Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/heap/store-buffer.cc b/src/heap/store-buffer.cc
new file mode 100644
index 0000000..278e9f2
--- /dev/null
+++ b/src/heap/store-buffer.cc
@@ -0,0 +1,581 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <algorithm>
+
+#include "src/v8.h"
+
+#include "src/base/atomicops.h"
+#include "src/counters.h"
+#include "src/heap/store-buffer-inl.h"
+
+namespace v8 {
+namespace internal {
+
+StoreBuffer::StoreBuffer(Heap* heap)
+    : heap_(heap),
+      start_(NULL),
+      limit_(NULL),
+      old_start_(NULL),
+      old_limit_(NULL),
+      old_top_(NULL),
+      old_reserved_limit_(NULL),
+      old_buffer_is_sorted_(false),
+      old_buffer_is_filtered_(false),
+      during_gc_(false),
+      store_buffer_rebuilding_enabled_(false),
+      callback_(NULL),
+      may_move_store_buffer_entries_(true),
+      virtual_memory_(NULL),
+      hash_set_1_(NULL),
+      hash_set_2_(NULL),
+      hash_sets_are_empty_(true) {}
+
+
+void StoreBuffer::SetUp() {
+  virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
+  uintptr_t start_as_int =
+      reinterpret_cast<uintptr_t>(virtual_memory_->address());
+  start_ =
+      reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
+  limit_ = start_ + (kStoreBufferSize / kPointerSize);
+
+  old_virtual_memory_ =
+      new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
+  old_top_ = old_start_ =
+      reinterpret_cast<Address*>(old_virtual_memory_->address());
+  // Don't know the alignment requirements of the OS, but it is certainly not
+  // less than 0xfff.
+  DCHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
+  int initial_length =
+      static_cast<int>(base::OS::CommitPageSize() / kPointerSize);
+  DCHECK(initial_length > 0);
+  DCHECK(initial_length <= kOldStoreBufferLength);
+  old_limit_ = old_start_ + initial_length;
+  old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
+
+  CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_),
+                                    (old_limit_ - old_start_) * kPointerSize,
+                                    false));
+
+  DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
+  DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
+  Address* vm_limit = reinterpret_cast<Address*>(
+      reinterpret_cast<char*>(virtual_memory_->address()) +
+      virtual_memory_->size());
+  DCHECK(start_ <= vm_limit);
+  DCHECK(limit_ <= vm_limit);
+  USE(vm_limit);
+  DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
+  DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
+         0);
+
+  CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
+                                kStoreBufferSize,
+                                false));  // Not executable.
+  heap_->public_set_store_buffer_top(start_);
+
+  hash_set_1_ = new uintptr_t[kHashSetLength];
+  hash_set_2_ = new uintptr_t[kHashSetLength];
+  hash_sets_are_empty_ = false;
+
+  ClearFilteringHashSets();
+}
+
+
+void StoreBuffer::TearDown() {
+  delete virtual_memory_;
+  delete old_virtual_memory_;
+  delete[] hash_set_1_;
+  delete[] hash_set_2_;
+  old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
+  start_ = limit_ = NULL;
+  heap_->public_set_store_buffer_top(start_);
+}
+
+
+void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
+  isolate->heap()->store_buffer()->Compact();
+  isolate->counters()->store_buffer_overflows()->Increment();
+}
+
+
+void StoreBuffer::Uniq() {
+  // Remove adjacent duplicates and cells that do not point at new space.
+  Address previous = NULL;
+  Address* write = old_start_;
+  DCHECK(may_move_store_buffer_entries_);
+  for (Address* read = old_start_; read < old_top_; read++) {
+    Address current = *read;
+    if (current != previous) {
+      if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
+        *write++ = current;
+      }
+    }
+    previous = current;
+  }
+  old_top_ = write;
+}
+
+
+bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
+  return old_limit_ - old_top_ >= space_needed;
+}
+
+
+void StoreBuffer::EnsureSpace(intptr_t space_needed) {
+  while (old_limit_ - old_top_ < space_needed &&
+         old_limit_ < old_reserved_limit_) {
+    size_t grow = old_limit_ - old_start_;  // Double size.
+    CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
+                                      grow * kPointerSize, false));
+    old_limit_ += grow;
+  }
+
+  if (SpaceAvailable(space_needed)) return;
+
+  if (old_buffer_is_filtered_) return;
+  DCHECK(may_move_store_buffer_entries_);
+  Compact();
+
+  old_buffer_is_filtered_ = true;
+  bool page_has_scan_on_scavenge_flag = false;
+
+  PointerChunkIterator it(heap_);
+  MemoryChunk* chunk;
+  while ((chunk = it.next()) != NULL) {
+    if (chunk->scan_on_scavenge()) {
+      page_has_scan_on_scavenge_flag = true;
+      break;
+    }
+  }
+
+  if (page_has_scan_on_scavenge_flag) {
+    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
+  }
+
+  if (SpaceAvailable(space_needed)) return;
+
+  // Sample 1 entry in 97 and filter out the pages where we estimate that more
+  // than 1 in 8 pointers are to new space.
