Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/mips64/macro-assembler-mips64.h b/src/mips64/macro-assembler-mips64.h
new file mode 100644
index 0000000..2da48fb
--- /dev/null
+++ b/src/mips64/macro-assembler-mips64.h
@@ -0,0 +1,1781 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
+#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/assembler.h"
+#include "src/globals.h"
+#include "src/mips64/assembler-mips64.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declaration.
+class JumpTarget;
+
+// Reserved Register Usage Summary.
+//
+// Registers t8, t9, and at are reserved for use by the MacroAssembler.
+//
+// The programmer should know that the MacroAssembler may clobber these three,
+// but won't touch other registers except in special cases.
+//
+// Per the MIPS ABI, register t9 must be used for indirect function call
+// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
+// trying to update gp register for position-independent-code. Whenever
+// MIPS generated code calls C code, it must be via t9 register.
+
+
+// Flags used for LeaveExitFrame function.
+enum LeaveExitFrameMode {
+  EMIT_RETURN = true,
+  NO_EMIT_RETURN = false
+};
+
+// Flags used for AllocateHeapNumber
+enum TaggingMode {
+  // Tag the result.
+  TAG_RESULT,
+  // Don't tag
+  DONT_TAG_RESULT
+};
+
+// Flags used for the ObjectToDoubleFPURegister function.
+enum ObjectToDoubleFlags {
+  // No special flags.
+  NO_OBJECT_TO_DOUBLE_FLAGS = 0,
+  // Object is known to be a non smi.
+  OBJECT_NOT_SMI = 1 << 0,
+  // Don't load NaNs or infinities, branch to the non number case instead.
+  AVOID_NANS_AND_INFINITIES = 1 << 1
+};
+
+// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
+enum BranchDelaySlot {
+  USE_DELAY_SLOT,
+  PROTECT
+};
+
+// Flags used for the li macro-assembler function.
+enum LiFlags {
+  // If the constant value can be represented in just 16 bits, then
+  // optimize the li to use a single instruction, rather than lui/ori/dsll
+  // sequence.
+  OPTIMIZE_SIZE = 0,
+  // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
+  // could be loaded with just one, so that this value is patchable later.
+  CONSTANT_SIZE = 1,
+  // For address loads only 4 instruction are required. Used to mark
+  // constant load that will be used as address without relocation
+  // information. It ensures predictable code size, so specific sites
+  // in code are patchable.
+  ADDRESS_LOAD  = 2
+};
+
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+  kPointersToHereMaybeInteresting,
+  kPointersToHereAreAlwaysInteresting
+};
+enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
+
+Register GetRegisterThatIsNotOneOf(Register reg1,
+                                   Register reg2 = no_reg,
+                                   Register reg3 = no_reg,
+                                   Register reg4 = no_reg,
+                                   Register reg5 = no_reg,
+                                   Register reg6 = no_reg);
+
+bool AreAliased(Register reg1,
+                Register reg2,
+                Register reg3 = no_reg,
+                Register reg4 = no_reg,
+                Register reg5 = no_reg,
+                Register reg6 = no_reg,
+                Register reg7 = no_reg,
+                Register reg8 = no_reg);
+
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+inline MemOperand ContextOperand(Register context, int index) {
+  return MemOperand(context, Context::SlotOffset(index));
+}
+
+
+inline MemOperand GlobalObjectOperand()  {
+  return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
+}
+
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, int offset) {
+  return MemOperand(object, offset - kHeapObjectTag);
+}
+
+
+inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
+  // Assumes that Smis are shifted by 32 bits and little endianness.
+  STATIC_ASSERT(kSmiShift == 32);
+  return MemOperand(rm, offset + (kSmiShift / kBitsPerByte));
+}
+
+
+inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
+  return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
+}
+
+
+// Generate a MemOperand for storing arguments 5..N on the stack
+// when calling CallCFunction().
+// TODO(plind): Currently ONLY used for O32. Should be fixed for
+//              n64, and used in RegExp code, and other places
+//              with more than 8 arguments.
+inline MemOperand CFunctionArgumentOperand(int index) {
+  DCHECK(index > kCArgSlotCount);
+  // Argument 5 takes the slot just past the four Arg-slots.
+  int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
+  return MemOperand(sp, offset);
+}
+
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler: public Assembler {
+ public:
+  // The isolate parameter can be NULL if the macro assembler should
+  // not use isolate-dependent functionality. In this case, it's the
+  // responsibility of the caller to never invoke such function on the
+  // macro assembler.
+  MacroAssembler(Isolate* isolate, void* buffer, int size);
+
+  // Arguments macros.
+#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
+#define COND_ARGS cond, r1, r2
+
+  // Cases when relocation is not needed.
+#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
+  void Name(target_type target, BranchDelaySlot bd = PROTECT); \
+  inline void Name(BranchDelaySlot bd, target_type target) { \
+    Name(target, bd); \
+  } \
+  void Name(target_type target, \
+            COND_TYPED_ARGS, \
+            BranchDelaySlot bd = PROTECT); \
+  inline void Name(BranchDelaySlot bd, \
+                   target_type target, \
+                   COND_TYPED_ARGS) { \
+    Name(target, COND_ARGS, bd); \
+  }
+
+#define DECLARE_BRANCH_PROTOTYPES(Name) \
+  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
+  DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
+
+  DECLARE_BRANCH_PROTOTYPES(Branch)
+  DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
+  DECLARE_BRANCH_PROTOTYPES(BranchShort)
+
+#undef DECLARE_BRANCH_PROTOTYPES
+#undef COND_TYPED_ARGS
+#undef COND_ARGS
+
+
+  // Jump, Call, and Ret pseudo instructions implementing inter-working.
+#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
+  const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
+
+  void Jump(Register target, COND_ARGS);
+  void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
+  void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
+  void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
+  static int CallSize(Register target, COND_ARGS);
+  void Call(Register target, COND_ARGS);
+  static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
+  void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
+  int CallSize(Handle<Code> code,
+               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+               TypeFeedbackId ast_id = TypeFeedbackId::None(),
+               COND_ARGS);
+  void Call(Handle<Code> code,
+            RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+            TypeFeedbackId ast_id = TypeFeedbackId::None(),
+            COND_ARGS);
+  void Ret(COND_ARGS);
+  inline void Ret(BranchDelaySlot bd, Condition cond = al,
+    Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
+    Ret(cond, rs, rt, bd);
+  }
+
+  void Branch(Label* L,
+              Condition cond,
+              Register rs,
+              Heap::RootListIndex index,
+              BranchDelaySlot bdslot = PROTECT);
+
+#undef COND_ARGS
+
+  // Emit code to discard a non-negative number of pointer-sized elements
+  // from the stack, clobbering only the sp register.
+  void Drop(int count,
+            Condition cond = cc_always,
+            Register reg = no_reg,
+            const Operand& op = Operand(no_reg));
+
+  // Trivial case of DropAndRet that utilizes the delay slot and only emits
+  // 2 instructions.
+  void DropAndRet(int drop);
+
+  void DropAndRet(int drop,
+                  Condition cond,
+                  Register reg,
+                  const Operand& op);
+
+  // Swap two registers.  If the scratch register is omitted then a slightly
+  // less efficient form using xor instead of mov is emitted.
