+  if (FLAG_job_based_sweeping) {
+    if (!pending_sweeper_jobs_semaphore_.WaitFor(
+            base::TimeDelta::FromSeconds(0))) {
+      return false;
+    }
+    pending_sweeper_jobs_semaphore_.Signal();
+  }
+
+  return true;
+}
+
+
+void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
+  FreeList* free_list;
+
+  if (space == heap()->old_pointer_space()) {
+    free_list = free_list_old_pointer_space_.get();
+  } else if (space == heap()->old_data_space()) {
+    free_list = free_list_old_data_space_.get();
+  } else {
+    // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
+    // to only refill them for old data and pointer spaces.
+    return;
+  }
+
+  intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
+  space->AddToAccountingStats(freed_bytes);
+  space->DecrementUnsweptFreeBytes(freed_bytes);
+}
+
+
+bool MarkCompactCollector::AreSweeperThreadsActivated() {
+  return isolate()->sweeper_threads() != NULL || FLAG_job_based_sweeping;
+}
+
+
+void Marking::TransferMark(Address old_start, Address new_start) {
+  // This is only used when resizing an object.
+  DCHECK(MemoryChunk::FromAddress(old_start) ==
+         MemoryChunk::FromAddress(new_start));
+
+  if (!heap_->incremental_marking()->IsMarking()) return;
+
+  // If the mark doesn't move, we don't check the color of the object.
+  // It doesn't matter whether the object is black, since it hasn't changed
+  // size, so the adjustment to the live data count will be zero anyway.
+  if (old_start == new_start) return;
+
+  MarkBit new_mark_bit = MarkBitFrom(new_start);
+  MarkBit old_mark_bit = MarkBitFrom(old_start);
+
+#ifdef DEBUG
+  ObjectColor old_color = Color(old_mark_bit);
+#endif
+
+  if (Marking::IsBlack(old_mark_bit)) {
+    old_mark_bit.Clear();
+    DCHECK(IsWhite(old_mark_bit));
+    Marking::MarkBlack(new_mark_bit);
+    return;
+  } else if (Marking::IsGrey(old_mark_bit)) {
+    old_mark_bit.Clear();
+    old_mark_bit.Next().Clear();
+    DCHECK(IsWhite(old_mark_bit));
+    heap_->incremental_marking()->WhiteToGreyAndPush(
+        HeapObject::FromAddress(new_start), new_mark_bit);
+    heap_->incremental_marking()->RestartIfNotMarking();
+  }
+
+#ifdef DEBUG
+  ObjectColor new_color = Color(new_mark_bit);
+  DCHECK(new_color == old_color);
+#endif
+}
+
+
+const char* AllocationSpaceName(AllocationSpace space) {
+  switch (space) {
+    case NEW_SPACE:
+      return "NEW_SPACE";
+    case OLD_POINTER_SPACE:
+      return "OLD_POINTER_SPACE";
+    case OLD_DATA_SPACE:
+      return "OLD_DATA_SPACE";
+    case CODE_SPACE:
+      return "CODE_SPACE";
+    case MAP_SPACE:
+      return "MAP_SPACE";
+    case CELL_SPACE:
+      return "CELL_SPACE";
+    case PROPERTY_CELL_SPACE:
+      return "PROPERTY_CELL_SPACE";
+    case LO_SPACE:
+      return "LO_SPACE";
+    default:
+      UNREACHABLE();
+  }
+
+  return NULL;
+}
+
+
+// Returns zero for pages that have so little fragmentation that it is not
+// worth defragmenting them.  Otherwise a positive integer that gives an
+// estimate of fragmentation on an arbitrary scale.
+static int FreeListFragmentation(PagedSpace* space, Page* p) {
+  // If page was not swept then there are no free list items on it.
+  if (!p->WasSwept()) {
+    if (FLAG_trace_fragmentation) {
+      PrintF("%p [%s]: %d bytes live (unswept)\n", reinterpret_cast<void*>(p),
+             AllocationSpaceName(space->identity()), p->LiveBytes());
+    }
+    return 0;
+  }
+
+  PagedSpace::SizeStats sizes;
+  space->ObtainFreeListStatistics(p, &sizes);
+
+  intptr_t ratio;
+  intptr_t ratio_threshold;
+  intptr_t area_size = space->AreaSize();
+  if (space->identity() == CODE_SPACE) {
+    ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / area_size;
+    ratio_threshold = 10;
+  } else {
+    ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / area_size;
+    ratio_threshold = 15;
+  }
+
+  if (FLAG_trace_fragmentation) {
+    PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
+           reinterpret_cast<void*>(p), AllocationSpaceName(space->identity()),
+           static_cast<int>(sizes.small_size_),
+           static_cast<double>(sizes.small_size_ * 100) / area_size,
+           static_cast<int>(sizes.medium_size_),
+           static_cast<double>(sizes.medium_size_ * 100) / area_size,
+           static_cast<int>(sizes.large_size_),
+           static_cast<double>(sizes.large_size_ * 100) / area_size,
+           static_cast<int>(sizes.huge_size_),
+           static_cast<double>(sizes.huge_size_ * 100) / area_size,
+           (ratio > ratio_threshold) ? "[fragmented]" : "");
+  }
+
+  if (FLAG_always_compact && sizes.Total() != area_size) {
+    return 1;
+  }
+
+  if (ratio <= ratio_threshold) return 0;  // Not fragmented.
+
+  return static_cast<int>(ratio - ratio_threshold);
+}
+
+
+void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
+  DCHECK(space->identity() == OLD_POINTER_SPACE ||
+         space->identity() == OLD_DATA_SPACE ||
+         space->identity() == CODE_SPACE);
+
+  static const int kMaxMaxEvacuationCandidates = 1000;
+  int number_of_pages = space->CountTotalPages();
+  int max_evacuation_candidates =
+      static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
+
+  if (FLAG_stress_compaction || FLAG_always_compact) {
+    max_evacuation_candidates = kMaxMaxEvacuationCandidates;
+  }
+
+  class Candidate {
+   public:
+    Candidate() : fragmentation_(0), page_(NULL) {}
+    Candidate(int f, Page* p) : fragmentation_(f), page_(p) {}
+
+    int fragmentation() { return fragmentation_; }
+    Page* page() { return page_; }
+
+   private:
+    int fragmentation_;
+    Page* page_;
+  };
+
+  enum CompactionMode { COMPACT_FREE_LISTS, REDUCE_MEMORY_FOOTPRINT };
+
+  CompactionMode mode = COMPACT_FREE_LISTS;
+
+  intptr_t reserved = number_of_pages * space->AreaSize();
+  intptr_t over_reserved = reserved - space->SizeOfObjects();
+  static const intptr_t kFreenessThreshold = 50;
+
+  if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
+    // If reduction of memory footprint was requested, we are aggressive
+    // about choosing pages to free.  We expect that half-empty pages
+    // are easier to compact so slightly bump the limit.
+    mode = REDUCE_MEMORY_FOOTPRINT;
+    max_evacuation_candidates += 2;
+  }
+
+
+  if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
+    // If over-usage is very high (more than a third of the space), we
+    // try to free all mostly empty pages.  We expect that almost empty
+    // pages are even easier to compact so bump the limit even more.
+    mode = REDUCE_MEMORY_FOOTPRINT;
+    max_evacuation_candidates *= 2;
+  }
+
+  if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
+    PrintF(
+        "Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
+        "evacuation candidate limit: %d\n",
+        static_cast<double>(over_reserved) / MB,
+        static_cast<double>(reserved) / MB,
+        static_cast<int>(kFreenessThreshold), max_evacuation_candidates);
+  }
+
+  intptr_t estimated_release = 0;
+
+  Candidate candidates[kMaxMaxEvacuationCandidates];
+
+  max_evacuation_candidates =
+      Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
+
+  int count = 0;
+  int fragmentation = 0;
+  Candidate* least = NULL;
+
+  PageIterator it(space);
+  if (it.has_next()) it.next();  // Never compact the first page.
+
+  while (it.has_next()) {
+    Page* p = it.next();
+    p->ClearEvacuationCandidate();
+
+    if (FLAG_stress_compaction) {
+      unsigned int counter = space->heap()->ms_count();
+      uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
+      if ((counter & 1) == (page_number & 1)) fragmentation = 1;
+    } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
+      // Don't try to release too many pages.
+      if (estimated_release >= over_reserved) {
+        continue;
+      }
+
+      intptr_t free_bytes = 0;
+
+      if (!p->WasSwept()) {
+        free_bytes = (p->area_size() - p->LiveBytes());
+      } else {
+        PagedSpace::SizeStats sizes;
+        space->ObtainFreeListStatistics(p, &sizes);
+        free_bytes = sizes.Total();
+      }
+
+      int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
+
+      if (free_pct >= kFreenessThreshold) {
+        estimated_release += free_bytes;
+        fragmentation = free_pct;
+      } else {
+        fragmentation = 0;
+      }
+
+      if (FLAG_trace_fragmentation) {
+        PrintF("%p [%s]: %d (%.2f%%) free %s\n", reinterpret_cast<void*>(p),
+               AllocationSpaceName(space->identity()),
+               static_cast<int>(free_bytes),
+               static_cast<double>(free_bytes * 100) / p->area_size(),
+               (fragmentation > 0) ? "[fragmented]" : "");
+      }
+    } else {
+      fragmentation = FreeListFragmentation(space, p);
+    }
+
+    if (fragmentation != 0) {
+      if (count < max_evacuation_candidates) {
+        candidates[count++] = Candidate(fragmentation, p);
+      } else {
+        if (least == NULL) {
+          for (int i = 0; i < max_evacuation_candidates; i++) {
+            if (least == NULL ||
+                candidates[i].fragmentation() < least->fragmentation()) {
+              least = candidates + i;
+            }
+          }
+        }
+        if (least->fragmentation() < fragmentation) {
+          *least = Candidate(fragmentation, p);
+          least = NULL;
+        }
+      }
+    }
+  }
+
+  for (int i = 0; i < count; i++) {
+    AddEvacuationCandidate(candidates[i].page());
+  }
+
+  if (count > 0 && FLAG_trace_fragmentation) {
+    PrintF("Collected %d evacuation candidates for space %s\n", count,
+           AllocationSpaceName(space->identity()));
+  }
+}
+
+
+void MarkCompactCollector::AbortCompaction() {
+  if (compacting_) {
+    int npages = evacuation_candidates_.length();
+    for (int i = 0; i < npages; i++) {
+      Page* p = evacuation_candidates_[i];
+      slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
+      p->ClearEvacuationCandidate();
+      p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
+    }
+    compacting_ = false;
+    evacuation_candidates_.Rewind(0);
+    invalidated_code_.Rewind(0);
+  }
+  DCHECK_EQ(0, evacuation_candidates_.length());
+}
+
+
+void MarkCompactCollector::Prepare() {
+  was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
+
+#ifdef DEBUG
+  DCHECK(state_ == IDLE);
+  state_ = PREPARE_GC;
+#endif
+
+  DCHECK(!FLAG_never_compact || !FLAG_always_compact);
+
+  if (sweeping_in_progress()) {
+    // Instead of waiting we could also abort the sweeper threads here.
+    EnsureSweepingCompleted();
+  }
+
+  // Clear marking bits if incremental marking is aborted.
+  if (was_marked_incrementally_ && abort_incremental_marking_) {
+    heap()->incremental_marking()->Abort();
+    ClearMarkbits();
+    AbortWeakCollections();
+    AbortCompaction();
+    was_marked_incrementally_ = false;
+  }
+
+  // Don't start compaction if we are in the middle of incremental
+  // marking cycle. We did not collect any slots.
+  if (!FLAG_never_compact && !was_marked_incrementally_) {
+    StartCompaction(NON_INCREMENTAL_COMPACTION);
+  }
+
+  PagedSpaces spaces(heap());
+  for (PagedSpace* space = spaces.next(); space != NULL;
+       space = spaces.next()) {
+    space->PrepareForMarkCompact();
+  }
+
+#ifdef VERIFY_HEAP
+  if (!was_marked_incrementally_ && FLAG_verify_heap) {
+    VerifyMarkbitsAreClean();
+  }
+#endif
+}
+
+
+void MarkCompactCollector::Finish() {
+#ifdef DEBUG
+  DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
+  state_ = IDLE;
+#endif
+  // The stub cache is not traversed during GC; clear the cache to
+  // force lazy re-initialization of it. This must be done after the
+  // GC, because it relies on the new address of certain old space
+  // objects (empty string, illegal builtin).
+  isolate()->stub_cache()->Clear();
+
+  if (have_code_to_deoptimize_) {
+    // Some code objects were marked for deoptimization during the GC.
+    Deoptimizer::DeoptimizeMarkedCode(isolate());
+    have_code_to_deoptimize_ = false;
+  }
+}
+
+
+// -------------------------------------------------------------------------
+// Phase 1: tracing and marking live objects.
+//   before: all objects are in normal state.
+//   after: a live object's map pointer is marked as '00'.
+
+// Marking all live objects in the heap as part of mark-sweep or mark-compact
+// collection.  Before marking, all objects are in their normal state.  After
+// marking, live objects' map pointers are marked indicating that the object
+// has been found reachable.
+//
+// The marking algorithm is a (mostly) depth-first (because of possible stack
+// overflow) traversal of the graph of objects reachable from the roots.  It
+// uses an explicit stack of pointers rather than recursion.  The young
+// generation's inactive ('from') space is used as a marking stack.  The
+// objects in the marking stack are the ones that have been reached and marked
+// but their children have not yet been visited.
+//
+// The marking stack can overflow during traversal.  In that case, we set an
+// overflow flag.  When the overflow flag is set, we continue marking objects
+// reachable from the objects on the marking stack, but no longer push them on
+// the marking stack.  Instead, we mark them as both marked and overflowed.
+// When the stack is in the overflowed state, objects marked as overflowed
+// have been reached and marked but their children have not been visited yet.
+// After emptying the marking stack, we clear the overflow flag and traverse
+// the heap looking for objects marked as overflowed, push them on the stack,
+// and continue with marking.  This process repeats until all reachable
+// objects have been marked.
+
+void CodeFlusher::ProcessJSFunctionCandidates() {
+  Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
+  Object* undefined = isolate_->heap()->undefined_value();
+
+  JSFunction* candidate = jsfunction_candidates_head_;
+  JSFunction* next_candidate;
+  while (candidate != NULL) {
+    next_candidate = GetNextCandidate(candidate);
+    ClearNextCandidate(candidate, undefined);
+
+    SharedFunctionInfo* shared = candidate->shared();
+
+    Code* code = shared->code();
+    MarkBit code_mark = Marking::MarkBitFrom(code);
+    if (!code_mark.Get()) {
+      if (FLAG_trace_code_flushing && shared->is_compiled()) {
+        PrintF("[code-flushing clears: ");
+        shared->ShortPrint();
+        PrintF(" - age: %d]\n", code->GetAge());
+      }
+      shared->set_code(lazy_compile);
+      candidate->set_code(lazy_compile);
+    } else {
+      candidate->set_code(code);
+    }
+
+    // We are in the middle of a GC cycle so the write barrier in the code
+    // setter did not record the slot update and we have to do that manually.
