Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/mips64/simulator-mips64.h b/src/mips64/simulator-mips64.h
new file mode 100644
index 0000000..5241554
--- /dev/null
+++ b/src/mips64/simulator-mips64.h
@@ -0,0 +1,479 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+// Declares a Simulator for MIPS instructions if we are not generating a native
+// MIPS binary. This Simulator allows us to run and debug MIPS code generation
+// on regular desktop machines.
+// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
+// which will start execution in the Simulator or forwards to the real entry
+// on a MIPS HW platform.
+
+#ifndef V8_MIPS_SIMULATOR_MIPS_H_
+#define V8_MIPS_SIMULATOR_MIPS_H_
+
+#include "src/allocation.h"
+#include "src/mips64/constants-mips64.h"
+
+#if !defined(USE_SIMULATOR)
+// Running without a simulator on a native mips platform.
+
+namespace v8 {
+namespace internal {
+
+// When running without a simulator we call the entry directly.
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
+  entry(p0, p1, p2, p3, p4)
+
+
+// Call the generated regexp code directly. The code at the entry address
+// should act as a function matching the type arm_regexp_matcher.
+// The fifth (or ninth) argument is a dummy that reserves the space used for
+// the return address added by the ExitFrame in native calls.
+#ifdef MIPS_ABI_N64
+typedef int (*mips_regexp_matcher)(String* input,
+                                   int64_t start_offset,
+                                   const byte* input_start,
+                                   const byte* input_end,
+                                   int* output,
+                                   int64_t output_size,
+                                   Address stack_base,
+                                   int64_t direct_call,
+                                   void* return_address,
+                                   Isolate* isolate);
+
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
+  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
+      p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
+
+#else  // O32 Abi.
+
+typedef int (*mips_regexp_matcher)(String* input,
+                                   int32_t start_offset,
+                                   const byte* input_start,
+                                   const byte* input_end,
+                                   void* return_address,
+                                   int* output,
+                                   int32_t output_size,
+                                   Address stack_base,
+                                   int32_t direct_call,
+                                   Isolate* isolate);
+
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
+  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
+      p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
+
+#endif  // MIPS_ABI_N64
+
+
+// The stack limit beyond which we will throw stack overflow errors in
+// generated code. Because generated code on mips uses the C stack, we
+// just use the C stack limit.
+class SimulatorStack : public v8::internal::AllStatic {
+ public:
+  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
+                                            uintptr_t c_limit) {
+    return c_limit;
+  }
+
+  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
+    return try_catch_address;
+  }
+
+  static inline void UnregisterCTryCatch() { }
+};
+
+} }  // namespace v8::internal
+
+// Calculated the stack limit beyond which we will throw stack overflow errors.
+// This macro must be called from a C++ method. It relies on being able to take
+// the address of "this" to get a value on the current execution stack and then
+// calculates the stack limit based on that value.
+// NOTE: The check for overflow is not safe as there is no guarantee that the
+// running thread has its stack in all memory up to address 0x00000000.
+#define GENERATED_CODE_STACK_LIMIT(limit) \
+  (reinterpret_cast<uintptr_t>(this) >= limit ? \
+      reinterpret_cast<uintptr_t>(this) - limit : 0)
+
+#else  // !defined(USE_SIMULATOR)
+// Running with a simulator.
+
+#include "src/assembler.h"
+#include "src/hashmap.h"
+
+namespace v8 {
+namespace internal {
+
+// -----------------------------------------------------------------------------
+// Utility functions
+
+class CachePage {
+ public:
+  static const int LINE_VALID = 0;
+  static const int LINE_INVALID = 1;
+
+  static const int kPageShift = 12;
+  static const int kPageSize = 1 << kPageShift;
+  static const int kPageMask = kPageSize - 1;
+  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
+  static const int kLineLength = 1 << kLineShift;
+  static const int kLineMask = kLineLength - 1;
+
+  CachePage() {
+    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
+  }
+
+  char* ValidityByte(int offset) {
+    return &validity_map_[offset >> kLineShift];
+  }
+
+  char* CachedData(int offset) {
+    return &data_[offset];
+  }
+
+ private:
+  char data_[kPageSize];   // The cached data.
