Update V8 to version 4.1.0.21

This is a cherry-pick of all commits up to and including the
4.1.0.21 cherry-pick in Chromium.

Original commit message:

Version 4.1.0.21 (cherry-pick)

Merged 206e9136bde0f2b5ae8cb77afbb1e7833e5bd412

Unlink pages from the space page list after evacuation.

BUG=430201
LOG=N
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/953813002

Cr-Commit-Position: refs/branch-heads/4.1@{#22}
Cr-Branched-From: 2e08d2a7aa9d65d269d8c57aba82eb38a8cb0a18-refs/heads/candidates@{#25353}

---

FPIIM-449

Change-Id: I8c23c7bbb70772b4858fe8a47b64fa97ee0d1f8c
diff --git a/src/ppc/code-stubs-ppc.cc b/src/ppc/code-stubs-ppc.cc
new file mode 100644
index 0000000..3e84a21
--- /dev/null
+++ b/src/ppc/code-stubs-ppc.cc
@@ -0,0 +1,4893 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/base/bits.h"
+#include "src/bootstrapper.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/ic/handler-compiler.h"
+#include "src/ic/ic.h"
+#include "src/isolate.h"
+#include "src/jsregexp.h"
+#include "src/regexp-macro-assembler.h"
+#include "src/runtime/runtime.h"
+
+namespace v8 {
+namespace internal {
+
+
+static void InitializeArrayConstructorDescriptor(
+    Isolate* isolate, CodeStubDescriptor* descriptor,
+    int constant_stack_parameter_count) {
+  Address deopt_handler =
+      Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
+
+  if (constant_stack_parameter_count == 0) {
+    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE);
+  } else {
+    descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+  }
+}
+
+
+static void InitializeInternalArrayConstructorDescriptor(
+    Isolate* isolate, CodeStubDescriptor* descriptor,
+    int constant_stack_parameter_count) {
+  Address deopt_handler =
+      Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
+
+  if (constant_stack_parameter_count == 0) {
+    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE);
+  } else {
+    descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
+                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+  }
+}
+
+
+void ArrayNoArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
+}
+
+
+void ArraySingleArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
+}
+
+
+void ArrayNArgumentsConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
+}
+
+
+void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
+}
+
+
+void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
+}
+
+
+void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
+    CodeStubDescriptor* descriptor) {
+  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
+}
+
+
+#define __ ACCESS_MASM(masm)
+
+
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
+                                          Condition cond);
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
+                                    Register rhs, Label* lhs_not_nan,
+                                    Label* slow, bool strict);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
+                                           Register rhs);
+
+
+void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
+                                               ExternalReference miss) {
+  // Update the static counter each time a new code stub is generated.
+  isolate()->counters()->code_stubs()->Increment();
+
+  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
+  int param_count = descriptor.GetEnvironmentParameterCount();
+  {
+    // Call the runtime system in a fresh internal frame.
+    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
+    DCHECK(param_count == 0 ||
+           r3.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
+    // Push arguments
+    for (int i = 0; i < param_count; ++i) {
+      __ push(descriptor.GetEnvironmentParameterRegister(i));
+    }
+    __ CallExternalReference(miss, param_count);
+  }
+
+  __ Ret();
+}
+
+
+void DoubleToIStub::Generate(MacroAssembler* masm) {
+  Label out_of_range, only_low, negate, done, fastpath_done;
+  Register input_reg = source();
+  Register result_reg = destination();
+  DCHECK(is_truncating());
+
+  int double_offset = offset();
+
+  // Immediate values for this stub fit in instructions, so it's safe to use ip.
+  Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
+  Register scratch_low =
+      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
+  Register scratch_high =
+      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
+  DoubleRegister double_scratch = kScratchDoubleReg;
+
+  __ push(scratch);
+  // Account for saved regs if input is sp.
+  if (input_reg.is(sp)) double_offset += kPointerSize;
+
+  if (!skip_fastpath()) {
+    // Load double input.
+    __ lfd(double_scratch, MemOperand(input_reg, double_offset));
+
+    // Do fast-path convert from double to int.
+    __ ConvertDoubleToInt64(double_scratch,
+#if !V8_TARGET_ARCH_PPC64
+                            scratch,
+#endif
+                            result_reg, d0);
+
+// Test for overflow
+#if V8_TARGET_ARCH_PPC64
+    __ TestIfInt32(result_reg, scratch, r0);
+#else
+    __ TestIfInt32(scratch, result_reg, r0);
+#endif
+    __ beq(&fastpath_done);
+  }
+
+  __ Push(scratch_high, scratch_low);
+  // Account for saved regs if input is sp.
+  if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
+
+  __ lwz(scratch_high,
+         MemOperand(input_reg, double_offset + Register::kExponentOffset));
+  __ lwz(scratch_low,
+         MemOperand(input_reg, double_offset + Register::kMantissaOffset));
+
+  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
+  // Load scratch with exponent - 1. This is faster than loading
+  // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
+  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
+  __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
+  // If exponent is greater than or equal to 84, the 32 less significant
+  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
+  // the result is 0.
+  // Compare exponent with 84 (compare exponent - 1 with 83).
+  __ cmpi(scratch, Operand(83));
+  __ bge(&out_of_range);
+
+  // If we reach this code, 31 <= exponent <= 83.
+  // So, we don't have to handle cases where 0 <= exponent <= 20 for
+  // which we would need to shift right the high part of the mantissa.
+  // Scratch contains exponent - 1.
+  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
+  __ subfic(scratch, scratch, Operand(51));
+  __ cmpi(scratch, Operand::Zero());
+  __ ble(&only_low);
+  // 21 <= exponent <= 51, shift scratch_low and scratch_high
+  // to generate the result.
+  __ srw(scratch_low, scratch_low, scratch);
+  // Scratch contains: 52 - exponent.
+  // We needs: exponent - 20.
+  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
+  __ subfic(scratch, scratch, Operand(32));
+  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
+  // Set the implicit 1 before the mantissa part in scratch_high.
+  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
+  __ oris(result_reg, result_reg,
+          Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
+  __ slw(r0, result_reg, scratch);
+  __ orx(result_reg, scratch_low, r0);
+  __ b(&negate);
+
+  __ bind(&out_of_range);
+  __ mov(result_reg, Operand::Zero());
+  __ b(&done);
+
+  __ bind(&only_low);
+  // 52 <= exponent <= 83, shift only scratch_low.
+  // On entry, scratch contains: 52 - exponent.
+  __ neg(scratch, scratch);
+  __ slw(result_reg, scratch_low, scratch);
+
+  __ bind(&negate);
+  // If input was positive, scratch_high ASR 31 equals 0 and
+  // scratch_high LSR 31 equals zero.
+  // New result = (result eor 0) + 0 = result.
+  // If the input was negative, we have to negate the result.
+  // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
+  // New result = (result eor 0xffffffff) + 1 = 0 - result.
+  __ srawi(r0, scratch_high, 31);
+#if V8_TARGET_ARCH_PPC64
+  __ srdi(r0, r0, Operand(32));
+#endif
+  __ xor_(result_reg, result_reg, r0);
+  __ srwi(r0, scratch_high, Operand(31));
+  __ add(result_reg, result_reg, r0);
+
+  __ bind(&done);
+  __ Pop(scratch_high, scratch_low);
+
+  __ bind(&fastpath_done);
+  __ pop(scratch);
+
+  __ Ret();
+}
+
+
+// Handle the case where the lhs and rhs are the same object.
+// Equality is almost reflexive (everything but NaN), so this is a test
+// for "identity and not NaN".
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
+                                          Condition cond) {
+  Label not_identical;
+  Label heap_number, return_equal;
+  __ cmp(r3, r4);
+  __ bne(&not_identical);
+
+  // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
+  // so we do the second best thing - test it ourselves.
+  // They are both equal and they are not both Smis so both of them are not
+  // Smis.  If it's not a heap number, then return equal.
+  if (cond == lt || cond == gt) {
+    __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+    __ bge(slow);
+  } else {
+    __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
+    __ beq(&heap_number);
+    // Comparing JS objects with <=, >= is complicated.
+    if (cond != eq) {
+      __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE));
+      __ bge(slow);
+      // Normally here we fall through to return_equal, but undefined is
+      // special: (undefined == undefined) == true, but
+      // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
+      if (cond == le || cond == ge) {
+        __ cmpi(r7, Operand(ODDBALL_TYPE));
+        __ bne(&return_equal);
+        __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+        __ cmp(r3, r5);
+        __ bne(&return_equal);
+        if (cond == le) {
+          // undefined <= undefined should fail.
+          __ li(r3, Operand(GREATER));
+        } else {
+          // undefined >= undefined should fail.
+          __ li(r3, Operand(LESS));
+        }
+        __ Ret();
+      }
+    }
+  }
+
+  __ bind(&return_equal);
+  if (cond == lt) {
+    __ li(r3, Operand(GREATER));  // Things aren't less than themselves.
+  } else if (cond == gt) {
+    __ li(r3, Operand(LESS));  // Things aren't greater than themselves.
+  } else {
+    __ li(r3, Operand(EQUAL));  // Things are <=, >=, ==, === themselves.
+  }
+  __ Ret();
+
+  // For less and greater we don't have to check for NaN since the result of
+  // x < x is false regardless.  For the others here is some code to check
+  // for NaN.
+  if (cond != lt && cond != gt) {
+    __ bind(&heap_number);
+    // It is a heap number, so return non-equal if it's NaN and equal if it's
+    // not NaN.
+
+    // The representation of NaN values has all exponent bits (52..62) set,
+    // and not all mantissa bits (0..51) clear.
+    // Read top bits of double representation (second word of value).
+    __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
+    // Test that exponent bits are all set.