+    Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
+    Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
+    isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot(slot,
+                                                                    target);
+
+    Object** shared_code_slot =
+        HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
+    isolate_->heap()->mark_compact_collector()->RecordSlot(
+        shared_code_slot, shared_code_slot, *shared_code_slot);
+
+    candidate = next_candidate;
+  }
+
+  jsfunction_candidates_head_ = NULL;
+}
+
+
+void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
+  Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
+
+  SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
+  SharedFunctionInfo* next_candidate;
+  while (candidate != NULL) {
+    next_candidate = GetNextCandidate(candidate);
+    ClearNextCandidate(candidate);
+
+    Code* code = candidate->code();
+    MarkBit code_mark = Marking::MarkBitFrom(code);
+    if (!code_mark.Get()) {
+      if (FLAG_trace_code_flushing && candidate->is_compiled()) {
+        PrintF("[code-flushing clears: ");
+        candidate->ShortPrint();
+        PrintF(" - age: %d]\n", code->GetAge());
+      }
+      candidate->set_code(lazy_compile);
+    }
+
+    Object** code_slot =
+        HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
+    isolate_->heap()->mark_compact_collector()->RecordSlot(code_slot, code_slot,
+                                                           *code_slot);
+
+    candidate = next_candidate;
+  }
+
+  shared_function_info_candidates_head_ = NULL;
+}
+
+
+void CodeFlusher::ProcessOptimizedCodeMaps() {
+  STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
+
+  SharedFunctionInfo* holder = optimized_code_map_holder_head_;
+  SharedFunctionInfo* next_holder;
+
+  while (holder != NULL) {
+    next_holder = GetNextCodeMap(holder);
+    ClearNextCodeMap(holder);
+
+    FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
+    int new_length = SharedFunctionInfo::kEntriesStart;
+    int old_length = code_map->length();
+    for (int i = SharedFunctionInfo::kEntriesStart; i < old_length;
+         i += SharedFunctionInfo::kEntryLength) {
+      Code* code =
+          Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
+      if (!Marking::MarkBitFrom(code).Get()) continue;
+
+      // Move every slot in the entry.
+      for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
+        int dst_index = new_length++;
+        Object** slot = code_map->RawFieldOfElementAt(dst_index);
+        Object* object = code_map->get(i + j);
+        code_map->set(dst_index, object);
+        if (j == SharedFunctionInfo::kOsrAstIdOffset) {
+          DCHECK(object->IsSmi());
+        } else {
+          DCHECK(
+              Marking::IsBlack(Marking::MarkBitFrom(HeapObject::cast(*slot))));
+          isolate_->heap()->mark_compact_collector()->RecordSlot(slot, slot,
+                                                                 *slot);
+        }
+      }
+    }
+
+    // Trim the optimized code map if entries have been removed.
+    if (new_length < old_length) {
+      holder->TrimOptimizedCodeMap(old_length - new_length);
+    }
+
+    holder = next_holder;
+  }
+
+  optimized_code_map_holder_head_ = NULL;
+}
+
+
+void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
+  // Make sure previous flushing decisions are revisited.
+  isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
+
+  if (FLAG_trace_code_flushing) {
+    PrintF("[code-flushing abandons function-info: ");
+    shared_info->ShortPrint();
+    PrintF("]\n");
+  }
+
+  SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
+  SharedFunctionInfo* next_candidate;
+  if (candidate == shared_info) {
+    next_candidate = GetNextCandidate(shared_info);
+    shared_function_info_candidates_head_ = next_candidate;
+    ClearNextCandidate(shared_info);
+  } else {
+    while (candidate != NULL) {
+      next_candidate = GetNextCandidate(candidate);
+
+      if (next_candidate == shared_info) {
+        next_candidate = GetNextCandidate(shared_info);
+        SetNextCandidate(candidate, next_candidate);
+        ClearNextCandidate(shared_info);
+        break;
+      }
+
+      candidate = next_candidate;
+    }
+  }
+}
+
+
+void CodeFlusher::EvictCandidate(JSFunction* function) {
+  DCHECK(!function->next_function_link()->IsUndefined());
+  Object* undefined = isolate_->heap()->undefined_value();
+
+  // Make sure previous flushing decisions are revisited.
+  isolate_->heap()->incremental_marking()->RecordWrites(function);
+  isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
+
+  if (FLAG_trace_code_flushing) {
+    PrintF("[code-flushing abandons closure: ");
+    function->shared()->ShortPrint();
+    PrintF("]\n");
+  }
+
+  JSFunction* candidate = jsfunction_candidates_head_;
+  JSFunction* next_candidate;
+  if (candidate == function) {
+    next_candidate = GetNextCandidate(function);
+    jsfunction_candidates_head_ = next_candidate;
+    ClearNextCandidate(function, undefined);
+  } else {
+    while (candidate != NULL) {
+      next_candidate = GetNextCandidate(candidate);
+
+      if (next_candidate == function) {
+        next_candidate = GetNextCandidate(function);
+        SetNextCandidate(candidate, next_candidate);
+        ClearNextCandidate(function, undefined);
+        break;
+      }
+
+      candidate = next_candidate;
+    }
+  }
+}
+
+
+void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
+  DCHECK(!FixedArray::cast(code_map_holder->optimized_code_map())
+              ->get(SharedFunctionInfo::kNextMapIndex)
+              ->IsUndefined());
+
+  // Make sure previous flushing decisions are revisited.
+  isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
+
+  if (FLAG_trace_code_flushing) {
+    PrintF("[code-flushing abandons code-map: ");
+    code_map_holder->ShortPrint();
+    PrintF("]\n");
+  }
+
+  SharedFunctionInfo* holder = optimized_code_map_holder_head_;
+  SharedFunctionInfo* next_holder;
+  if (holder == code_map_holder) {
+    next_holder = GetNextCodeMap(code_map_holder);
+    optimized_code_map_holder_head_ = next_holder;
+    ClearNextCodeMap(code_map_holder);
+  } else {
+    while (holder != NULL) {
+      next_holder = GetNextCodeMap(holder);
+
+      if (next_holder == code_map_holder) {
+        next_holder = GetNextCodeMap(code_map_holder);
+        SetNextCodeMap(holder, next_holder);
+        ClearNextCodeMap(code_map_holder);
+        break;
+      }
+
+      holder = next_holder;
+    }
+  }
+}
+
+
+void CodeFlusher::EvictJSFunctionCandidates() {
+  JSFunction* candidate = jsfunction_candidates_head_;
+  JSFunction* next_candidate;
+  while (candidate != NULL) {
+    next_candidate = GetNextCandidate(candidate);
+    EvictCandidate(candidate);
+    candidate = next_candidate;
+  }
+  DCHECK(jsfunction_candidates_head_ == NULL);
+}
+
+
+void CodeFlusher::EvictSharedFunctionInfoCandidates() {
+  SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
+  SharedFunctionInfo* next_candidate;
+  while (candidate != NULL) {
+    next_candidate = GetNextCandidate(candidate);
+    EvictCandidate(candidate);
+    candidate = next_candidate;
+  }
+  DCHECK(shared_function_info_candidates_head_ == NULL);
+}
+
+
+void CodeFlusher::EvictOptimizedCodeMaps() {
+  SharedFunctionInfo* holder = optimized_code_map_holder_head_;
+  SharedFunctionInfo* next_holder;
+  while (holder != NULL) {
+    next_holder = GetNextCodeMap(holder);
+    EvictOptimizedCodeMap(holder);
+    holder = next_holder;
+  }
+  DCHECK(optimized_code_map_holder_head_ == NULL);
+}
+
+
+void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
+  Heap* heap = isolate_->heap();
+
+  JSFunction** slot = &jsfunction_candidates_head_;
+  JSFunction* candidate = jsfunction_candidates_head_;
+  while (candidate != NULL) {
+    if (heap->InFromSpace(candidate)) {
+      v->VisitPointer(reinterpret_cast<Object**>(slot));
+    }
+    candidate = GetNextCandidate(*slot);
+    slot = GetNextCandidateSlot(*slot);
+  }
+}
+
+
+MarkCompactCollector::~MarkCompactCollector() {
+  if (code_flusher_ != NULL) {
+    delete code_flusher_;
+    code_flusher_ = NULL;
+  }
+}
+
+
+static inline HeapObject* ShortCircuitConsString(Object** p) {
+  // Optimization: If the heap object pointed to by p is a non-internalized
+  // cons string whose right substring is HEAP->empty_string, update
+  // it in place to its left substring.  Return the updated value.
+  //
+  // Here we assume that if we change *p, we replace it with a heap object
+  // (i.e., the left substring of a cons string is always a heap object).
+  //
+  // The check performed is:
+  //   object->IsConsString() && !object->IsInternalizedString() &&
+  //   (ConsString::cast(object)->second() == HEAP->empty_string())
+  // except the maps for the object and its possible substrings might be
+  // marked.
+  HeapObject* object = HeapObject::cast(*p);
+  if (!FLAG_clever_optimizations) return object;
+  Map* map = object->map();
+  InstanceType type = map->instance_type();
+  if (!IsShortcutCandidate(type)) return object;
+
+  Object* second = reinterpret_cast<ConsString*>(object)->second();
+  Heap* heap = map->GetHeap();
+  if (second != heap->empty_string()) {
+    return object;
+  }
+
+  // Since we don't have the object's start, it is impossible to update the
+  // page dirty marks. Therefore, we only replace the string with its left
+  // substring when page dirty marks do not change.
+  Object* first = reinterpret_cast<ConsString*>(object)->first();
+  if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
+
+  *p = first;
+  return HeapObject::cast(first);
+}
+
+
+class MarkCompactMarkingVisitor
+    : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
+ public:
+  static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id, Map* map,
+                                   HeapObject* obj);
+
+  static void ObjectStatsCountFixedArray(
+      FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
+      FixedArraySubInstanceType dictionary_type);
+
+  template <MarkCompactMarkingVisitor::VisitorId id>
+  class ObjectStatsTracker {
+   public:
+    static inline void Visit(Map* map, HeapObject* obj);
+  };
+
+  static void Initialize();
+
+  INLINE(static void VisitPointer(Heap* heap, Object** p)) {
+    MarkObjectByPointer(heap->mark_compact_collector(), p, p);
+  }
+
+  INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
+    // Mark all objects pointed to in [start, end).
+    const int kMinRangeForMarkingRecursion = 64;
+    if (end - start >= kMinRangeForMarkingRecursion) {
+      if (VisitUnmarkedObjects(heap, start, end)) return;
+      // We are close to a stack overflow, so just mark the objects.
+    }
+    MarkCompactCollector* collector = heap->mark_compact_collector();
+    for (Object** p = start; p < end; p++) {
+      MarkObjectByPointer(collector, start, p);
+    }
+  }
+
+  // Marks the object black and pushes it on the marking stack.
+  INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
+    MarkBit mark = Marking::MarkBitFrom(object);
+    heap->mark_compact_collector()->MarkObject(object, mark);
+  }
+
+  // Marks the object black without pushing it on the marking stack.
+  // Returns true if object needed marking and false otherwise.
+  INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
+    MarkBit mark_bit = Marking::MarkBitFrom(object);
+    if (!mark_bit.Get()) {
+      heap->mark_compact_collector()->SetMark(object, mark_bit);
+      return true;
+    }
+    return false;
+  }
+
+  // Mark object pointed to by p.
+  INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
+                                         Object** anchor_slot, Object** p)) {
+    if (!(*p)->IsHeapObject()) return;
+    HeapObject* object = ShortCircuitConsString(p);
+    collector->RecordSlot(anchor_slot, p, object);
+    MarkBit mark = Marking::MarkBitFrom(object);
+    collector->MarkObject(object, mark);
+  }
+
+
+  // Visit an unmarked object.
+  INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
+                                         HeapObject* obj)) {
+#ifdef DEBUG
+    DCHECK(collector->heap()->Contains(obj));
+    DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
+#endif
+    Map* map = obj->map();
+    Heap* heap = obj->GetHeap();
+    MarkBit mark = Marking::MarkBitFrom(obj);
+    heap->mark_compact_collector()->SetMark(obj, mark);
+    // Mark the map pointer and the body.
+    MarkBit map_mark = Marking::MarkBitFrom(map);
+    heap->mark_compact_collector()->MarkObject(map, map_mark);
+    IterateBody(map, obj);
+  }
+
+  // Visit all unmarked objects pointed to by [start, end).
+  // Returns false if the operation fails (lack of stack space).
+  INLINE(static bool VisitUnmarkedObjects(Heap* heap, Object** start,
+                                          Object** end)) {
+    // Return false is we are close to the stack limit.
+    StackLimitCheck check(heap->isolate());
+    if (check.HasOverflowed()) return false;
+
+    MarkCompactCollector* collector = heap->mark_compact_collector();
+    // Visit the unmarked objects.
+    for (Object** p = start; p < end; p++) {
+      Object* o = *p;
+      if (!o->IsHeapObject()) continue;
+      collector->RecordSlot(start, p, o);
+      HeapObject* obj = HeapObject::cast(o);
+      MarkBit mark = Marking::MarkBitFrom(obj);
+      if (mark.Get()) continue;
+      VisitUnmarkedObject(collector, obj);
+    }
+    return true;
+  }
+
+ private:
+  template <int id>
+  static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
+
+  // Code flushing support.
+
+  static const int kRegExpCodeThreshold = 5;
+
+  static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re,
+                                          bool is_one_byte) {
+    // Make sure that the fixed array is in fact initialized on the RegExp.
+    // We could potentially trigger a GC when initializing the RegExp.
+    if (HeapObject::cast(re->data())->map()->instance_type() !=
+        FIXED_ARRAY_TYPE)
+      return;
+
+    // Make sure this is a RegExp that actually contains code.
+    if (re->TypeTag() != JSRegExp::IRREGEXP) return;
+
+    Object* code = re->DataAt(JSRegExp::code_index(is_one_byte));
+    if (!code->IsSmi() &&
+        HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
+      // Save a copy that can be reinstated if we need the code again.
+      re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code);
+
+      // Saving a copy might create a pointer into compaction candidate
+      // that was not observed by marker.  This might happen if JSRegExp data
+      // was marked through the compilation cache before marker reached JSRegExp
+      // object.
+      FixedArray* data = FixedArray::cast(re->data());
+      Object** slot =
+          data->data_start() + JSRegExp::saved_code_index(is_one_byte);
+      heap->mark_compact_collector()->RecordSlot(slot, slot, code);
+
+      // Set a number in the 0-255 range to guarantee no smi overflow.
+      re->SetDataAt(JSRegExp::code_index(is_one_byte),
+                    Smi::FromInt(heap->sweep_generation() & 0xff));
+    } else if (code->IsSmi()) {
+      int value = Smi::cast(code)->value();
+      // The regexp has not been compiled yet or there was a compilation error.
+      if (value == JSRegExp::kUninitializedValue ||
+          value == JSRegExp::kCompilationErrorValue) {
+        return;
+      }
+
+      // Check if we should flush now.
+      if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
+        re->SetDataAt(JSRegExp::code_index(is_one_byte),
+                      Smi::FromInt(JSRegExp::kUninitializedValue));
+        re->SetDataAt(JSRegExp::saved_code_index(is_one_byte),
+                      Smi::FromInt(JSRegExp::kUninitializedValue));
+      }
+    }
+  }
+
+
+  // Works by setting the current sweep_generation (as a smi) in the
+  // code object place in the data array of the RegExp and keeps a copy
+  // around that can be reinstated if we reuse the RegExp before flushing.
+  // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
+  // we flush the code.
+  static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
+    Heap* heap = map->GetHeap();
+    MarkCompactCollector* collector = heap->mark_compact_collector();
+    if (!collector->is_code_flushing_enabled()) {
+      VisitJSRegExp(map, object);
+      return;
+    }
+    JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
+    // Flush code or set age on both one byte and two byte code.
+    UpdateRegExpCodeAgeAndFlush(heap, re, true);
+    UpdateRegExpCodeAgeAndFlush(heap, re, false);
+    // Visit the fields of the RegExp, including the updated FixedArray.
