Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/src/x87/macro-assembler-x87.cc b/src/x87/macro-assembler-x87.cc
new file mode 100644
index 0000000..a1fa331
--- /dev/null
+++ b/src/x87/macro-assembler-x87.cc
@@ -0,0 +1,3362 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/base/bits.h"
+#include "src/base/division-by-constant.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/cpu-profiler.h"
+#include "src/debug.h"
+#include "src/isolate-inl.h"
+#include "src/runtime.h"
+#include "src/serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// -------------------------------------------------------------------------
+// MacroAssembler implementation.
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+    : Assembler(arg_isolate, buffer, size),
+      generating_stub_(false),
+      has_frame_(false) {
+  if (isolate() != NULL) {
+    // TODO(titzer): should we just use a null handle here instead?
+    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+                                  isolate());
+  }
+}
+
+
+void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
+  DCHECK(!r.IsDouble());
+  if (r.IsInteger8()) {
+    movsx_b(dst, src);
+  } else if (r.IsUInteger8()) {
+    movzx_b(dst, src);
+  } else if (r.IsInteger16()) {
+    movsx_w(dst, src);
+  } else if (r.IsUInteger16()) {
+    movzx_w(dst, src);
+  } else {
+    mov(dst, src);
+  }
+}
+
+
+void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
+  DCHECK(!r.IsDouble());
+  if (r.IsInteger8() || r.IsUInteger8()) {
+    mov_b(dst, src);
+  } else if (r.IsInteger16() || r.IsUInteger16()) {
+    mov_w(dst, src);
+  } else {
+    if (r.IsHeapObject()) {
+      AssertNotSmi(src);
+    } else if (r.IsSmi()) {
+      AssertSmi(src);
+    }
+    mov(dst, src);
+  }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
+  if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
+    Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+    mov(destination, value);
+    return;
+  }
+  ExternalReference roots_array_start =
+      ExternalReference::roots_array_start(isolate());
+  mov(destination, Immediate(index));
+  mov(destination, Operand::StaticArray(destination,
+                                        times_pointer_size,
+                                        roots_array_start));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+                               Register scratch,
+                               Heap::RootListIndex index) {
+  DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
+  ExternalReference roots_array_start =
+      ExternalReference::roots_array_start(isolate());
+  mov(scratch, Immediate(index));
+  mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
+      source);
+}
+
+
+void MacroAssembler::CompareRoot(Register with,
+                                 Register scratch,
+                                 Heap::RootListIndex index) {
+  ExternalReference roots_array_start =
+      ExternalReference::roots_array_start(isolate());
+  mov(scratch, Immediate(index));
+  cmp(with, Operand::StaticArray(scratch,
+                                times_pointer_size,
+                                roots_array_start));
+}
+
+
+void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
+  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+  cmp(with, value);
+}
+
+
+void MacroAssembler::CompareRoot(const Operand& with,
+                                 Heap::RootListIndex index) {
+  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+  cmp(with, value);
+}
+
+
+void MacroAssembler::InNewSpace(
+    Register object,
+    Register scratch,
+    Condition cc,
+    Label* condition_met,
+    Label::Distance condition_met_distance) {
+  DCHECK(cc == equal || cc == not_equal);
+  if (scratch.is(object)) {
+    and_(scratch, Immediate(~Page::kPageAlignmentMask));
+  } else {
+    mov(scratch, Immediate(~Page::kPageAlignmentMask));
+    and_(scratch, object);
+  }
+  // Check that we can use a test_b.
+  DCHECK(MemoryChunk::IN_FROM_SPACE < 8);
+  DCHECK(MemoryChunk::IN_TO_SPACE < 8);
+  int mask = (1 << MemoryChunk::IN_FROM_SPACE)
+           | (1 << MemoryChunk::IN_TO_SPACE);
+  // If non-zero, the page belongs to new-space.
+  test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
+         static_cast<uint8_t>(mask));
+  j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::RememberedSetHelper(
+    Register object,  // Only used for debug checks.
+    Register addr, Register scratch, SaveFPRegsMode save_fp,
+    MacroAssembler::RememberedSetFinalAction and_then) {
+  Label done;
+  if (emit_debug_code()) {
+    Label ok;
+    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
+    int3();
+    bind(&ok);
+  }
+  // Load store buffer top.
+  ExternalReference store_buffer =
+      ExternalReference::store_buffer_top(isolate());
+  mov(scratch, Operand::StaticVariable(store_buffer));
+  // Store pointer to buffer.
+  mov(Operand(scratch, 0), addr);
+  // Increment buffer top.
+  add(scratch, Immediate(kPointerSize));
+  // Write back new top of buffer.
+  mov(Operand::StaticVariable(store_buffer), scratch);
+  // Call stub on end of buffer.
+  // Check for end of buffer.
+  test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
+  if (and_then == kReturnAtEnd) {
+    Label buffer_overflowed;
+    j(not_equal, &buffer_overflowed, Label::kNear);
+    ret(0);
+    bind(&buffer_overflowed);
+  } else {
+    DCHECK(and_then == kFallThroughAtEnd);
+    j(equal, &done, Label::kNear);
+  }
+  StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
+  CallStub(&store_buffer_overflow);
+  if (and_then == kReturnAtEnd) {
+    ret(0);
+  } else {
+    DCHECK(and_then == kFallThroughAtEnd);
+    bind(&done);
+  }
+}
+
+
+void MacroAssembler::ClampTOSToUint8(Register result_reg) {
+  Label done, conv_failure;
+  sub(esp, Immediate(kPointerSize));
+  fnclex();
+  fist_s(Operand(esp, 0));
+  pop(result_reg);
+  X87CheckIA();
+  j(equal, &conv_failure, Label::kNear);
+  test(result_reg, Immediate(0xFFFFFF00));
+  j(zero, &done, Label::kNear);
+  setcc(sign, result_reg);
+  sub(result_reg, Immediate(1));
+  and_(result_reg, Immediate(255));
+  jmp(&done, Label::kNear);
+  bind(&conv_failure);
+  fnclex();
+  fldz();
+  fld(1);
+  FCmp();
+  setcc(below, result_reg);  // 1 if negative, 0 if positive.
+  dec_b(result_reg);         // 0 if negative, 255 if positive.
+  bind(&done);
+}
+
+
+void MacroAssembler::ClampUint8(Register reg) {
+  Label done;
+  test(reg, Immediate(0xFFFFFF00));
+  j(zero, &done, Label::kNear);
+  setcc(negative, reg);  // 1 if negative, 0 if positive.
+  dec_b(reg);  // 0 if negative, 255 if positive.
+  bind(&done);
+}
+
+
+void MacroAssembler::SlowTruncateToI(Register result_reg,
+                                     Register input_reg,
+                                     int offset) {
+  DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
+  call(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
+  sub(esp, Immediate(kDoubleSize));
+  fst_d(MemOperand(esp, 0));
+  SlowTruncateToI(result_reg, esp, 0);
+  add(esp, Immediate(kDoubleSize));
+}
+
+
+void MacroAssembler::X87TOSToI(Register result_reg,
+                               MinusZeroMode minus_zero_mode,
+                               Label* lost_precision, Label* is_nan,
+                               Label* minus_zero, Label::Distance dst) {
+  Label done;
+  sub(esp, Immediate(kPointerSize));
+  fld(0);
+  fist_s(MemOperand(esp, 0));
+  fild_s(MemOperand(esp, 0));
+  pop(result_reg);
+  FCmp();
+  j(not_equal, lost_precision, dst);
+  j(parity_even, is_nan, dst);
+  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
+    test(result_reg, Operand(result_reg));
+    j(not_zero, &done, Label::kNear);
+    // To check for minus zero, we load the value again as float, and check
+    // if that is still 0.
+    sub(esp, Immediate(kPointerSize));
+    fst_s(MemOperand(esp, 0));
+    pop(result_reg);
+    test(result_reg, Operand(result_reg));
+    j(not_zero, minus_zero, dst);
+  }
+  bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
+                                           Register input_reg) {
+  Label done, slow_case;
+
+  SlowTruncateToI(result_reg, input_reg);
+  bind(&done);
+}
+
+
+void MacroAssembler::LoadUint32NoSSE2(Register src) {
+  Label done;
+  push(src);
+  fild_s(Operand(esp, 0));
+  cmp(src, Immediate(0));
+  j(not_sign, &done, Label::kNear);
+  ExternalReference uint32_bias =
+        ExternalReference::address_of_uint32_bias();
+  fld_d(Operand::StaticVariable(uint32_bias));
+  faddp(1);
+  bind(&done);
+  add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::RecordWriteArray(
+    Register object, Register value, Register index, SaveFPRegsMode save_fp,
+    RememberedSetAction remembered_set_action, SmiCheck smi_check,
+    PointersToHereCheck pointers_to_here_check_for_value) {
+  // First, check if a write barrier is even needed. The tests below
+  // catch stores of Smis.
+  Label done;
+
+  // Skip barrier if writing a smi.
+  if (smi_check == INLINE_SMI_CHECK) {
+    DCHECK_EQ(0, kSmiTag);
+    test(value, Immediate(kSmiTagMask));
+    j(zero, &done);
+  }
+
+  // Array access: calculate the destination address in the same manner as
+  // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
+  // into an array of words.
+  Register dst = index;
+  lea(dst, Operand(object, index, times_half_pointer_size,
+                   FixedArray::kHeaderSize - kHeapObjectTag));
+
+  RecordWrite(object, dst, value, save_fp, remembered_set_action,
+              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
+
+  bind(&done);
+
+  // Clobber clobbered input registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+    mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
+  }
+}
+
+
+void MacroAssembler::RecordWriteField(
+    Register object, int offset, Register value, Register dst,
+    SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action,
+    SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) {
+  // First, check if a write barrier is even needed. The tests below
+  // catch stores of Smis.
+  Label done;
+
+  // Skip barrier if writing a smi.
+  if (smi_check == INLINE_SMI_CHECK) {
+    JumpIfSmi(value, &done, Label::kNear);
+  }
+
+  // Although the object register is tagged, the offset is relative to the start
+  // of the object, so so offset must be a multiple of kPointerSize.
+  DCHECK(IsAligned(offset, kPointerSize));
+
+  lea(dst, FieldOperand(object, offset));
+  if (emit_debug_code()) {
+    Label ok;
+    test_b(dst, (1 << kPointerSizeLog2) - 1);
+    j(zero, &ok, Label::kNear);
+    int3();
+    bind(&ok);
+  }
+
+  RecordWrite(object, dst, value, save_fp, remembered_set_action,
+              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
+
+  bind(&done);
+
+  // Clobber clobbered input registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+    mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
+  }
+}
+
+
+void MacroAssembler::RecordWriteForMap(Register object, Handle<Map> map,
+                                       Register scratch1, Register scratch2,
+                                       SaveFPRegsMode save_fp) {
+  Label done;
+
+  Register address = scratch1;
+  Register value = scratch2;
+  if (emit_debug_code()) {
+    Label ok;
+    lea(address, FieldOperand(object, HeapObject::kMapOffset));
+    test_b(address, (1 << kPointerSizeLog2) - 1);
+    j(zero, &ok, Label::kNear);
+    int3();
+    bind(&ok);
+  }
+
+  DCHECK(!object.is(value));
+  DCHECK(!object.is(address));
+  DCHECK(!value.is(address));
+  AssertNotSmi(object);
+
+  if (!FLAG_incremental_marking) {
+    return;
+  }
+
+  // Compute the address.