+  static const int kValidityMapSize = kPageSize >> kLineShift;
+  char validity_map_[kValidityMapSize];  // One byte per line.
+};
+
+class Simulator {
+ public:
+  friend class MipsDebugger;
+
+  // Registers are declared in order. See SMRL chapter 2.
+  enum Register {
+    no_reg = -1,
+    zero_reg = 0,
+    at,
+    v0, v1,
+    a0, a1, a2, a3, a4, a5, a6, a7,
+    t0, t1, t2, t3,
+    s0, s1, s2, s3, s4, s5, s6, s7,
+    t8, t9,
+    k0, k1,
+    gp,
+    sp,
+    s8,
+    ra,
+    // LO, HI, and pc.
+    LO,
+    HI,
+    pc,   // pc must be the last register.
+    kNumSimuRegisters,
+    // aliases
+    fp = s8
+  };
+
+  // Coprocessor registers.
+  // Generated code will always use doubles. So we will only use even registers.
+  enum FPURegister {
+    f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
+    f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
+    f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
+    f26, f27, f28, f29, f30, f31,
+    kNumFPURegisters
+  };
+
+  explicit Simulator(Isolate* isolate);
+  ~Simulator();
+
+  // The currently executing Simulator instance. Potentially there can be one
+  // for each native thread.
+  static Simulator* current(v8::internal::Isolate* isolate);
+
+  // Accessors for register state. Reading the pc value adheres to the MIPS
+  // architecture specification and is off by a 8 from the currently executing
+  // instruction.
+  void set_register(int reg, int64_t value);
+  void set_register_word(int reg, int32_t value);
+  void set_dw_register(int dreg, const int* dbl);
+  int64_t get_register(int reg) const;
+  double get_double_from_register_pair(int reg);
+  // Same for FPURegisters.
+  void set_fpu_register(int fpureg, int64_t value);
+  void set_fpu_register_word(int fpureg, int32_t value);
+  void set_fpu_register_hi_word(int fpureg, int32_t value);
+  void set_fpu_register_float(int fpureg, float value);
+  void set_fpu_register_double(int fpureg, double value);
+  int64_t get_fpu_register(int fpureg) const;
+  int32_t get_fpu_register_word(int fpureg) const;
+  int32_t get_fpu_register_signed_word(int fpureg) const;
+  int32_t get_fpu_register_hi_word(int fpureg) const;
+  float get_fpu_register_float(int fpureg) const;
+  double get_fpu_register_double(int fpureg) const;
+  void set_fcsr_bit(uint32_t cc, bool value);
+  bool test_fcsr_bit(uint32_t cc);
+  bool set_fcsr_round_error(double original, double rounded);
+  bool set_fcsr_round64_error(double original, double rounded);
+
+  // Special case of set_register and get_register to access the raw PC value.
+  void set_pc(int64_t value);
+  int64_t get_pc() const;
+
+  Address get_sp() {
+    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
+  }
+
+  // Accessor to the internal simulator stack area.
+  uintptr_t StackLimit() const;
+
+  // Executes MIPS instructions until the PC reaches end_sim_pc.
+  void Execute();
+
+  // Call on program start.
+  static void Initialize(Isolate* isolate);
+
+  // V8 generally calls into generated JS code with 5 parameters and into
+  // generated RegExp code with 7 parameters. This is a convenience function,
+  // which sets up the simulator state and grabs the result on return.
+  int64_t Call(byte* entry, int argument_count, ...);
+  // Alternative: call a 2-argument double function.
+  double CallFP(byte* entry, double d0, double d1);
+
+  // Push an address onto the JS stack.
+  uintptr_t PushAddress(uintptr_t address);
+
+  // Pop an address from the JS stack.
+  uintptr_t PopAddress();
+
+  // Debugger input.
+  void set_last_debugger_input(char* input);
+  char* last_debugger_input() { return last_debugger_input_; }
+
+  // ICache checking.
