Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/x87/code-stubs-x87.cc b/src/x87/code-stubs-x87.cc
new file mode 100644
index 0000000..d4c383b
--- /dev/null
+++ b/src/x87/code-stubs-x87.cc
@@ -0,0 +1,4372 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/base/bits.h"
+#include "src/bootstrapper.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/ic/handler-compiler.h"
+#include "src/ic/ic.h"
+#include "src/isolate.h"
+#include "src/jsregexp.h"
+#include "src/regexp-macro-assembler.h"
+#include "src/runtime.h"
+
+namespace v8 {
+namespace internal {
+
+
+static void InitializeArrayConstructorDescriptor(
+    Isolate* isolate, CodeStubDescriptor* descriptor,
+    int constant_stack_parameter_count) {
+  // register state
+  // eax -- number of arguments
+  // edi -- function
+  // ebx -- allocation site with elements kind
+  Address deopt_handler = Runtime::FunctionForId(
+      Runtime::kArrayConstructor)->entry;
+
+  if (constant_stack_parameter_count == 0) {
+    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE);
+  } else {
+    descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+  }
+}
+
+
+static void InitializeInternalArrayConstructorDescriptor(
+    Isolate* isolate, CodeStubDescriptor* descriptor,
+    int constant_stack_parameter_count) {
+  // register state
+  // eax -- number of arguments
+  // edi -- constructor function
+  Address deopt_handler = Runtime::FunctionForId(
+      Runtime::kInternalArrayConstructor)->entry;
+
+  if (constant_stack_parameter_count == 0) {
+    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE);
+  } else {
+    descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+  }
+}
+
+
+void ArrayNoArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
+}
+
+
+void ArraySingleArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
+}
+
+
+void ArrayNArgumentsConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
+}
+
+
+void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
+}
+
+
+void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
+}
+
+
+void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
+}
+
+
+#define __ ACCESS_MASM(masm)
+
+
+void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
+                                               ExternalReference miss) {
+  // Update the static counter each time a new code stub is generated.
+  isolate()->counters()->code_stubs()->Increment();
+
+  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
+  int param_count = descriptor.GetEnvironmentParameterCount();
+  {
+    // Call the runtime system in a fresh internal frame.
+    FrameScope scope(masm, StackFrame::INTERNAL);
+    DCHECK(param_count == 0 ||
+           eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
+    // Push arguments
+    for (int i = 0; i < param_count; ++i) {
+      __ push(descriptor.GetEnvironmentParameterRegister(i));
+    }
+    __ CallExternalReference(miss, param_count);
+  }
+
+  __ ret(0);
+}
+
+
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
+  // We don't allow a GC during a store buffer overflow so there is no need to
+  // store the registers in any particular way, but we do have to store and
+  // restore them.
+  __ pushad();
+  if (save_doubles()) {
+    // Save FPU stat in m108byte.
+    __ sub(esp, Immediate(108));
+    __ fnsave(Operand(esp, 0));
+  }
+  const int argument_count = 1;
+
+  AllowExternalCallThatCantCauseGC scope(masm);
+  __ PrepareCallCFunction(argument_count, ecx);
+  __ mov(Operand(esp, 0 * kPointerSize),
+         Immediate(ExternalReference::isolate_address(isolate())));
+  __ CallCFunction(
+      ExternalReference::store_buffer_overflow_function(isolate()),
+      argument_count);
+  if (save_doubles()) {
+    // Restore FPU stat in m108byte.
+    __ frstor(Operand(esp, 0));
+    __ add(esp, Immediate(108));
+  }
+  __ popad();
+  __ ret(0);
+}
+
+
+class FloatingPointHelper : public AllStatic {
+ public:
+  enum ArgLocation {
+    ARGS_ON_STACK,
+    ARGS_IN_REGISTERS
+  };
+
+  // Code pattern for loading a floating point value. Input value must
+  // be either a smi or a heap number object (fp value). Requirements:
+  // operand in register number. Returns operand as floating point number
+  // on FPU stack.
+  static void LoadFloatOperand(MacroAssembler* masm, Register number);
+
+  // Test if operands are smi or number objects (fp). Requirements:
+  // operand_1 in eax, operand_2 in edx; falls through on float
+  // operands, jumps to the non_float label otherwise.
+  static void CheckFloatOperands(MacroAssembler* masm,
+                                 Label* non_float,
+                                 Register scratch);
+};
+
+
+void DoubleToIStub::Generate(MacroAssembler* masm) {
+  Register input_reg = this->source();
+  Register final_result_reg = this->destination();
+  DCHECK(is_truncating());
+
+  Label check_negative, process_64_bits, done, done_no_stash;
+
+  int double_offset = offset();
+
+  // Account for return address and saved regs if input is esp.
+  if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
+
+  MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
+  MemOperand exponent_operand(MemOperand(input_reg,
+                                         double_offset + kDoubleSize / 2));
+
+  Register scratch1;
+  {
+    Register scratch_candidates[3] = { ebx, edx, edi };
+    for (int i = 0; i < 3; i++) {
+      scratch1 = scratch_candidates[i];
+      if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
+    }
+  }
+  // Since we must use ecx for shifts below, use some other register (eax)
+  // to calculate the result if ecx is the requested return register.
+  Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
+  // Save ecx if it isn't the return register and therefore volatile, or if it
+  // is the return register, then save the temp register we use in its stead for
+  // the result.
+  Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
+  __ push(scratch1);
+  __ push(save_reg);
+
+  bool stash_exponent_copy = !input_reg.is(esp);
+  __ mov(scratch1, mantissa_operand);
+  __ mov(ecx, exponent_operand);
+  if (stash_exponent_copy) __ push(ecx);
+
+  __ and_(ecx, HeapNumber::kExponentMask);
+  __ shr(ecx, HeapNumber::kExponentShift);
+  __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
+  __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
+  __ j(below, &process_64_bits);
+
+  // Result is entirely in lower 32-bits of mantissa
+  int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
+  __ sub(ecx, Immediate(delta));
+  __ xor_(result_reg, result_reg);
+  __ cmp(ecx, Immediate(31));
+  __ j(above, &done);
+  __ shl_cl(scratch1);
+  __ jmp(&check_negative);
+
+  __ bind(&process_64_bits);
+  // Result must be extracted from shifted 32-bit mantissa
+  __ sub(ecx, Immediate(delta));
+  __ neg(ecx);
+  if (stash_exponent_copy) {
+    __ mov(result_reg, MemOperand(esp, 0));
+  } else {
+    __ mov(result_reg, exponent_operand);
+  }
+  __ and_(result_reg,
+          Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
+  __ add(result_reg,
+         Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
+  __ shrd(result_reg, scratch1);
+  __ shr_cl(result_reg);
+  __ test(ecx, Immediate(32));
+  {
+    Label skip_mov;
+    __ j(equal, &skip_mov, Label::kNear);
+    __ mov(scratch1, result_reg);
+    __ bind(&skip_mov);
+  }
+
+  // If the double was negative, negate the integer result.
+  __ bind(&check_negative);
+  __ mov(result_reg, scratch1);
+  __ neg(result_reg);
+  if (stash_exponent_copy) {
+    __ cmp(MemOperand(esp, 0), Immediate(0));
+  } else {
+    __ cmp(exponent_operand, Immediate(0));
+  }
+  {
+    Label skip_mov;
+    __ j(less_equal, &skip_mov, Label::kNear);
+    __ mov(result_reg, scratch1);
+    __ bind(&skip_mov);
+  }
+
+  // Restore registers
+  __ bind(&done);
+  if (stash_exponent_copy) {
+    __ add(esp, Immediate(kDoubleSize / 2));
+  }
+  __ bind(&done_no_stash);
+  if (!final_result_reg.is(result_reg)) {
+    DCHECK(final_result_reg.is(ecx));
+    __ mov(final_result_reg, result_reg);
+  }
+  __ pop(save_reg);
+  __ pop(scratch1);
+  __ ret(0);
+}
+
+
+void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
+                                           Register number) {
+  Label load_smi, done;
+
+  __ JumpIfSmi(number, &load_smi, Label::kNear);
+  __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
+  __ jmp(&done, Label::kNear);
+
+  __ bind(&load_smi);
+  __ SmiUntag(number);
+  __ push(number);
+  __ fild_s(Operand(esp, 0));
+  __ pop(number);
+
+  __ bind(&done);
+}
+
+
+void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
+                                             Label* non_float,
+                                             Register scratch) {
+  Label test_other, done;
+  // Test if both operands are floats or smi -> scratch=k_is_float;
+  // Otherwise scratch = k_not_float.
+  __ JumpIfSmi(edx, &test_other, Label::kNear);
+  __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
+  Factory* factory = masm->isolate()->factory();
+  __ cmp(scratch, factory->heap_number_map());
+  __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
+
+  __ bind(&test_other);
+  __ JumpIfSmi(eax, &done, Label::kNear);
+  __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
+  __ cmp(scratch, factory->heap_number_map());
+  __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
+
+  // Fall-through: Both operands are numbers.
+  __ bind(&done);
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+  // No SSE2 support
+  UNREACHABLE();
+}
+
+
+void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
+  Label miss;
+  Register receiver = LoadDescriptor::ReceiverRegister();
+
+  NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
+                                                          ebx, &miss);
+  __ bind(&miss);
+  PropertyAccessCompiler::TailCallBuiltin(
+      masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
+}
+
+
+void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
+  // Return address is on the stack.
+  Label slow;
+
+  Register receiver = LoadDescriptor::ReceiverRegister();
+  Register key = LoadDescriptor::NameRegister();
+  Register scratch = eax;
+  DCHECK(!scratch.is(receiver) && !scratch.is(key));
+
+  // Check that the key is an array index, that is Uint32.
+  __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
+  __ j(not_zero, &slow);
+
+  // Everything is fine, call runtime.
+  __ pop(scratch);
+  __ push(receiver);  // receiver
+  __ push(key);       // key
+  __ push(scratch);   // return address
+
+  // Perform tail call to the entry.
+  ExternalReference ref = ExternalReference(
+      IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
+  __ TailCallExternalReference(ref, 2, 1);
+
+  __ bind(&slow);
+  PropertyAccessCompiler::TailCallBuiltin(
+      masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
+}
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+  // The key is in edx and the parameter count is in eax.
+  DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
+  DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
+
+  // The displacement is used for skipping the frame pointer on the
+  // stack. It is the offset of the last parameter (if any) relative
+  // to the frame pointer.
+  static const int kDisplacement = 1 * kPointerSize;
+
+  // Check that the key is a smi.
+  Label slow;
+  __ JumpIfNotSmi(edx, &slow, Label::kNear);
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor;
+  __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+  __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
+  __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+  __ j(equal, &adaptor, Label::kNear);
+
+  // Check index against formal parameters count limit passed in
+  // through register eax. Use unsigned comparison to get negative
+  // check for free.
+  __ cmp(edx, eax);
+  __ j(above_equal, &slow, Label::kNear);
+
+  // Read the argument from the stack and return it.
+  STATIC_ASSERT(kSmiTagSize == 1);
+  STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
+  __ lea(ebx, Operand(ebp, eax, times_2, 0));
+  __ neg(edx);
+  __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
+  __ ret(0);
+
+  // Arguments adaptor case: Check index against actual arguments
+  // limit found in the arguments adaptor frame. Use unsigned
+  // comparison to get negative check for free.
+  __ bind(&adaptor);
+  __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ cmp(edx, ecx);
+  __ j(above_equal, &slow, Label::kNear);
+
+  // Read the argument from the stack and return it.
+  STATIC_ASSERT(kSmiTagSize == 1);
+  STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
+  __ lea(ebx, Operand(ebx, ecx, times_2, 0));
+  __ neg(edx);
+  __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
+  __ ret(0);
+
+  // Slow-case: Handle non-smi or out-of-bounds access to arguments
+  // by calling the runtime system.
+  __ bind(&slow);
+  __ pop(ebx);  // Return address.
+  __ push(edx);
+  __ push(ebx);
+  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
+  // esp[0] : return address
+  // esp[4] : number of parameters
+  // esp[8] : receiver displacement
+  // esp[12] : function
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label runtime;
+  __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+  __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
+  __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+  __ j(not_equal, &runtime, Label::kNear);
+
+  // Patch the arguments.length and the parameters pointer.
+  __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ mov(Operand(esp, 1 * kPointerSize), ecx);
+  __ lea(edx, Operand(edx, ecx, times_2,
+              StandardFrameConstants::kCallerSPOffset));
+  __ mov(Operand(esp, 2 * kPointerSize), edx);
+
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
+  // esp[0] : return address
+  // esp[4] : number of parameters (tagged)
+  // esp[8] : receiver displacement
+  // esp[12] : function
+
+  // ebx = parameter count (tagged)
+  __ mov(ebx, Operand(esp, 1 * kPointerSize));
+
+  // Check if the calling frame is an arguments adaptor frame.
+  // TODO(rossberg): Factor out some of the bits that are shared with the other
+  // Generate* functions.
+  Label runtime;
+  Label adaptor_frame, try_allocate;
+  __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+  __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
+  __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+  __ j(equal, &adaptor_frame, Label::kNear);
+
+  // No adaptor, parameter count = argument count.
+  __ mov(ecx, ebx);
+  __ jmp(&try_allocate, Label::kNear);
+
+  // We have an adaptor frame. Patch the parameters pointer.
+  __ bind(&adaptor_frame);
+  __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ lea(edx, Operand(edx, ecx, times_2,
+                      StandardFrameConstants::kCallerSPOffset));
+  __ mov(Operand(esp, 2 * kPointerSize), edx);
+
+  // ebx = parameter count (tagged)
+  // ecx = argument count (smi-tagged)
+  // esp[4] = parameter count (tagged)
+  // esp[8] = address of receiver argument
+  // Compute the mapped parameter count = min(ebx, ecx) in ebx.
+  __ cmp(ebx, ecx);
+  __ j(less_equal, &try_allocate, Label::kNear);
+  __ mov(ebx, ecx);
+
+  __ bind(&try_allocate);
+
+  // Save mapped parameter count.
+  __ push(ebx);
+
+  // Compute the sizes of backing store, parameter map, and arguments object.
+  // 1. Parameter map, has 2 extra words containing context and backing store.
+  const int kParameterMapHeaderSize =
+      FixedArray::kHeaderSize + 2 * kPointerSize;
+  Label no_parameter_map;
+  __ test(ebx, ebx);
+  __ j(zero, &no_parameter_map, Label::kNear);
+  __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
+  __ bind(&no_parameter_map);
+
+  // 2. Backing store.
+  __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
+
+  // 3. Arguments object.
+  __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
+
+  // Do the allocation of all three objects in one go.
+  __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
+
+  // eax = address of new object(s) (tagged)
+  // ecx = argument count (smi-tagged)
+  // esp[0] = mapped parameter count (tagged)
+  // esp[8] = parameter count (tagged)
+  // esp[12] = address of receiver argument
+  // Get the arguments map from the current native context into edi.
+  Label has_mapped_parameters, instantiate;
+  __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
+  __ mov(ebx, Operand(esp, 0 * kPointerSize));
+  __ test(ebx, ebx);
+  __ j(not_zero, &has_mapped_parameters, Label::kNear);
+  __ mov(
+      edi,
+      Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
+  __ jmp(&instantiate, Label::kNear);
+
+  __ bind(&has_mapped_parameters);
+  __ mov(
+      edi,
+      Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
+  __ bind(&instantiate);
+
+  // eax = address of new object (tagged)
+  // ebx = mapped parameter count (tagged)
+  // ecx = argument count (smi-tagged)
+  // edi = address of arguments map (tagged)
+  // esp[0] = mapped parameter count (tagged)
+  // esp[8] = parameter count (tagged)
+  // esp[12] = address of receiver argument
+  // Copy the JS object part.
+  __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
+  __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
+         masm->isolate()->factory()->empty_fixed_array());
+  __ mov(FieldOperand(eax, JSObject::kElementsOffset),
+         masm->isolate()->factory()->empty_fixed_array());
+
+  // Set up the callee in-object property.
+  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+  __ mov(edx, Operand(esp, 4 * kPointerSize));
+  __ AssertNotSmi(edx);
+  __ mov(FieldOperand(eax, JSObject::kHeaderSize +
+                      Heap::kArgumentsCalleeIndex * kPointerSize),
+         edx);
+
+  // Use the length (smi tagged) and set that as an in-object property too.
+  __ AssertSmi(ecx);
+  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+  __ mov(FieldOperand(eax, JSObject::kHeaderSize +
+                      Heap::kArgumentsLengthIndex * kPointerSize),
+         ecx);
+
+  // Set up the elements pointer in the allocated arguments object.
