Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/heap/mark-compact.h b/src/heap/mark-compact.h
new file mode 100644
index 0000000..c5087b4
--- /dev/null
+++ b/src/heap/mark-compact.h
@@ -0,0 +1,956 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_HEAP_MARK_COMPACT_H_
+#define V8_HEAP_MARK_COMPACT_H_
+
+#include "src/base/bits.h"
+#include "src/heap/spaces.h"
+
+namespace v8 {
+namespace internal {
+
+// Callback function, returns whether an object is alive. The heap size
+// of the object is returned in size. It optionally updates the offset
+// to the first live object in the page (only used for old and map objects).
+typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
+
+// Forward declarations.
+class CodeFlusher;
+class MarkCompactCollector;
+class MarkingVisitor;
+class RootMarkingVisitor;
+
+
+class Marking {
+ public:
+  explicit Marking(Heap* heap) : heap_(heap) {}
+
+  INLINE(static MarkBit MarkBitFrom(Address addr));
+
+  INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
+    return MarkBitFrom(reinterpret_cast<Address>(obj));
+  }
+
+  // Impossible markbits: 01
+  static const char* kImpossibleBitPattern;
+  INLINE(static bool IsImpossible(MarkBit mark_bit)) {
+    return !mark_bit.Get() && mark_bit.Next().Get();
+  }
+
+  // Black markbits: 10 - this is required by the sweeper.
+  static const char* kBlackBitPattern;
+  INLINE(static bool IsBlack(MarkBit mark_bit)) {
+    return mark_bit.Get() && !mark_bit.Next().Get();
+  }
+
+  // White markbits: 00 - this is required by the mark bit clearer.
+  static const char* kWhiteBitPattern;
+  INLINE(static bool IsWhite(MarkBit mark_bit)) { return !mark_bit.Get(); }
+
+  // Grey markbits: 11
+  static const char* kGreyBitPattern;
+  INLINE(static bool IsGrey(MarkBit mark_bit)) {
+    return mark_bit.Get() && mark_bit.Next().Get();
+  }
+
+  INLINE(static void MarkBlack(MarkBit mark_bit)) {
+    mark_bit.Set();
+    mark_bit.Next().Clear();
+  }
+
+  INLINE(static void BlackToGrey(MarkBit markbit)) { markbit.Next().Set(); }
+
+  INLINE(static void WhiteToGrey(MarkBit markbit)) {
+    markbit.Set();
+    markbit.Next().Set();
+  }
+
+  INLINE(static void GreyToBlack(MarkBit markbit)) { markbit.Next().Clear(); }
+
+  INLINE(static void BlackToGrey(HeapObject* obj)) {
+    BlackToGrey(MarkBitFrom(obj));
+  }
+
+  INLINE(static void AnyToGrey(MarkBit markbit)) {
+    markbit.Set();
+    markbit.Next().Set();
+  }
+
+  void TransferMark(Address old_start, Address new_start);
+
+#ifdef DEBUG
+  enum ObjectColor {
+    BLACK_OBJECT,
+    WHITE_OBJECT,
+    GREY_OBJECT,
+    IMPOSSIBLE_COLOR
+  };
+
+  static const char* ColorName(ObjectColor color) {
+    switch (color) {
+      case BLACK_OBJECT:
+        return "black";
+      case WHITE_OBJECT:
+        return "white";
+      case GREY_OBJECT:
+        return "grey";
+      case IMPOSSIBLE_COLOR:
+        return "impossible";
+    }
+    return "error";
+  }
+
+  static ObjectColor Color(HeapObject* obj) {
+    return Color(Marking::MarkBitFrom(obj));
+  }
+
+  static ObjectColor Color(MarkBit mark_bit) {
+    if (IsBlack(mark_bit)) return BLACK_OBJECT;
+    if (IsWhite(mark_bit)) return WHITE_OBJECT;
+    if (IsGrey(mark_bit)) return GREY_OBJECT;
+    UNREACHABLE();
+    return IMPOSSIBLE_COLOR;
+  }
+#endif
+
+  // Returns true if the transferred color is black.
