Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/third_party/fdlibm/LICENSE b/third_party/fdlibm/LICENSE
new file mode 100644
index 0000000..b54cb52
--- /dev/null
+++ b/third_party/fdlibm/LICENSE
@@ -0,0 +1,6 @@
+Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
+
+Developed at SunSoft, a Sun Microsystems, Inc. business.
+Permission to use, copy, modify, and distribute this
+software is freely granted, provided that this notice
+is preserved.
diff --git a/third_party/fdlibm/README.v8 b/third_party/fdlibm/README.v8
new file mode 100644
index 0000000..ea8fdb6
--- /dev/null
+++ b/third_party/fdlibm/README.v8
@@ -0,0 +1,18 @@
+Name: Freely Distributable LIBM 
+Short Name: fdlibm
+URL: http://www.netlib.org/fdlibm/
+Version: 5.3 
+License: Freely Distributable.
+License File: LICENSE.
+Security Critical: yes.
+License Android Compatible: yes.
+
+Description:
+This is used to provide a accurate implementation for trigonometric functions
+used in V8.
+
+Local Modifications:
+For the use in V8, fdlibm has been reduced to include only sine, cosine and
+tangent.  To make inlining into generated code possible, a large portion of
+that has been translated to Javascript.  The rest remains in C, but has been
+refactored and reformatted to interoperate with the rest of V8.
diff --git a/third_party/fdlibm/fdlibm.cc b/third_party/fdlibm/fdlibm.cc
new file mode 100644
index 0000000..c009cd0
--- /dev/null
+++ b/third_party/fdlibm/fdlibm.cc
@@ -0,0 +1,281 @@
+// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#include "src/v8.h"
+
+#include "src/double.h"
+#include "third_party/fdlibm/fdlibm.h"
+
+
+namespace v8 {
+namespace fdlibm {
+
+#ifdef _MSC_VER
+inline double scalbn(double x, int y) { return _scalb(x, y); }
+#endif  // _MSC_VER
+
+const double MathConstants::constants[] = {
+    6.36619772367581382433e-01,   // invpio2   0
+    1.57079632673412561417e+00,   // pio2_1    1
+    6.07710050650619224932e-11,   // pio2_1t   2
+    6.07710050630396597660e-11,   // pio2_2    3
+    2.02226624879595063154e-21,   // pio2_2t   4
+    2.02226624871116645580e-21,   // pio2_3    5
+    8.47842766036889956997e-32,   // pio2_3t   6
+    -1.66666666666666324348e-01,  // S1        7  coefficients for sin
+    8.33333333332248946124e-03,   //           8
+    -1.98412698298579493134e-04,  //           9
+    2.75573137070700676789e-06,   //          10
+    -2.50507602534068634195e-08,  //          11
+    1.58969099521155010221e-10,   // S6       12
+    4.16666666666666019037e-02,   // C1       13  coefficients for cos
+    -1.38888888888741095749e-03,  //          14
+    2.48015872894767294178e-05,   //          15
+    -2.75573143513906633035e-07,  //          16
+    2.08757232129817482790e-09,   //          17
+    -1.13596475577881948265e-11,  // C6       18
+    3.33333333333334091986e-01,   // T0       19  coefficients for tan
+    1.33333333333201242699e-01,   //          20
+    5.39682539762260521377e-02,   //          21
+    2.18694882948595424599e-02,   //          22
+    8.86323982359930005737e-03,   //          23
+    3.59207910759131235356e-03,   //          24
+    1.45620945432529025516e-03,   //          25
+    5.88041240820264096874e-04,   //          26
+    2.46463134818469906812e-04,   //          27
+    7.81794442939557092300e-05,   //          28
+    7.14072491382608190305e-05,   //          29
+    -1.85586374855275456654e-05,  //          30
+    2.59073051863633712884e-05,   // T12      31
+    7.85398163397448278999e-01,   // pio4     32
+    3.06161699786838301793e-17,   // pio4lo   33
+    6.93147180369123816490e-01,   // ln2_hi   34
+    1.90821492927058770002e-10,   // ln2_lo   35
+    1.80143985094819840000e+16,   // 2^54     36
+    6.666666666666666666e-01,     // 2/3      37
+    6.666666666666735130e-01,     // LP1      38  coefficients for log1p