+  void Swap(Register reg1, Register reg2, Register scratch = no_reg);
+
+  void Call(Label* target);
+
+  inline void Move(Register dst, Register src) {
+    if (!dst.is(src)) {
+      mov(dst, src);
+    }
+  }
+
+  inline void Move(FPURegister dst, FPURegister src) {
+    if (!dst.is(src)) {
+      mov_d(dst, src);
+    }
+  }
+
+  inline void Move(Register dst_low, Register dst_high, FPURegister src) {
+    mfc1(dst_low, src);
+    mfhc1(dst_high, src);
+  }
+
+  inline void FmoveHigh(Register dst_high, FPURegister src) {
+    mfhc1(dst_high, src);
+  }
+
+  inline void FmoveLow(Register dst_low, FPURegister src) {
+    mfc1(dst_low, src);
+  }
+
+  inline void Move(FPURegister dst, Register src_low, Register src_high) {
+    mtc1(src_low, dst);
+    mthc1(src_high, dst);
+  }
+
+  // Conditional move.
+  void Move(FPURegister dst, double imm);
+  void Movz(Register rd, Register rs, Register rt);
+  void Movn(Register rd, Register rs, Register rt);
+  void Movt(Register rd, Register rs, uint16_t cc = 0);
+  void Movf(Register rd, Register rs, uint16_t cc = 0);
+
+  void Clz(Register rd, Register rs);
+
+  // Jump unconditionally to given label.
+  // We NEED a nop in the branch delay slot, as it used by v8, for example in
+  // CodeGenerator::ProcessDeferred().
+  // Currently the branch delay slot is filled by the MacroAssembler.
+  // Use rather b(Label) for code generation.
+  void jmp(Label* L) {
+    Branch(L);
+  }
+
+  void Load(Register dst, const MemOperand& src, Representation r);
+  void Store(Register src, const MemOperand& dst, Representation r);
+
+  // Load an object from the root table.
+  void LoadRoot(Register destination,
+                Heap::RootListIndex index);
+  void LoadRoot(Register destination,
+                Heap::RootListIndex index,
+                Condition cond, Register src1, const Operand& src2);
+
+  // Store an object to the root table.
+  void StoreRoot(Register source,
+                 Heap::RootListIndex index);
+  void StoreRoot(Register source,
+                 Heap::RootListIndex index,
+                 Condition cond, Register src1, const Operand& src2);
+
+  // ---------------------------------------------------------------------------
+  // GC Support
+
+  void IncrementalMarkingRecordWriteHelper(Register object,
+                                           Register value,
+                                           Register address);
+
+  enum RememberedSetFinalAction {
+    kReturnAtEnd,
+    kFallThroughAtEnd
+  };
+
+
+  // Record in the remembered set the fact that we have a pointer to new space
+  // at the address pointed to by the addr register.  Only works if addr is not
+  // in new space.
+  void RememberedSetHelper(Register object,  // Used for debug code.
+                           Register addr,
+                           Register scratch,
+                           SaveFPRegsMode save_fp,
+                           RememberedSetFinalAction and_then);
+
+  void CheckPageFlag(Register object,
+                     Register scratch,
+                     int mask,
+                     Condition cc,
+                     Label* condition_met);
+
+  void CheckMapDeprecated(Handle<Map> map,
+                          Register scratch,
+                          Label* if_deprecated);
+
+  // Check if object is in new space.  Jumps if the object is not in new space.
+  // The register scratch can be object itself, but it will be clobbered.
+  void JumpIfNotInNewSpace(Register object,
+                           Register scratch,
+                           Label* branch) {
+    InNewSpace(object, scratch, ne, branch);
+  }
+
+  // Check if object is in new space.  Jumps if the object is in new space.
+  // The register scratch can be object itself, but scratch will be clobbered.
+  void JumpIfInNewSpace(Register object,
+                        Register scratch,
+                        Label* branch) {
+    InNewSpace(object, scratch, eq, branch);
+  }
+
+  // Check if an object has a given incremental marking color.
+  void HasColor(Register object,
+                Register scratch0,
+                Register scratch1,
+                Label* has_color,
+                int first_bit,
+                int second_bit);
+
+  void JumpIfBlack(Register object,
+                   Register scratch0,
+                   Register scratch1,
+                   Label* on_black);
+
+  // Checks the color of an object.  If the object is already grey or black
+  // then we just fall through, since it is already live.  If it is white and
+  // we can determine that it doesn't need to be scanned, then we just mark it
+  // black and fall through.  For the rest we jump to the label so the
+  // incremental marker can fix its assumptions.
+  void EnsureNotWhite(Register object,
+                      Register scratch1,
+                      Register scratch2,
+                      Register scratch3,
+                      Label* object_is_white_and_not_data);
+
+  // Detects conservatively whether an object is data-only, i.e. it does need to
+  // be scanned by the garbage collector.
+  void JumpIfDataObject(Register value,
+                        Register scratch,
+                        Label* not_data_object);
+
+  // Notify the garbage collector that we wrote a pointer into an object.
+  // |object| is the object being stored into, |value| is the object being
+  // stored.  value and scratch registers are clobbered by the operation.
+  // The offset is the offset from the start of the object, not the offset from
+  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
+  void RecordWriteField(
+      Register object,
+      int offset,
+      Register value,
+      Register scratch,
+      RAStatus ra_status,
+      SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting);
+
+  // As above, but the offset has the tag presubtracted.  For use with
+  // MemOperand(reg, off).
+  inline void RecordWriteContextSlot(
+      Register context,
+      int offset,
+      Register value,
+      Register scratch,
+      RAStatus ra_status,
+      SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting) {
+    RecordWriteField(context,
+                     offset + kHeapObjectTag,
+                     value,
+                     scratch,
+                     ra_status,
+                     save_fp,
+                     remembered_set_action,
+                     smi_check,
+                     pointers_to_here_check_for_value);
+  }
+
+  void RecordWriteForMap(
+      Register object,
+      Register map,
+      Register dst,
+      RAStatus ra_status,
+      SaveFPRegsMode save_fp);
+
+  // For a given |object| notify the garbage collector that the slot |address|
+  // has been written.  |value| is the object being stored. The value and
+  // address registers are clobbered by the operation.
+  void RecordWrite(
+      Register object,
+      Register address,
+      Register value,
+      RAStatus ra_status,
+      SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting);
+
+
+  // ---------------------------------------------------------------------------
+  // Inline caching support.
+
+  // Generate code for checking access rights - used for security checks
+  // on access to global objects across environments. The holder register
+  // is left untouched, whereas both scratch registers are clobbered.
+  void CheckAccessGlobalProxy(Register holder_reg,
+                              Register scratch,
+                              Label* miss);
+
+  void GetNumberHash(Register reg0, Register scratch);
+
+  void LoadFromNumberDictionary(Label* miss,
+                                Register elements,
+                                Register key,
+                                Register result,
+                                Register reg0,
+                                Register reg1,
+                                Register reg2);
+
+
+  inline void MarkCode(NopMarkerTypes type) {
+    nop(type);
+  }
+
+  // Check if the given instruction is a 'type' marker.
+  // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
+  // nop(type)). These instructions are generated to mark special location in
+  // the code, like some special IC code.