+  INLINE(static bool TransferColor(HeapObject* from, HeapObject* to)) {
+    MarkBit from_mark_bit = MarkBitFrom(from);
+    MarkBit to_mark_bit = MarkBitFrom(to);
+    bool is_black = false;
+    if (from_mark_bit.Get()) {
+      to_mark_bit.Set();
+      is_black = true;  // Looks black so far.
+    }
+    if (from_mark_bit.Next().Get()) {
+      to_mark_bit.Next().Set();
+      is_black = false;  // Was actually gray.
+    }
+    return is_black;
+  }
+
+ private:
+  Heap* heap_;
+};
+
+// ----------------------------------------------------------------------------
+// Marking deque for tracing live objects.
+class MarkingDeque {
+ public:
+  MarkingDeque()
+      : array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) {}
+
+  void Initialize(Address low, Address high) {
+    HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
+    HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
+    array_ = obj_low;
+    mask_ = base::bits::RoundDownToPowerOfTwo32(
+                static_cast<uint32_t>(obj_high - obj_low)) -
+            1;
+    top_ = bottom_ = 0;
+    overflowed_ = false;
+  }
+
+  inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
+
+  inline bool IsEmpty() { return top_ == bottom_; }
+
+  bool overflowed() const { return overflowed_; }
+
+  void ClearOverflowed() { overflowed_ = false; }
+
+  void SetOverflowed() { overflowed_ = true; }
+
+  // Push the (marked) object on the marking stack if there is room,
+  // otherwise mark the object as overflowed and wait for a rescan of the
+  // heap.
+  INLINE(void PushBlack(HeapObject* object)) {
+    DCHECK(object->IsHeapObject());
+    if (IsFull()) {
+      Marking::BlackToGrey(object);
+      MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size());
+      SetOverflowed();
+    } else {
+      array_[top_] = object;
+      top_ = ((top_ + 1) & mask_);
+    }
+  }
+
+  INLINE(void PushGrey(HeapObject* object)) {
+    DCHECK(object->IsHeapObject());
+    if (IsFull()) {
+      SetOverflowed();
+    } else {
+      array_[top_] = object;
+      top_ = ((top_ + 1) & mask_);
+    }
+  }
+
+  INLINE(HeapObject* Pop()) {
+    DCHECK(!IsEmpty());
+    top_ = ((top_ - 1) & mask_);
+    HeapObject* object = array_[top_];
+    DCHECK(object->IsHeapObject());
+    return object;
+  }
+
+  INLINE(void UnshiftGrey(HeapObject* object)) {
+    DCHECK(object->IsHeapObject());
+    if (IsFull()) {
+      SetOverflowed();
+    } else {
+      bottom_ = ((bottom_ - 1) & mask_);
+      array_[bottom_] = object;
+    }
+  }
+
+  HeapObject** array() { return array_; }
+  int bottom() { return bottom_; }
+  int top() { return top_; }
+  int mask() { return mask_; }
+  void set_top(int top) { top_ = top; }
+
+ private:
+  HeapObject** array_;
+  // array_[(top - 1) & mask_] is the top element in the deque.  The Deque is
+  // empty when top_ == bottom_.  It is full when top_ + 1 == bottom
+  // (mod mask + 1).
+  int top_;
+  int bottom_;
+  int mask_;
+  bool overflowed_;
+
+  DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
+};
+
+
+class SlotsBufferAllocator {
+ public:
+  SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
+  void DeallocateBuffer(SlotsBuffer* buffer);
+
+  void DeallocateChain(SlotsBuffer** buffer_address);
+};
+
+
+// SlotsBuffer records a sequence of slots that has to be updated
+// after live objects were relocated from evacuation candidates.
+// All slots are either untyped or typed:
+//    - Untyped slots are expected to contain a tagged object pointer.
+//      They are recorded by an address.
+//    - Typed slots are expected to contain an encoded pointer to a heap
+//      object where the way of encoding depends on the type of the slot.
+//      They are recorded as a pair (SlotType, slot address).
+// We assume that zero-page is never mapped this allows us to distinguish
+// untyped slots from typed slots during iteration by a simple comparison:
+// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
+// is the first element of typed slot's pair.