+    VisitJSRegExp(map, object);
+  }
+
+  static VisitorDispatchTable<Callback> non_count_table_;
+};
+
+
+void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
+    FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
+    FixedArraySubInstanceType dictionary_type) {
+  Heap* heap = fixed_array->map()->GetHeap();
+  if (fixed_array->map() != heap->fixed_cow_array_map() &&
+      fixed_array->map() != heap->fixed_double_array_map() &&
+      fixed_array != heap->empty_fixed_array()) {
+    if (fixed_array->IsDictionary()) {
+      heap->RecordFixedArraySubTypeStats(dictionary_type, fixed_array->Size());
+    } else {
+      heap->RecordFixedArraySubTypeStats(fast_type, fixed_array->Size());
+    }
+  }
+}
+
+
+void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
+    MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
+  Heap* heap = map->GetHeap();
+  int object_size = obj->Size();
+  heap->RecordObjectStats(map->instance_type(), object_size);
+  non_count_table_.GetVisitorById(id)(map, obj);
+  if (obj->IsJSObject()) {
+    JSObject* object = JSObject::cast(obj);
+    ObjectStatsCountFixedArray(object->elements(), DICTIONARY_ELEMENTS_SUB_TYPE,
+                               FAST_ELEMENTS_SUB_TYPE);
+    ObjectStatsCountFixedArray(object->properties(),
+                               DICTIONARY_PROPERTIES_SUB_TYPE,
+                               FAST_PROPERTIES_SUB_TYPE);
+  }
+}
+
+
+template <MarkCompactMarkingVisitor::VisitorId id>
+void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(Map* map,
+                                                              HeapObject* obj) {
+  ObjectStatsVisitBase(id, map, obj);
+}
+
+
+template <>
+class MarkCompactMarkingVisitor::ObjectStatsTracker<
+    MarkCompactMarkingVisitor::kVisitMap> {
+ public:
+  static inline void Visit(Map* map, HeapObject* obj) {
+    Heap* heap = map->GetHeap();
+    Map* map_obj = Map::cast(obj);
+    DCHECK(map->instance_type() == MAP_TYPE);
+    DescriptorArray* array = map_obj->instance_descriptors();
+    if (map_obj->owns_descriptors() &&
+        array != heap->empty_descriptor_array()) {
+      int fixed_array_size = array->Size();
+      heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
+                                         fixed_array_size);
+    }
+    if (map_obj->HasTransitionArray()) {
+      int fixed_array_size = map_obj->transitions()->Size();
+      heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
+                                         fixed_array_size);
+    }
+    if (map_obj->has_code_cache()) {
+      CodeCache* cache = CodeCache::cast(map_obj->code_cache());
+      heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
+                                         cache->default_cache()->Size());
+      if (!cache->normal_type_cache()->IsUndefined()) {
+        heap->RecordFixedArraySubTypeStats(
+            MAP_CODE_CACHE_SUB_TYPE,
+            FixedArray::cast(cache->normal_type_cache())->Size());
+      }
+    }
+    ObjectStatsVisitBase(kVisitMap, map, obj);
+  }
+};
+
+
+template <>
+class MarkCompactMarkingVisitor::ObjectStatsTracker<
+    MarkCompactMarkingVisitor::kVisitCode> {
+ public:
+  static inline void Visit(Map* map, HeapObject* obj) {
+    Heap* heap = map->GetHeap();
+    int object_size = obj->Size();
+    DCHECK(map->instance_type() == CODE_TYPE);
+    Code* code_obj = Code::cast(obj);
+    heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
+                                 object_size);
+    ObjectStatsVisitBase(kVisitCode, map, obj);
+  }
+};
+
+
+template <>
+class MarkCompactMarkingVisitor::ObjectStatsTracker<
+    MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
+ public:
+  static inline void Visit(Map* map, HeapObject* obj) {
+    Heap* heap = map->GetHeap();
+    SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
+    if (sfi->scope_info() != heap->empty_fixed_array()) {
+      heap->RecordFixedArraySubTypeStats(
+          SCOPE_INFO_SUB_TYPE, FixedArray::cast(sfi->scope_info())->Size());
+    }
+    ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
+  }
+};
+
+
+template <>
+class MarkCompactMarkingVisitor::ObjectStatsTracker<
+    MarkCompactMarkingVisitor::kVisitFixedArray> {
+ public:
+  static inline void Visit(Map* map, HeapObject* obj) {
+    Heap* heap = map->GetHeap();
+    FixedArray* fixed_array = FixedArray::cast(obj);
+    if (fixed_array == heap->string_table()) {
+      heap->RecordFixedArraySubTypeStats(STRING_TABLE_SUB_TYPE,
+                                         fixed_array->Size());
+    }
+    ObjectStatsVisitBase(kVisitFixedArray, map, obj);
+  }
+};
+
+
+void MarkCompactMarkingVisitor::Initialize() {
+  StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
+
+  table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode);
+
+  if (FLAG_track_gc_object_stats) {
+    // Copy the visitor table to make call-through possible.
+    non_count_table_.CopyFrom(&table_);
+#define VISITOR_ID_COUNT_FUNCTION(id) \
+  table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
+    VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
+#undef VISITOR_ID_COUNT_FUNCTION
+  }
+}
+
+
+VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
+    MarkCompactMarkingVisitor::non_count_table_;
+
+
+class CodeMarkingVisitor : public ThreadVisitor {
+ public:
+  explicit CodeMarkingVisitor(MarkCompactCollector* collector)
+      : collector_(collector) {}
+
+  void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
+    collector_->PrepareThreadForCodeFlushing(isolate, top);
+  }
+
+ private:
+  MarkCompactCollector* collector_;
+};
+
+
+class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
+ public:
+  explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
+      : collector_(collector) {}
+
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** p = start; p < end; p++) VisitPointer(p);
+  }
+
+  void VisitPointer(Object** slot) {
+    Object* obj = *slot;
+    if (obj->IsSharedFunctionInfo()) {
+      SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
+      MarkBit shared_mark = Marking::MarkBitFrom(shared);
+      MarkBit code_mark = Marking::MarkBitFrom(shared->code());
+      collector_->MarkObject(shared->code(), code_mark);
+      collector_->MarkObject(shared, shared_mark);
+    }
+  }
+
+ private:
+  MarkCompactCollector* collector_;
+};
+
+
+void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
+                                                        ThreadLocalTop* top) {
+  for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
+    // Note: for the frame that has a pending lazy deoptimization
+    // StackFrame::unchecked_code will return a non-optimized code object for
+    // the outermost function and StackFrame::LookupCode will return
+    // actual optimized code object.
+    StackFrame* frame = it.frame();
+    Code* code = frame->unchecked_code();
+    MarkBit code_mark = Marking::MarkBitFrom(code);
+    MarkObject(code, code_mark);
+    if (frame->is_optimized()) {
+      MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
+                                                          frame->LookupCode());
+    }
+  }
+}
+
+
+void MarkCompactCollector::PrepareForCodeFlushing() {
+  // Enable code flushing for non-incremental cycles.
+  if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
+    EnableCodeFlushing(!was_marked_incrementally_);
+  }
+
+  // If code flushing is disabled, there is no need to prepare for it.
+  if (!is_code_flushing_enabled()) return;
+
+  // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
+  // relies on it being marked before any other descriptor array.
+  HeapObject* descriptor_array = heap()->empty_descriptor_array();
+  MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
+  MarkObject(descriptor_array, descriptor_array_mark);
+
+  // Make sure we are not referencing the code from the stack.
+  DCHECK(this == heap()->mark_compact_collector());
+  PrepareThreadForCodeFlushing(heap()->isolate(),
+                               heap()->isolate()->thread_local_top());
+
+  // Iterate the archived stacks in all threads to check if
+  // the code is referenced.
+  CodeMarkingVisitor code_marking_visitor(this);
+  heap()->isolate()->thread_manager()->IterateArchivedThreads(
+      &code_marking_visitor);
+
+  SharedFunctionInfoMarkingVisitor visitor(this);
+  heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
+  heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
+
+  ProcessMarkingDeque();
+}
+
+
+// Visitor class for marking heap roots.
+class RootMarkingVisitor : public ObjectVisitor {
+ public:
+  explicit RootMarkingVisitor(Heap* heap)
+      : collector_(heap->mark_compact_collector()) {}
+
+  void VisitPointer(Object** p) { MarkObjectByPointer(p); }
+
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
+  }
+
+  // Skip the weak next code link in a code object, which is visited in
+  // ProcessTopOptimizedFrame.
+  void VisitNextCodeLink(Object** p) {}
+
+ private:
+  void MarkObjectByPointer(Object** p) {
+    if (!(*p)->IsHeapObject()) return;
+
+    // Replace flat cons strings in place.
+    HeapObject* object = ShortCircuitConsString(p);
+    MarkBit mark_bit = Marking::MarkBitFrom(object);
+    if (mark_bit.Get()) return;
+
+    Map* map = object->map();
+    // Mark the object.
+    collector_->SetMark(object, mark_bit);
+
+    // Mark the map pointer and body, and push them on the marking stack.
+    MarkBit map_mark = Marking::MarkBitFrom(map);
+    collector_->MarkObject(map, map_mark);
+    MarkCompactMarkingVisitor::IterateBody(map, object);
+
+    // Mark all the objects reachable from the map and body.  May leave
+    // overflowed objects in the heap.
+    collector_->EmptyMarkingDeque();
+  }
+
+  MarkCompactCollector* collector_;
+};
+
+
+// Helper class for pruning the string table.
+template <bool finalize_external_strings>
+class StringTableCleaner : public ObjectVisitor {
+ public:
+  explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {}
+
+  virtual void VisitPointers(Object** start, Object** end) {
+    // Visit all HeapObject pointers in [start, end).
+    for (Object** p = start; p < end; p++) {
+      Object* o = *p;
+      if (o->IsHeapObject() &&
+          !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
+        if (finalize_external_strings) {
+          DCHECK(o->IsExternalString());
+          heap_->FinalizeExternalString(String::cast(*p));
+        } else {
+          pointers_removed_++;
+        }
+        // Set the entry to the_hole_value (as deleted).
+        *p = heap_->the_hole_value();
+      }
+    }
+  }
+
+  int PointersRemoved() {
+    DCHECK(!finalize_external_strings);
+    return pointers_removed_;
+  }
+
+ private:
+  Heap* heap_;
+  int pointers_removed_;
+};
+
+
+typedef StringTableCleaner<false> InternalizedStringTableCleaner;
+typedef StringTableCleaner<true> ExternalStringTableCleaner;
+
+
+// Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
+// are retained.
+class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
+ public:
+  virtual Object* RetainAs(Object* object) {
+    if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
+      return object;
+    } else if (object->IsAllocationSite() &&
+               !(AllocationSite::cast(object)->IsZombie())) {
+      // "dead" AllocationSites need to live long enough for a traversal of new
+      // space. These sites get a one-time reprieve.
+      AllocationSite* site = AllocationSite::cast(object);
+      site->MarkZombie();
+      site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
+      return object;
+    } else {
+      return NULL;
+    }
+  }
+};
+
+
+// Fill the marking stack with overflowed objects returned by the given
+// iterator.  Stop when the marking stack is filled or the end of the space
+// is reached, whichever comes first.
+template <class T>
+static void DiscoverGreyObjectsWithIterator(Heap* heap,
+                                            MarkingDeque* marking_deque,
+                                            T* it) {
+  // The caller should ensure that the marking stack is initially not full,
+  // so that we don't waste effort pointlessly scanning for objects.
+  DCHECK(!marking_deque->IsFull());
+
+  Map* filler_map = heap->one_pointer_filler_map();
+  for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) {
+    MarkBit markbit = Marking::MarkBitFrom(object);
+    if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
+      Marking::GreyToBlack(markbit);
+      MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
+      marking_deque->PushBlack(object);
+      if (marking_deque->IsFull()) return;
+    }
+  }
+}
+
+
+static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
+
+
+static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
+                                      MemoryChunk* p) {
+  DCHECK(!marking_deque->IsFull());
+  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+  for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
+    Address cell_base = it.CurrentCellBase();
+    MarkBit::CellType* cell = it.CurrentCell();
+
+    const MarkBit::CellType current_cell = *cell;
+    if (current_cell == 0) continue;
+
+    MarkBit::CellType grey_objects;
+    if (it.HasNext()) {
+      const MarkBit::CellType next_cell = *(cell + 1);
+      grey_objects = current_cell & ((current_cell >> 1) |
+                                     (next_cell << (Bitmap::kBitsPerCell - 1)));
+    } else {
+      grey_objects = current_cell & (current_cell >> 1);
+    }
+
+    int offset = 0;
+    while (grey_objects != 0) {
+      int trailing_zeros = base::bits::CountTrailingZeros32(grey_objects);
+      grey_objects >>= trailing_zeros;
+      offset += trailing_zeros;
+      MarkBit markbit(cell, 1 << offset, false);
+      DCHECK(Marking::IsGrey(markbit));
+      Marking::GreyToBlack(markbit);
+      Address addr = cell_base + offset * kPointerSize;
+      HeapObject* object = HeapObject::FromAddress(addr);
+      MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
+      marking_deque->PushBlack(object);
+      if (marking_deque->IsFull()) return;
+      offset += 2;
+      grey_objects >>= 2;
+    }
+
+    grey_objects >>= (Bitmap::kBitsPerCell - 1);
+  }
+}
+
+
+int MarkCompactCollector::DiscoverAndEvacuateBlackObjectsOnPage(
+    NewSpace* new_space, NewSpacePage* p) {
+  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+  MarkBit::CellType* cells = p->markbits()->cells();
+  int survivors_size = 0;
+
+  for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
+    Address cell_base = it.CurrentCellBase();
+    MarkBit::CellType* cell = it.CurrentCell();
+
+    MarkBit::CellType current_cell = *cell;
+    if (current_cell == 0) continue;
+
+    int offset = 0;
+    while (current_cell != 0) {
+      int trailing_zeros = base::bits::CountTrailingZeros32(current_cell);
+      current_cell >>= trailing_zeros;
+      offset += trailing_zeros;
+      Address address = cell_base + offset * kPointerSize;
+      HeapObject* object = HeapObject::FromAddress(address);
+
+      int size = object->Size();
+      survivors_size += size;
+
+      Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
+
+      offset++;
+      current_cell >>= 1;
+
+      // TODO(hpayer): Refactor EvacuateObject and call this function instead.
+      if (heap()->ShouldBePromoted(object->address(), size) &&
+          TryPromoteObject(object, size)) {
+        continue;
+      }
+
+      AllocationResult allocation = new_space->AllocateRaw(size);
+      if (allocation.IsRetry()) {
+        if (!new_space->AddFreshPage()) {
+          // Shouldn't happen. We are sweeping linearly, and to-space
+          // has the same number of pages as from-space, so there is
+          // always room.
+          UNREACHABLE();
+        }
+        allocation = new_space->AllocateRaw(size);
+        DCHECK(!allocation.IsRetry());
+      }
+      Object* target = allocation.ToObjectChecked();
+
+      MigrateObject(HeapObject::cast(target), object, size, NEW_SPACE);
+      heap()->IncrementSemiSpaceCopiedObjectSize(size);
+    }
+    *cells = 0;
+  }
+  return survivors_size;
+}
+
+
+static void DiscoverGreyObjectsInSpace(Heap* heap, MarkingDeque* marking_deque,
+                                       PagedSpace* space) {
+  PageIterator it(space);
+  while (it.has_next()) {
+    Page* p = it.next();
+    DiscoverGreyObjectsOnPage(marking_deque, p);
+    if (marking_deque->IsFull()) return;
+  }
+}
+
+
+static void DiscoverGreyObjectsInNewSpace(Heap* heap,
+                                          MarkingDeque* marking_deque) {
+  NewSpace* space = heap->new_space();
+  NewSpacePageIterator it(space->bottom(), space->top());
+  while (it.has_next()) {
+    NewSpacePage* page = it.next();
+    DiscoverGreyObjectsOnPage(marking_deque, page);
+    if (marking_deque->IsFull()) return;
+  }
+}
+
+
+bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
+  Object* o = *p;
+  if (!o->IsHeapObject()) return false;
+  HeapObject* heap_object = HeapObject::cast(o);
+  MarkBit mark = Marking::MarkBitFrom(heap_object);
+  return !mark.Get();
+}
+
+
+bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
+                                                        Object** p) {
+  Object* o = *p;
+  DCHECK(o->IsHeapObject());
+  HeapObject* heap_object = HeapObject::cast(o);
+  MarkBit mark = Marking::MarkBitFrom(heap_object);
+  return !mark.Get();
+}
+
+
+void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
+  StringTable* string_table = heap()->string_table();
+  // Mark the string table itself.
+  MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
+  if (!string_table_mark.Get()) {
+    // String table could have already been marked by visiting the handles list.
+    SetMark(string_table, string_table_mark);
+  }
+  // Explicitly mark the prefix.
