Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/mips64/macro-assembler-mips64.cc b/src/mips64/macro-assembler-mips64.cc
new file mode 100644
index 0000000..12d81bc
--- /dev/null
+++ b/src/mips64/macro-assembler-mips64.cc
@@ -0,0 +1,6089 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <limits.h>  // For LONG_MIN, LONG_MAX.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/base/division-by-constant.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/cpu-profiler.h"
+#include "src/debug.h"
+#include "src/isolate-inl.h"
+#include "src/runtime.h"
+
+namespace v8 {
+namespace internal {
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+    : Assembler(arg_isolate, buffer, size),
+      generating_stub_(false),
+      has_frame_(false) {
+  if (isolate() != NULL) {
+    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+                                  isolate());
+  }
+}
+
+
+void MacroAssembler::Load(Register dst,
+                          const MemOperand& src,
+                          Representation r) {
+  DCHECK(!r.IsDouble());
+  if (r.IsInteger8()) {
+    lb(dst, src);
+  } else if (r.IsUInteger8()) {
+    lbu(dst, src);
+  } else if (r.IsInteger16()) {
+    lh(dst, src);
+  } else if (r.IsUInteger16()) {
+    lhu(dst, src);
+  } else if (r.IsInteger32()) {
+    lw(dst, src);
+  } else {
+    ld(dst, src);
+  }
+}
+
+
+void MacroAssembler::Store(Register src,
+                           const MemOperand& dst,
+                           Representation r) {
+  DCHECK(!r.IsDouble());
+  if (r.IsInteger8() || r.IsUInteger8()) {
+    sb(src, dst);
+  } else if (r.IsInteger16() || r.IsUInteger16()) {
+    sh(src, dst);
+  } else if (r.IsInteger32()) {
+    sw(src, dst);
+  } else {
+    if (r.IsHeapObject()) {
+      AssertNotSmi(src);
+    } else if (r.IsSmi()) {
+      AssertSmi(src);
+    }
+    sd(src, dst);
+  }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+                              Heap::RootListIndex index) {
+  ld(destination, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+                              Heap::RootListIndex index,
+                              Condition cond,
+                              Register src1, const Operand& src2) {
+  Branch(2, NegateCondition(cond), src1, src2);
+  ld(destination, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+                               Heap::RootListIndex index) {
+  sd(source, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+                               Heap::RootListIndex index,
+                               Condition cond,
+                               Register src1, const Operand& src2) {
+  Branch(2, NegateCondition(cond), src1, src2);
+  sd(source, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+// Push and pop all registers that can hold pointers.
+void MacroAssembler::PushSafepointRegisters() {
+  // Safepoints expect a block of kNumSafepointRegisters values on the
+  // stack, so adjust the stack for unsaved registers.
+  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+  DCHECK(num_unsaved >= 0);
+  if (num_unsaved > 0) {
+    Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
+  }
+  MultiPush(kSafepointSavedRegisters);
+}
+
+
+void MacroAssembler::PopSafepointRegisters() {
+  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+  MultiPop(kSafepointSavedRegisters);
+  if (num_unsaved > 0) {
+    Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
+  }
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
+  sd(src, SafepointRegisterSlot(dst));
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+  ld(dst, SafepointRegisterSlot(src));
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+  // The registers are pushed starting with the highest encoding,
+  // which means that lowest encodings are closest to the stack pointer.
+  return kSafepointRegisterStackIndexMap[reg_code];
+}
+
+
+MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
+  return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
+  UNIMPLEMENTED_MIPS();
+  // General purpose registers are pushed last on the stack.
+  int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
+  int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
+  return MemOperand(sp, doubles_size + register_offset);
+}
+
+
+void MacroAssembler::InNewSpace(Register object,
+                                Register scratch,
+                                Condition cc,
+                                Label* branch) {
+  DCHECK(cc == eq || cc == ne);
+  And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
+  Branch(branch, cc, scratch,
+         Operand(ExternalReference::new_space_start(isolate())));
+}
+
+
+void MacroAssembler::RecordWriteField(
+    Register object,
+    int offset,
+    Register value,
+    Register dst,
+    RAStatus ra_status,
+    SaveFPRegsMode save_fp,
+    RememberedSetAction remembered_set_action,
+    SmiCheck smi_check,
+    PointersToHereCheck pointers_to_here_check_for_value) {
+  DCHECK(!AreAliased(value, dst, t8, object));
+  // First, check if a write barrier is even needed. The tests below
+  // catch stores of Smis.
+  Label done;
+
+  // Skip barrier if writing a smi.
+  if (smi_check == INLINE_SMI_CHECK) {
+    JumpIfSmi(value, &done);
+  }
+
+  // Although the object register is tagged, the offset is relative to the start
+  // of the object, so so offset must be a multiple of kPointerSize.
+  DCHECK(IsAligned(offset, kPointerSize));
+
+  Daddu(dst, object, Operand(offset - kHeapObjectTag));
+  if (emit_debug_code()) {
+    Label ok;
+    And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
+    Branch(&ok, eq, t8, Operand(zero_reg));
+    stop("Unaligned cell in write barrier");
+    bind(&ok);
+  }
+
+  RecordWrite(object,
+              dst,
+              value,
+              ra_status,
+              save_fp,
+              remembered_set_action,
+              OMIT_SMI_CHECK,
+              pointers_to_here_check_for_value);
+
+  bind(&done);
+
+  // Clobber clobbered input registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
+    li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
+  }
+}
+
+
+// Will clobber 4 registers: object, map, dst, ip.  The
+// register 'object' contains a heap object pointer.
+void MacroAssembler::RecordWriteForMap(Register object,
+                                       Register map,
+                                       Register dst,
+                                       RAStatus ra_status,
+                                       SaveFPRegsMode fp_mode) {
+  if (emit_debug_code()) {
+    DCHECK(!dst.is(at));
+    ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
+    Check(eq,
+          kWrongAddressOrValuePassedToRecordWrite,
+          dst,
+          Operand(isolate()->factory()->meta_map()));
+  }
+
+  if (!FLAG_incremental_marking) {
+    return;
+  }
+
+  if (emit_debug_code()) {
+    ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
+    Check(eq,
+          kWrongAddressOrValuePassedToRecordWrite,
+          map,
+          Operand(at));
+  }
+
+  Label done;
+
+  // A single check of the map's pages interesting flag suffices, since it is
+  // only set during incremental collection, and then it's also guaranteed that
+  // the from object's page's interesting flag is also set.  This optimization
+  // relies on the fact that maps can never be in new space.
+  CheckPageFlag(map,
+                map,  // Used as scratch.
+                MemoryChunk::kPointersToHereAreInterestingMask,
+                eq,
+                &done);
+
+  Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
+  if (emit_debug_code()) {
+    Label ok;
+    And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
+    Branch(&ok, eq, at, Operand(zero_reg));
+    stop("Unaligned cell in write barrier");
+    bind(&ok);
+  }
+
+  // Record the actual write.
+  if (ra_status == kRAHasNotBeenSaved) {
+    push(ra);
+  }
+  RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
+                       fp_mode);
+  CallStub(&stub);
+  if (ra_status == kRAHasNotBeenSaved) {
+    pop(ra);
+  }
+
+  bind(&done);
+
+  // Count number of write barriers in generated code.
+  isolate()->counters()->write_barriers_static()->Increment();
+  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
+
+  // Clobber clobbered registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    li(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
+    li(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
+  }
+}
+
+
+// Will clobber 4 registers: object, address, scratch, ip.  The
+// register 'object' contains a heap object pointer.  The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(
+    Register object,
+    Register address,
+    Register value,
+    RAStatus ra_status,
+    SaveFPRegsMode fp_mode,
+    RememberedSetAction remembered_set_action,
+    SmiCheck smi_check,
+    PointersToHereCheck pointers_to_here_check_for_value) {
+  DCHECK(!AreAliased(object, address, value, t8));
+  DCHECK(!AreAliased(object, address, value, t9));
+
+  if (emit_debug_code()) {
+    ld(at, MemOperand(address));
+    Assert(
+        eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
+  }
+
+  if (remembered_set_action == OMIT_REMEMBERED_SET &&
+      !FLAG_incremental_marking) {
+    return;
+  }
+
+  // First, check if a write barrier is even needed. The tests below
+  // catch stores of smis and stores into the young generation.
+  Label done;
+
+  if (smi_check == INLINE_SMI_CHECK) {
+    DCHECK_EQ(0, kSmiTag);
+    JumpIfSmi(value, &done);
+  }
+
+  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+    CheckPageFlag(value,
+                  value,  // Used as scratch.
+                  MemoryChunk::kPointersToHereAreInterestingMask,
+                  eq,
+                  &done);
+  }
+  CheckPageFlag(object,
+                value,  // Used as scratch.
+                MemoryChunk::kPointersFromHereAreInterestingMask,
+                eq,
+                &done);
+
+  // Record the actual write.
+  if (ra_status == kRAHasNotBeenSaved) {
+    push(ra);
+  }
+  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
+                       fp_mode);
+  CallStub(&stub);
+  if (ra_status == kRAHasNotBeenSaved) {
+    pop(ra);
+  }
+
+  bind(&done);
+
+  // Count number of write barriers in generated code.
+  isolate()->counters()->write_barriers_static()->Increment();
+  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
+                   value);
+
+  // Clobber clobbered registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
+    li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
+  }
+}
+
+
+void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
+                                         Register address,
+                                         Register scratch,
+                                         SaveFPRegsMode fp_mode,
+                                         RememberedSetFinalAction and_then) {
+  Label done;
+  if (emit_debug_code()) {
+    Label ok;
+    JumpIfNotInNewSpace(object, scratch, &ok);
+    stop("Remembered set pointer is in new space");
+    bind(&ok);
+  }
+  // Load store buffer top.
+  ExternalReference store_buffer =
+      ExternalReference::store_buffer_top(isolate());
+  li(t8, Operand(store_buffer));
+  ld(scratch, MemOperand(t8));
+  // Store pointer to buffer and increment buffer top.
+  sd(address, MemOperand(scratch));
+  Daddu(scratch, scratch, kPointerSize);
+  // Write back new top of buffer.
+  sd(scratch, MemOperand(t8));
+  // Call stub on end of buffer.
+  // Check for end of buffer.
+  And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
+  DCHECK(!scratch.is(t8));
+  if (and_then == kFallThroughAtEnd) {
+    Branch(&done, eq, t8, Operand(zero_reg));
+  } else {
+    DCHECK(and_then == kReturnAtEnd);
+    Ret(eq, t8, Operand(zero_reg));
+  }
+  push(ra);
+  StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
+  CallStub(&store_buffer_overflow);
+  pop(ra);
+  bind(&done);
+  if (and_then == kReturnAtEnd) {
+    Ret();
+  }
+}
+
+
+// -----------------------------------------------------------------------------
+// Allocation support.
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+                                            Register scratch,
+                                            Label* miss) {
+  Label same_contexts;
+
+  DCHECK(!holder_reg.is(scratch));
+  DCHECK(!holder_reg.is(at));
+  DCHECK(!scratch.is(at));
+
+  // Load current lexical context from the stack frame.
+  ld(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  // In debug mode, make sure the lexical context is set.
+#ifdef DEBUG
+  Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
+      scratch, Operand(zero_reg));
+#endif
+
+  // Load the native context of the current context.
+  int offset =
+      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+  ld(scratch, FieldMemOperand(scratch, offset));
+  ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+  // Check the context is a native context.
+  if (emit_debug_code()) {
+    push(holder_reg);  // Temporarily save holder on the stack.
+    // Read the first word and compare to the native_context_map.
+    ld(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
+    LoadRoot(at, Heap::kNativeContextMapRootIndex);
+    Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
+          holder_reg, Operand(at));
+    pop(holder_reg);  // Restore holder.
+  }
+
+  // Check if both contexts are the same.
+  ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+  Branch(&same_contexts, eq, scratch, Operand(at));
+
+  // Check the context is a native context.
+  if (emit_debug_code()) {
+    push(holder_reg);  // Temporarily save holder on the stack.
+    mov(holder_reg, at);  // Move at to its holding place.
+    LoadRoot(at, Heap::kNullValueRootIndex);
+    Check(ne, kJSGlobalProxyContextShouldNotBeNull,
+          holder_reg, Operand(at));
+
+    ld(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
+    LoadRoot(at, Heap::kNativeContextMapRootIndex);
+    Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
+          holder_reg, Operand(at));
+    // Restore at is not needed. at is reloaded below.
+    pop(holder_reg);  // Restore holder.
+    // Restore at to holder's context.
+    ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+  }
+
+  // Check that the security token in the calling global object is
+  // compatible with the security token in the receiving global
+  // object.
+  int token_offset = Context::kHeaderSize +
+                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
+
+  ld(scratch, FieldMemOperand(scratch, token_offset));
+  ld(at, FieldMemOperand(at, token_offset));
+  Branch(miss, ne, scratch, Operand(at));
+
+  bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key.  This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
+// code-stub-hydrogen.cc
+void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
+  // First of all we assign the hash seed to scratch.
+  LoadRoot(scratch, Heap::kHashSeedRootIndex);
+  SmiUntag(scratch);
+
+  // Xor original key with a seed.
+  xor_(reg0, reg0, scratch);
+
+  // Compute the hash code from the untagged key.  This must be kept in sync
+  // with ComputeIntegerHash in utils.h.
+  //
+  // hash = ~hash + (hash << 15);
+  // The algorithm uses 32-bit integer values.
+  nor(scratch, reg0, zero_reg);
+  sll(at, reg0, 15);
+  addu(reg0, scratch, at);
+
+  // hash = hash ^ (hash >> 12);
+  srl(at, reg0, 12);
+  xor_(reg0, reg0, at);
+
+  // hash = hash + (hash << 2);
+  sll(at, reg0, 2);
+  addu(reg0, reg0, at);
+
+  // hash = hash ^ (hash >> 4);
+  srl(at, reg0, 4);
+  xor_(reg0, reg0, at);
+
+  // hash = hash * 2057;
+  sll(scratch, reg0, 11);
+  sll(at, reg0, 3);
+  addu(reg0, reg0, at);
+  addu(reg0, reg0, scratch);
+
+  // hash = hash ^ (hash >> 16);
+  srl(at, reg0, 16);
+  xor_(reg0, reg0, at);
+}
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss,
+                                              Register elements,
+                                              Register key,
+                                              Register result,
+                                              Register reg0,
+                                              Register reg1,
+                                              Register reg2) {
+  // Register use:
+  //
+  // elements - holds the slow-case elements of the receiver on entry.
+  //            Unchanged unless 'result' is the same register.
+  //
+  // key      - holds the smi key on entry.
+  //            Unchanged unless 'result' is the same register.
+  //
+  //
+  // result   - holds the result on exit if the load succeeded.
+  //            Allowed to be the same as 'key' or 'result'.
+  //            Unchanged on bailout so 'key' or 'result' can be used
+  //            in further computation.
+  //
+  // Scratch registers:
+  //
+  // reg0 - holds the untagged key on entry and holds the hash once computed.
+  //
+  // reg1 - Used to hold the capacity mask of the dictionary.
+  //
+  // reg2 - Used for the index into the dictionary.
+  // at   - Temporary (avoid MacroAssembler instructions also using 'at').
+  Label done;
+
+  GetNumberHash(reg0, reg1);
+
+  // Compute the capacity mask.
+  ld(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
+  SmiUntag(reg1, reg1);
+  Dsubu(reg1, reg1, Operand(1));
+
+  // Generate an unrolled loop that performs a few probes before giving up.
+  for (int i = 0; i < kNumberDictionaryProbes; i++) {
+    // Use reg2 for index calculations and keep the hash intact in reg0.
+    mov(reg2, reg0);
+    // Compute the masked index: (hash + i + i * i) & mask.
+    if (i > 0) {
+      Daddu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
+    }
+    and_(reg2, reg2, reg1);
+
+    // Scale the index by multiplying by the element size.
+    DCHECK(SeededNumberDictionary::kEntrySize == 3);
+    dsll(at, reg2, 1);  // 2x.
+    daddu(reg2, reg2, at);  // reg2 = reg2 * 3.
+
+    // Check if the key is identical to the name.
+    dsll(at, reg2, kPointerSizeLog2);
+    daddu(reg2, elements, at);
+
+    ld(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
+    if (i != kNumberDictionaryProbes - 1) {
+      Branch(&done, eq, key, Operand(at));
+    } else {
+      Branch(miss, ne, key, Operand(at));
+    }
+  }
+
+  bind(&done);
+  // Check that the value is a normal property.
+  // reg2: elements + (index * kPointerSize).
+  const int kDetailsOffset =
+      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+  ld(reg1, FieldMemOperand(reg2, kDetailsOffset));
+  And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
+  Branch(miss, ne, at, Operand(zero_reg));
+
+  // Get the value at the masked, scaled index and return.
+  const int kValueOffset =
+      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+  ld(result, FieldMemOperand(reg2, kValueOffset));
+}
+
+
+// ---------------------------------------------------------------------------
+// Instruction macros.
+
+void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    addu(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      addiu(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      addu(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    daddu(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      daddiu(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      daddu(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    subu(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      addiu(rd, rs, -rt.imm64_);  // No subiu instr, use addiu(x, y, -imm).
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      subu(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    dsubu(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      daddiu(rd, rs, -rt.imm64_);  // No subiu instr, use addiu(x, y, -imm).
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      dsubu(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    mul(rd, rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    mul(rd, rs, at);
+  }
+}
+
+
+void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    if (kArchVariant != kMips64r6) {
+      mult(rs, rt.rm());
+      mfhi(rd);
+    } else {
+      muh(rd, rs, rt.rm());
+    }
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    if (kArchVariant != kMips64r6) {
+      mult(rs, at);
+      mfhi(rd);
+    } else {
+      muh(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    if (kArchVariant == kMips64r6) {
+      dmul(rd, rs, rt.rm());
+    } else {
+      dmult(rs, rt.rm());
+      mflo(rd);
+    }
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    if (kArchVariant == kMips64r6) {
+      dmul(rd, rs, at);
+    } else {
+      dmult(rs, at);
+      mflo(rd);
+    }
+  }
+}
+
+
+void MacroAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    if (kArchVariant == kMips64r6) {
+      dmuh(rd, rs, rt.rm());
+    } else {
+      dmult(rs, rt.rm());
+      mfhi(rd);
+    }
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    if (kArchVariant == kMips64r6) {
+      dmuh(rd, rs, at);
+    } else {
+      dmult(rs, at);
+      mfhi(rd);
+    }
+  }
+}
+
+
+void MacroAssembler::Mult(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    mult(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    mult(rs, at);
+  }
+}
+
+
+void MacroAssembler::Dmult(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    dmult(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    dmult(rs, at);
+  }
+}
+
+
+void MacroAssembler::Multu(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    multu(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    multu(rs, at);
+  }
+}
+
+
+void MacroAssembler::Dmultu(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    dmultu(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    dmultu(rs, at);
+  }
+}
+
+
+void MacroAssembler::Div(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    div(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    div(rs, at);
+  }
+}
+
+
+void MacroAssembler::Ddiv(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    ddiv(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    ddiv(rs, at);
+  }
+}
+
+
+void MacroAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
+  if (kArchVariant != kMips64r6) {
+    if (rt.is_reg()) {
+      ddiv(rs, rt.rm());
+      mflo(rd);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      ddiv(rs, at);
+      mflo(rd);
+    }
+  } else {
+    if (rt.is_reg()) {
+      ddiv(rd, rs, rt.rm());
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      ddiv(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Divu(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    divu(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    divu(rs, at);
+  }
+}
+
+
+void MacroAssembler::Ddivu(Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    ddivu(rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    ddivu(rs, at);
+  }
+}
+
+
+void MacroAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
+  if (kArchVariant != kMips64r6) {
+    if (rt.is_reg()) {
+      ddiv(rs, rt.rm());
+      mfhi(rd);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      ddiv(rs, at);
+      mfhi(rd);
+    }
+  } else {
+    if (rt.is_reg()) {
+      dmod(rd, rs, rt.rm());
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      dmod(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    and_(rd, rs, rt.rm());
+  } else {
+    if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      andi(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      and_(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    or_(rd, rs, rt.rm());
+  } else {
+    if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      ori(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      or_(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    xor_(rd, rs, rt.rm());
+  } else {
+    if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      xori(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      xor_(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    nor(rd, rs, rt.rm());
+  } else {
+    // li handles the relocation.