+  lea(address, FieldOperand(object, HeapObject::kMapOffset));
+
+  // A single check of the map's pages interesting flag suffices, since it is
+  // only set during incremental collection, and then it's also guaranteed that
+  // the from object's page's interesting flag is also set.  This optimization
+  // relies on the fact that maps can never be in new space.
+  DCHECK(!isolate()->heap()->InNewSpace(*map));
+  CheckPageFlagForMap(map,
+                      MemoryChunk::kPointersToHereAreInterestingMask,
+                      zero,
+                      &done,
+                      Label::kNear);
+
+  RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
+                       save_fp);
+  CallStub(&stub);
+
+  bind(&done);
+
+  // Count number of write barriers in generated code.
+  isolate()->counters()->write_barriers_static()->Increment();
+  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+  // Clobber clobbered input registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+    mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
+    mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
+  }
+}
+
+
+void MacroAssembler::RecordWrite(
+    Register object, Register address, Register value, SaveFPRegsMode fp_mode,
+    RememberedSetAction remembered_set_action, SmiCheck smi_check,
+    PointersToHereCheck pointers_to_here_check_for_value) {
+  DCHECK(!object.is(value));
+  DCHECK(!object.is(address));
+  DCHECK(!value.is(address));
+  AssertNotSmi(object);
+
+  if (remembered_set_action == OMIT_REMEMBERED_SET &&
+      !FLAG_incremental_marking) {
+    return;
+  }
+
+  if (emit_debug_code()) {
+    Label ok;
+    cmp(value, Operand(address, 0));
+    j(equal, &ok, Label::kNear);
+    int3();
+    bind(&ok);
+  }
+
+  // First, check if a write barrier is even needed. The tests below
+  // catch stores of Smis and stores into young gen.
+  Label done;
+
+  if (smi_check == INLINE_SMI_CHECK) {
+    // Skip barrier if writing a smi.
+    JumpIfSmi(value, &done, Label::kNear);
+  }
+
+  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+    CheckPageFlag(value,
+                  value,  // Used as scratch.
+                  MemoryChunk::kPointersToHereAreInterestingMask,
+                  zero,
+                  &done,
+                  Label::kNear);
+  }
+  CheckPageFlag(object,
+                value,  // Used as scratch.
+                MemoryChunk::kPointersFromHereAreInterestingMask,
+                zero,
+                &done,
+                Label::kNear);
+
+  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
+                       fp_mode);
+  CallStub(&stub);
+
+  bind(&done);
+
+  // Count number of write barriers in generated code.
+  isolate()->counters()->write_barriers_static()->Increment();
+  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+  // Clobber clobbered registers when running with the debug-code flag
+  // turned on to provoke errors.
+  if (emit_debug_code()) {
+    mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
+    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+  }
+}
+
+
+void MacroAssembler::DebugBreak() {
+  Move(eax, Immediate(0));
+  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
+  CEntryStub ces(isolate(), 1);
+  call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+
+
+bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
+  static const int kMaxImmediateBits = 17;
+  if (!RelocInfo::IsNone(x.rmode_)) return false;
+  return !is_intn(x.x_, kMaxImmediateBits);
+}
+
+
+void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
+  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+    Move(dst, Immediate(x.x_ ^ jit_cookie()));
+    xor_(dst, jit_cookie());
+  } else {
+    Move(dst, x);
+  }
+}
+
+
+void MacroAssembler::SafePush(const Immediate& x) {
+  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+    push(Immediate(x.x_ ^ jit_cookie()));
+    xor_(Operand(esp, 0), Immediate(jit_cookie()));
+  } else {
+    push(x);
+  }
+}
+
+
+void MacroAssembler::CmpObjectType(Register heap_object,
+                                   InstanceType type,
+                                   Register map) {
+  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+  CmpInstanceType(map, type);
+}
+
+
+void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
+  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
+       static_cast<int8_t>(type));
+}
+
+
+void MacroAssembler::CheckFastElements(Register map,
+                                       Label* fail,
+                                       Label::Distance distance) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  STATIC_ASSERT(FAST_ELEMENTS == 2);
+  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+  cmpb(FieldOperand(map, Map::kBitField2Offset),
+       Map::kMaximumBitField2FastHoleyElementValue);
+  j(above, fail, distance);
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map,
+                                             Label* fail,
+                                             Label::Distance distance) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  STATIC_ASSERT(FAST_ELEMENTS == 2);
+  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+  cmpb(FieldOperand(map, Map::kBitField2Offset),
+       Map::kMaximumBitField2FastHoleySmiElementValue);
+  j(below_equal, fail, distance);
+  cmpb(FieldOperand(map, Map::kBitField2Offset),
+       Map::kMaximumBitField2FastHoleyElementValue);
+  j(above, fail, distance);
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map,
+                                          Label* fail,
+                                          Label::Distance distance) {
+  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+  cmpb(FieldOperand(map, Map::kBitField2Offset),
+       Map::kMaximumBitField2FastHoleySmiElementValue);
+  j(above, fail, distance);
+}
+
+
+void MacroAssembler::StoreNumberToDoubleElements(
+    Register maybe_number,
+    Register elements,
+    Register key,
+    Register scratch,
+    Label* fail,
+    int elements_offset) {
+  Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
+  JumpIfSmi(maybe_number, &smi_value, Label::kNear);
+
+  CheckMap(maybe_number,
+           isolate()->factory()->heap_number_map(),
+           fail,
+           DONT_DO_SMI_CHECK);
+
+  // Double value, canonicalize NaN.
+  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
+  cmp(FieldOperand(maybe_number, offset),
+      Immediate(kNaNOrInfinityLowerBoundUpper32));
+  j(greater_equal, &maybe_nan, Label::kNear);
+
+  bind(&not_nan);
+  ExternalReference canonical_nan_reference =
+      ExternalReference::address_of_canonical_non_hole_nan();
+  fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
+  bind(&have_double_value);
+  fstp_d(FieldOperand(elements, key, times_4,
+                      FixedDoubleArray::kHeaderSize - elements_offset));
+  jmp(&done);
+
+  bind(&maybe_nan);
+  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
+  // it's an Infinity, and the non-NaN code path applies.
+  j(greater, &is_nan, Label::kNear);
+  cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
+  j(zero, &not_nan);
+  bind(&is_nan);
+  fld_d(Operand::StaticVariable(canonical_nan_reference));
+  jmp(&have_double_value, Label::kNear);
+
+  bind(&smi_value);
+  // Value is a smi. Convert to a double and store.
+  // Preserve original value.
+  mov(scratch, maybe_number);
+  SmiUntag(scratch);
+  push(scratch);
+  fild_s(Operand(esp, 0));
+  pop(scratch);
+  fstp_d(FieldOperand(elements, key, times_4,
+                      FixedDoubleArray::kHeaderSize - elements_offset));
+  bind(&done);
+}
+
+
+void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
+  cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+                              Handle<Map> map,
+                              Label* fail,
+                              SmiCheckType smi_check_type) {
+  if (smi_check_type == DO_SMI_CHECK) {
+    JumpIfSmi(obj, fail);
+  }
+
+  CompareMap(obj, map);
+  j(not_equal, fail);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj,
+                                 Register unused,
+                                 Handle<Map> map,
+                                 Handle<Code> success,
+                                 SmiCheckType smi_check_type) {
+  Label fail;
+  if (smi_check_type == DO_SMI_CHECK) {
+    JumpIfSmi(obj, &fail);
+  }
+  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
+  j(equal, success);
+
+  bind(&fail);
+}
+
+
+Condition MacroAssembler::IsObjectStringType(Register heap_object,
+                                             Register map,
+                                             Register instance_type) {
+  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kNotStringTag != 0);
+  test(instance_type, Immediate(kIsNotStringMask));
+  return zero;
+}
+
+
+Condition MacroAssembler::IsObjectNameType(Register heap_object,
+                                           Register map,
+                                           Register instance_type) {
+  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+  cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
+  return below_equal;
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object,
+                                          Register map,
+                                          Register scratch,
+                                          Label* fail) {
+  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+  IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map,
+                                            Register scratch,
+                                            Label* fail) {
+  movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
+  sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+  cmp(scratch,
+      LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
+  j(above, fail);
+}
+
+
+void MacroAssembler::FCmp() {
+  fucompp();
+  push(eax);
+  fnstsw_ax();
+  sahf();
+  pop(eax);
+}
+
+
+void MacroAssembler::FXamMinusZero() {
+  fxam();
+  push(eax);
+  fnstsw_ax();
+  and_(eax, Immediate(0x4700));
+  // For minus zero, C3 == 1 && C1 == 1.
+  cmp(eax, Immediate(0x4200));
+  pop(eax);
+  fstp(0);
+}
+
+
+void MacroAssembler::FXamSign() {
+  fxam();
+  push(eax);
+  fnstsw_ax();
+  // For negative value (including -0.0), C1 == 1.
+  and_(eax, Immediate(0x0200));
+  pop(eax);
+  fstp(0);
+}
+
+
+void MacroAssembler::X87CheckIA() {
+  push(eax);
+  fnstsw_ax();
+  // For #IA, IE == 1 && SF == 0.
+  and_(eax, Immediate(0x0041));
+  cmp(eax, Immediate(0x0001));
+  pop(eax);
+}
+
+
+// rc=00B, round to nearest.
+// rc=01B, round down.
+// rc=10B, round up.
+// rc=11B, round toward zero.
+void MacroAssembler::X87SetRC(int rc) {
+  sub(esp, Immediate(kPointerSize));
+  fnstcw(MemOperand(esp, 0));
+  and_(MemOperand(esp, 0), Immediate(0xF3FF));
+  or_(MemOperand(esp, 0), Immediate(rc));
+  fldcw(MemOperand(esp, 0));
+  add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::X87SetFPUCW(int cw) {
+  push(Immediate(cw));
+  fldcw(MemOperand(esp, 0));
+  add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::AssertNumber(Register object) {
+  if (emit_debug_code()) {
+    Label ok;
+    JumpIfSmi(object, &ok);
+    cmp(FieldOperand(object, HeapObject::kMapOffset),
+        isolate()->factory()->heap_number_map());
+    Check(equal, kOperandNotANumber);
+    bind(&ok);
+  }
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+  if (emit_debug_code()) {
+    test(object, Immediate(kSmiTagMask));
+    Check(equal, kOperandIsNotASmi);
+  }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+  if (emit_debug_code()) {
+    test(object, Immediate(kSmiTagMask));
+    Check(not_equal, kOperandIsASmiAndNotAString);
+    push(object);
+    mov(object, FieldOperand(object, HeapObject::kMapOffset));
+    CmpInstanceType(object, FIRST_NONSTRING_TYPE);
+    pop(object);
+    Check(below, kOperandIsNotAString);
+  }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+  if (emit_debug_code()) {
+    test(object, Immediate(kSmiTagMask));
+    Check(not_equal, kOperandIsASmiAndNotAName);
+    push(object);
+    mov(object, FieldOperand(object, HeapObject::kMapOffset));
+    CmpInstanceType(object, LAST_NAME_TYPE);
+    pop(object);
+    Check(below_equal, kOperandIsNotAName);
+  }
+}
+
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
+  if (emit_debug_code()) {
+    Label done_checking;
+    AssertNotSmi(object);
+    cmp(object, isolate()->factory()->undefined_value());
+    j(equal, &done_checking);
+    cmp(FieldOperand(object, 0),
+        Immediate(isolate()->factory()->allocation_site_map()));
+    Assert(equal, kExpectedUndefinedOrCell);
+    bind(&done_checking);
+  }
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+  if (emit_debug_code()) {
+    test(object, Immediate(kSmiTagMask));
+    Check(not_equal, kOperandIsASmi);
+  }
+}
+
+
+void MacroAssembler::StubPrologue() {
+  push(ebp);  // Caller's frame pointer.