+    3.999999999940941908e-01,     //          39
+    2.857142874366239149e-01,     //          40
+    2.222219843214978396e-01,     //          41
+    1.818357216161805012e-01,     //          42
+    1.531383769920937332e-01,     //          43
+    1.479819860511658591e-01,     // LP7      44
+    7.09782712893383973096e+02,   //          45  overflow threshold for expm1
+    1.44269504088896338700e+00,   // 1/ln2    46
+    -3.33333333333331316428e-02,  // Q1       47  coefficients for expm1
+    1.58730158725481460165e-03,   //          48
+    -7.93650757867487942473e-05,  //          49
+    4.00821782732936239552e-06,   //          50
+    -2.01099218183624371326e-07,  // Q5       51
+    710.4758600739439             //          52  overflow threshold sinh, cosh
+};
+
+
+// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+static const int two_over_pi[] = {
+    0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
+    0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
+    0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
+    0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
+    0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
+    0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+    0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
+    0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
+    0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+    0x73A8C9, 0x60E27B, 0xC08C6B};
+
+static const double zero = 0.0;
+static const double two24 = 1.6777216e+07;
+static const double one = 1.0;
+static const double twon24 = 5.9604644775390625e-08;
+
+static const double PIo2[] = {
+    1.57079625129699707031e+00,  // 0x3FF921FB, 0x40000000
+    7.54978941586159635335e-08,  // 0x3E74442D, 0x00000000
+    5.39030252995776476554e-15,  // 0x3CF84698, 0x80000000
+    3.28200341580791294123e-22,  // 0x3B78CC51, 0x60000000
+    1.27065575308067607349e-29,  // 0x39F01B83, 0x80000000
+    1.22933308981111328932e-36,  // 0x387A2520, 0x40000000
+    2.73370053816464559624e-44,  // 0x36E38222, 0x80000000
+    2.16741683877804819444e-51   // 0x3569F31D, 0x00000000
+};
+
+
+int __kernel_rem_pio2(double* x, double* y, int e0, int nx) {
+  static const int32_t jk = 3;
+  double fw;
+  int32_t jx = nx - 1;
+  int32_t jv = (e0 - 3) / 24;
+  if (jv < 0) jv = 0;
+  int32_t q0 = e0 - 24 * (jv + 1);
+  int32_t m = jx + jk;
+
+  double f[10];
+  for (int i = 0, j = jv - jx; i <= m; i++, j++) {
+    f[i] = (j < 0) ? zero : static_cast<double>(two_over_pi[j]);
+  }
+
+  double q[10];
+  for (int i = 0; i <= jk; i++) {
+    fw = 0.0;
+    for (int j = 0; j <= jx; j++) fw += x[j] * f[jx + i - j];
+    q[i] = fw;
+  }
+
+  int32_t jz = jk;
+
+recompute:
+
+  int32_t iq[10];
+  double z = q[jz];
+  for (int i = 0, j = jz; j > 0; i++, j--) {
+    fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
+    iq[i] = static_cast<int32_t>(z - two24 * fw);
+    z = q[j - 1] + fw;
+  }
+
+  z = scalbn(z, q0);
+  z -= 8.0 * std::floor(z * 0.125);
+  int32_t n = static_cast<int32_t>(z);
+  z -= static_cast<double>(n);
+  int32_t ih = 0;
+  if (q0 > 0) {
+    int32_t i = (iq[jz - 1] >> (24 - q0));
+    n += i;
+    iq[jz - 1] -= i << (24 - q0);
+    ih = iq[jz - 1] >> (23 - q0);
+  } else if (q0 == 0) {
+    ih = iq[jz - 1] >> 23;
+  } else if (z >= 0.5) {
+    ih = 2;
+  }
+
+  if (ih > 0) {
+    n += 1;
+    int32_t carry = 0;
+    for (int i = 0; i < jz; i++) {
+      int32_t j = iq[i];
+      if (carry == 0) {
+        if (j != 0) {
+          carry = 1;
+          iq[i] = 0x1000000 - j;
+        }
+      } else {
+        iq[i] = 0xffffff - j;
+      }
+    }
+    if (q0 == 1) {
+      iq[jz - 1] &= 0x7fffff;
+    } else if (q0 == 2) {
+      iq[jz - 1] &= 0x3fffff;
+    }
+    if (ih == 2) {
+      z = one - z;
+      if (carry != 0) z -= scalbn(one, q0);
+    }
+  }
+
+  if (z == zero) {
+    int32_t j = 0;