+    STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
+    __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
+    __ cmpli(r6, Operand(0x7ff));
+    __ bne(&return_equal);
+
+    // Shift out flag and all exponent bits, retaining only mantissa.
+    __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
+    // Or with all low-bits of mantissa.
+    __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
+    __ orx(r3, r6, r5);
+    __ cmpi(r3, Operand::Zero());
+    // For equal we already have the right value in r3:  Return zero (equal)
+    // if all bits in mantissa are zero (it's an Infinity) and non-zero if
+    // not (it's a NaN).  For <= and >= we need to load r0 with the failing
+    // value if it's a NaN.
+    if (cond != eq) {
+      Label not_equal;
+      __ bne(&not_equal);
+      // All-zero means Infinity means equal.
+      __ Ret();
+      __ bind(&not_equal);
+      if (cond == le) {
+        __ li(r3, Operand(GREATER));  // NaN <= NaN should fail.
+      } else {
+        __ li(r3, Operand(LESS));  // NaN >= NaN should fail.
+      }
+    }
+    __ Ret();
+  }
+  // No fall through here.
+
+  __ bind(&not_identical);
+}
+
+
+// See comment at call site.
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
+                                    Register rhs, Label* lhs_not_nan,
+                                    Label* slow, bool strict) {
+  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
+
+  Label rhs_is_smi;
+  __ JumpIfSmi(rhs, &rhs_is_smi);
+
+  // Lhs is a Smi.  Check whether the rhs is a heap number.
+  __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
+  if (strict) {
+    // If rhs is not a number and lhs is a Smi then strict equality cannot
+    // succeed.  Return non-equal
+    // If rhs is r3 then there is already a non zero value in it.
+    Label skip;
+    __ beq(&skip);
+    if (!rhs.is(r3)) {
+      __ mov(r3, Operand(NOT_EQUAL));
+    }
+    __ Ret();
+    __ bind(&skip);
+  } else {
+    // Smi compared non-strictly with a non-Smi non-heap-number.  Call
+    // the runtime.
+    __ bne(slow);
+  }
+
+  // Lhs is a smi, rhs is a number.
+  // Convert lhs to a double in d7.
+  __ SmiToDouble(d7, lhs);
+  // Load the double from rhs, tagged HeapNumber r3, to d6.
+  __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+
+  // We now have both loaded as doubles but we can skip the lhs nan check
+  // since it's a smi.
+  __ b(lhs_not_nan);
+
+  __ bind(&rhs_is_smi);
+  // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
+  __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
+  if (strict) {
+    // If lhs is not a number and rhs is a smi then strict equality cannot
+    // succeed.  Return non-equal.
+    // If lhs is r3 then there is already a non zero value in it.
+    Label skip;
+    __ beq(&skip);
+    if (!lhs.is(r3)) {
+      __ mov(r3, Operand(NOT_EQUAL));
+    }
+    __ Ret();
+    __ bind(&skip);
+  } else {
+    // Smi compared non-strictly with a non-smi non-heap-number.  Call
+    // the runtime.
+    __ bne(slow);
+  }
+
+  // Rhs is a smi, lhs is a heap number.
+  // Load the double from lhs, tagged HeapNumber r4, to d7.
+  __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+  // Convert rhs to a double in d6.
+  __ SmiToDouble(d6, rhs);
+  // Fall through to both_loaded_as_doubles.
+}
+
+
+// See comment at call site.
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
+                                           Register rhs) {
+  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
+
+  // If either operand is a JS object or an oddball value, then they are
+  // not equal since their pointers are different.
+  // There is no test for undetectability in strict equality.
+  STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
+  Label first_non_object;
+  // Get the type of the first operand into r5 and compare it with
+  // FIRST_SPEC_OBJECT_TYPE.
+  __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE);
+  __ blt(&first_non_object);
+
+  // Return non-zero (r3 is not zero)
+  Label return_not_equal;
+  __ bind(&return_not_equal);
+  __ Ret();
+
+  __ bind(&first_non_object);
+  // Check for oddballs: true, false, null, undefined.
+  __ cmpi(r5, Operand(ODDBALL_TYPE));
+  __ beq(&return_not_equal);
+
+  __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE);
+  __ bge(&return_not_equal);
+
+  // Check for oddballs: true, false, null, undefined.
+  __ cmpi(r6, Operand(ODDBALL_TYPE));
+  __ beq(&return_not_equal);
+
+  // Now that we have the types we might as well check for
+  // internalized-internalized.
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  __ orx(r5, r5, r6);
+  __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+  __ beq(&return_not_equal, cr0);
+}
+
+
+// See comment at call site.
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
+                                       Register rhs,
+                                       Label* both_loaded_as_doubles,
+                                       Label* not_heap_numbers, Label* slow) {
+  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
+
+  __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
+  __ bne(not_heap_numbers);
+  __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
+  __ cmp(r5, r6);
+  __ bne(slow);  // First was a heap number, second wasn't.  Go slow case.
+
+  // Both are heap numbers.  Load them up then jump to the code we have
+  // for that.
+  __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+  __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+
+  __ b(both_loaded_as_doubles);
+}
+
+
+// Fast negative check for internalized-to-internalized equality.
+static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
+                                                     Register lhs, Register rhs,
+                                                     Label* possible_strings,
+                                                     Label* not_both_strings) {
+  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
+
+  // r5 is object type of rhs.
+  Label object_test;
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  __ andi(r0, r5, Operand(kIsNotStringMask));
+  __ bne(&object_test, cr0);
+  __ andi(r0, r5, Operand(kIsNotInternalizedMask));
+  __ bne(possible_strings, cr0);
+  __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
+  __ bge(not_both_strings);
+  __ andi(r0, r6, Operand(kIsNotInternalizedMask));
+  __ bne(possible_strings, cr0);
+
+  // Both are internalized.  We already checked they weren't the same pointer
+  // so they are not equal.
+  __ li(r3, Operand(NOT_EQUAL));
+  __ Ret();
+
+  __ bind(&object_test);
+  __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE));
+  __ blt(not_both_strings);
+  __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE);
+  __ blt(not_both_strings);
+  // If both objects are undetectable, they are equal. Otherwise, they
+  // are not equal, since they are different objects and an object is not
+  // equal to undefined.
+  __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
+  __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset));
+  __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
+  __ and_(r3, r5, r6);
+  __ andi(r3, r3, Operand(1 << Map::kIsUndetectable));
+  __ xori(r3, r3, Operand(1 << Map::kIsUndetectable));
+  __ Ret();
+}
+
+
+static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
+                                         Register scratch,
+                                         CompareICState::State expected,
+                                         Label* fail) {
+  Label ok;
+  if (expected == CompareICState::SMI) {
+    __ JumpIfNotSmi(input, fail);
+  } else if (expected == CompareICState::NUMBER) {
+    __ JumpIfSmi(input, &ok);
+    __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
+                DONT_DO_SMI_CHECK);
+  }
+  // We could be strict about internalized/non-internalized here, but as long as
+  // hydrogen doesn't care, the stub doesn't have to care either.
+  __ bind(&ok);
+}
+
+
+// On entry r4 and r5 are the values to be compared.
+// On exit r3 is 0, positive or negative to indicate the result of
+// the comparison.
+void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
+  Register lhs = r4;
+  Register rhs = r3;
+  Condition cc = GetCondition();
+
+  Label miss;
+  CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
+  CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
+
+  Label slow;  // Call builtin.
+  Label not_smis, both_loaded_as_doubles, lhs_not_nan;
+
+  Label not_two_smis, smi_done;
+  __ orx(r5, r4, r3);
+  __ JumpIfNotSmi(r5, &not_two_smis);
+  __ SmiUntag(r4);
+  __ SmiUntag(r3);
+  __ sub(r3, r4, r3);
+  __ Ret();
+  __ bind(&not_two_smis);
+
+  // NOTICE! This code is only reached after a smi-fast-case check, so
+  // it is certain that at least one operand isn't a smi.
+
+  // Handle the case where the objects are identical.  Either returns the answer
+  // or goes to slow.  Only falls through if the objects were not identical.
+  EmitIdenticalObjectComparison(masm, &slow, cc);
+
+  // If either is a Smi (we know that not both are), then they can only
+  // be strictly equal if the other is a HeapNumber.
+  STATIC_ASSERT(kSmiTag == 0);
+  DCHECK_EQ(0, Smi::FromInt(0));
+  __ and_(r5, lhs, rhs);
+  __ JumpIfNotSmi(r5, &not_smis);
+  // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
+  // 1) Return the answer.
+  // 2) Go to slow.
+  // 3) Fall through to both_loaded_as_doubles.
+  // 4) Jump to lhs_not_nan.
+  // In cases 3 and 4 we have found out we were dealing with a number-number
+  // comparison.  The double values of the numbers have been loaded
+  // into d7 and d6.
+  EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
+
+  __ bind(&both_loaded_as_doubles);
+  // The arguments have been converted to doubles and stored in d6 and d7
+  __ bind(&lhs_not_nan);
+  Label no_nan;
+  __ fcmpu(d7, d6);
+
+  Label nan, equal, less_than;
+  __ bunordered(&nan);
+  __ beq(&equal);
+  __ blt(&less_than);
+  __ li(r3, Operand(GREATER));
+  __ Ret();
+  __ bind(&equal);
+  __ li(r3, Operand(EQUAL));
+  __ Ret();
+  __ bind(&less_than);
+  __ li(r3, Operand(LESS));
+  __ Ret();
+
+  __ bind(&nan);
+  // If one of the sides was a NaN then the v flag is set.  Load r3 with
+  // whatever it takes to make the comparison fail, since comparisons with NaN
+  // always fail.