+  mov(ebp, esp);
+  push(esi);  // Callee's context.
+  push(Immediate(Smi::FromInt(StackFrame::STUB)));
+}
+
+
+void MacroAssembler::Prologue(bool code_pre_aging) {
+  PredictableCodeSizeScope predictible_code_size_scope(this,
+      kNoCodeAgeSequenceLength);
+  if (code_pre_aging) {
+      // Pre-age the code.
+    call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
+        RelocInfo::CODE_AGE_SEQUENCE);
+    Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
+  } else {
+    push(ebp);  // Caller's frame pointer.
+    mov(ebp, esp);
+    push(esi);  // Callee's context.
+    push(edi);  // Callee's JS function.
+  }
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+  push(ebp);
+  mov(ebp, esp);
+  push(esi);
+  push(Immediate(Smi::FromInt(type)));
+  push(Immediate(CodeObject()));
+  if (emit_debug_code()) {
+    cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
+    Check(not_equal, kCodeObjectNotProperlyPatched);
+  }
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+  if (emit_debug_code()) {
+    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
+        Immediate(Smi::FromInt(type)));
+    Check(equal, kStackFrameTypesMustMatch);
+  }
+  leave();
+}
+
+
+void MacroAssembler::EnterExitFramePrologue() {
+  // Set up the frame structure on the stack.
+  DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
+  DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
+  DCHECK(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
+  push(ebp);
+  mov(ebp, esp);
+
+  // Reserve room for entry stack pointer and push the code object.
+  DCHECK(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
+  push(Immediate(0));  // Saved entry sp, patched before call.
+  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
+
+  // Save the frame pointer and the context in top.
+  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
+  ExternalReference context_address(Isolate::kContextAddress, isolate());
+  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
+  mov(Operand::StaticVariable(context_address), esi);
+}
+
+
+void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
+  // Optionally save FPU state.
+  if (save_doubles) {
+    // Store FPU state to m108byte.
+    int space = 108 + argc * kPointerSize;
+    sub(esp, Immediate(space));
+    const int offset = -2 * kPointerSize;  // entry fp + code object.
+    fnsave(MemOperand(ebp, offset - 108));
+  } else {
+    sub(esp, Immediate(argc * kPointerSize));
+  }
+
+  // Get the required frame alignment for the OS.
+  const int kFrameAlignment = base::OS::ActivationFrameAlignment();
+  if (kFrameAlignment > 0) {
+    DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
+    and_(esp, -kFrameAlignment);
+  }
+
+  // Patch the saved entry sp.
+  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
+}
+
+
+void MacroAssembler::EnterExitFrame(bool save_doubles) {
+  EnterExitFramePrologue();
+
+  // Set up argc and argv in callee-saved registers.
+  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
+  mov(edi, eax);
+  lea(esi, Operand(ebp, eax, times_4, offset));
+
+  // Reserve space for argc, argv and isolate.
+  EnterExitFrameEpilogue(3, save_doubles);
+}
+
+
+void MacroAssembler::EnterApiExitFrame(int argc) {
+  EnterExitFramePrologue();
+  EnterExitFrameEpilogue(argc, false);
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles) {
+  // Optionally restore FPU state.
+  if (save_doubles) {
+    const int offset = -2 * kPointerSize;
+    frstor(MemOperand(ebp, offset - 108));
+  }
+
+  // Get the return address from the stack and restore the frame pointer.
+  mov(ecx, Operand(ebp, 1 * kPointerSize));
+  mov(ebp, Operand(ebp, 0 * kPointerSize));
+
+  // Pop the arguments and the receiver from the caller stack.
+  lea(esp, Operand(esi, 1 * kPointerSize));
+
+  // Push the return address to get ready to return.
+  push(ecx);
+
+  LeaveExitFrameEpilogue(true);
+}
+
+
+void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
+  // Restore current context from top and clear it in debug mode.
+  ExternalReference context_address(Isolate::kContextAddress, isolate());
+  if (restore_context) {
+    mov(esi, Operand::StaticVariable(context_address));
+  }
+#ifdef DEBUG
+  mov(Operand::StaticVariable(context_address), Immediate(0));
+#endif
+
+  // Clear the top frame.
+  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
+                                       isolate());
+  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
+}
+
+
+void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
+  mov(esp, ebp);
+  pop(ebp);
+
+  LeaveExitFrameEpilogue(restore_context);
+}
+
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+                                    int handler_index) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // We will build up the handler from the bottom by pushing on the stack.
+  // First push the frame pointer and context.
+  if (kind == StackHandler::JS_ENTRY) {
+    // The frame pointer does not point to a JS frame so we save NULL for
+    // ebp. We expect the code throwing an exception to check ebp before
+    // dereferencing it to restore the context.
+    push(Immediate(0));  // NULL frame pointer.
+    push(Immediate(Smi::FromInt(0)));  // No context.
+  } else {
+    push(ebp);
+    push(esi);
+  }
+  // Push the state and the code object.
+  unsigned state =
+      StackHandler::IndexField::encode(handler_index) |
+      StackHandler::KindField::encode(kind);
+  push(Immediate(state));
+  Push(CodeObject());
+
+  // Link the current handler as the next handler.
+  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+  push(Operand::StaticVariable(handler_address));
+  // Set this new handler as the current one.
+  mov(Operand::StaticVariable(handler_address), esp);
+}
+
+
+void MacroAssembler::PopTryHandler() {
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+  pop(Operand::StaticVariable(handler_address));
+  add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
+}
+
+
+void MacroAssembler::JumpToHandlerEntry() {
+  // Compute the handler entry address and jump to it.  The handler table is
+  // a fixed array of (smi-tagged) code offsets.
+  // eax = exception, edi = code object, edx = state.
+  mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
+  shr(edx, StackHandler::kKindWidth);
+  mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
+  SmiUntag(edx);
+  lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
+  jmp(edi);
+}
+
+
+void MacroAssembler::Throw(Register value) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // The exception is expected in eax.
+  if (!value.is(eax)) {
+    mov(eax, value);
+  }
+  // Drop the stack pointer to the top of the top handler.
+  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+  mov(esp, Operand::StaticVariable(handler_address));
+  // Restore the next handler.
+  pop(Operand::StaticVariable(handler_address));
+
+  // Remove the code object and state, compute the handler address in edi.
+  pop(edi);  // Code object.
+  pop(edx);  // Index and state.
+
+  // Restore the context and frame pointer.
+  pop(esi);  // Context.
+  pop(ebp);  // Frame pointer.
+
+  // If the handler is a JS frame, restore the context to the frame.
+  // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
+  // ebp or esi.
+  Label skip;
+  test(esi, esi);
+  j(zero, &skip, Label::kNear);
+  mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
+  bind(&skip);
+
+  JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value) {
+  // Adjust this code if not the case.
+  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+  // The exception is expected in eax.
+  if (!value.is(eax)) {
+    mov(eax, value);
+  }
+  // Drop the stack pointer to the top of the top stack handler.
+  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+  mov(esp, Operand::StaticVariable(handler_address));
+
+  // Unwind the handlers until the top ENTRY handler is found.
+  Label fetch_next, check_kind;
+  jmp(&check_kind, Label::kNear);
+  bind(&fetch_next);
+  mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
+
+  bind(&check_kind);
+  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+  test(Operand(esp, StackHandlerConstants::kStateOffset),
+       Immediate(StackHandler::KindField::kMask));
+  j(not_zero, &fetch_next);
+
+  // Set the top handler address to next handler past the top ENTRY handler.
+  pop(Operand::StaticVariable(handler_address));
+
+  // Remove the code object and state, compute the handler address in edi.
+  pop(edi);  // Code object.
+  pop(edx);  // Index and state.
+
+  // Clear the context pointer and frame pointer (0 was saved in the handler).
+  pop(esi);
+  pop(ebp);
+
+  JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+                                            Register scratch1,
+                                            Register scratch2,
+                                            Label* miss) {
+  Label same_contexts;
+
+  DCHECK(!holder_reg.is(scratch1));
+  DCHECK(!holder_reg.is(scratch2));
+  DCHECK(!scratch1.is(scratch2));
+
+  // Load current lexical context from the stack frame.
+  mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
+
+  // When generating debug code, make sure the lexical context is set.
+  if (emit_debug_code()) {
+    cmp(scratch1, Immediate(0));
+    Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
+  }
+  // Load the native context of the current context.
+  int offset =
+      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+  mov(scratch1, FieldOperand(scratch1, offset));
+  mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
+
+  // Check the context is a native context.
+  if (emit_debug_code()) {
+    // Read the first word and compare to native_context_map.
+    cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
+        isolate()->factory()->native_context_map());
+    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
+  }
+
+  // Check if both contexts are the same.
+  cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+  j(equal, &same_contexts);
+
+  // Compare security tokens, save holder_reg on the stack so we can use it
+  // as a temporary register.
+  //
+  // Check that the security token in the calling global object is
+  // compatible with the security token in the receiving global
+  // object.
+  mov(scratch2,
+      FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+
+  // Check the context is a native context.
+  if (emit_debug_code()) {
+    cmp(scratch2, isolate()->factory()->null_value());
+    Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
+
+    // Read the first word and compare to native_context_map(),
+    cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
+        isolate()->factory()->native_context_map());
+    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
+  }
+
+  int token_offset = Context::kHeaderSize +
+                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
+  mov(scratch1, FieldOperand(scratch1, token_offset));
+  cmp(scratch1, FieldOperand(scratch2, token_offset));
+  j(not_equal, miss);
+
+  bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key.  This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
+// code-stub-hydrogen.cc
+//
+// Note: r0 will contain hash code
+void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
+  // Xor original key with a seed.
+  if (serializer_enabled()) {
+    ExternalReference roots_array_start =
+        ExternalReference::roots_array_start(isolate());
+    mov(scratch, Immediate(Heap::kHashSeedRootIndex));
+    mov(scratch,
+        Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
+    SmiUntag(scratch);
+    xor_(r0, scratch);
+  } else {
+    int32_t seed = isolate()->heap()->HashSeed();
+    xor_(r0, Immediate(seed));
+  }
+
+  // hash = ~hash + (hash << 15);
+  mov(scratch, r0);
+  not_(r0);
+  shl(scratch, 15);
+  add(r0, scratch);
+  // hash = hash ^ (hash >> 12);
+  mov(scratch, r0);
+  shr(scratch, 12);
+  xor_(r0, scratch);
+  // hash = hash + (hash << 2);
+  lea(r0, Operand(r0, r0, times_4, 0));
+  // hash = hash ^ (hash >> 4);
+  mov(scratch, r0);
+  shr(scratch, 4);
+  xor_(r0, scratch);
+  // hash = hash * 2057;
+  imul(r0, r0, 2057);
+  // hash = hash ^ (hash >> 16);
+  mov(scratch, r0);
+  shr(scratch, 16);
+  xor_(r0, scratch);
+}
+
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss,
+                                              Register elements,
+                                              Register key,
+                                              Register r0,
+                                              Register r1,
+                                              Register r2,
+                                              Register result) {
+  // Register use:
+  //
+  // elements - holds the slow-case elements of the receiver and is unchanged.
+  //
+  // key      - holds the smi key on entry and is unchanged.
+  //
+  // Scratch registers:
+  //
+  // r0 - holds the untagged key on entry and holds the hash once computed.
+  //
+  // r1 - used to hold the capacity mask of the dictionary
+  //
+  // r2 - used for the index into the dictionary.