+    DCHECK(!rs.is(at));
+    li(at, rt);
+    nor(rd, rs, at);
+  }
+}
+
+
+void MacroAssembler::Neg(Register rs, const Operand& rt) {
+  DCHECK(rt.is_reg());
+  DCHECK(!at.is(rs));
+  DCHECK(!at.is(rt.rm()));
+  li(at, -1);
+  xor_(rs, rt.rm(), at);
+}
+
+
+void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    slt(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      slti(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      slt(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    sltu(rd, rs, rt.rm());
+  } else {
+    if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+      sltiu(rd, rs, rt.imm64_);
+    } else {
+      // li handles the relocation.
+      DCHECK(!rs.is(at));
+      li(at, rt);
+      sltu(rd, rs, at);
+    }
+  }
+}
+
+
+void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
+  if (kArchVariant == kMips64r2) {
+    if (rt.is_reg()) {
+      rotrv(rd, rs, rt.rm());
+    } else {
+      rotr(rd, rs, rt.imm64_);
+    }
+  } else {
+    if (rt.is_reg()) {
+      subu(at, zero_reg, rt.rm());
+      sllv(at, rs, at);
+      srlv(rd, rs, rt.rm());
+      or_(rd, rd, at);
+    } else {
+      if (rt.imm64_ == 0) {
+        srl(rd, rs, 0);
+      } else {
+        srl(at, rs, rt.imm64_);
+        sll(rd, rs, (0x20 - rt.imm64_) & 0x1f);
+        or_(rd, rd, at);
+      }
+    }
+  }
+}
+
+
+void MacroAssembler::Dror(Register rd, Register rs, const Operand& rt) {
+  if (rt.is_reg()) {
+    drotrv(rd, rs, rt.rm());
+  } else {
+    drotr(rd, rs, rt.imm64_);
+  }
+}
+
+
+void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
+    pref(hint, rs);
+}
+
+
+// ------------Pseudo-instructions-------------
+
+void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
+  lwr(rd, rs);
+  lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
+}
+
+
+void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
+  swr(rd, rs);
+  swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
+}
+
+
+// Do 64-bit load from unaligned address. Note this only handles
+// the specific case of 32-bit aligned, but not 64-bit aligned.
+void MacroAssembler::Uld(Register rd, const MemOperand& rs, Register scratch) {
+  // Assert fail if the offset from start of object IS actually aligned.
+  // ONLY use with known misalignment, since there is performance cost.
+  DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
+  // TODO(plind): endian dependency.
+  lwu(rd, rs);
+  lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+  dsll32(scratch, scratch, 0);
+  Daddu(rd, rd, scratch);
+}
+
+
+// Do 64-bit store to unaligned address. Note this only handles
+// the specific case of 32-bit aligned, but not 64-bit aligned.
+void MacroAssembler::Usd(Register rd, const MemOperand& rs, Register scratch) {
+  // Assert fail if the offset from start of object IS actually aligned.
+  // ONLY use with known misalignment, since there is performance cost.
+  DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
+  // TODO(plind): endian dependency.
+  sw(rd, rs);
+  dsrl32(scratch, rd, 0);
+  sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+}
+
+
+void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
+  AllowDeferredHandleDereference smi_check;
+  if (value->IsSmi()) {
+    li(dst, Operand(value), mode);
+  } else {
+    DCHECK(value->IsHeapObject());
+    if (isolate()->heap()->InNewSpace(*value)) {
+      Handle<Cell> cell = isolate()->factory()->NewCell(value);
+      li(dst, Operand(cell));
+      ld(dst, FieldMemOperand(dst, Cell::kValueOffset));
+    } else {
+      li(dst, Operand(value));
+    }
+  }
+}
+
+
+void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
+  DCHECK(!j.is_reg());
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
+    // Normal load of an immediate value which does not need Relocation Info.
+    if (is_int32(j.imm64_)) {
+      if (is_int16(j.imm64_)) {
+        daddiu(rd, zero_reg, (j.imm64_ & kImm16Mask));
+      } else if (!(j.imm64_ & kHiMask)) {
+        ori(rd, zero_reg, (j.imm64_ & kImm16Mask));
+      } else if (!(j.imm64_ & kImm16Mask)) {
+        lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
+      } else {
+        lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
+        ori(rd, rd, (j.imm64_ & kImm16Mask));
+      }
+    } else {
+      lui(rd, (j.imm64_ >> 48) & kImm16Mask);
+      ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
+      dsll(rd, rd, 16);
+      ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+      dsll(rd, rd, 16);
+      ori(rd, rd, j.imm64_ & kImm16Mask);
+    }
+  } else if (MustUseReg(j.rmode_)) {
+    RecordRelocInfo(j.rmode_, j.imm64_);
+    lui(rd, (j.imm64_ >> 32) & kImm16Mask);
+    ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+    dsll(rd, rd, 16);
+    ori(rd, rd, j.imm64_ & kImm16Mask);
+  } else if (mode == ADDRESS_LOAD)  {
+    // We always need the same number of instructions as we may need to patch
+    // this code to load another value which may need all 4 instructions.
+    lui(rd, (j.imm64_ >> 32) & kImm16Mask);
+    ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+    dsll(rd, rd, 16);
+    ori(rd, rd, j.imm64_ & kImm16Mask);
+  } else {
+    lui(rd, (j.imm64_ >> 48) & kImm16Mask);
+    ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
+    dsll(rd, rd, 16);
+    ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+    dsll(rd, rd, 16);
+    ori(rd, rd, j.imm64_ & kImm16Mask);
+  }
+}
+
+
+void MacroAssembler::MultiPush(RegList regs) {
+  int16_t num_to_push = NumberOfBitsSet(regs);
+  int16_t stack_offset = num_to_push * kPointerSize;
+
+  Dsubu(sp, sp, Operand(stack_offset));
+  for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+    if ((regs & (1 << i)) != 0) {
+      stack_offset -= kPointerSize;
+      sd(ToRegister(i), MemOperand(sp, stack_offset));
+    }
+  }
+}
+
+
+void MacroAssembler::MultiPushReversed(RegList regs) {
+  int16_t num_to_push = NumberOfBitsSet(regs);
+  int16_t stack_offset = num_to_push * kPointerSize;
+
+  Dsubu(sp, sp, Operand(stack_offset));
+  for (int16_t i = 0; i < kNumRegisters; i++) {
+    if ((regs & (1 << i)) != 0) {
+      stack_offset -= kPointerSize;
+      sd(ToRegister(i), MemOperand(sp, stack_offset));
+    }
+  }
+}
+
+
+void MacroAssembler::MultiPop(RegList regs) {
+  int16_t stack_offset = 0;
+
+  for (int16_t i = 0; i < kNumRegisters; i++) {
+    if ((regs & (1 << i)) != 0) {
+      ld(ToRegister(i), MemOperand(sp, stack_offset));
+      stack_offset += kPointerSize;
+    }
+  }
+  daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPopReversed(RegList regs) {
+  int16_t stack_offset = 0;
+
+  for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+    if ((regs & (1 << i)) != 0) {
+      ld(ToRegister(i), MemOperand(sp, stack_offset));
+      stack_offset += kPointerSize;
+    }
+  }
+  daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPushFPU(RegList regs) {
+  int16_t num_to_push = NumberOfBitsSet(regs);
+  int16_t stack_offset = num_to_push * kDoubleSize;
+
+  Dsubu(sp, sp, Operand(stack_offset));
+  for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+    if ((regs & (1 << i)) != 0) {
+      stack_offset -= kDoubleSize;
+      sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+    }
+  }
+}
+
+
+void MacroAssembler::MultiPushReversedFPU(RegList regs) {
+  int16_t num_to_push = NumberOfBitsSet(regs);
+  int16_t stack_offset = num_to_push * kDoubleSize;
+
+  Dsubu(sp, sp, Operand(stack_offset));
+  for (int16_t i = 0; i < kNumRegisters; i++) {
+    if ((regs & (1 << i)) != 0) {
+      stack_offset -= kDoubleSize;
+      sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+    }
+  }
+}
+
+
+void MacroAssembler::MultiPopFPU(RegList regs) {
+  int16_t stack_offset = 0;
+
+  for (int16_t i = 0; i < kNumRegisters; i++) {
+    if ((regs & (1 << i)) != 0) {
+      ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+      stack_offset += kDoubleSize;
+    }
+  }
+  daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPopReversedFPU(RegList regs) {
+  int16_t stack_offset = 0;
+
+  for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+    if ((regs & (1 << i)) != 0) {
+      ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+      stack_offset += kDoubleSize;
+    }
+  }
+  daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::FlushICache(Register address, unsigned instructions) {
+  RegList saved_regs = kJSCallerSaved | ra.bit();
+  MultiPush(saved_regs);
+  AllowExternalCallThatCantCauseGC scope(this);
+
+  // Save to a0 in case address == a4.
+  Move(a0, address);
+  PrepareCallCFunction(2, a4);
+
+  li(a1, instructions * kInstrSize);
+  CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
+  MultiPop(saved_regs);
+}
+
+
+void MacroAssembler::Ext(Register rt,
+                         Register rs,
+                         uint16_t pos,
+                         uint16_t size) {
+  DCHECK(pos < 32);
+  DCHECK(pos + size < 33);
+  ext_(rt, rs, pos, size);
+}
+
+
+void MacroAssembler::Ins(Register rt,
+                         Register rs,
+                         uint16_t pos,
+                         uint16_t size) {
+  DCHECK(pos < 32);
+  DCHECK(pos + size <= 32);
+  DCHECK(size != 0);
+  ins_(rt, rs, pos, size);
+}
+
+
+void MacroAssembler::Cvt_d_uw(FPURegister fd,
+                              FPURegister fs,
+                              FPURegister scratch) {
+  // Move the data from fs to t8.
+  mfc1(t8, fs);
+  Cvt_d_uw(fd, t8, scratch);
+}
+
+
+void MacroAssembler::Cvt_d_uw(FPURegister fd,
+                              Register rs,
+                              FPURegister scratch) {
+  // Convert rs to a FP value in fd (and fd + 1).
+  // We do this by converting rs minus the MSB to avoid sign conversion,
+  // then adding 2^31 to the result (if needed).
+
+  DCHECK(!fd.is(scratch));
+  DCHECK(!rs.is(t9));
+  DCHECK(!rs.is(at));
+
+  // Save rs's MSB to t9.
+  Ext(t9, rs, 31, 1);
+  // Remove rs's MSB.
+  Ext(at, rs, 0, 31);
+  // Move the result to fd.
+  mtc1(at, fd);
+  mthc1(zero_reg, fd);
+
+  // Convert fd to a real FP value.
+  cvt_d_w(fd, fd);
+
+  Label conversion_done;
+
+  // If rs's MSB was 0, it's done.
+  // Otherwise we need to add that to the FP register.
+  Branch(&conversion_done, eq, t9, Operand(zero_reg));
+
+  // Load 2^31 into f20 as its float representation.
+  li(at, 0x41E00000);
+  mtc1(zero_reg, scratch);
+  mthc1(at, scratch);
+  // Add it to fd.
+  add_d(fd, fd, scratch);
+
+  bind(&conversion_done);
+}
+
+
+void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
+  round_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
+  floor_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
+  ceil_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
+  trunc_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_l_ud(FPURegister fd,
+                                FPURegister fs,
+                                FPURegister scratch) {
+  // Load to GPR.
+  dmfc1(t8, fs);
+  // Reset sign bit.
+  li(at, 0x7fffffffffffffff);
+  and_(t8, t8, at);
+  dmtc1(t8, fs);
+  trunc_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_uw_d(FPURegister fd,
+                                FPURegister fs,
+                                FPURegister scratch) {
+  Trunc_uw_d(fs, t8, scratch);
+  mtc1(t8, fd);
+}
+
+
+void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
+  trunc_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
+  round_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
+  floor_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
+  ceil_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_uw_d(FPURegister fd,
+                                Register rs,
+                                FPURegister scratch) {
+  DCHECK(!fd.is(scratch));
+  DCHECK(!rs.is(at));
+
+  // Load 2^31 into scratch as its float representation.
+  li(at, 0x41E00000);
+  mtc1(zero_reg, scratch);
+  mthc1(at, scratch);
+  // Test if scratch > fd.
+  // If fd < 2^31 we can convert it normally.
+  Label simple_convert;
+  BranchF(&simple_convert, NULL, lt, fd, scratch);
+
+  // First we subtract 2^31 from fd, then trunc it to rs
+  // and add 2^31 to rs.
+  sub_d(scratch, fd, scratch);
+  trunc_w_d(scratch, scratch);
+  mfc1(rs, scratch);
+  Or(rs, rs, 1 << 31);
+
+  Label done;
+  Branch(&done);
+  // Simple conversion.
+  bind(&simple_convert);
+  trunc_w_d(scratch, fd);
+  mfc1(rs, scratch);
+
+  bind(&done);
+}
+
+
+void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
+    FPURegister ft, FPURegister scratch) {
+  if (0) {  // TODO(plind): find reasonable arch-variant symbol names.
+    madd_d(fd, fr, fs, ft);
+  } else {
+    // Can not change source regs's value.
+    DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
+    mul_d(scratch, fs, ft);
+    add_d(fd, fr, scratch);
+  }
+}
+
+
+void MacroAssembler::BranchF(Label* target,
+                             Label* nan,
+                             Condition cc,
+                             FPURegister cmp1,
+                             FPURegister cmp2,
+                             BranchDelaySlot bd) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  if (cc == al) {
+    Branch(bd, target);
+    return;
+  }
+
+  DCHECK(nan || target);
+  // Check for unordered (NaN) cases.
+  if (nan) {
+    if (kArchVariant != kMips64r6) {
+      c(UN, D, cmp1, cmp2);
+      bc1t(nan);
+    } else {
+      // Use f31 for comparison result. It has to be unavailable to lithium
+      // register allocator.
+      DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
+      cmp(UN, L, f31, cmp1, cmp2);
+      bc1nez(nan, f31);
+    }
+  }
+
+  if (kArchVariant != kMips64r6) {
+    if (target) {
+      // Here NaN cases were either handled by this function or are assumed to
+      // have been handled by the caller.
+      switch (cc) {
+        case lt:
+          c(OLT, D, cmp1, cmp2);
+          bc1t(target);
+          break;
+        case gt:
+          c(ULE, D, cmp1, cmp2);
+          bc1f(target);
+          break;
+        case ge:
+          c(ULT, D, cmp1, cmp2);
+          bc1f(target);
+          break;
+        case le:
+          c(OLE, D, cmp1, cmp2);
+          bc1t(target);
+          break;
+        case eq:
+          c(EQ, D, cmp1, cmp2);
+          bc1t(target);
+          break;
+        case ueq:
+          c(UEQ, D, cmp1, cmp2);
+          bc1t(target);
+          break;
+        case ne:
+          c(EQ, D, cmp1, cmp2);
+          bc1f(target);
+          break;
+        case nue:
+          c(UEQ, D, cmp1, cmp2);
+          bc1f(target);
+          break;
+        default:
+          CHECK(0);
+      }
+    }
+  } else {
+    if (target) {
+      // Here NaN cases were either handled by this function or are assumed to
+      // have been handled by the caller.
+      // Unsigned conditions are treated as their signed counterpart.
+      // Use f31 for comparison result, it is valid in fp64 (FR = 1) mode.
+      DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
+      switch (cc) {
+        case lt:
+          cmp(OLT, L, f31, cmp1, cmp2);
+          bc1nez(target, f31);
+          break;
+        case gt:
+          cmp(ULE, L, f31, cmp1, cmp2);
+          bc1eqz(target, f31);
+          break;
+        case ge:
+          cmp(ULT, L, f31, cmp1, cmp2);
+          bc1eqz(target, f31);
+          break;
+        case le:
+          cmp(OLE, L, f31, cmp1, cmp2);
+          bc1nez(target, f31);
+          break;
+        case eq:
+          cmp(EQ, L, f31, cmp1, cmp2);
+          bc1nez(target, f31);
+          break;
+        case ueq:
+          cmp(UEQ, L, f31, cmp1, cmp2);
+          bc1nez(target, f31);
+          break;
+        case ne:
+          cmp(EQ, L, f31, cmp1, cmp2);
+          bc1eqz(target, f31);
+          break;
+        case nue:
+          cmp(UEQ, L, f31, cmp1, cmp2);
+          bc1eqz(target, f31);
+          break;
+        default:
+          CHECK(0);
+      }
+    }
+  }
+
+  if (bd == PROTECT) {
+    nop();
+  }
+}
+
+
+void MacroAssembler::Move(FPURegister dst, double imm) {
+  static const DoubleRepresentation minus_zero(-0.0);
+  static const DoubleRepresentation zero(0.0);
+  DoubleRepresentation value_rep(imm);
+  // Handle special values first.
+  bool force_load = dst.is(kDoubleRegZero);
+  if (value_rep == zero && !force_load) {
+    mov_d(dst, kDoubleRegZero);
+  } else if (value_rep == minus_zero && !force_load) {
+    neg_d(dst, kDoubleRegZero);
+  } else {
+    uint32_t lo, hi;
+    DoubleAsTwoUInt32(imm, &lo, &hi);
+    // Move the low part of the double into the lower bits of the corresponding
+    // FPU register.
+    if (lo != 0) {
+      li(at, Operand(lo));
+      mtc1(at, dst);
+    } else {
+      mtc1(zero_reg, dst);
+    }
+    // Move the high part of the double into the high bits of the corresponding
+    // FPU register.