+    for (int i = jz - 1; i >= jk; i--) j |= iq[i];
+    if (j == 0) {
+      int32_t k = 1;
+      while (iq[jk - k] == 0) k++;
+      for (int i = jz + 1; i <= jz + k; i++) {
+        f[jx + i] = static_cast<double>(two_over_pi[jv + i]);
+        for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
+        q[i] = fw;
+      }
+      jz += k;
+      goto recompute;
+    }
+  }
+
+  if (z == 0.0) {
+    jz -= 1;
+    q0 -= 24;
+    while (iq[jz] == 0) {
+      jz--;
+      q0 -= 24;
+    }
+  } else {
+    z = scalbn(z, -q0);
+    if (z >= two24) {
+      fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
+      iq[jz] = static_cast<int32_t>(z - two24 * fw);
+      jz += 1;
+      q0 += 24;
+      iq[jz] = static_cast<int32_t>(fw);
+    } else {
+      iq[jz] = static_cast<int32_t>(z);
+    }
+  }
+
+  fw = scalbn(one, q0);
+  for (int i = jz; i >= 0; i--) {
+    q[i] = fw * static_cast<double>(iq[i]);
+    fw *= twon24;
+  }
+
+  double fq[10];
+  for (int i = jz; i >= 0; i--) {
+    fw = 0.0;
+    for (int k = 0; k <= jk && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
+    fq[jz - i] = fw;
+  }
+
+  fw = 0.0;
+  for (int i = jz; i >= 0; i--) fw += fq[i];
+  y[0] = (ih == 0) ? fw : -fw;
+  fw = fq[0] - fw;
+  for (int i = 1; i <= jz; i++) fw += fq[i];
+  y[1] = (ih == 0) ? fw : -fw;
+  return n & 7;
+}
+
+
+int rempio2(double x, double* y) {
+  int32_t hx = static_cast<int32_t>(internal::double_to_uint64(x) >> 32);
+  int32_t ix = hx & 0x7fffffff;
+
+  if (ix >= 0x7ff00000) {
+    *y = base::OS::nan_value();
+    return 0;
+  }
+
+  int32_t e0 = (ix >> 20) - 1046;
+  uint64_t zi = internal::double_to_uint64(x) & 0xFFFFFFFFu;
+  zi |= static_cast<uint64_t>(ix - (e0 << 20)) << 32;
+  double z = internal::uint64_to_double(zi);
+
+  double tx[3];
+  for (int i = 0; i < 2; i++) {
+    tx[i] = static_cast<double>(static_cast<int32_t>(z));
+    z = (z - tx[i]) * two24;
+  }
+  tx[2] = z;
+
+  int nx = 3;
+  while (tx[nx - 1] == zero) nx--;
+  int n = __kernel_rem_pio2(tx, y, e0, nx);
+  if (hx < 0) {
+    y[0] = -y[0];
+    y[1] = -y[1];
+    return -n;
+  }
+  return n;
+}
+}
+}  // namespace v8::internal
diff --git a/third_party/fdlibm/fdlibm.h b/third_party/fdlibm/fdlibm.h
new file mode 100644
index 0000000..cadf85b
--- /dev/null
+++ b/third_party/fdlibm/fdlibm.h
@@ -0,0 +1,31 @@
+// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#ifndef V8_FDLIBM_H_
+#define V8_FDLIBM_H_
+
+namespace v8 {
+namespace fdlibm {
+
+int rempio2(double x, double* y);
+
+// Constants to be exposed to builtins via Float64Array.
+struct MathConstants {
+  static const double constants[53];
+};
+}
+}  // namespace v8::internal
+
+#endif  // V8_FDLIBM_H_
diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js
new file mode 100644
index 0000000..7fd9adf
--- /dev/null
+++ b/third_party/fdlibm/fdlibm.js
@@ -0,0 +1,814 @@
+// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
+//
+// ====================================================
+// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+//
+// The following is a straightforward translation of fdlibm routines
+// by Raymond Toy (rtoy@google.com).
+
+// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
+// and exposed through kMath as typed array. We assume the compiler to convert
+// from decimal to binary accurately enough to produce the intended values.
+// kMath is initialized to a Float64Array during genesis and not writable.
+var kMath;
+
+const INVPIO2 = kMath[0];
+const PIO2_1  = kMath[1];
+const PIO2_1T = kMath[2];
+const PIO2_2  = kMath[3];
+const PIO2_2T = kMath[4];
+const PIO2_3  = kMath[5];
+const PIO2_3T = kMath[6];
+const PIO4    = kMath[32];
+const PIO4LO  = kMath[33];
+
+// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
+// precision, r is returned as two values y0 and y1 such that r = y0 + y1
+// to more than double precision.