+  //
+  // result - holds the result on exit if the load succeeds and we fall through.
+
+  Label done;
+
+  GetNumberHash(r0, r1);
+
+  // Compute capacity mask.
+  mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
+  shr(r1, kSmiTagSize);  // convert smi to int
+  dec(r1);
+
+  // Generate an unrolled loop that performs a few probes before giving up.
+  for (int i = 0; i < kNumberDictionaryProbes; i++) {
+    // Use r2 for index calculations and keep the hash intact in r0.
+    mov(r2, r0);
+    // Compute the masked index: (hash + i + i * i) & mask.
+    if (i > 0) {
+      add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
+    }
+    and_(r2, r1);
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(SeededNumberDictionary::kEntrySize == 3);
+    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
+
+    // Check if the key matches.
+    cmp(key, FieldOperand(elements,
+                          r2,
+                          times_pointer_size,
+                          SeededNumberDictionary::kElementsStartOffset));
+    if (i != (kNumberDictionaryProbes - 1)) {
+      j(equal, &done);
+    } else {
+      j(not_equal, miss);
+    }
+  }
+
+  bind(&done);
+  // Check that the value is a normal propety.
+  const int kDetailsOffset =
+      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+  DCHECK_EQ(NORMAL, 0);
+  test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
+       Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
+  j(not_zero, miss);
+
+  // Get the value at the masked, scaled index.
+  const int kValueOffset =
+      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+  mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
+}
+
+
+void MacroAssembler::LoadAllocationTopHelper(Register result,
+                                             Register scratch,
+                                             AllocationFlags flags) {
+  ExternalReference allocation_top =
+      AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+  // Just return if allocation top is already known.
+  if ((flags & RESULT_CONTAINS_TOP) != 0) {
+    // No use of scratch if allocation top is provided.
+    DCHECK(scratch.is(no_reg));
+#ifdef DEBUG
+    // Assert that result actually contains top on entry.
+    cmp(result, Operand::StaticVariable(allocation_top));
+    Check(equal, kUnexpectedAllocationTop);
+#endif
+    return;
+  }
+
+  // Move address of new object to result. Use scratch register if available.
+  if (scratch.is(no_reg)) {
+    mov(result, Operand::StaticVariable(allocation_top));
+  } else {
+    mov(scratch, Immediate(allocation_top));
+    mov(result, Operand(scratch, 0));
+  }
+}
+
+
+void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
+                                               Register scratch,
+                                               AllocationFlags flags) {
+  if (emit_debug_code()) {
+    test(result_end, Immediate(kObjectAlignmentMask));
+    Check(zero, kUnalignedAllocationInNewSpace);
+  }
+
+  ExternalReference allocation_top =
+      AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+  // Update new top. Use scratch if available.
+  if (scratch.is(no_reg)) {
+    mov(Operand::StaticVariable(allocation_top), result_end);
+  } else {
+    mov(Operand(scratch, 0), result_end);
+  }
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+                              Register result,
+                              Register result_end,
+                              Register scratch,
+                              Label* gc_required,
+                              AllocationFlags flags) {
+  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
+  if (!FLAG_inline_new) {
+    if (emit_debug_code()) {
+      // Trash the registers to simulate an allocation failure.
+      mov(result, Immediate(0x7091));
+      if (result_end.is_valid()) {
+        mov(result_end, Immediate(0x7191));
+      }
+      if (scratch.is_valid()) {
+        mov(scratch, Immediate(0x7291));
+      }
+    }
+    jmp(gc_required);
+    return;
+  }
+  DCHECK(!result.is(result_end));
+
+  // Load address of new object into result.
+  LoadAllocationTopHelper(result, scratch, flags);
+
+  ExternalReference allocation_limit =
+      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+  // Align the next allocation. Storing the filler map without checking top is
+  // safe in new-space because the limit of the heap is aligned there.
+  if ((flags & DOUBLE_ALIGNMENT) != 0) {
+    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+    Label aligned;
+    test(result, Immediate(kDoubleAlignmentMask));
+    j(zero, &aligned, Label::kNear);
+    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+      cmp(result, Operand::StaticVariable(allocation_limit));
+      j(above_equal, gc_required);
+    }
+    mov(Operand(result, 0),
+        Immediate(isolate()->factory()->one_pointer_filler_map()));
+    add(result, Immediate(kDoubleSize / 2));
+    bind(&aligned);
+  }
+
+  // Calculate new top and bail out if space is exhausted.
+  Register top_reg = result_end.is_valid() ? result_end : result;
+  if (!top_reg.is(result)) {
+    mov(top_reg, result);
+  }
+  add(top_reg, Immediate(object_size));
+  j(carry, gc_required);
+  cmp(top_reg, Operand::StaticVariable(allocation_limit));
+  j(above, gc_required);
+
+  // Update allocation top.
+  UpdateAllocationTopHelper(top_reg, scratch, flags);
+
+  // Tag result if requested.
+  bool tag_result = (flags & TAG_OBJECT) != 0;
+  if (top_reg.is(result)) {
+    if (tag_result) {
+      sub(result, Immediate(object_size - kHeapObjectTag));
+    } else {
+      sub(result, Immediate(object_size));
+    }
+  } else if (tag_result) {
+    DCHECK(kHeapObjectTag == 1);
+    inc(result);
+  }
+}
+
+
+void MacroAssembler::Allocate(int header_size,
+                              ScaleFactor element_size,
+                              Register element_count,
+                              RegisterValueType element_count_type,
+                              Register result,
+                              Register result_end,
+                              Register scratch,
+                              Label* gc_required,
+                              AllocationFlags flags) {
+  DCHECK((flags & SIZE_IN_WORDS) == 0);
+  if (!FLAG_inline_new) {
+    if (emit_debug_code()) {
+      // Trash the registers to simulate an allocation failure.
+      mov(result, Immediate(0x7091));
+      mov(result_end, Immediate(0x7191));
+      if (scratch.is_valid()) {
+        mov(scratch, Immediate(0x7291));
+      }
+      // Register element_count is not modified by the function.
+    }
+    jmp(gc_required);
+    return;
+  }
+  DCHECK(!result.is(result_end));
+
+  // Load address of new object into result.
+  LoadAllocationTopHelper(result, scratch, flags);
+
+  ExternalReference allocation_limit =
+      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+  // Align the next allocation. Storing the filler map without checking top is
+  // safe in new-space because the limit of the heap is aligned there.
+  if ((flags & DOUBLE_ALIGNMENT) != 0) {
+    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+    Label aligned;
+    test(result, Immediate(kDoubleAlignmentMask));
+    j(zero, &aligned, Label::kNear);
+    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+      cmp(result, Operand::StaticVariable(allocation_limit));
+      j(above_equal, gc_required);
+    }
+    mov(Operand(result, 0),
+        Immediate(isolate()->factory()->one_pointer_filler_map()));
+    add(result, Immediate(kDoubleSize / 2));
+    bind(&aligned);
+  }
+
+  // Calculate new top and bail out if space is exhausted.
+  // We assume that element_count*element_size + header_size does not
+  // overflow.
+  if (element_count_type == REGISTER_VALUE_IS_SMI) {
+    STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
+    STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
+    STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
+    DCHECK(element_size >= times_2);
+    DCHECK(kSmiTagSize == 1);
+    element_size = static_cast<ScaleFactor>(element_size - 1);
+  } else {
+    DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
+  }
+  lea(result_end, Operand(element_count, element_size, header_size));
+  add(result_end, result);
+  j(carry, gc_required);
+  cmp(result_end, Operand::StaticVariable(allocation_limit));
+  j(above, gc_required);
+
+  if ((flags & TAG_OBJECT) != 0) {
+    DCHECK(kHeapObjectTag == 1);
+    inc(result);
+  }
+
+  // Update allocation top.
+  UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+
+void MacroAssembler::Allocate(Register object_size,
+                              Register result,
+                              Register result_end,
+                              Register scratch,
+                              Label* gc_required,
+                              AllocationFlags flags) {
+  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+  if (!FLAG_inline_new) {
+    if (emit_debug_code()) {
+      // Trash the registers to simulate an allocation failure.
+      mov(result, Immediate(0x7091));
+      mov(result_end, Immediate(0x7191));
+      if (scratch.is_valid()) {
+        mov(scratch, Immediate(0x7291));
+      }
+      // object_size is left unchanged by this function.
+    }
+    jmp(gc_required);
+    return;
+  }
+  DCHECK(!result.is(result_end));
+
+  // Load address of new object into result.
+  LoadAllocationTopHelper(result, scratch, flags);
+
+  ExternalReference allocation_limit =
+      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+  // Align the next allocation. Storing the filler map without checking top is
+  // safe in new-space because the limit of the heap is aligned there.
+  if ((flags & DOUBLE_ALIGNMENT) != 0) {
+    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+    Label aligned;
+    test(result, Immediate(kDoubleAlignmentMask));
+    j(zero, &aligned, Label::kNear);
+    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+      cmp(result, Operand::StaticVariable(allocation_limit));
+      j(above_equal, gc_required);
+    }
+    mov(Operand(result, 0),
+        Immediate(isolate()->factory()->one_pointer_filler_map()));
+    add(result, Immediate(kDoubleSize / 2));
+    bind(&aligned);
+  }
+
+  // Calculate new top and bail out if space is exhausted.
+  if (!object_size.is(result_end)) {
+    mov(result_end, object_size);
+  }
+  add(result_end, result);
+  j(carry, gc_required);
+  cmp(result_end, Operand::StaticVariable(allocation_limit));
+  j(above, gc_required);
+
+  // Tag result if requested.
+  if ((flags & TAG_OBJECT) != 0) {
+    DCHECK(kHeapObjectTag == 1);
+    inc(result);
+  }
+
+  // Update allocation top.
+  UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object) {
+  ExternalReference new_space_allocation_top =
+      ExternalReference::new_space_allocation_top_address(isolate());
+
+  // Make sure the object has no tag before resetting top.
+  and_(object, Immediate(~kHeapObjectTagMask));
+#ifdef DEBUG
+  cmp(object, Operand::StaticVariable(new_space_allocation_top));
+  Check(below, kUndoAllocationOfNonAllocatedMemory);
+#endif
+  mov(Operand::StaticVariable(new_space_allocation_top), object);
+}
+
+
+void MacroAssembler::AllocateHeapNumber(Register result,
+                                        Register scratch1,
+                                        Register scratch2,
+                                        Label* gc_required,
+                                        MutableMode mode) {
+  // Allocate heap number in new space.
+  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  Handle<Map> map = mode == MUTABLE
+      ? isolate()->factory()->mutable_heap_number_map()
+      : isolate()->factory()->heap_number_map();
+
+  // Set the map.
+  mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+                                           Register length,
+                                           Register scratch1,
+                                           Register scratch2,
+                                           Register scratch3,
+                                           Label* gc_required) {
+  // Calculate the number of bytes needed for the characters in the string while
+  // observing object alignment.
+  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  DCHECK(kShortSize == 2);
+  // scratch1 = length * 2 + kObjectAlignmentMask.
+  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
+  and_(scratch1, Immediate(~kObjectAlignmentMask));
+
+  // Allocate two byte string in new space.