+    if (hi != 0) {
+      li(at, Operand(hi));
+      mthc1(at, dst);
+    } else {
+      mthc1(zero_reg, dst);
+    }
+  }
+}
+
+
+void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
+  if (kArchVariant == kMips64r6) {
+    Label done;
+    Branch(&done, ne, rt, Operand(zero_reg));
+    mov(rd, rs);
+    bind(&done);
+  } else {
+    movz(rd, rs, rt);
+  }
+}
+
+
+void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
+  if (kArchVariant == kMips64r6) {
+    Label done;
+    Branch(&done, eq, rt, Operand(zero_reg));
+    mov(rd, rs);
+    bind(&done);
+  } else {
+    movn(rd, rs, rt);
+  }
+}
+
+
+void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
+  movt(rd, rs, cc);
+}
+
+
+void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
+  movf(rd, rs, cc);
+}
+
+
+void MacroAssembler::Clz(Register rd, Register rs) {
+  clz(rd, rs);
+}
+
+
+void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
+                                     Register result,
+                                     DoubleRegister double_input,
+                                     Register scratch,
+                                     DoubleRegister double_scratch,
+                                     Register except_flag,
+                                     CheckForInexactConversion check_inexact) {
+  DCHECK(!result.is(scratch));
+  DCHECK(!double_input.is(double_scratch));
+  DCHECK(!except_flag.is(scratch));
+
+  Label done;
+
+  // Clear the except flag (0 = no exception)
+  mov(except_flag, zero_reg);
+
+  // Test for values that can be exactly represented as a signed 32-bit integer.
+  cvt_w_d(double_scratch, double_input);
+  mfc1(result, double_scratch);
+  cvt_d_w(double_scratch, double_scratch);
+  BranchF(&done, NULL, eq, double_input, double_scratch);
+
+  int32_t except_mask = kFCSRFlagMask;  // Assume interested in all exceptions.
+
+  if (check_inexact == kDontCheckForInexactConversion) {
+    // Ignore inexact exceptions.
+    except_mask &= ~kFCSRInexactFlagMask;
+  }
+
+  // Save FCSR.
+  cfc1(scratch, FCSR);
+  // Disable FPU exceptions.
+  ctc1(zero_reg, FCSR);
+
+  // Do operation based on rounding mode.
+  switch (rounding_mode) {
+    case kRoundToNearest:
+      Round_w_d(double_scratch, double_input);
+      break;
+    case kRoundToZero:
+      Trunc_w_d(double_scratch, double_input);
+      break;
+    case kRoundToPlusInf:
+      Ceil_w_d(double_scratch, double_input);
+      break;
+    case kRoundToMinusInf:
+      Floor_w_d(double_scratch, double_input);
+      break;
+  }  // End of switch-statement.
+
+  // Retrieve FCSR.
+  cfc1(except_flag, FCSR);
+  // Restore FCSR.
+  ctc1(scratch, FCSR);
+  // Move the converted value into the result register.
+  mfc1(result, double_scratch);
+
+  // Check for fpu exceptions.
+  And(except_flag, except_flag, Operand(except_mask));
+
+  bind(&done);
+}
+
+
+void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
+                                                DoubleRegister double_input,
+                                                Label* done) {
+  DoubleRegister single_scratch = kLithiumScratchDouble.low();
+  Register scratch = at;
+  Register scratch2 = t9;
+
+  // Clear cumulative exception flags and save the FCSR.
+  cfc1(scratch2, FCSR);
+  ctc1(zero_reg, FCSR);
+  // Try a conversion to a signed integer.
+  trunc_w_d(single_scratch, double_input);
+  mfc1(result, single_scratch);
+  // Retrieve and restore the FCSR.
+  cfc1(scratch, FCSR);
+  ctc1(scratch2, FCSR);
+  // Check for overflow and NaNs.
+  And(scratch,
+      scratch,
+      kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
+  // If we had no exceptions we are done.
+  Branch(done, eq, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::TruncateDoubleToI(Register result,
+                                       DoubleRegister double_input) {
+  Label done;
+
+  TryInlineTruncateDoubleToI(result, double_input, &done);
+
+  // If we fell through then inline version didn't succeed - call stub instead.
+  push(ra);
+  Dsubu(sp, sp, Operand(kDoubleSize));  // Put input on stack.
+  sdc1(double_input, MemOperand(sp, 0));
+
+  DoubleToIStub stub(isolate(), sp, result, 0, true, true);
+  CallStub(&stub);
+
+  Daddu(sp, sp, Operand(kDoubleSize));
+  pop(ra);
+
+  bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
+  Label done;
+  DoubleRegister double_scratch = f12;
+  DCHECK(!result.is(object));
+
+  ldc1(double_scratch,
+       MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
+  TryInlineTruncateDoubleToI(result, double_scratch, &done);
+
+  // If we fell through then inline version didn't succeed - call stub instead.
+  push(ra);
+  DoubleToIStub stub(isolate(),
+                     object,
+                     result,
+                     HeapNumber::kValueOffset - kHeapObjectTag,
+                     true,
+                     true);
+  CallStub(&stub);
+  pop(ra);
+
+  bind(&done);
+}
+
+
+void MacroAssembler::TruncateNumberToI(Register object,
+                                       Register result,
+                                       Register heap_number_map,
+                                       Register scratch,
+                                       Label* not_number) {
+  Label done;
+  DCHECK(!result.is(object));
+
+  UntagAndJumpIfSmi(result, object, &done);
+  JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
+  TruncateHeapNumberToI(result, object);
+
+  bind(&done);
+}
+
+
+void MacroAssembler::GetLeastBitsFromSmi(Register dst,
+                                         Register src,
+                                         int num_least_bits) {
+  // Ext(dst, src, kSmiTagSize, num_least_bits);
+  SmiUntag(dst, src);
+  And(dst, dst, Operand((1 << num_least_bits) - 1));
+}
+
+
+void MacroAssembler::GetLeastBitsFromInt32(Register dst,
+                                           Register src,
+                                           int num_least_bits) {
+  DCHECK(!src.is(dst));
+  And(dst, src, Operand((1 << num_least_bits) - 1));
+}
+
+
+// Emulated condtional branches do not emit a nop in the branch delay slot.
+//
+// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
+#define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK(                                \
+    (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) ||          \
+    (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
+
+
+void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
+  BranchShort(offset, bdslot);
+}
+
+
+void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
+                            const Operand& rt,
+                            BranchDelaySlot bdslot) {
+  BranchShort(offset, cond, rs, rt, bdslot);
+}
+
+
+void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
+  if (L->is_bound()) {
+    if (is_near(L)) {
+      BranchShort(L, bdslot);
+    } else {
+      Jr(L, bdslot);
+    }
+  } else {
+    if (is_trampoline_emitted()) {
+      Jr(L, bdslot);
+    } else {
+      BranchShort(L, bdslot);
+    }
+  }
+}
+
+
+void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
+                            const Operand& rt,
+                            BranchDelaySlot bdslot) {
+  if (L->is_bound()) {
+    if (is_near(L)) {
+      BranchShort(L, cond, rs, rt, bdslot);
+    } else {
+      if (cond != cc_always) {
+        Label skip;
+        Condition neg_cond = NegateCondition(cond);
+        BranchShort(&skip, neg_cond, rs, rt);
+        Jr(L, bdslot);
+        bind(&skip);
+      } else {
+        Jr(L, bdslot);
+      }
+    }
+  } else {
+    if (is_trampoline_emitted()) {
+      if (cond != cc_always) {
+        Label skip;
+        Condition neg_cond = NegateCondition(cond);
+        BranchShort(&skip, neg_cond, rs, rt);
+        Jr(L, bdslot);
+        bind(&skip);
+      } else {
+        Jr(L, bdslot);
+      }
+    } else {
+      BranchShort(L, cond, rs, rt, bdslot);
+    }
+  }
+}
+
+
+void MacroAssembler::Branch(Label* L,
+                            Condition cond,
+                            Register rs,
+                            Heap::RootListIndex index,
+                            BranchDelaySlot bdslot) {
+  LoadRoot(at, index);
+  Branch(L, cond, rs, Operand(at), bdslot);
+}
+
+
+void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
+  b(offset);
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
+                                 const Operand& rt,
+                                 BranchDelaySlot bdslot) {
+  BRANCH_ARGS_CHECK(cond, rs, rt);
+  DCHECK(!rs.is(zero_reg));
+  Register r2 = no_reg;
+  Register scratch = at;
+
+  if (rt.is_reg()) {
+    // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
+    // rt.
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    r2 = rt.rm_;
+    switch (cond) {
+      case cc_always:
+        b(offset);
+        break;
+      case eq:
+        beq(rs, r2, offset);
+        break;
+      case ne:
+        bne(rs, r2, offset);
+        break;
+      // Signed comparison.
+      case greater:
+        if (r2.is(zero_reg)) {
+          bgtz(rs, offset);
+        } else {
+          slt(scratch, r2, rs);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case greater_equal:
+        if (r2.is(zero_reg)) {
+          bgez(rs, offset);
+        } else {
+          slt(scratch, rs, r2);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case less:
+        if (r2.is(zero_reg)) {
+          bltz(rs, offset);
+        } else {
+          slt(scratch, rs, r2);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case less_equal:
+        if (r2.is(zero_reg)) {
+          blez(rs, offset);
+        } else {
+          slt(scratch, r2, rs);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      // Unsigned comparison.
+      case Ugreater:
+        if (r2.is(zero_reg)) {
+          bgtz(rs, offset);
+        } else {
+          sltu(scratch, r2, rs);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Ugreater_equal:
+        if (r2.is(zero_reg)) {
+          bgez(rs, offset);
+        } else {
+          sltu(scratch, rs, r2);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless:
+        if (r2.is(zero_reg)) {
+          // No code needs to be emitted.
+          return;
+        } else {
+          sltu(scratch, rs, r2);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless_equal:
+        if (r2.is(zero_reg)) {
+          b(offset);
+        } else {
+          sltu(scratch, r2, rs);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      default:
+        UNREACHABLE();
+    }
+  } else {
+    // Be careful to always use shifted_branch_offset only just before the
+    // branch instruction, as the location will be remember for patching the
+    // target.
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    switch (cond) {
+      case cc_always:
+        b(offset);
+        break;
+      case eq:
+        // We don't want any other register but scratch clobbered.
+        DCHECK(!scratch.is(rs));
+        r2 = scratch;
+        li(r2, rt);
+        beq(rs, r2, offset);
+        break;
+      case ne:
+        // We don't want any other register but scratch clobbered.
+        DCHECK(!scratch.is(rs));
+        r2 = scratch;
+        li(r2, rt);
+        bne(rs, r2, offset);
+        break;
+      // Signed comparison.
+      case greater:
+        if (rt.imm64_ == 0) {
+          bgtz(rs, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, r2, rs);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case greater_equal:
+        if (rt.imm64_ == 0) {
+          bgez(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          slti(scratch, rs, rt.imm64_);
+          beq(scratch, zero_reg, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, rs, r2);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case less:
+        if (rt.imm64_ == 0) {
+          bltz(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          slti(scratch, rs, rt.imm64_);
+          bne(scratch, zero_reg, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, rs, r2);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case less_equal:
+        if (rt.imm64_ == 0) {
+          blez(rs, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, r2, rs);
+          beq(scratch, zero_reg, offset);
+       }
+       break;
+      // Unsigned comparison.
+      case Ugreater:
+        if (rt.imm64_ == 0) {
+          bgtz(rs, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, r2, rs);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Ugreater_equal:
+        if (rt.imm64_ == 0) {
+          bgez(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          sltiu(scratch, rs, rt.imm64_);
+          beq(scratch, zero_reg, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, rs, r2);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless:
+        if (rt.imm64_ == 0) {
+          // No code needs to be emitted.
+          return;
+        } else if (is_int16(rt.imm64_)) {
+          sltiu(scratch, rs, rt.imm64_);
+          bne(scratch, zero_reg, offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, rs, r2);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless_equal:
+        if (rt.imm64_ == 0) {
+          b(offset);
+        } else {
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, r2, rs);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      default:
+        UNREACHABLE();
+    }
+  }
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
+  // We use branch_offset as an argument for the branch instructions to be sure
+  // it is called just before generating the branch instruction, as needed.
+
+  b(shifted_branch_offset(L, false));
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
+                                 const Operand& rt,
+                                 BranchDelaySlot bdslot) {
+  BRANCH_ARGS_CHECK(cond, rs, rt);
+
+  int32_t offset = 0;
+  Register r2 = no_reg;
+  Register scratch = at;
+  if (rt.is_reg()) {
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    r2 = rt.rm_;
+    // Be careful to always use shifted_branch_offset only just before the
+    // branch instruction, as the location will be remember for patching the
+    // target.
+    switch (cond) {
+      case cc_always:
+        offset = shifted_branch_offset(L, false);
+        b(offset);
+        break;
+      case eq:
+        offset = shifted_branch_offset(L, false);
+        beq(rs, r2, offset);
+        break;
+      case ne:
+        offset = shifted_branch_offset(L, false);
+        bne(rs, r2, offset);
+        break;
+      // Signed comparison.
+      case greater:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          bgtz(rs, offset);
+        } else {
+          slt(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case greater_equal:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          bgez(rs, offset);
+        } else {
+          slt(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case less:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          bltz(rs, offset);
+        } else {
+          slt(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case less_equal:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          blez(rs, offset);
+        } else {
+          slt(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      // Unsigned comparison.
+      case Ugreater:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+           bgtz(rs, offset);
+        } else {
+          sltu(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Ugreater_equal:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          bgez(rs, offset);
+        } else {
+          sltu(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless:
+        if (r2.is(zero_reg)) {
+          // No code needs to be emitted.
+          return;
+        } else {
+          sltu(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless_equal:
+        if (r2.is(zero_reg)) {
+          offset = shifted_branch_offset(L, false);
+          b(offset);
+        } else {
+          sltu(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      default:
+        UNREACHABLE();
+    }
+  } else {
+    // Be careful to always use shifted_branch_offset only just before the
+    // branch instruction, as the location will be remember for patching the
+    // target.
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    switch (cond) {
+      case cc_always:
+        offset = shifted_branch_offset(L, false);
+        b(offset);
+        break;
+      case eq:
+        DCHECK(!scratch.is(rs));
+        r2 = scratch;
+        li(r2, rt);
+        offset = shifted_branch_offset(L, false);
+        beq(rs, r2, offset);
+        break;
+      case ne:
+        DCHECK(!scratch.is(rs));
+        r2 = scratch;
+        li(r2, rt);
+        offset = shifted_branch_offset(L, false);
+        bne(rs, r2, offset);
+        break;
+      // Signed comparison.
+      case greater:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          bgtz(rs, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case greater_equal:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          bgez(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          slti(scratch, rs, rt.imm64_);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      case less:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          bltz(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          slti(scratch, rs, rt.imm64_);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case less_equal:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          blez(rs, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          slt(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      // Unsigned comparison.
+      case Ugreater:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          bne(rs, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Ugreater_equal:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          bgez(rs, offset);
+        } else if (is_int16(rt.imm64_)) {
+          sltiu(scratch, rs, rt.imm64_);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+     case Uless:
+        if (rt.imm64_ == 0) {
+          // No code needs to be emitted.
+          return;
+        } else if (is_int16(rt.imm64_)) {
+          sltiu(scratch, rs, rt.imm64_);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, rs, r2);
+          offset = shifted_branch_offset(L, false);
+          bne(scratch, zero_reg, offset);
+        }
+        break;
+      case Uless_equal:
+        if (rt.imm64_ == 0) {
+          offset = shifted_branch_offset(L, false);
+          beq(rs, zero_reg, offset);
+        } else {
+          DCHECK(!scratch.is(rs));
+          r2 = scratch;
+          li(r2, rt);
+          sltu(scratch, r2, rs);
+          offset = shifted_branch_offset(L, false);
+          beq(scratch, zero_reg, offset);
+        }
+        break;
+      default:
+        UNREACHABLE();
+    }
+  }
+  // Check that offset could actually hold on an int16_t.
+  DCHECK(is_int16(offset));
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
+  BranchAndLinkShort(offset, bdslot);
+}
+
+
+void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
+                                   const Operand& rt,
+                                   BranchDelaySlot bdslot) {
+  BranchAndLinkShort(offset, cond, rs, rt, bdslot);
+}
+
+
+void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
+  if (L->is_bound()) {
+    if (is_near(L)) {
+      BranchAndLinkShort(L, bdslot);
+    } else {
+      Jalr(L, bdslot);
+    }
+  } else {
+    if (is_trampoline_emitted()) {
+      Jalr(L, bdslot);
+    } else {
+      BranchAndLinkShort(L, bdslot);
+    }
+  }
+}
+
+
+void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
+                                   const Operand& rt,
+                                   BranchDelaySlot bdslot) {
+  if (L->is_bound()) {
+    if (is_near(L)) {
+      BranchAndLinkShort(L, cond, rs, rt, bdslot);
+    } else {
+      Label skip;
+      Condition neg_cond = NegateCondition(cond);
+      BranchShort(&skip, neg_cond, rs, rt);
+      Jalr(L, bdslot);
+      bind(&skip);
+    }
+  } else {
+    if (is_trampoline_emitted()) {
+      Label skip;
+      Condition neg_cond = NegateCondition(cond);
+      BranchShort(&skip, neg_cond, rs, rt);
+      Jalr(L, bdslot);
+      bind(&skip);
+    } else {
+      BranchAndLinkShort(L, cond, rs, rt, bdslot);
+    }
+  }
+}
+
+
+// We need to use a bgezal or bltzal, but they can't be used directly with the
+// slt instructions. We could use sub or add instead but we would miss overflow
+// cases, so we keep slt and add an intermediate third instruction.
+void MacroAssembler::BranchAndLinkShort(int16_t offset,
+                                        BranchDelaySlot bdslot) {
+  bal(offset);
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
+                                        Register rs, const Operand& rt,
+                                        BranchDelaySlot bdslot) {
+  BRANCH_ARGS_CHECK(cond, rs, rt);
+  Register r2 = no_reg;
+  Register scratch = at;
+
+  if (rt.is_reg()) {
+    r2 = rt.rm_;
+  } else if (cond != cc_always) {
+    r2 = scratch;
+    li(r2, rt);
+  }
+
+  {
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    switch (cond) {
+      case cc_always:
+        bal(offset);
+        break;
+      case eq:
+        bne(rs, r2, 2);
+        nop();
+        bal(offset);
+        break;
+      case ne:
+        beq(rs, r2, 2);
+        nop();
+        bal(offset);
+        break;
+
+      // Signed comparison.
+      case greater:
+        // rs > rt
+        slt(scratch, r2, rs);
+        beq(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case greater_equal:
+        // rs >= rt
+        slt(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case less:
+        // rs < r2
+        slt(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case less_equal:
+        // rs <= r2
+        slt(scratch, r2, rs);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+
+
+      // Unsigned comparison.
+      case Ugreater:
+        // rs > rt
+        sltu(scratch, r2, rs);
+        beq(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case Ugreater_equal:
+        // rs >= rt
+        sltu(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case Uless:
+        // rs < r2
+        sltu(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      case Uless_equal:
+        // rs <= r2
+        sltu(scratch, r2, rs);
+        bne(scratch, zero_reg, 2);
+        nop();
+        bal(offset);
+        break;
+      default:
+        UNREACHABLE();
+    }
+  }
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
+  bal(shifted_branch_offset(L, false));
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
+                                        const Operand& rt,
+                                        BranchDelaySlot bdslot) {
+  BRANCH_ARGS_CHECK(cond, rs, rt);
+
+  int32_t offset = 0;
+  Register r2 = no_reg;
+  Register scratch = at;
+  if (rt.is_reg()) {
+    r2 = rt.rm_;
+  } else if (cond != cc_always) {
+    r2 = scratch;
+    li(r2, rt);
+  }
+
+  {
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    switch (cond) {
+      case cc_always:
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case eq:
+        bne(rs, r2, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case ne:
+        beq(rs, r2, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+
+      // Signed comparison.