+  // If we allocated a parameter map, edi will point there, otherwise to the
+  // backing store.
+  __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
+  __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
+
+  // eax = address of new object (tagged)
+  // ebx = mapped parameter count (tagged)
+  // ecx = argument count (tagged)
+  // edi = address of parameter map or backing store (tagged)
+  // esp[0] = mapped parameter count (tagged)
+  // esp[8] = parameter count (tagged)
+  // esp[12] = address of receiver argument
+  // Free a register.
+  __ push(eax);
+
+  // Initialize parameter map. If there are no mapped arguments, we're done.
+  Label skip_parameter_map;
+  __ test(ebx, ebx);
+  __ j(zero, &skip_parameter_map);
+
+  __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+         Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
+  __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
+  __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
+  __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
+  __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
+  __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
+
+  // Copy the parameter slots and the holes in the arguments.
+  // We need to fill in mapped_parameter_count slots. They index the context,
+  // where parameters are stored in reverse order, at
+  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
+  // The mapped parameter thus need to get indices
+  //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
+  //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
+  // We loop from right to left.
+  Label parameters_loop, parameters_test;
+  __ push(ecx);
+  __ mov(eax, Operand(esp, 2 * kPointerSize));
+  __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
+  __ add(ebx, Operand(esp, 4 * kPointerSize));
+  __ sub(ebx, eax);
+  __ mov(ecx, isolate()->factory()->the_hole_value());
+  __ mov(edx, edi);
+  __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
+  // eax = loop variable (tagged)
+  // ebx = mapping index (tagged)
+  // ecx = the hole value
+  // edx = address of parameter map (tagged)
+  // edi = address of backing store (tagged)
+  // esp[0] = argument count (tagged)
+  // esp[4] = address of new object (tagged)
+  // esp[8] = mapped parameter count (tagged)
+  // esp[16] = parameter count (tagged)
+  // esp[20] = address of receiver argument
+  __ jmp(&parameters_test, Label::kNear);
+
+  __ bind(&parameters_loop);
+  __ sub(eax, Immediate(Smi::FromInt(1)));
+  __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
+  __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
+  __ add(ebx, Immediate(Smi::FromInt(1)));
+  __ bind(&parameters_test);
+  __ test(eax, eax);
+  __ j(not_zero, &parameters_loop, Label::kNear);
+  __ pop(ecx);
+
+  __ bind(&skip_parameter_map);
+
+  // ecx = argument count (tagged)
+  // edi = address of backing store (tagged)
+  // esp[0] = address of new object (tagged)
+  // esp[4] = mapped parameter count (tagged)
+  // esp[12] = parameter count (tagged)
+  // esp[16] = address of receiver argument
+  // Copy arguments header and remaining slots (if there are any).
+  __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+         Immediate(isolate()->factory()->fixed_array_map()));
+  __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
+
+  Label arguments_loop, arguments_test;
+  __ mov(ebx, Operand(esp, 1 * kPointerSize));
+  __ mov(edx, Operand(esp, 4 * kPointerSize));
+  __ sub(edx, ebx);  // Is there a smarter way to do negative scaling?
+  __ sub(edx, ebx);
+  __ jmp(&arguments_test, Label::kNear);
+
+  __ bind(&arguments_loop);
+  __ sub(edx, Immediate(kPointerSize));
+  __ mov(eax, Operand(edx, 0));
+  __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
+  __ add(ebx, Immediate(Smi::FromInt(1)));
+
+  __ bind(&arguments_test);
+  __ cmp(ebx, ecx);
+  __ j(less, &arguments_loop, Label::kNear);
+
+  // Restore.
+  __ pop(eax);  // Address of arguments object.
+  __ pop(ebx);  // Parameter count.
+
+  // Return and remove the on-stack parameters.
+  __ ret(3 * kPointerSize);
+
+  // Do the runtime call to allocate the arguments object.
+  __ bind(&runtime);
+  __ pop(eax);  // Remove saved parameter count.
+  __ mov(Operand(esp, 1 * kPointerSize), ecx);  // Patch argument count.
+  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
+  // esp[0] : return address
+  // esp[4] : number of parameters
+  // esp[8] : receiver displacement
+  // esp[12] : function
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor_frame, try_allocate, runtime;
+  __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+  __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
+  __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+  __ j(equal, &adaptor_frame, Label::kNear);
+
+  // Get the length from the frame.
+  __ mov(ecx, Operand(esp, 1 * kPointerSize));
+  __ jmp(&try_allocate, Label::kNear);
+
+  // Patch the arguments.length and the parameters pointer.
+  __ bind(&adaptor_frame);
+  __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ mov(Operand(esp, 1 * kPointerSize), ecx);
+  __ lea(edx, Operand(edx, ecx, times_2,
+                      StandardFrameConstants::kCallerSPOffset));
+  __ mov(Operand(esp, 2 * kPointerSize), edx);
+
+  // Try the new space allocation. Start out with computing the size of
+  // the arguments object and the elements array.
+  Label add_arguments_object;
+  __ bind(&try_allocate);
+  __ test(ecx, ecx);
+  __ j(zero, &add_arguments_object, Label::kNear);
+  __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
+  __ bind(&add_arguments_object);
+  __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
+
+  // Do the allocation of both objects in one go.
+  __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
+
+  // Get the arguments map from the current native context.
+  __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
+  const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
+  __ mov(edi, Operand(edi, offset));
+
+  __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
+  __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
+         masm->isolate()->factory()->empty_fixed_array());
+  __ mov(FieldOperand(eax, JSObject::kElementsOffset),
+         masm->isolate()->factory()->empty_fixed_array());
+
+  // Get the length (smi tagged) and set that as an in-object property too.
+  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+  __ mov(ecx, Operand(esp, 1 * kPointerSize));
+  __ AssertSmi(ecx);
+  __ mov(FieldOperand(eax, JSObject::kHeaderSize +
+                      Heap::kArgumentsLengthIndex * kPointerSize),
+         ecx);
+
+  // If there are no actual arguments, we're done.
+  Label done;
+  __ test(ecx, ecx);
+  __ j(zero, &done, Label::kNear);
+
+  // Get the parameters pointer from the stack.
+  __ mov(edx, Operand(esp, 2 * kPointerSize));
+
+  // Set up the elements pointer in the allocated arguments object and
+  // initialize the header in the elements fixed array.
+  __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
+  __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
+  __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+         Immediate(isolate()->factory()->fixed_array_map()));
+
+  __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
+  // Untag the length for the loop below.
+  __ SmiUntag(ecx);
+
+  // Copy the fixed array slots.
+  Label loop;
+  __ bind(&loop);
+  __ mov(ebx, Operand(edx, -1 * kPointerSize));  // Skip receiver.
+  __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
+  __ add(edi, Immediate(kPointerSize));
+  __ sub(edx, Immediate(kPointerSize));
+  __ dec(ecx);
+  __ j(not_zero, &loop);
+
+  // Return and remove the on-stack parameters.
+  __ bind(&done);
+  __ ret(3 * kPointerSize);
+
+  // Do the runtime call to allocate the arguments object.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+  // Just jump directly to runtime if native RegExp is not selected at compile
+  // time or if regexp entry in generated code is turned off runtime switch or
+  // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+#else  // V8_INTERPRETED_REGEXP
+
+  // Stack frame on entry.
+  //  esp[0]: return address
+  //  esp[4]: last_match_info (expected JSArray)
+  //  esp[8]: previous index
+  //  esp[12]: subject string
+  //  esp[16]: JSRegExp object
+
+  static const int kLastMatchInfoOffset = 1 * kPointerSize;
+  static const int kPreviousIndexOffset = 2 * kPointerSize;
+  static const int kSubjectOffset = 3 * kPointerSize;
+  static const int kJSRegExpOffset = 4 * kPointerSize;
+
+  Label runtime;
+  Factory* factory = isolate()->factory();
+
+  // Ensure that a RegExp stack is allocated.
+  ExternalReference address_of_regexp_stack_memory_address =
+      ExternalReference::address_of_regexp_stack_memory_address(isolate());
+  ExternalReference address_of_regexp_stack_memory_size =
+      ExternalReference::address_of_regexp_stack_memory_size(isolate());
+  __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
+  __ test(ebx, ebx);
+  __ j(zero, &runtime);
+
+  // Check that the first argument is a JSRegExp object.
+  __ mov(eax, Operand(esp, kJSRegExpOffset));
+  STATIC_ASSERT(kSmiTag == 0);
+  __ JumpIfSmi(eax, &runtime);
+  __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
+  __ j(not_equal, &runtime);
+
+  // Check that the RegExp has been compiled (data contains a fixed array).
+  __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
+  if (FLAG_debug_code) {
+    __ test(ecx, Immediate(kSmiTagMask));
+    __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
+    __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
+    __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
+  }
+
+  // ecx: RegExp data (FixedArray)
+  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+  __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
+  __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
+  __ j(not_equal, &runtime);
+
+  // ecx: RegExp data (FixedArray)
+  // Check that the number of captures fit in the static offsets vector buffer.
+  __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
+  // Check (number_of_captures + 1) * 2 <= offsets vector size
+  // Or          number_of_captures * 2 <= offsets vector size - 2
+  // Multiplying by 2 comes for free since edx is smi-tagged.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
+  __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
+  __ j(above, &runtime);
+
+  // Reset offset for possibly sliced string.
+  __ Move(edi, Immediate(0));
+  __ mov(eax, Operand(esp, kSubjectOffset));
+  __ JumpIfSmi(eax, &runtime);
+  __ mov(edx, eax);  // Make a copy of the original subject string.
+  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+
+  // eax: subject string
+  // edx: subject string
+  // ebx: subject string instance type
+  // ecx: RegExp data (FixedArray)
+  // Handle subject string according to its encoding and representation:
+  // (1) Sequential two byte?  If yes, go to (9).
+  // (2) Sequential one byte?  If yes, go to (6).
+  // (3) Anything but sequential or cons?  If yes, go to (7).
+  // (4) Cons string.  If the string is flat, replace subject with first string.
+  //     Otherwise bailout.
+  // (5a) Is subject sequential two byte?  If yes, go to (9).
+  // (5b) Is subject external?  If yes, go to (8).
+  // (6) One byte sequential.  Load regexp code for one byte.
+  // (E) Carry on.
+  /// [...]
+
+  // Deferred code at the end of the stub:
+  // (7) Not a long external string?  If yes, go to (10).
+  // (8) External string.  Make it, offset-wise, look like a sequential string.
+  // (8a) Is the external string one byte?  If yes, go to (6).
+  // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
+  // (10) Short external string or not a string?  If yes, bail out to runtime.
+  // (11) Sliced string.  Replace subject with parent. Go to (5a).
+
+  Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
+        external_string /* 8 */, check_underlying /* 5a */,
+        not_seq_nor_cons /* 7 */, check_code /* E */,
+        not_long_external /* 10 */;
+
+  // (1) Sequential two byte?  If yes, go to (9).
+  __ and_(ebx, kIsNotStringMask |
+               kStringRepresentationMask |
+               kStringEncodingMask |
+               kShortExternalStringMask);
+  STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
+  __ j(zero, &seq_two_byte_string);  // Go to (9).
+
+  // (2) Sequential one byte?  If yes, go to (6).
+  // Any other sequential string must be one byte.
+  __ and_(ebx, Immediate(kIsNotStringMask |
+                         kStringRepresentationMask |
+                         kShortExternalStringMask));
+  __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
+
+  // (3) Anything but sequential or cons?  If yes, go to (7).
+  // We check whether the subject string is a cons, since sequential strings
+  // have already been covered.
+  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
+  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
+  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
+  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
+  __ cmp(ebx, Immediate(kExternalStringTag));
+  __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
+
+  // (4) Cons string.  Check that it's flat.
+  // Replace subject with first string and reload instance type.
+  __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
+  __ j(not_equal, &runtime);
+  __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
+  __ bind(&check_underlying);
+  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+  __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+
+  // (5a) Is subject sequential two byte?  If yes, go to (9).
+  __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
+  STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
+  __ j(zero, &seq_two_byte_string);  // Go to (9).
+  // (5b) Is subject external?  If yes, go to (8).
+  __ test_b(ebx, kStringRepresentationMask);
+  // The underlying external string is never a short external string.
+  STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
+  STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
+  __ j(not_zero, &external_string);  // Go to (8).
+
+  // eax: sequential subject string (or look-alike, external string)
+  // edx: original subject string
+  // ecx: RegExp data (FixedArray)
+  // (6) One byte sequential.  Load regexp code for one byte.
+  __ bind(&seq_one_byte_string);
+  // Load previous index and check range before edx is overwritten.  We have
+  // to use edx instead of eax here because it might have been only made to
+  // look like a sequential string when it actually is an external string.
+  __ mov(ebx, Operand(esp, kPreviousIndexOffset));
+  __ JumpIfNotSmi(ebx, &runtime);
+  __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
+  __ j(above_equal, &runtime);
+  __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
+  __ Move(ecx, Immediate(1));  // Type is one byte.
+
+  // (E) Carry on.  String handling is done.
+  __ bind(&check_code);
+  // edx: irregexp code
+  // Check that the irregexp code has been generated for the actual string
+  // encoding. If it has, the field contains a code object otherwise it contains
+  // a smi (code flushing support).
+  __ JumpIfSmi(edx, &runtime);
+
+  // eax: subject string
+  // ebx: previous index (smi)
+  // edx: code
+  // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
+  // All checks done. Now push arguments for native regexp code.
+  Counters* counters = isolate()->counters();
+  __ IncrementCounter(counters->regexp_entry_native(), 1);
+
+  // Isolates: note we add an additional parameter here (isolate pointer).
+  static const int kRegExpExecuteArguments = 9;
+  __ EnterApiExitFrame(kRegExpExecuteArguments);
+
+  // Argument 9: Pass current isolate address.
+  __ mov(Operand(esp, 8 * kPointerSize),
+      Immediate(ExternalReference::isolate_address(isolate())));
+
+  // Argument 8: Indicate that this is a direct call from JavaScript.
+  __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
+
+  // Argument 7: Start (high end) of backtracking stack memory area.
+  __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
+  __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
+  __ mov(Operand(esp, 6 * kPointerSize), esi);
+
+  // Argument 6: Set the number of capture registers to zero to force global
+  // regexps to behave as non-global.  This does not affect non-global regexps.
+  __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
+
+  // Argument 5: static offsets vector buffer.
+  __ mov(Operand(esp, 4 * kPointerSize),
+         Immediate(ExternalReference::address_of_static_offsets_vector(
+             isolate())));
+
+  // Argument 2: Previous index.
+  __ SmiUntag(ebx);
+  __ mov(Operand(esp, 1 * kPointerSize), ebx);
+
+  // Argument 1: Original subject string.
+  // The original subject is in the previous stack frame. Therefore we have to
+  // use ebp, which points exactly to one pointer size below the previous esp.
+  // (Because creating a new stack frame pushes the previous ebp onto the stack
+  // and thereby moves up esp by one kPointerSize.)
+  __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
+  __ mov(Operand(esp, 0 * kPointerSize), esi);
+
+  // esi: original subject string
+  // eax: underlying subject string
+  // ebx: previous index
+  // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
+  // edx: code
+  // Argument 4: End of string data
+  // Argument 3: Start of string data
+  // Prepare start and end index of the input.
+  // Load the length from the original sliced string if that is the case.
+  __ mov(esi, FieldOperand(esi, String::kLengthOffset));
+  __ add(esi, edi);  // Calculate input end wrt offset.
+  __ SmiUntag(edi);
+  __ add(ebx, edi);  // Calculate input start wrt offset.
+
+  // ebx: start index of the input string
+  // esi: end index of the input string
+  Label setup_two_byte, setup_rest;
+  __ test(ecx, ecx);
+  __ j(zero, &setup_two_byte, Label::kNear);
+  __ SmiUntag(esi);
+  __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
+  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
+  __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
+  __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
+  __ jmp(&setup_rest, Label::kNear);
+
+  __ bind(&setup_two_byte);
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
+  __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
+  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
+  __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
+  __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
+
+  __ bind(&setup_rest);
+
+  // Locate the code entry and call it.
+  __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
+  __ call(edx);
+
+  // Drop arguments and come back to JS mode.
+  __ LeaveApiExitFrame(true);
+
+  // Check the result.
+  Label success;
+  __ cmp(eax, 1);
+  // We expect exactly one result since we force the called regexp to behave
+  // as non-global.