+class SlotsBuffer {
+ public:
+  typedef Object** ObjectSlot;
+
+  explicit SlotsBuffer(SlotsBuffer* next_buffer)
+      : idx_(0), chain_length_(1), next_(next_buffer) {
+    if (next_ != NULL) {
+      chain_length_ = next_->chain_length_ + 1;
+    }
+  }
+
+  ~SlotsBuffer() {}
+
+  void Add(ObjectSlot slot) {
+    DCHECK(0 <= idx_ && idx_ < kNumberOfElements);
+    slots_[idx_++] = slot;
+  }
+
+  enum SlotType {
+    EMBEDDED_OBJECT_SLOT,
+    RELOCATED_CODE_OBJECT,
+    CODE_TARGET_SLOT,
+    CODE_ENTRY_SLOT,
+    DEBUG_TARGET_SLOT,
+    JS_RETURN_SLOT,
+    NUMBER_OF_SLOT_TYPES
+  };
+
+  static const char* SlotTypeToString(SlotType type) {
+    switch (type) {
+      case EMBEDDED_OBJECT_SLOT:
+        return "EMBEDDED_OBJECT_SLOT";
+      case RELOCATED_CODE_OBJECT:
+        return "RELOCATED_CODE_OBJECT";
+      case CODE_TARGET_SLOT:
+        return "CODE_TARGET_SLOT";
+      case CODE_ENTRY_SLOT:
+        return "CODE_ENTRY_SLOT";
+      case DEBUG_TARGET_SLOT:
+        return "DEBUG_TARGET_SLOT";
+      case JS_RETURN_SLOT:
+        return "JS_RETURN_SLOT";
+      case NUMBER_OF_SLOT_TYPES:
+        return "NUMBER_OF_SLOT_TYPES";
+    }
+    return "UNKNOWN SlotType";
+  }
+
+  void UpdateSlots(Heap* heap);
+
+  void UpdateSlotsWithFilter(Heap* heap);
+
+  SlotsBuffer* next() { return next_; }
+
+  static int SizeOfChain(SlotsBuffer* buffer) {
+    if (buffer == NULL) return 0;
+    return static_cast<int>(buffer->idx_ +
+                            (buffer->chain_length_ - 1) * kNumberOfElements);
+  }
+
+  inline bool IsFull() { return idx_ == kNumberOfElements; }
+
+  inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; }
+
+  static void UpdateSlotsRecordedIn(Heap* heap, SlotsBuffer* buffer,
+                                    bool code_slots_filtering_required) {
+    while (buffer != NULL) {
+      if (code_slots_filtering_required) {
+        buffer->UpdateSlotsWithFilter(heap);
+      } else {
+        buffer->UpdateSlots(heap);
+      }
+      buffer = buffer->next();
+    }
+  }
+
+  enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW };
+
+  static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
+    return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
+  }
+
+  INLINE(static bool AddTo(SlotsBufferAllocator* allocator,
+                           SlotsBuffer** buffer_address, ObjectSlot slot,
+                           AdditionMode mode)) {
+    SlotsBuffer* buffer = *buffer_address;
+    if (buffer == NULL || buffer->IsFull()) {
+      if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
+        allocator->DeallocateChain(buffer_address);
+        return false;
+      }
+      buffer = allocator->AllocateBuffer(buffer);
+      *buffer_address = buffer;
+    }
+    buffer->Add(slot);
+    return true;
+  }
+
+  static bool IsTypedSlot(ObjectSlot slot);
+
+  static bool AddTo(SlotsBufferAllocator* allocator,
+                    SlotsBuffer** buffer_address, SlotType type, Address addr,
+                    AdditionMode mode);
+
+  static const int kNumberOfElements = 1021;
+
+ private:
+  static const int kChainLengthThreshold = 15;
+
+  intptr_t idx_;
+  intptr_t chain_length_;
+  SlotsBuffer* next_;
+  ObjectSlot slots_[kNumberOfElements];
+};
+
+
+// CodeFlusher collects candidates for code flushing during marking and
+// processes those candidates after marking has completed in order to
+// reset those functions referencing code objects that would otherwise
+// be unreachable. Code objects can be referenced in three ways:
+//    - SharedFunctionInfo references unoptimized code.
+//    - JSFunction references either unoptimized or optimized code.
+//    - OptimizedCodeMap references optimized code.