+      case greater:
+        // rs > rt
+        slt(scratch, r2, rs);
+        beq(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case greater_equal:
+        // rs >= rt
+        slt(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case less:
+        // rs < r2
+        slt(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case less_equal:
+        // rs <= r2
+        slt(scratch, r2, rs);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+
+
+      // Unsigned comparison.
+      case Ugreater:
+        // rs > rt
+        sltu(scratch, r2, rs);
+        beq(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case Ugreater_equal:
+        // rs >= rt
+        sltu(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case Uless:
+        // rs < r2
+        sltu(scratch, rs, r2);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+      case Uless_equal:
+        // rs <= r2
+        sltu(scratch, r2, rs);
+        bne(scratch, zero_reg, 2);
+        nop();
+        offset = shifted_branch_offset(L, false);
+        bal(offset);
+        break;
+
+      default:
+        UNREACHABLE();
+    }
+  }
+  // Check that offset could actually hold on an int16_t.
+  DCHECK(is_int16(offset));
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::Jump(Register target,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  if (cond == cc_always) {
+    jr(target);
+  } else {
+    BRANCH_ARGS_CHECK(cond, rs, rt);
+    Branch(2, NegateCondition(cond), rs, rt);
+    jr(target);
+  }
+  // Emit a nop in the branch delay slot if required.
+  if (bd == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::Jump(intptr_t target,
+                          RelocInfo::Mode rmode,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  Label skip;
+  if (cond != cc_always) {
+    Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
+  }
+  // The first instruction of 'li' may be placed in the delay slot.
+  // This is not an issue, t9 is expected to be clobbered anyway.
+  li(t9, Operand(target, rmode));
+  Jump(t9, al, zero_reg, Operand(zero_reg), bd);
+  bind(&skip);
+}
+
+
+void MacroAssembler::Jump(Address target,
+                          RelocInfo::Mode rmode,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  DCHECK(!RelocInfo::IsCodeTarget(rmode));
+  Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::Jump(Handle<Code> code,
+                          RelocInfo::Mode rmode,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  DCHECK(RelocInfo::IsCodeTarget(rmode));
+  AllowDeferredHandleDereference embedding_raw_address;
+  Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
+}
+
+
+int MacroAssembler::CallSize(Register target,
+                             Condition cond,
+                             Register rs,
+                             const Operand& rt,
+                             BranchDelaySlot bd) {
+  int size = 0;
+
+  if (cond == cc_always) {
+    size += 1;
+  } else {
+    size += 3;
+  }
+
+  if (bd == PROTECT)
+    size += 1;
+
+  return size * kInstrSize;
+}
+
+
+// Note: To call gcc-compiled C code on mips, you must call thru t9.
+void MacroAssembler::Call(Register target,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  Label start;
+  bind(&start);
+  if (cond == cc_always) {
+    jalr(target);
+  } else {
+    BRANCH_ARGS_CHECK(cond, rs, rt);
+    Branch(2, NegateCondition(cond), rs, rt);
+    jalr(target);
+  }
+  // Emit a nop in the branch delay slot if required.
+  if (bd == PROTECT)
+    nop();
+
+  DCHECK_EQ(CallSize(target, cond, rs, rt, bd),
+            SizeOfCodeGeneratedSince(&start));
+}
+
+
+int MacroAssembler::CallSize(Address target,
+                             RelocInfo::Mode rmode,
+                             Condition cond,
+                             Register rs,
+                             const Operand& rt,
+                             BranchDelaySlot bd) {
+  int size = CallSize(t9, cond, rs, rt, bd);
+  return size + 4 * kInstrSize;
+}
+
+
+void MacroAssembler::Call(Address target,
+                          RelocInfo::Mode rmode,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  Label start;
+  bind(&start);
+  int64_t target_int = reinterpret_cast<int64_t>(target);
+  // Must record previous source positions before the
+  // li() generates a new code target.
+  positions_recorder()->WriteRecordedPositions();
+  li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
+  Call(t9, cond, rs, rt, bd);
+  DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
+            SizeOfCodeGeneratedSince(&start));
+}
+
+
+int MacroAssembler::CallSize(Handle<Code> code,
+                             RelocInfo::Mode rmode,
+                             TypeFeedbackId ast_id,
+                             Condition cond,
+                             Register rs,
+                             const Operand& rt,
+                             BranchDelaySlot bd) {
+  AllowDeferredHandleDereference using_raw_address;
+  return CallSize(reinterpret_cast<Address>(code.location()),
+      rmode, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::Call(Handle<Code> code,
+                          RelocInfo::Mode rmode,
+                          TypeFeedbackId ast_id,
+                          Condition cond,
+                          Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bd) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+  Label start;
+  bind(&start);
+  DCHECK(RelocInfo::IsCodeTarget(rmode));
+  if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
+    SetRecordedAstId(ast_id);
+    rmode = RelocInfo::CODE_TARGET_WITH_ID;
+  }
+  AllowDeferredHandleDereference embedding_raw_address;
+  Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
+  DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
+            SizeOfCodeGeneratedSince(&start));
+}
+
+
+void MacroAssembler::Ret(Condition cond,
+                         Register rs,
+                         const Operand& rt,
+                         BranchDelaySlot bd) {
+  Jump(ra, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+
+  uint64_t imm28;
+  imm28 = jump_address(L);
+  imm28 &= kImm28Mask;
+  { BlockGrowBufferScope block_buf_growth(this);
+    // Buffer growth (and relocation) must be blocked for internal references
+    // until associated instructions are emitted and available to be patched.
+    RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+    j(imm28);
+  }
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+
+  uint64_t imm64;
+  imm64 = jump_address(L);
+  { BlockGrowBufferScope block_buf_growth(this);
+    // Buffer growth (and relocation) must be blocked for internal references
+    // until associated instructions are emitted and available to be patched.
+    RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+    li(at, Operand(imm64), ADDRESS_LOAD);
+  }
+  jr(at);
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
+  BlockTrampolinePoolScope block_trampoline_pool(this);
+
+  uint64_t imm64;
+  imm64 = jump_address(L);
+  { BlockGrowBufferScope block_buf_growth(this);
+    // Buffer growth (and relocation) must be blocked for internal references
+    // until associated instructions are emitted and available to be patched.
+    RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+    li(at, Operand(imm64), ADDRESS_LOAD);
+  }
+  jalr(at);
+
+  // Emit a nop in the branch delay slot if required.
+  if (bdslot == PROTECT)
+    nop();
+}
+
+
+void MacroAssembler::DropAndRet(int drop) {
+  Ret(USE_DELAY_SLOT);
+  daddiu(sp, sp, drop * kPointerSize);
+}
+
+void MacroAssembler::DropAndRet(int drop,
+                                Condition cond,
+                                Register r1,
+                                const Operand& r2) {
+  // Both Drop and Ret need to be conditional.
+  Label skip;
+  if (cond != cc_always) {
+    Branch(&skip, NegateCondition(cond), r1, r2);
+  }
+
+  Drop(drop);
+  Ret();
+
+  if (cond != cc_always) {
+    bind(&skip);
+  }
+}
+
+
+void MacroAssembler::Drop(int count,
+                          Condition cond,
+                          Register reg,
+                          const Operand& op) {
+  if (count <= 0) {
+    return;
+  }
+
+  Label skip;
+
+  if (cond != al) {
+     Branch(&skip, NegateCondition(cond), reg, op);
+  }
+
+  daddiu(sp, sp, count * kPointerSize);
+
+  if (cond != al) {
+    bind(&skip);
+  }
+}
+
+
+
+void MacroAssembler::Swap(Register reg1,
+                          Register reg2,
+                          Register scratch) {
+  if (scratch.is(no_reg)) {
+    Xor(reg1, reg1, Operand(reg2));
+    Xor(reg2, reg2, Operand(reg1));
+    Xor(reg1, reg1, Operand(reg2));
+  } else {
+    mov(scratch, reg1);
+    mov(reg1, reg2);
+    mov(reg2, scratch);
+  }
+}
+
+
+void MacroAssembler::Call(Label* target) {
+  BranchAndLink(target);
+}
+
+
+void MacroAssembler::Push(Handle<Object> handle) {
+  li(at, Operand(handle));
+  push(at);
+}
+
+
+void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
+  DCHECK(!src.is(scratch));
+  mov(scratch, src);
+  dsrl32(src, src, 0);
+  dsll32(src, src, 0);
+  push(src);
+  dsll32(scratch, scratch, 0);
+  push(scratch);
+}
+
+
+void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
+  DCHECK(!dst.is(scratch));
+  pop(scratch);
+  dsrl32(scratch, scratch, 0);
+  pop(dst);
+  dsrl32(dst, dst, 0);
+  dsll32(dst, dst, 0);
+  or_(dst, dst, scratch);
+}
+
+
+void MacroAssembler::DebugBreak() {
+  PrepareCEntryArgs(0);
+  PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
+  CEntryStub ces(isolate(), 1);
+  DCHECK(AllowThisStubCall(&ces));
+  Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+
+
+// ---------------------------------------------------------------------------
+// Exception handling.
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+                                    int handler_index) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // For the JSEntry handler, we must preserve a0-a3 and s0.
+  // a5-a7 are available. We will build up the handler from the bottom by
+  // pushing on the stack.
+  // Set up the code object (a5) and the state (a6) for pushing.
+  unsigned state =
+      StackHandler::IndexField::encode(handler_index) |
+      StackHandler::KindField::encode(kind);
+  li(a5, Operand(CodeObject()), CONSTANT_SIZE);
+  li(a6, Operand(state));
+
+  // Push the frame pointer, context, state, and code object.
+  if (kind == StackHandler::JS_ENTRY) {
+    DCHECK_EQ(Smi::FromInt(0), 0);
+    // The second zero_reg indicates no context.
+    // The first zero_reg is the NULL frame pointer.
+    // The operands are reversed to match the order of MultiPush/Pop.
+    Push(zero_reg, zero_reg, a6, a5);
+  } else {
+    MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit());
+  }
+
+  // Link the current handler as the next handler.
+  li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+  ld(a5, MemOperand(a6));
+  push(a5);
+  // Set this new handler as the current one.
+  sd(sp, MemOperand(a6));
+}
+
+
+void MacroAssembler::PopTryHandler() {
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  pop(a1);
+  Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+  li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+  sd(a1, MemOperand(at));
+}
+
+
+void MacroAssembler::JumpToHandlerEntry() {
+  // Compute the handler entry address and jump to it.  The handler table is
+  // a fixed array of (smi-tagged) code offsets.
+  // v0 = exception, a1 = code object, a2 = state.
+  Uld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));
+  Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  dsrl(a2, a2, StackHandler::kKindWidth);  // Handler index.
+  dsll(a2, a2, kPointerSizeLog2);
+  Daddu(a2, a3, a2);
+  ld(a2, MemOperand(a2));  // Smi-tagged offset.
+  Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
+  dsra32(t9, a2, 0);
+  Daddu(t9, t9, a1);
+  Jump(t9);  // Jump.
+}
+
+
+void MacroAssembler::Throw(Register value) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // The exception is expected in v0.
+  Move(v0, value);
+
+  // Drop the stack pointer to the top of the top handler.
+  li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
+                                   isolate())));
+  ld(sp, MemOperand(a3));
+
+  // Restore the next handler.
+  pop(a2);
+  sd(a2, MemOperand(a3));
+
+  // Get the code object (a1) and state (a2).  Restore the context and frame
+  // pointer.
+  MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
+
+  // If the handler is a JS frame, restore the context to the frame.
+  // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
+  // or cp.
+  Label done;
+  Branch(&done, eq, cp, Operand(zero_reg));
+  sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  bind(&done);
+
+  JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // The exception is expected in v0.
+  if (!value.is(v0)) {
+    mov(v0, value);
+  }
+  // Drop the stack pointer to the top of the top stack handler.
+  li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+  ld(sp, MemOperand(a3));
+
+  // Unwind the handlers until the ENTRY handler is found.
+  Label fetch_next, check_kind;
+  jmp(&check_kind);
+  bind(&fetch_next);
+  ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
+
+  bind(&check_kind);
+  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+  ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
+  And(a2, a2, Operand(StackHandler::KindField::kMask));
+  Branch(&fetch_next, ne, a2, Operand(zero_reg));
+
+  // Set the top handler address to next handler past the top ENTRY handler.
+  pop(a2);
+  sd(a2, MemOperand(a3));
+
+  // Get the code object (a1) and state (a2).  Clear the context and frame
+  // pointer (0 was saved in the handler).
+  MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
+
+  JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+                              Register result,
+                              Register scratch1,
+                              Register scratch2,
+                              Label* gc_required,
+                              AllocationFlags flags) {
+  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
+  if (!FLAG_inline_new) {
+    if (emit_debug_code()) {
+      // Trash the registers to simulate an allocation failure.
+      li(result, 0x7091);
+      li(scratch1, 0x7191);
+      li(scratch2, 0x7291);
+    }
+    jmp(gc_required);
+    return;
+  }
+
+  DCHECK(!result.is(scratch1));
+  DCHECK(!result.is(scratch2));
+  DCHECK(!scratch1.is(scratch2));
+  DCHECK(!scratch1.is(t9));
+  DCHECK(!scratch2.is(t9));
+  DCHECK(!result.is(t9));
+
+  // Make object size into bytes.
+  if ((flags & SIZE_IN_WORDS) != 0) {
+    object_size *= kPointerSize;
+  }
+  DCHECK(0 == (object_size & kObjectAlignmentMask));
+
+  // Check relative positions of allocation top and limit addresses.
+  // ARM adds additional checks to make sure the ldm instruction can be
+  // used. On MIPS we don't have ldm so we don't need additional checks either.
+  ExternalReference allocation_top =
+      AllocationUtils::GetAllocationTopReference(isolate(), flags);
+  ExternalReference allocation_limit =
+      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+  intptr_t top   =
+      reinterpret_cast<intptr_t>(allocation_top.address());
+  intptr_t limit =
+      reinterpret_cast<intptr_t>(allocation_limit.address());
+  DCHECK((limit - top) == kPointerSize);
+
+  // Set up allocation top address and object size registers.
+  Register topaddr = scratch1;
+  li(topaddr, Operand(allocation_top));
+
+  // This code stores a temporary value in t9.
+  if ((flags & RESULT_CONTAINS_TOP) == 0) {
+    // Load allocation top into result and allocation limit into t9.
+    ld(result, MemOperand(topaddr));
+    ld(t9, MemOperand(topaddr, kPointerSize));
+  } else {
+    if (emit_debug_code()) {
+      // Assert that result actually contains top on entry. t9 is used
+      // immediately below so this use of t9 does not cause difference with
+      // respect to register content between debug and release mode.
+      ld(t9, MemOperand(topaddr));
+      Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
+    }
+    // Load allocation limit into t9. Result already contains allocation top.
+    ld(t9, MemOperand(topaddr, limit - top));
+  }
+
+  DCHECK(kPointerSize == kDoubleSize);
+  if (emit_debug_code()) {
+    And(at, result, Operand(kDoubleAlignmentMask));
+    Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
+  }
+
+  // Calculate new top and bail out if new space is exhausted. Use result
+  // to calculate the new top.
+  Daddu(scratch2, result, Operand(object_size));
+  Branch(gc_required, Ugreater, scratch2, Operand(t9));
+  sd(scratch2, MemOperand(topaddr));
+
+  // Tag object if requested.
+  if ((flags & TAG_OBJECT) != 0) {
+    Daddu(result, result, Operand(kHeapObjectTag));
+  }
+}
+
+
+void MacroAssembler::Allocate(Register object_size,
+                              Register result,
+                              Register scratch1,
+                              Register scratch2,
+                              Label* gc_required,
+                              AllocationFlags flags) {
+  if (!FLAG_inline_new) {
+    if (emit_debug_code()) {
+      // Trash the registers to simulate an allocation failure.
+      li(result, 0x7091);
+      li(scratch1, 0x7191);
+      li(scratch2, 0x7291);
+    }
+    jmp(gc_required);
+    return;
+  }
+
+  DCHECK(!result.is(scratch1));
+  DCHECK(!result.is(scratch2));
+  DCHECK(!scratch1.is(scratch2));
+  DCHECK(!object_size.is(t9));
+  DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
+
+  // Check relative positions of allocation top and limit addresses.
+  // ARM adds additional checks to make sure the ldm instruction can be
+  // used. On MIPS we don't have ldm so we don't need additional checks either.
+  ExternalReference allocation_top =
+      AllocationUtils::GetAllocationTopReference(isolate(), flags);
+  ExternalReference allocation_limit =
+      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+  intptr_t top   =
+      reinterpret_cast<intptr_t>(allocation_top.address());
+  intptr_t limit =
+      reinterpret_cast<intptr_t>(allocation_limit.address());
+  DCHECK((limit - top) == kPointerSize);
+
+  // Set up allocation top address and object size registers.
+  Register topaddr = scratch1;
+  li(topaddr, Operand(allocation_top));
+
+  // This code stores a temporary value in t9.
+  if ((flags & RESULT_CONTAINS_TOP) == 0) {
+    // Load allocation top into result and allocation limit into t9.
+    ld(result, MemOperand(topaddr));
+    ld(t9, MemOperand(topaddr, kPointerSize));
+  } else {
+    if (emit_debug_code()) {
+      // Assert that result actually contains top on entry. t9 is used
+      // immediately below so this use of t9 does not cause difference with
+      // respect to register content between debug and release mode.
+      ld(t9, MemOperand(topaddr));
+      Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
+    }
+    // Load allocation limit into t9. Result already contains allocation top.
+    ld(t9, MemOperand(topaddr, limit - top));
+  }
+
+  DCHECK(kPointerSize == kDoubleSize);
+  if (emit_debug_code()) {
+    And(at, result, Operand(kDoubleAlignmentMask));
+    Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
+  }
+
+  // Calculate new top and bail out if new space is exhausted. Use result
+  // to calculate the new top. Object size may be in words so a shift is
+  // required to get the number of bytes.
+  if ((flags & SIZE_IN_WORDS) != 0) {
+    dsll(scratch2, object_size, kPointerSizeLog2);
+    Daddu(scratch2, result, scratch2);
+  } else {
+    Daddu(scratch2, result, Operand(object_size));
+  }
+  Branch(gc_required, Ugreater, scratch2, Operand(t9));
+
+  // Update allocation top. result temporarily holds the new top.
+  if (emit_debug_code()) {
+    And(t9, scratch2, Operand(kObjectAlignmentMask));
+    Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg));
+  }
+  sd(scratch2, MemOperand(topaddr));
+
+  // Tag object if requested.
+  if ((flags & TAG_OBJECT) != 0) {
+    Daddu(result, result, Operand(kHeapObjectTag));
+  }
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object,
+                                              Register scratch) {
+  ExternalReference new_space_allocation_top =
+      ExternalReference::new_space_allocation_top_address(isolate());
+
+  // Make sure the object has no tag before resetting top.
+  And(object, object, Operand(~kHeapObjectTagMask));
+#ifdef DEBUG
+  // Check that the object un-allocated is below the current top.