+  __ j(equal, &success);
+  Label failure;
+  __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
+  __ j(equal, &failure);
+  __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
+  // If not exception it can only be retry. Handle that in the runtime system.
+  __ j(not_equal, &runtime);
+  // Result must now be exception. If there is no pending exception already a
+  // stack overflow (on the backtrack stack) was detected in RegExp code but
+  // haven't created the exception yet. Handle that in the runtime system.
+  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+  ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
+                                      isolate());
+  __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
+  __ mov(eax, Operand::StaticVariable(pending_exception));
+  __ cmp(edx, eax);
+  __ j(equal, &runtime);
+  // For exception, throw the exception again.
+
+  // Clear the pending exception variable.
+  __ mov(Operand::StaticVariable(pending_exception), edx);
+
+  // Special handling of termination exceptions which are uncatchable
+  // by javascript code.
+  __ cmp(eax, factory->termination_exception());
+  Label throw_termination_exception;
+  __ j(equal, &throw_termination_exception, Label::kNear);
+
+  // Handle normal exception by following handler chain.
+  __ Throw(eax);
+
+  __ bind(&throw_termination_exception);
+  __ ThrowUncatchable(eax);
+
+  __ bind(&failure);
+  // For failure to match, return null.
+  __ mov(eax, factory->null_value());
+  __ ret(4 * kPointerSize);
+
+  // Load RegExp data.
+  __ bind(&success);
+  __ mov(eax, Operand(esp, kJSRegExpOffset));
+  __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
+  __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
+  // Calculate number of capture registers (number_of_captures + 1) * 2.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+  __ add(edx, Immediate(2));  // edx was a smi.
+
+  // edx: Number of capture registers
+  // Load last_match_info which is still known to be a fast case JSArray.
+  // Check that the fourth object is a JSArray object.
+  __ mov(eax, Operand(esp, kLastMatchInfoOffset));
+  __ JumpIfSmi(eax, &runtime);
+  __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
+  __ j(not_equal, &runtime);
+  // Check that the JSArray is in fast case.
+  __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
+  __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
+  __ cmp(eax, factory->fixed_array_map());
+  __ j(not_equal, &runtime);
+  // Check that the last match info has space for the capture registers and the
+  // additional information.
+  __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
+  __ SmiUntag(eax);
+  __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
+  __ cmp(edx, eax);
+  __ j(greater, &runtime);
+
+  // ebx: last_match_info backing store (FixedArray)
+  // edx: number of capture registers
+  // Store the capture count.
+  __ SmiTag(edx);  // Number of capture registers to smi.
+  __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
+  __ SmiUntag(edx);  // Number of capture registers back from smi.
+  // Store last subject and last input.
+  __ mov(eax, Operand(esp, kSubjectOffset));
+  __ mov(ecx, eax);
+  __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
+  __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
+                      kDontSaveFPRegs);
+  __ mov(eax, ecx);
+  __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
+  __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
+                      kDontSaveFPRegs);
+
+  // Get the static offsets vector filled by the native regexp code.
+  ExternalReference address_of_static_offsets_vector =
+      ExternalReference::address_of_static_offsets_vector(isolate());
+  __ mov(ecx, Immediate(address_of_static_offsets_vector));
+
+  // ebx: last_match_info backing store (FixedArray)
+  // ecx: offsets vector
+  // edx: number of capture registers
+  Label next_capture, done;
+  // Capture register counter starts from number of capture registers and
+  // counts down until wraping after zero.
+  __ bind(&next_capture);
+  __ sub(edx, Immediate(1));
+  __ j(negative, &done, Label::kNear);
+  // Read the value from the static offsets vector buffer.
+  __ mov(edi, Operand(ecx, edx, times_int_size, 0));
+  __ SmiTag(edi);
+  // Store the smi value in the last match info.
+  __ mov(FieldOperand(ebx,
+                      edx,
+                      times_pointer_size,
+                      RegExpImpl::kFirstCaptureOffset),
+                      edi);
+  __ jmp(&next_capture);
+  __ bind(&done);
+
+  // Return last match info.
+  __ mov(eax, Operand(esp, kLastMatchInfoOffset));
+  __ ret(4 * kPointerSize);
+
+  // Do the runtime call to execute the regexp.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+
+  // Deferred code for string handling.
+  // (7) Not a long external string?  If yes, go to (10).
+  __ bind(&not_seq_nor_cons);
+  // Compare flags are still set from (3).
+  __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
+
+  // (8) External string.  Short external strings have been ruled out.
+  __ bind(&external_string);
+  // Reload instance type.
+  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+  if (FLAG_debug_code) {
+    // Assert that we do not have a cons or slice (indirect strings) here.
+    // Sequential strings have already been ruled out.
+    __ test_b(ebx, kIsIndirectStringMask);
+    __ Assert(zero, kExternalStringExpectedButNotFound);
+  }
+  __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
+  // Move the pointer so that offset-wise, it looks like a sequential string.
+  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+  __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  STATIC_ASSERT(kTwoByteStringTag == 0);
+  // (8a) Is the external string one byte?  If yes, go to (6).
+  __ test_b(ebx, kStringEncodingMask);
+  __ j(not_zero, &seq_one_byte_string);  // Goto (6).
+
+  // eax: sequential subject string (or look-alike, external string)
+  // edx: original subject string
+  // ecx: RegExp data (FixedArray)
+  // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
+  __ bind(&seq_two_byte_string);
+  // Load previous index and check range before edx is overwritten.  We have
+  // to use edx instead of eax here because it might have been only made to
+  // look like a sequential string when it actually is an external string.
+  __ mov(ebx, Operand(esp, kPreviousIndexOffset));
+  __ JumpIfNotSmi(ebx, &runtime);
+  __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
+  __ j(above_equal, &runtime);
+  __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
+  __ Move(ecx, Immediate(0));  // Type is two byte.
+  __ jmp(&check_code);  // Go to (E).
+
+  // (10) Not a string or a short external string?  If yes, bail out to runtime.
+  __ bind(&not_long_external);
+  // Catch non-string subject or short external string.
+  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
+  __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
+  __ j(not_zero, &runtime);
+
+  // (11) Sliced string.  Replace subject with parent.  Go to (5a).
+  // Load offset into edi and replace subject string with parent.
+  __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
+  __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
+  __ jmp(&check_underlying);  // Go to (5a).
+#endif  // V8_INTERPRETED_REGEXP
+}
+
+
+static int NegativeComparisonResult(Condition cc) {
+  DCHECK(cc != equal);
+  DCHECK((cc == less) || (cc == less_equal)
+      || (cc == greater) || (cc == greater_equal));
+  return (cc == greater || cc == greater_equal) ? LESS : GREATER;
+}
+
+
+static void CheckInputType(MacroAssembler* masm, Register input,
+                           CompareICState::State expected, Label* fail) {
+  Label ok;
+  if (expected == CompareICState::SMI) {
+    __ JumpIfNotSmi(input, fail);
+  } else if (expected == CompareICState::NUMBER) {
+    __ JumpIfSmi(input, &ok);
+    __ cmp(FieldOperand(input, HeapObject::kMapOffset),
+           Immediate(masm->isolate()->factory()->heap_number_map()));
+    __ j(not_equal, fail);
+  }
+  // We could be strict about internalized/non-internalized here, but as long as
+  // hydrogen doesn't care, the stub doesn't have to care either.
+  __ bind(&ok);
+}
+
+
+static void BranchIfNotInternalizedString(MacroAssembler* masm,
+                                          Label* label,
+                                          Register object,
+                                          Register scratch) {
+  __ JumpIfSmi(object, label);
+  __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
+  __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+  __ j(not_zero, label);
+}
+
+
+void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
+  Label check_unequal_objects;
+  Condition cc = GetCondition();
+
+  Label miss;
+  CheckInputType(masm, edx, left(), &miss);
+  CheckInputType(masm, eax, right(), &miss);
+
+  // Compare two smis.
+  Label non_smi, smi_done;
+  __ mov(ecx, edx);
+  __ or_(ecx, eax);
+  __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
+  __ sub(edx, eax);  // Return on the result of the subtraction.
+  __ j(no_overflow, &smi_done, Label::kNear);
+  __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
+  __ bind(&smi_done);
+  __ mov(eax, edx);
+  __ ret(0);
+  __ bind(&non_smi);
+
+  // NOTICE! This code is only reached after a smi-fast-case check, so
+  // it is certain that at least one operand isn't a smi.
+
+  // Identical objects can be compared fast, but there are some tricky cases
+  // for NaN and undefined.
+  Label generic_heap_number_comparison;
+  {
+    Label not_identical;
+    __ cmp(eax, edx);
+    __ j(not_equal, &not_identical);
+
+    if (cc != equal) {
+      // Check for undefined.  undefined OP undefined is false even though
+      // undefined == undefined.
+      Label check_for_nan;
+      __ cmp(edx, isolate()->factory()->undefined_value());
+      __ j(not_equal, &check_for_nan, Label::kNear);
+      __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
+      __ ret(0);
+      __ bind(&check_for_nan);
+    }
+
+    // Test for NaN. Compare heap numbers in a general way,
+    // to hanlde NaNs correctly.
+    __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+           Immediate(isolate()->factory()->heap_number_map()));
+    __ j(equal, &generic_heap_number_comparison, Label::kNear);
+    if (cc != equal) {
+      // Call runtime on identical JSObjects.  Otherwise return equal.
+      __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
+      __ j(above_equal, &not_identical);
+    }
+    __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+    __ ret(0);
+
+
+    __ bind(&not_identical);
+  }
+
+  // Strict equality can quickly decide whether objects are equal.
+  // Non-strict object equality is slower, so it is handled later in the stub.
+  if (cc == equal && strict()) {
+    Label slow;  // Fallthrough label.
+    Label not_smis;
+    // If we're doing a strict equality comparison, we don't have to do
+    // type conversion, so we generate code to do fast comparison for objects
+    // and oddballs. Non-smi numbers and strings still go through the usual
+    // slow-case code.
+    // If either is a Smi (we know that not both are), then they can only
+    // be equal if the other is a HeapNumber. If so, use the slow case.
+    STATIC_ASSERT(kSmiTag == 0);
+    DCHECK_EQ(0, Smi::FromInt(0));
+    __ mov(ecx, Immediate(kSmiTagMask));
+    __ and_(ecx, eax);
+    __ test(ecx, edx);
+    __ j(not_zero, &not_smis, Label::kNear);
+    // One operand is a smi.
+
+    // Check whether the non-smi is a heap number.
+    STATIC_ASSERT(kSmiTagMask == 1);
+    // ecx still holds eax & kSmiTag, which is either zero or one.
+    __ sub(ecx, Immediate(0x01));
+    __ mov(ebx, edx);
+    __ xor_(ebx, eax);
+    __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
+    __ xor_(ebx, eax);
+    // if eax was smi, ebx is now edx, else eax.
+
+    // Check if the non-smi operand is a heap number.
+    __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
+           Immediate(isolate()->factory()->heap_number_map()));
+    // If heap number, handle it in the slow case.
+    __ j(equal, &slow, Label::kNear);
+    // Return non-equal (ebx is not zero)
+    __ mov(eax, ebx);
+    __ ret(0);
+
+    __ bind(&not_smis);
+    // If either operand is a JSObject or an oddball value, then they are not
+    // equal since their pointers are different
+    // There is no test for undetectability in strict equality.
+
+    // Get the type of the first operand.
+    // If the first object is a JS object, we have done pointer comparison.
+    Label first_non_object;
+    STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
+    __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
+    __ j(below, &first_non_object, Label::kNear);
+
+    // Return non-zero (eax is not zero)
+    Label return_not_equal;
+    STATIC_ASSERT(kHeapObjectTag != 0);
+    __ bind(&return_not_equal);
+    __ ret(0);
+
+    __ bind(&first_non_object);
+    // Check for oddballs: true, false, null, undefined.
+    __ CmpInstanceType(ecx, ODDBALL_TYPE);
+    __ j(equal, &return_not_equal);
+
+    __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
+    __ j(above_equal, &return_not_equal);
+
+    // Check for oddballs: true, false, null, undefined.
+    __ CmpInstanceType(ecx, ODDBALL_TYPE);
+    __ j(equal, &return_not_equal);
+
+    // Fall through to the general case.
+    __ bind(&slow);
+  }
+
+  // Generate the number comparison code.
+  Label non_number_comparison;
+  Label unordered;
+  __ bind(&generic_heap_number_comparison);
+  FloatingPointHelper::CheckFloatOperands(
+      masm, &non_number_comparison, ebx);
+  FloatingPointHelper::LoadFloatOperand(masm, eax);
+  FloatingPointHelper::LoadFloatOperand(masm, edx);
+  __ FCmp();
+
+  // Don't base result on EFLAGS when a NaN is involved.
+  __ j(parity_even, &unordered, Label::kNear);
+
+  Label below_label, above_label;
+  // Return a result of -1, 0, or 1, based on EFLAGS.
+  __ j(below, &below_label, Label::kNear);
+  __ j(above, &above_label, Label::kNear);
+
+  __ Move(eax, Immediate(0));
+  __ ret(0);
+
+  __ bind(&below_label);
+  __ mov(eax, Immediate(Smi::FromInt(-1)));
+  __ ret(0);
+
+  __ bind(&above_label);
+  __ mov(eax, Immediate(Smi::FromInt(1)));
+  __ ret(0);
+
+  // If one of the numbers was NaN, then the result is always false.
+  // The cc is never not-equal.
+  __ bind(&unordered);
+  DCHECK(cc != not_equal);
+  if (cc == less || cc == less_equal) {
+    __ mov(eax, Immediate(Smi::FromInt(1)));
+  } else {
+    __ mov(eax, Immediate(Smi::FromInt(-1)));
+  }
+  __ ret(0);
+
+  // The number comparison code did not provide a valid result.
+  __ bind(&non_number_comparison);
+
+  // Fast negative check for internalized-to-internalized equality.
+  Label check_for_strings;
+  if (cc == equal) {
+    BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
+    BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
+
+    // We've already checked for object identity, so if both operands
+    // are internalized they aren't equal. Register eax already holds a
+    // non-zero value, which indicates not equal, so just return.
+    __ ret(0);
+  }
+
+  __ bind(&check_for_strings);
+
+  __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
+                                           &check_unequal_objects);
+
+  // Inline comparison of one-byte strings.
+  if (cc == equal) {
+    StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
+  } else {
+    StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
+                                                    edi);
+  }
+#ifdef DEBUG
+  __ Abort(kUnexpectedFallThroughFromStringComparison);
+#endif
+
+  __ bind(&check_unequal_objects);
+  if (cc == equal && !strict()) {
+    // Non-strict equality.  Objects are unequal if
+    // they are both JSObjects and not undetectable,
+    // and their pointers are different.
+    Label not_both_objects;
+    Label return_unequal;
+    // At most one is a smi, so we can test for smi by adding the two.
+    // A smi plus a heap object has the low bit set, a heap object plus
+    // a heap object has the low bit clear.
+    STATIC_ASSERT(kSmiTag == 0);
+    STATIC_ASSERT(kSmiTagMask == 1);
+    __ lea(ecx, Operand(eax, edx, times_1, 0));
+    __ test(ecx, Immediate(kSmiTagMask));
+    __ j(not_zero, &not_both_objects, Label::kNear);
+    __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
+    __ j(below, &not_both_objects, Label::kNear);
+    __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
+    __ j(below, &not_both_objects, Label::kNear);
+    // We do not bail out after this point.  Both are JSObjects, and
+    // they are equal if and only if both are undetectable.
+    // The and of the undetectable flags is 1 if and only if they are equal.
+    __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+              1 << Map::kIsUndetectable);
+    __ j(zero, &return_unequal, Label::kNear);
+    __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
+              1 << Map::kIsUndetectable);
+    __ j(zero, &return_unequal, Label::kNear);
+    // The objects are both undetectable, so they both compare as the value
+    // undefined, and are equal.
+    __ Move(eax, Immediate(EQUAL));
+    __ bind(&return_unequal);
+    // Return non-equal by returning the non-zero object pointer in eax,
+    // or return equal if we fell through to here.
+    __ ret(0);  // rax, rdx were pushed
+    __ bind(&not_both_objects);
+  }
+
+  // Push arguments below the return address.
+  __ pop(ecx);
+  __ push(edx);
+  __ push(eax);
+
+  // Figure out which native to call and setup the arguments.
+  Builtins::JavaScript builtin;
+  if (cc == equal) {
+    builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+  } else {
+    builtin = Builtins::COMPARE;
+    __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
+  }
+
+  // Restore return address on the stack.