+  if (cc == lt || cc == le) {
+    __ li(r3, Operand(GREATER));
+  } else {
+    __ li(r3, Operand(LESS));
+  }
+  __ Ret();
+
+  __ bind(&not_smis);
+  // At this point we know we are dealing with two different objects,
+  // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
+  if (strict()) {
+    // This returns non-equal for some object types, or falls through if it
+    // was not lucky.
+    EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
+  }
+
+  Label check_for_internalized_strings;
+  Label flat_string_check;
+  // Check for heap-number-heap-number comparison.  Can jump to slow case,
+  // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
+  // that case.  If the inputs are not doubles then jumps to
+  // check_for_internalized_strings.
+  // In this case r5 will contain the type of rhs_.  Never falls through.
+  EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
+                             &check_for_internalized_strings,
+                             &flat_string_check);
+
+  __ bind(&check_for_internalized_strings);
+  // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
+  // internalized strings.
+  if (cc == eq && !strict()) {
+    // Returns an answer for two internalized strings or two detectable objects.
+    // Otherwise jumps to string case or not both strings case.
+    // Assumes that r5 is the type of rhs_ on entry.
+    EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
+                                             &slow);
+  }
+
+  // Check for both being sequential one-byte strings,
+  // and inline if that is the case.
+  __ bind(&flat_string_check);
+
+  __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
+
+  __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
+                      r6);
+  if (cc == eq) {
+    StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
+  } else {
+    StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
+  }
+  // Never falls through to here.
+
+  __ bind(&slow);
+
+  __ Push(lhs, rhs);
+  // Figure out which native to call and setup the arguments.
+  Builtins::JavaScript native;
+  if (cc == eq) {
+    native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+  } else {
+    native = Builtins::COMPARE;
+    int ncr;  // NaN compare result
+    if (cc == lt || cc == le) {
+      ncr = GREATER;
+    } else {
+      DCHECK(cc == gt || cc == ge);  // remaining cases
+      ncr = LESS;
+    }
+    __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
+    __ push(r3);
+  }
+
+  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ InvokeBuiltin(native, JUMP_FUNCTION);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
+  // We don't allow a GC during a store buffer overflow so there is no need to
+  // store the registers in any particular way, but we do have to store and
+  // restore them.
+  __ mflr(r0);
+  __ MultiPush(kJSCallerSaved | r0.bit());
+  if (save_doubles()) {
+    __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
+  }
+  const int argument_count = 1;
+  const int fp_argument_count = 0;
+  const Register scratch = r4;
+
+  AllowExternalCallThatCantCauseGC scope(masm);
+  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
+  __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+  __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
+                   argument_count);
+  if (save_doubles()) {
+    __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
+  }
+  __ MultiPop(kJSCallerSaved | r0.bit());
+  __ mtlr(r0);
+  __ Ret();
+}
+
+
+void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
+  __ PushSafepointRegisters();
+  __ blr();
+}
+
+
+void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
+  __ PopSafepointRegisters();
+  __ blr();
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+  const Register base = r4;
+  const Register exponent = MathPowTaggedDescriptor::exponent();
+  DCHECK(exponent.is(r5));
+  const Register heapnumbermap = r8;
+  const Register heapnumber = r3;
+  const DoubleRegister double_base = d1;
+  const DoubleRegister double_exponent = d2;
+  const DoubleRegister double_result = d3;
+  const DoubleRegister double_scratch = d0;
+  const Register scratch = r11;
+  const Register scratch2 = r10;
+
+  Label call_runtime, done, int_exponent;
+  if (exponent_type() == ON_STACK) {
+    Label base_is_smi, unpack_exponent;
+    // The exponent and base are supplied as arguments on the stack.
+    // This can only happen if the stub is called from non-optimized code.
+    // Load input parameters from stack to double registers.
+    __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
+    __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
+
+    __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
+
+    __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
+    __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
+    __ cmp(scratch, heapnumbermap);
+    __ bne(&call_runtime);
+
+    __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
+    __ b(&unpack_exponent);
+
+    __ bind(&base_is_smi);
+    __ ConvertIntToDouble(scratch, double_base);
+    __ bind(&unpack_exponent);
+
+    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
+    __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
+    __ cmp(scratch, heapnumbermap);
+    __ bne(&call_runtime);
+
+    __ lfd(double_exponent,
+           FieldMemOperand(exponent, HeapNumber::kValueOffset));
+  } else if (exponent_type() == TAGGED) {
+    // Base is already in double_base.
+    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
+
+    __ lfd(double_exponent,
+           FieldMemOperand(exponent, HeapNumber::kValueOffset));
+  }
+
+  if (exponent_type() != INTEGER) {
+    // Detect integer exponents stored as double.
+    __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
+                             double_scratch);
+    __ beq(&int_exponent);
+
+    if (exponent_type() == ON_STACK) {
+      // Detect square root case.  Crankshaft detects constant +/-0.5 at
+      // compile time and uses DoMathPowHalf instead.  We then skip this check
+      // for non-constant cases of +/-0.5 as these hardly occur.
+      Label not_plus_half, not_minus_inf1, not_minus_inf2;
+
+      // Test for 0.5.
+      __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
+      __ fcmpu(double_exponent, double_scratch);
+      __ bne(&not_plus_half);
+
+      // Calculates square root of base.  Check for the special case of
+      // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
+      __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
+      __ fcmpu(double_base, double_scratch);
+      __ bne(&not_minus_inf1);
+      __ fneg(double_result, double_scratch);
+      __ b(&done);
+      __ bind(&not_minus_inf1);
+
+      // Add +0 to convert -0 to +0.
+      __ fadd(double_scratch, double_base, kDoubleRegZero);
+      __ fsqrt(double_result, double_scratch);
+      __ b(&done);
+
+      __ bind(&not_plus_half);
+      __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
+      __ fcmpu(double_exponent, double_scratch);
+      __ bne(&call_runtime);
+
+      // Calculates square root of base.  Check for the special case of
+      // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
+      __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
+      __ fcmpu(double_base, double_scratch);
+      __ bne(&not_minus_inf2);
+      __ fmr(double_result, kDoubleRegZero);
+      __ b(&done);
+      __ bind(&not_minus_inf2);
+
+      // Add +0 to convert -0 to +0.
+      __ fadd(double_scratch, double_base, kDoubleRegZero);
+      __ LoadDoubleLiteral(double_result, 1.0, scratch);
+      __ fsqrt(double_scratch, double_scratch);
+      __ fdiv(double_result, double_result, double_scratch);
+      __ b(&done);
+    }
+
+    __ mflr(r0);
+    __ push(r0);
+    {
+      AllowExternalCallThatCantCauseGC scope(masm);
+      __ PrepareCallCFunction(0, 2, scratch);
+      __ MovToFloatParameters(double_base, double_exponent);
+      __ CallCFunction(
+          ExternalReference::power_double_double_function(isolate()), 0, 2);
+    }
+    __ pop(r0);
+    __ mtlr(r0);
+    __ MovFromFloatResult(double_result);
+    __ b(&done);
+  }
+
+  // Calculate power with integer exponent.
+  __ bind(&int_exponent);
+
+  // Get two copies of exponent in the registers scratch and exponent.
+  if (exponent_type() == INTEGER) {
+    __ mr(scratch, exponent);
+  } else {
+    // Exponent has previously been stored into scratch as untagged integer.
+    __ mr(exponent, scratch);
+  }
+  __ fmr(double_scratch, double_base);  // Back up base.
+  __ li(scratch2, Operand(1));
+  __ ConvertIntToDouble(scratch2, double_result);
+
+  // Get absolute value of exponent.
+  Label positive_exponent;
+  __ cmpi(scratch, Operand::Zero());
+  __ bge(&positive_exponent);
+  __ neg(scratch, scratch);
+  __ bind(&positive_exponent);
+
+  Label while_true, no_carry, loop_end;
+  __ bind(&while_true);
+  __ andi(scratch2, scratch, Operand(1));
+  __ beq(&no_carry, cr0);
+  __ fmul(double_result, double_result, double_scratch);
+  __ bind(&no_carry);
+  __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
+  __ beq(&loop_end, cr0);
+  __ fmul(double_scratch, double_scratch, double_scratch);
+  __ b(&while_true);
+  __ bind(&loop_end);
+
+  __ cmpi(exponent, Operand::Zero());
+  __ bge(&done);
+
+  __ li(scratch2, Operand(1));
+  __ ConvertIntToDouble(scratch2, double_scratch);
+  __ fdiv(double_result, double_scratch, double_result);
+  // Test whether result is zero.  Bail out to check for subnormal result.
+  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
+  __ fcmpu(double_result, kDoubleRegZero);
+  __ bne(&done);
+  // double_exponent may not containe the exponent value if the input was a
+  // smi.  We set it with exponent value before bailing out.
+  __ ConvertIntToDouble(exponent, double_exponent);
+
+  // Returning or bailing out.
+  Counters* counters = isolate()->counters();
+  if (exponent_type() == ON_STACK) {
+    // The arguments are still on the stack.
+    __ bind(&call_runtime);
+    __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
+
+    // The stub is called from non-optimized code, which expects the result
+    // as heap number in exponent.