+// We are not allowed to flush unoptimized code for functions that got
+// optimized or inlined into optimized code, because we might bailout
+// into the unoptimized code again during deoptimization.
+class CodeFlusher {
+ public:
+  explicit CodeFlusher(Isolate* isolate)
+      : isolate_(isolate),
+        jsfunction_candidates_head_(NULL),
+        shared_function_info_candidates_head_(NULL),
+        optimized_code_map_holder_head_(NULL) {}
+
+  void AddCandidate(SharedFunctionInfo* shared_info) {
+    if (GetNextCandidate(shared_info) == NULL) {
+      SetNextCandidate(shared_info, shared_function_info_candidates_head_);
+      shared_function_info_candidates_head_ = shared_info;
+    }
+  }
+
+  void AddCandidate(JSFunction* function) {
+    DCHECK(function->code() == function->shared()->code());
+    if (GetNextCandidate(function)->IsUndefined()) {
+      SetNextCandidate(function, jsfunction_candidates_head_);
+      jsfunction_candidates_head_ = function;
+    }
+  }
+
+  void AddOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
+    if (GetNextCodeMap(code_map_holder)->IsUndefined()) {
+      SetNextCodeMap(code_map_holder, optimized_code_map_holder_head_);
+      optimized_code_map_holder_head_ = code_map_holder;
+    }
+  }
+
+  void EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder);
+  void EvictCandidate(SharedFunctionInfo* shared_info);
+  void EvictCandidate(JSFunction* function);
+
+  void ProcessCandidates() {
+    ProcessOptimizedCodeMaps();
+    ProcessSharedFunctionInfoCandidates();
+    ProcessJSFunctionCandidates();
+  }
+
+  void EvictAllCandidates() {
+    EvictOptimizedCodeMaps();
+    EvictJSFunctionCandidates();
+    EvictSharedFunctionInfoCandidates();
+  }
+
+  void IteratePointersToFromSpace(ObjectVisitor* v);
+
+ private:
+  void ProcessOptimizedCodeMaps();
+  void ProcessJSFunctionCandidates();
+  void ProcessSharedFunctionInfoCandidates();
+  void EvictOptimizedCodeMaps();
+  void EvictJSFunctionCandidates();
+  void EvictSharedFunctionInfoCandidates();
+
+  static JSFunction** GetNextCandidateSlot(JSFunction* candidate) {
+    return reinterpret_cast<JSFunction**>(
+        HeapObject::RawField(candidate, JSFunction::kNextFunctionLinkOffset));
+  }
+
+  static JSFunction* GetNextCandidate(JSFunction* candidate) {
+    Object* next_candidate = candidate->next_function_link();
+    return reinterpret_cast<JSFunction*>(next_candidate);
+  }
+
+  static void SetNextCandidate(JSFunction* candidate,
+                               JSFunction* next_candidate) {
+    candidate->set_next_function_link(next_candidate);
+  }
+
+  static void ClearNextCandidate(JSFunction* candidate, Object* undefined) {
+    DCHECK(undefined->IsUndefined());
+    candidate->set_next_function_link(undefined, SKIP_WRITE_BARRIER);
+  }
+
+  static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
+    Object* next_candidate = candidate->code()->gc_metadata();
+    return reinterpret_cast<SharedFunctionInfo*>(next_candidate);
+  }
+
+  static void SetNextCandidate(SharedFunctionInfo* candidate,
+                               SharedFunctionInfo* next_candidate) {
+    candidate->code()->set_gc_metadata(next_candidate);
+  }
+
+  static void ClearNextCandidate(SharedFunctionInfo* candidate) {
+    candidate->code()->set_gc_metadata(NULL, SKIP_WRITE_BARRIER);
+  }
+
+  static SharedFunctionInfo* GetNextCodeMap(SharedFunctionInfo* holder) {
+    FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
+    Object* next_map = code_map->get(SharedFunctionInfo::kNextMapIndex);
+    return reinterpret_cast<SharedFunctionInfo*>(next_map);
+  }
+
+  static void SetNextCodeMap(SharedFunctionInfo* holder,
+                             SharedFunctionInfo* next_holder) {
+    FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
+    code_map->set(SharedFunctionInfo::kNextMapIndex, next_holder);
+  }
+
+  static void ClearNextCodeMap(SharedFunctionInfo* holder) {
+    FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
+    code_map->set_undefined(SharedFunctionInfo::kNextMapIndex);
+  }
+
+  Isolate* isolate_;
+  JSFunction* jsfunction_candidates_head_;
+  SharedFunctionInfo* shared_function_info_candidates_head_;
+  SharedFunctionInfo* optimized_code_map_holder_head_;
+
+  DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
+};
+
+
+// Defined in isolate.h.