+  string_table->IteratePrefix(visitor);
+  ProcessMarkingDeque();
+}
+
+
+void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
+  MarkBit mark_bit = Marking::MarkBitFrom(site);
+  SetMark(site, mark_bit);
+}
+
+
+void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
+  // Mark the heap roots including global variables, stack variables,
+  // etc., and all objects reachable from them.
+  heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
+
+  // Handle the string table specially.
+  MarkStringTable(visitor);
+
+  MarkWeakObjectToCodeTable();
+
+  // There may be overflowed objects in the heap.  Visit them now.
+  while (marking_deque_.overflowed()) {
+    RefillMarkingDeque();
+    EmptyMarkingDeque();
+  }
+}
+
+
+void MarkCompactCollector::MarkImplicitRefGroups() {
+  List<ImplicitRefGroup*>* ref_groups =
+      isolate()->global_handles()->implicit_ref_groups();
+
+  int last = 0;
+  for (int i = 0; i < ref_groups->length(); i++) {
+    ImplicitRefGroup* entry = ref_groups->at(i);
+    DCHECK(entry != NULL);
+
+    if (!IsMarked(*entry->parent)) {
+      (*ref_groups)[last++] = entry;
+      continue;
+    }
+
+    Object*** children = entry->children;
+    // A parent object is marked, so mark all child heap objects.
+    for (size_t j = 0; j < entry->length; ++j) {
+      if ((*children[j])->IsHeapObject()) {
+        HeapObject* child = HeapObject::cast(*children[j]);
+        MarkBit mark = Marking::MarkBitFrom(child);
+        MarkObject(child, mark);
+      }
+    }
+
+    // Once the entire group has been marked, dispose it because it's
+    // not needed anymore.
+    delete entry;
+  }
+  ref_groups->Rewind(last);
+}
+
+
+void MarkCompactCollector::MarkWeakObjectToCodeTable() {
+  HeapObject* weak_object_to_code_table =
+      HeapObject::cast(heap()->weak_object_to_code_table());
+  if (!IsMarked(weak_object_to_code_table)) {
+    MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
+    SetMark(weak_object_to_code_table, mark);
+  }
+}
+
+
+// Mark all objects reachable from the objects on the marking stack.
+// Before: the marking stack contains zero or more heap object pointers.
+// After: the marking stack is empty, and all objects reachable from the
+// marking stack have been marked, or are overflowed in the heap.
+void MarkCompactCollector::EmptyMarkingDeque() {
+  while (!marking_deque_.IsEmpty()) {
+    HeapObject* object = marking_deque_.Pop();
+    DCHECK(object->IsHeapObject());
+    DCHECK(heap()->Contains(object));
+    DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
+
+    Map* map = object->map();
+    MarkBit map_mark = Marking::MarkBitFrom(map);
+    MarkObject(map, map_mark);
+
+    MarkCompactMarkingVisitor::IterateBody(map, object);
+  }
+}
+
+
+// Sweep the heap for overflowed objects, clear their overflow bits, and
+// push them on the marking stack.  Stop early if the marking stack fills
+// before sweeping completes.  If sweeping completes, there are no remaining
+// overflowed objects in the heap so the overflow flag on the markings stack
+// is cleared.
+void MarkCompactCollector::RefillMarkingDeque() {
+  DCHECK(marking_deque_.overflowed());
+
+  DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
+                             heap()->old_pointer_space());
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_data_space());
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->code_space());
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->map_space());
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->cell_space());
+  if (marking_deque_.IsFull()) return;
+
+  DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
+                             heap()->property_cell_space());
+  if (marking_deque_.IsFull()) return;
+
+  LargeObjectIterator lo_it(heap()->lo_space());
+  DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &lo_it);
+  if (marking_deque_.IsFull()) return;
+
+  marking_deque_.ClearOverflowed();
+}
+
+
+// Mark all objects reachable (transitively) from objects on the marking
+// stack.  Before: the marking stack contains zero or more heap object
+// pointers.  After: the marking stack is empty and there are no overflowed
+// objects in the heap.
+void MarkCompactCollector::ProcessMarkingDeque() {
+  EmptyMarkingDeque();
+  while (marking_deque_.overflowed()) {
+    RefillMarkingDeque();
+    EmptyMarkingDeque();
+  }
+}
+
+
+// Mark all objects reachable (transitively) from objects on the marking
+// stack including references only considered in the atomic marking pause.
+void MarkCompactCollector::ProcessEphemeralMarking(ObjectVisitor* visitor) {
+  bool work_to_do = true;
+  DCHECK(marking_deque_.IsEmpty());
+  while (work_to_do) {
+    isolate()->global_handles()->IterateObjectGroups(
+        visitor, &IsUnmarkedHeapObjectWithHeap);
+    MarkImplicitRefGroups();
+    ProcessWeakCollections();
+    work_to_do = !marking_deque_.IsEmpty();
+    ProcessMarkingDeque();
+  }
+}
+
+
+void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
+  for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
+       !it.done(); it.Advance()) {
+    if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
+      return;
+    }
+    if (it.frame()->type() == StackFrame::OPTIMIZED) {
+      Code* code = it.frame()->LookupCode();
+      if (!code->CanDeoptAt(it.frame()->pc())) {
+        code->CodeIterateBody(visitor);
+      }
+      ProcessMarkingDeque();
+      return;
+    }
+  }
+}
+
+
+void MarkCompactCollector::MarkLiveObjects() {
+  GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
+  double start_time = 0.0;
+  if (FLAG_print_cumulative_gc_stat) {
+    start_time = base::OS::TimeCurrentMillis();
+  }
+  // The recursive GC marker detects when it is nearing stack overflow,
+  // and switches to a different marking system.  JS interrupts interfere
+  // with the C stack limit check.
+  PostponeInterruptsScope postpone(isolate());
+
+  bool incremental_marking_overflowed = false;
+  IncrementalMarking* incremental_marking = heap_->incremental_marking();
+  if (was_marked_incrementally_) {
+    // Finalize the incremental marking and check whether we had an overflow.
+    // Both markers use grey color to mark overflowed objects so
+    // non-incremental marker can deal with them as if overflow
+    // occured during normal marking.
+    // But incremental marker uses a separate marking deque
+    // so we have to explicitly copy its overflow state.
+    incremental_marking->Finalize();
+    incremental_marking_overflowed =
+        incremental_marking->marking_deque()->overflowed();
+    incremental_marking->marking_deque()->ClearOverflowed();
+  } else {
+    // Abort any pending incremental activities e.g. incremental sweeping.
+    incremental_marking->Abort();
+  }
+
+#ifdef DEBUG
+  DCHECK(state_ == PREPARE_GC);
+  state_ = MARK_LIVE_OBJECTS;
+#endif
+  // The to space contains live objects, a page in from space is used as a
+  // marking stack.
+  Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
+  Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
+  if (FLAG_force_marking_deque_overflows) {
+    marking_deque_end = marking_deque_start + 64 * kPointerSize;
+  }
+  marking_deque_.Initialize(marking_deque_start, marking_deque_end);
+  DCHECK(!marking_deque_.overflowed());
+
+  if (incremental_marking_overflowed) {
+    // There are overflowed objects left in the heap after incremental marking.
+    marking_deque_.SetOverflowed();
+  }
+
+  PrepareForCodeFlushing();
+
+  if (was_marked_incrementally_) {
+    // There is no write barrier on cells so we have to scan them now at the end
+    // of the incremental marking.
+    {
+      HeapObjectIterator cell_iterator(heap()->cell_space());
+      HeapObject* cell;
+      while ((cell = cell_iterator.Next()) != NULL) {
+        DCHECK(cell->IsCell());
+        if (IsMarked(cell)) {
+          int offset = Cell::kValueOffset;
+          MarkCompactMarkingVisitor::VisitPointer(
+              heap(), reinterpret_cast<Object**>(cell->address() + offset));
+        }
+      }
+    }
+    {
+      HeapObjectIterator js_global_property_cell_iterator(
+          heap()->property_cell_space());
+      HeapObject* cell;
+      while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
+        DCHECK(cell->IsPropertyCell());
+        if (IsMarked(cell)) {
+          MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
+        }
+      }
+    }
+  }
+
+  RootMarkingVisitor root_visitor(heap());
+  MarkRoots(&root_visitor);
+
+  ProcessTopOptimizedFrame(&root_visitor);
+
+  // The objects reachable from the roots are marked, yet unreachable
+  // objects are unmarked.  Mark objects reachable due to host
+  // application specific logic or through Harmony weak maps.
+  ProcessEphemeralMarking(&root_visitor);
+
+  // The objects reachable from the roots, weak maps or object groups
+  // are marked, yet unreachable objects are unmarked.  Mark objects
+  // reachable only from weak global handles.
+  //
+  // First we identify nonlive weak handles and mark them as pending
+  // destruction.
+  heap()->isolate()->global_handles()->IdentifyWeakHandles(
+      &IsUnmarkedHeapObject);
+  // Then we mark the objects and process the transitive closure.
+  heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
+  while (marking_deque_.overflowed()) {
+    RefillMarkingDeque();
+    EmptyMarkingDeque();
+  }
+
+  // Repeat host application specific and Harmony weak maps marking to
+  // mark unmarked objects reachable from the weak roots.
+  ProcessEphemeralMarking(&root_visitor);
+
+  AfterMarking();
+
+  if (FLAG_print_cumulative_gc_stat) {
+    heap_->tracer()->AddMarkingTime(base::OS::TimeCurrentMillis() - start_time);
+  }
+}
+
+
+void MarkCompactCollector::AfterMarking() {
+  // Object literal map caches reference strings (cache keys) and maps
+  // (cache values). At this point still useful maps have already been
+  // marked. Mark the keys for the alive values before we process the
+  // string table.
+  ProcessMapCaches();
+
+  // Prune the string table removing all strings only pointed to by the
+  // string table.  Cannot use string_table() here because the string
+  // table is marked.
+  StringTable* string_table = heap()->string_table();
+  InternalizedStringTableCleaner internalized_visitor(heap());
+  string_table->IterateElements(&internalized_visitor);
+  string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
+
+  ExternalStringTableCleaner external_visitor(heap());
+  heap()->external_string_table_.Iterate(&external_visitor);
+  heap()->external_string_table_.CleanUp();
+
+  // Process the weak references.
+  MarkCompactWeakObjectRetainer mark_compact_object_retainer;
+  heap()->ProcessWeakReferences(&mark_compact_object_retainer);
+
+  // Remove object groups after marking phase.
+  heap()->isolate()->global_handles()->RemoveObjectGroups();
+  heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
+
+  // Flush code from collected candidates.
+  if (is_code_flushing_enabled()) {
+    code_flusher_->ProcessCandidates();
+    // If incremental marker does not support code flushing, we need to
+    // disable it before incremental marking steps for next cycle.
+    if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
+      EnableCodeFlushing(false);
+    }
+  }
+
+  if (FLAG_track_gc_object_stats) {
+    heap()->CheckpointObjectStats();
+  }
+}
+
+
+void MarkCompactCollector::ProcessMapCaches() {
+  Object* raw_context = heap()->native_contexts_list();
+  while (raw_context != heap()->undefined_value()) {
+    Context* context = reinterpret_cast<Context*>(raw_context);
+    if (IsMarked(context)) {
+      HeapObject* raw_map_cache =
+          HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
+      // A map cache may be reachable from the stack. In this case
+      // it's already transitively marked and it's too late to clean
+      // up its parts.
+      if (!IsMarked(raw_map_cache) &&
+          raw_map_cache != heap()->undefined_value()) {
+        MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
+        int existing_elements = map_cache->NumberOfElements();
+        int used_elements = 0;
+        for (int i = MapCache::kElementsStartIndex; i < map_cache->length();
+             i += MapCache::kEntrySize) {
+          Object* raw_key = map_cache->get(i);
+          if (raw_key == heap()->undefined_value() ||
+              raw_key == heap()->the_hole_value())
+            continue;
+          STATIC_ASSERT(MapCache::kEntrySize == 2);
+          Object* raw_map = map_cache->get(i + 1);
+          if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
+            ++used_elements;
+          } else {
+            // Delete useless entries with unmarked maps.
+            DCHECK(raw_map->IsMap());
+            map_cache->set_the_hole(i);
+            map_cache->set_the_hole(i + 1);
+          }
+        }
+        if (used_elements == 0) {
+          context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
+        } else {
+          // Note: we don't actually shrink the cache here to avoid
+          // extra complexity during GC. We rely on subsequent cache
+          // usages (EnsureCapacity) to do this.
+          map_cache->ElementsRemoved(existing_elements - used_elements);
+          MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
+          MarkObject(map_cache, map_cache_markbit);
+        }
+      }
+    }
+    // Move to next element in the list.
+    raw_context = context->get(Context::NEXT_CONTEXT_LINK);
+  }
+  ProcessMarkingDeque();
+}
+
+
+void MarkCompactCollector::ClearNonLiveReferences() {
+  // Iterate over the map space, setting map transitions that go from
+  // a marked map to an unmarked map to null transitions.  This action
+  // is carried out only on maps of JSObjects and related subtypes.
+  HeapObjectIterator map_iterator(heap()->map_space());
+  for (HeapObject* obj = map_iterator.Next(); obj != NULL;
+       obj = map_iterator.Next()) {
+    Map* map = Map::cast(obj);
+
+    if (!map->CanTransition()) continue;
+
+    MarkBit map_mark = Marking::MarkBitFrom(map);
+    ClearNonLivePrototypeTransitions(map);
+    ClearNonLiveMapTransitions(map, map_mark);
+
+    if (map_mark.Get()) {
+      ClearNonLiveDependentCode(map->dependent_code());
+    } else {
+      ClearDependentCode(map->dependent_code());
+      map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
+    }
+  }
+
+  // Iterate over property cell space, removing dependent code that is not
+  // otherwise kept alive by strong references.
+  HeapObjectIterator cell_iterator(heap_->property_cell_space());
+  for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
+       cell = cell_iterator.Next()) {
+    if (IsMarked(cell)) {
+      ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
+    }
+  }
+
+  // Iterate over allocation sites, removing dependent code that is not
+  // otherwise kept alive by strong references.
+  Object* undefined = heap()->undefined_value();
+  for (Object* site = heap()->allocation_sites_list(); site != undefined;
+       site = AllocationSite::cast(site)->weak_next()) {
+    if (IsMarked(site)) {
+      ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
+    }
+  }
+
+  if (heap_->weak_object_to_code_table()->IsHashTable()) {
+    WeakHashTable* table =
+        WeakHashTable::cast(heap_->weak_object_to_code_table());
+    uint32_t capacity = table->Capacity();
+    for (uint32_t i = 0; i < capacity; i++) {
+      uint32_t key_index = table->EntryToIndex(i);
+      Object* key = table->get(key_index);
+      if (!table->IsKey(key)) continue;
+      uint32_t value_index = table->EntryToValueIndex(i);
+      Object* value = table->get(value_index);
+      if (key->IsCell() && !IsMarked(key)) {
+        Cell* cell = Cell::cast(key);
+        Object* object = cell->value();
+        if (IsMarked(object)) {
+          MarkBit mark = Marking::MarkBitFrom(cell);
+          SetMark(cell, mark);
+          Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
+          RecordSlot(value_slot, value_slot, *value_slot);
+        }
+      }
+      if (IsMarked(key)) {
+        if (!IsMarked(value)) {
+          HeapObject* obj = HeapObject::cast(value);
+          MarkBit mark = Marking::MarkBitFrom(obj);
+          SetMark(obj, mark);
+        }
+        ClearNonLiveDependentCode(DependentCode::cast(value));
+      } else {
+        ClearDependentCode(DependentCode::cast(value));
+        table->set(key_index, heap_->the_hole_value());
+        table->set(value_index, heap_->the_hole_value());
+        table->ElementRemoved();
+      }
+    }
+  }
+}
+
+
+void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
+  int number_of_transitions = map->NumberOfProtoTransitions();
+  FixedArray* prototype_transitions = map->GetPrototypeTransitions();
+
+  int new_number_of_transitions = 0;
+  const int header = Map::kProtoTransitionHeaderSize;
+  const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
+  const int map_offset = header + Map::kProtoTransitionMapOffset;
+  const int step = Map::kProtoTransitionElementsPerEntry;
+  for (int i = 0; i < number_of_transitions; i++) {
+    Object* prototype = prototype_transitions->get(proto_offset + i * step);
+    Object* cached_map = prototype_transitions->get(map_offset + i * step);
+    if (IsMarked(prototype) && IsMarked(cached_map)) {
+      DCHECK(!prototype->IsUndefined());
+      int proto_index = proto_offset + new_number_of_transitions * step;
+      int map_index = map_offset + new_number_of_transitions * step;
+      if (new_number_of_transitions != i) {
+        prototype_transitions->set(proto_index, prototype,
+                                   UPDATE_WRITE_BARRIER);
+        prototype_transitions->set(map_index, cached_map, SKIP_WRITE_BARRIER);
+      }
+      Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
+      RecordSlot(slot, slot, prototype);
+      new_number_of_transitions++;
+    }
+  }
+
+  if (new_number_of_transitions != number_of_transitions) {
+    map->SetNumberOfProtoTransitions(new_number_of_transitions);
+  }
+
+  // Fill slots that became free with undefined value.