+    __ bind(&done);
+    __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
+                          &call_runtime);
+    __ stfd(double_result,
+            FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+    DCHECK(heapnumber.is(r3));
+    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
+    __ Ret(2);
+  } else {
+    __ mflr(r0);
+    __ push(r0);
+    {
+      AllowExternalCallThatCantCauseGC scope(masm);
+      __ PrepareCallCFunction(0, 2, scratch);
+      __ MovToFloatParameters(double_base, double_exponent);
+      __ CallCFunction(
+          ExternalReference::power_double_double_function(isolate()), 0, 2);
+    }
+    __ pop(r0);
+    __ mtlr(r0);
+    __ MovFromFloatResult(double_result);
+
+    __ bind(&done);
+    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
+    __ Ret();
+  }
+}
+
+
+bool CEntryStub::NeedsImmovableCode() { return true; }
+
+
+void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
+  CEntryStub::GenerateAheadOfTime(isolate);
+  //  WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
+  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
+  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
+  ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
+  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
+  BinaryOpICStub::GenerateAheadOfTime(isolate);
+  StoreRegistersStateStub::GenerateAheadOfTime(isolate);
+  RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
+  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
+}
+
+
+void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
+  StoreRegistersStateStub stub(isolate);
+  stub.GetCode();
+}
+
+
+void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
+  RestoreRegistersStateStub stub(isolate);
+  stub.GetCode();
+}
+
+
+void CodeStub::GenerateFPStubs(Isolate* isolate) {
+  // Generate if not already in cache.
+  SaveFPRegsMode mode = kSaveFPRegs;
+  CEntryStub(isolate, 1, mode).GetCode();
+  StoreBufferOverflowStub(isolate, mode).GetCode();
+  isolate->set_fp_stubs_generated(true);
+}
+
+
+void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
+  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
+  stub.GetCode();
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+  // Called from JavaScript; parameters are on stack as if calling JS function.
+  // r3: number of arguments including receiver
+  // r4: pointer to builtin function
+  // fp: frame pointer  (restored after C call)
+  // sp: stack pointer  (restored as callee's sp after C call)
+  // cp: current context  (C callee-saved)
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+  __ mr(r15, r4);
+
+  // Compute the argv pointer.
+  __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
+  __ add(r4, r4, sp);
+  __ subi(r4, r4, Operand(kPointerSize));
+
+  // Enter the exit frame that transitions from JavaScript to C++.
+  FrameScope scope(masm, StackFrame::MANUAL);
+
+  // Need at least one extra slot for return address location.
+  int arg_stack_space = 1;
+
+// PPC LINUX ABI:
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+  // Pass buffer for return value on stack if necessary
+  if (result_size() > 1) {
+    DCHECK_EQ(2, result_size());
+    arg_stack_space += 2;
+  }
+#endif
+
+  __ EnterExitFrame(save_doubles(), arg_stack_space);
+
+  // Store a copy of argc in callee-saved registers for later.
+  __ mr(r14, r3);
+
+  // r3, r14: number of arguments including receiver  (C callee-saved)
+  // r4: pointer to the first argument
+  // r15: pointer to builtin function  (C callee-saved)
+
+  // Result returned in registers or stack, depending on result size and ABI.
+
+  Register isolate_reg = r5;
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+  if (result_size() > 1) {
+    // The return value is 16-byte non-scalar value.
+    // Use frame storage reserved by calling function to pass return
+    // buffer as implicit first argument.
+    __ mr(r5, r4);
+    __ mr(r4, r3);
+    __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
+    isolate_reg = r6;
+  }
+#endif
+
+  // Call C built-in.
+  __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
+
+#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
+  // Native AIX/PPC64 Linux use a function descriptor.
+  __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
+  __ LoadP(ip, MemOperand(r15, 0));  // Instruction address
+  Register target = ip;
+#elif ABI_TOC_ADDRESSABILITY_VIA_IP
+  __ Move(ip, r15);
+  Register target = ip;
+#else
+  Register target = r15;
+#endif
+
+  // To let the GC traverse the return address of the exit frames, we need to
+  // know where the return address is. The CEntryStub is unmovable, so
+  // we can store the address on the stack to be able to find it again and
+  // we never have to restore it, because it will not change.
+  // Compute the return address in lr to return to after the jump below. Pc is
+  // already at '+ 8' from the current instruction but return is after three
+  // instructions so add another 4 to pc to get the return address.
+  {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
+    Label here;
+    __ b(&here, SetLK);
+    __ bind(&here);
+    __ mflr(r8);
+
+    // Constant used below is dependent on size of Call() macro instructions
+    __ addi(r0, r8, Operand(20));
+
+    __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+    __ Call(target);
+  }
+
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+  // If return value is on the stack, pop it to registers.
+  if (result_size() > 1) {
+    __ LoadP(r4, MemOperand(r3, kPointerSize));
+    __ LoadP(r3, MemOperand(r3));
+  }
+#endif
+
+  // Runtime functions should not return 'the hole'.  Allowing it to escape may
+  // lead to crashes in the IC code later.
+  if (FLAG_debug_code) {
+    Label okay;
+    __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+    __ bne(&okay);
+    __ stop("The hole escaped");
+    __ bind(&okay);
+  }
+
+  // Check result for exception sentinel.
+  Label exception_returned;
+  __ CompareRoot(r3, Heap::kExceptionRootIndex);
+  __ beq(&exception_returned);
+
+  ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress,
+                                              isolate());
+
+  // Check that there is no pending exception, otherwise we
+  // should have returned the exception sentinel.
+  if (FLAG_debug_code) {
+    Label okay;
+    __ mov(r5, Operand(pending_exception_address));
+    __ LoadP(r5, MemOperand(r5));
+    __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
+    // Cannot use check here as it attempts to generate call into runtime.
+    __ beq(&okay);
+    __ stop("Unexpected pending exception");
+    __ bind(&okay);
+  }
+
+  // Exit C frame and return.
+  // r3:r4: result
+  // sp: stack pointer
+  // fp: frame pointer
+  // r14: still holds argc (callee-saved).
+  __ LeaveExitFrame(save_doubles(), r14, true);
+  __ blr();
+
+  // Handling of exception.
+  __ bind(&exception_returned);
+
+  // Retrieve the pending exception.
+  __ mov(r5, Operand(pending_exception_address));
+  __ LoadP(r3, MemOperand(r5));
+
+  // Clear the pending exception.
+  __ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
+  __ StoreP(r6, MemOperand(r5));
+
+  // Special handling of termination exceptions which are uncatchable
+  // by javascript code.
+  Label throw_termination_exception;
+  __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
+  __ beq(&throw_termination_exception);
+
+  // Handle normal exception.
+  __ Throw(r3);
+
+  __ bind(&throw_termination_exception);
+  __ ThrowUncatchable(r3);
+}
+
+
+void JSEntryStub::Generate(MacroAssembler* masm) {
+  // r3: code entry
+  // r4: function
+  // r5: receiver
+  // r6: argc
+  // [sp+0]: argv
+
+  Label invoke, handler_entry, exit;
+
+// Called from C
+#if ABI_USES_FUNCTION_DESCRIPTORS
+  __ function_descriptor();
+#endif
+
+  ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+  // PPC LINUX ABI:
+  // preserve LR in pre-reserved slot in caller's frame
+  __ mflr(r0);
+  __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
+
+  // Save callee saved registers on the stack.
+  __ MultiPush(kCalleeSaved);
+
+  // Floating point regs FPR0 - FRP13 are volatile
+  // FPR14-FPR31 are non-volatile, but sub-calls will save them for us
+
+  //  int offset_to_argv = kPointerSize * 22; // matches (22*4) above
+  //  __ lwz(r7, MemOperand(sp, offset_to_argv));
+
+  // Push a frame with special values setup to mark it as an entry frame.
+  // r3: code entry
+  // r4: function
+  // r5: receiver
+  // r6: argc
+  // r7: argv
+  __ li(r0, Operand(-1));  // Push a bad frame pointer to fail if it is used.
+  __ push(r0);
+#if V8_OOL_CONSTANT_POOL
+  __ mov(kConstantPoolRegister,
+         Operand(isolate()->factory()->empty_constant_pool_array()));
+  __ push(kConstantPoolRegister);
+#endif
+  int marker = type();
+  __ LoadSmiLiteral(r0, Smi::FromInt(marker));
+  __ push(r0);
+  __ push(r0);
+  // Save copies of the top frame descriptor on the stack.
+  __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+  __ LoadP(r0, MemOperand(r8));
+  __ push(r0);
+
+  // Set up frame pointer for the frame to be pushed.
+  __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+  // If this is the outermost JS call, set js_entry_sp value.
+  Label non_outermost_js;
+  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
+  __ mov(r8, Operand(ExternalReference(js_entry_sp)));
+  __ LoadP(r9, MemOperand(r8));
+  __ cmpi(r9, Operand::Zero());
+  __ bne(&non_outermost_js);
+  __ StoreP(fp, MemOperand(r8));
+  __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
+  Label cont;
+  __ b(&cont);
+  __ bind(&non_outermost_js);
+  __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
+  __ bind(&cont);
+  __ push(ip);  // frame-type
+
+  // Jump to a faked try block that does the invoke, with a faked catch
+  // block that sets the pending exception.
+  __ b(&invoke);
+
+  __ bind(&handler_entry);
+  handler_offset_ = handler_entry.pos();
+  // Caught exception: Store result (exception) in the pending exception
+  // field in the JSEnv and return a failure sentinel.  Coming in here the
+  // fp will be invalid because the PushTryHandler below sets it to 0 to
+  // signal the existence of the JSEntry frame.
+  __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+                                       isolate())));
+
+  __ StoreP(r3, MemOperand(ip));
+  __ LoadRoot(r3, Heap::kExceptionRootIndex);
+  __ b(&exit);
+
+  // Invoke: Link this frame into the handler chain.  There's only one
+  // handler block in this code object, so its index is 0.
+  __ bind(&invoke);
+  // Must preserve r0-r4, r5-r7 are available. (needs update for PPC)
+  __ PushTryHandler(StackHandler::JS_ENTRY, 0);
+  // If an exception not caught by another handler occurs, this handler
+  // returns control to the code after the b(&invoke) above, which
+  // restores all kCalleeSaved registers (including cp and fp) to their
+  // saved values before returning a failure to C.