+  Allocate(SeqTwoByteString::kHeaderSize,
+           times_1,
+           scratch1,
+           REGISTER_VALUE_IS_INT32,
+           result,
+           scratch2,
+           scratch3,
+           gc_required,
+           TAG_OBJECT);
+
+  // Set the map, length and hash field.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->string_map()));
+  mov(scratch1, length);
+  SmiTag(scratch1);
+  mov(FieldOperand(result, String::kLengthOffset), scratch1);
+  mov(FieldOperand(result, String::kHashFieldOffset),
+      Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateOneByteString(Register result, Register length,
+                                           Register scratch1, Register scratch2,
+                                           Register scratch3,
+                                           Label* gc_required) {
+  // Calculate the number of bytes needed for the characters in the string while
+  // observing object alignment.
+  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  mov(scratch1, length);
+  DCHECK(kCharSize == 1);
+  add(scratch1, Immediate(kObjectAlignmentMask));
+  and_(scratch1, Immediate(~kObjectAlignmentMask));
+
+  // Allocate one-byte string in new space.
+  Allocate(SeqOneByteString::kHeaderSize,
+           times_1,
+           scratch1,
+           REGISTER_VALUE_IS_INT32,
+           result,
+           scratch2,
+           scratch3,
+           gc_required,
+           TAG_OBJECT);
+
+  // Set the map, length and hash field.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->one_byte_string_map()));
+  mov(scratch1, length);
+  SmiTag(scratch1);
+  mov(FieldOperand(result, String::kLengthOffset), scratch1);
+  mov(FieldOperand(result, String::kHashFieldOffset),
+      Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateOneByteString(Register result, int length,
+                                           Register scratch1, Register scratch2,
+                                           Label* gc_required) {
+  DCHECK(length > 0);
+
+  // Allocate one-byte string in new space.
+  Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
+           gc_required, TAG_OBJECT);
+
+  // Set the map, length and hash field.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->one_byte_string_map()));
+  mov(FieldOperand(result, String::kLengthOffset),
+      Immediate(Smi::FromInt(length)));
+  mov(FieldOperand(result, String::kHashFieldOffset),
+      Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+                                        Register scratch1,
+                                        Register scratch2,
+                                        Label* gc_required) {
+  // Allocate heap number in new space.
+  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  // Set the map. The other fields are left uninitialized.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->cons_string_map()));
+}
+
+
+void MacroAssembler::AllocateOneByteConsString(Register result,
+                                               Register scratch1,
+                                               Register scratch2,
+                                               Label* gc_required) {
+  Allocate(ConsString::kSize,
+           result,
+           scratch1,
+           scratch2,
+           gc_required,
+           TAG_OBJECT);
+
+  // Set the map. The other fields are left uninitialized.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->cons_one_byte_string_map()));
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+                                          Register scratch1,
+                                          Register scratch2,
+                                          Label* gc_required) {
+  // Allocate heap number in new space.
+  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  // Set the map. The other fields are left uninitialized.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->sliced_string_map()));
+}
+
+
+void MacroAssembler::AllocateOneByteSlicedString(Register result,
+                                                 Register scratch1,
+                                                 Register scratch2,
+                                                 Label* gc_required) {
+  // Allocate heap number in new space.
+  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+           TAG_OBJECT);
+
+  // Set the map. The other fields are left uninitialized.
+  mov(FieldOperand(result, HeapObject::kMapOffset),
+      Immediate(isolate()->factory()->sliced_one_byte_string_map()));
+}
+
+
+// Copy memory, byte-by-byte, from source to destination.  Not optimized for
+// long or aligned copies.  The contents of scratch and length are destroyed.
+// Source and destination are incremented by length.
+// Many variants of movsb, loop unrolling, word moves, and indexed operands
+// have been tried here already, and this is fastest.
+// A simpler loop is faster on small copies, but 30% slower on large ones.
+// The cld() instruction must have been emitted, to set the direction flag(),
+// before calling this function.
+void MacroAssembler::CopyBytes(Register source,
+                               Register destination,
+                               Register length,
+                               Register scratch) {
+  Label short_loop, len4, len8, len12, done, short_string;
+  DCHECK(source.is(esi));
+  DCHECK(destination.is(edi));
+  DCHECK(length.is(ecx));
+  cmp(length, Immediate(4));
+  j(below, &short_string, Label::kNear);
+
+  // Because source is 4-byte aligned in our uses of this function,
+  // we keep source aligned for the rep_movs call by copying the odd bytes
+  // at the end of the ranges.
+  mov(scratch, Operand(source, length, times_1, -4));
+  mov(Operand(destination, length, times_1, -4), scratch);
+
+  cmp(length, Immediate(8));
+  j(below_equal, &len4, Label::kNear);
+  cmp(length, Immediate(12));
+  j(below_equal, &len8, Label::kNear);
+  cmp(length, Immediate(16));
+  j(below_equal, &len12, Label::kNear);
+
+  mov(scratch, ecx);
+  shr(ecx, 2);
+  rep_movs();
+  and_(scratch, Immediate(0x3));
+  add(destination, scratch);
+  jmp(&done, Label::kNear);
+
+  bind(&len12);
+  mov(scratch, Operand(source, 8));
+  mov(Operand(destination, 8), scratch);
+  bind(&len8);
+  mov(scratch, Operand(source, 4));
+  mov(Operand(destination, 4), scratch);
+  bind(&len4);
+  mov(scratch, Operand(source, 0));
+  mov(Operand(destination, 0), scratch);
+  add(destination, length);
+  jmp(&done, Label::kNear);
+
+  bind(&short_string);
+  test(length, length);
+  j(zero, &done, Label::kNear);
+
+  bind(&short_loop);
+  mov_b(scratch, Operand(source, 0));
+  mov_b(Operand(destination, 0), scratch);
+  inc(source);
+  inc(destination);
+  dec(length);
+  j(not_zero, &short_loop);
+
+  bind(&done);
+}
+
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+                                                Register end_offset,
+                                                Register filler) {
+  Label loop, entry;
+  jmp(&entry);
+  bind(&loop);
+  mov(Operand(start_offset, 0), filler);
+  add(start_offset, Immediate(kPointerSize));
+  bind(&entry);
+  cmp(start_offset, end_offset);
+  j(less, &loop);
+}
+
+
+void MacroAssembler::BooleanBitTest(Register object,
+                                    int field_offset,
+                                    int bit_index) {
+  bit_index += kSmiTagSize + kSmiShiftSize;
+  DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
+  int byte_index = bit_index / kBitsPerByte;
+  int byte_bit_index = bit_index & (kBitsPerByte - 1);
+  test_b(FieldOperand(object, field_offset + byte_index),
+         static_cast<byte>(1 << byte_bit_index));
+}
+
+
+
+void MacroAssembler::NegativeZeroTest(Register result,
+                                      Register op,
+                                      Label* then_label) {
+  Label ok;
+  test(result, result);
+  j(not_zero, &ok);
+  test(op, op);
+  j(sign, then_label);
+  bind(&ok);
+}
+
+
+void MacroAssembler::NegativeZeroTest(Register result,
+                                      Register op1,
+                                      Register op2,
+                                      Register scratch,
+                                      Label* then_label) {
+  Label ok;
+  test(result, result);
+  j(not_zero, &ok);
+  mov(scratch, op1);
+  or_(scratch, op2);
+  j(sign, then_label);
+  bind(&ok);
+}
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+                                             Register result,
+                                             Register scratch,
+                                             Label* miss,
+                                             bool miss_on_bound_function) {
+  Label non_instance;
+  if (miss_on_bound_function) {
+    // Check that the receiver isn't a smi.
+    JumpIfSmi(function, miss);
+
+    // Check that the function really is a function.
+    CmpObjectType(function, JS_FUNCTION_TYPE, result);
+    j(not_equal, miss);
+
+    // If a bound function, go to miss label.
+    mov(scratch,
+        FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
+    BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
+                   SharedFunctionInfo::kBoundFunction);
+    j(not_zero, miss);
+
+    // Make sure that the function has an instance prototype.
+    movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
+    test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
+    j(not_zero, &non_instance);
+  }
+
+  // Get the prototype or initial map from the function.
+  mov(result,
+      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // If the prototype or initial map is the hole, don't return it and
+  // simply miss the cache instead. This will allow us to allocate a
+  // prototype object on-demand in the runtime system.
+  cmp(result, Immediate(isolate()->factory()->the_hole_value()));
+  j(equal, miss);
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  CmpObjectType(result, MAP_TYPE, scratch);
+  j(not_equal, &done);
+
+  // Get the prototype from the initial map.
+  mov(result, FieldOperand(result, Map::kPrototypeOffset));
+
+  if (miss_on_bound_function) {
+    jmp(&done);
+
+    // Non-instance prototype: Fetch prototype from constructor field
+    // in initial map.
+    bind(&non_instance);
+    mov(result, FieldOperand(result, Map::kConstructorOffset));
+  }
+
+  // All done.
+  bind(&done);
+}
+
+
+void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
+  DCHECK(AllowThisStubCall(stub));  // Calls are not allowed in some stubs.
+  call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub) {
+  jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::StubReturn(int argc) {
+  DCHECK(argc >= 1 && generating_stub());
+  ret((argc - 1) * kPointerSize);
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+  return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+  // The assert checks that the constants for the maximum number of digits
+  // for an array index cached in the hash field and the number of bits
+  // reserved for it does not conflict.
+  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
+         (1 << String::kArrayIndexValueBits));
+  if (!index.is(hash)) {
+    mov(index, hash);
+  }
+  DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
+                                 SaveFPRegsMode save_doubles) {
+  // If the expected number of arguments of the runtime function is
+  // constant, we check that the actual number of arguments match the
+  // expectation.
+  CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+  // TODO(1236192): Most runtime routines don't need the number of
+  // arguments passed in because it is constant. At some point we
+  // should remove this need and make the runtime routine entry code
+  // smarter.
+  Move(eax, Immediate(num_arguments));
+  mov(ebx, Immediate(ExternalReference(f, isolate())));
+  CEntryStub ces(isolate(), 1, save_doubles);
+  CallStub(&ces);
+}
+
+
+void MacroAssembler::CallExternalReference(ExternalReference ref,
+                                           int num_arguments) {
+  mov(eax, Immediate(num_arguments));
+  mov(ebx, Immediate(ref));
+
+  CEntryStub stub(isolate(), 1);
+  CallStub(&stub);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+                                               int num_arguments,
+                                               int result_size) {
+  // TODO(1236192): Most runtime routines don't need the number of
+  // arguments passed in because it is constant. At some point we
+  // should remove this need and make the runtime routine entry code
+  // smarter.
+  Move(eax, Immediate(num_arguments));
+  JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+                                     int num_arguments,
+                                     int result_size) {
+  TailCallExternalReference(ExternalReference(fid, isolate()),
+                            num_arguments,
+                            result_size);
+}
+
+
+Operand ApiParameterOperand(int index) {
+  return Operand(esp, index * kPointerSize);
+}
+
+
+void MacroAssembler::PrepareCallApiFunction(int argc) {
+  EnterApiExitFrame(argc);
+  if (emit_debug_code()) {
+    mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
+  }
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+    Register function_address,
+    ExternalReference thunk_ref,
+    Operand thunk_last_arg,
+    int stack_space,
+    Operand return_value_operand,
+    Operand* context_restore_operand) {
+  ExternalReference next_address =
+      ExternalReference::handle_scope_next_address(isolate());
+  ExternalReference limit_address =
+      ExternalReference::handle_scope_limit_address(isolate());
+  ExternalReference level_address =
+      ExternalReference::handle_scope_level_address(isolate());
+
+  DCHECK(edx.is(function_address));
+  // Allocate HandleScope in callee-save registers.