+  __ push(ecx);
+
+  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ InvokeBuiltin(builtin, JUMP_FUNCTION);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+static void GenerateRecordCallTarget(MacroAssembler* masm) {
+  // Cache the called function in a feedback vector slot.  Cache states
+  // are uninitialized, monomorphic (indicated by a JSFunction), and
+  // megamorphic.
+  // eax : number of arguments to the construct function
+  // ebx : Feedback vector
+  // edx : slot in feedback vector (Smi)
+  // edi : the function to call
+  Isolate* isolate = masm->isolate();
+  Label initialize, done, miss, megamorphic, not_array_function;
+
+  // Load the cache state into ecx.
+  __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+                           FixedArray::kHeaderSize));
+
+  // A monomorphic cache hit or an already megamorphic state: invoke the
+  // function without changing the state.
+  __ cmp(ecx, edi);
+  __ j(equal, &done, Label::kFar);
+  __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
+  __ j(equal, &done, Label::kFar);
+
+  if (!FLAG_pretenuring_call_new) {
+    // If we came here, we need to see if we are the array function.
+    // If we didn't have a matching function, and we didn't find the megamorph
+    // sentinel, then we have in the slot either some other function or an
+    // AllocationSite. Do a map check on the object in ecx.
+    Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
+    __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
+    __ j(not_equal, &miss);
+
+    // Make sure the function is the Array() function
+    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+    __ cmp(edi, ecx);
+    __ j(not_equal, &megamorphic);
+    __ jmp(&done, Label::kFar);
+  }
+
+  __ bind(&miss);
+
+  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
+  // megamorphic.
+  __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
+  __ j(equal, &initialize);
+  // MegamorphicSentinel is an immortal immovable object (undefined) so no
+  // write-barrier is needed.
+  __ bind(&megamorphic);
+  __ mov(
+      FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
+      Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
+  __ jmp(&done, Label::kFar);
+
+  // An uninitialized cache is patched with the function or sentinel to
+  // indicate the ElementsKind if function is the Array constructor.
+  __ bind(&initialize);
+  if (!FLAG_pretenuring_call_new) {
+    // Make sure the function is the Array() function
+    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+    __ cmp(edi, ecx);
+    __ j(not_equal, &not_array_function);
+
+    // The target function is the Array constructor,
+    // Create an AllocationSite if we don't already have it, store it in the
+    // slot.
+    {
+      FrameScope scope(masm, StackFrame::INTERNAL);
+
+      // Arguments register must be smi-tagged to call out.
+      __ SmiTag(eax);
+      __ push(eax);
+      __ push(edi);
+      __ push(edx);
+      __ push(ebx);
+
+      CreateAllocationSiteStub create_stub(isolate);
+      __ CallStub(&create_stub);
+
+      __ pop(ebx);
+      __ pop(edx);
+      __ pop(edi);
+      __ pop(eax);
+      __ SmiUntag(eax);
+    }
+    __ jmp(&done);
+
+    __ bind(&not_array_function);
+  }
+
+  __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
+                      FixedArray::kHeaderSize),
+         edi);
+  // We won't need edx or ebx anymore, just save edi
+  __ push(edi);
+  __ push(ebx);
+  __ push(edx);
+  __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
+                      OMIT_SMI_CHECK);
+  __ pop(edx);
+  __ pop(ebx);
+  __ pop(edi);
+
+  __ bind(&done);
+}
+
+
+static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
+  // Do not transform the receiver for strict mode functions.
+  __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+  __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
+            1 << SharedFunctionInfo::kStrictModeBitWithinByte);
+  __ j(not_equal, cont);
+
+  // Do not transform the receiver for natives (shared already in ecx).
+  __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
+            1 << SharedFunctionInfo::kNativeBitWithinByte);
+  __ j(not_equal, cont);
+}
+
+
+static void EmitSlowCase(Isolate* isolate,
+                         MacroAssembler* masm,
+                         int argc,
+                         Label* non_function) {
+  // Check for function proxy.
+  __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
+  __ j(not_equal, non_function);
+  __ pop(ecx);
+  __ push(edi);  // put proxy as additional argument under return address
+  __ push(ecx);
+  __ Move(eax, Immediate(argc + 1));
+  __ Move(ebx, Immediate(0));
+  __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
+  {
+    Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
+    __ jmp(adaptor, RelocInfo::CODE_TARGET);
+  }
+
+  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+  // of the original receiver from the call site).
+  __ bind(non_function);
+  __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
+  __ Move(eax, Immediate(argc));
+  __ Move(ebx, Immediate(0));
+  __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
+  Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
+  __ jmp(adaptor, RelocInfo::CODE_TARGET);
+}
+
+
+static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
+  // Wrap the receiver and patch it back onto the stack.
+  { FrameScope frame_scope(masm, StackFrame::INTERNAL);
+    __ push(edi);
+    __ push(eax);
+    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+    __ pop(edi);
+  }
+  __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
+  __ jmp(cont);
+}
+
+
+static void CallFunctionNoFeedback(MacroAssembler* masm,
+                                   int argc, bool needs_checks,
+                                   bool call_as_method) {
+  // edi : the function to call
+  Label slow, non_function, wrap, cont;
+
+  if (needs_checks) {
+    // Check that the function really is a JavaScript function.
+    __ JumpIfSmi(edi, &non_function);
+
+    // Goto slow case if we do not have a function.
+    __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+    __ j(not_equal, &slow);
+  }
+
+  // Fast-case: Just invoke the function.
+  ParameterCount actual(argc);
+
+  if (call_as_method) {
+    if (needs_checks) {
+      EmitContinueIfStrictOrNative(masm, &cont);
+    }
+
+    // Load the receiver from the stack.
+    __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
+
+    if (needs_checks) {
+      __ JumpIfSmi(eax, &wrap);
+
+      __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
+      __ j(below, &wrap);
+    } else {
+      __ jmp(&wrap);
+    }
+
+    __ bind(&cont);
+  }
+
+  __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
+
+  if (needs_checks) {
+    // Slow-case: Non-function called.
+    __ bind(&slow);
+    // (non_function is bound in EmitSlowCase)
+    EmitSlowCase(masm->isolate(), masm, argc, &non_function);
+  }
+
+  if (call_as_method) {
+    __ bind(&wrap);
+    EmitWrapCase(masm, argc, &cont);
+  }
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+  CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
+}
+
+
+void CallConstructStub::Generate(MacroAssembler* masm) {
+  // eax : number of arguments
+  // ebx : feedback vector
+  // edx : (only if ebx is not the megamorphic symbol) slot in feedback
+  //       vector (Smi)
+  // edi : constructor function
+  Label slow, non_function_call;
+
+  // Check that function is not a smi.
+  __ JumpIfSmi(edi, &non_function_call);
+  // Check that function is a JSFunction.
+  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+  __ j(not_equal, &slow);
+
+  if (RecordCallTarget()) {
+    GenerateRecordCallTarget(masm);
+
+    if (FLAG_pretenuring_call_new) {
+      // Put the AllocationSite from the feedback vector into ebx.
+      // By adding kPointerSize we encode that we know the AllocationSite
+      // entry is at the feedback vector slot given by edx + 1.
+      __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
+                               FixedArray::kHeaderSize + kPointerSize));
+    } else {
+      Label feedback_register_initialized;
+      // Put the AllocationSite from the feedback vector into ebx, or undefined.
+      __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
+                               FixedArray::kHeaderSize));
+      Handle<Map> allocation_site_map =
+          isolate()->factory()->allocation_site_map();
+      __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
+      __ j(equal, &feedback_register_initialized);
+      __ mov(ebx, isolate()->factory()->undefined_value());
+      __ bind(&feedback_register_initialized);
+    }
+
+    __ AssertUndefinedOrAllocationSite(ebx);
+  }
+
+  // Jump to the function-specific construct stub.
+  Register jmp_reg = ecx;
+  __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+  __ mov(jmp_reg, FieldOperand(jmp_reg,
+                               SharedFunctionInfo::kConstructStubOffset));
+  __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
+  __ jmp(jmp_reg);
+
+  // edi: called object
+  // eax: number of arguments
+  // ecx: object map
+  Label do_call;
+  __ bind(&slow);
+  __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
+  __ j(not_equal, &non_function_call);
+  __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
+  __ jmp(&do_call);
+
+  __ bind(&non_function_call);
+  __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
+  __ bind(&do_call);
+  // Set expected number of arguments to zero (not changing eax).
+  __ Move(ebx, Immediate(0));
+  Handle<Code> arguments_adaptor =
+      isolate()->builtins()->ArgumentsAdaptorTrampoline();
+  __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
+}
+
+
+static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
+  __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+  __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
+  __ mov(vector, FieldOperand(vector,
+                              SharedFunctionInfo::kFeedbackVectorOffset));
+}
+
+
+void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
+  // edi - function
+  // edx - slot id
+  Label miss;
+  int argc = arg_count();
+  ParameterCount actual(argc);
+
+  EmitLoadTypeFeedbackVector(masm, ebx);
+
+  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+  __ cmp(edi, ecx);
+  __ j(not_equal, &miss);
+
+  __ mov(eax, arg_count());
+  __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+                           FixedArray::kHeaderSize));
+
+  // Verify that ecx contains an AllocationSite
+  Factory* factory = masm->isolate()->factory();
+  __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
+         factory->allocation_site_map());
+  __ j(not_equal, &miss);
+
+  __ mov(ebx, ecx);
+  ArrayConstructorStub stub(masm->isolate(), arg_count());
+  __ TailCallStub(&stub);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+
+  // The slow case, we need this no matter what to complete a call after a miss.
+  CallFunctionNoFeedback(masm,
+                         arg_count(),
+                         true,
+                         CallAsMethod());
+
+  // Unreachable.
+  __ int3();
+}
+
+
+void CallICStub::Generate(MacroAssembler* masm) {
+  // edi - function
+  // edx - slot id
+  Isolate* isolate = masm->isolate();
+  Label extra_checks_or_miss, slow_start;
+  Label slow, non_function, wrap, cont;
+  Label have_js_function;
+  int argc = arg_count();
+  ParameterCount actual(argc);
+
+  EmitLoadTypeFeedbackVector(masm, ebx);
+
+  // The checks. First, does edi match the recorded monomorphic target?
+  __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
+                           FixedArray::kHeaderSize));
+  __ j(not_equal, &extra_checks_or_miss);
+
+  __ bind(&have_js_function);
+  if (CallAsMethod()) {
+    EmitContinueIfStrictOrNative(masm, &cont);
+
+    // Load the receiver from the stack.
+    __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
+
+    __ JumpIfSmi(eax, &wrap);
+
+    __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
+    __ j(below, &wrap);
+
+    __ bind(&cont);
+  }
+
+  __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
+
+  __ bind(&slow);
+  EmitSlowCase(isolate, masm, argc, &non_function);
+
+  if (CallAsMethod()) {
+    __ bind(&wrap);
+    EmitWrapCase(masm, argc, &cont);
+  }
+
+  __ bind(&extra_checks_or_miss);
+  Label miss;
+
+  __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+                           FixedArray::kHeaderSize));
+  __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
+  __ j(equal, &slow_start);
+  __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
+  __ j(equal, &miss);
+
+  if (!FLAG_trace_ic) {
+    // We are going megamorphic. If the feedback is a JSFunction, it is fine
+    // to handle it here. More complex cases are dealt with in the runtime.
+    __ AssertNotSmi(ecx);
+    __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
+    __ j(not_equal, &miss);
+    __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
+                        FixedArray::kHeaderSize),
+           Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
+    __ jmp(&slow_start);
+  }
+
+  // We are here because tracing is on or we are going monomorphic.
+  __ bind(&miss);
+  GenerateMiss(masm);
+
+  // the slow case
+  __ bind(&slow_start);
+
+  // Check that the function really is a JavaScript function.
+  __ JumpIfSmi(edi, &non_function);
+
+  // Goto slow case if we do not have a function.
+  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+  __ j(not_equal, &slow);
+  __ jmp(&have_js_function);
+
+  // Unreachable
+  __ int3();
+}
+
+
+void CallICStub::GenerateMiss(MacroAssembler* masm) {
+  // Get the receiver of the function from the stack; 1 ~ return address.
+  __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
+
+  {
+    FrameScope scope(masm, StackFrame::INTERNAL);
+
+    // Push the receiver and the function and feedback info.
+    __ push(ecx);
+    __ push(edi);
+    __ push(ebx);
+    __ push(edx);
+
+    // Call the entry.
+    IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
+                                               : IC::kCallIC_Customization_Miss;
+
+    ExternalReference miss = ExternalReference(IC_Utility(id),
+                                               masm->isolate());
+    __ CallExternalReference(miss, 4);
+
+    // Move result to edi and exit the internal frame.
+    __ mov(edi, eax);
+  }
+}
+
+
+bool CEntryStub::NeedsImmovableCode() {
+  return false;
+}
+
+
+void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
+  CEntryStub::GenerateAheadOfTime(isolate);
+  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
+  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
+  // It is important that the store buffer overflow stubs are generated first.
+  ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
+  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
+  BinaryOpICStub::GenerateAheadOfTime(isolate);
+  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
+}
+
+
+void CodeStub::GenerateFPStubs(Isolate* isolate) {
+  CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
+  // Stubs might already be in the snapshot, detect that and don't regenerate,
+  // which would lead to code stub initialization state being messed up.
+  Code* save_doubles_code;
+  if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
+    save_doubles_code = *(save_doubles.GetCode());
+  }
+  isolate->set_fp_stubs_generated(true);
+}
+
+
+void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
+  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
+  stub.GetCode();
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+  // eax: number of arguments including receiver
+  // ebx: pointer to C function  (C callee-saved)
+  // ebp: frame pointer  (restored after C call)
+  // esp: stack pointer  (restored after C call)
+  // esi: current context (C callee-saved)
+  // edi: JS function of the caller (C callee-saved)
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+  // Enter the exit frame that transitions from JavaScript to C++.
+  __ EnterExitFrame(save_doubles());
+
+  // ebx: pointer to C function  (C callee-saved)
+  // ebp: frame pointer  (restored after C call)
+  // esp: stack pointer  (restored after C call)
+  // edi: number of arguments including receiver  (C callee-saved)
+  // esi: pointer to the first argument (C callee-saved)
+
+  // Result returned in eax, or eax+edx if result size is 2.
+
+  // Check stack alignment.
+  if (FLAG_debug_code) {
+    __ CheckStackAlignment();
+  }
+
+  // Call C function.
+  __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
+  __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
+  __ mov(Operand(esp, 2 * kPointerSize),
+         Immediate(ExternalReference::isolate_address(isolate())));
+  __ call(ebx);
+  // Result is in eax or edx:eax - do not destroy these registers!
+
+  // Runtime functions should not return 'the hole'.  Allowing it to escape may
+  // lead to crashes in the IC code later.
+  if (FLAG_debug_code) {
+    Label okay;
+    __ cmp(eax, isolate()->factory()->the_hole_value());
+    __ j(not_equal, &okay, Label::kNear);
+    __ int3();
+    __ bind(&okay);
+  }
+
+  // Check result for exception sentinel.
+  Label exception_returned;
+  __ cmp(eax, isolate()->factory()->exception());
+  __ j(equal, &exception_returned);
+
+  ExternalReference pending_exception_address(
+      Isolate::kPendingExceptionAddress, isolate());
+
+  // Check that there is no pending exception, otherwise we
+  // should have returned the exception sentinel.
+  if (FLAG_debug_code) {
+    __ push(edx);
+    __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
+    Label okay;
+    __ cmp(edx, Operand::StaticVariable(pending_exception_address));
+    // Cannot use check here as it attempts to generate call into runtime.
+    __ j(equal, &okay, Label::kNear);
+    __ int3();
+    __ bind(&okay);
+    __ pop(edx);
+  }
+
+  // Exit the JavaScript to C++ exit frame.
+  __ LeaveExitFrame(save_doubles());
+  __ ret(0);
+
+  // Handling of exception.
+  __ bind(&exception_returned);
+
+  // Retrieve the pending exception.
+  __ mov(eax, Operand::StaticVariable(pending_exception_address));
+
+  // Clear the pending exception.
+  __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
+  __ mov(Operand::StaticVariable(pending_exception_address), edx);
+
+  // Special handling of termination exceptions which are uncatchable
+  // by javascript code.
+  Label throw_termination_exception;
+  __ cmp(eax, isolate()->factory()->termination_exception());
+  __ j(equal, &throw_termination_exception);
+
+  // Handle normal exception.