+
+  // Clear any pending exceptions.
+  __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
+  __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+                                       isolate())));
+  __ StoreP(r8, MemOperand(ip));
+
+  // Invoke the function by calling through JS entry trampoline builtin.
+  // Notice that we cannot store a reference to the trampoline code directly in
+  // this stub, because runtime stubs are not traversed when doing GC.
+
+  // Expected registers by Builtins::JSEntryTrampoline
+  // r3: code entry
+  // r4: function
+  // r5: receiver
+  // r6: argc
+  // r7: argv
+  if (type() == StackFrame::ENTRY_CONSTRUCT) {
+    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+                                      isolate());
+    __ mov(ip, Operand(construct_entry));
+  } else {
+    ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
+    __ mov(ip, Operand(entry));
+  }
+  __ LoadP(ip, MemOperand(ip));  // deref address
+
+  // Branch and link to JSEntryTrampoline.
+  // the address points to the start of the code object, skip the header
+  __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+  __ mtctr(ip);
+  __ bctrl();  // make the call
+
+  // Unlink this frame from the handler chain.
+  __ PopTryHandler();
+
+  __ bind(&exit);  // r3 holds result
+  // Check if the current stack frame is marked as the outermost JS frame.
+  Label non_outermost_js_2;
+  __ pop(r8);
+  __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
+  __ bne(&non_outermost_js_2);
+  __ mov(r9, Operand::Zero());
+  __ mov(r8, Operand(ExternalReference(js_entry_sp)));
+  __ StoreP(r9, MemOperand(r8));
+  __ bind(&non_outermost_js_2);
+
+  // Restore the top frame descriptors from the stack.
+  __ pop(r6);
+  __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+  __ StoreP(r6, MemOperand(ip));
+
+  // Reset the stack to the callee saved registers.
+  __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+// Restore callee-saved registers and return.
+#ifdef DEBUG
+  if (FLAG_debug_code) {
+    Label here;
+    __ b(&here, SetLK);
+    __ bind(&here);
+  }
+#endif
+
+  __ MultiPop(kCalleeSaved);
+
+  __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
+  __ mtctr(r0);
+  __ bctr();
+}
+
+
+// Uses registers r3 to r7.
+// Expected input (depending on whether args are in registers or on the stack):
+// * object: r3 or at sp + 1 * kPointerSize.
+// * function: r4 or at sp.
+//
+// An inlined call site may have been generated before calling this stub.
+// In this case the offset to the inline site to patch is passed in r8.
+// (See LCodeGen::DoInstanceOfKnownGlobal)
+void InstanceofStub::Generate(MacroAssembler* masm) {
+  // Call site inlining and patching implies arguments in registers.
+  DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
+
+  // Fixed register usage throughout the stub:
+  const Register object = r3;     // Object (lhs).
+  Register map = r6;              // Map of the object.
+  const Register function = r4;   // Function (rhs).
+  const Register prototype = r7;  // Prototype of the function.
+  const Register inline_site = r9;
+  const Register scratch = r5;
+  Register scratch3 = no_reg;
+
+// delta = mov + unaligned LoadP + cmp + bne
+#if V8_TARGET_ARCH_PPC64
+  const int32_t kDeltaToLoadBoolResult =
+      (Assembler::kMovInstructions + 4) * Assembler::kInstrSize;
+#else
+  const int32_t kDeltaToLoadBoolResult =
+      (Assembler::kMovInstructions + 3) * Assembler::kInstrSize;
+#endif
+
+  Label slow, loop, is_instance, is_not_instance, not_js_object;
+
+  if (!HasArgsInRegisters()) {
+    __ LoadP(object, MemOperand(sp, 1 * kPointerSize));
+    __ LoadP(function, MemOperand(sp, 0));
+  }
+
+  // Check that the left hand is a JS object and load map.
+  __ JumpIfSmi(object, &not_js_object);
+  __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+  // If there is a call site cache don't look in the global cache, but do the
+  // real lookup and update the call site cache.
+  if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
+    Label miss;
+    __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
+    __ bne(&miss);
+    __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
+    __ bne(&miss);
+    __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
+    __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+    __ bind(&miss);
+  }
+
+  // Get the prototype of the function.
+  __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
+
+  // Check that the function prototype is a JS object.
+  __ JumpIfSmi(prototype, &slow);
+  __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+  // Update the global instanceof or call site inlined cache with the current
+  // map and function. The cached answer will be set when it is known below.
+  if (!HasCallSiteInlineCheck()) {
+    __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
+    __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
+  } else {
+    DCHECK(HasArgsInRegisters());
+    // Patch the (relocated) inlined map check.
+
+    // The offset was stored in r8
+    //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
+    const Register offset = r8;
+    __ mflr(inline_site);
+    __ sub(inline_site, inline_site, offset);
+    // Get the map location in r8 and patch it.
+    __ GetRelocatedValue(inline_site, offset, scratch);
+    __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0);
+  }
+
+  // Register mapping: r6 is object map and r7 is function prototype.
+  // Get prototype of object into r5.
+  __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
+
+  // We don't need map any more. Use it as a scratch register.
+  scratch3 = map;
+  map = no_reg;
+
+  // Loop through the prototype chain looking for the function prototype.
+  __ LoadRoot(scratch3, Heap::kNullValueRootIndex);
+  __ bind(&loop);
+  __ cmp(scratch, prototype);
+  __ beq(&is_instance);
+  __ cmp(scratch, scratch3);
+  __ beq(&is_not_instance);
+  __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
+  __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
+  __ b(&loop);
+  Factory* factory = isolate()->factory();
+
+  __ bind(&is_instance);
+  if (!HasCallSiteInlineCheck()) {
+    __ LoadSmiLiteral(r3, Smi::FromInt(0));
+    __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
+    if (ReturnTrueFalseObject()) {
+      __ Move(r3, factory->true_value());
+    }
+  } else {
+    // Patch the call site to return true.
+    __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+    __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+    // Get the boolean result location in scratch and patch it.
+    __ SetRelocatedValue(inline_site, scratch, r3);
+
+    if (!ReturnTrueFalseObject()) {
+      __ LoadSmiLiteral(r3, Smi::FromInt(0));
+    }
+  }
+  __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+  __ bind(&is_not_instance);
+  if (!HasCallSiteInlineCheck()) {
+    __ LoadSmiLiteral(r3, Smi::FromInt(1));
+    __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
+    if (ReturnTrueFalseObject()) {
+      __ Move(r3, factory->false_value());
+    }
+  } else {
+    // Patch the call site to return false.
+    __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+    __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+    // Get the boolean result location in scratch and patch it.
+    __ SetRelocatedValue(inline_site, scratch, r3);
+
+    if (!ReturnTrueFalseObject()) {
+      __ LoadSmiLiteral(r3, Smi::FromInt(1));
+    }
+  }
+  __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+  Label object_not_null, object_not_null_or_smi;
+  __ bind(&not_js_object);
+  // Before null, smi and string value checks, check that the rhs is a function
+  // as for a non-function rhs an exception needs to be thrown.
+  __ JumpIfSmi(function, &slow);
+  __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE);
+  __ bne(&slow);
+
+  // Null is not instance of anything.
+  __ Cmpi(object, Operand(isolate()->factory()->null_value()), r0);
+  __ bne(&object_not_null);
+  if (ReturnTrueFalseObject()) {
+    __ Move(r3, factory->false_value());
+  } else {
+    __ LoadSmiLiteral(r3, Smi::FromInt(1));
+  }
+  __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+  __ bind(&object_not_null);
+  // Smi values are not instances of anything.
+  __ JumpIfNotSmi(object, &object_not_null_or_smi);
+  if (ReturnTrueFalseObject()) {
+    __ Move(r3, factory->false_value());
+  } else {
+    __ LoadSmiLiteral(r3, Smi::FromInt(1));
+  }
+  __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+  __ bind(&object_not_null_or_smi);
+  // String values are not instances of anything.
+  __ IsObjectJSStringType(object, scratch, &slow);
+  if (ReturnTrueFalseObject()) {
+    __ Move(r3, factory->false_value());
+  } else {
+    __ LoadSmiLiteral(r3, Smi::FromInt(1));
+  }
+  __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+  // Slow-case.  Tail call builtin.
+  __ bind(&slow);
+  if (!ReturnTrueFalseObject()) {
+    if (HasArgsInRegisters()) {
+      __ Push(r3, r4);
+    }
+    __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+  } else {
+    {
+      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
+      __ Push(r3, r4);
+      __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
+    }
+    Label true_value, done;
+    __ cmpi(r3, Operand::Zero());
+    __ beq(&true_value);
+
+    __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+    __ b(&done);
+
+    __ bind(&true_value);
+    __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+
+    __ bind(&done);
+    __ Ret(HasArgsInRegisters() ? 0 : 2);
+  }
+}
+
+
+void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
+  Label miss;
+  Register receiver = LoadDescriptor::ReceiverRegister();
+
+  NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
+                                                          r7, &miss);
+  __ bind(&miss);
+  PropertyAccessCompiler::TailCallBuiltin(
+      masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
+}
+
+
+void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
+  // Return address is in lr.
+  Label miss;
+
+  Register receiver = LoadDescriptor::ReceiverRegister();
+  Register index = LoadDescriptor::NameRegister();
+  Register scratch = r6;
+  Register result = r3;
+  DCHECK(!scratch.is(receiver) && !scratch.is(index));
+
+  StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
+                                          &miss,  // When not a string.
+                                          &miss,  // When not a number.
+                                          &miss,  // When index out of range.