+  mov(ebx, Operand::StaticVariable(next_address));
+  mov(edi, Operand::StaticVariable(limit_address));
+  add(Operand::StaticVariable(level_address), Immediate(1));
+
+  if (FLAG_log_timer_events) {
+    FrameScope frame(this, StackFrame::MANUAL);
+    PushSafepointRegisters();
+    PrepareCallCFunction(1, eax);
+    mov(Operand(esp, 0),
+        Immediate(ExternalReference::isolate_address(isolate())));
+    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+    PopSafepointRegisters();
+  }
+
+
+  Label profiler_disabled;
+  Label end_profiler_check;
+  mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
+  cmpb(Operand(eax, 0), 0);
+  j(zero, &profiler_disabled);
+
+  // Additional parameter is the address of the actual getter function.
+  mov(thunk_last_arg, function_address);
+  // Call the api function.
+  mov(eax, Immediate(thunk_ref));
+  call(eax);
+  jmp(&end_profiler_check);
+
+  bind(&profiler_disabled);
+  // Call the api function.
+  call(function_address);
+  bind(&end_profiler_check);
+
+  if (FLAG_log_timer_events) {
+    FrameScope frame(this, StackFrame::MANUAL);
+    PushSafepointRegisters();
+    PrepareCallCFunction(1, eax);
+    mov(Operand(esp, 0),
+        Immediate(ExternalReference::isolate_address(isolate())));
+    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+    PopSafepointRegisters();
+  }
+
+  Label prologue;
+  // Load the value from ReturnValue
+  mov(eax, return_value_operand);
+
+  Label promote_scheduled_exception;
+  Label exception_handled;
+  Label delete_allocated_handles;
+  Label leave_exit_frame;
+
+  bind(&prologue);
+  // No more valid handles (the result handle was the last one). Restore
+  // previous handle scope.
+  mov(Operand::StaticVariable(next_address), ebx);
+  sub(Operand::StaticVariable(level_address), Immediate(1));
+  Assert(above_equal, kInvalidHandleScopeLevel);
+  cmp(edi, Operand::StaticVariable(limit_address));
+  j(not_equal, &delete_allocated_handles);
+  bind(&leave_exit_frame);
+
+  // Check if the function scheduled an exception.
+  ExternalReference scheduled_exception_address =
+      ExternalReference::scheduled_exception_address(isolate());
+  cmp(Operand::StaticVariable(scheduled_exception_address),
+      Immediate(isolate()->factory()->the_hole_value()));
+  j(not_equal, &promote_scheduled_exception);
+  bind(&exception_handled);
+
+#if ENABLE_EXTRA_CHECKS
+  // Check if the function returned a valid JavaScript value.
+  Label ok;
+  Register return_value = eax;
+  Register map = ecx;
+
+  JumpIfSmi(return_value, &ok, Label::kNear);
+  mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
+
+  CmpInstanceType(map, FIRST_NONSTRING_TYPE);
+  j(below, &ok, Label::kNear);
+
+  CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
+  j(above_equal, &ok, Label::kNear);
+
+  cmp(map, isolate()->factory()->heap_number_map());
+  j(equal, &ok, Label::kNear);
+
+  cmp(return_value, isolate()->factory()->undefined_value());
+  j(equal, &ok, Label::kNear);
+
+  cmp(return_value, isolate()->factory()->true_value());
+  j(equal, &ok, Label::kNear);
+
+  cmp(return_value, isolate()->factory()->false_value());
+  j(equal, &ok, Label::kNear);
+
+  cmp(return_value, isolate()->factory()->null_value());
+  j(equal, &ok, Label::kNear);
+
+  Abort(kAPICallReturnedInvalidObject);
+
+  bind(&ok);
+#endif
+
+  bool restore_context = context_restore_operand != NULL;
+  if (restore_context) {
+    mov(esi, *context_restore_operand);
+  }
+  LeaveApiExitFrame(!restore_context);
+  ret(stack_space * kPointerSize);
+
+  bind(&promote_scheduled_exception);
+  {
+    FrameScope frame(this, StackFrame::INTERNAL);
+    CallRuntime(Runtime::kPromoteScheduledException, 0);
+  }
+  jmp(&exception_handled);
+
+  // HandleScope limit has changed. Delete allocated extensions.
+  ExternalReference delete_extensions =
+      ExternalReference::delete_handle_scope_extensions(isolate());
+  bind(&delete_allocated_handles);
+  mov(Operand::StaticVariable(limit_address), edi);
+  mov(edi, eax);
+  mov(Operand(esp, 0),
+      Immediate(ExternalReference::isolate_address(isolate())));
+  mov(eax, Immediate(delete_extensions));
+  call(eax);
+  mov(eax, edi);
+  jmp(&leave_exit_frame);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
+  // Set the entry point and jump to the C entry runtime stub.
+  mov(ebx, Immediate(ext));
+  CEntryStub ces(isolate(), 1);
+  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    Handle<Code> code_constant,
+                                    const Operand& code_operand,
+                                    Label* done,
+                                    bool* definitely_mismatches,
+                                    InvokeFlag flag,
+                                    Label::Distance done_near,
+                                    const CallWrapper& call_wrapper) {
+  bool definitely_matches = false;
+  *definitely_mismatches = false;
+  Label invoke;
+  if (expected.is_immediate()) {
+    DCHECK(actual.is_immediate());
+    if (expected.immediate() == actual.immediate()) {
+      definitely_matches = true;
+    } else {
+      mov(eax, actual.immediate());
+      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+      if (expected.immediate() == sentinel) {
+        // Don't worry about adapting arguments for builtins that
+        // don't want that done. Skip adaption code by making it look
+        // like we have a match between expected and actual number of
+        // arguments.
+        definitely_matches = true;
+      } else {
+        *definitely_mismatches = true;
+        mov(ebx, expected.immediate());
+      }
+    }
+  } else {
+    if (actual.is_immediate()) {
+      // Expected is in register, actual is immediate. This is the
+      // case when we invoke function values without going through the
+      // IC mechanism.
+      cmp(expected.reg(), actual.immediate());
+      j(equal, &invoke);
+      DCHECK(expected.reg().is(ebx));
+      mov(eax, actual.immediate());
+    } else if (!expected.reg().is(actual.reg())) {
+      // Both expected and actual are in (different) registers. This
+      // is the case when we invoke functions using call and apply.
+      cmp(expected.reg(), actual.reg());
+      j(equal, &invoke);
+      DCHECK(actual.reg().is(eax));
+      DCHECK(expected.reg().is(ebx));
+    }
+  }
+
+  if (!definitely_matches) {
+    Handle<Code> adaptor =
+        isolate()->builtins()->ArgumentsAdaptorTrampoline();
+    if (!code_constant.is_null()) {
+      mov(edx, Immediate(code_constant));
+      add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
+    } else if (!code_operand.is_reg(edx)) {
+      mov(edx, code_operand);
+    }
+
+    if (flag == CALL_FUNCTION) {
+      call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
+      call(adaptor, RelocInfo::CODE_TARGET);
+      call_wrapper.AfterCall();
+      if (!*definitely_mismatches) {
+        jmp(done, done_near);
+      }
+    } else {
+      jmp(adaptor, RelocInfo::CODE_TARGET);
+    }
+    bind(&invoke);
+  }
+}
+
+
+void MacroAssembler::InvokeCode(const Operand& code,
+                                const ParameterCount& expected,
+                                const ParameterCount& actual,
+                                InvokeFlag flag,
+                                const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  Label done;
+  bool definitely_mismatches = false;
+  InvokePrologue(expected, actual, Handle<Code>::null(), code,
+                 &done, &definitely_mismatches, flag, Label::kNear,
+                 call_wrapper);
+  if (!definitely_mismatches) {
+    if (flag == CALL_FUNCTION) {
+      call_wrapper.BeforeCall(CallSize(code));
+      call(code);
+      call_wrapper.AfterCall();
+    } else {
+      DCHECK(flag == JUMP_FUNCTION);
+      jmp(code);
+    }
+    bind(&done);
+  }
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  DCHECK(fun.is(edi));
+  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
+  SmiUntag(ebx);
+
+  ParameterCount expected(ebx);
+  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+             expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+                                    const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  // You can't call a function without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  DCHECK(fun.is(edi));
+  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+             expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+                                    const ParameterCount& expected,
+                                    const ParameterCount& actual,
+                                    InvokeFlag flag,
+                                    const CallWrapper& call_wrapper) {
+  LoadHeapObject(edi, function);
+  InvokeFunction(edi, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+                                   InvokeFlag flag,
+                                   const CallWrapper& call_wrapper) {
+  // You can't call a builtin without a valid frame.
+  DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+  // Rely on the assertion to check that the number of provided
+  // arguments match the expected number of arguments. Fake a
+  // parameter count to avoid emitting code to do the check.
+  ParameterCount expected(0);
+  GetBuiltinFunction(edi, id);
+  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+             expected, expected, flag, call_wrapper);
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+                                        Builtins::JavaScript id) {
+  // Load the JavaScript builtin function from the builtins object.
+  mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
+  mov(target, FieldOperand(target,
+                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+  DCHECK(!target.is(edi));
+  // Load the JavaScript builtin function from the builtins object.
+  GetBuiltinFunction(edi, id);
+  // Load the code entry point from the function into the target register.
+  mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+  if (context_chain_length > 0) {
+    // Move up the chain of contexts to the context containing the slot.
+    mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+    for (int i = 1; i < context_chain_length; i++) {
+      mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+    }
+  } else {
+    // Slot is in the current function context.  Move it into the
+    // destination register in case we store into it (the write barrier
+    // cannot be allowed to destroy the context in esi).
+    mov(dst, esi);
+  }
+
+  // We should not have found a with context by walking the context chain
+  // (i.e., the static scope chain and runtime context chain do not agree).
+  // A variable occurring in such a scope should have slot type LOOKUP and
+  // not CONTEXT.
+  if (emit_debug_code()) {
+    cmp(FieldOperand(dst, HeapObject::kMapOffset),
+        isolate()->factory()->with_context_map());
+    Check(not_equal, kVariableResolvedToWithContext);
+  }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+    ElementsKind expected_kind,
+    ElementsKind transitioned_kind,
+    Register map_in_out,
+    Register scratch,
+    Label* no_map_match) {
+  // Load the global or builtins object from the current context.
+  mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
+
+  // Check that the function's map is the same as the expected cached map.
+  mov(scratch, Operand(scratch,
+                       Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
+
+  size_t offset = expected_kind * kPointerSize +
+      FixedArrayBase::kHeaderSize;
+  cmp(map_in_out, FieldOperand(scratch, offset));
+  j(not_equal, no_map_match);
+
+  // Use the transitioned cached map.
+  offset = transitioned_kind * kPointerSize +
+      FixedArrayBase::kHeaderSize;
+  mov(map_in_out, FieldOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+  // Load the global or builtins object from the current context.
+  mov(function,
+      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  // Load the native context from the global or builtins object.
+  mov(function,
+      FieldOperand(function, GlobalObject::kNativeContextOffset));
+  // Load the function from the native context.
+  mov(function, Operand(function, Context::SlotOffset(index)));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+                                                  Register map) {
+  // Load the initial map.  The global functions all have initial maps.
+  mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+  if (emit_debug_code()) {
+    Label ok, fail;
+    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
+    jmp(&ok);
+    bind(&fail);
+    Abort(kGlobalFunctionsMustHaveInitialMap);
+    bind(&ok);
+  }
+}
+
+
+// Store the value in register src in the safepoint register stack
+// slot for register dst.
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
+  mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
+  mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+  mov(dst, SafepointRegisterSlot(src));
+}
+
+
+Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
+  return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+  // The registers are pushed starting with the lowest encoding,
+  // which means that lowest encodings are furthest away from
+  // the stack pointer.