+  static inline bool IsMarkedCode(Instr instr, int type) {
+    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
+    return IsNop(instr, type);
+  }
+
+
+  static inline int GetCodeMarker(Instr instr) {
+    uint32_t opcode = ((instr & kOpcodeMask));
+    uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
+    uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
+    uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
+
+    // Return <n> if we have a sll zero_reg, zero_reg, n
+    // else return -1.
+    bool sllzz = (opcode == SLL &&
+                  rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
+                  rs == static_cast<uint32_t>(ToNumber(zero_reg)));
+    int type =
+        (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
+    DCHECK((type == -1) ||
+           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
+    return type;
+  }
+
+
+
+  // ---------------------------------------------------------------------------
+  // Allocation support.
+
+  // Allocate an object in new space or old pointer space. The object_size is
+  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
+  // is passed. If the space is exhausted control continues at the gc_required
+  // label. The allocated object is returned in result. If the flag
+  // tag_allocated_object is true the result is tagged as as a heap object.
+  // All registers are clobbered also when control continues at the gc_required
+  // label.
+  void Allocate(int object_size,
+                Register result,
+                Register scratch1,
+                Register scratch2,
+                Label* gc_required,
+                AllocationFlags flags);
+
+  void Allocate(Register object_size,
+                Register result,
+                Register scratch1,
+                Register scratch2,
+                Label* gc_required,
+                AllocationFlags flags);
+
+  // Undo allocation in new space. The object passed and objects allocated after
+  // it will no longer be allocated. The caller must make sure that no pointers
+  // are left to the object(s) no longer allocated as they would be invalid when
+  // allocation is undone.
+  void UndoAllocationInNewSpace(Register object, Register scratch);
+
+
+  void AllocateTwoByteString(Register result,
+                             Register length,
+                             Register scratch1,
+                             Register scratch2,
+                             Register scratch3,
+                             Label* gc_required);
+  void AllocateOneByteString(Register result, Register length,
+                             Register scratch1, Register scratch2,
+                             Register scratch3, Label* gc_required);
+  void AllocateTwoByteConsString(Register result,
+                                 Register length,
+                                 Register scratch1,
+                                 Register scratch2,
+                                 Label* gc_required);
+  void AllocateOneByteConsString(Register result, Register length,
+                                 Register scratch1, Register scratch2,
+                                 Label* gc_required);
+  void AllocateTwoByteSlicedString(Register result,
+                                   Register length,
+                                   Register scratch1,
+                                   Register scratch2,
+                                   Label* gc_required);
+  void AllocateOneByteSlicedString(Register result, Register length,
+                                   Register scratch1, Register scratch2,
+                                   Label* gc_required);
+
+  // Allocates a heap number or jumps to the gc_required label if the young
+  // space is full and a scavenge is needed. All registers are clobbered also
+  // when control continues at the gc_required label.
+  void AllocateHeapNumber(Register result,
+                          Register scratch1,
+                          Register scratch2,
+                          Register heap_number_map,
+                          Label* gc_required,
+                          TaggingMode tagging_mode = TAG_RESULT,
+                          MutableMode mode = IMMUTABLE);
+
+  void AllocateHeapNumberWithValue(Register result,
+                                   FPURegister value,
+                                   Register scratch1,
+                                   Register scratch2,
+                                   Label* gc_required);
+
+  // ---------------------------------------------------------------------------
+  // Instruction macros.
+
+#define DEFINE_INSTRUCTION(instr)                                              \
+  void instr(Register rd, Register rs, const Operand& rt);                     \
+  void instr(Register rd, Register rs, Register rt) {                          \
+    instr(rd, rs, Operand(rt));                                                \
+  }                                                                            \
+  void instr(Register rs, Register rt, int32_t j) {                            \
+    instr(rs, rt, Operand(j));                                                 \
+  }
+
+#define DEFINE_INSTRUCTION2(instr)                                             \
+  void instr(Register rs, const Operand& rt);                                  \
+  void instr(Register rs, Register rt) {                                       \
+    instr(rs, Operand(rt));                                                    \
+  }                                                                            \
+  void instr(Register rs, int32_t j) {                                         \
+    instr(rs, Operand(j));                                                     \
+  }
+
+  DEFINE_INSTRUCTION(Addu);
+  DEFINE_INSTRUCTION(Daddu);
+  DEFINE_INSTRUCTION(Ddiv);
+  DEFINE_INSTRUCTION(Subu);
+  DEFINE_INSTRUCTION(Dsubu);
+  DEFINE_INSTRUCTION(Dmod);
+  DEFINE_INSTRUCTION(Mul);
+  DEFINE_INSTRUCTION(Mulh);
+  DEFINE_INSTRUCTION(Dmul);
+  DEFINE_INSTRUCTION(Dmulh);
+  DEFINE_INSTRUCTION2(Mult);
+  DEFINE_INSTRUCTION2(Dmult);
+  DEFINE_INSTRUCTION2(Multu);
+  DEFINE_INSTRUCTION2(Dmultu);
+  DEFINE_INSTRUCTION2(Div);
+  DEFINE_INSTRUCTION2(Ddiv);
+  DEFINE_INSTRUCTION2(Divu);
+  DEFINE_INSTRUCTION2(Ddivu);
+
+  DEFINE_INSTRUCTION(And);
+  DEFINE_INSTRUCTION(Or);
+  DEFINE_INSTRUCTION(Xor);
+  DEFINE_INSTRUCTION(Nor);
+  DEFINE_INSTRUCTION2(Neg);
+
+  DEFINE_INSTRUCTION(Slt);
+  DEFINE_INSTRUCTION(Sltu);
+
+  // MIPS32 R2 instruction macro.
+  DEFINE_INSTRUCTION(Ror);
+  DEFINE_INSTRUCTION(Dror);
+
+#undef DEFINE_INSTRUCTION
+#undef DEFINE_INSTRUCTION2
+
+  void Pref(int32_t hint, const MemOperand& rs);
+
+
+  // ---------------------------------------------------------------------------
+  // Pseudo-instructions.
+
+  void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
+
+  void Ulw(Register rd, const MemOperand& rs);
+  void Usw(Register rd, const MemOperand& rs);
+  void Uld(Register rd, const MemOperand& rs, Register scratch = at);
+  void Usd(Register rd, const MemOperand& rs, Register scratch = at);
+
+  // Load int32 in the rd register.
+  void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
+  inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
+    li(rd, Operand(j), mode);
+  }
+  void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
+
+  // Push multiple registers on the stack.
+  // Registers are saved in numerical order, with higher numbered registers
+  // saved in higher memory addresses.
+  void MultiPush(RegList regs);
+  void MultiPushReversed(RegList regs);
+
+  void MultiPushFPU(RegList regs);
+  void MultiPushReversedFPU(RegList regs);
+
+  void push(Register src) {
+    Daddu(sp, sp, Operand(-kPointerSize));
+    sd(src, MemOperand(sp, 0));
+  }
+  void Push(Register src) { push(src); }
+
+  // Push a handle.