+                                          STRING_INDEX_IS_ARRAY_INDEX,
+                                          RECEIVER_IS_STRING);
+  char_at_generator.GenerateFast(masm);
+  __ Ret();
+
+  StubRuntimeCallHelper call_helper;
+  char_at_generator.GenerateSlow(masm, call_helper);
+
+  __ bind(&miss);
+  PropertyAccessCompiler::TailCallBuiltin(
+      masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
+}
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+  // The displacement is the offset of the last parameter (if any)
+  // relative to the frame pointer.
+  const int kDisplacement =
+      StandardFrameConstants::kCallerSPOffset - kPointerSize;
+  DCHECK(r4.is(ArgumentsAccessReadDescriptor::index()));
+  DCHECK(r3.is(ArgumentsAccessReadDescriptor::parameter_count()));
+
+  // Check that the key is a smi.
+  Label slow;
+  __ JumpIfNotSmi(r4, &slow);
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor;
+  __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+  STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+  __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ beq(&adaptor);
+
+  // Check index against formal parameters count limit passed in
+  // through register r3. Use unsigned comparison to get negative
+  // check for free.
+  __ cmpl(r4, r3);
+  __ bge(&slow);
+
+  // Read the argument from the stack and return it.
+  __ sub(r6, r3, r4);
+  __ SmiToPtrArrayOffset(r6, r6);
+  __ add(r6, fp, r6);
+  __ LoadP(r3, MemOperand(r6, kDisplacement));
+  __ blr();
+
+  // Arguments adaptor case: Check index against actual arguments
+  // limit found in the arguments adaptor frame. Use unsigned
+  // comparison to get negative check for free.
+  __ bind(&adaptor);
+  __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ cmpl(r4, r3);
+  __ bge(&slow);
+
+  // Read the argument from the adaptor frame and return it.
+  __ sub(r6, r3, r4);
+  __ SmiToPtrArrayOffset(r6, r6);
+  __ add(r6, r5, r6);
+  __ LoadP(r3, MemOperand(r6, kDisplacement));
+  __ blr();
+
+  // Slow-case: Handle non-smi or out-of-bounds access to arguments
+  // by calling the runtime system.
+  __ bind(&slow);
+  __ push(r4);
+  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
+  // sp[0] : number of parameters
+  // sp[1] : receiver displacement
+  // sp[2] : function
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label runtime;
+  __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
+  STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+  __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ bne(&runtime);
+
+  // Patch the arguments.length and the parameters pointer in the current frame.
+  __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ StoreP(r5, MemOperand(sp, 0 * kPointerSize));
+  __ SmiToPtrArrayOffset(r5, r5);
+  __ add(r6, r6, r5);
+  __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+  __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
+
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
+  // Stack layout:
+  //  sp[0] : number of parameters (tagged)
+  //  sp[1] : address of receiver argument
+  //  sp[2] : function
+  // Registers used over whole function:
+  //  r9 : allocated object (tagged)
+  //  r11 : mapped parameter count (tagged)
+
+  __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
+  // r4 = parameter count (tagged)
+
+  // Check if the calling frame is an arguments adaptor frame.
+  Label runtime;
+  Label adaptor_frame, try_allocate;
+  __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
+  STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+  __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ beq(&adaptor_frame);
+
+  // No adaptor, parameter count = argument count.
+  __ mr(r5, r4);
+  __ b(&try_allocate);
+
+  // We have an adaptor frame. Patch the parameters pointer.
+  __ bind(&adaptor_frame);
+  __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ SmiToPtrArrayOffset(r7, r5);
+  __ add(r6, r6, r7);
+  __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+  __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
+
+  // r4 = parameter count (tagged)
+  // r5 = argument count (tagged)
+  // Compute the mapped parameter count = min(r4, r5) in r4.
+  Label skip;
+  __ cmp(r4, r5);
+  __ blt(&skip);
+  __ mr(r4, r5);
+  __ bind(&skip);
+
+  __ bind(&try_allocate);
+
+  // Compute the sizes of backing store, parameter map, and arguments object.
+  // 1. Parameter map, has 2 extra words containing context and backing store.
+  const int kParameterMapHeaderSize =
+      FixedArray::kHeaderSize + 2 * kPointerSize;
+  // If there are no mapped parameters, we do not need the parameter_map.
+  Label skip2, skip3;
+  __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+  __ bne(&skip2);
+  __ li(r11, Operand::Zero());
+  __ b(&skip3);
+  __ bind(&skip2);
+  __ SmiToPtrArrayOffset(r11, r4);
+  __ addi(r11, r11, Operand(kParameterMapHeaderSize));
+  __ bind(&skip3);
+
+  // 2. Backing store.
+  __ SmiToPtrArrayOffset(r7, r5);
+  __ add(r11, r11, r7);
+  __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
+
+  // 3. Arguments object.
+  __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize));
+
+  // Do the allocation of all three objects in one go.
+  __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT);
+
+  // r3 = address of new object(s) (tagged)
+  // r5 = argument count (smi-tagged)
+  // Get the arguments boilerplate from the current native context into r4.
+  const int kNormalOffset =
+      Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
+  const int kAliasedOffset =
+      Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
+
+  __ LoadP(r7,
+           MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
+  Label skip4, skip5;
+  __ cmpi(r4, Operand::Zero());
+  __ bne(&skip4);
+  __ LoadP(r7, MemOperand(r7, kNormalOffset));
+  __ b(&skip5);
+  __ bind(&skip4);
+  __ LoadP(r7, MemOperand(r7, kAliasedOffset));
+  __ bind(&skip5);
+
+  // r3 = address of new object (tagged)
+  // r4 = mapped parameter count (tagged)
+  // r5 = argument count (smi-tagged)
+  // r7 = address of arguments map (tagged)
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
+  __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
+  __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+  __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+
+  // Set up the callee in-object property.
+  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+  __ LoadP(r6, MemOperand(sp, 2 * kPointerSize));
+  __ AssertNotSmi(r6);
+  const int kCalleeOffset =
+      JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize;
+  __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0);
+
+  // Use the length (smi tagged) and set that as an in-object property too.
+  __ AssertSmi(r5);
+  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+  const int kLengthOffset =
+      JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize;
+  __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0);
+
+  // Set up the elements pointer in the allocated arguments object.
+  // If we allocated a parameter map, r7 will point there, otherwise
+  // it will point to the backing store.
+  __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize));
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+
+  // r3 = address of new object (tagged)
+  // r4 = mapped parameter count (tagged)
+  // r5 = argument count (tagged)
+  // r7 = address of parameter map or backing store (tagged)
+  // Initialize parameter map. If there are no mapped arguments, we're done.
+  Label skip_parameter_map, skip6;
+  __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+  __ bne(&skip6);
+  // Move backing store address to r6, because it is
+  // expected there when filling in the unmapped arguments.
+  __ mr(r6, r7);
+  __ b(&skip_parameter_map);
+  __ bind(&skip6);
+
+  __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex);
+  __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
+  __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0);
+  __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
+  __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
+            r0);
+  __ SmiToPtrArrayOffset(r9, r4);
+  __ add(r9, r7, r9);
+  __ addi(r9, r9, Operand(kParameterMapHeaderSize));
+  __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
+            r0);
+
+  // Copy the parameter slots and the holes in the arguments.
+  // We need to fill in mapped_parameter_count slots. They index the context,
+  // where parameters are stored in reverse order, at
+  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
+  // The mapped parameter thus need to get indices
+  //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
+  //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
+  // We loop from right to left.
+  Label parameters_loop, parameters_test;
+  __ mr(r9, r4);
+  __ LoadP(r11, MemOperand(sp, 0 * kPointerSize));
+  __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
+  __ sub(r11, r11, r4);
+  __ LoadRoot(r10, Heap::kTheHoleValueRootIndex);
+  __ SmiToPtrArrayOffset(r6, r9);
+  __ add(r6, r7, r6);
+  __ addi(r6, r6, Operand(kParameterMapHeaderSize));
+
+  // r9 = loop variable (tagged)
+  // r4 = mapping index (tagged)
+  // r6 = address of backing store (tagged)
+  // r7 = address of parameter map (tagged)
+  // r8 = temporary scratch (a.o., for address calculation)
+  // r10 = the hole value
+  __ b(&parameters_test);
+
+  __ bind(&parameters_loop);
+  __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0);
+  __ SmiToPtrArrayOffset(r8, r9);
+  __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
+  __ StorePX(r11, MemOperand(r8, r7));
+  __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
+  __ StorePX(r10, MemOperand(r8, r6));
+  __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
+  __ bind(&parameters_test);
+  __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
+  __ bne(&parameters_loop);
+
+  __ bind(&skip_parameter_map);
+  // r5 = argument count (tagged)
+  // r6 = address of backing store (tagged)
+  // r8 = scratch
+  // Copy arguments header and remaining slots (if there are any).
+  __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex);
+  __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
+  __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
+
+  Label arguments_loop, arguments_test;
+  __ mr(r11, r4);
+  __ LoadP(r7, MemOperand(sp, 1 * kPointerSize));
+  __ SmiToPtrArrayOffset(r8, r11);
+  __ sub(r7, r7, r8);
+  __ b(&arguments_test);
+
+  __ bind(&arguments_loop);
+  __ subi(r7, r7, Operand(kPointerSize));
+  __ LoadP(r9, MemOperand(r7, 0));
+  __ SmiToPtrArrayOffset(r8, r11);
+  __ add(r8, r6, r8);
+  __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
+  __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
+
+  __ bind(&arguments_test);
+  __ cmp(r11, r5);
+  __ blt(&arguments_loop);
+
+  // Return and remove the on-stack parameters.
+  __ addi(sp, sp, Operand(3 * kPointerSize));
+  __ Ret();
+
+  // Do the runtime call to allocate the arguments object.
+  // r5 = argument count (tagged)
+  __ bind(&runtime);
+  __ StoreP(r5, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
+  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
+  // Return address is in lr.