+  for (int i = new_number_of_transitions * step;
+       i < number_of_transitions * step; i++) {
+    prototype_transitions->set_undefined(header + i);
+  }
+}
+
+
+void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
+                                                      MarkBit map_mark) {
+  Object* potential_parent = map->GetBackPointer();
+  if (!potential_parent->IsMap()) return;
+  Map* parent = Map::cast(potential_parent);
+
+  // Follow back pointer, check whether we are dealing with a map transition
+  // from a live map to a dead path and in case clear transitions of parent.
+  bool current_is_alive = map_mark.Get();
+  bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
+  if (!current_is_alive && parent_is_alive) {
+    ClearMapTransitions(parent);
+  }
+}
+
+
+// Clear a possible back pointer in case the transition leads to a dead map.
+// Return true in case a back pointer has been cleared and false otherwise.
+bool MarkCompactCollector::ClearMapBackPointer(Map* target) {
+  if (Marking::MarkBitFrom(target).Get()) return false;
+  target->SetBackPointer(heap_->undefined_value(), SKIP_WRITE_BARRIER);
+  return true;
+}
+
+
+void MarkCompactCollector::ClearMapTransitions(Map* map) {
+  // If there are no transitions to be cleared, return.
+  // TODO(verwaest) Should be an assert, otherwise back pointers are not
+  // properly cleared.
+  if (!map->HasTransitionArray()) return;
+
+  TransitionArray* t = map->transitions();
+
+  int transition_index = 0;
+
+  DescriptorArray* descriptors = map->instance_descriptors();
+  bool descriptors_owner_died = false;
+
+  // Compact all live descriptors to the left.
+  for (int i = 0; i < t->number_of_transitions(); ++i) {
+    Map* target = t->GetTarget(i);
+    if (ClearMapBackPointer(target)) {
+      if (target->instance_descriptors() == descriptors) {
+        descriptors_owner_died = true;
+      }
+    } else {
+      if (i != transition_index) {
+        Name* key = t->GetKey(i);
+        t->SetKey(transition_index, key);
+        Object** key_slot = t->GetKeySlot(transition_index);
+        RecordSlot(key_slot, key_slot, key);
+        // Target slots do not need to be recorded since maps are not compacted.
+        t->SetTarget(transition_index, t->GetTarget(i));
+      }
+      transition_index++;
+    }
+  }
+
+  // If there are no transitions to be cleared, return.
+  // TODO(verwaest) Should be an assert, otherwise back pointers are not
+  // properly cleared.
+  if (transition_index == t->number_of_transitions()) return;
+
+  int number_of_own_descriptors = map->NumberOfOwnDescriptors();
+
+  if (descriptors_owner_died) {
+    if (number_of_own_descriptors > 0) {
+      TrimDescriptorArray(map, descriptors, number_of_own_descriptors);
+      DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
+      map->set_owns_descriptors(true);
+    } else {
+      DCHECK(descriptors == heap_->empty_descriptor_array());
+    }
+  }
+
+  // Note that we never eliminate a transition array, though we might right-trim
+  // such that number_of_transitions() == 0. If this assumption changes,
+  // TransitionArray::CopyInsert() will need to deal with the case that a
+  // transition array disappeared during GC.
+  int trim = t->number_of_transitions() - transition_index;
+  if (trim > 0) {
+    heap_->RightTrimFixedArray<Heap::FROM_GC>(
+        t, t->IsSimpleTransition() ? trim
+                                   : trim * TransitionArray::kTransitionSize);
+  }
+  DCHECK(map->HasTransitionArray());
+}
+
+
+void MarkCompactCollector::TrimDescriptorArray(Map* map,
+                                               DescriptorArray* descriptors,
+                                               int number_of_own_descriptors) {
+  int number_of_descriptors = descriptors->number_of_descriptors_storage();
+  int to_trim = number_of_descriptors - number_of_own_descriptors;
+  if (to_trim == 0) return;
+
+  heap_->RightTrimFixedArray<Heap::FROM_GC>(
+      descriptors, to_trim * DescriptorArray::kDescriptorSize);
+  descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
+
+  if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors);
+  descriptors->Sort();
+}
+
+
+void MarkCompactCollector::TrimEnumCache(Map* map,
+                                         DescriptorArray* descriptors) {
+  int live_enum = map->EnumLength();
+  if (live_enum == kInvalidEnumCacheSentinel) {
+    live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
+  }
+  if (live_enum == 0) return descriptors->ClearEnumCache();
+
+  FixedArray* enum_cache = descriptors->GetEnumCache();
+
+  int to_trim = enum_cache->length() - live_enum;
+  if (to_trim <= 0) return;
+  heap_->RightTrimFixedArray<Heap::FROM_GC>(descriptors->GetEnumCache(),
+                                            to_trim);
+
+  if (!descriptors->HasEnumIndicesCache()) return;
+  FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
+  heap_->RightTrimFixedArray<Heap::FROM_GC>(enum_indices_cache, to_trim);
+}
+
+
+void MarkCompactCollector::ClearDependentICList(Object* head) {
+  Object* current = head;
+  Object* undefined = heap()->undefined_value();
+  while (current != undefined) {
+    Code* code = Code::cast(current);
+    if (IsMarked(code)) {
+      DCHECK(code->is_weak_stub());
+      IC::InvalidateMaps(code);
+    }
+    current = code->next_code_link();
+    code->set_next_code_link(undefined);
+  }
+}
+
+
+void MarkCompactCollector::ClearDependentCode(DependentCode* entries) {
+  DisallowHeapAllocation no_allocation;
+  DependentCode::GroupStartIndexes starts(entries);
+  int number_of_entries = starts.number_of_entries();
+  if (number_of_entries == 0) return;
+  int g = DependentCode::kWeakICGroup;
+  if (starts.at(g) != starts.at(g + 1)) {
+    int i = starts.at(g);
+    DCHECK(i + 1 == starts.at(g + 1));
+    Object* head = entries->object_at(i);
+    ClearDependentICList(head);
+  }
+  g = DependentCode::kWeakCodeGroup;
+  for (int i = starts.at(g); i < starts.at(g + 1); i++) {
+    // If the entry is compilation info then the map must be alive,
+    // and ClearDependentCode shouldn't be called.
+    DCHECK(entries->is_code_at(i));
+    Code* code = entries->code_at(i);
+    if (IsMarked(code) && !code->marked_for_deoptimization()) {
+      DependentCode::SetMarkedForDeoptimization(
+          code, static_cast<DependentCode::DependencyGroup>(g));
+      code->InvalidateEmbeddedObjects();
+      have_code_to_deoptimize_ = true;
+    }
+  }
+  for (int i = 0; i < number_of_entries; i++) {
+    entries->clear_at(i);
+  }
+}
+
+
+int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
+    DependentCode* entries, int group, int start, int end, int new_start) {
+  int survived = 0;
+  if (group == DependentCode::kWeakICGroup) {
+    // Dependent weak IC stubs form a linked list and only the head is stored
+    // in the dependent code array.
+    if (start != end) {
+      DCHECK(start + 1 == end);
+      Object* old_head = entries->object_at(start);
+      MarkCompactWeakObjectRetainer retainer;
+      Object* head = VisitWeakList<Code>(heap(), old_head, &retainer);
+      entries->set_object_at(new_start, head);
+      Object** slot = entries->slot_at(new_start);
+      RecordSlot(slot, slot, head);
+      // We do not compact this group even if the head is undefined,
+      // more dependent ICs are likely to be added later.
+      survived = 1;
+    }
+  } else {
+    for (int i = start; i < end; i++) {
+      Object* obj = entries->object_at(i);
+      DCHECK(obj->IsCode() || IsMarked(obj));
+      if (IsMarked(obj) &&
+          (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
+        if (new_start + survived != i) {
+          entries->set_object_at(new_start + survived, obj);
+        }
+        Object** slot = entries->slot_at(new_start + survived);
+        RecordSlot(slot, slot, obj);
+        survived++;
+      }
+    }
+  }
+  entries->set_number_of_entries(
+      static_cast<DependentCode::DependencyGroup>(group), survived);
+  return survived;
+}
+
+
+void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
+  DisallowHeapAllocation no_allocation;
+  DependentCode::GroupStartIndexes starts(entries);
+  int number_of_entries = starts.number_of_entries();
+  if (number_of_entries == 0) return;
+  int new_number_of_entries = 0;
+  // Go through all groups, remove dead codes and compact.
+  for (int g = 0; g < DependentCode::kGroupCount; g++) {
+    int survived = ClearNonLiveDependentCodeInGroup(
+        entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
+    new_number_of_entries += survived;
+  }
+  for (int i = new_number_of_entries; i < number_of_entries; i++) {
+    entries->clear_at(i);
+  }
+}
+
+
+void MarkCompactCollector::ProcessWeakCollections() {
+  GCTracer::Scope gc_scope(heap()->tracer(),
+                           GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
+  Object* weak_collection_obj = heap()->encountered_weak_collections();
+  while (weak_collection_obj != Smi::FromInt(0)) {
+    JSWeakCollection* weak_collection =
+        reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
+    DCHECK(MarkCompactCollector::IsMarked(weak_collection));
+    if (weak_collection->table()->IsHashTable()) {
+      ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
+      Object** anchor = reinterpret_cast<Object**>(table->address());
+      for (int i = 0; i < table->Capacity(); i++) {
+        if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
+          Object** key_slot =
+              table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
+          RecordSlot(anchor, key_slot, *key_slot);
+          Object** value_slot =
+              table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
+          MarkCompactMarkingVisitor::MarkObjectByPointer(this, anchor,
+                                                         value_slot);
+        }
+      }
+    }
+    weak_collection_obj = weak_collection->next();
+  }
+}
+
+
+void MarkCompactCollector::ClearWeakCollections() {
+  GCTracer::Scope gc_scope(heap()->tracer(),
+                           GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
+  Object* weak_collection_obj = heap()->encountered_weak_collections();
+  while (weak_collection_obj != Smi::FromInt(0)) {
+    JSWeakCollection* weak_collection =
+        reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
+    DCHECK(MarkCompactCollector::IsMarked(weak_collection));
+    if (weak_collection->table()->IsHashTable()) {
+      ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
+      for (int i = 0; i < table->Capacity(); i++) {
+        HeapObject* key = HeapObject::cast(table->KeyAt(i));
+        if (!MarkCompactCollector::IsMarked(key)) {
+          table->RemoveEntry(i);
+        }
+      }
+    }
+    weak_collection_obj = weak_collection->next();
+    weak_collection->set_next(heap()->undefined_value());
+  }
+  heap()->set_encountered_weak_collections(Smi::FromInt(0));
+}
+
+
+void MarkCompactCollector::AbortWeakCollections() {
+  GCTracer::Scope gc_scope(heap()->tracer(),
+                           GCTracer::Scope::MC_WEAKCOLLECTION_ABORT);
+  Object* weak_collection_obj = heap()->encountered_weak_collections();
+  while (weak_collection_obj != Smi::FromInt(0)) {
+    JSWeakCollection* weak_collection =
+        reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
+    weak_collection_obj = weak_collection->next();
+    weak_collection->set_next(heap()->undefined_value());
+  }
+  heap()->set_encountered_weak_collections(Smi::FromInt(0));
+}
+
+
+void MarkCompactCollector::RecordMigratedSlot(Object* value, Address slot) {
+  if (heap_->InNewSpace(value)) {
+    heap_->store_buffer()->Mark(slot);
+  } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
+    SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
+                       reinterpret_cast<Object**>(slot),
+                       SlotsBuffer::IGNORE_OVERFLOW);
+  }
+}
+
+
+// We scavange new space simultaneously with sweeping. This is done in two
+// passes.
+//
+// The first pass migrates all alive objects from one semispace to another or
+// promotes them to old space.  Forwarding address is written directly into
+// first word of object without any encoding.  If object is dead we write
+// NULL as a forwarding address.
+//
+// The second pass updates pointers to new space in all spaces.  It is possible
+// to encounter pointers to dead new space objects during traversal of pointers
+// to new space.  We should clear them to avoid encountering them during next
+// pointer iteration.  This is an issue if the store buffer overflows and we
+// have to scan the entire old space, including dead objects, looking for
+// pointers to new space.
+void MarkCompactCollector::MigrateObject(HeapObject* dst, HeapObject* src,
+                                         int size, AllocationSpace dest) {
+  Address dst_addr = dst->address();
+  Address src_addr = src->address();
+  DCHECK(heap()->AllowedToBeMigrated(src, dest));
+  DCHECK(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
+  if (dest == OLD_POINTER_SPACE) {
+    Address src_slot = src_addr;
+    Address dst_slot = dst_addr;
+    DCHECK(IsAligned(size, kPointerSize));
+
+    for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
+      Object* value = Memory::Object_at(src_slot);
+
+      Memory::Object_at(dst_slot) = value;
+
+      if (!src->MayContainRawValues()) {
+        RecordMigratedSlot(value, dst_slot);
+      }
+
+      src_slot += kPointerSize;
+      dst_slot += kPointerSize;
+    }
+
+    if (compacting_ && dst->IsJSFunction()) {
+      Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
+      Address code_entry = Memory::Address_at(code_entry_slot);
+
+      if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
+        SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
+                           SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
+                           SlotsBuffer::IGNORE_OVERFLOW);
+      }
+    } else if (dst->IsConstantPoolArray()) {
+      // We special case ConstantPoolArrays since they could contain integers
+      // value entries which look like tagged pointers.
+      // TODO(mstarzinger): restructure this code to avoid this special-casing.
+      ConstantPoolArray* array = ConstantPoolArray::cast(dst);
+      ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
+      while (!code_iter.is_finished()) {
+        Address code_entry_slot =
+            dst_addr + array->OffsetOfElementAt(code_iter.next_index());
+        Address code_entry = Memory::Address_at(code_entry_slot);
+
+        if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
+          SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
+                             SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
+                             SlotsBuffer::IGNORE_OVERFLOW);
+        }
+      }
+      ConstantPoolArray::Iterator heap_iter(array, ConstantPoolArray::HEAP_PTR);
+      while (!heap_iter.is_finished()) {
+        Address heap_slot =
+            dst_addr + array->OffsetOfElementAt(heap_iter.next_index());
+        Object* value = Memory::Object_at(heap_slot);
+        RecordMigratedSlot(value, heap_slot);
+      }
+    }
+  } else if (dest == CODE_SPACE) {
+    PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
+    heap()->MoveBlock(dst_addr, src_addr, size);
+    SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
+                       SlotsBuffer::RELOCATED_CODE_OBJECT, dst_addr,
+                       SlotsBuffer::IGNORE_OVERFLOW);
+    Code::cast(dst)->Relocate(dst_addr - src_addr);
+  } else {
+    DCHECK(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
+    heap()->MoveBlock(dst_addr, src_addr, size);
+  }
+  heap()->OnMoveEvent(dst, src, size);
+  Memory::Address_at(src_addr) = dst_addr;
+}
+
+
+// Visitor for updating pointers from live objects in old spaces to new space.
