Update V8 to version 4.1.0.21

This is a cherry-pick of all commits up to and including the
4.1.0.21 cherry-pick in Chromium.

Original commit message:

Version 4.1.0.21 (cherry-pick)

Merged 206e9136bde0f2b5ae8cb77afbb1e7833e5bd412

Unlink pages from the space page list after evacuation.

BUG=430201
LOG=N
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/953813002

Cr-Commit-Position: refs/branch-heads/4.1@{#22}
Cr-Branched-From: 2e08d2a7aa9d65d269d8c57aba82eb38a8cb0a18-refs/heads/candidates@{#25353}

---

FPIIM-449

Change-Id: I8c23c7bbb70772b4858fe8a47b64fa97ee0d1f8c
diff --git a/src/ppc/assembler-ppc.cc b/src/ppc/assembler-ppc.cc
new file mode 100644
index 0000000..4b8b165
--- /dev/null
+++ b/src/ppc/assembler-ppc.cc
@@ -0,0 +1,2493 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/base/bits.h"
+#include "src/base/cpu.h"
+#include "src/macro-assembler.h"
+#include "src/ppc/assembler-ppc-inl.h"
+#include "src/serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// Get the CPU features enabled by the build.
+static unsigned CpuFeaturesImpliedByCompiler() {
+  unsigned answer = 0;
+  return answer;
+}
+
+
+void CpuFeatures::ProbeImpl(bool cross_compile) {
+  supported_ |= CpuFeaturesImpliedByCompiler();
+  cache_line_size_ = 128;
+
+  // Only use statically determined features for cross compile (snapshot).
+  if (cross_compile) return;
+
+// Detect whether frim instruction is supported (POWER5+)
+// For now we will just check for processors we know do not
+// support it
+#ifndef USE_SIMULATOR
+  // Probe for additional features at runtime.
+  base::CPU cpu;
+#if V8_TARGET_ARCH_PPC64
+  if (cpu.part() == base::CPU::PPC_POWER8) {
+    supported_ |= (1u << FPR_GPR_MOV);
+  }
+#endif
+  if (cpu.part() == base::CPU::PPC_POWER6 ||
+      cpu.part() == base::CPU::PPC_POWER7 ||
+      cpu.part() == base::CPU::PPC_POWER8) {
+    supported_ |= (1u << LWSYNC);
+  }
+#if V8_OS_LINUX
+  if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) {
+    // Assume support
+    supported_ |= (1u << FPU);
+  }
+  if (cpu.cache_line_size() != 0) {
+    cache_line_size_ = cpu.cache_line_size();
+  }
+#elif V8_OS_AIX
+  // Assume support FP support and default cache line size
+  supported_ |= (1u << FPU);
+#endif
+#else  // Simulator
+  supported_ |= (1u << FPU);
+  supported_ |= (1u << LWSYNC);
+#if V8_TARGET_ARCH_PPC64
+  supported_ |= (1u << FPR_GPR_MOV);
+#endif
+#endif
+}
+
+
+void CpuFeatures::PrintTarget() {
+  const char* ppc_arch = NULL;
+
+#if V8_TARGET_ARCH_PPC64
+  ppc_arch = "ppc64";
+#else
+  ppc_arch = "ppc";
+#endif
+
+  printf("target %s\n", ppc_arch);
+}
+
+
+void CpuFeatures::PrintFeatures() {
+  printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
+}
+
+
+Register ToRegister(int num) {
+  DCHECK(num >= 0 && num < kNumRegisters);
+  const Register kRegisters[] = {r0,  sp,  r2,  r3,  r4,  r5,  r6,  r7,
+                                 r8,  r9,  r10, r11, ip,  r13, r14, r15,
+                                 r16, r17, r18, r19, r20, r21, r22, r23,
+                                 r24, r25, r26, r27, r28, r29, r30, fp};
+  return kRegisters[num];
+}
+
+
+const char* DoubleRegister::AllocationIndexToString(int index) {
+  DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
+  const char* const names[] = {
+      "d1",  "d2",  "d3",  "d4",  "d5",  "d6",  "d7",  "d8",  "d9",  "d10",
+      "d11", "d12", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
+      "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
+  return names[index];
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
+
+
+bool RelocInfo::IsCodedSpecially() {
+  // The deserializer needs to know whether a pointer is specially
+  // coded.  Being specially coded on PPC means that it is a lis/ori
+  // instruction sequence or is an out of line constant pool entry,
+  // and these are always the case inside code objects.
+  return true;
+}
+
+
+bool RelocInfo::IsInConstantPool() {
+#if V8_OOL_CONSTANT_POOL
+  return Assembler::IsConstantPoolLoadStart(pc_);
+#else
+  return false;
+#endif
+}
+
+
+void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
+  // Patch the code at the current address with the supplied instructions.
+  Instr* pc = reinterpret_cast<Instr*>(pc_);
+  Instr* instr = reinterpret_cast<Instr*>(instructions);
+  for (int i = 0; i < instruction_count; i++) {
+    *(pc + i) = *(instr + i);
+  }
+
+  // Indicate that code has changed.
+  CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
+}
+
+
+// Patch the code at the current PC with a call to the target address.
+// Additional guard instructions can be added if required.
+void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
+  // Patch the code at the current address with a call to the target.
+  UNIMPLEMENTED();
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand and MemOperand
+// See assembler-ppc-inl.h for inlined constructors
+
+Operand::Operand(Handle<Object> handle) {
+  AllowDeferredHandleDereference using_raw_address;
+  rm_ = no_reg;
+  // Verify all Objects referred by code are NOT in new space.
+  Object* obj = *handle;
+  if (obj->IsHeapObject()) {
+    DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
+    imm_ = reinterpret_cast<intptr_t>(handle.location());
+    rmode_ = RelocInfo::EMBEDDED_OBJECT;
+  } else {
+    // no relocation needed
+    imm_ = reinterpret_cast<intptr_t>(obj);
+    rmode_ = kRelocInfo_NONEPTR;
+  }
+}
+
+
+MemOperand::MemOperand(Register rn, int32_t offset) {
+  ra_ = rn;
+  rb_ = no_reg;
+  offset_ = offset;
+}
+
+
+MemOperand::MemOperand(Register ra, Register rb) {
+  ra_ = ra;
+  rb_ = rb;
+  offset_ = 0;
+}
+
+
+// -----------------------------------------------------------------------------
+// Specific instructions, constants, and masks.
+
+// Spare buffer.
+static const int kMinimalBufferSize = 4 * KB;
+
+
+Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
+    : AssemblerBase(isolate, buffer, buffer_size),
+      recorded_ast_id_(TypeFeedbackId::None()),
+#if V8_OOL_CONSTANT_POOL
+      constant_pool_builder_(),
+#endif
+      positions_recorder_(this) {
+  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
+
+  no_trampoline_pool_before_ = 0;
+  trampoline_pool_blocked_nesting_ = 0;
+  // We leave space (kMaxBlockTrampolineSectionSize)
+  // for BlockTrampolinePoolScope buffer.
+  next_buffer_check_ =
+      FLAG_force_long_branches ? kMaxInt : kMaxCondBranchReach -
+                                               kMaxBlockTrampolineSectionSize;
+  internal_trampoline_exception_ = false;
+  last_bound_pos_ = 0;
+  trampoline_emitted_ = FLAG_force_long_branches;
+  unbound_labels_count_ = 0;
+  ClearRecordedAstId();
+}
+
+
+void Assembler::GetCode(CodeDesc* desc) {
+  // Set up code descriptor.