+  li(scratch, Operand(new_space_allocation_top));
+  ld(scratch, MemOperand(scratch));
+  Check(less, kUndoAllocationOfNonAllocatedMemory,
+      object, Operand(scratch));
+#endif
+  // Write the address of the object to un-allocate as the current top.
+  li(scratch, Operand(new_space_allocation_top));
+  sd(object, MemOperand(scratch));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+                                           Register length,
+                                           Register scratch1,
+                                           Register scratch2,
+                                           Register scratch3,
+                                           Label* gc_required) {
+  // Calculate the number of bytes needed for the characters in the string while
+  // observing object alignment.
+  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  dsll(scratch1, length, 1);  // Length in bytes, not chars.
+  daddiu(scratch1, scratch1,
+       kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
+  And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+  // Allocate two-byte string in new space.
+  Allocate(scratch1,
+           result,
+           scratch2,
+           scratch3,
+           gc_required,
+           TAG_OBJECT);
+
+  // Set the map, length and hash field.
+  InitializeNewString(result,
+                      length,
+                      Heap::kStringMapRootIndex,
+                      scratch1,
+                      scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteString(Register result, Register length,
+                                           Register scratch1, Register scratch2,
+                                           Register scratch3,
+                                           Label* gc_required) {
+  // Calculate the number of bytes needed for the characters in the string
+  // while observing object alignment.
+  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  DCHECK(kCharSize == 1);
+  daddiu(scratch1, length,
+      kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
+  And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+  // Allocate one-byte string in new space.
+  Allocate(scratch1,
+           result,
+           scratch2,
+           scratch3,
+           gc_required,
+           TAG_OBJECT);
+
+  // Set the map, length and hash field.
+  InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
+                      scratch1, scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+                                               Register length,
+                                               Register scratch1,
+                                               Register scratch2,
+                                               Label* gc_required) {
+  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+  InitializeNewString(result,
+                      length,
+                      Heap::kConsStringMapRootIndex,
+                      scratch1,
+                      scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
+                                               Register scratch1,
+                                               Register scratch2,
+                                               Label* gc_required) {
+  Allocate(ConsString::kSize,
+           result,
+           scratch1,
+           scratch2,
+           gc_required,
+           TAG_OBJECT);
+
+  InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
+                      scratch1, scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+                                                 Register length,
+                                                 Register scratch1,
+                                                 Register scratch2,
+                                                 Label* gc_required) {
+  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  InitializeNewString(result,
+                      length,
+                      Heap::kSlicedStringMapRootIndex,
+                      scratch1,
+                      scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteSlicedString(Register result,
+                                                 Register length,
+                                                 Register scratch1,
+                                                 Register scratch2,
+                                                 Label* gc_required) {
+  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
+                      scratch1, scratch2);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
+                                                     Label* not_unique_name) {
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  Label succeed;
+  And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+  Branch(&succeed, eq, at, Operand(zero_reg));
+  Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
+
+  bind(&succeed);
+}
+
+
+// Allocates a heap number or jumps to the label if the young space is full and
+// a scavenge is needed.
+void MacroAssembler::AllocateHeapNumber(Register result,
+                                        Register scratch1,
+                                        Register scratch2,
+                                        Register heap_number_map,
+                                        Label* need_gc,
+                                        TaggingMode tagging_mode,
+                                        MutableMode mode) {
+  // Allocate an object in the heap for the heap number and tag it as a heap
+  // object.
+  Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
+           tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
+
+  Heap::RootListIndex map_index = mode == MUTABLE
+      ? Heap::kMutableHeapNumberMapRootIndex
+      : Heap::kHeapNumberMapRootIndex;
+  AssertIsRoot(heap_number_map, map_index);
+
+  // Store heap number map in the allocated object.
+  if (tagging_mode == TAG_RESULT) {
+    sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
+  } else {
+    sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
+  }
+}
+
+
+void MacroAssembler::AllocateHeapNumberWithValue(Register result,
+                                                 FPURegister value,
+                                                 Register scratch1,
+                                                 Register scratch2,
+                                                 Label* gc_required) {
+  LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+  AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
+  sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+// Copies a fixed number of fields of heap objects from src to dst.
+void MacroAssembler::CopyFields(Register dst,
+                                Register src,
+                                RegList temps,
+                                int field_count) {
+  DCHECK((temps & dst.bit()) == 0);
+  DCHECK((temps & src.bit()) == 0);
+  // Primitive implementation using only one temporary register.
+
+  Register tmp = no_reg;
+  // Find a temp register in temps list.
+  for (int i = 0; i < kNumRegisters; i++) {
+    if ((temps & (1 << i)) != 0) {
+      tmp.code_ = i;
+      break;
+    }
+  }
+  DCHECK(!tmp.is(no_reg));
+
+  for (int i = 0; i < field_count; i++) {
+    ld(tmp, FieldMemOperand(src, i * kPointerSize));
+    sd(tmp, FieldMemOperand(dst, i * kPointerSize));
+  }
+}
+
+
+void MacroAssembler::CopyBytes(Register src,
+                               Register dst,
+                               Register length,
+                               Register scratch) {
+  Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
+
+  // Align src before copying in word size chunks.
+  Branch(&byte_loop, le, length, Operand(kPointerSize));
+  bind(&align_loop_1);
+  And(scratch, src, kPointerSize - 1);
+  Branch(&word_loop, eq, scratch, Operand(zero_reg));
+  lbu(scratch, MemOperand(src));
+  Daddu(src, src, 1);
+  sb(scratch, MemOperand(dst));
+  Daddu(dst, dst, 1);
+  Dsubu(length, length, Operand(1));
+  Branch(&align_loop_1, ne, length, Operand(zero_reg));
+
+  // Copy bytes in word size chunks.
+  bind(&word_loop);
+  if (emit_debug_code()) {
+    And(scratch, src, kPointerSize - 1);
+    Assert(eq, kExpectingAlignmentForCopyBytes,
+        scratch, Operand(zero_reg));
+  }
+  Branch(&byte_loop, lt, length, Operand(kPointerSize));
+  ld(scratch, MemOperand(src));
+  Daddu(src, src, kPointerSize);
+
+  // TODO(kalmard) check if this can be optimized to use sw in most cases.
+  // Can't use unaligned access - copy byte by byte.
+  sb(scratch, MemOperand(dst, 0));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 1));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 2));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 3));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 4));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 5));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 6));
+  dsrl(scratch, scratch, 8);
+  sb(scratch, MemOperand(dst, 7));
+  Daddu(dst, dst, 8);
+
+  Dsubu(length, length, Operand(kPointerSize));
+  Branch(&word_loop);
+
+  // Copy the last bytes if any left.
+  bind(&byte_loop);
+  Branch(&done, eq, length, Operand(zero_reg));
+  bind(&byte_loop_1);
+  lbu(scratch, MemOperand(src));
+  Daddu(src, src, 1);
+  sb(scratch, MemOperand(dst));
+  Daddu(dst, dst, 1);
+  Dsubu(length, length, Operand(1));
+  Branch(&byte_loop_1, ne, length, Operand(zero_reg));
+  bind(&done);
+}
+
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+                                                Register end_offset,
+                                                Register filler) {
+  Label loop, entry;
+  Branch(&entry);
+  bind(&loop);
+  sd(filler, MemOperand(start_offset));
+  Daddu(start_offset, start_offset, kPointerSize);
+  bind(&entry);
+  Branch(&loop, lt, start_offset, Operand(end_offset));
+}
+
+
+void MacroAssembler::CheckFastElements(Register map,
+                                       Register scratch,
+                                       Label* fail) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  STATIC_ASSERT(FAST_ELEMENTS == 2);
+  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+  lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+  Branch(fail, hi, scratch,
+         Operand(Map::kMaximumBitField2FastHoleyElementValue));
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map,
+                                             Register scratch,
+                                             Label* fail) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  STATIC_ASSERT(FAST_ELEMENTS == 2);
+  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+  lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+  Branch(fail, ls, scratch,
+         Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+  Branch(fail, hi, scratch,
+         Operand(Map::kMaximumBitField2FastHoleyElementValue));
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map,
+                                          Register scratch,
+                                          Label* fail) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+  Branch(fail, hi, scratch,
+         Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+}
+
+
+void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
+                                                 Register key_reg,
+                                                 Register elements_reg,
+                                                 Register scratch1,
+                                                 Register scratch2,
+                                                 Register scratch3,
+                                                 Label* fail,
+                                                 int elements_offset) {
+  Label smi_value, maybe_nan, have_double_value, is_nan, done;
+  Register mantissa_reg = scratch2;
+  Register exponent_reg = scratch3;
+
+  // Handle smi values specially.
+  JumpIfSmi(value_reg, &smi_value);
+
+  // Ensure that the object is a heap number
+  CheckMap(value_reg,
+           scratch1,
+           Heap::kHeapNumberMapRootIndex,
+           fail,
+           DONT_DO_SMI_CHECK);
+
+  // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
+  // in the exponent.
+  li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
+  lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
+  Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
+
+  lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
+
+  bind(&have_double_value);
+  // dsll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
+  dsra(scratch1, key_reg, 32 - kDoubleSizeLog2);
+  Daddu(scratch1, scratch1, elements_reg);
+  sw(mantissa_reg, FieldMemOperand(
+     scratch1, FixedDoubleArray::kHeaderSize - elements_offset));
+  uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset +
+      sizeof(kHoleNanLower32);
+  sw(exponent_reg, FieldMemOperand(scratch1, offset));
+  jmp(&done);
+
+  bind(&maybe_nan);
+  // Could be NaN, Infinity or -Infinity. If fraction is not zero, it's NaN,
+  // otherwise it's Infinity or -Infinity, and the non-NaN code path applies.
+  lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
+  Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
+  bind(&is_nan);
+  // Load canonical NaN for storing into the double array.
+  LoadRoot(at, Heap::kNanValueRootIndex);
+  lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset));
+  lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset));
+  jmp(&have_double_value);
+
+  bind(&smi_value);
+  Daddu(scratch1, elements_reg,
+      Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag -
+              elements_offset));
+  // dsll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
+  dsra(scratch2, key_reg, 32 - kDoubleSizeLog2);
+  Daddu(scratch1, scratch1, scratch2);
+  // scratch1 is now effective address of the double element
+
+  Register untagged_value = elements_reg;
+  SmiUntag(untagged_value, value_reg);
+  mtc1(untagged_value, f2);
+  cvt_d_w(f0, f2);
+  sdc1(f0, MemOperand(scratch1, 0));
+  bind(&done);
+}
+
+
+void MacroAssembler::CompareMapAndBranch(Register obj,
+                                         Register scratch,
+                                         Handle<Map> map,
+                                         Label* early_success,
+                                         Condition cond,
+                                         Label* branch_to) {
+  ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+  CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
+}
+
+
+void MacroAssembler::CompareMapAndBranch(Register obj_map,
+                                         Handle<Map> map,
+                                         Label* early_success,
+                                         Condition cond,
+                                         Label* branch_to) {
+  Branch(branch_to, cond, obj_map, Operand(map));
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+                              Register scratch,
+                              Handle<Map> map,
+                              Label* fail,
+                              SmiCheckType smi_check_type) {
+  if (smi_check_type == DO_SMI_CHECK) {
+    JumpIfSmi(obj, fail);
+  }
+  Label success;
+  CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
+  bind(&success);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj,
+                                 Register scratch,
+                                 Handle<Map> map,
+                                 Handle<Code> success,
+                                 SmiCheckType smi_check_type) {
+  Label fail;
+  if (smi_check_type == DO_SMI_CHECK) {
+    JumpIfSmi(obj, &fail);
+  }
+  ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+  Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
+  bind(&fail);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+                              Register scratch,
+                              Heap::RootListIndex index,
+                              Label* fail,
+                              SmiCheckType smi_check_type) {
+  if (smi_check_type == DO_SMI_CHECK) {
+    JumpIfSmi(obj, fail);
+  }
+  ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+  LoadRoot(at, index);
+  Branch(fail, ne, scratch, Operand(at));
+}
+
+
+void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
+  if (IsMipsSoftFloatABI) {
+    Move(dst, v0, v1);
+  } else {
+    Move(dst, f0);  // Reg f0 is o32 ABI FP return value.
+  }
+}
+
+
+void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
+  if (IsMipsSoftFloatABI) {
+    Move(dst, a0, a1);
+  } else {
+    Move(dst, f12);  // Reg f12 is o32 ABI FP first argument value.
+  }
+}
+
+
+void MacroAssembler::MovToFloatParameter(DoubleRegister src) {
+  if (!IsMipsSoftFloatABI) {
+    Move(f12, src);
+  } else {
+    Move(a0, a1, src);
+  }
+}
+
+
+void MacroAssembler::MovToFloatResult(DoubleRegister src) {
+  if (!IsMipsSoftFloatABI) {
+    Move(f0, src);
+  } else {
+    Move(v0, v1, src);
+  }
+}
+
+
+void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
+                                          DoubleRegister src2) {
+  if (!IsMipsSoftFloatABI) {
+    const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
+    if (src2.is(f12)) {
+      DCHECK(!src1.is(fparg2));
+      Move(fparg2, src2);
+      Move(f12, src1);
+    } else {
+      Move(f12, src1);
+      Move(fparg2, src2);
+    }
+  } else {
+    Move(a0, a1, src1);
+    Move(a2, a3, src2);
+  }
+}
+
+
+// -----------------------------------------------------------------------------
+// JavaScript invokes.
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    Handle<Code> code_constant,
+                                    Register code_reg,
+                                    Label* done,
+                                    bool* definitely_mismatches,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  bool definitely_matches = false;
+  *definitely_mismatches = false;
+  Label regular_invoke;
+
+  // Check whether the expected and actual arguments count match. If not,
+  // setup registers according to contract with ArgumentsAdaptorTrampoline:
+  //  a0: actual arguments count
+  //  a1: function (passed through to callee)
+  //  a2: expected arguments count
+
+  // The code below is made a lot easier because the calling code already sets
+  // up actual and expected registers according to the contract if values are
+  // passed in registers.
+  DCHECK(actual.is_immediate() || actual.reg().is(a0));
+  DCHECK(expected.is_immediate() || expected.reg().is(a2));
+  DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
+
+  if (expected.is_immediate()) {
+    DCHECK(actual.is_immediate());
+    if (expected.immediate() == actual.immediate()) {
+      definitely_matches = true;
+    } else {
+      li(a0, Operand(actual.immediate()));
+      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+      if (expected.immediate() == sentinel) {
+        // Don't worry about adapting arguments for builtins that
+        // don't want that done. Skip adaption code by making it look
+        // like we have a match between expected and actual number of
+        // arguments.
+        definitely_matches = true;
+      } else {
+        *definitely_mismatches = true;
+        li(a2, Operand(expected.immediate()));
+      }
+    }
+  } else if (actual.is_immediate()) {
+    Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
+    li(a0, Operand(actual.immediate()));
+  } else {
+    Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
+  }
+
+  if (!definitely_matches) {
+    if (!code_constant.is_null()) {
+      li(a3, Operand(code_constant));
+      daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
+    }
+
+    Handle<Code> adaptor =
+        isolate()->builtins()->ArgumentsAdaptorTrampoline();
+    if (flag == CALL_FUNCTION) {
+      call_wrapper.BeforeCall(CallSize(adaptor));
+      Call(adaptor);
+      call_wrapper.AfterCall();
+      if (!*definitely_mismatches) {
+        Branch(done);
+      }
+    } else {
+      Jump(adaptor, RelocInfo::CODE_TARGET);
+    }
+    bind(&regular_invoke);
+  }
+}
+
+
+void MacroAssembler::InvokeCode(Register code,
+                                const ParameterCount& expected,
+                                const ParameterCount& actual,
+                                InvokeFlag flag,
+                                const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  Label done;
+
+  bool definitely_mismatches = false;
+  InvokePrologue(expected, actual, Handle<Code>::null(), code,
+                 &done, &definitely_mismatches, flag,
+                 call_wrapper);
+  if (!definitely_mismatches) {
+    if (flag == CALL_FUNCTION) {
+      call_wrapper.BeforeCall(CallSize(code));
+      Call(code);
+      call_wrapper.AfterCall();
+    } else {
+      DCHECK(flag == JUMP_FUNCTION);
+      Jump(code);
+    }
+    // Continue here if InvokePrologue does handle the invocation due to
+    // mismatched parameter counts.
+    bind(&done);
+  }
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  // Contract with called JS functions requires that function is passed in a1.
+  DCHECK(function.is(a1));
+  Register expected_reg = a2;
+  Register code_reg = a3;
+  ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+  ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+  // The argument count is stored as int32_t on 64-bit platforms.
+  // TODO(plind): Smi on 32-bit platforms.
+  lw(expected_reg,
+      FieldMemOperand(code_reg,
+                      SharedFunctionInfo::kFormalParameterCountOffset));
+  ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+  ParameterCount expected(expected_reg);
+  InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+                                    const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  // Contract with called JS functions requires that function is passed in a1.
+  DCHECK(function.is(a1));
+
+  // Get the function and setup the context.
+  ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+  // We call indirectly through the code field in the function to
+  // allow recompilation to take effect without changing any of the
+  // call sites.
+  ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+  InvokeCode(a3, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+                                    const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  li(a1, function);
+  InvokeFunction(a1, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object,
+                                          Register map,
+                                          Register scratch,
+                                          Label* fail) {
+  ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
+  IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map,
+                                            Register scratch,
+                                            Label* fail) {
+  lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+  Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+  Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+}
+
+
+void MacroAssembler::IsObjectJSStringType(Register object,
+                                          Register scratch,
+                                          Label* fail) {
+  DCHECK(kNotStringTag != 0);
+
+  ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+  lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+  And(scratch, scratch, Operand(kIsNotStringMask));
+  Branch(fail, ne, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::IsObjectNameType(Register object,
+                                      Register scratch,
+                                      Label* fail) {
+  ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+  lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+  Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE));
+}
+
+
+// ---------------------------------------------------------------------------
+// Support functions.
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+                                             Register result,
+                                             Register scratch,
+                                             Label* miss,
+                                             bool miss_on_bound_function) {
+  Label non_instance;
+  if (miss_on_bound_function) {
+    // Check that the receiver isn't a smi.
+    JumpIfSmi(function, miss);
+
+    // Check that the function really is a function.  Load map into result reg.
+    GetObjectType(function, result, scratch);
+    Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
+
+    ld(scratch,
+       FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+    lwu(scratch,
+        FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+    And(scratch, scratch,
+        Operand(1 << SharedFunctionInfo::kBoundFunction));
+    Branch(miss, ne, scratch, Operand(zero_reg));
+
+    // Make sure that the function has an instance prototype.
+    lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+    And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
+    Branch(&non_instance, ne, scratch, Operand(zero_reg));
+  }
+
+  // Get the prototype or initial map from the function.
+  ld(result,
+     FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // If the prototype or initial map is the hole, don't return it and
+  // simply miss the cache instead. This will allow us to allocate a
+  // prototype object on-demand in the runtime system.
+  LoadRoot(t8, Heap::kTheHoleValueRootIndex);
+  Branch(miss, eq, result, Operand(t8));
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  GetObjectType(result, scratch, scratch);
+  Branch(&done, ne, scratch, Operand(MAP_TYPE));
+
+  // Get the prototype from the initial map.