+// It does not expect to encounter pointers to dead objects.
+class PointersUpdatingVisitor : public ObjectVisitor {
+ public:
+  explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {}
+
+  void VisitPointer(Object** p) { UpdatePointer(p); }
+
+  void VisitPointers(Object** start, Object** end) {
+    for (Object** p = start; p < end; p++) UpdatePointer(p);
+  }
+
+  void VisitEmbeddedPointer(RelocInfo* rinfo) {
+    DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
+    Object* target = rinfo->target_object();
+    Object* old_target = target;
+    VisitPointer(&target);
+    // Avoid unnecessary changes that might unnecessary flush the instruction
+    // cache.
+    if (target != old_target) {
+      rinfo->set_target_object(target);
+    }
+  }
+
+  void VisitCodeTarget(RelocInfo* rinfo) {
+    DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
+    Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
+    Object* old_target = target;
+    VisitPointer(&target);
+    if (target != old_target) {
+      rinfo->set_target_address(Code::cast(target)->instruction_start());
+    }
+  }
+
+  void VisitCodeAgeSequence(RelocInfo* rinfo) {
+    DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
+    Object* stub = rinfo->code_age_stub();
+    DCHECK(stub != NULL);
+    VisitPointer(&stub);
+    if (stub != rinfo->code_age_stub()) {
+      rinfo->set_code_age_stub(Code::cast(stub));
+    }
+  }
+
+  void VisitDebugTarget(RelocInfo* rinfo) {
+    DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) &&
+            rinfo->IsPatchedReturnSequence()) ||
+           (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
+            rinfo->IsPatchedDebugBreakSlotSequence()));
+    Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
+    VisitPointer(&target);
+    rinfo->set_call_address(Code::cast(target)->instruction_start());
+  }
+
+  static inline void UpdateSlot(Heap* heap, Object** slot) {
+    Object* obj = *slot;
+
+    if (!obj->IsHeapObject()) return;
+
+    HeapObject* heap_obj = HeapObject::cast(obj);
+
+    MapWord map_word = heap_obj->map_word();
+    if (map_word.IsForwardingAddress()) {
+      DCHECK(heap->InFromSpace(heap_obj) ||
+             MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
+      HeapObject* target = map_word.ToForwardingAddress();
+      *slot = target;
+      DCHECK(!heap->InFromSpace(target) &&
+             !MarkCompactCollector::IsOnEvacuationCandidate(target));
+    }
+  }
+
+ private:
+  inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); }
+
+  Heap* heap_;
+};
+
+
+static void UpdatePointer(HeapObject** address, HeapObject* object) {
+  Address new_addr = Memory::Address_at(object->address());
+
+  // The new space sweep will overwrite the map word of dead objects
+  // with NULL. In this case we do not need to transfer this entry to
+  // the store buffer which we are rebuilding.
+  // We perform the pointer update with a no barrier compare-and-swap. The
+  // compare and swap may fail in the case where the pointer update tries to
+  // update garbage memory which was concurrently accessed by the sweeper.
+  if (new_addr != NULL) {
+    base::NoBarrier_CompareAndSwap(
+        reinterpret_cast<base::AtomicWord*>(address),
+        reinterpret_cast<base::AtomicWord>(object),
+        reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
+  }
+}
+
+
+static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
+                                                         Object** p) {
+  MapWord map_word = HeapObject::cast(*p)->map_word();
+
+  if (map_word.IsForwardingAddress()) {
+    return String::cast(map_word.ToForwardingAddress());
+  }
+
+  return String::cast(*p);
+}
+
+
+bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
+                                            int object_size) {
+  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
+
+  OldSpace* target_space = heap()->TargetSpace(object);
+
+  DCHECK(target_space == heap()->old_pointer_space() ||
+         target_space == heap()->old_data_space());
+  HeapObject* target;
+  AllocationResult allocation = target_space->AllocateRaw(object_size);
+  if (allocation.To(&target)) {
+    MigrateObject(target, object, object_size, target_space->identity());
+    heap()->IncrementPromotedObjectsSize(object_size);
+    return true;
+  }
+
+  return false;
+}
+
+
+void MarkCompactCollector::EvacuateNewSpace() {
+  // There are soft limits in the allocation code, designed trigger a mark
+  // sweep collection by failing allocations.  But since we are already in
+  // a mark-sweep allocation, there is no sense in trying to trigger one.
+  AlwaysAllocateScope scope(isolate());
+
+  NewSpace* new_space = heap()->new_space();
+
+  // Store allocation range before flipping semispaces.
+  Address from_bottom = new_space->bottom();
+  Address from_top = new_space->top();
+
+  // Flip the semispaces.  After flipping, to space is empty, from space has
+  // live objects.
+  new_space->Flip();
+  new_space->ResetAllocationInfo();
+
+  int survivors_size = 0;
+
+  // First pass: traverse all objects in inactive semispace, remove marks,
+  // migrate live objects and write forwarding addresses.  This stage puts
+  // new entries in the store buffer and may cause some pages to be marked
+  // scan-on-scavenge.
+  NewSpacePageIterator it(from_bottom, from_top);
+  while (it.has_next()) {
+    NewSpacePage* p = it.next();
+    survivors_size += DiscoverAndEvacuateBlackObjectsOnPage(new_space, p);
+  }
+
+  heap_->IncrementYoungSurvivorsCounter(survivors_size);
+  new_space->set_age_mark(new_space->top());
+}
+
+
+void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
+  AlwaysAllocateScope always_allocate(isolate());
+  PagedSpace* space = static_cast<PagedSpace*>(p->owner());
+  DCHECK(p->IsEvacuationCandidate() && !p->WasSwept());
+  p->SetWasSwept();
+
+  int offsets[16];
+
+  for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
+    Address cell_base = it.CurrentCellBase();
+    MarkBit::CellType* cell = it.CurrentCell();
+
+    if (*cell == 0) continue;
+
+    int live_objects = MarkWordToObjectStarts(*cell, offsets);
+    for (int i = 0; i < live_objects; i++) {
+      Address object_addr = cell_base + offsets[i] * kPointerSize;
+      HeapObject* object = HeapObject::FromAddress(object_addr);
+      DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
+
+      int size = object->Size();
+
+      HeapObject* target_object;
+      AllocationResult allocation = space->AllocateRaw(size);
+      if (!allocation.To(&target_object)) {
+        // If allocation failed, use emergency memory and re-try allocation.
+        CHECK(space->HasEmergencyMemory());
+        space->UseEmergencyMemory();
+        allocation = space->AllocateRaw(size);
+      }
+      if (!allocation.To(&target_object)) {
+        // OS refused to give us memory.
+        V8::FatalProcessOutOfMemory("Evacuation");
+        return;
+      }
+
+      MigrateObject(target_object, object, size, space->identity());
+      DCHECK(object->map_word().IsForwardingAddress());
+    }
+
+    // Clear marking bits for current cell.
+    *cell = 0;
+  }
+  p->ResetLiveBytes();
+}
+
+
+void MarkCompactCollector::EvacuatePages() {
+  int npages = evacuation_candidates_.length();
+  for (int i = 0; i < npages; i++) {
+    Page* p = evacuation_candidates_[i];
+    DCHECK(p->IsEvacuationCandidate() ||
+           p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
+    DCHECK(static_cast<int>(p->parallel_sweeping()) ==
+           MemoryChunk::SWEEPING_DONE);
+    PagedSpace* space = static_cast<PagedSpace*>(p->owner());
+    // Allocate emergency memory for the case when compaction fails due to out
+    // of memory.
+    if (!space->HasEmergencyMemory()) {
+      space->CreateEmergencyMemory();
+    }
+    if (p->IsEvacuationCandidate()) {
+      // During compaction we might have to request a new page. Check that we
+      // have an emergency page and the space still has room for that.
+      if (space->HasEmergencyMemory() && space->CanExpand()) {
+        EvacuateLiveObjectsFromPage(p);
+      } else {
+        // Without room for expansion evacuation is not guaranteed to succeed.
+        // Pessimistically abandon unevacuated pages.
+        for (int j = i; j < npages; j++) {
+          Page* page = evacuation_candidates_[j];
+          slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
+          page->ClearEvacuationCandidate();
+          page->SetFlag(Page::RESCAN_ON_EVACUATION);
+        }
+        break;
+      }
+    }
+  }
+  if (npages > 0) {
+    // Release emergency memory.
+    PagedSpaces spaces(heap());
+    for (PagedSpace* space = spaces.next(); space != NULL;
+         space = spaces.next()) {
+      if (space->HasEmergencyMemory()) {
+        space->FreeEmergencyMemory();
+      }
+    }
+  }
+}
+
+
+class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
+ public:
+  virtual Object* RetainAs(Object* object) {
+    if (object->IsHeapObject()) {
+      HeapObject* heap_object = HeapObject::cast(object);
+      MapWord map_word = heap_object->map_word();
+      if (map_word.IsForwardingAddress()) {
+        return map_word.ToForwardingAddress();
+      }
+    }
+    return object;
+  }
+};
+
+
+static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v,
+                              SlotsBuffer::SlotType slot_type, Address addr) {
+  switch (slot_type) {
+    case SlotsBuffer::CODE_TARGET_SLOT: {
+      RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
+      rinfo.Visit(isolate, v);
+      break;
+    }
+    case SlotsBuffer::CODE_ENTRY_SLOT: {
+      v->VisitCodeEntry(addr);
+      break;
+    }
+    case SlotsBuffer::RELOCATED_CODE_OBJECT: {
+      HeapObject* obj = HeapObject::FromAddress(addr);
+      Code::cast(obj)->CodeIterateBody(v);
+      break;
+    }
+    case SlotsBuffer::DEBUG_TARGET_SLOT: {
+      RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
+      if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
+      break;
+    }
+    case SlotsBuffer::JS_RETURN_SLOT: {
+      RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
+      if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
+      break;
+    }
+    case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
+      RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
+      rinfo.Visit(isolate, v);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
+
+
+enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
+
+
+enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
+
+
+template <MarkCompactCollector::SweepingParallelism mode>
+static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start,
+                     int size) {
+  if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
+    DCHECK(free_list == NULL);
+    return space->Free(start, size);
+  } else {
+    // TODO(hpayer): account for wasted bytes in concurrent sweeping too.
+    return size - free_list->Free(start, size);
+  }
+}
+
+
+// Sweeps a page. After sweeping the page can be iterated.
+// Slots in live objects pointing into evacuation candidates are updated
+// if requested.
+// Returns the size of the biggest continuous freed memory chunk in bytes.
+template <SweepingMode sweeping_mode,
+          MarkCompactCollector::SweepingParallelism parallelism,
+          SkipListRebuildingMode skip_list_mode,
+          FreeSpaceTreatmentMode free_space_mode>
+static int Sweep(PagedSpace* space, FreeList* free_list, Page* p,
+                 ObjectVisitor* v) {
+  DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
+  DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
+            space->identity() == CODE_SPACE);
+  DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
+  DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
+         sweeping_mode == SWEEP_ONLY);
+
+  Address free_start = p->area_start();
+  DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
+  int offsets[16];
+
+  SkipList* skip_list = p->skip_list();
+  int curr_region = -1;
+  if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
+    skip_list->Clear();
+  }
+
+  intptr_t freed_bytes = 0;
+  intptr_t max_freed_bytes = 0;
+
+  for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
+    Address cell_base = it.CurrentCellBase();
+    MarkBit::CellType* cell = it.CurrentCell();
+    int live_objects = MarkWordToObjectStarts(*cell, offsets);
+    int live_index = 0;
+    for (; live_objects != 0; live_objects--) {
+      Address free_end = cell_base + offsets[live_index++] * kPointerSize;
+      if (free_end != free_start) {
+        int size = static_cast<int>(free_end - free_start);
+        if (free_space_mode == ZAP_FREE_SPACE) {
+          memset(free_start, 0xcc, size);
+        }
+        freed_bytes = Free<parallelism>(space, free_list, free_start, size);
+        max_freed_bytes = Max(freed_bytes, max_freed_bytes);
+#ifdef ENABLE_GDB_JIT_INTERFACE
+        if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
+          GDBJITInterface::RemoveCodeRange(free_start, free_end);
+        }
+#endif
+      }
+      HeapObject* live_object = HeapObject::FromAddress(free_end);
+      DCHECK(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
+      Map* map = live_object->map();
+      int size = live_object->SizeFromMap(map);
+      if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
+        live_object->IterateBody(map->instance_type(), size, v);
+      }
+      if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
+        int new_region_start = SkipList::RegionNumber(free_end);
+        int new_region_end =
+            SkipList::RegionNumber(free_end + size - kPointerSize);
+        if (new_region_start != curr_region || new_region_end != curr_region) {
+          skip_list->AddObject(free_end, size);
+          curr_region = new_region_end;
+        }
+      }
+      free_start = free_end + size;
+    }
+    // Clear marking bits for current cell.
+    *cell = 0;
+  }
+  if (free_start != p->area_end()) {
+    int size = static_cast<int>(p->area_end() - free_start);
+    if (free_space_mode == ZAP_FREE_SPACE) {
+      memset(free_start, 0xcc, size);
+    }
+    freed_bytes = Free<parallelism>(space, free_list, free_start, size);
+    max_freed_bytes = Max(freed_bytes, max_freed_bytes);
+#ifdef ENABLE_GDB_JIT_INTERFACE
+    if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
+      GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
+    }
+#endif
+  }
+  p->ResetLiveBytes();
+
+  if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
+    // When concurrent sweeping is active, the page will be marked after
+    // sweeping by the main thread.
+    p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
+  } else {
+    p->SetWasSwept();
+  }
+  return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
+}
+
+
+static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
+  Page* p = Page::FromAddress(code->address());
+
+  if (p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
+    return false;
+  }
+
+  Address code_start = code->address();
+  Address code_end = code_start + code->Size();
+
+  uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
+  uint32_t end_index =
+      MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
+
+  Bitmap* b = p->markbits();
+
+  MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
+  MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
+
+  MarkBit::CellType* start_cell = start_mark_bit.cell();
+  MarkBit::CellType* end_cell = end_mark_bit.cell();
+
+  if (value) {
+    MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
+    MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
+
+    if (start_cell == end_cell) {
+      *start_cell |= start_mask & end_mask;
+    } else {
+      *start_cell |= start_mask;
+      for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
+        *cell = ~0;
+      }
+      *end_cell |= end_mask;
+    }
+  } else {
+    for (MarkBit::CellType* cell = start_cell; cell <= end_cell; cell++) {
+      *cell = 0;
+    }
+  }
+
+  return true;
+}
+
+
+static bool IsOnInvalidatedCodeObject(Address addr) {
+  // We did not record any slots in large objects thus
+  // we can safely go to the page from the slot address.
+  Page* p = Page::FromAddress(addr);
+
+  // First check owner's identity because old pointer and old data spaces
+  // are swept lazily and might still have non-zero mark-bits on some
+  // pages.
+  if (p->owner()->identity() != CODE_SPACE) return false;
+
+  // In code space only bits on evacuation candidates (but we don't record
+  // any slots on them) and under invalidated code objects are non-zero.
+  MarkBit mark_bit =
+      p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
+
+  return mark_bit.Get();
+}
+
+
+void MarkCompactCollector::InvalidateCode(Code* code) {
+  if (heap_->incremental_marking()->IsCompacting() &&
+      !ShouldSkipEvacuationSlotRecording(code)) {
+    DCHECK(compacting_);
+
+    // If the object is white than no slots were recorded on it yet.
+    MarkBit mark_bit = Marking::MarkBitFrom(code);
+    if (Marking::IsWhite(mark_bit)) return;
+
+    invalidated_code_.Add(code);
+  }
+}
+
+
+// Return true if the given code is deoptimized or will be deoptimized.
+bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
+  return code->is_optimized_code() && code->marked_for_deoptimization();
+}
+
+
+bool MarkCompactCollector::MarkInvalidatedCode() {
+  bool code_marked = false;
+
+  int length = invalidated_code_.length();
+  for (int i = 0; i < length; i++) {
+    Code* code = invalidated_code_[i];
+
+    if (SetMarkBitsUnderInvalidatedCode(code, true)) {
+      code_marked = true;
+    }
+  }
+
+  return code_marked;
+}
+
+
+void MarkCompactCollector::RemoveDeadInvalidatedCode() {
+  int length = invalidated_code_.length();
+  for (int i = 0; i < length; i++) {
+    if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
+  }
+}
+
+
+void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
+  int length = invalidated_code_.length();
+  for (int i = 0; i < length; i++) {
+    Code* code = invalidated_code_[i];
+    if (code != NULL) {
+      code->Iterate(visitor);
+      SetMarkBitsUnderInvalidatedCode(code, false);
+    }
+  }
+  invalidated_code_.Rewind(0);
+}
+
+
+void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
+  Heap::RelocationLock relocation_lock(heap());
+
+  bool code_slots_filtering_required;
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_SWEEP_NEWSPACE);
+    code_slots_filtering_required = MarkInvalidatedCode();
+    EvacuateNewSpace();
+  }
+
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_EVACUATE_PAGES);
+    EvacuatePages();
+  }
+
+  // Second pass: find pointers to new space and update them.
+  PointersUpdatingVisitor updating_visitor(heap());
+
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
+    // Update pointers in to space.
+    SemiSpaceIterator to_it(heap()->new_space()->bottom(),
+                            heap()->new_space()->top());
+    for (HeapObject* object = to_it.Next(); object != NULL;
+         object = to_it.Next()) {
+      Map* map = object->map();
+      object->IterateBody(map->instance_type(), object->SizeFromMap(map),
+                          &updating_visitor);
+    }
+  }
+
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
+    // Update roots.
+    heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
+  }
+
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
+    StoreBufferRebuildScope scope(heap_, heap_->store_buffer(),
+                                  &Heap::ScavengeStoreBufferCallback);
+    heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
+        &UpdatePointer);
+  }
+
+  {
+    GCTracer::Scope gc_scope(heap()->tracer(),
+                             GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
+    SlotsBuffer::UpdateSlotsRecordedIn(heap_, migration_slots_buffer_,
+                                       code_slots_filtering_required);
+    if (FLAG_trace_fragmentation) {
+      PrintF("  migration slots buffer: %d\n",
+             SlotsBuffer::SizeOfChain(migration_slots_buffer_));
+    }
+
+    if (compacting_ && was_marked_incrementally_) {
+      // It's difficult to filter out slots recorded for large objects.
+      LargeObjectIterator it(heap_->lo_space());
+      for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
+        // LargeObjectSpace is not swept yet thus we have to skip
+        // dead objects explicitly.
+        if (!IsMarked(obj)) continue;
+
+        Page* p = Page::FromAddress(obj->address());
+        if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
+          obj->Iterate(&updating_visitor);
+          p->ClearFlag(Page::RESCAN_ON_EVACUATION);
+        }
+      }
+    }
+  }
+
+  int npages = evacuation_candidates_.length();
+  {
+    GCTracer::Scope gc_scope(
+        heap()->tracer(),
+        GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
+    for (int i = 0; i < npages; i++) {
+      Page* p = evacuation_candidates_[i];
+      DCHECK(p->IsEvacuationCandidate() ||
+             p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
+
+      if (p->IsEvacuationCandidate()) {
+        SlotsBuffer::UpdateSlotsRecordedIn(heap_, p->slots_buffer(),
+                                           code_slots_filtering_required);
+        if (FLAG_trace_fragmentation) {
+          PrintF("  page %p slots buffer: %d\n", reinterpret_cast<void*>(p),
+                 SlotsBuffer::SizeOfChain(p->slots_buffer()));
+        }
+
+        // Important: skip list should be cleared only after roots were updated
+        // because root iteration traverses the stack and might have to find
+        // code objects from non-updated pc pointing into evacuation candidate.
+        SkipList* list = p->skip_list();
+        if (list != NULL) list->Clear();
+      } else {
+        if (FLAG_gc_verbose) {
+          PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
+                 reinterpret_cast<intptr_t>(p));
+        }
+        PagedSpace* space = static_cast<PagedSpace*>(p->owner());
+        p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
+
+        switch (space->identity()) {
+          case OLD_DATA_SPACE:
+            Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
+                  IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
+                                                       &updating_visitor);
+            break;
+          case OLD_POINTER_SPACE:
+            Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
+                  IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
+                                                       &updating_visitor);
+            break;
+          case CODE_SPACE:
+            if (FLAG_zap_code_space) {
+              Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
+                    REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p,
+                                                       &updating_visitor);
+            } else {
+              Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
+                    REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
+                                                          &updating_visitor);
+            }
+            break;
+          default:
+            UNREACHABLE();
+            break;
+        }
+      }
+    }
+  }
+
+  GCTracer::Scope gc_scope(heap()->tracer(),
+                           GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
+
+  // Update pointers from cells.
+  HeapObjectIterator cell_iterator(heap_->cell_space());
+  for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
+       cell = cell_iterator.Next()) {
+    if (cell->IsCell()) {
+      Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
+    }
+  }
+
+  HeapObjectIterator js_global_property_cell_iterator(
+      heap_->property_cell_space());
+  for (HeapObject* cell = js_global_property_cell_iterator.Next(); cell != NULL;
+       cell = js_global_property_cell_iterator.Next()) {
+    if (cell->IsPropertyCell()) {
+      PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
+    }
+  }
+
+  heap_->string_table()->Iterate(&updating_visitor);
+  updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
+  if (heap_->weak_object_to_code_table()->IsHashTable()) {
+    WeakHashTable* table =
+        WeakHashTable::cast(heap_->weak_object_to_code_table());
+    table->Iterate(&updating_visitor);
+    table->Rehash(heap_->isolate()->factory()->undefined_value());
+  }
+
+  // Update pointers from external string table.
+  heap_->UpdateReferencesInExternalStringTable(
+      &UpdateReferenceInExternalStringTableEntry);
+
+  EvacuationWeakObjectRetainer evacuation_object_retainer;
+  heap()->ProcessWeakReferences(&evacuation_object_retainer);
+
+  // Visit invalidated code (we ignored all slots on it) and clear mark-bits
+  // under it.
+  ProcessInvalidatedCode(&updating_visitor);
+
+  heap_->isolate()->inner_pointer_to_code_cache()->Flush();
+
+  slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
+  DCHECK(migration_slots_buffer_ == NULL);
+}
+
+
+void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
+  int npages = evacuation_candidates_.length();
+  for (int i = 0; i < npages; i++) {
+    Page* p = evacuation_candidates_[i];
+    if (!p->IsEvacuationCandidate()) continue;
+    p->Unlink();
+    PagedSpace* space = static_cast<PagedSpace*>(p->owner());
+    p->InsertAfter(space->LastPage());
+  }
+}
+
+
+void MarkCompactCollector::ReleaseEvacuationCandidates() {
+  int npages = evacuation_candidates_.length();
+  for (int i = 0; i < npages; i++) {
+    Page* p = evacuation_candidates_[i];
+    if (!p->IsEvacuationCandidate()) continue;
+    PagedSpace* space = static_cast<PagedSpace*>(p->owner());
+    space->Free(p->area_start(), p->area_size());
+    p->set_scan_on_scavenge(false);
+    slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
+    p->ResetLiveBytes();
+    space->ReleasePage(p);
+  }
+  evacuation_candidates_.Rewind(0);
+  compacting_ = false;
+  heap()->FreeQueuedChunks();
+}
+
+
+static const int kStartTableEntriesPerLine = 5;
+static const int kStartTableLines = 171;
+static const int kStartTableInvalidLine = 127;
+static const int kStartTableUnusedEntry = 126;
+
+#define _ kStartTableUnusedEntry
+#define X kStartTableInvalidLine
+// Mark-bit to object start offset table.
+//
+// The line is indexed by the mark bits in a byte.  The first number on
+// the line describes the number of live object starts for the line and the
+// other numbers on the line describe the offsets (in words) of the object
+// starts.
+//
+// Since objects are at least 2 words large we don't have entries for two
+// consecutive 1 bits.  All entries after 170 have at least 2 consecutive bits.
+char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
+    0, _, _,
+    _, _,  // 0
+    1, 0, _,
+    _, _,  // 1
+    1, 1, _,
+    _, _,  // 2
+    X, _, _,
+    _, _,  // 3
+    1, 2, _,
+    _, _,  // 4
+    2, 0, 2,
+    _, _,  // 5
+    X, _, _,
+    _, _,  // 6
+    X, _, _,
+    _, _,  // 7
+    1, 3, _,
+    _, _,  // 8
+    2, 0, 3,
+    _, _,  // 9
+    2, 1, 3,
+    _, _,  // 10
+    X, _, _,
+    _, _,  // 11
+    X, _, _,
+    _, _,  // 12
+    X, _, _,
+    _, _,  // 13
+    X, _, _,
+    _, _,  // 14
+    X, _, _,
+    _, _,  // 15
+    1, 4, _,
+    _, _,  // 16
+    2, 0, 4,
+    _, _,  // 17
+    2, 1, 4,
+    _, _,  // 18
+    X, _, _,
+    _, _,  // 19
+    2, 2, 4,
+    _, _,  // 20
+    3, 0, 2,
+    4, _,  // 21
+    X, _, _,
+    _, _,  // 22
+    X, _, _,
+    _, _,  // 23
+    X, _, _,
+    _, _,  // 24
+    X, _, _,
+    _, _,  // 25
+    X, _, _,
+    _, _,  // 26
+    X, _, _,
+    _, _,  // 27
+    X, _, _,
+    _, _,  // 28
+    X, _, _,
+    _, _,  // 29
+    X, _, _,
+    _, _,  // 30
+    X, _, _,
+    _, _,  // 31
+    1, 5, _,
+    _, _,  // 32
+    2, 0, 5,
+    _, _,  // 33
+    2, 1, 5,
+    _, _,  // 34
+    X, _, _,
+    _, _,  // 35
+    2, 2, 5,
+    _, _,  // 36
+    3, 0, 2,
+    5, _,  // 37
+    X, _, _,
+    _, _,  // 38
+    X, _, _,
+    _, _,  // 39
+    2, 3, 5,
+    _, _,  // 40
+    3, 0, 3,
+    5, _,  // 41
+    3, 1, 3,
+    5, _,  // 42
+    X, _, _,
+    _, _,  // 43
+    X, _, _,
+    _, _,  // 44
+    X, _, _,
+    _, _,  // 45
+    X, _, _,
+    _, _,  // 46
+    X, _, _,
+    _, _,  // 47
+    X, _, _,
+    _, _,  // 48
+    X, _, _,
+    _, _,  // 49
+    X, _, _,
+    _, _,  // 50
+    X, _, _,
+    _, _,  // 51
+    X, _, _,
+    _, _,  // 52
+    X, _, _,
+    _, _,  // 53
+    X, _, _,
+    _, _,  // 54
+    X, _, _,
+    _, _,  // 55
+    X, _, _,
+    _, _,  // 56
+    X, _, _,
+    _, _,  // 57
+    X, _, _,
+    _, _,  // 58
+    X, _, _,
+    _, _,  // 59
+    X, _, _,
+    _, _,  // 60
+    X, _, _,
+    _, _,  // 61
+    X, _, _,
+    _, _,  // 62
+    X, _, _,
+    _, _,  // 63
+    1, 6, _,
+    _, _,  // 64
+    2, 0, 6,
+    _, _,  // 65
+    2, 1, 6,
+    _, _,  // 66
+    X, _, _,
+    _, _,  // 67
+    2, 2, 6,
+    _, _,  // 68
+    3, 0, 2,
+    6, _,  // 69
+    X, _, _,
+    _, _,  // 70
+    X, _, _,
+    _, _,  // 71
+    2, 3, 6,
+    _, _,  // 72
+    3, 0, 3,
+    6, _,  // 73
+    3, 1, 3,
+    6, _,  // 74
+    X, _, _,
+    _, _,  // 75
+    X, _, _,
+    _, _,  // 76
+    X, _, _,
+    _, _,  // 77
+    X, _, _,
+    _, _,  // 78
+    X, _, _,
+    _, _,  // 79
+    2, 4, 6,
+    _, _,  // 80
+    3, 0, 4,
+    6, _,  // 81
+    3, 1, 4,
+    6, _,  // 82
+    X, _, _,
+    _, _,  // 83
+    3, 2, 4,
+    6, _,  // 84
+    4, 0, 2,
+    4, 6,  // 85
+    X, _, _,
+    _, _,  // 86
+    X, _, _,
+    _, _,  // 87
+    X, _, _,
+    _, _,  // 88
+    X, _, _,
+    _, _,  // 89
+    X, _, _,
+    _, _,  // 90
+    X, _, _,
+    _, _,  // 91
+    X, _, _,
+    _, _,  // 92
+    X, _, _,
+    _, _,  // 93
+    X, _, _,
+    _, _,  // 94
+    X, _, _,
+    _, _,  // 95
+    X, _, _,
+    _, _,  // 96
+    X, _, _,
+    _, _,  // 97
+    X, _, _,
+    _, _,  // 98
+    X, _, _,
+    _, _,  // 99
+    X, _, _,
+    _, _,  // 100
+    X, _, _,
+    _, _,  // 101
+    X, _, _,
+    _, _,  // 102
+    X, _, _,
+    _, _,  // 103
+    X, _, _,
+    _, _,  // 104
+    X, _, _,
+    _, _,  // 105
+    X, _, _,
+    _, _,  // 106
+    X, _, _,
+    _, _,  // 107
+    X, _, _,
+    _, _,  // 108
+    X, _, _,
+    _, _,  // 109
+    X, _, _,
+    _, _,  // 110
+    X, _, _,
+    _, _,  // 111
+    X, _, _,
+    _, _,  // 112
+    X, _, _,
+    _, _,  // 113
+    X, _, _,
+    _, _,  // 114
+    X, _, _,
+    _, _,  // 115
+    X, _, _,
+    _, _,  // 116
+    X, _, _,
+    _, _,  // 117
+    X, _, _,
+    _, _,  // 118
+    X, _, _,
+    _, _,  // 119
+    X, _, _,
+    _, _,  // 120
+    X, _, _,
+    _, _,  // 121
+    X, _, _,
+    _, _,  // 122
+    X, _, _,
+    _, _,  // 123
+    X, _, _,
+    _, _,  // 124
+    X, _, _,
+    _, _,  // 125
+    X, _, _,
+    _, _,  // 126
+    X, _, _,
+    _, _,  // 127
+    1, 7, _,
+    _, _,  // 128
+    2, 0, 7,
+    _, _,  // 129
+    2, 1, 7,
+    _, _,  // 130
+    X, _, _,
+    _, _,  // 131
+    2, 2, 7,
+    _, _,  // 132
+    3, 0, 2,
+    7, _,  // 133
+    X, _, _,
+    _, _,  // 134
+    X, _, _,
+    _, _,  // 135
+    2, 3, 7,
+    _, _,  // 136
+    3, 0, 3,
+    7, _,  // 137
+    3, 1, 3,
+    7, _,  // 138
+    X, _, _,
+    _, _,  // 139
+    X, _, _,
+    _, _,  // 140
+    X, _, _,
+    _, _,  // 141
+    X, _, _,
+    _, _,  // 142
+    X, _, _,
+    _, _,  // 143
+    2, 4, 7,
+    _, _,  // 144
+    3, 0, 4,
+    7, _,  // 145
+    3, 1, 4,
+    7, _,  // 146
+    X, _, _,
+    _, _,  // 147
+    3, 2, 4,
+    7, _,  // 148
+    4, 0, 2,
+    4, 7,  // 149
+    X, _, _,
+    _, _,  // 150
+    X, _, _,
+    _, _,  // 151
+    X, _, _,
+    _, _,  // 152
+    X, _, _,
+    _, _,  // 153
+    X, _, _,
+    _, _,  // 154
+    X, _, _,
+    _, _,  // 155
+    X, _, _,
+    _, _,  // 156
+    X, _, _,
+    _, _,  // 157
+    X, _, _,
+    _, _,  // 158
+    X, _, _,
+    _, _,  // 159
+    2, 5, 7,
+    _, _,  // 160
+    3, 0, 5,
+    7, _,  // 161
+    3, 1, 5,
+    7, _,  // 162
+    X, _, _,
+    _, _,  // 163
+    3, 2, 5,
+    7, _,  // 164
+    4, 0, 2,
+    5, 7,  // 165
+    X, _, _,
+    _, _,  // 166
+    X, _, _,
+    _, _,  // 167
+    3, 3, 5,
+    7, _,  // 168
+    4, 0, 3,
+    5, 7,  // 169
+    4, 1, 3,
+    5, 7  // 170
+};
+#undef _
+#undef X
+
+
+// Takes a word of mark bits.  Returns the number of objects that start in the
+// range.  Puts the offsets of the words in the supplied array.