+  void Push(Handle<Object> handle);
+  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+  // Push two registers. Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2) {
+    Dsubu(sp, sp, Operand(2 * kPointerSize));
+    sd(src1, MemOperand(sp, 1 * kPointerSize));
+    sd(src2, MemOperand(sp, 0 * kPointerSize));
+  }
+
+  // Push three registers. Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2, Register src3) {
+    Dsubu(sp, sp, Operand(3 * kPointerSize));
+    sd(src1, MemOperand(sp, 2 * kPointerSize));
+    sd(src2, MemOperand(sp, 1 * kPointerSize));
+    sd(src3, MemOperand(sp, 0 * kPointerSize));
+  }
+
+  // Push four registers. Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2, Register src3, Register src4) {
+    Dsubu(sp, sp, Operand(4 * kPointerSize));
+    sd(src1, MemOperand(sp, 3 * kPointerSize));
+    sd(src2, MemOperand(sp, 2 * kPointerSize));
+    sd(src3, MemOperand(sp, 1 * kPointerSize));
+    sd(src4, MemOperand(sp, 0 * kPointerSize));
+  }
+
+  void Push(Register src, Condition cond, Register tst1, Register tst2) {
+    // Since we don't have conditional execution we use a Branch.
+    Branch(3, cond, tst1, Operand(tst2));
+    Dsubu(sp, sp, Operand(kPointerSize));
+    sd(src, MemOperand(sp, 0));
+  }
+
+  void PushRegisterAsTwoSmis(Register src, Register scratch = at);
+  void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
+
+  // Pops multiple values from the stack and load them in the
+  // registers specified in regs. Pop order is the opposite as in MultiPush.
+  void MultiPop(RegList regs);
+  void MultiPopReversed(RegList regs);
+
+  void MultiPopFPU(RegList regs);
+  void MultiPopReversedFPU(RegList regs);
+
+  void pop(Register dst) {
+    ld(dst, MemOperand(sp, 0));
+    Daddu(sp, sp, Operand(kPointerSize));
+  }
+  void Pop(Register dst) { pop(dst); }
+
+  // Pop two registers. Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2) {
+    DCHECK(!src1.is(src2));
+    ld(src2, MemOperand(sp, 0 * kPointerSize));
+    ld(src1, MemOperand(sp, 1 * kPointerSize));
+    Daddu(sp, sp, 2 * kPointerSize);
+  }
+
+  // Pop three registers. Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2, Register src3) {
+    ld(src3, MemOperand(sp, 0 * kPointerSize));
+    ld(src2, MemOperand(sp, 1 * kPointerSize));
+    ld(src1, MemOperand(sp, 2 * kPointerSize));
+    Daddu(sp, sp, 3 * kPointerSize);
+  }
+
+  void Pop(uint32_t count = 1) {
+    Daddu(sp, sp, Operand(count * kPointerSize));
+  }
+
+  // Push and pop the registers that can hold pointers, as defined by the
+  // RegList constant kSafepointSavedRegisters.
+  void PushSafepointRegisters();
+  void PopSafepointRegisters();
+  // Store value in register src in the safepoint stack slot for
+  // register dst.
+  void StoreToSafepointRegisterSlot(Register src, Register dst);
+  // Load the value of the src register from its safepoint stack slot
+  // into register dst.
+  void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
+  // from C.
+  // Does not handle errors.
+  void FlushICache(Register address, unsigned instructions);
+
+  // MIPS64 R2 instruction macro.
+  void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
+  void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
+
+  // ---------------------------------------------------------------------------
+  // FPU macros. These do not handle special cases like NaN or +- inf.
+
+  // Convert unsigned word to double.
+  void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
+  void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
+
+  // Convert double to unsigned long.
+  void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
+
+  void Trunc_l_d(FPURegister fd, FPURegister fs);
+  void Round_l_d(FPURegister fd, FPURegister fs);
+  void Floor_l_d(FPURegister fd, FPURegister fs);
+  void Ceil_l_d(FPURegister fd, FPURegister fs);
+
+  // Convert double to unsigned word.
+  void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
+  void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
+
+  void Trunc_w_d(FPURegister fd, FPURegister fs);
+  void Round_w_d(FPURegister fd, FPURegister fs);
+  void Floor_w_d(FPURegister fd, FPURegister fs);
+  void Ceil_w_d(FPURegister fd, FPURegister fs);
+
+  void Madd_d(FPURegister fd,
+              FPURegister fr,
+              FPURegister fs,
+              FPURegister ft,
+              FPURegister scratch);
+
+  // Wrapper function for the different cmp/branch types.
+  void BranchF(Label* target,
+               Label* nan,
+               Condition cc,
+               FPURegister cmp1,
+               FPURegister cmp2,
+               BranchDelaySlot bd = PROTECT);
+
+  // Alternate (inline) version for better readability with USE_DELAY_SLOT.
+  inline void BranchF(BranchDelaySlot bd,
+                      Label* target,
+                      Label* nan,
+                      Condition cc,
+                      FPURegister cmp1,
+                      FPURegister cmp2) {
+    BranchF(target, nan, cc, cmp1, cmp2, bd);
+  }
+
+  // Truncates a double using a specific rounding mode, and writes the value
+  // to the result register.
+  // The except_flag will contain any exceptions caused by the instruction.
+  // If check_inexact is kDontCheckForInexactConversion, then the inexact
+  // exception is masked.
+  void EmitFPUTruncate(FPURoundingMode rounding_mode,
+                       Register result,
+                       DoubleRegister double_input,
+                       Register scratch,
+                       DoubleRegister double_scratch,
+                       Register except_flag,
+                       CheckForInexactConversion check_inexact
+                           = kDontCheckForInexactConversion);
+
+  // Performs a truncating conversion of a floating point number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
+  // succeeds, otherwise falls through if result is saturated. On return
+  // 'result' either holds answer, or is clobbered on fall through.
+  //
+  // Only public for the test code in test-code-stubs-arm.cc.
+  void TryInlineTruncateDoubleToI(Register result,
+                                  DoubleRegister input,
+                                  Label* done);
+
+  // Performs a truncating conversion of a floating point number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+  // Exits with 'result' holding the answer.
+  void TruncateDoubleToI(Register result, DoubleRegister double_input);
+
+  // Performs a truncating conversion of a heap number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
+  // must be different registers. Exits with 'result' holding the answer.
+  void TruncateHeapNumberToI(Register result, Register object);
+
+  // Converts the smi or heap number in object to an int32 using the rules
+  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
+  // different registers.
+  void TruncateNumberToI(Register object,
+                         Register result,
+                         Register heap_number_map,
+                         Register scratch,
+                         Label* not_int32);
+
+  // Loads the number from object into dst register.
+  // If |object| is neither smi nor heap number, |not_number| is jumped to
+  // with |object| still intact.
+  void LoadNumber(Register object,
+                  FPURegister dst,
+                  Register heap_number_map,
+                  Register scratch,
+                  Label* not_number);
+
+  // Loads the number from object into double_dst in the double format.
+  // Control will jump to not_int32 if the value cannot be exactly represented
+  // by a 32-bit integer.
+  // Floating point value in the 32-bit integer range that are not exact integer
+  // won't be loaded.
+  void LoadNumberAsInt32Double(Register object,
+                               DoubleRegister double_dst,
+                               Register heap_number_map,
+                               Register scratch1,
+                               Register scratch2,
+                               FPURegister double_scratch,
+                               Label* not_int32);
+
+  // Loads the number from object into dst as a 32-bit integer.
+  // Control will jump to not_int32 if the object cannot be exactly represented
+  // by a 32-bit integer.
+  // Floating point value in the 32-bit integer range that are not exact integer
+  // won't be converted.