+  ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+  if (miss_on_bound_function) {
+    jmp(&done);
+
+    // Non-instance prototype: Fetch prototype from constructor field
+    // in initial map.
+    bind(&non_instance);
+    ld(result, FieldMemOperand(result, Map::kConstructorOffset));
+  }
+
+  // All done.
+  bind(&done);
+}
+
+
+void MacroAssembler::GetObjectType(Register object,
+                                   Register map,
+                                   Register type_reg) {
+  ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
+  lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+}
+
+
+// -----------------------------------------------------------------------------
+// Runtime calls.
+
+void MacroAssembler::CallStub(CodeStub* stub,
+                              TypeFeedbackId ast_id,
+                              Condition cond,
+                              Register r1,
+                              const Operand& r2,
+                              BranchDelaySlot bd) {
+  DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
+  Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id,
+       cond, r1, r2, bd);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub,
+                                  Condition cond,
+                                  Register r1,
+                                  const Operand& r2,
+                                  BranchDelaySlot bd) {
+  Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
+}
+
+
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
+  int64_t offset = (ref0.address() - ref1.address());
+  DCHECK(static_cast<int>(offset) == offset);
+  return static_cast<int>(offset);
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+    Register function_address,
+    ExternalReference thunk_ref,
+    int stack_space,
+    MemOperand return_value_operand,
+    MemOperand* context_restore_operand) {
+  ExternalReference next_address =
+      ExternalReference::handle_scope_next_address(isolate());
+  const int kNextOffset = 0;
+  const int kLimitOffset = AddressOffset(
+      ExternalReference::handle_scope_limit_address(isolate()),
+      next_address);
+  const int kLevelOffset = AddressOffset(
+      ExternalReference::handle_scope_level_address(isolate()),
+      next_address);
+
+  DCHECK(function_address.is(a1) || function_address.is(a2));
+
+  Label profiler_disabled;
+  Label end_profiler_check;
+  li(t9, Operand(ExternalReference::is_profiling_address(isolate())));
+  lb(t9, MemOperand(t9, 0));
+  Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
+
+  // Additional parameter is the address of the actual callback.
+  li(t9, Operand(thunk_ref));
+  jmp(&end_profiler_check);
+
+  bind(&profiler_disabled);
+  mov(t9, function_address);
+  bind(&end_profiler_check);
+
+  // Allocate HandleScope in callee-save registers.
+  li(s3, Operand(next_address));
+  ld(s0, MemOperand(s3, kNextOffset));
+  ld(s1, MemOperand(s3, kLimitOffset));
+  ld(s2, MemOperand(s3, kLevelOffset));
+  Daddu(s2, s2, Operand(1));
+  sd(s2, MemOperand(s3, kLevelOffset));
+
+  if (FLAG_log_timer_events) {
+    FrameScope frame(this, StackFrame::MANUAL);
+    PushSafepointRegisters();
+    PrepareCallCFunction(1, a0);
+    li(a0, Operand(ExternalReference::isolate_address(isolate())));
+    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+    PopSafepointRegisters();
+  }
+
+  // Native call returns to the DirectCEntry stub which redirects to the
+  // return address pushed on stack (could have moved after GC).
+  // DirectCEntry stub itself is generated early and never moves.
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(this, t9);
+
+  if (FLAG_log_timer_events) {
+    FrameScope frame(this, StackFrame::MANUAL);
+    PushSafepointRegisters();
+    PrepareCallCFunction(1, a0);
+    li(a0, Operand(ExternalReference::isolate_address(isolate())));
+    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+    PopSafepointRegisters();
+  }
+
+  Label promote_scheduled_exception;
+  Label exception_handled;
+  Label delete_allocated_handles;
+  Label leave_exit_frame;
+  Label return_value_loaded;
+
+  // Load value from ReturnValue.
+  ld(v0, return_value_operand);
+  bind(&return_value_loaded);
+
+  // No more valid handles (the result handle was the last one). Restore
+  // previous handle scope.
+  sd(s0, MemOperand(s3, kNextOffset));
+  if (emit_debug_code()) {
+    ld(a1, MemOperand(s3, kLevelOffset));
+    Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
+  }
+  Dsubu(s2, s2, Operand(1));
+  sd(s2, MemOperand(s3, kLevelOffset));
+  ld(at, MemOperand(s3, kLimitOffset));
+  Branch(&delete_allocated_handles, ne, s1, Operand(at));
+
+  // Check if the function scheduled an exception.
+  bind(&leave_exit_frame);
+  LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+  li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
+  ld(a5, MemOperand(at));
+  Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
+  bind(&exception_handled);
+
+  bool restore_context = context_restore_operand != NULL;
+  if (restore_context) {
+    ld(cp, *context_restore_operand);
+  }
+  li(s0, Operand(stack_space));
+  LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN);
+
+  bind(&promote_scheduled_exception);
+  {
+    FrameScope frame(this, StackFrame::INTERNAL);
+    CallExternalReference(
+        ExternalReference(Runtime::kPromoteScheduledException, isolate()),
+        0);
+  }
+  jmp(&exception_handled);
+
+  // HandleScope limit has changed. Delete allocated extensions.
+  bind(&delete_allocated_handles);
+  sd(s1, MemOperand(s3, kLimitOffset));
+  mov(s0, v0);
+  mov(a0, v0);
+  PrepareCallCFunction(1, s1);
+  li(a0, Operand(ExternalReference::isolate_address(isolate())));
+  CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
+      1);
+  mov(v0, s0);
+  jmp(&leave_exit_frame);
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+  return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+  // If the hash field contains an array index pick it out. The assert checks
+  // that the constants for the maximum number of digits for an array index
+  // cached in the hash field and the number of bits reserved for it does not
+  // conflict.
+  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
+         (1 << String::kArrayIndexValueBits));
+  DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
+}
+
+
+void MacroAssembler::ObjectToDoubleFPURegister(Register object,
+                                               FPURegister result,
+                                               Register scratch1,
+                                               Register scratch2,
+                                               Register heap_number_map,
+                                               Label* not_number,
+                                               ObjectToDoubleFlags flags) {
+  Label done;
+  if ((flags & OBJECT_NOT_SMI) == 0) {
+    Label not_smi;
+    JumpIfNotSmi(object, &not_smi);
+    // Remove smi tag and convert to double.
+    // dsra(scratch1, object, kSmiTagSize);
+    dsra32(scratch1, object, 0);
+    mtc1(scratch1, result);
+    cvt_d_w(result, result);
+    Branch(&done);
+    bind(&not_smi);
+  }
+  // Check for heap number and load double value from it.
+  ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
+  Branch(not_number, ne, scratch1, Operand(heap_number_map));
+
+  if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
+    // If exponent is all ones the number is either a NaN or +/-Infinity.
+    Register exponent = scratch1;
+    Register mask_reg = scratch2;
+    lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
+    li(mask_reg, HeapNumber::kExponentMask);
+
+    And(exponent, exponent, mask_reg);
+    Branch(not_number, eq, exponent, Operand(mask_reg));
+  }
+  ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
+  bind(&done);
+}
+
+
+void MacroAssembler::SmiToDoubleFPURegister(Register smi,
+                                            FPURegister value,
+                                            Register scratch1) {
+  // dsra(scratch1, smi, kSmiTagSize);
+  dsra32(scratch1, smi, 0);
+  mtc1(scratch1, value);
+  cvt_d_w(value, value);
+}
+
+
+void MacroAssembler::AdduAndCheckForOverflow(Register dst,
+                                             Register left,
+                                             Register right,
+                                             Register overflow_dst,
+                                             Register scratch) {
+  DCHECK(!dst.is(overflow_dst));
+  DCHECK(!dst.is(scratch));
+  DCHECK(!overflow_dst.is(scratch));
+  DCHECK(!overflow_dst.is(left));
+  DCHECK(!overflow_dst.is(right));
+
+  if (left.is(right) && dst.is(left)) {
+    DCHECK(!dst.is(t9));
+    DCHECK(!scratch.is(t9));
+    DCHECK(!left.is(t9));
+    DCHECK(!right.is(t9));
+    DCHECK(!overflow_dst.is(t9));
+    mov(t9, right);
+    right = t9;
+  }
+
+  if (dst.is(left)) {
+    mov(scratch, left);  // Preserve left.
+    daddu(dst, left, right);  // Left is overwritten.
+    xor_(scratch, dst, scratch);  // Original left.
+    xor_(overflow_dst, dst, right);
+    and_(overflow_dst, overflow_dst, scratch);
+  } else if (dst.is(right)) {
+    mov(scratch, right);  // Preserve right.
+    daddu(dst, left, right);  // Right is overwritten.
+    xor_(scratch, dst, scratch);  // Original right.
+    xor_(overflow_dst, dst, left);
+    and_(overflow_dst, overflow_dst, scratch);
+  } else {
+    daddu(dst, left, right);
+    xor_(overflow_dst, dst, left);
+    xor_(scratch, dst, right);
+    and_(overflow_dst, scratch, overflow_dst);
+  }
+}
+
+
+void MacroAssembler::SubuAndCheckForOverflow(Register dst,
+                                             Register left,
+                                             Register right,
+                                             Register overflow_dst,
+                                             Register scratch) {
+  DCHECK(!dst.is(overflow_dst));
+  DCHECK(!dst.is(scratch));
+  DCHECK(!overflow_dst.is(scratch));
+  DCHECK(!overflow_dst.is(left));
+  DCHECK(!overflow_dst.is(right));
+  DCHECK(!scratch.is(left));
+  DCHECK(!scratch.is(right));
+
+  // This happens with some crankshaft code. Since Subu works fine if
+  // left == right, let's not make that restriction here.
+  if (left.is(right)) {
+    mov(dst, zero_reg);
+    mov(overflow_dst, zero_reg);
+    return;
+  }
+
+  if (dst.is(left)) {
+    mov(scratch, left);  // Preserve left.
+    dsubu(dst, left, right);  // Left is overwritten.
+    xor_(overflow_dst, dst, scratch);  // scratch is original left.
+    xor_(scratch, scratch, right);  // scratch is original left.
+    and_(overflow_dst, scratch, overflow_dst);
+  } else if (dst.is(right)) {
+    mov(scratch, right);  // Preserve right.
+    dsubu(dst, left, right);  // Right is overwritten.
+    xor_(overflow_dst, dst, left);
+    xor_(scratch, left, scratch);  // Original right.
+    and_(overflow_dst, scratch, overflow_dst);
+  } else {
+    dsubu(dst, left, right);
+    xor_(overflow_dst, dst, left);
+    xor_(scratch, left, right);
+    and_(overflow_dst, scratch, overflow_dst);
+  }
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f,
+                                 int num_arguments,
+                                 SaveFPRegsMode save_doubles) {
+  // All parameters are on the stack. v0 has the return value after call.
+
+  // If the expected number of arguments of the runtime function is
+  // constant, we check that the actual number of arguments match the
+  // expectation.
+  CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+  // TODO(1236192): Most runtime routines don't need the number of
+  // arguments passed in because it is constant. At some point we
+  // should remove this need and make the runtime routine entry code
+  // smarter.
+  PrepareCEntryArgs(num_arguments);
+  PrepareCEntryFunction(ExternalReference(f, isolate()));
+  CEntryStub stub(isolate(), 1, save_doubles);
+  CallStub(&stub);
+}
+
+
+void MacroAssembler::CallExternalReference(const ExternalReference& ext,
+                                           int num_arguments,
+                                           BranchDelaySlot bd) {
+  PrepareCEntryArgs(num_arguments);
+  PrepareCEntryFunction(ext);
+
+  CEntryStub stub(isolate(), 1);
+  CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+                                               int num_arguments,
+                                               int result_size) {
+  // TODO(1236192): Most runtime routines don't need the number of
+  // arguments passed in because it is constant. At some point we
+  // should remove this need and make the runtime routine entry code
+  // smarter.
+  PrepareCEntryArgs(num_arguments);
+  JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+                                     int num_arguments,
+                                     int result_size) {
+  TailCallExternalReference(ExternalReference(fid, isolate()),
+                            num_arguments,
+                            result_size);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
+                                             BranchDelaySlot bd) {
+  PrepareCEntryFunction(builtin);
+  CEntryStub stub(isolate(), 1);
+  Jump(stub.GetCode(),
+       RelocInfo::CODE_TARGET,
+       al,
+       zero_reg,
+       Operand(zero_reg),
+       bd);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+                                   InvokeFlag flag,
+                                   const CallWrapper& call_wrapper) {
+  // You can't call a builtin without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  GetBuiltinEntry(t9, id);
+  if (flag == CALL_FUNCTION) {
+    call_wrapper.BeforeCall(CallSize(t9));
+    Call(t9);
+    call_wrapper.AfterCall();
+  } else {
+    DCHECK(flag == JUMP_FUNCTION);
+    Jump(t9);
+  }
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+                                        Builtins::JavaScript id) {
+  // Load the builtins object into target register.
+  ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
+  // Load the JavaScript builtin function from the builtins object.
+  ld(target, FieldMemOperand(target,
+                          JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+  DCHECK(!target.is(a1));
+  GetBuiltinFunction(a1, id);
+  // Load the code entry point from the builtins object.
+  ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value,
+                                Register scratch1, Register scratch2) {
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    li(scratch1, Operand(value));
+    li(scratch2, Operand(ExternalReference(counter)));
+    sd(scratch1, MemOperand(scratch2));
+  }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+                                      Register scratch1, Register scratch2) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    li(scratch2, Operand(ExternalReference(counter)));
+    ld(scratch1, MemOperand(scratch2));
+    Daddu(scratch1, scratch1, Operand(value));
+    sd(scratch1, MemOperand(scratch2));
+  }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+                                      Register scratch1, Register scratch2) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    li(scratch2, Operand(ExternalReference(counter)));
+    ld(scratch1, MemOperand(scratch2));
+    Dsubu(scratch1, scratch1, Operand(value));
+    sd(scratch1, MemOperand(scratch2));
+  }
+}
+
+
+// -----------------------------------------------------------------------------
+// Debugging.
+
+void MacroAssembler::Assert(Condition cc, BailoutReason reason,
+                            Register rs, Operand rt) {
+  if (emit_debug_code())
+    Check(cc, reason, rs, rt);
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+  if (emit_debug_code()) {
+    DCHECK(!elements.is(at));
+    Label ok;
+    push(elements);
+    ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
+    LoadRoot(at, Heap::kFixedArrayMapRootIndex);
+    Branch(&ok, eq, elements, Operand(at));
+    LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
+    Branch(&ok, eq, elements, Operand(at));
+    LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
+    Branch(&ok, eq, elements, Operand(at));
+    Abort(kJSObjectWithFastElementsMapHasSlowElements);
+    bind(&ok);
+    pop(elements);
+  }
+}
+
+
+void MacroAssembler::Check(Condition cc, BailoutReason reason,
+                           Register rs, Operand rt) {
+  Label L;
+  Branch(&L, cc, rs, rt);
+  Abort(reason);
+  // Will not return here.
+  bind(&L);
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+  Label abort_start;
+  bind(&abort_start);
+#ifdef DEBUG
+  const char* msg = GetBailoutReason(reason);
+  if (msg != NULL) {
+    RecordComment("Abort message: ");
+    RecordComment(msg);
+  }
+
+  if (FLAG_trap_on_abort) {
+    stop(msg);
+    return;
+  }
+#endif
+
+  li(a0, Operand(Smi::FromInt(reason)));
+  push(a0);
+  // Disable stub call restrictions to always allow calls to abort.
+  if (!has_frame_) {
+    // We don't actually want to generate a pile of code for this, so just
+    // claim there is a stack frame, without generating one.
+    FrameScope scope(this, StackFrame::NONE);
+    CallRuntime(Runtime::kAbort, 1);
+  } else {
+    CallRuntime(Runtime::kAbort, 1);
+  }
+  // Will not return here.
+  if (is_trampoline_pool_blocked()) {
+    // If the calling code cares about the exact number of
+    // instructions generated, we insert padding here to keep the size
+    // of the Abort macro constant.
+    // Currently in debug mode with debug_code enabled the number of
+    // generated instructions is 10, so we use this as a maximum value.
+    static const int kExpectedAbortInstructions = 10;
+    int abort_instructions = InstructionsGeneratedSince(&abort_start);
+    DCHECK(abort_instructions <= kExpectedAbortInstructions);
+    while (abort_instructions++ < kExpectedAbortInstructions) {
+      nop();
+    }
+  }
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+  if (context_chain_length > 0) {
+    // Move up the chain of contexts to the context containing the slot.
+    ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+    for (int i = 1; i < context_chain_length; i++) {
+      ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+    }
+  } else {
+    // Slot is in the current function context.  Move it into the
+    // destination register in case we store into it (the write barrier
+    // cannot be allowed to destroy the context in esi).
+    Move(dst, cp);
+  }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+    ElementsKind expected_kind,
+    ElementsKind transitioned_kind,
+    Register map_in_out,
+    Register scratch,
+    Label* no_map_match) {
+  // Load the global or builtins object from the current context.
+  ld(scratch,
+     MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+  // Check that the function's map is the same as the expected cached map.
+  ld(scratch,
+     MemOperand(scratch,
+                Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
+  size_t offset = expected_kind * kPointerSize +
+      FixedArrayBase::kHeaderSize;
+  ld(at, FieldMemOperand(scratch, offset));
+  Branch(no_map_match, ne, map_in_out, Operand(at));
+
+  // Use the transitioned cached map.
+  offset = transitioned_kind * kPointerSize +
+      FixedArrayBase::kHeaderSize;
+  ld(map_in_out, FieldMemOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+  // Load the global or builtins object from the current context.
+  ld(function,
+     MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  // Load the native context from the global or builtins object.
+  ld(function, FieldMemOperand(function,
+                               GlobalObject::kNativeContextOffset));
+  // Load the function from the native context.
+  ld(function, MemOperand(function, Context::SlotOffset(index)));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+                                                  Register map,
+                                                  Register scratch) {
+  // Load the initial map. The global functions all have initial maps.
+  ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+  if (emit_debug_code()) {
+    Label ok, fail;
+    CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
+    Branch(&ok);
+    bind(&fail);
+    Abort(kGlobalFunctionsMustHaveInitialMap);
+    bind(&ok);
+  }
+}
+
+
+void MacroAssembler::StubPrologue() {
+    Push(ra, fp, cp);
+    Push(Smi::FromInt(StackFrame::STUB));
+    // Adjust FP to point to saved FP.
+    Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+}
+
+
+void MacroAssembler::Prologue(bool code_pre_aging) {
+  PredictableCodeSizeScope predictible_code_size_scope(
+      this, kNoCodeAgeSequenceLength);
+  // The following three instructions must remain together and unmodified
+  // for code aging to work properly.
+  if (code_pre_aging) {
+    // Pre-age the code.
+    Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
+    nop(Assembler::CODE_AGE_MARKER_NOP);
+    // Load the stub address to t9 and call it,
+    // GetCodeAgeAndParity() extracts the stub address from this instruction.
+    li(t9,
+       Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
+       ADDRESS_LOAD);
+    nop();  // Prevent jalr to jal optimization.
+    jalr(t9, a0);
+    nop();  // Branch delay slot nop.
+    nop();  // Pad the empty space.
+  } else {
+    Push(ra, fp, cp, a1);
+    nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+    nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+    nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+    // Adjust fp to point to caller's fp.