+  __ Throw(eax);
+
+  __ bind(&throw_termination_exception);
+  __ ThrowUncatchable(eax);
+}
+
+
+void JSEntryStub::Generate(MacroAssembler* masm) {
+  Label invoke, handler_entry, exit;
+  Label not_outermost_js, not_outermost_js_2;
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+  // Set up frame.
+  __ push(ebp);
+  __ mov(ebp, esp);
+
+  // Push marker in two places.
+  int marker = type();
+  __ push(Immediate(Smi::FromInt(marker)));  // context slot
+  __ push(Immediate(Smi::FromInt(marker)));  // function slot
+  // Save callee-saved registers (C calling conventions).
+  __ push(edi);
+  __ push(esi);
+  __ push(ebx);
+
+  // Save copies of the top frame descriptor on the stack.
+  ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
+  __ push(Operand::StaticVariable(c_entry_fp));
+
+  // If this is the outermost JS call, set js_entry_sp value.
+  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
+  __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
+  __ j(not_equal, &not_outermost_js, Label::kNear);
+  __ mov(Operand::StaticVariable(js_entry_sp), ebp);
+  __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+  __ jmp(&invoke, Label::kNear);
+  __ bind(&not_outermost_js);
+  __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
+
+  // Jump to a faked try block that does the invoke, with a faked catch
+  // block that sets the pending exception.
+  __ jmp(&invoke);
+  __ bind(&handler_entry);
+  handler_offset_ = handler_entry.pos();
+  // Caught exception: Store result (exception) in the pending exception
+  // field in the JSEnv and return a failure sentinel.
+  ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
+                                      isolate());
+  __ mov(Operand::StaticVariable(pending_exception), eax);
+  __ mov(eax, Immediate(isolate()->factory()->exception()));
+  __ jmp(&exit);
+
+  // Invoke: Link this frame into the handler chain.  There's only one
+  // handler block in this code object, so its index is 0.
+  __ bind(&invoke);
+  __ PushTryHandler(StackHandler::JS_ENTRY, 0);
+
+  // Clear any pending exceptions.
+  __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
+  __ mov(Operand::StaticVariable(pending_exception), edx);
+
+  // Fake a receiver (NULL).
+  __ push(Immediate(0));  // receiver
+
+  // Invoke the function by calling through JS entry trampoline builtin and
+  // pop the faked function when we return. Notice that we cannot store a
+  // reference to the trampoline code directly in this stub, because the
+  // builtin stubs may not have been generated yet.
+  if (type() == StackFrame::ENTRY_CONSTRUCT) {
+    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+                                      isolate());
+    __ mov(edx, Immediate(construct_entry));
+  } else {
+    ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
+    __ mov(edx, Immediate(entry));
+  }
+  __ mov(edx, Operand(edx, 0));  // deref address
+  __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
+  __ call(edx);
+
+  // Unlink this frame from the handler chain.
+  __ PopTryHandler();
+
+  __ bind(&exit);
+  // Check if the current stack frame is marked as the outermost JS frame.
+  __ pop(ebx);
+  __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+  __ j(not_equal, &not_outermost_js_2);
+  __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
+  __ bind(&not_outermost_js_2);
+
+  // Restore the top frame descriptor from the stack.
+  __ pop(Operand::StaticVariable(ExternalReference(
+      Isolate::kCEntryFPAddress, isolate())));
+
+  // Restore callee-saved registers (C calling conventions).
+  __ pop(ebx);
+  __ pop(esi);
+  __ pop(edi);
+  __ add(esp, Immediate(2 * kPointerSize));  // remove markers
+
+  // Restore frame pointer and return.
+  __ pop(ebp);
+  __ ret(0);
+}
+
+
+// Generate stub code for instanceof.
+// This code can patch a call site inlined cache of the instance of check,
+// which looks like this.
+//
+//   81 ff XX XX XX XX   cmp    edi, <the hole, patched to a map>
+//   75 0a               jne    <some near label>
+//   b8 XX XX XX XX      mov    eax, <the hole, patched to either true or false>
+//
+// If call site patching is requested the stack will have the delta from the
+// return address to the cmp instruction just below the return address. This
+// also means that call site patching can only take place with arguments in
+// registers. TOS looks like this when call site patching is requested
+//
+//   esp[0] : return address
+//   esp[4] : delta from return address to cmp instruction
+//
+void InstanceofStub::Generate(MacroAssembler* masm) {
+  // Call site inlining and patching implies arguments in registers.
+  DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
+
+  // Fixed register usage throughout the stub.
+  Register object = eax;  // Object (lhs).
+  Register map = ebx;  // Map of the object.
+  Register function = edx;  // Function (rhs).
+  Register prototype = edi;  // Prototype of the function.
+  Register scratch = ecx;
+
+  // Constants describing the call site code to patch.
+  static const int kDeltaToCmpImmediate = 2;
+  static const int kDeltaToMov = 8;
+  static const int kDeltaToMovImmediate = 9;
+  static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
+  static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
+  static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
+
+  DCHECK_EQ(object.code(), InstanceofStub::left().code());
+  DCHECK_EQ(function.code(), InstanceofStub::right().code());
+
+  // Get the object and function - they are always both needed.
+  Label slow, not_js_object;
+  if (!HasArgsInRegisters()) {
+    __ mov(object, Operand(esp, 2 * kPointerSize));
+    __ mov(function, Operand(esp, 1 * kPointerSize));
+  }
+
+  // Check that the left hand is a JS object.
+  __ JumpIfSmi(object, &not_js_object);
+  __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+  // If there is a call site cache don't look in the global cache, but do the
+  // real lookup and update the call site cache.
+  if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
+    // Look up the function and the map in the instanceof cache.
+    Label miss;
+    __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
+    __ j(not_equal, &miss, Label::kNear);
+    __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
+    __ j(not_equal, &miss, Label::kNear);
+    __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
+    __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+    __ bind(&miss);
+  }
+
+  // Get the prototype of the function.
+  __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
+
+  // Check that the function prototype is a JS object.
+  __ JumpIfSmi(prototype, &slow);
+  __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+  // Update the global instanceof or call site inlined cache with the current
+  // map and function. The cached answer will be set when it is known below.
+  if (!HasCallSiteInlineCheck()) {
+    __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
+    __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
+  } else {
+    // The constants for the code patching are based on no push instructions
+    // at the call site.
+    DCHECK(HasArgsInRegisters());
+    // Get return address and delta to inlined map check.
+    __ mov(scratch, Operand(esp, 0 * kPointerSize));
+    __ sub(scratch, Operand(esp, 1 * kPointerSize));
+    if (FLAG_debug_code) {
+      __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
+      __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
+      __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
+      __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
+    }
+    __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
+    __ mov(Operand(scratch, 0), map);
+  }
+
+  // Loop through the prototype chain of the object looking for the function
+  // prototype.
+  __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
+  Label loop, is_instance, is_not_instance;
+  __ bind(&loop);
+  __ cmp(scratch, prototype);
+  __ j(equal, &is_instance, Label::kNear);
+  Factory* factory = isolate()->factory();
+  __ cmp(scratch, Immediate(factory->null_value()));
+  __ j(equal, &is_not_instance, Label::kNear);
+  __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
+  __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
+  __ jmp(&loop);
+
+  __ bind(&is_instance);
+  if (!HasCallSiteInlineCheck()) {
+    __ mov(eax, Immediate(0));
+    __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
+    if (ReturnTrueFalseObject()) {
+      __ mov(eax, factory->true_value());
+    }
+  } else {
+    // Get return address and delta to inlined map check.
+    __ mov(eax, factory->true_value());
+    __ mov(scratch, Operand(esp, 0 * kPointerSize));
+    __ sub(scratch, Operand(esp, 1 * kPointerSize));
+    if (FLAG_debug_code) {
+      __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
+      __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
+    }
+    __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
+    if (!ReturnTrueFalseObject()) {
+      __ Move(eax, Immediate(0));
+    }
+  }
+  __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+  __ bind(&is_not_instance);
+  if (!HasCallSiteInlineCheck()) {
+    __ mov(eax, Immediate(Smi::FromInt(1)));
+    __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
+    if (ReturnTrueFalseObject()) {
+      __ mov(eax, factory->false_value());
+    }
+  } else {
+    // Get return address and delta to inlined map check.
+    __ mov(eax, factory->false_value());
+    __ mov(scratch, Operand(esp, 0 * kPointerSize));
+    __ sub(scratch, Operand(esp, 1 * kPointerSize));
+    if (FLAG_debug_code) {
+      __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
+      __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
+    }
+    __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
+    if (!ReturnTrueFalseObject()) {
+      __ Move(eax, Immediate(Smi::FromInt(1)));
+    }
+  }
+  __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+  Label object_not_null, object_not_null_or_smi;
+  __ bind(&not_js_object);
+  // Before null, smi and string value checks, check that the rhs is a function
+  // as for a non-function rhs an exception needs to be thrown.
+  __ JumpIfSmi(function, &slow, Label::kNear);
+  __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
+  __ j(not_equal, &slow, Label::kNear);
+
+  // Null is not instance of anything.
+  __ cmp(object, factory->null_value());
+  __ j(not_equal, &object_not_null, Label::kNear);
+  if (ReturnTrueFalseObject()) {
+    __ mov(eax, factory->false_value());
+  } else {
+    __ Move(eax, Immediate(Smi::FromInt(1)));
+  }
+  __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+  __ bind(&object_not_null);
+  // Smi values is not instance of anything.
+  __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
+  if (ReturnTrueFalseObject()) {
+    __ mov(eax, factory->false_value());
+  } else {
+    __ Move(eax, Immediate(Smi::FromInt(1)));
+  }
+  __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+  __ bind(&object_not_null_or_smi);
+  // String values is not instance of anything.
+  Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
+  __ j(NegateCondition(is_string), &slow, Label::kNear);
+  if (ReturnTrueFalseObject()) {
+    __ mov(eax, factory->false_value());
+  } else {
+    __ Move(eax, Immediate(Smi::FromInt(1)));
+  }
+  __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+  // Slow-case: Go through the JavaScript implementation.
+  __ bind(&slow);
+  if (!ReturnTrueFalseObject()) {
+    // Tail call the builtin which returns 0 or 1.
+    if (HasArgsInRegisters()) {
+      // Push arguments below return address.
+      __ pop(scratch);
+      __ push(object);
+      __ push(function);
+      __ push(scratch);
+    }
+    __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+  } else {
+    // Call the builtin and convert 0/1 to true/false.
+    {
+      FrameScope scope(masm, StackFrame::INTERNAL);
+      __ push(object);
+      __ push(function);
+      __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
+    }
+    Label true_value, done;
+    __ test(eax, eax);
+    __ j(zero, &true_value, Label::kNear);
+    __ mov(eax, factory->false_value());
+    __ jmp(&done, Label::kNear);
+    __ bind(&true_value);
+    __ mov(eax, factory->true_value());
+    __ bind(&done);
+    __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+  }
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharCodeAtGenerator
+
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+  // If the receiver is a smi trigger the non-string case.
+  STATIC_ASSERT(kSmiTag == 0);
+  __ JumpIfSmi(object_, receiver_not_string_);
+
+  // Fetch the instance type of the receiver into result register.
+  __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+  __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+  // If the receiver is not a string trigger the non-string case.
+  __ test(result_, Immediate(kIsNotStringMask));
+  __ j(not_zero, receiver_not_string_);
+
+  // If the index is non-smi trigger the non-smi case.
+  STATIC_ASSERT(kSmiTag == 0);
+  __ JumpIfNotSmi(index_, &index_not_smi_);
+  __ bind(&got_smi_index_);
+
+  // Check for index out of range.
+  __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
+  __ j(above_equal, index_out_of_range_);
+
+  __ SmiUntag(index_);
+
+  Factory* factory = masm->isolate()->factory();
+  StringCharLoadGenerator::Generate(
+      masm, factory, object_, index_, result_, &call_runtime_);
+
+  __ SmiTag(result_);
+  __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+    MacroAssembler* masm,
+    const RuntimeCallHelper& call_helper) {
+  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
+
+  // Index is not a smi.
+  __ bind(&index_not_smi_);
+  // If index is a heap number, try converting it to an integer.
+  __ CheckMap(index_,
+              masm->isolate()->factory()->heap_number_map(),
+              index_not_number_,
+              DONT_DO_SMI_CHECK);
+  call_helper.BeforeCall(masm);
+  __ push(object_);
+  __ push(index_);  // Consumed by runtime conversion function.
+  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+  } else {
+    DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+    // NumberToSmi discards numbers that are not exact integers.
+    __ CallRuntime(Runtime::kNumberToSmi, 1);
+  }
+  if (!index_.is(eax)) {
+    // Save the conversion result before the pop instructions below
+    // have a chance to overwrite it.
+    __ mov(index_, eax);
+  }
+  __ pop(object_);
+  // Reload the instance type.
+  __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+  __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+  call_helper.AfterCall(masm);
+  // If index is still not a smi, it must be out of range.
+  STATIC_ASSERT(kSmiTag == 0);
+  __ JumpIfNotSmi(index_, index_out_of_range_);
+  // Otherwise, return to the fast path.
+  __ jmp(&got_smi_index_);
+
+  // Call runtime. We get here when the receiver is a string and the
+  // index is a number, but the code of getting the actual character
+  // is too complex (e.g., when the string needs to be flattened).
+  __ bind(&call_runtime_);
+  call_helper.BeforeCall(masm);
+  __ push(object_);
+  __ SmiTag(index_);
+  __ push(index_);
+  __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
+  if (!result_.is(eax)) {
+    __ mov(result_, eax);
+  }
+  call_helper.AfterCall(masm);
+  __ jmp(&exit_);
+
+  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+  // Fast case of Heap::LookupSingleCharacterStringFromCode.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiShiftSize == 0);
+  DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
+  __ test(code_,
+          Immediate(kSmiTagMask |
+                    ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
+  __ j(not_zero, &slow_case_);
+
+  Factory* factory = masm->isolate()->factory();
+  __ Move(result_, Immediate(factory->single_character_string_cache()));
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize == 1);
+  STATIC_ASSERT(kSmiShiftSize == 0);
+  // At this point code register contains smi tagged one byte char code.
+  __ mov(result_, FieldOperand(result_,
+                               code_, times_half_pointer_size,
+                               FixedArray::kHeaderSize));
+  __ cmp(result_, factory->undefined_value());
+  __ j(equal, &slow_case_);
+  __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+    MacroAssembler* masm,
+    const RuntimeCallHelper& call_helper) {
+  __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
+
+  __ bind(&slow_case_);
+  call_helper.BeforeCall(masm);
+  __ push(code_);
+  __ CallRuntime(Runtime::kCharFromCode, 1);
+  if (!result_.is(eax)) {
+    __ mov(result_, eax);
+  }
+  call_helper.AfterCall(masm);
+  __ jmp(&exit_);
+
+  __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
+}
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
+                                          Register dest,
+                                          Register src,
+                                          Register count,
+                                          Register scratch,
+                                          String::Encoding encoding) {
+  DCHECK(!scratch.is(dest));
+  DCHECK(!scratch.is(src));
+  DCHECK(!scratch.is(count));
+
+  // Nothing to do for zero characters.
+  Label done;
+  __ test(count, count);
+  __ j(zero, &done);
+
+  // Make count the number of bytes to copy.
+  if (encoding == String::TWO_BYTE_ENCODING) {
+    __ shl(count, 1);
+  }
+
+  Label loop;
+  __ bind(&loop);
+  __ mov_b(scratch, Operand(src, 0));
+  __ mov_b(Operand(dest, 0), scratch);
+  __ inc(src);
+  __ inc(dest);
+  __ dec(count);
+  __ j(not_zero, &loop);
+
+  __ bind(&done);
+}
+
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  // Stack frame on entry.
+  //  esp[0]: return address
+  //  esp[4]: to
+  //  esp[8]: from
+  //  esp[12]: string
+
+  // Make sure first argument is a string.
+  __ mov(eax, Operand(esp, 3 * kPointerSize));
+  STATIC_ASSERT(kSmiTag == 0);
+  __ JumpIfSmi(eax, &runtime);
+  Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
+  __ j(NegateCondition(is_string), &runtime);
+
+  // eax: string
+  // ebx: instance type
+
+  // Calculate length of sub string using the smi values.
+  __ mov(ecx, Operand(esp, 1 * kPointerSize));  // To index.
+  __ JumpIfNotSmi(ecx, &runtime);
+  __ mov(edx, Operand(esp, 2 * kPointerSize));  // From index.