+  void LoadNumberAsInt32(Register object,
+                         Register dst,
+                         Register heap_number_map,
+                         Register scratch1,
+                         Register scratch2,
+                         FPURegister double_scratch0,
+                         FPURegister double_scratch1,
+                         Label* not_int32);
+
+  // Enter exit frame.
+  // argc - argument count to be dropped by LeaveExitFrame.
+  // save_doubles - saves FPU registers on stack, currently disabled.
+  // stack_space - extra stack space.
+  void EnterExitFrame(bool save_doubles,
+                      int stack_space = 0);
+
+  // Leave the current exit frame.
+  void LeaveExitFrame(bool save_doubles,
+                      Register arg_count,
+                      bool restore_context,
+                      bool do_return = NO_EMIT_RETURN);
+
+  // Get the actual activation frame alignment for target environment.
+  static int ActivationFrameAlignment();
+
+  // Make sure the stack is aligned. Only emits code in debug mode.
+  void AssertStackIsAligned();
+
+  void LoadContext(Register dst, int context_chain_length);
+
+  // Conditionally load the cached Array transitioned map of type
+  // transitioned_kind from the native context if the map in register
+  // map_in_out is the cached Array map in the native context of
+  // expected_kind.
+  void LoadTransitionedArrayMapConditional(
+      ElementsKind expected_kind,
+      ElementsKind transitioned_kind,
+      Register map_in_out,
+      Register scratch,
+      Label* no_map_match);
+
+  void LoadGlobalFunction(int index, Register function);
+
+  // Load the initial map from the global function. The registers
+  // function and map can be the same, function is then overwritten.
+  void LoadGlobalFunctionInitialMap(Register function,
+                                    Register map,
+                                    Register scratch);
+
+  void InitializeRootRegister() {
+    ExternalReference roots_array_start =
+        ExternalReference::roots_array_start(isolate());
+    li(kRootRegister, Operand(roots_array_start));
+  }
+
+  // -------------------------------------------------------------------------
+  // JavaScript invokes.
+
+  // Invoke the JavaScript function code by either calling or jumping.
+  void InvokeCode(Register code,
+                  const ParameterCount& expected,
+                  const ParameterCount& actual,
+                  InvokeFlag flag,
+                  const CallWrapper& call_wrapper);
+
+  // Invoke the JavaScript function in the given register. Changes the
+  // current context to the context in the function before invoking.
+  void InvokeFunction(Register function,
+                      const ParameterCount& actual,
+                      InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void InvokeFunction(Register function,
+                      const ParameterCount& expected,
+                      const ParameterCount& actual,
+                      InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void InvokeFunction(Handle<JSFunction> function,
+                      const ParameterCount& expected,
+                      const ParameterCount& actual,
+                      InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+
+  void IsObjectJSObjectType(Register heap_object,
+                            Register map,
+                            Register scratch,
+                            Label* fail);
+
+  void IsInstanceJSObjectType(Register map,
+                              Register scratch,
+                              Label* fail);
+
+  void IsObjectJSStringType(Register object,
+                            Register scratch,
+                            Label* fail);
+
+  void IsObjectNameType(Register object,
+                        Register scratch,
+                        Label* fail);
+
+  // -------------------------------------------------------------------------
+  // Debugger Support.
+
+  void DebugBreak();
+
+  // -------------------------------------------------------------------------
+  // Exception handling.
+
+  // Push a new try handler and link into try handler chain.
+  void PushTryHandler(StackHandler::Kind kind, int handler_index);
+
+  // Unlink the stack handler on top of the stack from the try handler chain.
+  // Must preserve the result register.
+  void PopTryHandler();
+
+  // Passes thrown value to the handler of top of the try handler chain.
+  void Throw(Register value);
+
+  // Propagates an uncatchable exception to the top of the current JS stack's
+  // handler chain.
+  void ThrowUncatchable(Register value);
+
+  // Copies a fixed number of fields of heap objects from src to dst.
+  void CopyFields(Register dst, Register src, RegList temps, int field_count);
+
+  // Copies a number of bytes from src to dst. All registers are clobbered. On
+  // exit src and dst will point to the place just after where the last byte was
+  // read or written and length will be zero.
+  void CopyBytes(Register src,
+                 Register dst,
+                 Register length,
+                 Register scratch);
+
+  // Initialize fields with filler values.  Fields starting at |start_offset|
+  // not including end_offset are overwritten with the value in |filler|.  At
+  // the end the loop, |start_offset| takes the value of |end_offset|.
+  void InitializeFieldsWithFiller(Register start_offset,
+                                  Register end_offset,
+                                  Register filler);
+
+  // -------------------------------------------------------------------------
+  // Support functions.
+
+  // Try to get function prototype of a function and puts the value in
+  // the result register. Checks that the function really is a
+  // function and jumps to the miss label if the fast checks fail. The
+  // function register will be untouched; the other registers may be
+  // clobbered.
+  void TryGetFunctionPrototype(Register function,
+                               Register result,
+                               Register scratch,
+                               Label* miss,
+                               bool miss_on_bound_function = false);
+
+  void GetObjectType(Register function,
+                     Register map,
+                     Register type_reg);
+
+  // Check if a map for a JSObject indicates that the object has fast elements.
+  // Jump to the specified label if it does not.
+  void CheckFastElements(Register map,
+                         Register scratch,
+                         Label* fail);
+
+  // Check if a map for a JSObject indicates that the object can have both smi
+  // and HeapObject elements.  Jump to the specified label if it does not.
+  void CheckFastObjectElements(Register map,
+                               Register scratch,
+                               Label* fail);
+
+  // Check if a map for a JSObject indicates that the object has fast smi only
+  // elements.  Jump to the specified label if it does not.
+  void CheckFastSmiElements(Register map,
+                            Register scratch,
+                            Label* fail);
+
+  // Check to see if maybe_number can be stored as a double in
+  // FastDoubleElements. If it can, store it at the index specified by key in
+  // the FastDoubleElements array elements. Otherwise jump to fail.
+  void StoreNumberToDoubleElements(Register value_reg,
+                                   Register key_reg,
+                                   Register elements_reg,
+                                   Register scratch1,
+                                   Register scratch2,
+                                   Register scratch3,
+                                   Label* fail,
+                                   int elements_offset = 0);
+
+  // Compare an object's map with the specified map and its transitioned
+  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
+  // "branch_to" if the result of the comparison is "cond". If multiple map
+  // compares are required, the compare sequences branches to early_success.
+  void CompareMapAndBranch(Register obj,
+                           Register scratch,
+                           Handle<Map> map,
+                           Label* early_success,
+                           Condition cond,
+                           Label* branch_to);
+
+  // As above, but the map of the object is already loaded into the register
+  // which is preserved by the code generated.
+  void CompareMapAndBranch(Register obj_map,
+                           Handle<Map> map,
+                           Label* early_success,
+                           Condition cond,
+                           Label* branch_to);
+
+  // Check if the map of an object is equal to a specified map and branch to
+  // label if not. Skip the smi check if not required (object is known to be a
+  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+  // against maps that are ElementsKind transition maps of the specificed map.