+  desc->buffer = buffer_;
+  desc->buffer_size = buffer_size_;
+  desc->instr_size = pc_offset();
+  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+  desc->origin = this;
+}
+
+
+void Assembler::Align(int m) {
+#if V8_TARGET_ARCH_PPC64
+  DCHECK(m >= 4 && base::bits::IsPowerOfTwo64(m));
+#else
+  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
+#endif
+  while ((pc_offset() & (m - 1)) != 0) {
+    nop();
+  }
+}
+
+
+void Assembler::CodeTargetAlign() { Align(8); }
+
+
+Condition Assembler::GetCondition(Instr instr) {
+  switch (instr & kCondMask) {
+    case BT:
+      return eq;
+    case BF:
+      return ne;
+    default:
+      UNIMPLEMENTED();
+  }
+  return al;
+}
+
+
+bool Assembler::IsLis(Instr instr) {
+  return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr).is(r0);
+}
+
+
+bool Assembler::IsLi(Instr instr) {
+  return ((instr & kOpcodeMask) == ADDI) && GetRA(instr).is(r0);
+}
+
+
+bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; }
+
+
+bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; }
+
+
+bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); }
+
+
+Register Assembler::GetRA(Instr instr) {
+  Register reg;
+  reg.code_ = Instruction::RAValue(instr);
+  return reg;
+}
+
+
+Register Assembler::GetRB(Instr instr) {
+  Register reg;
+  reg.code_ = Instruction::RBValue(instr);
+  return reg;
+}
+
+
+#if V8_TARGET_ARCH_PPC64
+// This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori)
+bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
+                                   Instr instr4, Instr instr5) {
+  // Check the instructions are indeed a five part load (into r12)
+  // 3d800000       lis     r12, 0
+  // 618c0000       ori     r12, r12, 0
+  // 798c07c6       rldicr  r12, r12, 32, 31
+  // 658c00c3       oris    r12, r12, 195
+  // 618ccd40       ori     r12, r12, 52544
+  return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c) &&
+          (instr3 == 0x798c07c6) && ((instr4 >> 16) == 0x658c) &&
+          ((instr5 >> 16) == 0x618c));
+}
+#else
+// This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori)
+bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) {
+  // Check the instruction is indeed a two part load (into r12)
+  // 3d802553       lis     r12, 9555
+  // 618c5000       ori   r12, r12, 20480
+  return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c));
+}
+#endif
+
+
+bool Assembler::IsCmpRegister(Instr instr) {
+  return (((instr & kOpcodeMask) == EXT2) &&
+          ((instr & kExt2OpcodeMask) == CMP));
+}
+
+
+bool Assembler::IsRlwinm(Instr instr) {
+  return ((instr & kOpcodeMask) == RLWINMX);
+}
+
+
+#if V8_TARGET_ARCH_PPC64
+bool Assembler::IsRldicl(Instr instr) {
+  return (((instr & kOpcodeMask) == EXT5) &&
+          ((instr & kExt5OpcodeMask) == RLDICL));
+}
+#endif
+
+
+bool Assembler::IsCmpImmediate(Instr instr) {
+  return ((instr & kOpcodeMask) == CMPI);
+}
+
+
+bool Assembler::IsCrSet(Instr instr) {
+  return (((instr & kOpcodeMask) == EXT1) &&
+          ((instr & kExt1OpcodeMask) == CREQV));
+}
+
+
+Register Assembler::GetCmpImmediateRegister(Instr instr) {
+  DCHECK(IsCmpImmediate(instr));
+  return GetRA(instr);
+}
+
+
+int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
+  DCHECK(IsCmpImmediate(instr));
+  return instr & kOff16Mask;
+}
+
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the last
+// instruction using the label.
+
+
+// The link chain is terminated by a negative code position (must be aligned)
+const int kEndOfChain = -4;
+
+
+int Assembler::target_at(int pos) {
+  Instr instr = instr_at(pos);
+  // check which type of branch this is 16 or 26 bit offset
+  int opcode = instr & kOpcodeMask;
+  if (BX == opcode) {
+    int imm26 = ((instr & kImm26Mask) << 6) >> 6;
+    imm26 &= ~(kAAMask | kLKMask);  // discard AA|LK bits if present
+    if (imm26 == 0) return kEndOfChain;
+    return pos + imm26;
+  } else if (BCX == opcode) {
+    int imm16 = SIGN_EXT_IMM16((instr & kImm16Mask));
+    imm16 &= ~(kAAMask | kLKMask);  // discard AA|LK bits if present
+    if (imm16 == 0) return kEndOfChain;
+    return pos + imm16;
+  } else if ((instr & ~kImm26Mask) == 0) {
+    // Emitted link to a label, not part of a branch (regexp PushBacktrack).
+    if (instr == 0) {
+      return kEndOfChain;
+    } else {
+      int32_t imm26 = SIGN_EXT_IMM26(instr);
+      return (imm26 + pos);
+    }
+  }
+
+  PPCPORT_UNIMPLEMENTED();
+  DCHECK(false);
+  return -1;
+}
+
+
+void Assembler::target_at_put(int pos, int target_pos) {
+  Instr instr = instr_at(pos);
+  int opcode = instr & kOpcodeMask;
+
+  // check which type of branch this is 16 or 26 bit offset
+  if (BX == opcode) {
+    int imm26 = target_pos - pos;
+    DCHECK((imm26 & (kAAMask | kLKMask)) == 0);
+    instr &= ((~kImm26Mask) | kAAMask | kLKMask);
+    DCHECK(is_int26(imm26));
+    instr_at_put(pos, instr | (imm26 & kImm26Mask));
+    return;
+  } else if (BCX == opcode) {
+    int imm16 = target_pos - pos;
+    DCHECK((imm16 & (kAAMask | kLKMask)) == 0);
+    instr &= ((~kImm16Mask) | kAAMask | kLKMask);
+    DCHECK(is_int16(imm16));
+    instr_at_put(pos, instr | (imm16 & kImm16Mask));
+    return;
+  } else if ((instr & ~kImm26Mask) == 0) {
+    DCHECK(target_pos == kEndOfChain || target_pos >= 0);
+    // Emitted link to a label, not part of a branch (regexp PushBacktrack).
+    // Load the position of the label relative to the generated code object
+    // pointer in a register.
+
+    Register dst = r3;  // we assume r3 for now
+    DCHECK(IsNop(instr_at(pos + kInstrSize)));
+    uint32_t target = target_pos + (Code::kHeaderSize - kHeapObjectTag);
+    CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos), 2,
+                        CodePatcher::DONT_FLUSH);
+    int target_hi = static_cast<int>(target) >> 16;
+    int target_lo = static_cast<int>(target) & 0XFFFF;
+
+    patcher.masm()->lis(dst, Operand(SIGN_EXT_IMM16(target_hi)));
+    patcher.masm()->ori(dst, dst, Operand(target_lo));
+    return;
+  }
+
+  DCHECK(false);
+}
+
+
+int Assembler::max_reach_from(int pos) {
+  Instr instr = instr_at(pos);
+  int opcode = instr & kOpcodeMask;
+
+  // check which type of branch this is 16 or 26 bit offset
+  if (BX == opcode) {
+    return 26;
+  } else if (BCX == opcode) {
+    return 16;
+  } else if ((instr & ~kImm26Mask) == 0) {
+    // Emitted label constant, not part of a branch (regexp PushBacktrack).
+    return 26;
+  }
+
+  DCHECK(false);
+  return 0;
+}
+
+
+void Assembler::bind_to(Label* L, int pos) {
+  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
+  int32_t trampoline_pos = kInvalidSlotPos;
+  if (L->is_linked() && !trampoline_emitted_) {
+    unbound_labels_count_--;
+    next_buffer_check_ += kTrampolineSlotsSize;
+  }
+
+  while (L->is_linked()) {
+    int fixup_pos = L->pos();
+    int32_t offset = pos - fixup_pos;
+    int maxReach = max_reach_from(fixup_pos);
+    next(L);  // call next before overwriting link with target at fixup_pos
+    if (is_intn(offset, maxReach) == false) {
+      if (trampoline_pos == kInvalidSlotPos) {
+        trampoline_pos = get_trampoline_entry();
+        CHECK(trampoline_pos != kInvalidSlotPos);
+        target_at_put(trampoline_pos, pos);
+      }
+      target_at_put(fixup_pos, trampoline_pos);
+    } else {
+      target_at_put(fixup_pos, pos);
+    }
+  }
+  L->bind_to(pos);
+
+  // Keep track of the last bound label so we don't eliminate any instructions
+  // before a bound label.