+static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
+  int objects = 0;
+  int offset = 0;
+
+  // No consecutive 1 bits.
+  DCHECK((mark_bits & 0x180) != 0x180);
+  DCHECK((mark_bits & 0x18000) != 0x18000);
+  DCHECK((mark_bits & 0x1800000) != 0x1800000);
+
+  while (mark_bits != 0) {
+    int byte = (mark_bits & 0xff);
+    mark_bits >>= 8;
+    if (byte != 0) {
+      DCHECK(byte < kStartTableLines);  // No consecutive 1 bits.
+      char* table = kStartTable + byte * kStartTableEntriesPerLine;
+      int objects_in_these_8_words = table[0];
+      DCHECK(objects_in_these_8_words != kStartTableInvalidLine);
+      DCHECK(objects_in_these_8_words < kStartTableEntriesPerLine);
+      for (int i = 0; i < objects_in_these_8_words; i++) {
+        starts[objects++] = offset + table[1 + i];
+      }
+    }
+    offset += 8;
+  }
+  return objects;
+}
+
+
+int MarkCompactCollector::SweepInParallel(PagedSpace* space,
+                                          int required_freed_bytes) {
+  int max_freed = 0;
+  int max_freed_overall = 0;
+  PageIterator it(space);
+  while (it.has_next()) {
+    Page* p = it.next();
+    max_freed = SweepInParallel(p, space);
+    DCHECK(max_freed >= 0);
+    if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
+      return max_freed;
+    }
+    max_freed_overall = Max(max_freed, max_freed_overall);
+    if (p == space->end_of_unswept_pages()) break;
+  }
+  return max_freed_overall;
+}
+
+
+int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
+  int max_freed = 0;
+  if (page->TryParallelSweeping()) {
+    FreeList* free_list = space == heap()->old_pointer_space()
+                              ? free_list_old_pointer_space_.get()
+                              : free_list_old_data_space_.get();
+    FreeList private_free_list(space);
+    max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
+                      IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
+    free_list->Concatenate(&private_free_list);
+  }
+  return max_freed;
+}
+
+
+void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
+  space->ClearStats();
+
+  // We defensively initialize end_of_unswept_pages_ here with the first page
+  // of the pages list.
+  space->set_end_of_unswept_pages(space->FirstPage());
+
+  PageIterator it(space);
+
+  int pages_swept = 0;
+  bool unused_page_present = false;
+  bool parallel_sweeping_active = false;
+
+  while (it.has_next()) {
+    Page* p = it.next();
+    DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
+
+    // Clear sweeping flags indicating that marking bits are still intact.
+    p->ClearWasSwept();
+
+    if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
+        p->IsEvacuationCandidate()) {
+      // Will be processed in EvacuateNewSpaceAndCandidates.
+      DCHECK(evacuation_candidates_.length() > 0);
+      continue;
+    }
+
+    // One unused page is kept, all further are released before sweeping them.
+    if (p->LiveBytes() == 0) {
+      if (unused_page_present) {
+        if (FLAG_gc_verbose) {
+          PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
+                 reinterpret_cast<intptr_t>(p));
+        }
+        // Adjust unswept free bytes because releasing a page expects said
+        // counter to be accurate for unswept pages.
+        space->IncreaseUnsweptFreeBytes(p);
+        space->ReleasePage(p);
+        continue;
+      }
+      unused_page_present = true;
+    }
+
+    switch (sweeper) {
+      case CONCURRENT_SWEEPING:
+      case PARALLEL_SWEEPING:
+        if (!parallel_sweeping_active) {
+          if (FLAG_gc_verbose) {
+            PrintF("Sweeping 0x%" V8PRIxPTR ".\n",
+                   reinterpret_cast<intptr_t>(p));
+          }
+          Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
+                IGNORE_FREE_SPACE>(space, NULL, p, NULL);
+          pages_swept++;
+          parallel_sweeping_active = true;
+        } else {
+          if (FLAG_gc_verbose) {
+            PrintF("Sweeping 0x%" V8PRIxPTR " in parallel.\n",
+                   reinterpret_cast<intptr_t>(p));
+          }
+          p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
+          space->IncreaseUnsweptFreeBytes(p);
+        }
+        space->set_end_of_unswept_pages(p);
+        break;
+      case SEQUENTIAL_SWEEPING: {
+        if (FLAG_gc_verbose) {
+          PrintF("Sweeping 0x%" V8PRIxPTR ".\n", reinterpret_cast<intptr_t>(p));
+        }
+        if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
+          Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
+                ZAP_FREE_SPACE>(space, NULL, p, NULL);
+        } else if (space->identity() == CODE_SPACE) {
+          Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
+                IGNORE_FREE_SPACE>(space, NULL, p, NULL);
+        } else {
+          Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
+                IGNORE_FREE_SPACE>(space, NULL, p, NULL);
+        }
+        pages_swept++;
+        break;
+      }
+      default: { UNREACHABLE(); }
+    }
+  }
+
+  if (FLAG_gc_verbose) {
+    PrintF("SweepSpace: %s (%d pages swept)\n",
+           AllocationSpaceName(space->identity()), pages_swept);
+  }
+
+  // Give pages that are queued to be freed back to the OS.
+  heap()->FreeQueuedChunks();
+}
+
+
+static bool ShouldStartSweeperThreads(MarkCompactCollector::SweeperType type) {
+  return type == MarkCompactCollector::PARALLEL_SWEEPING ||
+         type == MarkCompactCollector::CONCURRENT_SWEEPING;
+}
+
+
+static bool ShouldWaitForSweeperThreads(
+    MarkCompactCollector::SweeperType type) {
+  return type == MarkCompactCollector::PARALLEL_SWEEPING;
+}
+
+
+void MarkCompactCollector::SweepSpaces() {
+  GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
+  double start_time = 0.0;
+  if (FLAG_print_cumulative_gc_stat) {
+    start_time = base::OS::TimeCurrentMillis();
+  }
+
+#ifdef DEBUG
+  state_ = SWEEP_SPACES;
+#endif
+  SweeperType how_to_sweep = CONCURRENT_SWEEPING;
+  if (FLAG_parallel_sweeping) how_to_sweep = PARALLEL_SWEEPING;
+  if (FLAG_concurrent_sweeping) how_to_sweep = CONCURRENT_SWEEPING;
+
+  MoveEvacuationCandidatesToEndOfPagesList();
+
+  // Noncompacting collections simply sweep the spaces to clear the mark
+  // bits and free the nonlive blocks (for old and map spaces).  We sweep
+  // the map space last because freeing non-live maps overwrites them and
+  // the other spaces rely on possibly non-live maps to get the sizes for
+  // non-live objects.
+  {
+    GCTracer::Scope sweep_scope(heap()->tracer(),
+                                GCTracer::Scope::MC_SWEEP_OLDSPACE);
+    {
+      SequentialSweepingScope scope(this);
+      SweepSpace(heap()->old_pointer_space(), how_to_sweep);
+      SweepSpace(heap()->old_data_space(), how_to_sweep);
+    }
+
+    if (ShouldStartSweeperThreads(how_to_sweep)) {
+      StartSweeperThreads();
+    }
+
+    if (ShouldWaitForSweeperThreads(how_to_sweep)) {
+      EnsureSweepingCompleted();
+    }
+  }
+  RemoveDeadInvalidatedCode();
+
+  {
+    GCTracer::Scope sweep_scope(heap()->tracer(),
+                                GCTracer::Scope::MC_SWEEP_CODE);
+    SweepSpace(heap()->code_space(), SEQUENTIAL_SWEEPING);
+  }
+
+  {
+    GCTracer::Scope sweep_scope(heap()->tracer(),
+                                GCTracer::Scope::MC_SWEEP_CELL);
+    SweepSpace(heap()->cell_space(), SEQUENTIAL_SWEEPING);
+    SweepSpace(heap()->property_cell_space(), SEQUENTIAL_SWEEPING);
+  }
+
+  EvacuateNewSpaceAndCandidates();
+
+  // ClearNonLiveTransitions depends on precise sweeping of map space to
+  // detect whether unmarked map became dead in this collection or in one
+  // of the previous ones.
+  {
+    GCTracer::Scope sweep_scope(heap()->tracer(),
+                                GCTracer::Scope::MC_SWEEP_MAP);
+    SweepSpace(heap()->map_space(), SEQUENTIAL_SWEEPING);
+  }
+
+  // Deallocate unmarked objects and clear marked bits for marked objects.
+  heap_->lo_space()->FreeUnmarkedObjects();
+
+  // Deallocate evacuated candidate pages.
+  ReleaseEvacuationCandidates();
+
+  if (FLAG_print_cumulative_gc_stat) {
+    heap_->tracer()->AddSweepingTime(base::OS::TimeCurrentMillis() -
+                                     start_time);
+  }
+}
+
+
+void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
+  PageIterator it(space);
+  while (it.has_next()) {
+    Page* p = it.next();
+    if (p->parallel_sweeping() == MemoryChunk::SWEEPING_FINALIZE) {
+      p->set_parallel_sweeping(MemoryChunk::SWEEPING_DONE);
+      p->SetWasSwept();
+    }
+    DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
+  }
+}
+
+
+void MarkCompactCollector::ParallelSweepSpacesComplete() {
+  ParallelSweepSpaceComplete(heap()->old_pointer_space());
+  ParallelSweepSpaceComplete(heap()->old_data_space());
+}
+
+
+void MarkCompactCollector::EnableCodeFlushing(bool enable) {
+  if (isolate()->debug()->is_loaded() ||
+      isolate()->debug()->has_break_points()) {
+    enable = false;
+  }
+
+  if (enable) {
+    if (code_flusher_ != NULL) return;
+    code_flusher_ = new CodeFlusher(isolate());
+  } else {
+    if (code_flusher_ == NULL) return;
+    code_flusher_->EvictAllCandidates();
+    delete code_flusher_;
+    code_flusher_ = NULL;
+  }
+
+  if (FLAG_trace_code_flushing) {
+    PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
+  }
+}
+
+
+// TODO(1466) ReportDeleteIfNeeded is not called currently.
+// Our profiling tools do not expect intersections between
+// code objects. We should either reenable it or change our tools.
+void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
+                                                Isolate* isolate) {
+  if (obj->IsCode()) {
+    PROFILE(isolate, CodeDeleteEvent(obj->address()));
+  }
+}
+
+
+Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); }
+
+
+void MarkCompactCollector::Initialize() {
+  MarkCompactMarkingVisitor::Initialize();
+  IncrementalMarking::Initialize();
+}
+
+
+bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
+  return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
+}
+
+
+bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
+                        SlotsBuffer** buffer_address, SlotType type,
+                        Address addr, AdditionMode mode) {
+  SlotsBuffer* buffer = *buffer_address;
+  if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
+    if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
+      allocator->DeallocateChain(buffer_address);
+      return false;
+    }
+    buffer = allocator->AllocateBuffer(buffer);
+    *buffer_address = buffer;
+  }
+  DCHECK(buffer->HasSpaceForTypedSlot());
+  buffer->Add(reinterpret_cast<ObjectSlot>(type));
+  buffer->Add(reinterpret_cast<ObjectSlot>(addr));
+  return true;
+}
+
+
+static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
+  if (RelocInfo::IsCodeTarget(rmode)) {
+    return SlotsBuffer::CODE_TARGET_SLOT;
+  } else if (RelocInfo::IsEmbeddedObject(rmode)) {
+    return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
+  } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
+    return SlotsBuffer::DEBUG_TARGET_SLOT;
+  } else if (RelocInfo::IsJSReturn(rmode)) {
+    return SlotsBuffer::JS_RETURN_SLOT;
+  }
+  UNREACHABLE();
+  return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
+}
+
+
+void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
+  Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
+  RelocInfo::Mode rmode = rinfo->rmode();
+  if (target_page->IsEvacuationCandidate() &&
+      (rinfo->host() == NULL ||
+       !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
+    bool success;
+    if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
+      // This doesn't need to be typed since it is just a normal heap pointer.
+      Object** target_pointer =
+          reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
+      success = SlotsBuffer::AddTo(
+          &slots_buffer_allocator_, target_page->slots_buffer_address(),
+          target_pointer, SlotsBuffer::FAIL_ON_OVERFLOW);
+    } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
+      success = SlotsBuffer::AddTo(
+          &slots_buffer_allocator_, target_page->slots_buffer_address(),
+          SlotsBuffer::CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address(),
+          SlotsBuffer::FAIL_ON_OVERFLOW);
+    } else {
+      success = SlotsBuffer::AddTo(
+          &slots_buffer_allocator_, target_page->slots_buffer_address(),
+          SlotTypeForRMode(rmode), rinfo->pc(), SlotsBuffer::FAIL_ON_OVERFLOW);
+    }
+    if (!success) {
+      EvictEvacuationCandidate(target_page);
+    }
+  }
+}
+
+
+void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
+  Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
+  if (target_page->IsEvacuationCandidate() &&
+      !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
+    if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
+                            target_page->slots_buffer_address(),
+                            SlotsBuffer::CODE_ENTRY_SLOT, slot,
+                            SlotsBuffer::FAIL_ON_OVERFLOW)) {
+      EvictEvacuationCandidate(target_page);
+    }
+  }
+}
+
+
+void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
+  DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
+  if (is_compacting()) {
+    Code* host =
+        isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(
+            pc);
+    MarkBit mark_bit = Marking::MarkBitFrom(host);
+    if (Marking::IsBlack(mark_bit)) {
+      RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
+      RecordRelocSlot(&rinfo, target);
+    }
+  }
+}
+
+
+static inline SlotsBuffer::SlotType DecodeSlotType(
+    SlotsBuffer::ObjectSlot slot) {
+  return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
+}
+
+
+void SlotsBuffer::UpdateSlots(Heap* heap) {
+  PointersUpdatingVisitor v(heap);
+
+  for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
+    ObjectSlot slot = slots_[slot_idx];
+    if (!IsTypedSlot(slot)) {
+      PointersUpdatingVisitor::UpdateSlot(heap, slot);
+    } else {
+      ++slot_idx;
+      DCHECK(slot_idx < idx_);
+      UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
+                 reinterpret_cast<Address>(slots_[slot_idx]));
+    }
+  }
+}
+
+
+void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
+  PointersUpdatingVisitor v(heap);
+
+  for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
+    ObjectSlot slot = slots_[slot_idx];
+    if (!IsTypedSlot(slot)) {
+      if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
+        PointersUpdatingVisitor::UpdateSlot(heap, slot);
+      }
+    } else {
+      ++slot_idx;
+      DCHECK(slot_idx < idx_);
+      Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
+      if (!IsOnInvalidatedCodeObject(pc)) {
+        UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
+                   reinterpret_cast<Address>(slots_[slot_idx]));
+      }
+    }
+  }
+}
+
+
+SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
+  return new SlotsBuffer(next_buffer);
+}
+
+
+void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
+  delete buffer;
+}
+
+
+void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
+  SlotsBuffer* buffer = *buffer_address;
+  while (buffer != NULL) {
+    SlotsBuffer* next_buffer = buffer->next();
+    DeallocateBuffer(buffer);
+    buffer = next_buffer;
+  }
+  *buffer_address = NULL;
+}
+}
+}  // namespace v8::internal