+  Label slow;
+
+  Register receiver = LoadDescriptor::ReceiverRegister();
+  Register key = LoadDescriptor::NameRegister();
+
+  // Check that the key is an array index, that is Uint32.
+  __ TestIfPositiveSmi(key, r0);
+  __ bne(&slow, cr0);
+
+  // Everything is fine, call runtime.
+  __ Push(receiver, key);  // Receiver, key.
+
+  // Perform tail call to the entry.
+  __ TailCallExternalReference(
+      ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
+                        masm->isolate()),
+      2, 1);
+
+  __ bind(&slow);
+  PropertyAccessCompiler::TailCallBuiltin(
+      masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
+}
+
+
+void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
+  // sp[0] : number of parameters
+  // sp[4] : receiver displacement
+  // sp[8] : function
+  // Check if the calling frame is an arguments adaptor frame.
+  Label adaptor_frame, try_allocate, runtime;
+  __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+  STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+  __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ beq(&adaptor_frame);
+
+  // Get the length from the frame.
+  __ LoadP(r4, MemOperand(sp, 0));
+  __ b(&try_allocate);
+
+  // Patch the arguments.length and the parameters pointer.
+  __ bind(&adaptor_frame);
+  __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ StoreP(r4, MemOperand(sp, 0));
+  __ SmiToPtrArrayOffset(r6, r4);
+  __ add(r6, r5, r6);
+  __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+  __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
+
+  // Try the new space allocation. Start out with computing the size
+  // of the arguments object and the elements array in words.
+  Label add_arguments_object;
+  __ bind(&try_allocate);
+  __ cmpi(r4, Operand::Zero());
+  __ beq(&add_arguments_object);
+  __ SmiUntag(r4);
+  __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize));
+  __ bind(&add_arguments_object);
+  __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
+
+  // Do the allocation of both objects in one go.
+  __ Allocate(r4, r3, r5, r6, &runtime,
+              static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+
+  // Get the arguments boilerplate from the current native context.
+  __ LoadP(r7,
+           MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+  __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
+  __ LoadP(
+      r7,
+      MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
+
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
+  __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
+  __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+  __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+
+  // Get the length (smi tagged) and set that as an in-object property too.
+  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+  __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
+  __ AssertSmi(r4);
+  __ StoreP(r4,
+            FieldMemOperand(r3, JSObject::kHeaderSize +
+                                    Heap::kArgumentsLengthIndex * kPointerSize),
+            r0);
+
+  // If there are no actual arguments, we're done.
+  Label done;
+  __ cmpi(r4, Operand::Zero());
+  __ beq(&done);
+
+  // Get the parameters pointer from the stack.
+  __ LoadP(r5, MemOperand(sp, 1 * kPointerSize));
+
+  // Set up the elements pointer in the allocated arguments object and
+  // initialize the header in the elements fixed array.
+  __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize));
+  __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+  __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
+  __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
+  __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
+  // Untag the length for the loop.
+  __ SmiUntag(r4);
+
+  // Copy the fixed array slots.
+  Label loop;
+  // Set up r7 to point just prior to the first array slot.
+  __ addi(r7, r7,
+          Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
+  __ mtctr(r4);
+  __ bind(&loop);
+  // Pre-decrement r5 with kPointerSize on each iteration.
+  // Pre-decrement in order to skip receiver.
+  __ LoadPU(r6, MemOperand(r5, -kPointerSize));
+  // Pre-increment r7 with kPointerSize on each iteration.
+  __ StorePU(r6, MemOperand(r7, kPointerSize));
+  __ bdnz(&loop);
+
+  // Return and remove the on-stack parameters.
+  __ bind(&done);
+  __ addi(sp, sp, Operand(3 * kPointerSize));
+  __ Ret();
+
+  // Do the runtime call to allocate the arguments object.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+// Just jump directly to runtime if native RegExp is not selected at compile
+// time or if regexp entry in generated code is turned off runtime switch or
+// at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+#else  // V8_INTERPRETED_REGEXP
+
+  // Stack frame on entry.
+  //  sp[0]: last_match_info (expected JSArray)
+  //  sp[4]: previous index
+  //  sp[8]: subject string
+  //  sp[12]: JSRegExp object
+
+  const int kLastMatchInfoOffset = 0 * kPointerSize;
+  const int kPreviousIndexOffset = 1 * kPointerSize;
+  const int kSubjectOffset = 2 * kPointerSize;
+  const int kJSRegExpOffset = 3 * kPointerSize;
+
+  Label runtime, br_over, encoding_type_UC16;
+
+  // Allocation of registers for this function. These are in callee save
+  // registers and will be preserved by the call to the native RegExp code, as
+  // this code is called using the normal C calling convention. When calling
+  // directly from generated code the native RegExp code will not do a GC and
+  // therefore the content of these registers are safe to use after the call.
+  Register subject = r14;
+  Register regexp_data = r15;
+  Register last_match_info_elements = r16;
+  Register code = r17;
+
+  // Ensure register assigments are consistent with callee save masks
+  DCHECK(subject.bit() & kCalleeSaved);
+  DCHECK(regexp_data.bit() & kCalleeSaved);
+  DCHECK(last_match_info_elements.bit() & kCalleeSaved);
+  DCHECK(code.bit() & kCalleeSaved);
+
+  // Ensure that a RegExp stack is allocated.
+  ExternalReference address_of_regexp_stack_memory_address =
+      ExternalReference::address_of_regexp_stack_memory_address(isolate());
+  ExternalReference address_of_regexp_stack_memory_size =
+      ExternalReference::address_of_regexp_stack_memory_size(isolate());
+  __ mov(r3, Operand(address_of_regexp_stack_memory_size));
+  __ LoadP(r3, MemOperand(r3, 0));
+  __ cmpi(r3, Operand::Zero());
+  __ beq(&runtime);
+
+  // Check that the first argument is a JSRegExp object.
+  __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
+  __ JumpIfSmi(r3, &runtime);
+  __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
+  __ bne(&runtime);
+
+  // Check that the RegExp has been compiled (data contains a fixed array).
+  __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
+  if (FLAG_debug_code) {
+    __ TestIfSmi(regexp_data, r0);
+    __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
+    __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
+    __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
+  }
+
+  // regexp_data: RegExp data (FixedArray)
+  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+  __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
+  // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
+  __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
+  __ bne(&runtime);
+
+  // regexp_data: RegExp data (FixedArray)
+  // Check that the number of captures fit in the static offsets vector buffer.
+  __ LoadP(r5,
+           FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+  // Check (number_of_captures + 1) * 2 <= offsets vector size
+  // Or          number_of_captures * 2 <= offsets vector size - 2
+  // SmiToShortArrayOffset accomplishes the multiplication by 2 and
+  // SmiUntag (which is a nop for 32-bit).
+  __ SmiToShortArrayOffset(r5, r5);
+  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
+  __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
+  __ bgt(&runtime);
+
+  // Reset offset for possibly sliced string.
+  __ li(r11, Operand::Zero());
+  __ LoadP(subject, MemOperand(sp, kSubjectOffset));
+  __ JumpIfSmi(subject, &runtime);
+  __ mr(r6, subject);  // Make a copy of the original subject string.
+  __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+  __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
+  // subject: subject string
+  // r6: subject string
+  // r3: subject string instance type
+  // regexp_data: RegExp data (FixedArray)
+  // Handle subject string according to its encoding and representation:
+  // (1) Sequential string?  If yes, go to (5).
+  // (2) Anything but sequential or cons?  If yes, go to (6).
+  // (3) Cons string.  If the string is flat, replace subject with first string.
+  //     Otherwise bailout.
+  // (4) Is subject external?  If yes, go to (7).
+  // (5) Sequential string.  Load regexp code according to encoding.
+  // (E) Carry on.
+  /// [...]
+
+  // Deferred code at the end of the stub:
+  // (6) Not a long external string?  If yes, go to (8).
+  // (7) External string.  Make it, offset-wise, look like a sequential string.
+  //     Go to (5).
+  // (8) Short external string or not a string?  If yes, bail out to runtime.
+  // (9) Sliced string.  Replace subject with parent.  Go to (4).
+
+  Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */,
+      not_seq_nor_cons /* 6 */, not_long_external /* 8 */;
+
+  // (1) Sequential string?  If yes, go to (5).
+  STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
+                 kShortExternalStringMask) == 0x93);
+  __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
+                          kShortExternalStringMask));
+  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
+  __ beq(&seq_string, cr0);  // Go to (5).
+
+  // (2) Anything but sequential or cons?  If yes, go to (6).
+  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
+  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
+  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
+  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
+  STATIC_ASSERT(kExternalStringTag < 0xffffu);
+  __ cmpi(r4, Operand(kExternalStringTag));
+  __ bge(&not_seq_nor_cons);  // Go to (6).
+
+  // (3) Cons string.  Check that it's flat.
+  // Replace subject with first string and reload instance type.
+  __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
+  __ CompareRoot(r3, Heap::kempty_stringRootIndex);
+  __ bne(&runtime);
+  __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
+
+  // (4) Is subject external?  If yes, go to (7).
+  __ bind(&check_underlying);
+  __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+  __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kSeqStringTag == 0);
+  STATIC_ASSERT(kStringRepresentationMask == 3);
+  __ andi(r0, r3, Operand(kStringRepresentationMask));
+  // The underlying external string is never a short external string.
+  STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
+  STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
+  __ bne(&external_string, cr0);  // Go to (7).
+
+  // (5) Sequential string.  Load regexp code according to encoding.