+  if (pos > last_bound_pos_) last_bound_pos_ = pos;
+}
+
+
+void Assembler::bind(Label* L) {
+  DCHECK(!L->is_bound());  // label can only be bound once
+  bind_to(L, pc_offset());
+}
+
+
+void Assembler::next(Label* L) {
+  DCHECK(L->is_linked());
+  int link = target_at(L->pos());
+  if (link == kEndOfChain) {
+    L->Unuse();
+  } else {
+    DCHECK(link >= 0);
+    L->link_to(link);
+  }
+}
+
+
+bool Assembler::is_near(Label* L, Condition cond) {
+  DCHECK(L->is_bound());
+  if (L->is_bound() == false) return false;
+
+  int maxReach = ((cond == al) ? 26 : 16);
+  int offset = L->pos() - pc_offset();
+
+  return is_intn(offset, maxReach);
+}
+
+
+void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
+                       DoubleRegister frb, RCBit r) {
+  emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r);
+}
+
+
+void Assembler::d_form(Instr instr, Register rt, Register ra,
+                       const intptr_t val, bool signed_disp) {
+  if (signed_disp) {
+    if (!is_int16(val)) {
+      PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val);
+    }
+    DCHECK(is_int16(val));
+  } else {
+    if (!is_uint16(val)) {
+      PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR
+             ", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n",
+             val, val, is_uint16(val), kImm16Mask);
+    }
+    DCHECK(is_uint16(val));
+  }
+  emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val));
+}
+
+
+void Assembler::x_form(Instr instr, Register ra, Register rs, Register rb,
+                       RCBit r) {
+  emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | r);
+}
+
+
+void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb,
+                        OEBit o, RCBit r) {
+  emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r);
+}
+
+
+void Assembler::md_form(Instr instr, Register ra, Register rs, int shift,
+                        int maskbit, RCBit r) {
+  int sh0_4 = shift & 0x1f;
+  int sh5 = (shift >> 5) & 0x1;
+  int m0_4 = maskbit & 0x1f;
+  int m5 = (maskbit >> 5) & 0x1;
+
+  emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 |
+       m5 * B5 | sh5 * B1 | r);
+}
+
+
+void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb,
+                         int maskbit, RCBit r) {
+  int m0_4 = maskbit & 0x1f;
+  int m5 = (maskbit >> 5) & 0x1;
+
+  emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 |
+       m5 * B5 | r);
+}
+
+
+// Returns the next free trampoline entry.
+int32_t Assembler::get_trampoline_entry() {
+  int32_t trampoline_entry = kInvalidSlotPos;
+
+  if (!internal_trampoline_exception_) {
+    trampoline_entry = trampoline_.take_slot();
+
+    if (kInvalidSlotPos == trampoline_entry) {
+      internal_trampoline_exception_ = true;
+    }
+  }
+  return trampoline_entry;
+}
+
+
+int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
+  int target_pos;
+  if (L->is_bound()) {
+    target_pos = L->pos();
+  } else {
+    if (L->is_linked()) {
+      target_pos = L->pos();  // L's link
+    } else {
+      // was: target_pos = kEndOfChain;
+      // However, using branch to self to mark the first reference
+      // should avoid most instances of branch offset overflow.  See
+      // target_at() for where this is converted back to kEndOfChain.
+      target_pos = pc_offset();
+      if (!trampoline_emitted_) {
+        unbound_labels_count_++;
+        next_buffer_check_ -= kTrampolineSlotsSize;
+      }
+    }
+    L->link_to(pc_offset());
+  }
+
+  return target_pos - pc_offset();
+}
+
+
+// Branch instructions.
+
+
+void Assembler::bclr(BOfield bo, LKBit lk) {
+  positions_recorder()->WriteRecordedPositions();
+  emit(EXT1 | bo | BCLRX | lk);
+}
+
+
+void Assembler::bcctr(BOfield bo, LKBit lk) {
+  positions_recorder()->WriteRecordedPositions();
+  emit(EXT1 | bo | BCCTRX | lk);
+}
+
+
+// Pseudo op - branch to link register
+void Assembler::blr() { bclr(BA, LeaveLK); }
+
+
+// Pseudo op - branch to count register -- used for "jump"
+void Assembler::bctr() { bcctr(BA, LeaveLK); }
+
+
+void Assembler::bctrl() { bcctr(BA, SetLK); }
+
+
+void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) {
+  if (lk == SetLK) {
+    positions_recorder()->WriteRecordedPositions();
+  }
+  DCHECK(is_int16(branch_offset));
+  emit(BCX | bo | condition_bit * B16 | (kImm16Mask & branch_offset) | lk);
+}
+
+
+void Assembler::b(int branch_offset, LKBit lk) {
+  if (lk == SetLK) {
+    positions_recorder()->WriteRecordedPositions();
+  }
+  DCHECK((branch_offset & 3) == 0);
+  int imm26 = branch_offset;
+  DCHECK(is_int26(imm26));
+  // todo add AA and LK bits
+  emit(BX | (imm26 & kImm26Mask) | lk);
+}
+
+
+void Assembler::xori(Register dst, Register src, const Operand& imm) {
+  d_form(XORI, src, dst, imm.imm_, false);
+}
+
+
+void Assembler::xoris(Register ra, Register rs, const Operand& imm) {
+  d_form(XORIS, rs, ra, imm.imm_, false);
+}
+
+
+void Assembler::xor_(Register dst, Register src1, Register src2, RCBit rc) {
+  x_form(EXT2 | XORX, dst, src1, src2, rc);
+}
+
+
+void Assembler::cntlzw_(Register ra, Register rs, RCBit rc) {
+  x_form(EXT2 | CNTLZWX, ra, rs, r0, rc);
+}
+
+
+void Assembler::and_(Register ra, Register rs, Register rb, RCBit rc) {
+  x_form(EXT2 | ANDX, ra, rs, rb, rc);
+}
+
+
+void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me,
+                       RCBit rc) {
+  sh &= 0x1f;
+  mb &= 0x1f;
+  me &= 0x1f;
+  emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
+       me << 1 | rc);
+}
+
+
+void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me,
+                      RCBit rc) {
+  mb &= 0x1f;
+  me &= 0x1f;
+  emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 |
+       me << 1 | rc);
+}
+
+
+void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me,
+                       RCBit rc) {
+  sh &= 0x1f;
+  mb &= 0x1f;
+  me &= 0x1f;
+  emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
+       me << 1 | rc);
+}
+
+
+void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) {
+  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
+  rlwinm(dst, src, val.imm_, 0, 31 - val.imm_, rc);
+}
+
+
+void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) {
+  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
+  rlwinm(dst, src, 32 - val.imm_, val.imm_, 31, rc);
+}
+
+
+void Assembler::clrrwi(Register dst, Register src, const Operand& val,
+                       RCBit rc) {
+  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
+  rlwinm(dst, src, 0, 0, 31 - val.imm_, rc);
+}
+
+
+void Assembler::clrlwi(Register dst, Register src, const Operand& val,
+                       RCBit rc) {
+  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
+  rlwinm(dst, src, 0, val.imm_, 31, rc);
+}
+
+
+void Assembler::srawi(Register ra, Register rs, int sh, RCBit r) {
+  emit(EXT2 | SRAWIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | r);
+}
+
+
+void Assembler::srw(Register dst, Register src1, Register src2, RCBit r) {
+  x_form(EXT2 | SRWX, dst, src1, src2, r);
+}
+
+
+void Assembler::slw(Register dst, Register src1, Register src2, RCBit r) {
+  x_form(EXT2 | SLWX, dst, src1, src2, r);
+}
+
+
+void Assembler::sraw(Register ra, Register rs, Register rb, RCBit r) {
+  x_form(EXT2 | SRAW, ra, rs, rb, r);
+}
+
+
+void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) {
+  rlwnm(ra, rs, rb, 0, 31, r);
+}
+
+
+void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) {
+  rlwinm(ra, rs, sh, 0, 31, r);
+}
+
+
+void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) {
+  rlwinm(ra, rs, 32 - sh, 0, 31, r);
+}
+
+
+void Assembler::subi(Register dst, Register src, const Operand& imm) {
+  addi(dst, src, Operand(-(imm.imm_)));
+}
+
+void Assembler::addc(Register dst, Register src1, Register src2, OEBit o,
+                     RCBit r) {
+  xo_form(EXT2 | ADDCX, dst, src1, src2, o, r);
+}
+
+
+void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) {
+  // a special xo_form
+  emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r);
+}
+
+
+void Assembler::sub(Register dst, Register src1, Register src2, OEBit o,
+                    RCBit r) {
+  xo_form(EXT2 | SUBFX, dst, src2, src1, o, r);
+}
+
+
+void Assembler::subfc(Register dst, Register src1, Register src2, OEBit o,
+                      RCBit r) {
+  xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r);
+}
+
+
+void Assembler::subfic(Register dst, Register src, const Operand& imm) {