+  __ JumpIfNotSmi(edx, &runtime);
+  __ sub(ecx, edx);
+  __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
+  Label not_original_string;
+  // Shorter than original string's length: an actual substring.
+  __ j(below, &not_original_string, Label::kNear);
+  // Longer than original string's length or negative: unsafe arguments.
+  __ j(above, &runtime);
+  // Return original string.
+  Counters* counters = isolate()->counters();
+  __ IncrementCounter(counters->sub_string_native(), 1);
+  __ ret(3 * kPointerSize);
+  __ bind(&not_original_string);
+
+  Label single_char;
+  __ cmp(ecx, Immediate(Smi::FromInt(1)));
+  __ j(equal, &single_char);
+
+  // eax: string
+  // ebx: instance type
+  // ecx: sub string length (smi)
+  // edx: from index (smi)
+  // Deal with different string types: update the index if necessary
+  // and put the underlying string into edi.
+  Label underlying_unpacked, sliced_string, seq_or_external_string;
+  // If the string is not indirect, it can only be sequential or external.
+  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
+  STATIC_ASSERT(kIsIndirectStringMask != 0);
+  __ test(ebx, Immediate(kIsIndirectStringMask));
+  __ j(zero, &seq_or_external_string, Label::kNear);
+
+  Factory* factory = isolate()->factory();
+  __ test(ebx, Immediate(kSlicedNotConsMask));
+  __ j(not_zero, &sliced_string, Label::kNear);
+  // Cons string.  Check whether it is flat, then fetch first part.
+  // Flat cons strings have an empty second part.
+  __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
+         factory->empty_string());
+  __ j(not_equal, &runtime);
+  __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
+  // Update instance type.
+  __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
+  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+  __ jmp(&underlying_unpacked, Label::kNear);
+
+  __ bind(&sliced_string);
+  // Sliced string.  Fetch parent and adjust start index by offset.
+  __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
+  __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
+  // Update instance type.
+  __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
+  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+  __ jmp(&underlying_unpacked, Label::kNear);
+
+  __ bind(&seq_or_external_string);
+  // Sequential or external string.  Just move string to the expected register.
+  __ mov(edi, eax);
+
+  __ bind(&underlying_unpacked);
+
+  if (FLAG_string_slices) {
+    Label copy_routine;
+    // edi: underlying subject string
+    // ebx: instance type of underlying subject string
+    // edx: adjusted start index (smi)
+    // ecx: length (smi)
+    __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
+    // Short slice.  Copy instead of slicing.
+    __ j(less, &copy_routine);
+    // Allocate new sliced string.  At this point we do not reload the instance
+    // type including the string encoding because we simply rely on the info
+    // provided by the original string.  It does not matter if the original
+    // string's encoding is wrong because we always have to recheck encoding of
+    // the newly created string's parent anyways due to externalized strings.
+    Label two_byte_slice, set_slice_header;
+    STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
+    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
+    __ test(ebx, Immediate(kStringEncodingMask));
+    __ j(zero, &two_byte_slice, Label::kNear);
+    __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
+    __ jmp(&set_slice_header, Label::kNear);
+    __ bind(&two_byte_slice);
+    __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
+    __ bind(&set_slice_header);
+    __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
+    __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
+           Immediate(String::kEmptyHashField));
+    __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
+    __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
+    __ IncrementCounter(counters->sub_string_native(), 1);
+    __ ret(3 * kPointerSize);
+
+    __ bind(&copy_routine);
+  }
+
+  // edi: underlying subject string
+  // ebx: instance type of underlying subject string
+  // edx: adjusted start index (smi)
+  // ecx: length (smi)
+  // The subject string can only be external or sequential string of either
+  // encoding at this point.
+  Label two_byte_sequential, runtime_drop_two, sequential_string;
+  STATIC_ASSERT(kExternalStringTag != 0);
+  STATIC_ASSERT(kSeqStringTag == 0);
+  __ test_b(ebx, kExternalStringTag);
+  __ j(zero, &sequential_string);
+
+  // Handle external string.
+  // Rule out short external strings.
+  STATIC_ASSERT(kShortExternalStringTag != 0);
+  __ test_b(ebx, kShortExternalStringMask);
+  __ j(not_zero, &runtime);
+  __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
+  // Move the pointer so that offset-wise, it looks like a sequential string.
+  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+  __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+  __ bind(&sequential_string);
+  // Stash away (adjusted) index and (underlying) string.
+  __ push(edx);
+  __ push(edi);
+  __ SmiUntag(ecx);
+  STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
+  __ test_b(ebx, kStringEncodingMask);
+  __ j(zero, &two_byte_sequential);
+
+  // Sequential one byte string.  Allocate the result.
+  __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
+
+  // eax: result string
+  // ecx: result string length
+  // Locate first character of result.
+  __ mov(edi, eax);
+  __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  // Load string argument and locate character of sub string start.
+  __ pop(edx);
+  __ pop(ebx);
+  __ SmiUntag(ebx);
+  __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
+
+  // eax: result string
+  // ecx: result length
+  // edi: first character of result
+  // edx: character of sub string start
+  StringHelper::GenerateCopyCharacters(
+      masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
+  __ IncrementCounter(counters->sub_string_native(), 1);
+  __ ret(3 * kPointerSize);
+
+  __ bind(&two_byte_sequential);
+  // Sequential two-byte string.  Allocate the result.
+  __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
+
+  // eax: result string
+  // ecx: result string length
+  // Locate first character of result.
+  __ mov(edi, eax);
+  __ add(edi,
+         Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  // Load string argument and locate character of sub string start.
+  __ pop(edx);
+  __ pop(ebx);
+  // As from is a smi it is 2 times the value which matches the size of a two
+  // byte character.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+  __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
+
+  // eax: result string
+  // ecx: result length
+  // edi: first character of result
+  // edx: character of sub string start
+  StringHelper::GenerateCopyCharacters(
+      masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
+  __ IncrementCounter(counters->sub_string_native(), 1);
+  __ ret(3 * kPointerSize);
+
+  // Drop pushed values on the stack before tail call.
+  __ bind(&runtime_drop_two);
+  __ Drop(2);
+
+  // Just jump to runtime to create the sub string.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kSubString, 3, 1);
+
+  __ bind(&single_char);
+  // eax: string
+  // ebx: instance type
+  // ecx: sub string length (smi)
+  // edx: from index (smi)
+  StringCharAtGenerator generator(
+      eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm);
+  __ ret(3 * kPointerSize);
+  generator.SkipSlow(masm, &runtime);
+}
+
+
+void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
+                                                   Register left,
+                                                   Register right,
+                                                   Register scratch1,
+                                                   Register scratch2) {
+  Register length = scratch1;
+
+  // Compare lengths.
+  Label strings_not_equal, check_zero_length;
+  __ mov(length, FieldOperand(left, String::kLengthOffset));
+  __ cmp(length, FieldOperand(right, String::kLengthOffset));
+  __ j(equal, &check_zero_length, Label::kNear);
+  __ bind(&strings_not_equal);
+  __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
+  __ ret(0);
+
+  // Check if the length is zero.
+  Label compare_chars;
+  __ bind(&check_zero_length);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ test(length, length);
+  __ j(not_zero, &compare_chars, Label::kNear);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ ret(0);
+
+  // Compare characters.
+  __ bind(&compare_chars);
+  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
+                                  &strings_not_equal, Label::kNear);
+
+  // Characters are equal.
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ ret(0);
+}
+
+
+void StringHelper::GenerateCompareFlatOneByteStrings(
+    MacroAssembler* masm, Register left, Register right, Register scratch1,
+    Register scratch2, Register scratch3) {
+  Counters* counters = masm->isolate()->counters();
+  __ IncrementCounter(counters->string_compare_native(), 1);
+
+  // Find minimum length.
+  Label left_shorter;
+  __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
+  __ mov(scratch3, scratch1);
+  __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
+
+  Register length_delta = scratch3;
+
+  __ j(less_equal, &left_shorter, Label::kNear);
+  // Right string is shorter. Change scratch1 to be length of right string.
+  __ sub(scratch1, length_delta);
+  __ bind(&left_shorter);
+
+  Register min_length = scratch1;
+
+  // If either length is zero, just compare lengths.
+  Label compare_lengths;
+  __ test(min_length, min_length);
+  __ j(zero, &compare_lengths, Label::kNear);
+
+  // Compare characters.
+  Label result_not_equal;
+  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
+                                  &result_not_equal, Label::kNear);
+
+  // Compare lengths -  strings up to min-length are equal.
+  __ bind(&compare_lengths);
+  __ test(length_delta, length_delta);
+  Label length_not_equal;
+  __ j(not_zero, &length_not_equal, Label::kNear);
+
+  // Result is EQUAL.
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ ret(0);
+
+  Label result_greater;
+  Label result_less;
+  __ bind(&length_not_equal);
+  __ j(greater, &result_greater, Label::kNear);
+  __ jmp(&result_less, Label::kNear);
+  __ bind(&result_not_equal);
+  __ j(above, &result_greater, Label::kNear);
+  __ bind(&result_less);
+
+  // Result is LESS.
+  __ Move(eax, Immediate(Smi::FromInt(LESS)));
+  __ ret(0);
+
+  // Result is GREATER.
+  __ bind(&result_greater);
+  __ Move(eax, Immediate(Smi::FromInt(GREATER)));
+  __ ret(0);
+}
+
+
+void StringHelper::GenerateOneByteCharsCompareLoop(
+    MacroAssembler* masm, Register left, Register right, Register length,
+    Register scratch, Label* chars_not_equal,
+    Label::Distance chars_not_equal_near) {
+  // Change index to run from -length to -1 by adding length to string
+  // start. This means that loop ends when index reaches zero, which
+  // doesn't need an additional compare.
+  __ SmiUntag(length);
+  __ lea(left,
+         FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
+  __ lea(right,
+         FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
+  __ neg(length);
+  Register index = length;  // index = -length;
+
+  // Compare loop.
+  Label loop;
+  __ bind(&loop);
+  __ mov_b(scratch, Operand(left, index, times_1, 0));
+  __ cmpb(scratch, Operand(right, index, times_1, 0));
+  __ j(not_equal, chars_not_equal, chars_not_equal_near);
+  __ inc(index);
+  __ j(not_zero, &loop);
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  // Stack frame on entry.
+  //  esp[0]: return address
+  //  esp[4]: right string
+  //  esp[8]: left string
+
+  __ mov(edx, Operand(esp, 2 * kPointerSize));  // left
+  __ mov(eax, Operand(esp, 1 * kPointerSize));  // right
+
+  Label not_same;
+  __ cmp(edx, eax);
+  __ j(not_equal, &not_same, Label::kNear);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&not_same);
+
+  // Check that both objects are sequential one-byte strings.
+  __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
+
+  // Compare flat one-byte strings.
+  // Drop arguments from the stack.
+  __ pop(ecx);
+  __ add(esp, Immediate(2 * kPointerSize));
+  __ push(ecx);
+  StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
+                                                  edi);
+
+  // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+
+void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- edx    : left
+  //  -- eax    : right
+  //  -- esp[0] : return address
+  // -----------------------------------
+
+  // Load ecx with the allocation site.  We stick an undefined dummy value here
+  // and replace it with the real allocation site later when we instantiate this
+  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
+  __ mov(ecx, handle(isolate()->heap()->undefined_value()));
+
+  // Make sure that we actually patched the allocation site.
+  if (FLAG_debug_code) {
+    __ test(ecx, Immediate(kSmiTagMask));
+    __ Assert(not_equal, kExpectedAllocationSite);
+    __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
+           isolate()->factory()->allocation_site_map());
+    __ Assert(equal, kExpectedAllocationSite);
+  }
+
+  // Tail call into the stub that handles binary operations with allocation
+  // sites.
+  BinaryOpWithAllocationSiteStub stub(isolate(), state());
+  __ TailCallStub(&stub);
+}
+
+
+void CompareICStub::GenerateSmis(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::SMI);
+  Label miss;
+  __ mov(ecx, edx);
+  __ or_(ecx, eax);
+  __ JumpIfNotSmi(ecx, &miss, Label::kNear);
+
+  if (GetCondition() == equal) {
+    // For equality we do not care about the sign of the result.
+    __ sub(eax, edx);
+  } else {
+    Label done;
+    __ sub(edx, eax);
+    __ j(no_overflow, &done, Label::kNear);
+    // Correct sign of result in case of overflow.
+    __ not_(edx);
+    __ bind(&done);
+    __ mov(eax, edx);
+  }
+  __ ret(0);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::NUMBER);
+
+  Label generic_stub;
+  Label unordered, maybe_undefined1, maybe_undefined2;
+  Label miss;
+
+  if (left() == CompareICState::SMI) {
+    __ JumpIfNotSmi(edx, &miss);
+  }
+  if (right() == CompareICState::SMI) {
+    __ JumpIfNotSmi(eax, &miss);
+  }
+
+  // Inlining the double comparison and falling back to the general compare
+  // stub if NaN is involved or SSE2 or CMOV is unsupported.
+  __ mov(ecx, edx);
+  __ and_(ecx, eax);
+  __ JumpIfSmi(ecx, &generic_stub, Label::kNear);
+
+  __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+         isolate()->factory()->heap_number_map());
+  __ j(not_equal, &maybe_undefined1, Label::kNear);
+  __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+         isolate()->factory()->heap_number_map());
+  __ j(not_equal, &maybe_undefined2, Label::kNear);
+
+  __ bind(&unordered);
+  __ bind(&generic_stub);
+  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
+                     CompareICState::GENERIC, CompareICState::GENERIC);
+  __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+  __ bind(&maybe_undefined1);
+  if (Token::IsOrderedRelationalCompareOp(op())) {
+    __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
+    __ j(not_equal, &miss);
+    __ JumpIfSmi(edx, &unordered);
+    __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
+    __ j(not_equal, &maybe_undefined2, Label::kNear);
+    __ jmp(&unordered);
+  }
+
+  __ bind(&maybe_undefined2);
+  if (Token::IsOrderedRelationalCompareOp(op())) {
+    __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
+    __ j(equal, &unordered);
+  }
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
+  DCHECK(GetCondition() == equal);
+
+  // Registers containing left and right operands respectively.
+  Register left = edx;
+  Register right = eax;
+  Register tmp1 = ecx;
+  Register tmp2 = ebx;
+
+  // Check that both operands are heap objects.
+  Label miss;
+  __ mov(tmp1, left);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ and_(tmp1, right);
+  __ JumpIfSmi(tmp1, &miss, Label::kNear);
+
+  // Check that both operands are internalized strings.
+  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  __ or_(tmp1, tmp2);
+  __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+  __ j(not_zero, &miss, Label::kNear);
+
+  // Internalized strings are compared by identity.
+  Label done;
+  __ cmp(left, right);
+  // Make sure eax is non-zero. At this point input operands are
+  // guaranteed to be non-zero.
+  DCHECK(right.is(eax));
+  __ j(not_equal, &done, Label::kNear);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ bind(&done);
+  __ ret(0);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::UNIQUE_NAME);
+  DCHECK(GetCondition() == equal);
+
+  // Registers containing left and right operands respectively.
+  Register left = edx;
+  Register right = eax;
+  Register tmp1 = ecx;
+  Register tmp2 = ebx;
+
+  // Check that both operands are heap objects.
+  Label miss;
+  __ mov(tmp1, left);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ and_(tmp1, right);
+  __ JumpIfSmi(tmp1, &miss, Label::kNear);
+
+  // Check that both operands are unique names. This leaves the instance
+  // types loaded in tmp1 and tmp2.
+  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+
+  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
+  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
+
+  // Unique names are compared by identity.
+  Label done;
+  __ cmp(left, right);
+  // Make sure eax is non-zero. At this point input operands are
+  // guaranteed to be non-zero.
+  DCHECK(right.is(eax));
+  __ j(not_equal, &done, Label::kNear);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ bind(&done);
+  __ ret(0);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateStrings(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::STRING);
+  Label miss;
+
+  bool equality = Token::IsEqualityOp(op());
+
+  // Registers containing left and right operands respectively.
+  Register left = edx;
+  Register right = eax;
+  Register tmp1 = ecx;
+  Register tmp2 = ebx;
+  Register tmp3 = edi;
+
+  // Check that both operands are heap objects.
+  __ mov(tmp1, left);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ and_(tmp1, right);
+  __ JumpIfSmi(tmp1, &miss);
+
+  // Check that both operands are strings. This leaves the instance
+  // types loaded in tmp1 and tmp2.