+macro REMPIO2(X)
+  var n, y0, y1;
+  var hx = %_DoubleHi(X);
+  var ix = hx & 0x7fffffff;
+
+  if (ix < 0x4002d97c) {
+    // |X| ~< 3*pi/4, special case with n = +/- 1
+    if (hx > 0) {
+      var z = X - PIO2_1;
+      if (ix != 0x3ff921fb) {
+        // 33+53 bit pi is good enough
+        y0 = z - PIO2_1T;
+        y1 = (z - y0) - PIO2_1T;
+      } else {
+        // near pi/2, use 33+33+53 bit pi
+        z -= PIO2_2;
+        y0 = z - PIO2_2T;
+        y1 = (z - y0) - PIO2_2T;
+      }
+      n = 1;
+    } else {
+      // Negative X
+      var z = X + PIO2_1;
+      if (ix != 0x3ff921fb) {
+        // 33+53 bit pi is good enough
+        y0 = z + PIO2_1T;
+        y1 = (z - y0) + PIO2_1T;
+      } else {
+        // near pi/2, use 33+33+53 bit pi
+        z += PIO2_2;
+        y0 = z + PIO2_2T;
+        y1 = (z - y0) + PIO2_2T;
+      }
+      n = -1;
+    }
+  } else if (ix <= 0x413921fb) {
+    // |X| ~<= 2^19*(pi/2), medium size
+    var t = MathAbs(X);
+    n = (t * INVPIO2 + 0.5) | 0;
+    var r = t - n * PIO2_1;
+    var w = n * PIO2_1T;
+    // First round good to 85 bit
+    y0 = r - w;
+    if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
+      // 2nd iteration needed, good to 118
+      t = r;
+      w = n * PIO2_2;
+      r = t - w;
+      w = n * PIO2_2T - ((t - r) - w);
+      y0 = r - w;
+      if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
+        // 3rd iteration needed. 151 bits accuracy
+        t = r;
+        w = n * PIO2_3;
+        r = t - w;
+        w = n * PIO2_3T - ((t - r) - w);
+        y0 = r - w;
+      }
+    }
+    y1 = (r - y0) - w;
+    if (hx < 0) {
+      n = -n;
+      y0 = -y0;
+      y1 = -y1;
+    }
+  } else {
+    // Need to do full Payne-Hanek reduction here.
+    var r = %RemPiO2(X);
+    n = r[0];
+    y0 = r[1];
+    y1 = r[2];
+  }
+endmacro
+
+
+// __kernel_sin(X, Y, IY)
+// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+// Input X is assumed to be bounded by ~pi/4 in magnitude.
+// Input Y is the tail of X so that x = X + Y.
+//
+// Algorithm
+//  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
+//  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
+//     [0,pi/4]
+//                           3            13
+//          sin(x) ~ x + S1*x + ... + S6*x
+//     where
+//
+//    |ieee_sin(x)    2     4     6     8     10     12  |     -58
+//    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
+//    |  x                                               |
+//
+//  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
+//              ~ ieee_sin(X) + (1-X*X/2)*Y
+//     For better accuracy, let
+//               3      2      2      2      2
+//          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
+//     then                   3    2
+//          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
+//
+macro KSIN(x)
+kMath[7+x]
+endmacro
+
+macro RETURN_KERNELSIN(X, Y, SIGN)
+  var z = X * X;
+  var v = z * X;
+  var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
+                    z * (KSIN(4) + z * KSIN(5))));
+  return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
+endmacro
+
+// __kernel_cos(X, Y)
+// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+// Input X is assumed to be bounded by ~pi/4 in magnitude.
+// Input Y is the tail of X so that x = X + Y.
+//
+// Algorithm
+//  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
+//  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
+//     [0,pi/4]
+//                                   4            14
+//          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+//     where the remez error is
+//
+//  |                   2     4     6     8     10    12     14 |     -58
+//  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
+//  |                                                           |
+//
+//                 4     6     8     10    12     14
+//  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
+//         ieee_cos(x) = 1 - x*x/2 + r
+//     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
+//                    ~ ieee_cos(X) - X*Y,
+//     a correction term is necessary in ieee_cos(x) and hence
+//         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
+//     For better accuracy when x > 0.3, let qx = |x|/4 with
+//     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+//     Then
+//         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
+//     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
+//     magnitude of the latter is at least a quarter of X*X/2,
+//     thus, reducing the rounding error in the subtraction.
+//
+macro KCOS(x)
+kMath[13+x]
+endmacro
+
+macro RETURN_KERNELCOS(X, Y, SIGN)
+  var ix = %_DoubleHi(X) & 0x7fffffff;
+  var z = X * X;
+  var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
+          z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
+  if (ix < 0x3fd33333) {  // |x| ~< 0.3
+    return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
+  } else {
+    var qx;
+    if (ix > 0x3fe90000) {  // |x| > 0.78125
+      qx = 0.28125;
+    } else {
+      qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
+    }
+    var hz = 0.5 * z - qx;
+    return (1 - qx - (hz - (z * r - X * Y))) SIGN;
+  }
+endmacro
+
+
+// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
+// is returned.