+  d_form(SUBFIC, dst, src, imm.imm_, true);
+}
+
+
+void Assembler::add(Register dst, Register src1, Register src2, OEBit o,
+                    RCBit r) {
+  xo_form(EXT2 | ADDX, dst, src1, src2, o, r);
+}
+
+
+// Multiply low word
+void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o,
+                      RCBit r) {
+  xo_form(EXT2 | MULLW, dst, src1, src2, o, r);
+}
+
+
+// Multiply hi word
+void Assembler::mulhw(Register dst, Register src1, Register src2, OEBit o,
+                      RCBit r) {
+  xo_form(EXT2 | MULHWX, dst, src1, src2, o, r);
+}
+
+
+// Divide word
+void Assembler::divw(Register dst, Register src1, Register src2, OEBit o,
+                     RCBit r) {
+  xo_form(EXT2 | DIVW, dst, src1, src2, o, r);
+}
+
+
+void Assembler::addi(Register dst, Register src, const Operand& imm) {
+  DCHECK(!src.is(r0));  // use li instead to show intent
+  d_form(ADDI, dst, src, imm.imm_, true);
+}
+
+
+void Assembler::addis(Register dst, Register src, const Operand& imm) {
+  DCHECK(!src.is(r0));  // use lis instead to show intent
+  d_form(ADDIS, dst, src, imm.imm_, true);
+}
+
+
+void Assembler::addic(Register dst, Register src, const Operand& imm) {
+  d_form(ADDIC, dst, src, imm.imm_, true);
+}
+
+
+void Assembler::andi(Register ra, Register rs, const Operand& imm) {
+  d_form(ANDIx, rs, ra, imm.imm_, false);
+}
+
+
+void Assembler::andis(Register ra, Register rs, const Operand& imm) {
+  d_form(ANDISx, rs, ra, imm.imm_, false);
+}
+
+
+void Assembler::nor(Register dst, Register src1, Register src2, RCBit r) {
+  x_form(EXT2 | NORX, dst, src1, src2, r);
+}
+
+
+void Assembler::notx(Register dst, Register src, RCBit r) {
+  x_form(EXT2 | NORX, dst, src, src, r);
+}
+
+
+void Assembler::ori(Register ra, Register rs, const Operand& imm) {
+  d_form(ORI, rs, ra, imm.imm_, false);
+}
+
+
+void Assembler::oris(Register dst, Register src, const Operand& imm) {
+  d_form(ORIS, src, dst, imm.imm_, false);
+}
+
+
+void Assembler::orx(Register dst, Register src1, Register src2, RCBit rc) {
+  x_form(EXT2 | ORX, dst, src1, src2, rc);
+}
+
+
+void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) {
+  intptr_t imm16 = src2.imm_;
+#if V8_TARGET_ARCH_PPC64
+  int L = 1;
+#else
+  int L = 0;
+#endif
+  DCHECK(is_int16(imm16));
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  imm16 &= kImm16Mask;
+  emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
+}
+
+
+void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) {
+  uintptr_t uimm16 = src2.imm_;
+#if V8_TARGET_ARCH_PPC64
+  int L = 1;
+#else
+  int L = 0;
+#endif
+  DCHECK(is_uint16(uimm16));
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  uimm16 &= kImm16Mask;
+  emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
+}
+
+
+void Assembler::cmp(Register src1, Register src2, CRegister cr) {
+#if V8_TARGET_ARCH_PPC64
+  int L = 1;
+#else
+  int L = 0;
+#endif
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
+       src2.code() * B11);
+}
+
+
+void Assembler::cmpl(Register src1, Register src2, CRegister cr) {
+#if V8_TARGET_ARCH_PPC64
+  int L = 1;
+#else
+  int L = 0;
+#endif
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
+       src2.code() * B11);
+}
+
+
+void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) {
+  intptr_t imm16 = src2.imm_;
+  int L = 0;
+  DCHECK(is_int16(imm16));
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  imm16 &= kImm16Mask;
+  emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
+}
+
+
+void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) {
+  uintptr_t uimm16 = src2.imm_;
+  int L = 0;
+  DCHECK(is_uint16(uimm16));
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  uimm16 &= kImm16Mask;
+  emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
+}
+
+
+void Assembler::cmpw(Register src1, Register src2, CRegister cr) {
+  int L = 0;
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
+       src2.code() * B11);
+}
+
+
+void Assembler::cmplw(Register src1, Register src2, CRegister cr) {
+  int L = 0;
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
+       src2.code() * B11);
+}
+
+
+// Pseudo op - load immediate
+void Assembler::li(Register dst, const Operand& imm) {
+  d_form(ADDI, dst, r0, imm.imm_, true);
+}
+
+
+void Assembler::lis(Register dst, const Operand& imm) {
+  d_form(ADDIS, dst, r0, imm.imm_, true);
+}
+
+
+// Pseudo op - move register
+void Assembler::mr(Register dst, Register src) {
+  // actually or(dst, src, src)
+  orx(dst, src, src);
+}
+
+
+void Assembler::lbz(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(LBZ, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::lbzx(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LBZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lbzux(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LBZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lhz(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(LHZ, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::lhzx(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LHZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lhzux(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LHZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lwz(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(LWZ, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::lwzu(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(LWZU, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::lwzx(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LWZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lwzux(Register rt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LWZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lwa(Register dst, const MemOperand& src) {
+#if V8_TARGET_ARCH_PPC64
+  int offset = src.offset();
+  DCHECK(!src.ra_.is(r0));
+  DCHECK(!(offset & 3) && is_int16(offset));
+  offset = kImm16Mask & offset;
+  emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2);
+#else
+  lwz(dst, src);
+#endif
+}
+
+
+void Assembler::stb(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(STB, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::stbx(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STBX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stbux(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STBUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::sth(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(STH, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::sthx(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STHX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::sthux(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STHUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stw(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(STW, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::stwu(Register dst, const MemOperand& src) {
+  DCHECK(!src.ra_.is(r0));
+  d_form(STWU, dst, src.ra(), src.offset(), true);
+}
+
+
+void Assembler::stwx(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STWX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stwux(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STWUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::extsb(Register rs, Register ra, RCBit rc) {
+  emit(EXT2 | EXTSB | ra.code() * B21 | rs.code() * B16 | rc);
+}
+
+
+void Assembler::extsh(Register rs, Register ra, RCBit rc) {
+  emit(EXT2 | EXTSH | ra.code() * B21 | rs.code() * B16 | rc);
+}
+
+
+void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) {
+  emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r);
+}
+
+
+void Assembler::andc(Register dst, Register src1, Register src2, RCBit rc) {
+  x_form(EXT2 | ANDCX, dst, src1, src2, rc);
+}
+
+
+#if V8_TARGET_ARCH_PPC64
+// 64bit specific instructions
+void Assembler::ld(Register rd, const MemOperand& src) {
+  int offset = src.offset();
+  DCHECK(!src.ra_.is(r0));
+  DCHECK(!(offset & 3) && is_int16(offset));
+  offset = kImm16Mask & offset;
+  emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset);
+}
+
+
+void Assembler::ldx(Register rd, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LDX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::ldu(Register rd, const MemOperand& src) {
+  int offset = src.offset();
+  DCHECK(!src.ra_.is(r0));
+  DCHECK(!(offset & 3) && is_int16(offset));
+  offset = kImm16Mask & offset;