+  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
+                          size_t size);
+
+  // Returns true if pc register contains one of the 'special_values' defined
+  // below (bad_ra, end_sim_pc).
+  bool has_bad_pc() const;
+
+ private:
+  enum special_values {
+    // Known bad pc value to ensure that the simulator does not execute
+    // without being properly setup.
+    bad_ra = -1,
+    // A pc value used to signal the simulator to stop execution.  Generally
+    // the ra is set to this value on transition from native C code to
+    // simulated execution, so that the simulator can "return" to the native
+    // C code.
+    end_sim_pc = -2,
+    // Unpredictable value.
+    Unpredictable = 0xbadbeaf
+  };
+
+  // Unsupported instructions use Format to print an error and stop execution.
+  void Format(Instruction* instr, const char* format);
+
+  // Read and write memory.
+  inline uint32_t ReadBU(int64_t addr);
+  inline int32_t ReadB(int64_t addr);
+  inline void WriteB(int64_t addr, uint8_t value);
+  inline void WriteB(int64_t addr, int8_t value);
+
+  inline uint16_t ReadHU(int64_t addr, Instruction* instr);
+  inline int16_t ReadH(int64_t addr, Instruction* instr);
+  // Note: Overloaded on the sign of the value.
+  inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
+  inline void WriteH(int64_t addr, int16_t value, Instruction* instr);
+
+  inline uint32_t ReadWU(int64_t addr, Instruction* instr);
+  inline int32_t ReadW(int64_t addr, Instruction* instr);
+  inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
+  inline int64_t Read2W(int64_t addr, Instruction* instr);
+  inline void Write2W(int64_t addr, int64_t value, Instruction* instr);
+
+  inline double ReadD(int64_t addr, Instruction* instr);
+  inline void WriteD(int64_t addr, double value, Instruction* instr);
+
+  // Helper for debugging memory access.
+  inline void DieOrDebug();
+
+  // Helpers for data value tracing.
+    enum TraceType {
+    BYTE,
+    HALF,
+    WORD,
+    DWORD
+    // DFLOAT - Floats may have printing issues due to paired lwc1's
+  };
+
+  void TraceRegWr(int64_t value);
+  void TraceMemWr(int64_t addr, int64_t value, TraceType t);
+  void TraceMemRd(int64_t addr, int64_t value);
+
+  // Operations depending on endianness.
+  // Get Double Higher / Lower word.
+  inline int32_t GetDoubleHIW(double* addr);
+  inline int32_t GetDoubleLOW(double* addr);
+  // Set Double Higher / Lower word.
+  inline int32_t SetDoubleHIW(double* addr);
+  inline int32_t SetDoubleLOW(double* addr);
+
+  // Executing is handled based on the instruction type.
+  void DecodeTypeRegister(Instruction* instr);
+
+  // Helper function for DecodeTypeRegister.
+  void ConfigureTypeRegister(Instruction* instr,
+                             int64_t* alu_out,
+                             int64_t* i64hilo,
+                             uint64_t* u64hilo,
+                             int64_t* next_pc,
+                             int64_t* return_addr_reg,
+                             bool* do_interrupt,
+                             int64_t* result128H,
+                             int64_t* result128L);
+
+  void DecodeTypeImmediate(Instruction* instr);
+  void DecodeTypeJump(Instruction* instr);
+
+  // Used for breakpoints and traps.
+  void SoftwareInterrupt(Instruction* instr);
+
+  // Stop helper functions.
+  bool IsWatchpoint(uint64_t code);
+  void PrintWatchpoint(uint64_t code);
+  void HandleStop(uint64_t code, Instruction* instr);
+  bool IsStopInstruction(Instruction* instr);
+  bool IsEnabledStop(uint64_t code);
+  void EnableStop(uint64_t code);
+  void DisableStop(uint64_t code);
+  void IncreaseStopCounter(uint64_t code);
+  void PrintStopInfo(uint64_t code);
+
+
+  // Executes one instruction.