+class ThreadLocalTop;
+
+
+// -------------------------------------------------------------------------
+// Mark-Compact collector
+class MarkCompactCollector {
+ public:
+  // Set the global flags, it must be called before Prepare to take effect.
+  inline void SetFlags(int flags);
+
+  static void Initialize();
+
+  void SetUp();
+
+  void TearDown();
+
+  void CollectEvacuationCandidates(PagedSpace* space);
+
+  void AddEvacuationCandidate(Page* p);
+
+  // Prepares for GC by resetting relocation info in old and map spaces and
+  // choosing spaces to compact.
+  void Prepare();
+
+  // Performs a global garbage collection.
+  void CollectGarbage();
+
+  enum CompactionMode { INCREMENTAL_COMPACTION, NON_INCREMENTAL_COMPACTION };
+
+  bool StartCompaction(CompactionMode mode);
+
+  void AbortCompaction();
+
+#ifdef DEBUG
+  // Checks whether performing mark-compact collection.
+  bool in_use() { return state_ > PREPARE_GC; }
+  bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
+#endif
+
+  // Determine type of object and emit deletion log event.
+  static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
+
+  // Distinguishable invalid map encodings (for single word and multiple words)
+  // that indicate free regions.
+  static const uint32_t kSingleFreeEncoding = 0;
+  static const uint32_t kMultiFreeEncoding = 1;
+
+  static inline bool IsMarked(Object* obj);
+
+  inline Heap* heap() const { return heap_; }
+  inline Isolate* isolate() const;
+
+  CodeFlusher* code_flusher() { return code_flusher_; }
+  inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
+  void EnableCodeFlushing(bool enable);
+
+  enum SweeperType {
+    PARALLEL_SWEEPING,
+    CONCURRENT_SWEEPING,
+    SEQUENTIAL_SWEEPING
+  };
+
+  enum SweepingParallelism { SWEEP_ON_MAIN_THREAD, SWEEP_IN_PARALLEL };
+
+#ifdef VERIFY_HEAP
+  void VerifyMarkbitsAreClean();
+  static void VerifyMarkbitsAreClean(PagedSpace* space);
+  static void VerifyMarkbitsAreClean(NewSpace* space);
+  void VerifyWeakEmbeddedObjectsInCode();
+  void VerifyOmittedMapChecks();
+#endif
+
+  INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) {
+    return Page::FromAddress(reinterpret_cast<Address>(anchor))
+        ->ShouldSkipEvacuationSlotRecording();
+  }
+
+  INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
+    return Page::FromAddress(reinterpret_cast<Address>(host))
+        ->ShouldSkipEvacuationSlotRecording();
+  }
+
+  INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
+    return Page::FromAddress(reinterpret_cast<Address>(obj))
+        ->IsEvacuationCandidate();
+  }
+
+  INLINE(void EvictEvacuationCandidate(Page* page)) {
+    if (FLAG_trace_fragmentation) {
+      PrintF("Page %p is too popular. Disabling evacuation.\n",
+             reinterpret_cast<void*>(page));
+    }
+
+    // TODO(gc) If all evacuation candidates are too popular we
+    // should stop slots recording entirely.
+    page->ClearEvacuationCandidate();
+
+    // We were not collecting slots on this page that point
+    // to other evacuation candidates thus we have to
+    // rescan the page after evacuation to discover and update all
+    // pointers to evacuated objects.