+  static const int kSampleFinenesses = 5;
+  static const struct Samples {
+    int prime_sample_step;
+    int threshold;
+  } samples[kSampleFinenesses] = {
+        {97, ((Page::kPageSize / kPointerSize) / 97) / 8},
+        {23, ((Page::kPageSize / kPointerSize) / 23) / 16},
+        {7, ((Page::kPageSize / kPointerSize) / 7) / 32},
+        {3, ((Page::kPageSize / kPointerSize) / 3) / 256},
+        {1, 0}};
+  for (int i = 0; i < kSampleFinenesses; i++) {
+    ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
+    // As a last resort we mark all pages as being exempt from the store buffer.
+    DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
+    if (SpaceAvailable(space_needed)) return;
+  }
+  UNREACHABLE();
+}
+
+
+// Sample the store buffer to see if some pages are taking up a lot of space
+// in the store buffer.
+void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
+  PointerChunkIterator it(heap_);
+  MemoryChunk* chunk;
+  while ((chunk = it.next()) != NULL) {
+    chunk->set_store_buffer_counter(0);
+  }
+  bool created_new_scan_on_scavenge_pages = false;
+  MemoryChunk* previous_chunk = NULL;
+  for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
+    Address addr = *p;
+    MemoryChunk* containing_chunk = NULL;
+    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
+      containing_chunk = previous_chunk;
+    } else {
+      containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
+    }
+    int old_counter = containing_chunk->store_buffer_counter();
+    if (old_counter >= threshold) {
+      containing_chunk->set_scan_on_scavenge(true);
+      created_new_scan_on_scavenge_pages = true;
+    }
+    containing_chunk->set_store_buffer_counter(old_counter + 1);
+    previous_chunk = containing_chunk;
+  }
+  if (created_new_scan_on_scavenge_pages) {
+    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
+  }
+  old_buffer_is_filtered_ = true;
+}
+
+
+void StoreBuffer::Filter(int flag) {
+  Address* new_top = old_start_;
+  MemoryChunk* previous_chunk = NULL;
+  for (Address* p = old_start_; p < old_top_; p++) {
+    Address addr = *p;
+    MemoryChunk* containing_chunk = NULL;
+    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
+      containing_chunk = previous_chunk;
+    } else {
+      containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
+      previous_chunk = containing_chunk;
+    }
+    if (!containing_chunk->IsFlagSet(flag)) {
+      *new_top++ = addr;
+    }
+  }
+  old_top_ = new_top;
+
+  // Filtering hash sets are inconsistent with the store buffer after this
+  // operation.
+  ClearFilteringHashSets();
+}
+
+
+void StoreBuffer::SortUniq() {
+  Compact();
+  if (old_buffer_is_sorted_) return;
+  std::sort(old_start_, old_top_);
+  Uniq();
+
+  old_buffer_is_sorted_ = true;
+
+  // Filtering hash sets are inconsistent with the store buffer after this
+  // operation.
+  ClearFilteringHashSets();
+}
+
+
+bool StoreBuffer::PrepareForIteration() {
+  Compact();
+  PointerChunkIterator it(heap_);
+  MemoryChunk* chunk;
+  bool page_has_scan_on_scavenge_flag = false;
+  while ((chunk = it.next()) != NULL) {
+    if (chunk->scan_on_scavenge()) {
+      page_has_scan_on_scavenge_flag = true;
+      break;
+    }
+  }
+
+  if (page_has_scan_on_scavenge_flag) {
+    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
+  }
+
+  // Filtering hash sets are inconsistent with the store buffer after
+  // iteration.
+  ClearFilteringHashSets();
+
+  return page_has_scan_on_scavenge_flag;
+}
+
+
+#ifdef DEBUG
+void StoreBuffer::Clean() {
+  ClearFilteringHashSets();
+  Uniq();  // Also removes things that no longer point to new space.