+  DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
+  return kNumSafepointRegisters - reg_code - 1;
+}
+
+
+void MacroAssembler::LoadHeapObject(Register result,
+                                    Handle<HeapObject> object) {
+  AllowDeferredHandleDereference embedding_raw_address;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    mov(result, Operand::ForCell(cell));
+  } else {
+    mov(result, object);
+  }
+}
+
+
+void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
+  AllowDeferredHandleDereference using_raw_address;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    cmp(reg, Operand::ForCell(cell));
+  } else {
+    cmp(reg, object);
+  }
+}
+
+
+void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
+  AllowDeferredHandleDereference using_raw_address;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    push(Operand::ForCell(cell));
+  } else {
+    Push(object);
+  }
+}
+
+
+void MacroAssembler::Ret() {
+  ret(0);
+}
+
+
+void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
+  if (is_uint16(bytes_dropped)) {
+    ret(bytes_dropped);
+  } else {
+    pop(scratch);
+    add(esp, Immediate(bytes_dropped));
+    push(scratch);
+    ret(0);
+  }
+}
+
+
+void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
+  // Turn off the stack depth check when serializer is enabled to reduce the
+  // code size.
+  if (serializer_enabled()) return;
+  // Make sure the floating point stack is either empty or has depth items.
+  DCHECK(depth <= 7);
+  // This is very expensive.
+  DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts);
+
+  // The top-of-stack (tos) is 7 if there is one item pushed.
+  int tos = (8 - depth) % 8;
+  const int kTopMask = 0x3800;
+  push(eax);
+  fwait();
+  fnstsw_ax();
+  and_(eax, kTopMask);
+  shr(eax, 11);
+  cmp(eax, Immediate(tos));
+  Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
+  fnclex();
+  pop(eax);
+}
+
+
+void MacroAssembler::Drop(int stack_elements) {
+  if (stack_elements > 0) {
+    add(esp, Immediate(stack_elements * kPointerSize));
+  }
+}
+
+
+void MacroAssembler::Move(Register dst, Register src) {
+  if (!dst.is(src)) {
+    mov(dst, src);
+  }
+}
+
+
+void MacroAssembler::Move(Register dst, const Immediate& x) {
+  if (x.is_zero()) {
+    xor_(dst, dst);  // Shorter than mov of 32-bit immediate 0.
+  } else {
+    mov(dst, x);
+  }
+}
+
+
+void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
+  mov(dst, x);
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
+  }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    Operand operand = Operand::StaticVariable(ExternalReference(counter));
+    if (value == 1) {
+      inc(operand);
+    } else {
+      add(operand, Immediate(value));
+    }
+  }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    Operand operand = Operand::StaticVariable(ExternalReference(counter));
+    if (value == 1) {
+      dec(operand);
+    } else {
+      sub(operand, Immediate(value));
+    }
+  }
+}
+
+
+void MacroAssembler::IncrementCounter(Condition cc,
+                                      StatsCounter* counter,
+                                      int value) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    Label skip;
+    j(NegateCondition(cc), &skip);
+    pushfd();
+    IncrementCounter(counter, value);
+    popfd();
+    bind(&skip);
+  }
+}
+
+
+void MacroAssembler::DecrementCounter(Condition cc,
+                                      StatsCounter* counter,
+                                      int value) {
+  DCHECK(value > 0);
+  if (FLAG_native_code_counters && counter->Enabled()) {
+    Label skip;
+    j(NegateCondition(cc), &skip);
+    pushfd();
+    DecrementCounter(counter, value);
+    popfd();
+    bind(&skip);
+  }
+}
+
+
+void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
+  if (emit_debug_code()) Check(cc, reason);
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+  if (emit_debug_code()) {
+    Factory* factory = isolate()->factory();
+    Label ok;
+    cmp(FieldOperand(elements, HeapObject::kMapOffset),
+        Immediate(factory->fixed_array_map()));
+    j(equal, &ok);
+    cmp(FieldOperand(elements, HeapObject::kMapOffset),
+        Immediate(factory->fixed_double_array_map()));
+    j(equal, &ok);
+    cmp(FieldOperand(elements, HeapObject::kMapOffset),
+        Immediate(factory->fixed_cow_array_map()));
+    j(equal, &ok);
+    Abort(kJSObjectWithFastElementsMapHasSlowElements);
+    bind(&ok);
+  }
+}
+
+
+void MacroAssembler::Check(Condition cc, BailoutReason reason) {
+  Label L;
+  j(cc, &L);
+  Abort(reason);
+  // will not return here
+  bind(&L);
+}
+
+
+void MacroAssembler::CheckStackAlignment() {
+  int frame_alignment = base::OS::ActivationFrameAlignment();
+  int frame_alignment_mask = frame_alignment - 1;
+  if (frame_alignment > kPointerSize) {
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    Label alignment_as_expected;
+    test(esp, Immediate(frame_alignment_mask));
+    j(zero, &alignment_as_expected);
+    // Abort if stack is not aligned.
+    int3();
+    bind(&alignment_as_expected);
+  }
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+#ifdef DEBUG
+  const char* msg = GetBailoutReason(reason);
+  if (msg != NULL) {
+    RecordComment("Abort message: ");
+    RecordComment(msg);
+  }
+
+  if (FLAG_trap_on_abort) {
+    int3();
+    return;
+  }
+#endif
+
+  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
+  // Disable stub call restrictions to always allow calls to abort.
+  if (!has_frame_) {
+    // We don't actually want to generate a pile of code for this, so just
+    // claim there is a stack frame, without generating one.
+    FrameScope scope(this, StackFrame::NONE);
+    CallRuntime(Runtime::kAbort, 1);
+  } else {
+    CallRuntime(Runtime::kAbort, 1);
+  }
+  // will not return here
+  int3();
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+                                             Register descriptors) {
+  mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+  mov(dst, FieldOperand(map, Map::kBitField3Offset));
+  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object,
+                                             Register result,
+                                             Register scratch1,
+                                             Register scratch2,
+                                             Label* not_found) {
+  // Use of registers. Register result is used as a temporary.
+  Register number_string_cache = result;
+  Register mask = scratch1;
+  Register scratch = scratch2;
+
+  // Load the number string cache.
+  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+  // Make the hash mask from the length of the number string cache. It
+  // contains two elements (number and string) for each cache entry.
+  mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
+  shr(mask, kSmiTagSize + 1);  // Untag length and divide it by two.
+  sub(mask, Immediate(1));  // Make mask.
+
+  // Calculate the entry in the number string cache. The hash value in the
+  // number string cache for smis is just the smi value, and the hash for
+  // doubles is the xor of the upper and lower words. See
+  // Heap::GetNumberStringCache.
+  Label smi_hash_calculated;
+  Label load_result_from_cache;
+  Label not_smi;
+  STATIC_ASSERT(kSmiTag == 0);
+  JumpIfNotSmi(object, &not_smi, Label::kNear);
+  mov(scratch, object);
+  SmiUntag(scratch);
+  jmp(&smi_hash_calculated, Label::kNear);
+  bind(&not_smi);
+  cmp(FieldOperand(object, HeapObject::kMapOffset),
+      isolate()->factory()->heap_number_map());
+  j(not_equal, not_found);
+  STATIC_ASSERT(8 == kDoubleSize);
+  mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
+  xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
+  // Object is heap number and hash is now in scratch. Calculate cache index.
+  and_(scratch, mask);
+  Register index = scratch;
+  Register probe = mask;
+  mov(probe,
+      FieldOperand(number_string_cache,
+                   index,
+                   times_twice_pointer_size,
+                   FixedArray::kHeaderSize));
+  JumpIfSmi(probe, not_found);
+  fld_d(FieldOperand(object, HeapNumber::kValueOffset));
+  fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
+  FCmp();
+  j(parity_even, not_found);  // Bail out if NaN is involved.
+  j(not_equal, not_found);  // The cache did not contain this value.
+  jmp(&load_result_from_cache, Label::kNear);
+
+  bind(&smi_hash_calculated);
+  // Object is smi and hash is now in scratch. Calculate cache index.
+  and_(scratch, mask);
+  // Check if the entry is the smi we are looking for.
+  cmp(object,
+      FieldOperand(number_string_cache,
+                   index,
+                   times_twice_pointer_size,
+                   FixedArray::kHeaderSize));
+  j(not_equal, not_found);
+
+  // Get the result from the cache.
+  bind(&load_result_from_cache);
+  mov(result,
+      FieldOperand(number_string_cache,
+                   index,
+                   times_twice_pointer_size,
+                   FixedArray::kHeaderSize + kPointerSize));
+  IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
+    Register instance_type, Register scratch, Label* failure) {
+  if (!scratch.is(instance_type)) {
+    mov(scratch, instance_type);
+  }
+  and_(scratch,
+       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
+  cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
+  j(not_equal, failure);
+}
+
+
+void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
+                                                           Register object2,
+                                                           Register scratch1,
+                                                           Register scratch2,
+                                                           Label* failure) {
+  // Check that both objects are not smis.
+  STATIC_ASSERT(kSmiTag == 0);
+  mov(scratch1, object1);
+  and_(scratch1, object2);
+  JumpIfSmi(scratch1, failure);
+
+  // Load instance type for both strings.
+  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
+  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
+  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
+  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
+
+  // Check that both are flat one-byte strings.
+  const int kFlatOneByteStringMask =
+      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
+  const int kFlatOneByteStringTag =
+      kStringTag | kOneByteStringTag | kSeqStringTag;
+  // Interleave bits from both instance types and compare them in one check.
+  DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
+  and_(scratch1, kFlatOneByteStringMask);
+  and_(scratch2, kFlatOneByteStringMask);
+  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
+  cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
+  j(not_equal, failure);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
+                                                     Label* not_unique_name,
+                                                     Label::Distance distance) {
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  Label succeed;
+  test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+  j(zero, &succeed);
+  cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
+  j(not_equal, not_unique_name, distance);
+
+  bind(&succeed);
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
+                                               Register index,
+                                               Register value,
+                                               uint32_t encoding_mask) {
+  Label is_object;
+  JumpIfNotSmi(string, &is_object, Label::kNear);
+  Abort(kNonObject);
+  bind(&is_object);
+
+  push(value);
+  mov(value, FieldOperand(string, HeapObject::kMapOffset));
+  movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
+
+  and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
+  cmp(value, Immediate(encoding_mask));
+  pop(value);
+  Check(equal, kUnexpectedStringType);
+
+  // The index is assumed to be untagged coming in, tag it to compare with the
+  // string length without using a temp register, it is restored at the end of
+  // this function.
+  SmiTag(index);
+  Check(no_overflow, kIndexIsTooLarge);
+
+  cmp(index, FieldOperand(string, String::kLengthOffset));
+  Check(less, kIndexIsTooLarge);
+
+  cmp(index, Immediate(Smi::FromInt(0)));
+  Check(greater_equal, kIndexIsNegative);
+
+  // Restore the index
+  SmiUntag(index);
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
+  int frame_alignment = base::OS::ActivationFrameAlignment();
+  if (frame_alignment != 0) {
+    // Make stack end at alignment and make room for num_arguments words
+    // and the original value of esp.
+    mov(scratch, esp);
+    sub(esp, Immediate((num_arguments + 1) * kPointerSize));
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    and_(esp, -frame_alignment);
+    mov(Operand(esp, num_arguments * kPointerSize), scratch);
+  } else {
+    sub(esp, Immediate(num_arguments * kPointerSize));
+  }
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+                                   int num_arguments) {
+  // Trashing eax is ok as it will be the return value.