+//
+// Algorithm
+//  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
+//  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+//  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
+//     [0,0.67434]
+//                           3             27
+//          tan(x) ~ x + T1*x + ... + T13*x
+//     where
+//
+//     |ieee_tan(x)    2     4            26   |     -59.2
+//     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
+//     |  x                                    |
+//
+//     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
+//                    ~ ieee_tan(x) + (1+x*x)*y
+//     Therefore, for better accuracy in computing ieee_tan(x+y), let
+//               3      2      2       2       2
+//          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+//     then
+//                              3    2
+//          tan(x+y) = x + (T1*x + (x *(r+y)+y))
+//
+//  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
+//          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
+//                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
+//
+// Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
+// and will cause incorrect results.
+//
+macro KTAN(x)
+kMath[19+x]
+endmacro
+
+function KernelTan(x, y, returnTan) {
+  var z;
+  var w;
+  var hx = %_DoubleHi(x);
+  var ix = hx & 0x7fffffff;
+
+  if (ix < 0x3e300000) {  // |x| < 2^-28
+    if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
+      // x == 0 && returnTan = -1
+      return 1 / MathAbs(x);
+    } else {
+      if (returnTan == 1) {
+        return x;
+      } else {
+        // Compute -1/(x + y) carefully
+        var w = x + y;
+        var z = %_ConstructDouble(%_DoubleHi(w), 0);
+        var v = y - (z - x);
+        var a = -1 / w;
+        var t = %_ConstructDouble(%_DoubleHi(a), 0);
+        var s = 1 + t * z;
+        return t + a * (s + t * v);
+      }
+    }
+  }
+  if (ix >= 0x3fe59428) {  // |x| > .6744
+    if (x < 0) {
+      x = -x;
+      y = -y;
+    }
+    z = PIO4 - x;
+    w = PIO4LO - y;
+    x = z + w;
+    y = 0;
+  }
+  z = x * x;
+  w = z * z;
+
+  // Break x^5 * (T1 + x^2*T2 + ...) into
+  // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
+  // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
+  var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
+                    w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
+  var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
+                         w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
+  var s = z * x;
+  r = y + z * (s * (r + v) + y);
+  r = r + KTAN(0) * s;
+  w = x + r;
+  if (ix >= 0x3fe59428) {
+    return (1 - ((hx >> 30) & 2)) *
+      (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
+  }
+  if (returnTan == 1) {
+    return w;
+  } else {
+    z = %_ConstructDouble(%_DoubleHi(w), 0);
+    v = r - (z - x);
+    var a = -1 / w;
+    var t = %_ConstructDouble(%_DoubleHi(a), 0);
+    s = 1 + t * z;
+    return t + a * (s + t * v);
+  }
+}
+
+function MathSinSlow(x) {
+  REMPIO2(x);
+  var sign = 1 - (n & 2);
+  if (n & 1) {
+    RETURN_KERNELCOS(y0, y1, * sign);
+  } else {
+    RETURN_KERNELSIN(y0, y1, * sign);
+  }
+}
+
+function MathCosSlow(x) {
+  REMPIO2(x);
+  if (n & 1) {
+    var sign = (n & 2) - 1;
+    RETURN_KERNELSIN(y0, y1, * sign);
+  } else {
+    var sign = 1 - (n & 2);
+    RETURN_KERNELCOS(y0, y1, * sign);
+  }
+}
+
+// ECMA 262 - 15.8.2.16
+function MathSin(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    RETURN_KERNELSIN(x, 0, /* empty */);
+  }
+  return MathSinSlow(x);
+}
+
+// ECMA 262 - 15.8.2.7
+function MathCos(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    RETURN_KERNELCOS(x, 0, /* empty */);
+  }
+  return MathCosSlow(x);
+}
+
+// ECMA 262 - 15.8.2.18
+function MathTan(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    return KernelTan(x, 0, 1);
+  }
+  REMPIO2(x);
+  return KernelTan(y0, y1, (n & 1) ? -1 : 1);
+}
+
+// ES6 draft 09-27-13, section 20.2.2.20.
+// Math.log1p
+//
+// Method :
+//   1. Argument Reduction: find k and f such that
+//                      1+x = 2^k * (1+f),
+//         where  sqrt(2)/2 < 1+f < sqrt(2) .
+//
+//      Note. If k=0, then f=x is exact. However, if k!=0, then f
+//      may not be representable exactly. In that case, a correction
+//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+//      and add back the correction term c/u.
+//      (Note: when x > 2**53, one can simply return log(x))
+//
+//   2. Approximation of log1p(f).