+    Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+  }
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+  daddiu(sp, sp, -5 * kPointerSize);
+  li(t8, Operand(Smi::FromInt(type)));
+  li(t9, Operand(CodeObject()), CONSTANT_SIZE);
+  sd(ra, MemOperand(sp, 4 * kPointerSize));
+  sd(fp, MemOperand(sp, 3 * kPointerSize));
+  sd(cp, MemOperand(sp, 2 * kPointerSize));
+  sd(t8, MemOperand(sp, 1 * kPointerSize));
+  sd(t9, MemOperand(sp, 0 * kPointerSize));
+  // Adjust FP to point to saved FP.
+  Daddu(fp, sp,
+       Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+  mov(sp, fp);
+  ld(fp, MemOperand(sp, 0 * kPointerSize));
+  ld(ra, MemOperand(sp, 1 * kPointerSize));
+  daddiu(sp, sp, 2 * kPointerSize);
+}
+
+
+void MacroAssembler::EnterExitFrame(bool save_doubles,
+                                    int stack_space) {
+  // Set up the frame structure on the stack.
+  STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
+  STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
+  STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
+
+  // This is how the stack will look:
+  // fp + 2 (==kCallerSPDisplacement) - old stack's end
+  // [fp + 1 (==kCallerPCOffset)] - saved old ra
+  // [fp + 0 (==kCallerFPOffset)] - saved old fp
+  // [fp - 1 (==kSPOffset)] - sp of the called function
+  // [fp - 2 (==kCodeOffset)] - CodeObject
+  // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
+  //   new stack (will contain saved ra)
+
+  // Save registers.
+  daddiu(sp, sp, -4 * kPointerSize);
+  sd(ra, MemOperand(sp, 3 * kPointerSize));
+  sd(fp, MemOperand(sp, 2 * kPointerSize));
+  daddiu(fp, sp, 2 * kPointerSize);  // Set up new frame pointer.
+
+  if (emit_debug_code()) {
+    sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
+  }
+
+  // Accessed from ExitFrame::code_slot.
+  li(t8, Operand(CodeObject()), CONSTANT_SIZE);
+  sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
+
+  // Save the frame pointer and the context in top.
+  li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+  sd(fp, MemOperand(t8));
+  li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+  sd(cp, MemOperand(t8));
+
+  const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+  if (save_doubles) {
+    // The stack is already aligned to 0 modulo 8 for stores with sdc1.
+    int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
+    int space = kNumOfSavedRegisters * kDoubleSize ;
+    Dsubu(sp, sp, Operand(space));
+    // Remember: we only need to save every 2nd double FPU value.
+    for (int i = 0; i < kNumOfSavedRegisters; i++) {
+      FPURegister reg = FPURegister::from_code(2 * i);
+      sdc1(reg, MemOperand(sp, i * kDoubleSize));
+    }
+  }
+
+  // Reserve place for the return address, stack space and an optional slot
+  // (used by the DirectCEntryStub to hold the return value if a struct is
+  // returned) and align the frame preparing for calling the runtime function.
+  DCHECK(stack_space >= 0);
+  Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
+  if (frame_alignment > 0) {
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    And(sp, sp, Operand(-frame_alignment));  // Align stack.
+  }
+
+  // Set the exit frame sp value to point just before the return address
+  // location.
+  daddiu(at, sp, kPointerSize);
+  sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles,
+                                    Register argument_count,
+                                    bool restore_context,
+                                    bool do_return) {
+  // Optionally restore all double registers.
+  if (save_doubles) {
+    // Remember: we only need to restore every 2nd double FPU value.
+    int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
+    Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize +
+        kNumOfSavedRegisters * kDoubleSize));
+    for (int i = 0; i < kNumOfSavedRegisters; i++) {
+      FPURegister reg = FPURegister::from_code(2 * i);
+      ldc1(reg, MemOperand(t8, i  * kDoubleSize));
+    }
+  }
+
+  // Clear top frame.
+  li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+  sd(zero_reg, MemOperand(t8));
+
+  // Restore current context from top and clear it in debug mode.
+  if (restore_context) {
+    li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+    ld(cp, MemOperand(t8));
+  }
+#ifdef DEBUG
+  li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+  sd(a3, MemOperand(t8));
+#endif
+
+  // Pop the arguments, restore registers, and return.
+  mov(sp, fp);  // Respect ABI stack constraint.
+  ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
+  ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
+
+  if (argument_count.is_valid()) {
+    dsll(t8, argument_count, kPointerSizeLog2);
+    daddu(sp, sp, t8);
+  }
+
+  if (do_return) {
+    Ret(USE_DELAY_SLOT);
+    // If returning, the instruction in the delay slot will be the addiu below.
+  }
+  daddiu(sp, sp, 2 * kPointerSize);
+}
+
+
+void MacroAssembler::InitializeNewString(Register string,
+                                         Register length,
+                                         Heap::RootListIndex map_index,
+                                         Register scratch1,
+                                         Register scratch2) {
+  // dsll(scratch1, length, kSmiTagSize);
+  dsll32(scratch1, length, 0);
+  LoadRoot(scratch2, map_index);
+  sd(scratch1, FieldMemOperand(string, String::kLengthOffset));
+  li(scratch1, Operand(String::kEmptyHashField));
+  sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
+  sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
+}
+
+
+int MacroAssembler::ActivationFrameAlignment() {
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+  // Running on the real platform. Use the alignment as mandated by the local
+  // environment.
+  // Note: This will break if we ever start generating snapshots on one Mips
+  // platform for another Mips platform with a different alignment.
+  return base::OS::ActivationFrameAlignment();
+#else  // V8_HOST_ARCH_MIPS
+  // If we are using the simulator then we should always align to the expected
+  // alignment. As the simulator is used to generate snapshots we do not know
+  // if the target platform will need alignment, so this is controlled from a
+  // flag.
+  return FLAG_sim_stack_alignment;
+#endif  // V8_HOST_ARCH_MIPS
+}
+
+
+void MacroAssembler::AssertStackIsAligned() {
+  if (emit_debug_code()) {
+      const int frame_alignment = ActivationFrameAlignment();
+      const int frame_alignment_mask = frame_alignment - 1;
+
+      if (frame_alignment > kPointerSize) {
+        Label alignment_as_expected;
+        DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+        andi(at, sp, frame_alignment_mask);
+        Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
+        // Don't use Check here, as it will call Runtime_Abort re-entering here.
+        stop("Unexpected stack alignment");
+        bind(&alignment_as_expected);
+      }
+    }
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
+    Register reg,
+    Register scratch,
+    Label* not_power_of_two_or_zero) {
+  Dsubu(scratch, reg, Operand(1));
+  Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
+         scratch, Operand(zero_reg));
+  and_(at, scratch, reg);  // In the delay slot.
+  Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
+}
+
+
+void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
+  DCHECK(!reg.is(overflow));
+  mov(overflow, reg);  // Save original value.
+  SmiTag(reg);
+  xor_(overflow, overflow, reg);  // Overflow if (value ^ 2 * value) < 0.
+}
+
+
+void MacroAssembler::SmiTagCheckOverflow(Register dst,
+                                         Register src,
+                                         Register overflow) {
+  if (dst.is(src)) {
+    // Fall back to slower case.
+    SmiTagCheckOverflow(dst, overflow);
+  } else {
+    DCHECK(!dst.is(src));
+    DCHECK(!dst.is(overflow));
+    DCHECK(!src.is(overflow));
+    SmiTag(dst, src);
+    xor_(overflow, dst, src);  // Overflow if (value ^ 2 * value) < 0.
+  }
+}
+
+
+void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
+  if (SmiValuesAre32Bits()) {
+    lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
+  } else {
+    lw(dst, src);
+    SmiUntag(dst);
+  }
+}
+
+
+void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
+  if (SmiValuesAre32Bits()) {
+    // TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
+    lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
+    dsll(dst, dst, scale);
+  } else {
+    lw(dst, src);
+    DCHECK(scale >= kSmiTagSize);
+    sll(dst, dst, scale - kSmiTagSize);
+  }
+}
+
+
+// Returns 2 values: the Smi and a scaled version of the int within the Smi.
+void MacroAssembler::SmiLoadWithScale(Register d_smi,
+                                      Register d_scaled,
+                                      MemOperand src,
+                                      int scale) {
+  if (SmiValuesAre32Bits()) {
+    ld(d_smi, src);
+    dsra(d_scaled, d_smi, kSmiShift - scale);
+  } else {
+    lw(d_smi, src);
+    DCHECK(scale >= kSmiTagSize);
+    sll(d_scaled, d_smi, scale - kSmiTagSize);
+  }
+}
+
+
+// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
+void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
+                                           Register d_scaled,
+                                           MemOperand src,
+                                           int scale) {
+  if (SmiValuesAre32Bits()) {
+    lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
+    dsll(d_scaled, d_int, scale);
+  } else {
+    lw(d_int, src);
+    // Need both the int and the scaled in, so use two instructions.
+    SmiUntag(d_int);
+    sll(d_scaled, d_int, scale);
+  }
+}
+
+
+void MacroAssembler::UntagAndJumpIfSmi(Register dst,
+                                       Register src,
+                                       Label* smi_case) {
+  // DCHECK(!dst.is(src));
+  JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
+  SmiUntag(dst, src);
+}
+
+
+void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
+                                          Register src,
+                                          Label* non_smi_case) {
+  // DCHECK(!dst.is(src));
+  JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
+  SmiUntag(dst, src);
+}
+
+void MacroAssembler::JumpIfSmi(Register value,
+                               Label* smi_label,
+                               Register scratch,
+                               BranchDelaySlot bd) {
+  DCHECK_EQ(0, kSmiTag);
+  andi(scratch, value, kSmiTagMask);
+  Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
+}
+
+void MacroAssembler::JumpIfNotSmi(Register value,
+                                  Label* not_smi_label,
+                                  Register scratch,
+                                  BranchDelaySlot bd) {
+  DCHECK_EQ(0, kSmiTag);
+  andi(scratch, value, kSmiTagMask);
+  Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::JumpIfNotBothSmi(Register reg1,
+                                      Register reg2,
+                                      Label* on_not_both_smi) {
+  STATIC_ASSERT(kSmiTag == 0);
+  // TODO(plind): Find some better to fix this assert issue.
+#if defined(__APPLE__)
+  DCHECK_EQ(1, kSmiTagMask);
+#else
+  DCHECK_EQ((uint64_t)1, kSmiTagMask);
+#endif
+  or_(at, reg1, reg2);
+  JumpIfNotSmi(at, on_not_both_smi);
+}
+
+
+void MacroAssembler::JumpIfEitherSmi(Register reg1,
+                                     Register reg2,
+                                     Label* on_either_smi) {
+  STATIC_ASSERT(kSmiTag == 0);
+  // TODO(plind): Find some better to fix this assert issue.
+#if defined(__APPLE__)
+  DCHECK_EQ(1, kSmiTagMask);
+#else
+  DCHECK_EQ((uint64_t)1, kSmiTagMask);
+#endif
+  // Both Smi tags must be 1 (not Smi).
+  and_(at, reg1, reg2);
+  JumpIfSmi(at, on_either_smi);
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+  if (emit_debug_code()) {
+    STATIC_ASSERT(kSmiTag == 0);
+    andi(at, object, kSmiTagMask);
+    Check(ne, kOperandIsASmi, at, Operand(zero_reg));
+  }
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+  if (emit_debug_code()) {
+    STATIC_ASSERT(kSmiTag == 0);
+    andi(at, object, kSmiTagMask);
+    Check(eq, kOperandIsASmi, at, Operand(zero_reg));
+  }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+  if (emit_debug_code()) {
+    STATIC_ASSERT(kSmiTag == 0);
+    SmiTst(object, a4);
+    Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg));
+    push(object);
+    ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+    lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
+    Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE));
+    pop(object);
+  }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+  if (emit_debug_code()) {
+    STATIC_ASSERT(kSmiTag == 0);
+    SmiTst(object, a4);
+    Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg));
+    push(object);
+    ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+    lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
+    Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE));
+    pop(object);
+  }
+}
+
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
+                                                     Register scratch) {
+  if (emit_debug_code()) {
+    Label done_checking;
+    AssertNotSmi(object);
+    LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+    Branch(&done_checking, eq, object, Operand(scratch));
+    push(object);
+    ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+    LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
+    Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch));
+    pop(object);
+    bind(&done_checking);
+  }
+}
+
+
+void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
+  if (emit_debug_code()) {
+    DCHECK(!reg.is(at));
+    LoadRoot(at, index);
+    Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
+  }
+}
+
+
+void MacroAssembler::JumpIfNotHeapNumber(Register object,
+                                         Register heap_number_map,
+                                         Register scratch,
+                                         Label* on_not_heap_number) {
+  ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+  AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+  Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object,
+                                             Register result,
+                                             Register scratch1,
+                                             Register scratch2,
+                                             Register scratch3,
+                                             Label* not_found) {
+  // Use of registers. Register result is used as a temporary.
+  Register number_string_cache = result;
+  Register mask = scratch3;
+
+  // Load the number string cache.
+  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+  // Make the hash mask from the length of the number string cache. It
+  // contains two elements (number and string) for each cache entry.
+  ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
+  // Divide length by two (length is a smi).
+  // dsra(mask, mask, kSmiTagSize + 1);
+  dsra32(mask, mask, 1);
+  Daddu(mask, mask, -1);  // Make mask.
+
+  // Calculate the entry in the number string cache. The hash value in the
+  // number string cache for smis is just the smi value, and the hash for
+  // doubles is the xor of the upper and lower words. See
+  // Heap::GetNumberStringCache.
+  Label is_smi;
+  Label load_result_from_cache;
+  JumpIfSmi(object, &is_smi);
+  CheckMap(object,
+           scratch1,
+           Heap::kHeapNumberMapRootIndex,
+           not_found,
+           DONT_DO_SMI_CHECK);
+
+  STATIC_ASSERT(8 == kDoubleSize);
+  Daddu(scratch1,
+       object,
+       Operand(HeapNumber::kValueOffset - kHeapObjectTag));
+  ld(scratch2, MemOperand(scratch1, kPointerSize));
+  ld(scratch1, MemOperand(scratch1, 0));
+  Xor(scratch1, scratch1, Operand(scratch2));
+  And(scratch1, scratch1, Operand(mask));
+
+  // Calculate address of entry in string cache: each entry consists
+  // of two pointer sized fields.
+  dsll(scratch1, scratch1, kPointerSizeLog2 + 1);
+  Daddu(scratch1, number_string_cache, scratch1);
+
+  Register probe = mask;
+  ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+  JumpIfSmi(probe, not_found);
+  ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
+  ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
+  BranchF(&load_result_from_cache, NULL, eq, f12, f14);
+  Branch(not_found);
+
+  bind(&is_smi);
+  Register scratch = scratch1;
+  // dsra(scratch, object, 1);   // Shift away the tag.
+  dsra32(scratch, scratch, 0);
+  And(scratch, mask, Operand(scratch));
+
+  // Calculate address of entry in string cache: each entry consists
+  // of two pointer sized fields.
+  dsll(scratch, scratch, kPointerSizeLog2 + 1);
+  Daddu(scratch, number_string_cache, scratch);
+
+  // Check if the entry is the smi we are looking for.
+  ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+  Branch(not_found, ne, object, Operand(probe));
+
+  // Get the result from the cache.
+  bind(&load_result_from_cache);
+  ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+
+  IncrementCounter(isolate()->counters()->number_to_string_native(),
+                   1,
+                   scratch1,
+                   scratch2);
+}
+
+
+void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
+    Register first, Register second, Register scratch1, Register scratch2,
+    Label* failure) {
+  // Test that both first and second are sequential one-byte strings.
+  // Assume that they are non-smis.
+  ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
+  ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
+  lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
+
+  JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
+                                                 scratch2, failure);
+}
+
+
+void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
+                                                           Register second,
+                                                           Register scratch1,
+                                                           Register scratch2,
+                                                           Label* failure) {
+  // Check that neither is a smi.
+  STATIC_ASSERT(kSmiTag == 0);
+  And(scratch1, first, Operand(second));
+  JumpIfSmi(scratch1, failure);
+  JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
+                                               scratch2, failure);
+}
+
+
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
+    Register first, Register second, Register scratch1, Register scratch2,
+    Label* failure) {
+  const int kFlatOneByteStringMask =
+      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+  const int kFlatOneByteStringTag =
+      kStringTag | kOneByteStringTag | kSeqStringTag;
+  DCHECK(kFlatOneByteStringTag <= 0xffff);  // Ensure this fits 16-bit immed.
+  andi(scratch1, first, kFlatOneByteStringMask);
+  Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag));
+  andi(scratch2, second, kFlatOneByteStringMask);
+  Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag));
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
+                                                              Register scratch,
+                                                              Label* failure) {
+  const int kFlatOneByteStringMask =
+      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+  const int kFlatOneByteStringTag =
+      kStringTag | kOneByteStringTag | kSeqStringTag;
+  And(scratch, type, Operand(kFlatOneByteStringMask));
+  Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag));
+}
+
+
+static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
+
+int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
+                                              int num_double_arguments) {
+  int stack_passed_words = 0;
+  num_reg_arguments += 2 * num_double_arguments;
+
+  // O32: Up to four simple arguments are passed in registers a0..a3.
+  // N64: Up to eight simple arguments are passed in registers a0..a7.
+  if (num_reg_arguments > kRegisterPassedArguments) {
+    stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
+  }
+  stack_passed_words += kCArgSlotCount;
+  return stack_passed_words;
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
+                                               Register index,
+                                               Register value,
+                                               Register scratch,
+                                               uint32_t encoding_mask) {
+  Label is_object;
+  SmiTst(string, at);
+  Check(ne, kNonObject, at, Operand(zero_reg));
+
+  ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
+  lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
+
+  andi(at, at, kStringRepresentationMask | kStringEncodingMask);
+  li(scratch, Operand(encoding_mask));
+  Check(eq, kUnexpectedStringType, at, Operand(scratch));
+
+  // TODO(plind): requires Smi size check code for mips32.
+
+  ld(at, FieldMemOperand(string, String::kLengthOffset));
+  Check(lt, kIndexIsTooLarge, index, Operand(at));
+
+  DCHECK(Smi::FromInt(0) == 0);
+  Check(ge, kIndexIsNegative, index, Operand(zero_reg));
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+                                          int num_double_arguments,
+                                          Register scratch) {
+  int frame_alignment = ActivationFrameAlignment();
+
+  // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
+  // O32: Up to four simple arguments are passed in registers a0..a3.
+  // Those four arguments must have reserved argument slots on the stack for
+  // mips, even though those argument slots are not normally used.
+  // Both ABIs: Remaining arguments are pushed on the stack, above (higher
+  // address than) the (O32) argument slots. (arg slot calculation handled by
+  // CalculateStackPassedWords()).
+  int stack_passed_arguments = CalculateStackPassedWords(
+      num_reg_arguments, num_double_arguments);
+  if (frame_alignment > kPointerSize) {
+    // Make stack end at alignment and make room for num_arguments - 4 words
+    // and the original value of sp.