+  emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1);
+}
+
+
+void Assembler::ldux(Register rd, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LDUX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::std(Register rs, const MemOperand& src) {
+  int offset = src.offset();
+  DCHECK(!src.ra_.is(r0));
+  DCHECK(!(offset & 3) && is_int16(offset));
+  offset = kImm16Mask & offset;
+  emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset);
+}
+
+
+void Assembler::stdx(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STDX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::stdu(Register rs, const MemOperand& src) {
+  int offset = src.offset();
+  DCHECK(!src.ra_.is(r0));
+  DCHECK(!(offset & 3) && is_int16(offset));
+  offset = kImm16Mask & offset;
+  emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1);
+}
+
+
+void Assembler::stdux(Register rs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STDUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) {
+  md_form(EXT5 | RLDIC, ra, rs, sh, mb, r);
+}
+
+
+void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) {
+  md_form(EXT5 | RLDICL, ra, rs, sh, mb, r);
+}
+
+
+void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) {
+  mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r);
+}
+
+
+void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) {
+  md_form(EXT5 | RLDICR, ra, rs, sh, me, r);
+}
+
+
+void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) {
+  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
+  rldicr(dst, src, val.imm_, 63 - val.imm_, rc);
+}
+
+
+void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) {
+  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
+  rldicl(dst, src, 64 - val.imm_, val.imm_, rc);
+}
+
+
+void Assembler::clrrdi(Register dst, Register src, const Operand& val,
+                       RCBit rc) {
+  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
+  rldicr(dst, src, 0, 63 - val.imm_, rc);
+}
+
+
+void Assembler::clrldi(Register dst, Register src, const Operand& val,
+                       RCBit rc) {
+  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
+  rldicl(dst, src, 0, val.imm_, rc);
+}
+
+
+void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) {
+  md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r);
+}
+
+
+void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) {
+  int sh0_4 = sh & 0x1f;
+  int sh5 = (sh >> 5) & 0x1;
+
+  emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 |
+       sh5 * B1 | r);
+}
+
+
+void Assembler::srd(Register dst, Register src1, Register src2, RCBit r) {
+  x_form(EXT2 | SRDX, dst, src1, src2, r);
+}
+
+
+void Assembler::sld(Register dst, Register src1, Register src2, RCBit r) {
+  x_form(EXT2 | SLDX, dst, src1, src2, r);
+}
+
+
+void Assembler::srad(Register ra, Register rs, Register rb, RCBit r) {
+  x_form(EXT2 | SRAD, ra, rs, rb, r);
+}
+
+
+void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) {
+  rldcl(ra, rs, rb, 0, r);
+}
+
+
+void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) {
+  rldicl(ra, rs, sh, 0, r);
+}
+
+
+void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) {
+  rldicl(ra, rs, 64 - sh, 0, r);
+}
+
+
+void Assembler::cntlzd_(Register ra, Register rs, RCBit rc) {
+  x_form(EXT2 | CNTLZDX, ra, rs, r0, rc);
+}
+
+
+void Assembler::extsw(Register rs, Register ra, RCBit rc) {
+  emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc);
+}
+
+
+void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o,
+                      RCBit r) {
+  xo_form(EXT2 | MULLD, dst, src1, src2, o, r);
+}
+
+
+void Assembler::divd(Register dst, Register src1, Register src2, OEBit o,
+                     RCBit r) {
+  xo_form(EXT2 | DIVD, dst, src1, src2, o, r);
+}
+#endif
+
+
+void Assembler::fake_asm(enum FAKE_OPCODE_T fopcode) {
+  DCHECK(fopcode < fLastFaker);
+  emit(FAKE_OPCODE | FAKER_SUBOPCODE | fopcode);
+}
+
+
+void Assembler::marker_asm(int mcode) {
+  if (::v8::internal::FLAG_trace_sim_stubs) {
+    DCHECK(mcode < F_NEXT_AVAILABLE_STUB_MARKER);
+    emit(FAKE_OPCODE | MARKER_SUBOPCODE | mcode);
+  }
+}
+
+
+// Function descriptor for AIX.
+// Code address skips the function descriptor "header".
+// TOC and static chain are ignored and set to 0.
+void Assembler::function_descriptor() {
+  DCHECK(pc_offset() == 0);
+  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+  emit_ptr(reinterpret_cast<uintptr_t>(pc_) + 3 * kPointerSize);
+  emit_ptr(0);
+  emit_ptr(0);
+}
+
+
+#if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL
+void Assembler::RelocateInternalReference(Address pc, intptr_t delta,
+                                          Address code_start,
+                                          ICacheFlushMode icache_flush_mode) {
+  DCHECK(delta || code_start);
+#if ABI_USES_FUNCTION_DESCRIPTORS
+  uintptr_t* fd = reinterpret_cast<uintptr_t*>(pc);
+  if (fd[1] == 0 && fd[2] == 0) {
+    // Function descriptor
+    if (delta) {
+      fd[0] += delta;
+    } else {
+      fd[0] = reinterpret_cast<uintptr_t>(code_start) + 3 * kPointerSize;
+    }
+    return;
+  }
+#endif
+#if V8_OOL_CONSTANT_POOL
+  // mov for LoadConstantPoolPointerRegister
+  ConstantPoolArray* constant_pool = NULL;
+  if (delta) {
+    code_start = target_address_at(pc, constant_pool) + delta;
+  }
+  set_target_address_at(pc, constant_pool, code_start, icache_flush_mode);
+#endif
+}
+
+
+int Assembler::DecodeInternalReference(Vector<char> buffer, Address pc) {
+#if ABI_USES_FUNCTION_DESCRIPTORS
+  uintptr_t* fd = reinterpret_cast<uintptr_t*>(pc);
+  if (fd[1] == 0 && fd[2] == 0) {
+    // Function descriptor
+    SNPrintF(buffer, "[%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+                     "]"
+                     "   function descriptor",
+             fd[0], fd[1], fd[2]);
+    return kPointerSize * 3;
+  }
+#endif
+  return 0;
+}
+#endif
+
+
+int Assembler::instructions_required_for_mov(const Operand& x) const {
+#if V8_OOL_CONSTANT_POOL || DEBUG
+  bool canOptimize =
+      !(x.must_output_reloc_info(this) || is_trampoline_pool_blocked());
+#endif
+#if V8_OOL_CONSTANT_POOL
+  if (use_constant_pool_for_mov(x, canOptimize)) {
+    // Current usage guarantees that all constant pool references can
+    // use the same sequence.
+    return kMovInstructionsConstantPool;
+  }
+#endif
+  DCHECK(!canOptimize);
+  return kMovInstructionsNoConstantPool;
+}
+
+
+#if V8_OOL_CONSTANT_POOL
+bool Assembler::use_constant_pool_for_mov(const Operand& x,
+                                          bool canOptimize) const {
+  if (!is_ool_constant_pool_available() || is_constant_pool_full()) {
+    // If there is no constant pool available, we must use a mov
+    // immediate sequence.
+    return false;
+  }
+
+  intptr_t value = x.immediate();
+  if (canOptimize && is_int16(value)) {
+    // Prefer a single-instruction load-immediate.
+    return false;
+  }
+
+  return true;
+}
+
+
+void Assembler::EnsureSpaceFor(int space_needed) {
+  if (buffer_space() <= (kGap + space_needed)) {
+    GrowBuffer();
+  }
+}
+#endif
+
+
+bool Operand::must_output_reloc_info(const Assembler* assembler) const {
+  if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
+    if (assembler != NULL && assembler->predictable_code_size()) return true;
+    return assembler->serializer_enabled();
+  } else if (RelocInfo::IsNone(rmode_)) {
+    return false;
+  }
+  return true;
+}
+
+
+// Primarily used for loading constants
+// This should really move to be in macro-assembler as it
+// is really a pseudo instruction
+// Some usages of this intend for a FIXED_SEQUENCE to be used
+// Todo - break this dependency so we can optimize mov() in general
+// and only use the generic version when we require a fixed sequence
+void Assembler::mov(Register dst, const Operand& src) {
+  intptr_t value = src.immediate();
+  bool canOptimize;
+  RelocInfo rinfo(pc_, src.rmode_, value, NULL);
+
+  if (src.must_output_reloc_info(this)) {
+    RecordRelocInfo(rinfo);
+  }
+
+  canOptimize =
+      !(src.must_output_reloc_info(this) || is_trampoline_pool_blocked());
+
+#if V8_OOL_CONSTANT_POOL
+  if (use_constant_pool_for_mov(src, canOptimize)) {
+    DCHECK(is_ool_constant_pool_available());
+    ConstantPoolAddEntry(rinfo);
+#if V8_TARGET_ARCH_PPC64
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    // We are forced to use 2 instruction sequence since the constant
+    // pool pointer is tagged.