+    if (page->owner()->identity() == OLD_DATA_SPACE) {
+      evacuation_candidates_.RemoveElement(page);
+    } else {
+      page->SetFlag(Page::RESCAN_ON_EVACUATION);
+    }
+  }
+
+  void RecordRelocSlot(RelocInfo* rinfo, Object* target);
+  void RecordCodeEntrySlot(Address slot, Code* target);
+  void RecordCodeTargetPatch(Address pc, Code* target);
+
+  INLINE(void RecordSlot(
+      Object** anchor_slot, Object** slot, Object* object,
+      SlotsBuffer::AdditionMode mode = SlotsBuffer::FAIL_ON_OVERFLOW));
+
+  void MigrateObject(HeapObject* dst, HeapObject* src, int size,
+                     AllocationSpace to_old_space);
+
+  bool TryPromoteObject(HeapObject* object, int object_size);
+
+  void InvalidateCode(Code* code);
+
+  void ClearMarkbits();
+
+  bool abort_incremental_marking() const { return abort_incremental_marking_; }
+
+  bool is_compacting() const { return compacting_; }
+
+  MarkingParity marking_parity() { return marking_parity_; }
+
+  // Concurrent and parallel sweeping support. If required_freed_bytes was set
+  // to a value larger than 0, then sweeping returns after a block of at least
+  // required_freed_bytes was freed. If required_freed_bytes was set to zero
+  // then the whole given space is swept. It returns the size of the maximum
+  // continuous freed memory chunk.
+  int SweepInParallel(PagedSpace* space, int required_freed_bytes);
+
+  // Sweeps a given page concurrently to the sweeper threads. It returns the
+  // size of the maximum continuous freed memory chunk.
+  int SweepInParallel(Page* page, PagedSpace* space);
+
+  void EnsureSweepingCompleted();
+
+  // If sweeper threads are not active this method will return true. If
+  // this is a latency issue we should be smarter here. Otherwise, it will
+  // return true if the sweeper threads are done processing the pages.
+  bool IsSweepingCompleted();
+
+  void RefillFreeList(PagedSpace* space);
+
+  bool AreSweeperThreadsActivated();
+
+  // Checks if sweeping is in progress right now on any space.
+  bool sweeping_in_progress() { return sweeping_in_progress_; }
+
+  void set_sequential_sweeping(bool sequential_sweeping) {
+    sequential_sweeping_ = sequential_sweeping;
+  }
+
+  bool sequential_sweeping() const { return sequential_sweeping_; }
+
+  // Mark the global table which maps weak objects to dependent code without
+  // marking its contents.
+  void MarkWeakObjectToCodeTable();
+
+  // Special case for processing weak references in a full collection. We need
+  // to artificially keep AllocationSites alive for a time.
+  void MarkAllocationSite(AllocationSite* site);
+
+ private:
+  class SweeperTask;
+
+  explicit MarkCompactCollector(Heap* heap);
+  ~MarkCompactCollector();
+
+  bool MarkInvalidatedCode();
+  bool WillBeDeoptimized(Code* code);
+  void RemoveDeadInvalidatedCode();
+  void ProcessInvalidatedCode(ObjectVisitor* visitor);
+
+  void StartSweeperThreads();
+
+#ifdef DEBUG
+  enum CollectorState {
+    IDLE,
+    PREPARE_GC,
+    MARK_LIVE_OBJECTS,
+    SWEEP_SPACES,
+    ENCODE_FORWARDING_ADDRESSES,
+    UPDATE_POINTERS,
+    RELOCATE_OBJECTS
+  };
+
+  // The current stage of the collector.
+  CollectorState state_;
+#endif
+
+  bool reduce_memory_footprint_;
+
+  bool abort_incremental_marking_;
+
+  MarkingParity marking_parity_;
+
+  // True if we are collecting slots to perform evacuation from evacuation
+  // candidates.
+  bool compacting_;
+
+  bool was_marked_incrementally_;
+
+  // True if concurrent or parallel sweeping is currently in progress.
+  bool sweeping_in_progress_;
+
+  base::Semaphore pending_sweeper_jobs_semaphore_;
+
+  bool sequential_sweeping_;
+
+  SlotsBufferAllocator slots_buffer_allocator_;
+
+  SlotsBuffer* migration_slots_buffer_;
+
+  // Finishes GC, performs heap verification if enabled.
+  void Finish();
+
+  // -----------------------------------------------------------------------
+  // Phase 1: Marking live objects.
+  //
+  //  Before: The heap has been prepared for garbage collection by
+  //          MarkCompactCollector::Prepare() and is otherwise in its
+  //          normal state.