+  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+  __ mov(tmp3, tmp1);
+  STATIC_ASSERT(kNotStringTag != 0);
+  __ or_(tmp3, tmp2);
+  __ test(tmp3, Immediate(kIsNotStringMask));
+  __ j(not_zero, &miss);
+
+  // Fast check for identical strings.
+  Label not_same;
+  __ cmp(left, right);
+  __ j(not_equal, &not_same, Label::kNear);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+  __ ret(0);
+
+  // Handle not identical strings.
+  __ bind(&not_same);
+
+  // Check that both strings are internalized. If they are, we're done
+  // because we already know they are not identical.  But in the case of
+  // non-equality compare, we still need to determine the order. We
+  // also know they are both strings.
+  if (equality) {
+    Label do_compare;
+    STATIC_ASSERT(kInternalizedTag == 0);
+    __ or_(tmp1, tmp2);
+    __ test(tmp1, Immediate(kIsNotInternalizedMask));
+    __ j(not_zero, &do_compare, Label::kNear);
+    // Make sure eax is non-zero. At this point input operands are
+    // guaranteed to be non-zero.
+    DCHECK(right.is(eax));
+    __ ret(0);
+    __ bind(&do_compare);
+  }
+
+  // Check that both strings are sequential one-byte.
+  Label runtime;
+  __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
+
+  // Compare flat one byte strings. Returns when done.
+  if (equality) {
+    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
+                                                  tmp2);
+  } else {
+    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
+                                                    tmp2, tmp3);
+  }
+
+  // Handle more complex cases in runtime.
+  __ bind(&runtime);
+  __ pop(tmp1);  // Return address.
+  __ push(left);
+  __ push(right);
+  __ push(tmp1);
+  if (equality) {
+    __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
+  } else {
+    __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+  }
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateObjects(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::OBJECT);
+  Label miss;
+  __ mov(ecx, edx);
+  __ and_(ecx, eax);
+  __ JumpIfSmi(ecx, &miss, Label::kNear);
+
+  __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
+  __ j(not_equal, &miss, Label::kNear);
+  __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
+  __ j(not_equal, &miss, Label::kNear);
+
+  DCHECK(GetCondition() == equal);
+  __ sub(eax, edx);
+  __ ret(0);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
+  Label miss;
+  __ mov(ecx, edx);
+  __ and_(ecx, eax);
+  __ JumpIfSmi(ecx, &miss, Label::kNear);
+
+  __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+  __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
+  __ cmp(ecx, known_map_);
+  __ j(not_equal, &miss, Label::kNear);
+  __ cmp(ebx, known_map_);
+  __ j(not_equal, &miss, Label::kNear);
+
+  __ sub(eax, edx);
+  __ ret(0);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateMiss(MacroAssembler* masm) {
+  {
+    // Call the runtime system in a fresh internal frame.
+    ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
+                                               isolate());
+    FrameScope scope(masm, StackFrame::INTERNAL);
+    __ push(edx);  // Preserve edx and eax.
+    __ push(eax);
+    __ push(edx);  // And also use them as the arguments.
+    __ push(eax);
+    __ push(Immediate(Smi::FromInt(op())));
+    __ CallExternalReference(miss, 3);
+    // Compute the entry point of the rewritten stub.
+    __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
+    __ pop(eax);
+    __ pop(edx);
+  }
+
+  // Do a tail call to the rewritten stub.
+  __ jmp(edi);
+}
+
+
+// Helper function used to check that the dictionary doesn't contain
+// the property. This function may return false negatives, so miss_label
+// must always call a backup property check that is complete.
+// This function is safe to call if the receiver has fast properties.
+// Name must be a unique name and receiver must be a heap object.
+void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
+                                                      Label* miss,
+                                                      Label* done,
+                                                      Register properties,
+                                                      Handle<Name> name,
+                                                      Register r0) {
+  DCHECK(name->IsUniqueName());
+
+  // If names of slots in range from 1 to kProbes - 1 for the hash value are
+  // not equal to the name and kProbes-th slot is not used (its name is the
+  // undefined value), it guarantees the hash table doesn't contain the
+  // property. It's true even if some slots represent deleted properties
+  // (their names are the hole value).
+  for (int i = 0; i < kInlinedProbes; i++) {
+    // Compute the masked index: (hash + i + i * i) & mask.
+    Register index = r0;
+    // Capacity is smi 2^n.
+    __ mov(index, FieldOperand(properties, kCapacityOffset));
+    __ dec(index);
+    __ and_(index,
+            Immediate(Smi::FromInt(name->Hash() +
+                                   NameDictionary::GetProbeOffset(i))));
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
+    Register entity_name = r0;
+    // Having undefined at this place means the name is not contained.
+    DCHECK_EQ(kSmiTagSize, 1);
+    __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
+                                kElementsStartOffset - kHeapObjectTag));
+    __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
+    __ j(equal, done);
+
+    // Stop if found the property.
+    __ cmp(entity_name, Handle<Name>(name));
+    __ j(equal, miss);
+
+    Label good;
+    // Check for the hole and skip.
+    __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
+    __ j(equal, &good, Label::kNear);
+
+    // Check if the entry name is not a unique name.
+    __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
+    __ JumpIfNotUniqueNameInstanceType(
+        FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
+    __ bind(&good);
+  }
+
+  NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
+                                NEGATIVE_LOOKUP);
+  __ push(Immediate(Handle<Object>(name)));
+  __ push(Immediate(name->Hash()));
+  __ CallStub(&stub);
+  __ test(r0, r0);
+  __ j(not_zero, miss);
+  __ jmp(done);
+}
+
+
+// Probe the name dictionary in the |elements| register. Jump to the
+// |done| label if a property with the given name is found leaving the
+// index into the dictionary in |r0|. Jump to the |miss| label
+// otherwise.
+void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
+                                                      Label* miss,
+                                                      Label* done,
+                                                      Register elements,
+                                                      Register name,
+                                                      Register r0,
+                                                      Register r1) {
+  DCHECK(!elements.is(r0));
+  DCHECK(!elements.is(r1));
+  DCHECK(!name.is(r0));
+  DCHECK(!name.is(r1));
+
+  __ AssertName(name);
+
+  __ mov(r1, FieldOperand(elements, kCapacityOffset));
+  __ shr(r1, kSmiTagSize);  // convert smi to int
+  __ dec(r1);
+
+  // Generate an unrolled loop that performs a few probes before
+  // giving up. Measurements done on Gmail indicate that 2 probes
+  // cover ~93% of loads from dictionaries.
+  for (int i = 0; i < kInlinedProbes; i++) {
+    // Compute the masked index: (hash + i + i * i) & mask.
+    __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
+    __ shr(r0, Name::kHashShift);
+    if (i > 0) {
+      __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
+    }
+    __ and_(r0, r1);
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    __ lea(r0, Operand(r0, r0, times_2, 0));  // r0 = r0 * 3
+
+    // Check if the key is identical to the name.
+    __ cmp(name, Operand(elements,
+                         r0,
+                         times_4,
+                         kElementsStartOffset - kHeapObjectTag));
+    __ j(equal, done);
+  }
+
+  NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
+                                POSITIVE_LOOKUP);
+  __ push(name);
+  __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
+  __ shr(r0, Name::kHashShift);
+  __ push(r0);
+  __ CallStub(&stub);
+
+  __ test(r1, r1);
+  __ j(zero, miss);
+  __ jmp(done);
+}
+
+
+void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
+  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
+  // we cannot call anything that could cause a GC from this stub.
+  // Stack frame on entry:
+  //  esp[0 * kPointerSize]: return address.
+  //  esp[1 * kPointerSize]: key's hash.
+  //  esp[2 * kPointerSize]: key.
+  // Registers:
+  //  dictionary_: NameDictionary to probe.
+  //  result_: used as scratch.
+  //  index_: will hold an index of entry if lookup is successful.
+  //          might alias with result_.
+  // Returns:
+  //  result_ is zero if lookup failed, non zero otherwise.
+
+  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
+
+  Register scratch = result();
+
+  __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
+  __ dec(scratch);
+  __ SmiUntag(scratch);
+  __ push(scratch);
+
+  // If names of slots in range from 1 to kProbes - 1 for the hash value are
+  // not equal to the name and kProbes-th slot is not used (its name is the
+  // undefined value), it guarantees the hash table doesn't contain the
+  // property. It's true even if some slots represent deleted properties
+  // (their names are the null value).
+  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
+    // Compute the masked index: (hash + i + i * i) & mask.
+    __ mov(scratch, Operand(esp, 2 * kPointerSize));
+    if (i > 0) {
+      __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
+    }
+    __ and_(scratch, Operand(esp, 0));
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
+
+    // Having undefined at this place means the name is not contained.
+    DCHECK_EQ(kSmiTagSize, 1);
+    __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
+                            kElementsStartOffset - kHeapObjectTag));
+    __ cmp(scratch, isolate()->factory()->undefined_value());
+    __ j(equal, &not_in_dictionary);
+
+    // Stop if found the property.
+    __ cmp(scratch, Operand(esp, 3 * kPointerSize));
+    __ j(equal, &in_dictionary);
+
+    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
+      // If we hit a key that is not a unique name during negative
+      // lookup we have to bailout as this key might be equal to the
+      // key we are looking for.
+
+      // Check if the entry name is not a unique name.
+      __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
+      __ JumpIfNotUniqueNameInstanceType(
+          FieldOperand(scratch, Map::kInstanceTypeOffset),
+          &maybe_in_dictionary);
+    }
+  }
+
+  __ bind(&maybe_in_dictionary);
+  // If we are doing negative lookup then probing failure should be
+  // treated as a lookup success. For positive lookup probing failure
+  // should be treated as lookup failure.
+  if (mode() == POSITIVE_LOOKUP) {
+    __ mov(result(), Immediate(0));
+    __ Drop(1);
+    __ ret(2 * kPointerSize);
+  }
+
+  __ bind(&in_dictionary);
+  __ mov(result(), Immediate(1));
+  __ Drop(1);
+  __ ret(2 * kPointerSize);
+
+  __ bind(&not_in_dictionary);
+  __ mov(result(), Immediate(0));
+  __ Drop(1);
+  __ ret(2 * kPointerSize);
+}
+
+
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
+    Isolate* isolate) {
+  StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
+  stub.GetCode();
+  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
+  stub2.GetCode();
+}
+
+
+// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
+// the value has just been written into the object, now this stub makes sure
+// we keep the GC informed.  The word in the object where the value has been
+// written is in the address register.
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+  Label skip_to_incremental_noncompacting;
+  Label skip_to_incremental_compacting;
+
+  // The first two instructions are generated with labels so as to get the
+  // offset fixed up correctly by the bind(Label*) call.  We patch it back and
+  // forth between a compare instructions (a nop in this position) and the
+  // real branch when we start and stop incremental heap marking.
+  __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
+  __ jmp(&skip_to_incremental_compacting, Label::kFar);
+
+  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  } else {
+    __ ret(0);
+  }
+
+  __ bind(&skip_to_incremental_noncompacting);
+  GenerateIncremental(masm, INCREMENTAL);
+
+  __ bind(&skip_to_incremental_compacting);
+  GenerateIncremental(masm, INCREMENTAL_COMPACTION);
+
+  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
+  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
+  masm->set_byte_at(0, kTwoByteNopInstruction);
+  masm->set_byte_at(2, kFiveByteNopInstruction);
+}
+
+
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
+  regs_.Save(masm);
+
+  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+    Label dont_need_remembered_set;
+
+    __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
+    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
+                           regs_.scratch0(),
+                           &dont_need_remembered_set);
+
+    __ CheckPageFlag(regs_.object(),
+                     regs_.scratch0(),
+                     1 << MemoryChunk::SCAN_ON_SCAVENGE,
+                     not_zero,
+                     &dont_need_remembered_set);
+
+    // First notify the incremental marker if necessary, then update the
+    // remembered set.
+    CheckNeedsToInformIncrementalMarker(
+        masm,
+        kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
+        mode);
+    InformIncrementalMarker(masm);
+    regs_.Restore(masm);
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+
+    __ bind(&dont_need_remembered_set);
+  }
+
+  CheckNeedsToInformIncrementalMarker(
+      masm,
+      kReturnOnNoNeedToInformIncrementalMarker,
+      mode);
+  InformIncrementalMarker(masm);
+  regs_.Restore(masm);
+  __ ret(0);
+}
+
+
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
+  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
+  int argument_count = 3;
+  __ PrepareCallCFunction(argument_count, regs_.scratch0());
+  __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
+  __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
+  __ mov(Operand(esp, 2 * kPointerSize),
+         Immediate(ExternalReference::isolate_address(isolate())));
+
+  AllowExternalCallThatCantCauseGC scope(masm);
+  __ CallCFunction(
+      ExternalReference::incremental_marking_record_write_function(isolate()),
+      argument_count);
+
+  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
+}
+
+
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
+    MacroAssembler* masm,
+    OnNoNeedToInformIncrementalMarker on_no_need,
+    Mode mode) {
+  Label object_is_black, need_incremental, need_incremental_pop_object;
+
+  __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
+  __ and_(regs_.scratch0(), regs_.object());
+  __ mov(regs_.scratch1(),
+         Operand(regs_.scratch0(),
+                 MemoryChunk::kWriteBarrierCounterOffset));
+  __ sub(regs_.scratch1(), Immediate(1));
+  __ mov(Operand(regs_.scratch0(),
+                 MemoryChunk::kWriteBarrierCounterOffset),
+         regs_.scratch1());
+  __ j(negative, &need_incremental);
+
+  // Let's look at the color of the object:  If it is not black we don't have
+  // to inform the incremental marker.
+  __ JumpIfBlack(regs_.object(),
+                 regs_.scratch0(),
+                 regs_.scratch1(),
+                 &object_is_black,
+                 Label::kNear);
+
+  regs_.Restore(masm);
+  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  } else {
+    __ ret(0);
+  }
+
+  __ bind(&object_is_black);
+
+  // Get the value from the slot.
+  __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
+
+  if (mode == INCREMENTAL_COMPACTION) {
+    Label ensure_not_white;
+
+    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
+                     regs_.scratch1(),  // Scratch.
+                     MemoryChunk::kEvacuationCandidateMask,
+                     zero,
+                     &ensure_not_white,
+                     Label::kNear);
+
+    __ CheckPageFlag(regs_.object(),
+                     regs_.scratch1(),  // Scratch.
+                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
+                     not_zero,
+                     &ensure_not_white,
+                     Label::kNear);
+
+    __ jmp(&need_incremental);
+
+    __ bind(&ensure_not_white);
+  }
+
+  // We need an extra register for this, so we push the object register
+  // temporarily.
+  __ push(regs_.object());
+  __ EnsureNotWhite(regs_.scratch0(),  // The value.
+                    regs_.scratch1(),  // Scratch.
+                    regs_.object(),  // Scratch.
+                    &need_incremental_pop_object,
+                    Label::kNear);
+  __ pop(regs_.object());
+
+  regs_.Restore(masm);
+  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  } else {
+    __ ret(0);
+  }
+
+  __ bind(&need_incremental_pop_object);
+  __ pop(regs_.object());
+
+  __ bind(&need_incremental);
+
+  // Fall through when we need to inform the incremental marker.
+}
+
+
+void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- eax    : element value to store
+  //  -- ecx    : element index as smi
+  //  -- esp[0] : return address
+  //  -- esp[4] : array literal index in function
+  //  -- esp[8] : array literal
+  // clobbers ebx, edx, edi
+  // -----------------------------------
+
+  Label element_done;
+  Label double_elements;
+  Label smi_element;
+  Label slow_elements;
+  Label slow_elements_from_double;
+  Label fast_elements;
+
+  // Get array literal index, array literal and its map.
+  __ mov(edx, Operand(esp, 1 * kPointerSize));
+  __ mov(ebx, Operand(esp, 2 * kPointerSize));
+  __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
+
+  __ CheckFastElements(edi, &double_elements);
+
+  // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
+  __ JumpIfSmi(eax, &smi_element);
+  __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
+
+  // Store into the array literal requires a elements transition. Call into
+  // the runtime.
+
+  __ bind(&slow_elements);
+  __ pop(edi);  // Pop return address and remember to put back later for tail
+                // call.
+  __ push(ebx);
+  __ push(ecx);
+  __ push(eax);
+  __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+  __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
+  __ push(edx);
+  __ push(edi);  // Return return address so that tail call returns to right
+                 // place.
+  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
+
+  __ bind(&slow_elements_from_double);
+  __ pop(edx);
+  __ jmp(&slow_elements);
+
+  // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
+  __ bind(&fast_elements);
+  __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
+  __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
+                           FixedArrayBase::kHeaderSize));
+  __ mov(Operand(ecx, 0), eax);
+  // Update the write barrier for the array store.