+    li(dst, Operand::Zero());
+    ldx(dst, MemOperand(kConstantPoolRegister, dst));
+#else
+    lwz(dst, MemOperand(kConstantPoolRegister, 0));
+#endif
+    return;
+  }
+#endif
+
+  if (canOptimize) {
+    if (is_int16(value)) {
+      li(dst, Operand(value));
+    } else {
+      uint16_t u16;
+#if V8_TARGET_ARCH_PPC64
+      if (is_int32(value)) {
+#endif
+        lis(dst, Operand(value >> 16));
+#if V8_TARGET_ARCH_PPC64
+      } else {
+        if (is_int48(value)) {
+          li(dst, Operand(value >> 32));
+        } else {
+          lis(dst, Operand(value >> 48));
+          u16 = ((value >> 32) & 0xffff);
+          if (u16) {
+            ori(dst, dst, Operand(u16));
+          }
+        }
+        sldi(dst, dst, Operand(32));
+        u16 = ((value >> 16) & 0xffff);
+        if (u16) {
+          oris(dst, dst, Operand(u16));
+        }
+      }
+#endif
+      u16 = (value & 0xffff);
+      if (u16) {
+        ori(dst, dst, Operand(u16));
+      }
+    }
+    return;
+  }
+
+  DCHECK(!canOptimize);
+
+  {
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+#if V8_TARGET_ARCH_PPC64
+    int32_t hi_32 = static_cast<int32_t>(value >> 32);
+    int32_t lo_32 = static_cast<int32_t>(value);
+    int hi_word = static_cast<int>(hi_32 >> 16);
+    int lo_word = static_cast<int>(hi_32 & 0xffff);
+    lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
+    ori(dst, dst, Operand(lo_word));
+    sldi(dst, dst, Operand(32));
+    hi_word = static_cast<int>(((lo_32 >> 16) & 0xffff));
+    lo_word = static_cast<int>(lo_32 & 0xffff);
+    oris(dst, dst, Operand(hi_word));
+    ori(dst, dst, Operand(lo_word));
+#else
+    int hi_word = static_cast<int>(value >> 16);
+    int lo_word = static_cast<int>(value & 0xffff);
+    lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
+    ori(dst, dst, Operand(lo_word));
+#endif
+  }
+}
+
+
+void Assembler::mov_label_offset(Register dst, Label* label) {
+  if (label->is_bound()) {
+    int target = label->pos();
+    mov(dst, Operand(target + Code::kHeaderSize - kHeapObjectTag));
+  } else {
+    bool is_linked = label->is_linked();
+    // Emit the link to the label in the code stream followed by extra
+    // nop instructions.
+    DCHECK(dst.is(r3));  // target_at_put assumes r3 for now
+    int link = is_linked ? label->pos() - pc_offset() : 0;
+    label->link_to(pc_offset());
+
+    if (!is_linked && !trampoline_emitted_) {
+      unbound_labels_count_++;
+      next_buffer_check_ -= kTrampolineSlotsSize;
+    }
+
+    // When the label is bound, these instructions will be patched
+    // with a 2 instruction mov sequence that will load the
+    // destination register with the position of the label from the
+    // beginning of the code.
+    //
+    // When the label gets bound: target_at extracts the link and
+    // target_at_put patches the instructions.
+    BlockTrampolinePoolScope block_trampoline_pool(this);
+    emit(link);
+    nop();
+  }
+}
+
+
+// Special register instructions
+void Assembler::crxor(int bt, int ba, int bb) {
+  emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11);
+}
+
+
+void Assembler::creqv(int bt, int ba, int bb) {
+  emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11);
+}
+
+
+void Assembler::mflr(Register dst) {
+  emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11);  // Ignore RC bit
+}
+
+
+void Assembler::mtlr(Register src) {
+  emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11);  // Ignore RC bit
+}
+
+
+void Assembler::mtctr(Register src) {
+  emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11);  // Ignore RC bit
+}
+
+
+void Assembler::mtxer(Register src) {
+  emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11);
+}
+
+
+void Assembler::mcrfs(int bf, int bfa) {
+  emit(EXT4 | MCRFS | bf * B23 | bfa * B18);
+}
+
+
+void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); }
+
+
+#if V8_TARGET_ARCH_PPC64
+void Assembler::mffprd(Register dst, DoubleRegister src) {
+  emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16);
+}
+
+
+void Assembler::mffprwz(Register dst, DoubleRegister src) {
+  emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16);
+}
+
+
+void Assembler::mtfprd(DoubleRegister dst, Register src) {
+  emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16);
+}
+
+
+void Assembler::mtfprwz(DoubleRegister dst, Register src) {
+  emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16);
+}
+
+
+void Assembler::mtfprwa(DoubleRegister dst, Register src) {
+  emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16);
+}
+#endif
+
+
+// Exception-generating instructions and debugging support.
+// Stops with a non-negative code less than kNumOfWatchedStops support
+// enabling/disabling and a counter feature. See simulator-ppc.h .
+void Assembler::stop(const char* msg, Condition cond, int32_t code,
+                     CRegister cr) {
+  if (cond != al) {
+    Label skip;
+    b(NegateCondition(cond), &skip, cr);
+    bkpt(0);
+    bind(&skip);
+  } else {
+    bkpt(0);
+  }
+}
+
+
+void Assembler::bkpt(uint32_t imm16) { emit(0x7d821008); }
+
+
+void Assembler::info(const char* msg, Condition cond, int32_t code,
+                     CRegister cr) {
+  if (::v8::internal::FLAG_trace_sim_stubs) {
+    emit(0x7d9ff808);
+#if V8_TARGET_ARCH_PPC64
+    uint64_t value = reinterpret_cast<uint64_t>(msg);
+    emit(static_cast<uint32_t>(value >> 32));
+    emit(static_cast<uint32_t>(value & 0xFFFFFFFF));
+#else
+    emit(reinterpret_cast<Instr>(msg));
+#endif
+  }
+}
+
+
+void Assembler::dcbf(Register ra, Register rb) {
+  emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::sync() { emit(EXT2 | SYNC); }
+
+
+void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); }
+
+
+void Assembler::icbi(Register ra, Register rb) {
+  emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11);
+}
+
+
+void Assembler::isync() { emit(EXT1 | ISYNC); }
+
+
+// Floating point support
+
+void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::lfdx(const DoubleRegister frt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LFDX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lfdux(const DoubleRegister frt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LFDUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::lfsx(const DoubleRegister frt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LFSX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::lfsux(const DoubleRegister frt, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | LFSUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::stfdx(const DoubleRegister frs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STFDX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stfdux(const DoubleRegister frs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STFDUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) {
+  int offset = src.offset();
+  Register ra = src.ra();
+  DCHECK(is_int16(offset));
+  DCHECK(!ra.is(r0));
+  int imm16 = offset & kImm16Mask;
+  // could be x_form instruction with some casting magic
+  emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16);
+}
+
+
+void Assembler::stfsx(const DoubleRegister frs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STFSX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::stfsux(const DoubleRegister frs, const MemOperand& src) {
+  Register ra = src.ra();
+  Register rb = src.rb();
+  DCHECK(!ra.is(r0));
+  emit(EXT2 | STFSUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
+       LeaveRC);
+}
+
+
+void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra,
+                     const DoubleRegister frb, RCBit rc) {
+  a_form(EXT4 | FSUB, frt, fra, frb, rc);
+}
+
+
+void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra,
+                     const DoubleRegister frb, RCBit rc) {
+  a_form(EXT4 | FADD, frt, fra, frb, rc);
+}
+
+
+void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra,
+                     const DoubleRegister frc, RCBit rc) {
+  emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 |
+       rc);
+}
+
+
+void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra,
+                     const DoubleRegister frb, RCBit rc) {
+  a_form(EXT4 | FDIV, frt, fra, frb, rc);
+}
+
+
+void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb,
+                      CRegister cr) {
+  DCHECK(cr.code() >= 0 && cr.code() <= 7);
+  emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11);
+}
+
+
+void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb,
+                    RCBit rc) {
+  emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) {
+  emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11);
+}
+
+
+void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) {
+  emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11);
+}
+
+
+void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb) {
+  emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11);
+}
+
+
+void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb,
+                     RCBit rc) {
+  emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb,
+                      RCBit rc) {
+  emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb,
+                      RCBit rc) {
+  emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb,
+                       RCBit rc) {
+  emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra,
+                     const DoubleRegister frc, const DoubleRegister frb,
+                     RCBit rc) {
+  emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
+       frc.code() * B6 | rc);
+}
+
+
+void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb,
+                     RCBit rc) {
+  emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::mtfsfi(int bf, int immediate, RCBit rc) {
+  emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc);
+}
+
+
+void Assembler::mffs(const DoubleRegister frt, RCBit rc) {
+  emit(EXT4 | MFFS | frt.code() * B21 | rc);
+}
+
+
+void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W,
+                      RCBit rc) {
+  emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc);
+}
+
+
+void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb,
+                      RCBit rc) {
+  emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb,
+                     RCBit rc) {
+  emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc);
+}
+
+
+void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra,
+                      const DoubleRegister frc, const DoubleRegister frb,
+                      RCBit rc) {
+  emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
+       frc.code() * B6 | rc);
+}
+
+
+void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra,
+                      const DoubleRegister frc, const DoubleRegister frb,
+                      RCBit rc) {
+  emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
+       frc.code() * B6 | rc);
+}
+
+
+// Pseudo instructions.