+//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+//            = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+//            = 2s + s*R
+//      We use a special Reme algorithm on [0,0.1716] to generate
+//      a polynomial of degree 14 to approximate R The maximum error
+//      of this polynomial approximation is bounded by 2**-58.45. In
+//      other words,
+//                      2      4      6      8      10      12      14
+//          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
+//      (the values of Lp1 to Lp7 are listed in the program)
+//      and
+//          |      2          14          |     -58.45
+//          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
+//          |                             |
+//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+//      In order to guarantee error in log below 1ulp, we compute log
+//      by
+//              log1p(f) = f - (hfsq - s*(hfsq+R)).
+//
+//      3. Finally, log1p(x) = k*ln2 + log1p(f).
+//                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+//         Here ln2 is split into two floating point number:
+//                      ln2_hi + ln2_lo,
+//         where n*ln2_hi is always exact for |n| < 2000.
+//
+// Special cases:
+//      log1p(x) is NaN with signal if x < -1 (including -INF) ;
+//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+//      log1p(NaN) is that NaN with no signal.
+//
+// Accuracy:
+//      according to an error analysis, the error is always less than
+//      1 ulp (unit in the last place).
+//
+// Constants:
+//      Constants are found in fdlibm.cc. We assume the C++ compiler to convert
+//      from decimal to binary accurately enough to produce the intended values.
+//
+// Note: Assuming log() return accurate answer, the following
+//       algorithm can be used to compute log1p(x) to within a few ULP:
+//
+//              u = 1+x;
+//              if (u==1.0) return x ; else
+//                          return log(u)*(x/(u-1.0));
+//
+//       See HP-15C Advanced Functions Handbook, p.193.
+//
+const LN2_HI    = kMath[34];
+const LN2_LO    = kMath[35];
+const TWO54     = kMath[36];
+const TWO_THIRD = kMath[37];
+macro KLOG1P(x)
+(kMath[38+x])
+endmacro
+
+function MathLog1p(x) {
+  x = x * 1;  // Convert to number.
+  var hx = %_DoubleHi(x);
+  var ax = hx & 0x7fffffff;
+  var k = 1;
+  var f = x;
+  var hu = 1;
+  var c = 0;
+  var u = x;
+
+  if (hx < 0x3fda827a) {
+    // x < 0.41422
+    if (ax >= 0x3ff00000) {  // |x| >= 1
+      if (x === -1) {
+        return -INFINITY;  // log1p(-1) = -inf
+      } else {
+        return NAN;  // log1p(x<-1) = NaN
+      }
+    } else if (ax < 0x3c900000)  {
+      // For |x| < 2^-54 we can return x.
+      return x;
+    } else if (ax < 0x3e200000) {
+      // For |x| < 2^-29 we can use a simple two-term Taylor series.
+      return x - x * x * 0.5;
+    }
+
+    if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d
+      // -.2929 < x < 0.41422
+      k = 0;
+    }
+  }
+
+  // Handle Infinity and NAN
+  if (hx >= 0x7ff00000) return x;
+
+  if (k !== 0) {
+    if (hx < 0x43400000) {
+      // x < 2^53
+      u = 1 + x;
+      hu = %_DoubleHi(u);
+      k = (hu >> 20) - 1023;
+      c = (k > 0) ? 1 - (u - x) : x - (u - 1);
+      c = c / u;
+    } else {
+      hu = %_DoubleHi(u);
+      k = (hu >> 20) - 1023;
+    }
+    hu = hu & 0xfffff;
+    if (hu < 0x6a09e) {
+      u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u.
+    } else {
+      ++k;
+      u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2.
+      hu = (0x00100000 - hu) >> 2;
+    }
+    f = u - 1;
+  }
+
+  var hfsq = 0.5 * f * f;
+  if (hu === 0) {
+    // |f| < 2^-20;
+    if (f === 0) {
+      if (k === 0) {
+        return 0.0;
+      } else {
+        return k * LN2_HI + (c + k * LN2_LO);
+      }
+    }
+    var R = hfsq * (1 - TWO_THIRD * f);
+    if (k === 0) {
+      return f - R;
+    } else {
+      return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
+    }
+  }
+
+  var s = f / (2 + f);
+  var z = s * s;
+  var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
+              (KLOG1P(2) + z * (KLOG1P(3) + z *
+              (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
+  if (k === 0) {
+    return f - (hfsq - s * (hfsq + R));
+  } else {
+    return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
+  }
+}
+
+// ES6 draft 09-27-13, section 20.2.2.14.
+// Math.expm1
+// Returns exp(x)-1, the exponential of x minus 1.
+//
+// Method
+//   1. Argument reduction:
+//      Given x, find r and integer k such that
+//
+//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
+//
+//      Here a correction term c will be computed to compensate
+//      the error in r when rounded to a floating-point number.