+  void CheckMap(Register obj,
+                Register scratch,
+                Handle<Map> map,
+                Label* fail,
+                SmiCheckType smi_check_type);
+
+
+  void CheckMap(Register obj,
+                Register scratch,
+                Heap::RootListIndex index,
+                Label* fail,
+                SmiCheckType smi_check_type);
+
+  // Check if the map of an object is equal to a specified map and branch to a
+  // specified target if equal. Skip the smi check if not required (object is
+  // known to be a heap object)
+  void DispatchMap(Register obj,
+                   Register scratch,
+                   Handle<Map> map,
+                   Handle<Code> success,
+                   SmiCheckType smi_check_type);
+
+
+  // Load and check the instance type of an object for being a string.
+  // Loads the type into the second argument register.
+  // Returns a condition that will be enabled if the object was a string.
+  Condition IsObjectStringType(Register obj,
+                               Register type,
+                               Register result) {
+    ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
+    lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
+    And(type, type, Operand(kIsNotStringMask));
+    DCHECK_EQ(0, kStringTag);
+    return eq;
+  }
+
+
+  // Picks out an array index from the hash field.
+  // Register use:
+  //   hash - holds the index's hash. Clobbered.
+  //   index - holds the overwritten index on exit.
+  void IndexFromHash(Register hash, Register index);
+
+  // Get the number of least significant bits from a register.
+  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
+  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
+
+  // Load the value of a number object into a FPU double register. If the
+  // object is not a number a jump to the label not_number is performed
+  // and the FPU double register is unchanged.
+  void ObjectToDoubleFPURegister(
+      Register object,
+      FPURegister value,
+      Register scratch1,
+      Register scratch2,
+      Register heap_number_map,
+      Label* not_number,
+      ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
+
+  // Load the value of a smi object into a FPU double register. The register
+  // scratch1 can be the same register as smi in which case smi will hold the
+  // untagged value afterwards.
+  void SmiToDoubleFPURegister(Register smi,
+                              FPURegister value,
+                              Register scratch1);
+
+  // -------------------------------------------------------------------------
+  // Overflow handling functions.
+  // Usage: first call the appropriate arithmetic function, then call one of the
+  // jump functions with the overflow_dst register as the second parameter.
+
+  void AdduAndCheckForOverflow(Register dst,
+                               Register left,
+                               Register right,
+                               Register overflow_dst,
+                               Register scratch = at);
+
+  void SubuAndCheckForOverflow(Register dst,
+                               Register left,
+                               Register right,
+                               Register overflow_dst,
+                               Register scratch = at);
+
+  void BranchOnOverflow(Label* label,
+                        Register overflow_check,
+                        BranchDelaySlot bd = PROTECT) {
+    Branch(label, lt, overflow_check, Operand(zero_reg), bd);
+  }
+
+  void BranchOnNoOverflow(Label* label,
+                          Register overflow_check,
+                          BranchDelaySlot bd = PROTECT) {
+    Branch(label, ge, overflow_check, Operand(zero_reg), bd);
+  }
+
+  void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+    Ret(lt, overflow_check, Operand(zero_reg), bd);
+  }
+
+  void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+    Ret(ge, overflow_check, Operand(zero_reg), bd);
+  }
+
+  // -------------------------------------------------------------------------
+  // Runtime calls.
+
+  // See comments at the beginning of CEntryStub::Generate.
+  inline void PrepareCEntryArgs(int num_args) {
+    li(s0, num_args);
+    li(s1, (num_args - 1) * kPointerSize);
+  }
+
+  inline void PrepareCEntryFunction(const ExternalReference& ref) {
+    li(s2, Operand(ref));
+  }
+
+#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
+const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
+
+  // Call a code stub.
+  void CallStub(CodeStub* stub,
+                TypeFeedbackId ast_id = TypeFeedbackId::None(),
+                COND_ARGS);
+
+  // Tail call a code stub (jump).
+  void TailCallStub(CodeStub* stub, COND_ARGS);
+
+#undef COND_ARGS
+
+  void CallJSExitStub(CodeStub* stub);
+
+  // Call a runtime routine.
+  void CallRuntime(const Runtime::Function* f,
+                   int num_arguments,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+  void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
+    const Runtime::Function* function = Runtime::FunctionForId(id);
+    CallRuntime(function, function->nargs, kSaveFPRegs);
+  }
+
+  // Convenience function: Same as above, but takes the fid instead.
+  void CallRuntime(Runtime::FunctionId id,
+                   int num_arguments,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+    CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
+  }
+
+  // Convenience function: call an external reference.
+  void CallExternalReference(const ExternalReference& ext,
+                             int num_arguments,
+                             BranchDelaySlot bd = PROTECT);
+
+  // Tail call of a runtime routine (jump).
+  // Like JumpToExternalReference, but also takes care of passing the number
+  // of parameters.
+  void TailCallExternalReference(const ExternalReference& ext,
+                                 int num_arguments,
+                                 int result_size);
+
+  // Convenience function: tail call a runtime routine (jump).
+  void TailCallRuntime(Runtime::FunctionId fid,
+                       int num_arguments,
+                       int result_size);
+
+  int CalculateStackPassedWords(int num_reg_arguments,
+                                int num_double_arguments);
+
+  // Before calling a C-function from generated code, align arguments on stack
+  // and add space for the four mips argument slots.
+  // After aligning the frame, non-register arguments must be stored on the
+  // stack, after the argument-slots using helper: CFunctionArgumentOperand().
+  // The argument count assumes all arguments are word sized.
+  // Some compilers/platforms require the stack to be aligned when calling
+  // C++ code.
+  // Needs a scratch register to do some arithmetic. This register will be
+  // trashed.
+  void PrepareCallCFunction(int num_reg_arguments,
+                            int num_double_registers,
+                            Register scratch);
+  void PrepareCallCFunction(int num_reg_arguments,
+                            Register scratch);
+
+  // Arguments 1-4 are placed in registers a0 thru a3 respectively.
+  // Arguments 5..n are stored to stack using following:
+  //  sw(a4, CFunctionArgumentOperand(5));
+
+  // Calls a C function and cleans up the space for arguments allocated
+  // by PrepareCallCFunction. The called function is not allowed to trigger a
+  // garbage collection, since that might move the code and invalidate the
+  // return address (unless this is somehow accounted for by the called
+  // function).
+  void CallCFunction(ExternalReference function, int num_arguments);
+  void CallCFunction(Register function, int num_arguments);
+  void CallCFunction(ExternalReference function,
+                     int num_reg_arguments,
+                     int num_double_arguments);
+  void CallCFunction(Register function,
+                     int num_reg_arguments,
+                     int num_double_arguments);
+  void MovFromFloatResult(DoubleRegister dst);
+  void MovFromFloatParameter(DoubleRegister dst);
+
+  // There are two ways of passing double arguments on MIPS, depending on
+  // whether soft or hard floating point ABI is used. These functions
+  // abstract parameter passing for the three different ways we call
+  // C functions from generated code.
+  void MovToFloatParameter(DoubleRegister src);
+  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
+  void MovToFloatResult(DoubleRegister src);
+
+  // Calls an API function.  Allocates HandleScope, extracts returned value
+  // from handle and propagates exceptions.  Restores context.  stack_space
+  // - space to be unwound on exit (includes the call JS arguments space and
+  // the additional space allocated for the fast call).
+  void CallApiFunctionAndReturn(Register function_address,
+                                ExternalReference thunk_ref,
+                                int stack_space,
+                                MemOperand return_value_operand,
+                                MemOperand* context_restore_operand);
+
+  // Jump to the builtin routine.