+  //
+  //   After: Live objects are marked and non-live objects are unmarked.
+
+  friend class RootMarkingVisitor;
+  friend class MarkingVisitor;
+  friend class MarkCompactMarkingVisitor;
+  friend class CodeMarkingVisitor;
+  friend class SharedFunctionInfoMarkingVisitor;
+
+  // Mark code objects that are active on the stack to prevent them
+  // from being flushed.
+  void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
+
+  void PrepareForCodeFlushing();
+
+  // Marking operations for objects reachable from roots.
+  void MarkLiveObjects();
+
+  void AfterMarking();
+
+  // Marks the object black and pushes it on the marking stack.
+  // This is for non-incremental marking only.
+  INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
+
+  // Marks the object black assuming that it is not yet marked.
+  // This is for non-incremental marking only.
+  INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
+
+  // Mark the heap roots and all objects reachable from them.
+  void MarkRoots(RootMarkingVisitor* visitor);
+
+  // Mark the string table specially.  References to internalized strings from
+  // the string table are weak.
+  void MarkStringTable(RootMarkingVisitor* visitor);
+
+  // Mark objects in implicit references groups if their parent object
+  // is marked.
+  void MarkImplicitRefGroups();
+
+  // Mark objects reachable (transitively) from objects in the marking stack
+  // or overflowed in the heap.
+  void ProcessMarkingDeque();
+
+  // Mark objects reachable (transitively) from objects in the marking stack
+  // or overflowed in the heap.  This respects references only considered in
+  // the final atomic marking pause including the following:
+  //    - Processing of objects reachable through Harmony WeakMaps.
+  //    - Objects reachable due to host application logic like object groups
+  //      or implicit references' groups.
+  void ProcessEphemeralMarking(ObjectVisitor* visitor);
+
+  // If the call-site of the top optimized code was not prepared for
+  // deoptimization, then treat the maps in the code as strong pointers,
+  // otherwise a map can die and deoptimize the code.
+  void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
+
+  // Mark objects reachable (transitively) from objects in the marking
+  // stack.  This function empties the marking stack, but may leave
+  // overflowed objects in the heap, in which case the marking stack's
+  // overflow flag will be set.
+  void EmptyMarkingDeque();
+
+  // Refill the marking stack with overflowed objects from the heap.  This
+  // function either leaves the marking stack full or clears the overflow
+  // flag on the marking stack.
+  void RefillMarkingDeque();
+
+  // After reachable maps have been marked process per context object
+  // literal map caches removing unmarked entries.
+  void ProcessMapCaches();
+
+  // Callback function for telling whether the object *p is an unmarked
+  // heap object.
+  static bool IsUnmarkedHeapObject(Object** p);
+  static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
+
+  // Map transitions from a live map to a dead map must be killed.
+  // We replace them with a null descriptor, with the same key.
+  void ClearNonLiveReferences();
+  void ClearNonLivePrototypeTransitions(Map* map);
+  void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark);
+  void ClearMapTransitions(Map* map);
+  bool ClearMapBackPointer(Map* map);
+  void TrimDescriptorArray(Map* map, DescriptorArray* descriptors,
+                           int number_of_own_descriptors);
+  void TrimEnumCache(Map* map, DescriptorArray* descriptors);
+
+  void ClearDependentCode(DependentCode* dependent_code);
+  void ClearDependentICList(Object* head);
+  void ClearNonLiveDependentCode(DependentCode* dependent_code);
+  int ClearNonLiveDependentCodeInGroup(DependentCode* dependent_code, int group,
+                                       int start, int end, int new_start);
+
+  // Mark all values associated with reachable keys in weak collections
+  // encountered so far.  This might push new object or even new weak maps onto
+  // the marking stack.
+  void ProcessWeakCollections();
+
+  // After all reachable objects have been marked those weak map entries
+  // with an unreachable key are removed from all encountered weak maps.
+  // The linked list of all encountered weak maps is destroyed.
+  void ClearWeakCollections();
+
+  // We have to remove all encountered weak maps from the list of weak
+  // collections when incremental marking is aborted.
+  void AbortWeakCollections();
+
+  // -----------------------------------------------------------------------
+  // Phase 2: Sweeping to clear mark bits and free non-live objects for
+  // a non-compacting collection.