+  EnsureSpace(kStoreBufferSize / 2);
+}
+
+
+static Address* in_store_buffer_1_element_cache = NULL;
+
+
+bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
+  if (!FLAG_enable_slow_asserts) return true;
+  if (in_store_buffer_1_element_cache != NULL &&
+      *in_store_buffer_1_element_cache == cell_address) {
+    return true;
+  }
+  Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
+  for (Address* current = top - 1; current >= start_; current--) {
+    if (*current == cell_address) {
+      in_store_buffer_1_element_cache = current;
+      return true;
+    }
+  }
+  for (Address* current = old_top_ - 1; current >= old_start_; current--) {
+    if (*current == cell_address) {
+      in_store_buffer_1_element_cache = current;
+      return true;
+    }
+  }
+  return false;
+}
+#endif
+
+
+void StoreBuffer::ClearFilteringHashSets() {
+  if (!hash_sets_are_empty_) {
+    memset(reinterpret_cast<void*>(hash_set_1_), 0,
+           sizeof(uintptr_t) * kHashSetLength);
+    memset(reinterpret_cast<void*>(hash_set_2_), 0,
+           sizeof(uintptr_t) * kHashSetLength);
+    hash_sets_are_empty_ = true;
+  }
+}
+
+
+void StoreBuffer::GCPrologue() {
+  ClearFilteringHashSets();
+  during_gc_ = true;
+}
+
+
+#ifdef VERIFY_HEAP
+void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
+  LargeObjectIterator it(space);
+  for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
+    if (object->IsFixedArray()) {
+      Address slot_address = object->address();
+      Address end = object->address() + object->Size();
+
+      while (slot_address < end) {
+        HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
+        // When we are not in GC the Heap::InNewSpace() predicate
+        // checks that pointers which satisfy predicate point into
+        // the active semispace.
+        Object* object = reinterpret_cast<Object*>(
+            base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
+        heap_->InNewSpace(object);
+        slot_address += kPointerSize;
+      }
+    }
+  }
+}
+#endif
+
+
+void StoreBuffer::Verify() {
+#ifdef VERIFY_HEAP
+  VerifyPointers(heap_->lo_space());
+#endif
+}
+
+
+void StoreBuffer::GCEpilogue() {
+  during_gc_ = false;
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    Verify();
+  }
+#endif
+}
+
+
+void StoreBuffer::FindPointersToNewSpaceInRegion(
+    Address start, Address end, ObjectSlotCallback slot_callback,
+    bool clear_maps) {
+  for (Address slot_address = start; slot_address < end;
+       slot_address += kPointerSize) {
+    Object** slot = reinterpret_cast<Object**>(slot_address);
+    Object* object = reinterpret_cast<Object*>(
+        base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
+    if (heap_->InNewSpace(object)) {
+      HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
+      DCHECK(heap_object->IsHeapObject());
+      // The new space object was not promoted if it still contains a map
+      // pointer. Clear the map field now lazily.
+      if (clear_maps) ClearDeadObject(heap_object);
+      slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
+      object = reinterpret_cast<Object*>(
+          base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
+      if (heap_->InNewSpace(object)) {
+        EnterDirectlyIntoStoreBuffer(slot_address);
+      }
+    }
+  }
+}
+
+
+void StoreBuffer::IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback,
+                                               bool clear_maps) {
+  Address* limit = old_top_;
+  old_top_ = old_start_;
+  {
+    DontMoveStoreBufferEntriesScope scope(this);
+    for (Address* current = old_start_; current < limit; current++) {
+#ifdef DEBUG
+      Address* saved_top = old_top_;
+#endif
+      Object** slot = reinterpret_cast<Object**>(*current);
+      Object* object = reinterpret_cast<Object*>(
+          base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
+      if (heap_->InFromSpace(object)) {
+        HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
+        // The new space object was not promoted if it still contains a map
+        // pointer. Clear the map field now lazily.
+        if (clear_maps) ClearDeadObject(heap_object);
+        slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
+        object = reinterpret_cast<Object*>(
+            base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
+        if (heap_->InNewSpace(object)) {
+          EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
+        }
+      }
+      DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
+    }
+  }
+}
+
+
+void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
+  IteratePointersToNewSpace(slot_callback, false);
+}
+
+
+void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
+    ObjectSlotCallback slot_callback) {
+  IteratePointersToNewSpace(slot_callback, true);
+}
+
+
+void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
+                                            bool clear_maps) {
+  // We do not sort or remove duplicated entries from the store buffer because
+  // we expect that callback will rebuild the store buffer thus removing
+  // all duplicates and pointers to old space.
+  bool some_pages_to_scan = PrepareForIteration();
+
+  // TODO(gc): we want to skip slots on evacuation candidates
+  // but we can't simply figure that out from slot address
+  // because slot can belong to a large object.
+  IteratePointersInStoreBuffer(slot_callback, clear_maps);
+
+  // We are done scanning all the pointers that were in the store buffer, but
+  // there may be some pages marked scan_on_scavenge that have pointers to new
+  // space that are not in the store buffer.  We must scan them now.  As we
+  // scan, the surviving pointers to new space will be added to the store
+  // buffer.  If there are still a lot of pointers to new space then we will
+  // keep the scan_on_scavenge flag on the page and discard the pointers that
+  // were added to the store buffer.  If there are not many pointers to new
+  // space left on the page we will keep the pointers in the store buffer and
+  // remove the flag from the page.