+void Assembler::nop(int type) {
+  Register reg = r0;
+  switch (type) {
+    case NON_MARKING_NOP:
+      reg = r0;
+      break;
+    case GROUP_ENDING_NOP:
+      reg = r2;
+      break;
+    case DEBUG_BREAK_NOP:
+      reg = r3;
+      break;
+    default:
+      UNIMPLEMENTED();
+  }
+
+  ori(reg, reg, Operand::Zero());
+}
+
+
+bool Assembler::IsNop(Instr instr, int type) {
+  int reg = 0;
+  switch (type) {
+    case NON_MARKING_NOP:
+      reg = 0;
+      break;
+    case GROUP_ENDING_NOP:
+      reg = 2;
+      break;
+    case DEBUG_BREAK_NOP:
+      reg = 3;
+      break;
+    default:
+      UNIMPLEMENTED();
+  }
+  return instr == (ORI | reg * B21 | reg * B16);
+}
+
+
+// Debugging.
+void Assembler::RecordJSReturn() {
+  positions_recorder()->WriteRecordedPositions();
+  CheckBuffer();
+  RecordRelocInfo(RelocInfo::JS_RETURN);
+}
+
+
+void Assembler::RecordDebugBreakSlot() {
+  positions_recorder()->WriteRecordedPositions();
+  CheckBuffer();
+  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
+}
+
+
+void Assembler::RecordComment(const char* msg) {
+  if (FLAG_code_comments) {
+    CheckBuffer();
+    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
+  }
+}
+
+
+void Assembler::GrowBuffer() {
+  if (!own_buffer_) FATAL("external code buffer is too small");
+
+  // Compute new buffer size.
+  CodeDesc desc;  // the new buffer
+  if (buffer_size_ < 4 * KB) {
+    desc.buffer_size = 4 * KB;
+  } else if (buffer_size_ < 1 * MB) {
+    desc.buffer_size = 2 * buffer_size_;
+  } else {
+    desc.buffer_size = buffer_size_ + 1 * MB;
+  }
+  CHECK_GT(desc.buffer_size, 0);  // no overflow
+
+  // Set up new buffer.
+  desc.buffer = NewArray<byte>(desc.buffer_size);
+
+  desc.instr_size = pc_offset();
+  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+
+  // Copy the data.
+  intptr_t pc_delta = desc.buffer - buffer_;
+  intptr_t rc_delta =
+      (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+  memmove(desc.buffer, buffer_, desc.instr_size);
+  memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
+          desc.reloc_size);
+
+  // Switch buffers.
+  DeleteArray(buffer_);
+  buffer_ = desc.buffer;
+  buffer_size_ = desc.buffer_size;
+  pc_ += pc_delta;
+  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+                               reloc_info_writer.last_pc() + pc_delta);
+
+// None of our relocation types are pc relative pointing outside the code
+// buffer nor pc absolute pointing inside the code buffer, so there is no need
+// to relocate any emitted relocation entries.
+
+#if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL
+  // Relocate runtime entries.
+  for (RelocIterator it(desc); !it.done(); it.next()) {
+    RelocInfo::Mode rmode = it.rinfo()->rmode();
+    if (rmode == RelocInfo::INTERNAL_REFERENCE) {
+      RelocateInternalReference(it.rinfo()->pc(), pc_delta, 0);
+    }
+  }
+#if V8_OOL_CONSTANT_POOL
+  constant_pool_builder_.Relocate(pc_delta);
+#endif
+#endif
+}
+
+
+void Assembler::db(uint8_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uint8_t*>(pc_) = data;
+  pc_ += sizeof(uint8_t);
+}
+
+
+void Assembler::dd(uint32_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uint32_t*>(pc_) = data;
+  pc_ += sizeof(uint32_t);
+}
+
+
+void Assembler::emit_ptr(uintptr_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uintptr_t*>(pc_) = data;
+  pc_ += sizeof(uintptr_t);
+}
+
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+  RelocInfo rinfo(pc_, rmode, data, NULL);
+  RecordRelocInfo(rinfo);
+}
+
+
+void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
+  if (rinfo.rmode() >= RelocInfo::JS_RETURN &&
+      rinfo.rmode() <= RelocInfo::DEBUG_BREAK_SLOT) {
+    // Adjust code for new modes.
+    DCHECK(RelocInfo::IsDebugBreakSlot(rinfo.rmode()) ||
+           RelocInfo::IsJSReturn(rinfo.rmode()) ||
+           RelocInfo::IsComment(rinfo.rmode()) ||
+           RelocInfo::IsPosition(rinfo.rmode()));
+  }
+  if (!RelocInfo::IsNone(rinfo.rmode())) {
+    // Don't record external references unless the heap will be serialized.
+    if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE) {
+      if (!serializer_enabled() && !emit_debug_code()) {
+        return;
+      }
+    }
+    DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
+    if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
+      RelocInfo reloc_info_with_ast_id(rinfo.pc(), rinfo.rmode(),
+                                       RecordedAstId().ToInt(), NULL);
+      ClearRecordedAstId();
+      reloc_info_writer.Write(&reloc_info_with_ast_id);
+    } else {
+      reloc_info_writer.Write(&rinfo);
+    }
+  }
+}
+
+
+void Assembler::BlockTrampolinePoolFor(int instructions) {
+  BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
+}
+
+
+void Assembler::CheckTrampolinePool() {
+  // Some small sequences of instructions must not be broken up by the
+  // insertion of a trampoline pool; such sequences are protected by setting
+  // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
+  // which are both checked here. Also, recursive calls to CheckTrampolinePool
+  // are blocked by trampoline_pool_blocked_nesting_.
+  if ((trampoline_pool_blocked_nesting_ > 0) ||
+      (pc_offset() < no_trampoline_pool_before_)) {
+    // Emission is currently blocked; make sure we try again as soon as
+    // possible.