+//
+//   2. Approximating expm1(r) by a special rational function on
+//      the interval [0,0.34658]:
+//      Since
+//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+//      we define R1(r*r) by
+//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+//      That is,
+//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+//                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+//      We use a special Remes algorithm on [0,0.347] to generate
+//      a polynomial of degree 5 in r*r to approximate R1. The
+//      maximum error of this polynomial approximation is bounded
+//      by 2**-61. In other words,
+//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+//      where   Q1  =  -1.6666666666666567384E-2,
+//              Q2  =   3.9682539681370365873E-4,
+//              Q3  =  -9.9206344733435987357E-6,
+//              Q4  =   2.5051361420808517002E-7,
+//              Q5  =  -6.2843505682382617102E-9;
+//      (where z=r*r, and the values of Q1 to Q5 are listed below)
+//      with error bounded by
+//          |                  5           |     -61
+//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
+//          |                              |
+//
+//      expm1(r) = exp(r)-1 is then computed by the following
+//      specific way which minimize the accumulation rounding error:
+//                             2     3
+//                            r     r    [ 3 - (R1 + R1*r/2)  ]
+//            expm1(r) = r + --- + --- * [--------------------]
+//                            2     2    [ 6 - r*(3 - R1*r/2) ]
+//
+//      To compensate the error in the argument reduction, we use
+//              expm1(r+c) = expm1(r) + c + expm1(r)*c
+//                         ~ expm1(r) + c + r*c
+//      Thus c+r*c will be added in as the correction terms for
+//      expm1(r+c). Now rearrange the term to avoid optimization
+//      screw up:
+//                      (      2                                    2 )
+//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
+//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
+//                      (                                             )
+//
+//                 = r - E
+//   3. Scale back to obtain expm1(x):
+//      From step 1, we have
+//         expm1(x) = either 2^k*[expm1(r)+1] - 1
+//                  = or     2^k*[expm1(r) + (1-2^-k)]
+//   4. Implementation notes:
+//      (A). To save one multiplication, we scale the coefficient Qi
+//           to Qi*2^i, and replace z by (x^2)/2.
+//      (B). To achieve maximum accuracy, we compute expm1(x) by
+//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+//        (ii)  if k=0, return r-E
+//        (iii) if k=-1, return 0.5*(r-E)-0.5
+//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
+//                     else          return  1.0+2.0*(r-E);
+//        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+//        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+//        (vii) return 2^k(1-((E+2^-k)-r))
+//
+// Special cases:
+//      expm1(INF) is INF, expm1(NaN) is NaN;
+//      expm1(-INF) is -1, and
+//      for finite argument, only expm1(0)=0 is exact.
+//
+// Accuracy:
+//      according to an error analysis, the error is always less than
+//      1 ulp (unit in the last place).
+//
+// Misc. info.
+//      For IEEE double
+//          if x > 7.09782712893383973096e+02 then expm1(x) overflow
+//
+const KEXPM1_OVERFLOW = kMath[45];
+const INVLN2          = kMath[46];
+macro KEXPM1(x)
+(kMath[47+x])
+endmacro
+
+function MathExpm1(x) {
+  x = x * 1;  // Convert to number.
+  var y;
+  var hi;
+  var lo;
+  var k;
+  var t;
+  var c;
+
+  var hx = %_DoubleHi(x);
+  var xsb = hx & 0x80000000;     // Sign bit of x
+  var y = (xsb === 0) ? x : -x;  // y = |x|
+  hx &= 0x7fffffff;              // High word of |x|
+
+  // Filter out huge and non-finite argument
+  if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2
+    if (hx >= 0x40862e42) {   // if |x| >= 709.78
+      if (hx >= 0x7ff00000) {
+        // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
+        return (x === -INFINITY) ? -1 : x;
+      }
+      if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow
+    }
+    if (xsb != 0) return -1;  // x < -56 * ln2, return -1.
+  }
+
+  // Argument reduction
+  if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2
+    if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2
+      if (xsb === 0) {
+        hi = x - LN2_HI;
+        lo = LN2_LO;
+        k = 1;
+      } else {
+        hi = x + LN2_HI;
+        lo = -LN2_LO;
+        k = -1;
+      }
+    } else {
+      k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
+      t = k;
+      // t * ln2_hi is exact here.
+      hi = x - t * LN2_HI;
+      lo = t * LN2_LO;
+    }
+    x = hi - lo;
+    c = (hi - x) - lo;
+  } else if (hx < 0x3c900000)	{
+    // When |x| < 2^-54, we can return x.
+    return x;
+  } else {
+    // Fall through.