+  //
+  //  Before: Live objects are marked and non-live objects are unmarked.
+  //
+  //   After: Live objects are unmarked, non-live regions have been added to
+  //          their space's free list. Active eden semispace is compacted by
+  //          evacuation.
+  //
+
+  // If we are not compacting the heap, we simply sweep the spaces except
+  // for the large object space, clearing mark bits and adding unmarked
+  // regions to each space's free list.
+  void SweepSpaces();
+
+  int DiscoverAndEvacuateBlackObjectsOnPage(NewSpace* new_space,
+                                            NewSpacePage* p);
+
+  void EvacuateNewSpace();
+
+  void EvacuateLiveObjectsFromPage(Page* p);
+
+  void EvacuatePages();
+
+  void EvacuateNewSpaceAndCandidates();
+
+  void ReleaseEvacuationCandidates();
+
+  // Moves the pages of the evacuation_candidates_ list to the end of their
+  // corresponding space pages list.
+  void MoveEvacuationCandidatesToEndOfPagesList();
+
+  void SweepSpace(PagedSpace* space, SweeperType sweeper);
+
+  // Finalizes the parallel sweeping phase. Marks all the pages that were
+  // swept in parallel.
+  void ParallelSweepSpacesComplete();
+
+  void ParallelSweepSpaceComplete(PagedSpace* space);
+
+  // Updates store buffer and slot buffer for a pointer in a migrating object.
+  void RecordMigratedSlot(Object* value, Address slot);
+
+#ifdef DEBUG
+  friend class MarkObjectVisitor;
+  static void VisitObject(HeapObject* obj);
+
+  friend class UnmarkObjectVisitor;
+  static void UnmarkObject(HeapObject* obj);
+#endif
+
+  Heap* heap_;
+  MarkingDeque marking_deque_;
+  CodeFlusher* code_flusher_;
+  bool have_code_to_deoptimize_;
+
+  List<Page*> evacuation_candidates_;
+  List<Code*> invalidated_code_;
+
+  SmartPointer<FreeList> free_list_old_data_space_;
+  SmartPointer<FreeList> free_list_old_pointer_space_;
+
+  friend class Heap;
+};
+
+
+class MarkBitCellIterator BASE_EMBEDDED {
+ public:
+  explicit MarkBitCellIterator(MemoryChunk* chunk) : chunk_(chunk) {
+    last_cell_index_ = Bitmap::IndexToCell(Bitmap::CellAlignIndex(
+        chunk_->AddressToMarkbitIndex(chunk_->area_end())));
+    cell_base_ = chunk_->area_start();
+    cell_index_ = Bitmap::IndexToCell(
+        Bitmap::CellAlignIndex(chunk_->AddressToMarkbitIndex(cell_base_)));
+    cells_ = chunk_->markbits()->cells();
+  }
+
+  inline bool Done() { return cell_index_ == last_cell_index_; }
+
+  inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
+
+  inline MarkBit::CellType* CurrentCell() {
+    DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
+                              chunk_->AddressToMarkbitIndex(cell_base_))));
+    return &cells_[cell_index_];
+  }
+
+  inline Address CurrentCellBase() {
+    DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
+                              chunk_->AddressToMarkbitIndex(cell_base_))));
+    return cell_base_;
+  }
+
+  inline void Advance() {
+    cell_index_++;
+    cell_base_ += 32 * kPointerSize;
+  }
+
+ private:
+  MemoryChunk* chunk_;
+  MarkBit::CellType* cells_;
+  unsigned int last_cell_index_;
+  unsigned int cell_index_;
+  Address cell_base_;
+};
+
+
+class SequentialSweepingScope BASE_EMBEDDED {
+ public:
+  explicit SequentialSweepingScope(MarkCompactCollector* collector)
+      : collector_(collector) {
+    collector_->set_sequential_sweeping(true);
+  }
+
+  ~SequentialSweepingScope() { collector_->set_sequential_sweeping(false); }
+
+ private:
+  MarkCompactCollector* collector_;
+};
+
+
+const char* AllocationSpaceName(AllocationSpace space);
+}
+}  // namespace v8::internal
+
+#endif  // V8_HEAP_MARK_COMPACT_H_