+  __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
+                 OMIT_SMI_CHECK);
+  __ ret(0);
+
+  // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
+  // and value is Smi.
+  __ bind(&smi_element);
+  __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
+  __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
+                      FixedArrayBase::kHeaderSize), eax);
+  __ ret(0);
+
+  // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
+  __ bind(&double_elements);
+
+  __ push(edx);
+  __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
+  __ StoreNumberToDoubleElements(eax,
+                                 edx,
+                                 ecx,
+                                 edi,
+                                 &slow_elements_from_double,
+                                 false);
+  __ pop(edx);
+  __ ret(0);
+}
+
+
+void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
+  CEntryStub ces(isolate(), 1, kSaveFPRegs);
+  __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
+  int parameter_count_offset =
+      StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
+  __ mov(ebx, MemOperand(ebp, parameter_count_offset));
+  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
+  __ pop(ecx);
+  int additional_offset =
+      function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
+  __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
+  __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
+}
+
+
+void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
+  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
+  VectorLoadStub stub(isolate(), state());
+  __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
+  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
+  VectorKeyedLoadStub stub(isolate());
+  __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
+  if (masm->isolate()->function_entry_hook() != NULL) {
+    ProfileEntryHookStub stub(masm->isolate());
+    masm->CallStub(&stub);
+  }
+}
+
+
+void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
+  // Save volatile registers.
+  const int kNumSavedRegisters = 3;
+  __ push(eax);
+  __ push(ecx);
+  __ push(edx);
+
+  // Calculate and push the original stack pointer.
+  __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
+  __ push(eax);
+
+  // Retrieve our return address and use it to calculate the calling
+  // function's address.
+  __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
+  __ sub(eax, Immediate(Assembler::kCallInstructionLength));
+  __ push(eax);
+
+  // Call the entry hook.
+  DCHECK(isolate()->function_entry_hook() != NULL);
+  __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
+          RelocInfo::RUNTIME_ENTRY);
+  __ add(esp, Immediate(2 * kPointerSize));
+
+  // Restore ecx.
+  __ pop(edx);
+  __ pop(ecx);
+  __ pop(eax);
+
+  __ ret(0);
+}
+
+
+template<class T>
+static void CreateArrayDispatch(MacroAssembler* masm,
+                                AllocationSiteOverrideMode mode) {
+  if (mode == DISABLE_ALLOCATION_SITES) {
+    T stub(masm->isolate(),
+           GetInitialFastElementsKind(),
+           mode);
+    __ TailCallStub(&stub);
+  } else if (mode == DONT_OVERRIDE) {
+    int last_index = GetSequenceIndexFromFastElementsKind(
+        TERMINAL_FAST_ELEMENTS_KIND);
+    for (int i = 0; i <= last_index; ++i) {
+      Label next;
+      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+      __ cmp(edx, kind);
+      __ j(not_equal, &next);
+      T stub(masm->isolate(), kind);
+      __ TailCallStub(&stub);
+      __ bind(&next);
+    }
+
+    // If we reached this point there is a problem.
+    __ Abort(kUnexpectedElementsKindInArrayConstructor);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
+                                           AllocationSiteOverrideMode mode) {
+  // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
+  // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
+  // eax - number of arguments
+  // edi - constructor?
+  // esp[0] - return address
+  // esp[4] - last argument
+  Label normal_sequence;
+  if (mode == DONT_OVERRIDE) {
+    DCHECK(FAST_SMI_ELEMENTS == 0);
+    DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
+    DCHECK(FAST_ELEMENTS == 2);
+    DCHECK(FAST_HOLEY_ELEMENTS == 3);
+    DCHECK(FAST_DOUBLE_ELEMENTS == 4);
+    DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
+
+    // is the low bit set? If so, we are holey and that is good.
+    __ test_b(edx, 1);
+    __ j(not_zero, &normal_sequence);
+  }
+
+  // look at the first argument
+  __ mov(ecx, Operand(esp, kPointerSize));
+  __ test(ecx, ecx);
+  __ j(zero, &normal_sequence);
+
+  if (mode == DISABLE_ALLOCATION_SITES) {
+    ElementsKind initial = GetInitialFastElementsKind();
+    ElementsKind holey_initial = GetHoleyElementsKind(initial);
+
+    ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
+                                                  holey_initial,
+                                                  DISABLE_ALLOCATION_SITES);
+    __ TailCallStub(&stub_holey);
+
+    __ bind(&normal_sequence);
+    ArraySingleArgumentConstructorStub stub(masm->isolate(),
+                                            initial,
+                                            DISABLE_ALLOCATION_SITES);
+    __ TailCallStub(&stub);
+  } else if (mode == DONT_OVERRIDE) {
+    // We are going to create a holey array, but our kind is non-holey.
+    // Fix kind and retry.
+    __ inc(edx);
+
+    if (FLAG_debug_code) {
+      Handle<Map> allocation_site_map =
+          masm->isolate()->factory()->allocation_site_map();
+      __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
+      __ Assert(equal, kExpectedAllocationSite);
+    }
+
+    // Save the resulting elements kind in type info. We can't just store r3
+    // in the AllocationSite::transition_info field because elements kind is
+    // restricted to a portion of the field...upper bits need to be left alone.
+    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+    __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
+           Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
+
+    __ bind(&normal_sequence);
+    int last_index = GetSequenceIndexFromFastElementsKind(
+        TERMINAL_FAST_ELEMENTS_KIND);
+    for (int i = 0; i <= last_index; ++i) {
+      Label next;
+      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+      __ cmp(edx, kind);
+      __ j(not_equal, &next);
+      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
+      __ TailCallStub(&stub);
+      __ bind(&next);
+    }
+
+    // If we reached this point there is a problem.
+    __ Abort(kUnexpectedElementsKindInArrayConstructor);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+template<class T>
+static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
+  int to_index = GetSequenceIndexFromFastElementsKind(
+      TERMINAL_FAST_ELEMENTS_KIND);
+  for (int i = 0; i <= to_index; ++i) {
+    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+    T stub(isolate, kind);
+    stub.GetCode();
+    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
+      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
+      stub1.GetCode();
+    }
+  }
+}
+
+
+void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
+  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
+      isolate);
+  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
+      isolate);
+  ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
+      isolate);
+}
+
+
+void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
+    Isolate* isolate) {
+  ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
+  for (int i = 0; i < 2; i++) {
+    // For internal arrays we only need a few things
+    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
+    stubh1.GetCode();
+    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
+    stubh2.GetCode();
+    InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
+    stubh3.GetCode();
+  }
+}
+
+
+void ArrayConstructorStub::GenerateDispatchToArrayStub(
+    MacroAssembler* masm,
+    AllocationSiteOverrideMode mode) {
+  if (argument_count() == ANY) {
+    Label not_zero_case, not_one_case;
+    __ test(eax, eax);
+    __ j(not_zero, &not_zero_case);
+    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+
+    __ bind(&not_zero_case);
+    __ cmp(eax, 1);
+    __ j(greater, &not_one_case);
+    CreateArrayDispatchOneArgument(masm, mode);
+
+    __ bind(&not_one_case);
+    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+  } else if (argument_count() == NONE) {
+    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+  } else if (argument_count() == ONE) {
+    CreateArrayDispatchOneArgument(masm, mode);
+  } else if (argument_count() == MORE_THAN_ONE) {
+    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void ArrayConstructorStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- eax : argc (only if argument_count() == ANY)
+  //  -- ebx : AllocationSite or undefined
+  //  -- edi : constructor
+  //  -- esp[0] : return address
+  //  -- esp[4] : last argument
+  // -----------------------------------
+  if (FLAG_debug_code) {
+    // The array construct code is only set for the global and natives
+    // builtin Array functions which always have maps.
+
+    // Initial map for the builtin Array function should be a map.
+    __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+    // Will both indicate a NULL and a Smi.
+    __ test(ecx, Immediate(kSmiTagMask));
+    __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
+    __ CmpObjectType(ecx, MAP_TYPE, ecx);
+    __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
+
+    // We should either have undefined in ebx or a valid AllocationSite
+    __ AssertUndefinedOrAllocationSite(ebx);
+  }
+
+  Label no_info;
+  // If the feedback vector is the undefined value call an array constructor
+  // that doesn't use AllocationSites.
+  __ cmp(ebx, isolate()->factory()->undefined_value());
+  __ j(equal, &no_info);
+
+  // Only look at the lower 16 bits of the transition info.
+  __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
+  __ SmiUntag(edx);
+  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+  __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
+  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
+
+  __ bind(&no_info);
+  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
+}
+
+
+void InternalArrayConstructorStub::GenerateCase(
+    MacroAssembler* masm, ElementsKind kind) {
+  Label not_zero_case, not_one_case;
+  Label normal_sequence;
+
+  __ test(eax, eax);
+  __ j(not_zero, &not_zero_case);
+  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
+  __ TailCallStub(&stub0);
+
+  __ bind(&not_zero_case);
+  __ cmp(eax, 1);
+  __ j(greater, &not_one_case);
+
+  if (IsFastPackedElementsKind(kind)) {
+    // We might need to create a holey array
+    // look at the first argument
+    __ mov(ecx, Operand(esp, kPointerSize));
+    __ test(ecx, ecx);
+    __ j(zero, &normal_sequence);
+
+    InternalArraySingleArgumentConstructorStub
+        stub1_holey(isolate(), GetHoleyElementsKind(kind));
+    __ TailCallStub(&stub1_holey);
+  }
+
+  __ bind(&normal_sequence);
+  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
+  __ TailCallStub(&stub1);
+
+  __ bind(&not_one_case);
+  InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
+  __ TailCallStub(&stubN);
+}
+
+
+void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- eax : argc
+  //  -- edi : constructor
+  //  -- esp[0] : return address
+  //  -- esp[4] : last argument
+  // -----------------------------------
+
+  if (FLAG_debug_code) {
+    // The array construct code is only set for the global and natives
+    // builtin Array functions which always have maps.
+
+    // Initial map for the builtin Array function should be a map.
+    __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+    // Will both indicate a NULL and a Smi.
+    __ test(ecx, Immediate(kSmiTagMask));
+    __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
+    __ CmpObjectType(ecx, MAP_TYPE, ecx);
+    __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
+  }
+
+  // Figure out the right elements kind
+  __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Load the map's "bit field 2" into |result|. We only need the first byte,
+  // but the following masking takes care of that anyway.
+  __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
+  // Retrieve elements_kind from bit field 2.
+  __ DecodeField<Map::ElementsKindBits>(ecx);
+
+  if (FLAG_debug_code) {
+    Label done;
+    __ cmp(ecx, Immediate(FAST_ELEMENTS));
+    __ j(equal, &done);
+    __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
+    __ Assert(equal,
+              kInvalidElementsKindForInternalArrayOrInternalPackedArray);
+    __ bind(&done);
+  }
+
+  Label fast_elements_case;
+  __ cmp(ecx, Immediate(FAST_ELEMENTS));
+  __ j(equal, &fast_elements_case);
+  GenerateCase(masm, FAST_HOLEY_ELEMENTS);
+
+  __ bind(&fast_elements_case);
+  GenerateCase(masm, FAST_ELEMENTS);
+}
+
+
+void CallApiFunctionStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- eax                 : callee
+  //  -- ebx                 : call_data
+  //  -- ecx                 : holder
+  //  -- edx                 : api_function_address
+  //  -- esi                 : context
+  //  --
+  //  -- esp[0]              : return address
+  //  -- esp[4]              : last argument
+  //  -- ...
+  //  -- esp[argc * 4]       : first argument
+  //  -- esp[(argc + 1) * 4] : receiver
+  // -----------------------------------
+
+  Register callee = eax;
+  Register call_data = ebx;
+  Register holder = ecx;
+  Register api_function_address = edx;
+  Register return_address = edi;
+  Register context = esi;
+
+  int argc = this->argc();
+  bool is_store = this->is_store();
+  bool call_data_undefined = this->call_data_undefined();
+
+  typedef FunctionCallbackArguments FCA;
+
+  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
+  STATIC_ASSERT(FCA::kCalleeIndex == 5);
+  STATIC_ASSERT(FCA::kDataIndex == 4);
+  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
+  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
+  STATIC_ASSERT(FCA::kIsolateIndex == 1);
+  STATIC_ASSERT(FCA::kHolderIndex == 0);
+  STATIC_ASSERT(FCA::kArgsLength == 7);
+
+  __ pop(return_address);
+
+  // context save
+  __ push(context);
+  // load context from callee
+  __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
+
+  // callee
+  __ push(callee);
+
+  // call data
+  __ push(call_data);
+
+  Register scratch = call_data;
+  if (!call_data_undefined) {
+    // return value
+    __ push(Immediate(isolate()->factory()->undefined_value()));
+    // return value default
+    __ push(Immediate(isolate()->factory()->undefined_value()));
+  } else {
+    // return value
+    __ push(scratch);
+    // return value default
+    __ push(scratch);
+  }
+  // isolate
+  __ push(Immediate(reinterpret_cast<int>(isolate())));
+  // holder
+  __ push(holder);
+
+  __ mov(scratch, esp);
+
+  // return address
+  __ push(return_address);
+
+  // API function gets reference to the v8::Arguments. If CPU profiler
+  // is enabled wrapper function will be called and we need to pass
+  // address of the callback as additional parameter, always allocate
+  // space for it.
+  const int kApiArgc = 1 + 1;
+
+  // Allocate the v8::Arguments structure in the arguments' space since
+  // it's not controlled by GC.
+  const int kApiStackSpace = 4;
+
+  __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
+
+  // FunctionCallbackInfo::implicit_args_.
+  __ mov(ApiParameterOperand(2), scratch);
+  __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
+  // FunctionCallbackInfo::values_.
+  __ mov(ApiParameterOperand(3), scratch);
+  // FunctionCallbackInfo::length_.
+  __ Move(ApiParameterOperand(4), Immediate(argc));
+  // FunctionCallbackInfo::is_construct_call_.
+  __ Move(ApiParameterOperand(5), Immediate(0));
+
+  // v8::InvocationCallback's argument.
+  __ lea(scratch, ApiParameterOperand(2));
+  __ mov(ApiParameterOperand(0), scratch);
+
+  ExternalReference thunk_ref =
+      ExternalReference::invoke_function_callback(isolate());
+
+  Operand context_restore_operand(ebp,
+                                  (2 + FCA::kContextSaveIndex) * kPointerSize);
+  // Stores return the first js argument
+  int return_value_offset = 0;
+  if (is_store) {
+    return_value_offset = 2 + FCA::kArgsLength;
+  } else {
+    return_value_offset = 2 + FCA::kReturnValueOffset;
+  }
+  Operand return_value_operand(ebp, return_value_offset * kPointerSize);
+  __ CallApiFunctionAndReturn(api_function_address,
+                              thunk_ref,
+                              ApiParameterOperand(1),
+                              argc + FCA::kArgsLength + 1,
+                              return_value_operand,
+                              &context_restore_operand);
+}
+
+
+void CallApiGetterStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- esp[0]                  : return address
+  //  -- esp[4]                  : name
+  //  -- esp[8 - kArgsLength*4]  : PropertyCallbackArguments object
+  //  -- ...
+  //  -- edx                    : api_function_address
+  // -----------------------------------
+  DCHECK(edx.is(ApiGetterDescriptor::function_address()));
+
+  // array for v8::Arguments::values_, handler for name and pointer
+  // to the values (it considered as smi in GC).
+  const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
+  // Allocate space for opional callback address parameter in case
+  // CPU profiler is active.
+  const int kApiArgc = 2 + 1;
+
+  Register api_function_address = edx;
+  Register scratch = ebx;
+
+  // load address of name
+  __ lea(scratch, Operand(esp, 1 * kPointerSize));
+
+  __ PrepareCallApiFunction(kApiArgc);
+  __ mov(ApiParameterOperand(0), scratch);  // name.
+  __ add(scratch, Immediate(kPointerSize));
+  __ mov(ApiParameterOperand(1), scratch);  // arguments pointer.
+
+  ExternalReference thunk_ref =
+      ExternalReference::invoke_accessor_getter_callback(isolate());
+
+  __ CallApiFunctionAndReturn(api_function_address,
+                              thunk_ref,
+                              ApiParameterOperand(2),
+                              kStackSpace,
+                              Operand(ebp, 7 * kPointerSize),
+                              NULL);
+}
+
+
+#undef __
+
+} }  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_X87