+  mov(eax, Immediate(function));
+  CallCFunction(eax, num_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+                                   int num_arguments) {
+  DCHECK(has_frame());
+  // Check stack alignment.
+  if (emit_debug_code()) {
+    CheckStackAlignment();
+  }
+
+  call(function);
+  if (base::OS::ActivationFrameAlignment() != 0) {
+    mov(esp, Operand(esp, num_arguments * kPointerSize));
+  } else {
+    add(esp, Immediate(num_arguments * kPointerSize));
+  }
+}
+
+
+#ifdef DEBUG
+bool AreAliased(Register reg1,
+                Register reg2,
+                Register reg3,
+                Register reg4,
+                Register reg5,
+                Register reg6,
+                Register reg7,
+                Register reg8) {
+  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
+      reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
+      reg7.is_valid() + reg8.is_valid();
+
+  RegList regs = 0;
+  if (reg1.is_valid()) regs |= reg1.bit();
+  if (reg2.is_valid()) regs |= reg2.bit();
+  if (reg3.is_valid()) regs |= reg3.bit();
+  if (reg4.is_valid()) regs |= reg4.bit();
+  if (reg5.is_valid()) regs |= reg5.bit();
+  if (reg6.is_valid()) regs |= reg6.bit();
+  if (reg7.is_valid()) regs |= reg7.bit();
+  if (reg8.is_valid()) regs |= reg8.bit();
+  int n_of_non_aliasing_regs = NumRegs(regs);
+
+  return n_of_valid_regs != n_of_non_aliasing_regs;
+}
+#endif
+
+
+CodePatcher::CodePatcher(byte* address, int size)
+    : address_(address),
+      size_(size),
+      masm_(NULL, address, size + Assembler::kGap) {
+  // Create a new macro assembler pointing to the address of the code to patch.
+  // The size is adjusted with kGap on order for the assembler to generate size
+  // bytes of instructions without failing with buffer size constraints.
+  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+  // Indicate that code has changed.
+  CpuFeatures::FlushICache(address_, size_);
+
+  // Check that the code was patched as expected.
+  DCHECK(masm_.pc_ == address_ + size_);
+  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void MacroAssembler::CheckPageFlag(
+    Register object,
+    Register scratch,
+    int mask,
+    Condition cc,
+    Label* condition_met,
+    Label::Distance condition_met_distance) {
+  DCHECK(cc == zero || cc == not_zero);
+  if (scratch.is(object)) {
+    and_(scratch, Immediate(~Page::kPageAlignmentMask));
+  } else {
+    mov(scratch, Immediate(~Page::kPageAlignmentMask));
+    and_(scratch, object);
+  }
+  if (mask < (1 << kBitsPerByte)) {
+    test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
+           static_cast<uint8_t>(mask));
+  } else {
+    test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
+  }
+  j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::CheckPageFlagForMap(
+    Handle<Map> map,
+    int mask,
+    Condition cc,
+    Label* condition_met,
+    Label::Distance condition_met_distance) {
+  DCHECK(cc == zero || cc == not_zero);
+  Page* page = Page::FromAddress(map->address());
+  DCHECK(!serializer_enabled());  // Serializer cannot match page_flags.
+  ExternalReference reference(ExternalReference::page_flags(page));
+  // The inlined static address check of the page's flags relies
+  // on maps never being compacted.
+  DCHECK(!isolate()->heap()->mark_compact_collector()->
+         IsOnEvacuationCandidate(*map));
+  if (mask < (1 << kBitsPerByte)) {
+    test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
+  } else {
+    test(Operand::StaticVariable(reference), Immediate(mask));
+  }
+  j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
+                                        Register scratch,
+                                        Label* if_deprecated) {
+  if (map->CanBeDeprecated()) {
+    mov(scratch, map);
+    mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
+    and_(scratch, Immediate(Map::Deprecated::kMask));
+    j(not_zero, if_deprecated);
+  }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+                                 Register scratch0,
+                                 Register scratch1,
+                                 Label* on_black,
+                                 Label::Distance on_black_near) {
+  HasColor(object, scratch0, scratch1,
+           on_black, on_black_near,
+           1, 0);  // kBlackBitPattern.
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+                              Register bitmap_scratch,
+                              Register mask_scratch,
+                              Label* has_color,
+                              Label::Distance has_color_distance,
+                              int first_bit,
+                              int second_bit) {
+  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
+
+  GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+  Label other_color, word_boundary;
+  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
+  add(mask_scratch, mask_scratch);  // Shift left 1 by adding.
+  j(zero, &word_boundary, Label::kNear);
+  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+  jmp(&other_color, Label::kNear);
+
+  bind(&word_boundary);
+  test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
+
+  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+  bind(&other_color);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+                                 Register bitmap_reg,
+                                 Register mask_reg) {
+  DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
+  mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
+  and_(bitmap_reg, addr_reg);
+  mov(ecx, addr_reg);
+  int shift =
+      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
+  shr(ecx, shift);
+  and_(ecx,
+       (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
+
+  add(bitmap_reg, ecx);
+  mov(ecx, addr_reg);
+  shr(ecx, kPointerSizeLog2);
+  and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
+  mov(mask_reg, Immediate(1));
+  shl_cl(mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+    Register value,
+    Register bitmap_scratch,
+    Register mask_scratch,
+    Label* value_is_white_and_not_data,
+    Label::Distance distance) {
+  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
+  GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+  // If the value is black or grey we don't need to do anything.
+  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+  Label done;
+
+  // Since both black and grey have a 1 in the first position and white does
+  // not have a 1 there we only need to check one bit.
+  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+  j(not_zero, &done, Label::kNear);
+
+  if (emit_debug_code()) {
+    // Check for impossible bit pattern.
+    Label ok;
+    push(mask_scratch);
+    // shl.  May overflow making the check conservative.
+    add(mask_scratch, mask_scratch);
+    test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+    j(zero, &ok, Label::kNear);
+    int3();
+    bind(&ok);
+    pop(mask_scratch);
+  }
+
+  // Value is white.  We check whether it is data that doesn't need scanning.
+  // Currently only checks for HeapNumber and non-cons strings.
+  Register map = ecx;  // Holds map while checking type.
+  Register length = ecx;  // Holds length of object after checking type.
+  Label not_heap_number;
+  Label is_data_object;
+
+  // Check for heap-number
+  mov(map, FieldOperand(value, HeapObject::kMapOffset));
+  cmp(map, isolate()->factory()->heap_number_map());
+  j(not_equal, &not_heap_number, Label::kNear);
+  mov(length, Immediate(HeapNumber::kSize));
+  jmp(&is_data_object, Label::kNear);
+
+  bind(&not_heap_number);
+  // Check for strings.
+  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+  // If it's a string and it's not a cons string then it's an object containing
+  // no GC pointers.
+  Register instance_type = ecx;
+  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+  test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
+  j(not_zero, value_is_white_and_not_data);
+  // It's a non-indirect (non-cons and non-slice) string.
+  // If it's external, the length is just ExternalString::kSize.
+  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+  Label not_external;
+  // External strings are the only ones with the kExternalStringTag bit
+  // set.
+  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
+  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
+  test_b(instance_type, kExternalStringTag);
+  j(zero, &not_external, Label::kNear);
+  mov(length, Immediate(ExternalString::kSize));
+  jmp(&is_data_object, Label::kNear);
+
+  bind(&not_external);
+  // Sequential string, either Latin1 or UC16.
+  DCHECK(kOneByteStringTag == 0x04);
+  and_(length, Immediate(kStringEncodingMask));
+  xor_(length, Immediate(kStringEncodingMask));
+  add(length, Immediate(0x04));
+  // Value now either 4 (if Latin1) or 8 (if UC16), i.e., char-size shifted
+  // by 2. If we multiply the string length as smi by this, it still
+  // won't overflow a 32-bit value.
+  DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
+  DCHECK(SeqOneByteString::kMaxSize <=
+         static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
+  imul(length, FieldOperand(value, String::kLengthOffset));
+  shr(length, 2 + kSmiTagSize + kSmiShiftSize);
+  add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
+  and_(length, Immediate(~kObjectAlignmentMask));
+
+  bind(&is_data_object);
+  // Value is a data object, and it is white.  Mark it black.  Since we know
+  // that the object is white we can make it black by flipping one bit.
+  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
+
+  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
+  add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
+      length);
+  if (emit_debug_code()) {
+    mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+    cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
+    Check(less_equal, kLiveBytesCountOverflowChunkSize);
+  }
+
+  bind(&done);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+  mov(dst, FieldOperand(map, Map::kBitField3Offset));
+  and_(dst, Immediate(Map::EnumLengthBits::kMask));
+  SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Label* call_runtime) {
+  Label next, start;
+  mov(ecx, eax);
+
+  // Check if the enum length field is properly initialized, indicating that
+  // there is an enum cache.
+  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+  EnumLength(edx, ebx);
+  cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
+  j(equal, call_runtime);
+
+  jmp(&start);
+
+  bind(&next);
+  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+  // For all objects but the receiver, check that the cache is empty.
+  EnumLength(edx, ebx);
+  cmp(edx, Immediate(Smi::FromInt(0)));
+  j(not_equal, call_runtime);
+
+  bind(&start);
+
+  // Check that there are no elements. Register rcx contains the current JS
+  // object we've reached through the prototype chain.
+  Label no_elements;
+  mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
+  cmp(ecx, isolate()->factory()->empty_fixed_array());
+  j(equal, &no_elements);
+
+  // Second chance, the object may be using the empty slow element dictionary.
+  cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
+  j(not_equal, call_runtime);
+
+  bind(&no_elements);
+  mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
+  cmp(ecx, isolate()->factory()->null_value());
+  j(not_equal, &next);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(
+    Register receiver_reg,
+    Register scratch_reg,
+    Label* no_memento_found) {
+  ExternalReference new_space_start =
+      ExternalReference::new_space_start(isolate());
+  ExternalReference new_space_allocation_top =
+      ExternalReference::new_space_allocation_top_address(isolate());
+
+  lea(scratch_reg, Operand(receiver_reg,
+      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
+  cmp(scratch_reg, Immediate(new_space_start));
+  j(less, no_memento_found);
+  cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
+  j(greater, no_memento_found);
+  cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
+      Immediate(isolate()->factory()->allocation_memento_map()));
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(
+    Register object,
+    Register scratch0,
+    Register scratch1,
+    Label* found) {
+  DCHECK(!scratch1.is(scratch0));
+  Factory* factory = isolate()->factory();
+  Register current = scratch0;
+  Label loop_again;
+
+  // scratch contained elements pointer.
+  mov(current, object);
+
+  // Loop based on the map going up the prototype chain.
+  bind(&loop_again);
+  mov(current, FieldOperand(current, HeapObject::kMapOffset));
+  mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
+  DecodeField<Map::ElementsKindBits>(scratch1);
+  cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
+  j(equal, found);
+  mov(current, FieldOperand(current, Map::kPrototypeOffset));
+  cmp(current, Immediate(factory->null_value()));
+  j(not_equal, &loop_again);
+}
+
+
+void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
+  DCHECK(!dividend.is(eax));
+  DCHECK(!dividend.is(edx));
+  base::MagicNumbersForDivision<uint32_t> mag =
+      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
+  mov(eax, Immediate(mag.multiplier));
+  imul(dividend);
+  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
+  if (divisor > 0 && neg) add(edx, dividend);
+  if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
+  if (mag.shift > 0) sar(edx, mag.shift);
+  mov(eax, dividend);
+  shr(eax, 31);
+  add(edx, eax);
+}
+
+
+} }  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_X87