+    k = 0;
+  }
+
+  // x is now in primary range
+  var hfx = 0.5 * x;
+  var hxs = x * hfx;
+  var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
+                     (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
+  t = 3 - r1 * hfx;
+  var e = hxs * ((r1 - t) / (6 - x * t));
+  if (k === 0) {  // c is 0
+    return x - (x*e - hxs);
+  } else {
+    e = (x * (e - c) - c);
+    e -= hxs;
+    if (k === -1) return 0.5 * (x - e) - 0.5;
+    if (k === 1) {
+      if (x < -0.25) return -2 * (e - (x + 0.5));
+      return 1 + 2 * (x - e);
+    }
+
+    if (k <= -2 || k > 56) {
+      // suffice to return exp(x) + 1
+      y = 1 - (e - x);
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+      return y - 1;
+    }
+    if (k < 20) {
+      // t = 1 - 2^k
+      t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
+      y = t - (e - x);
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+    } else {
+      // t = 2^-k
+      t = %_ConstructDouble((0x3ff - k) << 20, 0);
+      y = x - (e + t);
+      y += 1;
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+    }
+  }
+  return y;
+}
+
+
+// ES6 draft 09-27-13, section 20.2.2.30.
+// Math.sinh
+// Method :
+// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+//      1. Replace x by |x| (sinh(-x) = -sinh(x)).
+//      2.
+//                                                  E + E/(E+1)
+//          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
+//                                                      2
+//
+//          22       <= x <= lnovft :  sinh(x) := exp(x)/2
+//          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
+//          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow)
+//
+// Special cases:
+//      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
+//      only sinh(0)=0 is exact for finite x.
+//
+const KSINH_OVERFLOW = kMath[52];
+const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half
+const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half
+
+function MathSinh(x) {
+  x = x * 1;  // Convert to number.
+  var h = (x < 0) ? -0.5 : 0.5;
+  // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
+  var ax = MathAbs(x);
+  if (ax < 22) {
+    // For |x| < 2^-28, sinh(x) = x
+    if (ax < TWO_M28) return x;
+    var t = MathExpm1(ax);
+    if (ax < 1) return h * (2 * t - t * t / (t + 1));
+    return h * (t + t / (t + 1));
+  }
+  // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
+  if (ax < LOG_MAXD) return h * MathExp(ax);
+  // |x| in [log(maxdouble), overflowthreshold]
+  // overflowthreshold = 710.4758600739426
+  if (ax <= KSINH_OVERFLOW) {
+    var w = MathExp(0.5 * ax);
+    var t = h * w;
+    return t * w;
+  }
+  // |x| > overflowthreshold or is NaN.
+  // Return Infinity of the appropriate sign or NaN.
+  return x * INFINITY;
+}
+
+
+// ES6 draft 09-27-13, section 20.2.2.12.
+// Math.cosh
+// Method :
+// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+//      1. Replace x by |x| (cosh(x) = cosh(-x)).
+//      2.
+//                                                      [ exp(x) - 1 ]^2
+//          0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
+//                                                         2*exp(x)
+//
+//                                                 exp(x) + 1/exp(x)
+//          ln2/2    <= x <= 22     :  cosh(x) := -------------------
+//                                                        2
+//          22       <= x <= lnovft :  cosh(x) := exp(x)/2
+//          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
+//          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow)
+//
+// Special cases:
+//      cosh(x) is |x| if x is +INF, -INF, or NaN.
+//      only cosh(0)=1 is exact for finite x.
+//
+const KCOSH_OVERFLOW = kMath[52];
+
+function MathCosh(x) {
+  x = x * 1;  // Convert to number.
+  var ix = %_DoubleHi(x) & 0x7fffffff;
+  // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
+  if (ix < 0x3fd62e43) {
+    var t = MathExpm1(MathAbs(x));
+    var w = 1 + t;
+    // For |x| < 2^-55, cosh(x) = 1
+    if (ix < 0x3c800000) return w;
+    return 1 + (t * t) / (w + w);
+  }
+  // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
+  if (ix < 0x40360000) {
+    var t = MathExp(MathAbs(x));
+    return 0.5 * t + 0.5 / t;
+  }
+  // |x| in [22, log(maxdouble)], return half*exp(|x|)
+  if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
+  // |x| in [log(maxdouble), overflowthreshold]
+  if (MathAbs(x) <= KCOSH_OVERFLOW) {
+    var w = MathExp(0.5 * MathAbs(x));
+    var t = 0.5 * w;
+    return t * w;
+  }
+  if (NUMBER_IS_NAN(x)) return x;
+  // |x| > overflowthreshold.
+  return INFINITY;
+}