+    if (trampoline_pool_blocked_nesting_ > 0) {
+      next_buffer_check_ = pc_offset() + kInstrSize;
+    } else {
+      next_buffer_check_ = no_trampoline_pool_before_;
+    }
+    return;
+  }
+
+  DCHECK(!trampoline_emitted_);
+  DCHECK(unbound_labels_count_ >= 0);
+  if (unbound_labels_count_ > 0) {
+    // First we emit jump, then we emit trampoline pool.
+    {
+      BlockTrampolinePoolScope block_trampoline_pool(this);
+      Label after_pool;
+      b(&after_pool);
+
+      int pool_start = pc_offset();
+      for (int i = 0; i < unbound_labels_count_; i++) {
+        b(&after_pool);
+      }
+      bind(&after_pool);
+      trampoline_ = Trampoline(pool_start, unbound_labels_count_);
+
+      trampoline_emitted_ = true;
+      // As we are only going to emit trampoline once, we need to prevent any
+      // further emission.
+      next_buffer_check_ = kMaxInt;
+    }
+  } else {
+    // Number of branches to unbound label at this point is zero, so we can
+    // move next buffer check to maximum.
+    next_buffer_check_ =
+        pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize;
+  }
+  return;
+}
+
+
+Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
+#if V8_OOL_CONSTANT_POOL
+  return constant_pool_builder_.New(isolate);
+#else
+  // No out-of-line constant pool support.
+  DCHECK(!FLAG_enable_ool_constant_pool);
+  return isolate->factory()->empty_constant_pool_array();
+#endif
+}
+
+
+void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
+#if V8_OOL_CONSTANT_POOL
+  constant_pool_builder_.Populate(this, constant_pool);
+#else
+  // No out-of-line constant pool support.
+  DCHECK(!FLAG_enable_ool_constant_pool);
+#endif
+}
+
+
+#if V8_OOL_CONSTANT_POOL
+ConstantPoolBuilder::ConstantPoolBuilder()
+    : size_(0),
+      entries_(),
+      current_section_(ConstantPoolArray::SMALL_SECTION) {}
+
+
+bool ConstantPoolBuilder::IsEmpty() { return entries_.size() == 0; }
+
+
+ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType(
+    RelocInfo::Mode rmode) {
+#if V8_TARGET_ARCH_PPC64
+  // We don't support 32-bit entries at this time.
+  if (!RelocInfo::IsGCRelocMode(rmode)) {
+    return ConstantPoolArray::INT64;
+#else
+  if (rmode == RelocInfo::NONE64) {
+    return ConstantPoolArray::INT64;
+  } else if (!RelocInfo::IsGCRelocMode(rmode)) {
+    return ConstantPoolArray::INT32;
+#endif
+  } else if (RelocInfo::IsCodeTarget(rmode)) {
+    return ConstantPoolArray::CODE_PTR;
+  } else {
+    DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode));
+    return ConstantPoolArray::HEAP_PTR;
+  }
+}
+
+
+ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry(
+    Assembler* assm, const RelocInfo& rinfo) {
+  RelocInfo::Mode rmode = rinfo.rmode();
+  DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION &&
+         rmode != RelocInfo::STATEMENT_POSITION &&
+         rmode != RelocInfo::CONST_POOL);
+
+  // Try to merge entries which won't be patched.
+  int merged_index = -1;
+  ConstantPoolArray::LayoutSection entry_section = current_section_;
+  if (RelocInfo::IsNone(rmode) ||
+      (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) {
+    size_t i;
+    std::vector<ConstantPoolEntry>::const_iterator it;
+    for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
+      if (RelocInfo::IsEqual(rinfo, it->rinfo_)) {
+        // Merge with found entry.
+        merged_index = i;
+        entry_section = entries_[i].section_;
+        break;
+      }
+    }
+  }
+  DCHECK(entry_section <= current_section_);
+  entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index));
+
+  if (merged_index == -1) {
+    // Not merged, so update the appropriate count.
+    number_of_entries_[entry_section].increment(GetConstantPoolType(rmode));
+  }
+
+  // Check if we still have room for another entry in the small section
+  // given the limitations of the header's layout fields.
+  if (current_section_ == ConstantPoolArray::SMALL_SECTION) {
+    size_ = ConstantPoolArray::SizeFor(*small_entries());
+    if (!is_uint12(size_)) {
+      current_section_ = ConstantPoolArray::EXTENDED_SECTION;
+    }
+  } else {
+    size_ = ConstantPoolArray::SizeForExtended(*small_entries(),
+                                               *extended_entries());
+  }
+
+  return entry_section;
+}
+
+
+void ConstantPoolBuilder::Relocate(intptr_t pc_delta) {
+  for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
+       entry != entries_.end(); entry++) {
+    DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN);
+    entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta);
+  }
+}
+
+
+Handle<ConstantPoolArray> ConstantPoolBuilder::New(Isolate* isolate) {
+  if (IsEmpty()) {
+    return isolate->factory()->empty_constant_pool_array();
+  } else if (extended_entries()->is_empty()) {
+    return isolate->factory()->NewConstantPoolArray(*small_entries());
+  } else {
+    DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION);
+    return isolate->factory()->NewExtendedConstantPoolArray(
+        *small_entries(), *extended_entries());
+  }
+}
+
+
+void ConstantPoolBuilder::Populate(Assembler* assm,
+                                   ConstantPoolArray* constant_pool) {
+  DCHECK_EQ(extended_entries()->is_empty(),
+            !constant_pool->is_extended_layout());
+  DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries(
+      constant_pool, ConstantPoolArray::SMALL_SECTION)));
+  if (constant_pool->is_extended_layout()) {
+    DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries(
+        constant_pool, ConstantPoolArray::EXTENDED_SECTION)));
+  }
+
+  // Set up initial offsets.
+  int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS]
+             [ConstantPoolArray::NUMBER_OF_TYPES];
+  for (int section = 0; section <= constant_pool->final_section(); section++) {
+    int section_start = (section == ConstantPoolArray::EXTENDED_SECTION)
+                            ? small_entries()->total_count()
+                            : 0;
+    for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) {
+      ConstantPoolArray::Type type = static_cast<ConstantPoolArray::Type>(i);
+      if (number_of_entries_[section].count_of(type) != 0) {
+        offsets[section][type] = constant_pool->OffsetOfElementAt(
+            number_of_entries_[section].base_of(type) + section_start);
+      }
+    }
+  }
+
+  for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
+       entry != entries_.end(); entry++) {
+    RelocInfo rinfo = entry->rinfo_;
+    RelocInfo::Mode rmode = entry->rinfo_.rmode();
+    ConstantPoolArray::Type type = GetConstantPoolType(rmode);
+
+    // Update constant pool if necessary and get the entry's offset.
+    int offset;
+    if (entry->merged_index_ == -1) {
+      offset = offsets[entry->section_][type];
+      offsets[entry->section_][type] += ConstantPoolArray::entry_size(type);
+      if (type == ConstantPoolArray::INT64) {
+#if V8_TARGET_ARCH_PPC64
+        constant_pool->set_at_offset(offset, rinfo.data());
+#else
+        constant_pool->set_at_offset(offset, rinfo.data64());
+      } else if (type == ConstantPoolArray::INT32) {
+        constant_pool->set_at_offset(offset,
+                                     static_cast<int32_t>(rinfo.data()));
+#endif
+      } else if (type == ConstantPoolArray::CODE_PTR) {
+        constant_pool->set_at_offset(offset,
+                                     reinterpret_cast<Address>(rinfo.data()));
+      } else {
+        DCHECK(type == ConstantPoolArray::HEAP_PTR);
+        constant_pool->set_at_offset(offset,
+                                     reinterpret_cast<Object*>(rinfo.data()));
+      }
+      offset -= kHeapObjectTag;
+      entry->merged_index_ = offset;  // Stash offset for merged entries.
+    } else {
+      DCHECK(entry->merged_index_ < (entry - entries_.begin()));
+      offset = entries_[entry->merged_index_].merged_index_;
+    }
+
+    // Patch load instruction with correct offset.
+    Assembler::SetConstantPoolOffset(rinfo.pc(), offset);
+  }
+}
+#endif
+}
+}  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_PPC