+  void JumpToExternalReference(const ExternalReference& builtin,
+                               BranchDelaySlot bd = PROTECT);
+
+  // Invoke specified builtin JavaScript function. Adds an entry to
+  // the unresolved list if the name does not resolve.
+  void InvokeBuiltin(Builtins::JavaScript id,
+                     InvokeFlag flag,
+                     const CallWrapper& call_wrapper = NullCallWrapper());
+
+  // Store the code object for the given builtin in the target register and
+  // setup the function in a1.
+  void GetBuiltinEntry(Register target, Builtins::JavaScript id);
+
+  // Store the function for the given builtin in the target register.
+  void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
+  struct Unresolved {
+    int pc;
+    uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
+    const char* name;
+  };
+
+  Handle<Object> CodeObject() {
+    DCHECK(!code_object_.is_null());
+    return code_object_;
+  }
+
+  // Emit code for a truncating division by a constant. The dividend register is
+  // unchanged and at gets clobbered. Dividend and result must be different.
+  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
+
+  // -------------------------------------------------------------------------
+  // StatsCounter support.
+
+  void SetCounter(StatsCounter* counter, int value,
+                  Register scratch1, Register scratch2);
+  void IncrementCounter(StatsCounter* counter, int value,
+                        Register scratch1, Register scratch2);
+  void DecrementCounter(StatsCounter* counter, int value,
+                        Register scratch1, Register scratch2);
+
+
+  // -------------------------------------------------------------------------
+  // Debugging.
+
+  // Calls Abort(msg) if the condition cc is not satisfied.
+  // Use --debug_code to enable.
+  void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
+  void AssertFastElements(Register elements);
+
+  // Like Assert(), but always enabled.
+  void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
+
+  // Print a message to stdout and abort execution.
+  void Abort(BailoutReason msg);
+
+  // Verify restrictions about code generated in stubs.
+  void set_generating_stub(bool value) { generating_stub_ = value; }
+  bool generating_stub() { return generating_stub_; }
+  void set_has_frame(bool value) { has_frame_ = value; }
+  bool has_frame() { return has_frame_; }
+  inline bool AllowThisStubCall(CodeStub* stub);
+
+  // ---------------------------------------------------------------------------
+  // Number utilities.
+
+  // Check whether the value of reg is a power of two and not zero. If not
+  // control continues at the label not_power_of_two. If reg is a power of two
+  // the register scratch contains the value of (reg - 1) when control falls
+  // through.
+  void JumpIfNotPowerOfTwoOrZero(Register reg,
+                                 Register scratch,
+                                 Label* not_power_of_two_or_zero);
+
+  // -------------------------------------------------------------------------
+  // Smi utilities.
+
+  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
+  void SmiTagCheckOverflow(Register reg, Register overflow);
+  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
+
+  void SmiTag(Register dst, Register src) {
+    STATIC_ASSERT(kSmiTag == 0);
+    if (SmiValuesAre32Bits()) {
+      STATIC_ASSERT(kSmiShift == 32);
+      dsll32(dst, src, 0);
+    } else {
+      Addu(dst, src, src);
+    }
+  }
+
+  void SmiTag(Register reg) {
+    SmiTag(reg, reg);
+  }
+
+  // Try to convert int32 to smi. If the value is to large, preserve
+  // the original value and jump to not_a_smi. Destroys scratch and
+  // sets flags.
+  void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
+    TrySmiTag(reg, reg, scratch, not_a_smi);
+  }
+
+  void TrySmiTag(Register dst,
+                 Register src,
+                 Register scratch,
+                 Label* not_a_smi) {
+    if (SmiValuesAre32Bits()) {
+      SmiTag(dst, src);
+    } else {
+      SmiTagCheckOverflow(at, src, scratch);
+      BranchOnOverflow(not_a_smi, scratch);
+      mov(dst, at);
+    }
+  }
+
+  void SmiUntag(Register dst, Register src) {
+    if (SmiValuesAre32Bits()) {
+      STATIC_ASSERT(kSmiShift == 32);
+      dsra32(dst, src, 0);
+    } else {
+      sra(dst, src, kSmiTagSize);
+    }
+  }
+
+  void SmiUntag(Register reg) {
+    SmiUntag(reg, reg);
+  }
+
+  // Left-shifted from int32 equivalent of Smi.
+  void SmiScale(Register dst, Register src, int scale) {
+    if (SmiValuesAre32Bits()) {
+      // The int portion is upper 32-bits of 64-bit word.
+      dsra(dst, src, kSmiShift - scale);
+    } else {
+      DCHECK(scale >= kSmiTagSize);
+      sll(dst, src, scale - kSmiTagSize);
+    }
+  }
+
+  // Combine load with untagging or scaling.
+  void SmiLoadUntag(Register dst, MemOperand src);
+
+  void SmiLoadScale(Register dst, MemOperand src, int scale);
+
+  // Returns 2 values: the Smi and a scaled version of the int within the Smi.
+  void SmiLoadWithScale(Register d_smi,
+                        Register d_scaled,
+                        MemOperand src,
+                        int scale);
+
+  // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
+  void SmiLoadUntagWithScale(Register d_int,
+                             Register d_scaled,
+                             MemOperand src,
+                             int scale);
+
+
+  // Test if the register contains a smi.
+  inline void SmiTst(Register value, Register scratch) {
+    And(scratch, value, Operand(kSmiTagMask));
+  }
+  inline void NonNegativeSmiTst(Register value, Register scratch) {
+    And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
+  }
+
+  // Untag the source value into destination and jump if source is a smi.
+  // Source and destination can be the same register.
+  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
+
+  // Untag the source value into destination and jump if source is not a smi.
+  // Source and destination can be the same register.
+  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
+
+  // Jump the register contains a smi.
+  void JumpIfSmi(Register value,
+                 Label* smi_label,
+                 Register scratch = at,
+                 BranchDelaySlot bd = PROTECT);
+
+  // Jump if the register contains a non-smi.
+  void JumpIfNotSmi(Register value,
+                    Label* not_smi_label,
+                    Register scratch = at,
+                    BranchDelaySlot bd = PROTECT);
+
+  // Jump if either of the registers contain a non-smi.
+  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
+  // Jump if either of the registers contain a smi.
+  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
+
+  // Abort execution if argument is a smi, enabled via --debug-code.
+  void AssertNotSmi(Register object);
+  void AssertSmi(Register object);
+
+  // Abort execution if argument is not a string, enabled via --debug-code.
+  void AssertString(Register object);
+
+  // Abort execution if argument is not a name, enabled via --debug-code.
+  void AssertName(Register object);
+
+  // Abort execution if argument is not undefined or an AllocationSite, enabled
+  // via --debug-code.
+  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
+
+  // Abort execution if reg is not the root value with the given index,
+  // enabled via --debug-code.
+  void AssertIsRoot(Register reg, Heap::RootListIndex index);
+
+  // ---------------------------------------------------------------------------
+  // HeapNumber utilities.
+
+  void JumpIfNotHeapNumber(Register object,
+                           Register heap_number_map,
+                           Register scratch,
+                           Label* on_not_heap_number);
+
+  // -------------------------------------------------------------------------
+  // String utilities.
+
+  // Generate code to do a lookup in the number string cache. If the number in
+  // the register object is found in the cache the generated code falls through
+  // with the result in the result register. The object and the result register
+  // can be the same. If the number is not found in the cache the code jumps to
+  // the label not_found with only the content of register object unchanged.