+    mov(scratch, sp);
+    Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    And(sp, sp, Operand(-frame_alignment));
+    sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+  } else {
+    Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+  }
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+                                          Register scratch) {
+  PrepareCallCFunction(num_reg_arguments, 0, scratch);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+                                   int num_reg_arguments,
+                                   int num_double_arguments) {
+  li(t8, Operand(function));
+  CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+                                   int num_reg_arguments,
+                                   int num_double_arguments) {
+  CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+                                   int num_arguments) {
+  CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+                                   int num_arguments) {
+  CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunctionHelper(Register function,
+                                         int num_reg_arguments,
+                                         int num_double_arguments) {
+  DCHECK(has_frame());
+  // Make sure that the stack is aligned before calling a C function unless
+  // running in the simulator. The simulator has its own alignment check which
+  // provides more information.
+  // The argument stots are presumed to have been set up by
+  // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
+
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+  if (emit_debug_code()) {
+    int frame_alignment = base::OS::ActivationFrameAlignment();
+    int frame_alignment_mask = frame_alignment - 1;
+    if (frame_alignment > kPointerSize) {
+      DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+      Label alignment_as_expected;
+      And(at, sp, Operand(frame_alignment_mask));
+      Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
+      // Don't use Check here, as it will call Runtime_Abort possibly
+      // re-entering here.
+      stop("Unexpected alignment in CallCFunction");
+      bind(&alignment_as_expected);
+    }
+  }
+#endif  // V8_HOST_ARCH_MIPS
+
+  // Just call directly. The function called cannot cause a GC, or
+  // allow preemption, so the return address in the link register
+  // stays correct.
+
+  if (!function.is(t9)) {
+    mov(t9, function);
+    function = t9;
+  }
+
+  Call(function);
+
+  int stack_passed_arguments = CalculateStackPassedWords(
+      num_reg_arguments, num_double_arguments);
+
+  if (base::OS::ActivationFrameAlignment() > kPointerSize) {
+    ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
+  } else {
+    Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+  }
+}
+
+
+#undef BRANCH_ARGS_CHECK
+
+
+void MacroAssembler::PatchRelocatedValue(Register li_location,
+                                         Register scratch,
+                                         Register new_value) {
+  lwu(scratch, MemOperand(li_location));
+  // At this point scratch is a lui(at, ...) instruction.
+  if (emit_debug_code()) {
+    And(scratch, scratch, kOpcodeMask);
+    Check(eq, kTheInstructionToPatchShouldBeALui,
+        scratch, Operand(LUI));
+    lwu(scratch, MemOperand(li_location));
+  }
+  dsrl32(t9, new_value, 0);
+  Ins(scratch, t9, 0, kImm16Bits);
+  sw(scratch, MemOperand(li_location));
+
+  lwu(scratch, MemOperand(li_location, kInstrSize));
+  // scratch is now ori(at, ...).
+  if (emit_debug_code()) {
+    And(scratch, scratch, kOpcodeMask);
+    Check(eq, kTheInstructionToPatchShouldBeAnOri,
+        scratch, Operand(ORI));
+    lwu(scratch, MemOperand(li_location, kInstrSize));
+  }
+  dsrl(t9, new_value, kImm16Bits);
+  Ins(scratch, t9, 0, kImm16Bits);
+  sw(scratch, MemOperand(li_location, kInstrSize));
+
+  lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+  // scratch is now ori(at, ...).
+  if (emit_debug_code()) {
+    And(scratch, scratch, kOpcodeMask);
+    Check(eq, kTheInstructionToPatchShouldBeAnOri,
+        scratch, Operand(ORI));
+    lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+  }
+
+  Ins(scratch, new_value, 0, kImm16Bits);
+  sw(scratch, MemOperand(li_location, kInstrSize * 3));
+
+  // Update the I-cache so the new lui and ori can be executed.
+  FlushICache(li_location, 4);
+}
+
+void MacroAssembler::GetRelocatedValue(Register li_location,
+                                       Register value,
+                                       Register scratch) {
+  lwu(value, MemOperand(li_location));
+  if (emit_debug_code()) {
+    And(value, value, kOpcodeMask);
+    Check(eq, kTheInstructionShouldBeALui,
+        value, Operand(LUI));
+    lwu(value, MemOperand(li_location));
+  }
+
+  // value now holds a lui instruction. Extract the immediate.
+  andi(value, value, kImm16Mask);
+  dsll32(value, value, kImm16Bits);
+
+  lwu(scratch, MemOperand(li_location, kInstrSize));
+  if (emit_debug_code()) {
+    And(scratch, scratch, kOpcodeMask);
+    Check(eq, kTheInstructionShouldBeAnOri,
+        scratch, Operand(ORI));
+    lwu(scratch, MemOperand(li_location, kInstrSize));
+  }
+  // "scratch" now holds an ori instruction. Extract the immediate.
+  andi(scratch, scratch, kImm16Mask);
+  dsll32(scratch, scratch, 0);
+
+  or_(value, value, scratch);
+
+  lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+  if (emit_debug_code()) {
+    And(scratch, scratch, kOpcodeMask);
+    Check(eq, kTheInstructionShouldBeAnOri,
+        scratch, Operand(ORI));
+    lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+  }
+  // "scratch" now holds an ori instruction. Extract the immediate.
+  andi(scratch, scratch, kImm16Mask);
+  dsll(scratch, scratch, kImm16Bits);
+
+  or_(value, value, scratch);
+  // Sign extend extracted address.
+  dsra(value, value, kImm16Bits);
+}
+
+
+void MacroAssembler::CheckPageFlag(
+    Register object,
+    Register scratch,
+    int mask,
+    Condition cc,
+    Label* condition_met) {
+  And(scratch, object, Operand(~Page::kPageAlignmentMask));
+  ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+  And(scratch, scratch, Operand(mask));
+  Branch(condition_met, cc, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
+                                        Register scratch,
+                                        Label* if_deprecated) {
+  if (map->CanBeDeprecated()) {
+    li(scratch, Operand(map));
+    ld(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
+    And(scratch, scratch, Operand(Map::Deprecated::kMask));
+    Branch(if_deprecated, ne, scratch, Operand(zero_reg));
+  }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+                                 Register scratch0,
+                                 Register scratch1,
+                                 Label* on_black) {
+  HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+                              Register bitmap_scratch,
+                              Register mask_scratch,
+                              Label* has_color,
+                              int first_bit,
+                              int second_bit) {
+  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
+  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
+
+  GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+  Label other_color;
+  // Note that we are using a 4-byte aligned 8-byte load.
+  Uld(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  And(t8, t9, Operand(mask_scratch));
+  Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
+  // Shift left 1 by adding.
+  Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
+  And(t8, t9, Operand(mask_scratch));
+  Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
+
+  bind(&other_color);
+}
+
+
+// Detect some, but not all, common pointer-free objects.  This is used by the
+// incremental write barrier which doesn't care about oddballs (they are always
+// marked black immediately so this code is not hit).
+void MacroAssembler::JumpIfDataObject(Register value,
+                                      Register scratch,
+                                      Label* not_data_object) {
+  DCHECK(!AreAliased(value, scratch, t8, no_reg));
+  Label is_data_object;
+  ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+  LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+  Branch(&is_data_object, eq, t8, Operand(scratch));
+  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+  // If it's a string and it's not a cons string then it's an object containing
+  // no GC pointers.
+  lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+  And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
+  Branch(not_data_object, ne, t8, Operand(zero_reg));
+  bind(&is_data_object);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+                                 Register bitmap_reg,
+                                 Register mask_reg) {
+  DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
+  // addr_reg is divided into fields:
+  // |63        page base        20|19    high      8|7   shift   3|2  0|
+  // 'high' gives the index of the cell holding color bits for the object.
+  // 'shift' gives the offset in the cell for this object's color.
+  And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
+  Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
+  const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
+  Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
+  dsll(t8, t8, Bitmap::kBytesPerCellLog2);
+  Daddu(bitmap_reg, bitmap_reg, t8);
+  li(t8, Operand(1));
+  dsllv(mask_reg, t8, mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+    Register value,
+    Register bitmap_scratch,
+    Register mask_scratch,
+    Register load_scratch,
+    Label* value_is_white_and_not_data) {
+  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
+  GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+  // If the value is black or grey we don't need to do anything.
+  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+  Label done;
+
+  // Since both black and grey have a 1 in the first position and white does
+  // not have a 1 there we only need to check one bit.
+  // Note that we are using a 4-byte aligned 8-byte load.
+  Uld(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  And(t8, mask_scratch, load_scratch);
+  Branch(&done, ne, t8, Operand(zero_reg));
+
+  if (emit_debug_code()) {
+    // Check for impossible bit pattern.
+    Label ok;
+    // sll may overflow, making the check conservative.
+    dsll(t8, mask_scratch, 1);
+    And(t8, load_scratch, t8);
+    Branch(&ok, eq, t8, Operand(zero_reg));
+    stop("Impossible marking bit pattern");
+    bind(&ok);
+  }
+
+  // Value is white.  We check whether it is data that doesn't need scanning.
+  // Currently only checks for HeapNumber and non-cons strings.
+  Register map = load_scratch;  // Holds map while checking type.
+  Register length = load_scratch;  // Holds length of object after testing type.
+  Label is_data_object;
+
+  // Check for heap-number
+  ld(map, FieldMemOperand(value, HeapObject::kMapOffset));
+  LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+  {
+    Label skip;
+    Branch(&skip, ne, t8, Operand(map));
+    li(length, HeapNumber::kSize);
+    Branch(&is_data_object);
+    bind(&skip);
+  }
+
+  // Check for strings.
+  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+  // If it's a string and it's not a cons string then it's an object containing
+  // no GC pointers.
+  Register instance_type = load_scratch;
+  lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
+  And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
+  Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
+  // It's a non-indirect (non-cons and non-slice) string.
+  // If it's external, the length is just ExternalString::kSize.
+  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+  // External strings are the only ones with the kExternalStringTag bit
+  // set.
+  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
+  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
+  And(t8, instance_type, Operand(kExternalStringTag));
+  {
+    Label skip;
+    Branch(&skip, eq, t8, Operand(zero_reg));
+    li(length, ExternalString::kSize);
+    Branch(&is_data_object);
+    bind(&skip);
+  }
+
+  // Sequential string, either Latin1 or UC16.
+  // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
+  // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
+  // getting the length multiplied by 2.
+  DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
+  DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
+  lw(t9, UntagSmiFieldMemOperand(value, String::kLengthOffset));
+  And(t8, instance_type, Operand(kStringEncodingMask));
+  {
+    Label skip;
+    Branch(&skip, ne, t8, Operand(zero_reg));
+    // Adjust length for UC16.
+    dsll(t9, t9, 1);
+    bind(&skip);
+  }
+  Daddu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
+  DCHECK(!length.is(t8));
+  And(length, length, Operand(~kObjectAlignmentMask));
+
+  bind(&is_data_object);
+  // Value is a data object, and it is white.  Mark it black.  Since we know
+  // that the object is white we can make it black by flipping one bit.
+  Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  Or(t8, t8, Operand(mask_scratch));
+  Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+
+  And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
+  Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+  Daddu(t8, t8, Operand(length));
+  Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+
+  bind(&done);
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+                                             Register descriptors) {
+  ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+  ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
+  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+  ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
+  And(dst, dst, Operand(Map::EnumLengthBits::kMask));
+  SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
+  Register  empty_fixed_array_value = a6;
+  LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+  Label next, start;
+  mov(a2, a0);
+
+  // Check if the enum length field is properly initialized, indicating that
+  // there is an enum cache.
+  ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+
+  EnumLength(a3, a1);
+  Branch(
+      call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
+
+  jmp(&start);
+
+  bind(&next);
+  ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+
+  // For all objects but the receiver, check that the cache is empty.
+  EnumLength(a3, a1);
+  Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0)));
+
+  bind(&start);
+
+  // Check that there are no elements. Register a2 contains the current JS
+  // object we've reached through the prototype chain.
+  Label no_elements;
+  ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
+  Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
+
+  // Second chance, the object may be using the empty slow element dictionary.
+  LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
+  Branch(call_runtime, ne, a2, Operand(at));
+
+  bind(&no_elements);
+  ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
+  Branch(&next, ne, a2, Operand(null_value));
+}
+
+
+void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
+  DCHECK(!output_reg.is(input_reg));
+  Label done;
+  li(output_reg, Operand(255));
+  // Normal branch: nop in delay slot.
+  Branch(&done, gt, input_reg, Operand(output_reg));
+  // Use delay slot in this branch.
+  Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
+  mov(output_reg, zero_reg);  // In delay slot.
+  mov(output_reg, input_reg);  // Value is in range 0..255.
+  bind(&done);
+}
+
+
+void MacroAssembler::ClampDoubleToUint8(Register result_reg,
+                                        DoubleRegister input_reg,
+                                        DoubleRegister temp_double_reg) {
+  Label above_zero;
+  Label done;
+  Label in_bounds;
+
+  Move(temp_double_reg, 0.0);
+  BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
+
+  // Double value is less than zero, NaN or Inf, return 0.
+  mov(result_reg, zero_reg);
+  Branch(&done);
+
+  // Double value is >= 255, return 255.
+  bind(&above_zero);
+  Move(temp_double_reg, 255.0);
+  BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
+  li(result_reg, Operand(255));
+  Branch(&done);
+
+  // In 0-255 range, round and truncate.
+  bind(&in_bounds);
+  cvt_w_d(temp_double_reg, input_reg);
+  mfc1(result_reg, temp_double_reg);
+  bind(&done);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(
+    Register receiver_reg,
+    Register scratch_reg,
+    Label* no_memento_found,
+    Condition cond,
+    Label* allocation_memento_present) {
+  ExternalReference new_space_start =
+      ExternalReference::new_space_start(isolate());
+  ExternalReference new_space_allocation_top =
+      ExternalReference::new_space_allocation_top_address(isolate());
+  Daddu(scratch_reg, receiver_reg,
+       Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
+  Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start));
+  li(at, Operand(new_space_allocation_top));
+  ld(at, MemOperand(at));
+  Branch(no_memento_found, gt, scratch_reg, Operand(at));
+  ld(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
+  if (allocation_memento_present) {
+    Branch(allocation_memento_present, cond, scratch_reg,
+           Operand(isolate()->factory()->allocation_memento_map()));
+  }
+}
+
+
+Register GetRegisterThatIsNotOneOf(Register reg1,
+                                   Register reg2,
+                                   Register reg3,
+                                   Register reg4,
+                                   Register reg5,
+                                   Register reg6) {
+  RegList regs = 0;
+  if (reg1.is_valid()) regs |= reg1.bit();
+  if (reg2.is_valid()) regs |= reg2.bit();
+  if (reg3.is_valid()) regs |= reg3.bit();
+  if (reg4.is_valid()) regs |= reg4.bit();
+  if (reg5.is_valid()) regs |= reg5.bit();
+  if (reg6.is_valid()) regs |= reg6.bit();
+
+  for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
+    Register candidate = Register::FromAllocationIndex(i);
+    if (regs & candidate.bit()) continue;
+    return candidate;
+  }
+  UNREACHABLE();
+  return no_reg;
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(
+    Register object,
+    Register scratch0,
+    Register scratch1,
+    Label* found) {
+  DCHECK(!scratch1.is(scratch0));
+  Factory* factory = isolate()->factory();
+  Register current = scratch0;
+  Label loop_again;
+
+  // Scratch contained elements pointer.
+  Move(current, object);
+
+  // Loop based on the map going up the prototype chain.
+  bind(&loop_again);
+  ld(current, FieldMemOperand(current, HeapObject::kMapOffset));
+  lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
+  DecodeField<Map::ElementsKindBits>(scratch1);
+  Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS));
+  ld(current, FieldMemOperand(current, Map::kPrototypeOffset));
+  Branch(&loop_again, ne, current, Operand(factory->null_value()));
+}
+
+
+bool AreAliased(Register reg1,
+                Register reg2,
+                Register reg3,
+                Register reg4,
+                Register reg5,
+                Register reg6,
+                Register reg7,
+                Register reg8) {
+  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
+      reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
+      reg7.is_valid() + reg8.is_valid();
+
+  RegList regs = 0;
+  if (reg1.is_valid()) regs |= reg1.bit();
+  if (reg2.is_valid()) regs |= reg2.bit();
+  if (reg3.is_valid()) regs |= reg3.bit();
+  if (reg4.is_valid()) regs |= reg4.bit();
+  if (reg5.is_valid()) regs |= reg5.bit();
+  if (reg6.is_valid()) regs |= reg6.bit();
+  if (reg7.is_valid()) regs |= reg7.bit();
+  if (reg8.is_valid()) regs |= reg8.bit();
+  int n_of_non_aliasing_regs = NumRegs(regs);
+
+  return n_of_valid_regs != n_of_non_aliasing_regs;
+}
+
+
+CodePatcher::CodePatcher(byte* address,
+                         int instructions,
+                         FlushICache flush_cache)
+    : address_(address),
+      size_(instructions * Assembler::kInstrSize),
+      masm_(NULL, address, size_ + Assembler::kGap),
+      flush_cache_(flush_cache) {
+  // Create a new macro assembler pointing to the address of the code to patch.
+  // The size is adjusted with kGap on order for the assembler to generate size
+  // bytes of instructions without failing with buffer size constraints.
+  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+  // Indicate that code has changed.
+  if (flush_cache_ == FLUSH) {
+    CpuFeatures::FlushICache(address_, size_);
+  }
+  // Check that the code was patched as expected.
+  DCHECK(masm_.pc_ == address_ + size_);
+  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void CodePatcher::Emit(Instr instr) {
+  masm()->emit(instr);
+}
+
+
+void CodePatcher::Emit(Address addr) {
+  // masm()->emit(reinterpret_cast<Instr>(addr));
+}
+
+
+void CodePatcher::ChangeBranchCondition(Condition cond) {
+  Instr instr = Assembler::instr_at(masm_.pc_);
+  DCHECK(Assembler::IsBranch(instr));
+  uint32_t opcode = Assembler::GetOpcodeField(instr);
+  // Currently only the 'eq' and 'ne' cond values are supported and the simple
+  // branch instructions (with opcode being the branch type).
+  // There are some special cases (see Assembler::IsBranch()) so extending this
+  // would be tricky.
+  DCHECK(opcode == BEQ ||
+         opcode == BNE ||
+        opcode == BLEZ ||
+        opcode == BGTZ ||
+        opcode == BEQL ||
+        opcode == BNEL ||
+       opcode == BLEZL ||
+       opcode == BGTZL);
+  opcode = (cond == eq) ? BEQ : BNE;
+  instr = (instr & ~kOpcodeMask) | opcode;
+  masm_.emit(instr);
+}
+
+
+void MacroAssembler::TruncatingDiv(Register result,
+                                   Register dividend,
+                                   int32_t divisor) {
+  DCHECK(!dividend.is(result));
+  DCHECK(!dividend.is(at));
+  DCHECK(!result.is(at));
+  base::MagicNumbersForDivision<uint32_t> mag =
+  base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
+  li(at, Operand(mag.multiplier));
+  Mulh(result, dividend, Operand(at));
+  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
+  if (divisor > 0 && neg) {
+    Addu(result, result, Operand(dividend));
+  }
+  if (divisor < 0 && !neg && mag.multiplier > 0) {
+    Subu(result, result, Operand(dividend));
+  }
+  if (mag.shift > 0) sra(result, result, mag.shift);
+  srl(at, dividend, 31);
+  Addu(result, result, Operand(at));
+}
+
+
+} }  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_MIPS64