+  void InstructionDecode(Instruction* instr);
+  // Execute one instruction placed in a branch delay slot.
+  void BranchDelayInstructionDecode(Instruction* instr) {
+    if (instr->InstructionBits() == nopInstr) {
+      // Short-cut generic nop instructions. They are always valid and they
+      // never change the simulator state.
+      return;
+    }
+
+    if (instr->IsForbiddenInBranchDelay()) {
+      V8_Fatal(__FILE__, __LINE__,
+               "Eror:Unexpected %i opcode in a branch delay slot.",
+               instr->OpcodeValue());
+    }
+    InstructionDecode(instr);
+  }
+
+  // ICache.
+  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
+  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
+                           int size);
+  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
+
+  enum Exception {
+    none,
+    kIntegerOverflow,
+    kIntegerUnderflow,
+    kDivideByZero,
+    kNumExceptions
+  };
+  int16_t exceptions[kNumExceptions];
+
+  // Exceptions.
+  void SignalExceptions();
+
+  // Runtime call support.
+  static void* RedirectExternalReference(void* external_function,
+                                         ExternalReference::Type type);
+
+  // Handle arguments and return value for runtime FP functions.
+  void GetFpArgs(double* x, double* y, int32_t* z);
+  void SetFpResult(const double& result);
+
+  void CallInternal(byte* entry);
+
+  // Architecture state.
+  // Registers.
+  int64_t registers_[kNumSimuRegisters];
+  // Coprocessor Registers.
+  int64_t FPUregisters_[kNumFPURegisters];
+  // FPU control register.
+  uint32_t FCSR_;
+
+  // Simulator support.
+  // Allocate 1MB for stack.
+  size_t stack_size_;
+  char* stack_;
+  bool pc_modified_;
+  int64_t icount_;
+  int break_count_;
+  EmbeddedVector<char, 128> trace_buf_;
+
+  // Debugger input.
+  char* last_debugger_input_;
+
+  // Icache simulation.
+  v8::internal::HashMap* i_cache_;
+
+  v8::internal::Isolate* isolate_;
+
+  // Registered breakpoints.
+  Instruction* break_pc_;
+  Instr break_instr_;
+
+  // Stop is disabled if bit 31 is set.
+  static const uint32_t kStopDisabledBit = 1 << 31;
+
+  // A stop is enabled, meaning the simulator will stop when meeting the
+  // instruction, if bit 31 of watched_stops_[code].count is unset.
+  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
+  // the breakpoint was hit or gone through.
+  struct StopCountAndDesc {
+    uint32_t count;
+    char* desc;
+  };
+  StopCountAndDesc watched_stops_[kMaxStopCode + 1];
+};
+
+
+// When running with the simulator transition into simulated execution at this
+// point.
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
+    reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
+      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
+
+#ifdef MIPS_ABI_N64
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
+    Simulator::current(Isolate::Current())->Call( \
+        entry, 10, p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)
+#else  // Must be O32 Abi.
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
+    Simulator::current(Isolate::Current())->Call( \
+        entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
+#endif  // MIPS_ABI_N64
+
+
+// The simulator has its own stack. Thus it has a different stack limit from
+// the C-based native code.  Setting the c_limit to indicate a very small
+// stack cause stack overflow errors, since the simulator ignores the input.
+// This is unlikely to be an issue in practice, though it might cause testing
+// trouble down the line.
+class SimulatorStack : public v8::internal::AllStatic {
+ public:
+  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
+                                            uintptr_t c_limit) {
+    return Simulator::current(isolate)->StackLimit();
+  }
+
+  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
+    Simulator* sim = Simulator::current(Isolate::Current());
+    return sim->PushAddress(try_catch_address);
+  }
+
+  static inline void UnregisterCTryCatch() {
+    Simulator::current(Isolate::Current())->PopAddress();
+  }
+};
+
+} }  // namespace v8::internal
+
+#endif  // !defined(USE_SIMULATOR)
+#endif  // V8_MIPS_SIMULATOR_MIPS_H_