+  if (some_pages_to_scan) {
+    if (callback_ != NULL) {
+      (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
+    }
+    PointerChunkIterator it(heap_);
+    MemoryChunk* chunk;
+    while ((chunk = it.next()) != NULL) {
+      if (chunk->scan_on_scavenge()) {
+        chunk->set_scan_on_scavenge(false);
+        if (callback_ != NULL) {
+          (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
+        }
+        if (chunk->owner() == heap_->lo_space()) {
+          LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
+          HeapObject* array = large_page->GetObject();
+          DCHECK(array->IsFixedArray());
+          Address start = array->address();
+          Address end = start + array->Size();
+          FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
+        } else {
+          Page* page = reinterpret_cast<Page*>(chunk);
+          PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
+          if (owner == heap_->map_space()) {
+            DCHECK(page->WasSwept());
+            HeapObjectIterator iterator(page, NULL);
+            for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
+                 heap_object = iterator.Next()) {
+              // We skip free space objects.
+              if (!heap_object->IsFiller()) {
+                DCHECK(heap_object->IsMap());
+                FindPointersToNewSpaceInRegion(
+                    heap_object->address() + Map::kPointerFieldsBeginOffset,
+                    heap_object->address() + Map::kPointerFieldsEndOffset,
+                    slot_callback, clear_maps);
+              }
+            }
+          } else {
+            if (!page->SweepingCompleted()) {
+              heap_->mark_compact_collector()->SweepInParallel(page, owner);
+              if (!page->SweepingCompleted()) {
+                // We were not able to sweep that page, i.e., a concurrent
+                // sweeper thread currently owns this page.
+                // TODO(hpayer): This may introduce a huge pause here. We
+                // just care about finish sweeping of the scan on scavenge page.
+                heap_->mark_compact_collector()->EnsureSweepingCompleted();
+              }
+            }
+            CHECK(page->owner() == heap_->old_pointer_space());
+            HeapObjectIterator iterator(page, NULL);
+            for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
+                 heap_object = iterator.Next()) {
+              // We iterate over objects that contain new space pointers only.
+              if (!heap_object->MayContainRawValues()) {
+                FindPointersToNewSpaceInRegion(
+                    heap_object->address() + HeapObject::kHeaderSize,
+                    heap_object->address() + heap_object->Size(), slot_callback,
+                    clear_maps);
+              }
+            }
+          }
+        }
+      }
+    }
+    if (callback_ != NULL) {
+      (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
+    }
+  }
+}
+
+
+void StoreBuffer::Compact() {
+  Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
+
+  if (top == start_) return;
+
+  // There's no check of the limit in the loop below so we check here for
+  // the worst case (compaction doesn't eliminate any pointers).
+  DCHECK(top <= limit_);
+  heap_->public_set_store_buffer_top(start_);
+  EnsureSpace(top - start_);
+  DCHECK(may_move_store_buffer_entries_);
+  // Goes through the addresses in the store buffer attempting to remove
+  // duplicates.  In the interest of speed this is a lossy operation.  Some
+  // duplicates will remain.  We have two hash sets with different hash
+  // functions to reduce the number of unnecessary clashes.
+  hash_sets_are_empty_ = false;  // Hash sets are in use.
+  for (Address* current = start_; current < top; current++) {
+    DCHECK(!heap_->cell_space()->Contains(*current));
+    DCHECK(!heap_->code_space()->Contains(*current));
+    DCHECK(!heap_->old_data_space()->Contains(*current));
+    uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
+    // Shift out the last bits including any tags.
+    int_addr >>= kPointerSizeLog2;
+    // The upper part of an address is basically random because of ASLR and OS
+    // non-determinism, so we use only the bits within a page for hashing to
+    // make v8's behavior (more) deterministic.
+    uintptr_t hash_addr =
+        int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
+    int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
+                 (kHashSetLength - 1));
+    if (hash_set_1_[hash1] == int_addr) continue;
+    uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
+    hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
+    hash2 &= (kHashSetLength - 1);
+    if (hash_set_2_[hash2] == int_addr) continue;
+    if (hash_set_1_[hash1] == 0) {
+      hash_set_1_[hash1] = int_addr;
+    } else if (hash_set_2_[hash2] == 0) {
+      hash_set_2_[hash2] = int_addr;
+    } else {
+      // Rather than slowing down we just throw away some entries.  This will
+      // cause some duplicates to remain undetected.
+      hash_set_1_[hash1] = int_addr;
+      hash_set_2_[hash2] = 0;
+    }
+    old_buffer_is_sorted_ = false;
+    old_buffer_is_filtered_ = false;
+    *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
+    DCHECK(old_top_ <= old_limit_);
+  }
+  heap_->isolate()->counters()->store_buffer_compactions()->Increment();
+}
+}
+}  // namespace v8::internal