+  void LookupNumberStringCache(Register object,
+                               Register result,
+                               Register scratch1,
+                               Register scratch2,
+                               Register scratch3,
+                               Label* not_found);
+
+  // Checks if both instance types are sequential one-byte strings and jumps to
+  // label if either is not.
+  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
+      Register first_object_instance_type, Register second_object_instance_type,
+      Register scratch1, Register scratch2, Label* failure);
+
+  // Check if instance type is sequential one-byte string and jump to label if
+  // it is not.
+  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
+                                                Label* failure);
+
+  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
+
+  void EmitSeqStringSetCharCheck(Register string,
+                                 Register index,
+                                 Register value,
+                                 Register scratch,
+                                 uint32_t encoding_mask);
+
+  // Checks if both objects are sequential one-byte strings and jumps to label
+  // if either is not. Assumes that neither object is a smi.
+  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
+                                                    Register second,
+                                                    Register scratch1,
+                                                    Register scratch2,
+                                                    Label* failure);
+
+  // Checks if both objects are sequential one-byte strings and jumps to label
+  // if either is not.
+  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
+                                             Register scratch1,
+                                             Register scratch2,
+                                             Label* not_flat_one_byte_strings);
+
+  void ClampUint8(Register output_reg, Register input_reg);
+
+  void ClampDoubleToUint8(Register result_reg,
+                          DoubleRegister input_reg,
+                          DoubleRegister temp_double_reg);
+
+
+  void LoadInstanceDescriptors(Register map, Register descriptors);
+  void EnumLength(Register dst, Register map);
+  void NumberOfOwnDescriptors(Register dst, Register map);
+
+  template<typename Field>
+  void DecodeField(Register dst, Register src) {
+    Ext(dst, src, Field::kShift, Field::kSize);
+  }
+
+  template<typename Field>
+  void DecodeField(Register reg) {
+    DecodeField<Field>(reg, reg);
+  }
+
+  template<typename Field>
+  void DecodeFieldToSmi(Register dst, Register src) {
+    static const int shift = Field::kShift;
+    static const int mask = Field::kMask >> shift;
+    dsrl(dst, src, shift);
+    And(dst, dst, Operand(mask));
+    dsll32(dst, dst, 0);
+  }
+
+  template<typename Field>
+  void DecodeFieldToSmi(Register reg) {
+    DecodeField<Field>(reg, reg);
+  }
+  // Generates function and stub prologue code.
+  void StubPrologue();
+  void Prologue(bool code_pre_aging);
+
+  // Activation support.
+  void EnterFrame(StackFrame::Type type);
+  void LeaveFrame(StackFrame::Type type);
+
+  // Patch the relocated value (lui/ori pair).
+  void PatchRelocatedValue(Register li_location,
+                           Register scratch,
+                           Register new_value);
+  // Get the relocatad value (loaded data) from the lui/ori pair.
+  void GetRelocatedValue(Register li_location,
+                         Register value,
+                         Register scratch);
+
+  // Expects object in a0 and returns map with validated enum cache
+  // in a0.  Assumes that any other register can be used as a scratch.
+  void CheckEnumCache(Register null_value, Label* call_runtime);
+
+  // AllocationMemento support. Arrays may have an associated
+  // AllocationMemento object that can be checked for in order to pretransition
+  // to another type.
+  // On entry, receiver_reg should point to the array object.
+  // scratch_reg gets clobbered.
+  // If allocation info is present, jump to allocation_memento_present.
+  void TestJSArrayForAllocationMemento(
+      Register receiver_reg,
+      Register scratch_reg,
+      Label* no_memento_found,
+      Condition cond = al,
+      Label* allocation_memento_present = NULL);
+
+  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
+                                         Register scratch_reg,
+                                         Label* memento_found) {
+    Label no_memento_found;
+    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
+                                    &no_memento_found, eq, memento_found);
+    bind(&no_memento_found);
+  }
+
+  // Jumps to found label if a prototype map has dictionary elements.
+  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+                                        Register scratch1, Label* found);
+
+ private:
+  void CallCFunctionHelper(Register function,
+                           int num_reg_arguments,
+                           int num_double_arguments);
+
+  void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
+  void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bdslot = PROTECT);
+  void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
+  void BranchAndLinkShort(Label* L, Condition cond, Register rs,
+                          const Operand& rt,
+                          BranchDelaySlot bdslot = PROTECT);
+  void J(Label* L, BranchDelaySlot bdslot);
+  void Jr(Label* L, BranchDelaySlot bdslot);
+  void Jalr(Label* L, BranchDelaySlot bdslot);
+
+  // Helper functions for generating invokes.
+  void InvokePrologue(const ParameterCount& expected,
+                      const ParameterCount& actual,
+                      Handle<Code> code_constant,
+                      Register code_reg,
+                      Label* done,
+                      bool* definitely_mismatches,
+                      InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  // Get the code for the given builtin. Returns if able to resolve
+  // the function in the 'resolved' flag.
+  Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
+
+  void InitializeNewString(Register string,
+                           Register length,
+                           Heap::RootListIndex map_index,
+                           Register scratch1,
+                           Register scratch2);
+
+  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+  void InNewSpace(Register object,
+                  Register scratch,
+                  Condition cond,  // eq for new space, ne otherwise.
+                  Label* branch);
+
+  // Helper for finding the mark bits for an address.  Afterwards, the
+  // bitmap register points at the word with the mark bits and the mask
+  // the position of the first bit.  Leaves addr_reg unchanged.
+  inline void GetMarkBits(Register addr_reg,
+                          Register bitmap_reg,
+                          Register mask_reg);
+
+  // Helper for throwing exceptions.  Compute a handler address and jump to
+  // it.  See the implementation for register usage.
+  void JumpToHandlerEntry();
+
+  // Compute memory operands for safepoint stack slots.
+  static int SafepointRegisterStackIndex(int reg_code);
+  MemOperand SafepointRegisterSlot(Register reg);
+  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
+
+  bool generating_stub_;
+  bool has_frame_;
+  // This handle will be patched with the code object on installation.
+  Handle<Object> code_object_;
+
+  // Needs access to SafepointRegisterStackIndex for compiled frame
+  // traversal.
+  friend class StandardFrame;
+};
+
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. It is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion to fail.
+class CodePatcher {
+ public:
+  enum FlushICache {
+    FLUSH,
+    DONT_FLUSH
+  };
+
+  CodePatcher(byte* address,
+              int instructions,
+              FlushICache flush_cache = FLUSH);
+  virtual ~CodePatcher();
+
+  // Macro assembler to emit code.
+  MacroAssembler* masm() { return &masm_; }
+
+  // Emit an instruction directly.
+  void Emit(Instr instr);
+
+  // Emit an address directly.
+  void Emit(Address addr);
+
+  // Change the condition part of an instruction leaving the rest of the current
+  // instruction unchanged.
+  void ChangeBranchCondition(Condition cond);
+
+ private:
+  byte* address_;  // The address of the code being patched.
+  int size_;  // Number of bytes of the expected patch size.
+  MacroAssembler masm_;  // Macro assembler used to generate the code.
+  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
+};
+
+
+
+#ifdef GENERATED_CODE_COVERAGE
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+
+} }  // namespace v8::internal
+
+#endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_