+  __ bind(&seq_string);
+  // subject: sequential subject string (or look-alike, external string)
+  // r6: original subject string
+  // Load previous index and check range before r6 is overwritten.  We have to
+  // use r6 instead of subject here because subject might have been only made
+  // to look like a sequential string when it actually is an external string.
+  __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
+  __ JumpIfNotSmi(r4, &runtime);
+  __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
+  __ cmpl(r6, r4);
+  __ ble(&runtime);
+  __ SmiUntag(r4);
+
+  STATIC_ASSERT(4 == kOneByteStringTag);
+  STATIC_ASSERT(kTwoByteStringTag == 0);
+  STATIC_ASSERT(kStringEncodingMask == 4);
+  __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
+  __ beq(&encoding_type_UC16, cr0);
+  __ LoadP(code,
+           FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
+  __ b(&br_over);
+  __ bind(&encoding_type_UC16);
+  __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
+  __ bind(&br_over);
+
+  // (E) Carry on.  String handling is done.
+  // code: irregexp code
+  // Check that the irregexp code has been generated for the actual string
+  // encoding. If it has, the field contains a code object otherwise it contains
+  // a smi (code flushing support).
+  __ JumpIfSmi(code, &runtime);
+
+  // r4: previous index
+  // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
+  // code: Address of generated regexp code
+  // subject: Subject string
+  // regexp_data: RegExp data (FixedArray)
+  // All checks done. Now push arguments for native regexp code.
+  __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
+
+  // Isolates: note we add an additional parameter here (isolate pointer).
+  const int kRegExpExecuteArguments = 10;
+  const int kParameterRegisters = 8;
+  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
+
+  // Stack pointer now points to cell where return address is to be written.
+  // Arguments are before that on the stack or in registers.
+
+  // Argument 10 (in stack parameter area): Pass current isolate address.
+  __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+  __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
+
+  // Argument 9 is a dummy that reserves the space used for
+  // the return address added by the ExitFrame in native calls.
+
+  // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
+  __ li(r10, Operand(1));
+
+  // Argument 7 (r9): Start (high end) of backtracking stack memory area.
+  __ mov(r3, Operand(address_of_regexp_stack_memory_address));
+  __ LoadP(r3, MemOperand(r3, 0));
+  __ mov(r5, Operand(address_of_regexp_stack_memory_size));
+  __ LoadP(r5, MemOperand(r5, 0));
+  __ add(r9, r3, r5);
+
+  // Argument 6 (r8): Set the number of capture registers to zero to force
+  // global egexps to behave as non-global.  This does not affect non-global
+  // regexps.
+  __ li(r8, Operand::Zero());
+
+  // Argument 5 (r7): static offsets vector buffer.
+  __ mov(
+      r7,
+      Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
+
+  // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
+  // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
+  __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
+  __ xori(r6, r6, Operand(1));
+  // Load the length from the original subject string from the previous stack
+  // frame. Therefore we have to use fp, which points exactly to two pointer
+  // sizes below the previous sp. (Because creating a new stack frame pushes
+  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
+  __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
+  // If slice offset is not 0, load the length from the original sliced string.
+  // Argument 4, r6: End of string data
+  // Argument 3, r5: Start of string data
+  // Prepare start and end index of the input.
+  __ ShiftLeft_(r11, r11, r6);
+  __ add(r11, r18, r11);
+  __ ShiftLeft_(r5, r4, r6);
+  __ add(r5, r11, r5);
+
+  __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
+  __ SmiUntag(r18);
+  __ ShiftLeft_(r6, r18, r6);
+  __ add(r6, r11, r6);
+
+  // Argument 2 (r4): Previous index.
+  // Already there
+
+  // Argument 1 (r3): Subject string.
+  __ mr(r3, subject);
+
+  // Locate the code entry and call it.
+  __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+
+#if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR)
+  // Even Simulated AIX/PPC64 Linux uses a function descriptor for the
+  // RegExp routine.  Extract the instruction address here since
+  // DirectCEntryStub::GenerateCall will not do it for calls out to
+  // what it thinks is C code compiled for the simulator/host
+  // platform.
+  __ LoadP(code, MemOperand(code, 0));  // Instruction address
+#endif
+
+  DirectCEntryStub stub(isolate());
+  stub.GenerateCall(masm, code);
+
+  __ LeaveExitFrame(false, no_reg, true);
+
+  // r3: result
+  // subject: subject string (callee saved)
+  // regexp_data: RegExp data (callee saved)
+  // last_match_info_elements: Last match info elements (callee saved)
+  // Check the result.
+  Label success;
+  __ cmpi(r3, Operand(1));
+  // We expect exactly one result since we force the called regexp to behave
+  // as non-global.
+  __ beq(&success);
+  Label failure;
+  __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
+  __ beq(&failure);
+  __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
+  // If not exception it can only be retry. Handle that in the runtime system.
+  __ bne(&runtime);
+  // Result must now be exception. If there is no pending exception already a
+  // stack overflow (on the backtrack stack) was detected in RegExp code but
+  // haven't created the exception yet. Handle that in the runtime system.
+  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+  __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
+  __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+                                       isolate())));
+  __ LoadP(r3, MemOperand(r5, 0));
+  __ cmp(r3, r4);
+  __ beq(&runtime);
+
+  __ StoreP(r4, MemOperand(r5, 0));  // Clear pending exception.
+
+  // Check if the exception is a termination. If so, throw as uncatchable.
+  __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
+
+  Label termination_exception;
+  __ beq(&termination_exception);
+
+  __ Throw(r3);
+
+  __ bind(&termination_exception);
+  __ ThrowUncatchable(r3);
+
+  __ bind(&failure);
+  // For failure and exception return null.
+  __ mov(r3, Operand(isolate()->factory()->null_value()));
+  __ addi(sp, sp, Operand(4 * kPointerSize));
+  __ Ret();
+
+  // Process the result from the native regexp code.
+  __ bind(&success);
+  __ LoadP(r4,
+           FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+  // Calculate number of capture registers (number_of_captures + 1) * 2.
+  // SmiToShortArrayOffset accomplishes the multiplication by 2 and
+  // SmiUntag (which is a nop for 32-bit).
+  __ SmiToShortArrayOffset(r4, r4);
+  __ addi(r4, r4, Operand(2));
+
+  __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
+  __ JumpIfSmi(r3, &runtime);
+  __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
+  __ bne(&runtime);
+  // Check that the JSArray is in fast case.
+  __ LoadP(last_match_info_elements,
+           FieldMemOperand(r3, JSArray::kElementsOffset));
+  __ LoadP(r3,
+           FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
+  __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
+  __ bne(&runtime);
+  // Check that the last match info has space for the capture registers and the
+  // additional information.
+  __ LoadP(
+      r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
+  __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
+  __ SmiUntag(r0, r3);
+  __ cmp(r5, r0);
+  __ bgt(&runtime);
+
+  // r4: number of capture registers
+  // subject: subject string
+  // Store the capture count.
+  __ SmiTag(r5, r4);
+  __ StoreP(r5, FieldMemOperand(last_match_info_elements,
+                                RegExpImpl::kLastCaptureCountOffset),
+            r0);
+  // Store last subject and last input.
+  __ StoreP(subject, FieldMemOperand(last_match_info_elements,
+                                     RegExpImpl::kLastSubjectOffset),
+            r0);
+  __ mr(r5, subject);
+  __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
+                      subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
+  __ mr(subject, r5);
+  __ StoreP(subject, FieldMemOperand(last_match_info_elements,
+                                     RegExpImpl::kLastInputOffset),
+            r0);
+  __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
+                      subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
+
+  // Get the static offsets vector filled by the native regexp code.
+  ExternalReference address_of_static_offsets_vector =
+      ExternalReference::address_of_static_offsets_vector(isolate());
+  __ mov(r5, Operand(address_of_static_offsets_vector));
+
+  // r4: number of capture registers
+  // r5: offsets vector
+  Label next_capture;
+  // Capture register counter starts from number of capture registers and
+  // counts down until wraping after zero.
+  __ addi(
+      r3, last_match_info_elements,
+      Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
+  __ addi(r5, r5, Operand(-kIntSize));  // bias down for lwzu
+  __ mtctr(r4);
+  __ bind(&next_capture);
+  // Read the value from the static offsets vector buffer.
+  __ lwzu(r6, MemOperand(r5, kIntSize));
+  // Store the smi value in the last match info.
+  __ SmiTag(r6);
+  __ StorePU(r6, MemOperand(r3, kPointerSize));
+  __ bdnz(&next_capture);
+
+  // Return last match info.
+  __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
+  __ addi(sp, sp, Operand(4 * kPointerSize));
+  __ Ret();
+
+  // Do the runtime call to execute the regexp.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+
+  // Deferred code for string handling.
+  // (6) Not a long external string?  If yes, go to (8).
+  __ bind(&not_seq_nor_cons);
+  // Compare flags are still set.
+  __ bgt(&not_long_external);  // Go to (8).
+
+  // (7) External string.  Make it, offset-wise, look like a sequential string.
+  __ bind(&external_string);
+  __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+  __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
+  if (FLAG_debug_code) {
+    // Assert that we do not have a cons or slice (indirect strings) here.
+    // Sequential strings have already been ruled out.
+    STATIC_ASSERT(kIsIndirectStringMask == 1);
+    __ andi(r0, r3, Operand(kIsIndirectStringMask));
+    __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
+  }
+  __ LoadP(subject,
+           FieldMemOperand(subject, ExternalString::kResourceDataOffset));
+  // Move the pointer so that offset-wise, it looks like a sequential string.
+  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+  __ subi(subject, subject,
+          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+  __ b(&seq_string);  // Go to (5).
+
+  // (8) Short external string or not a string?  If yes, bail out to runtime.
+  __ bind(&not_long_external);
+  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
+  __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
+  __ bne(&runtime, cr0);
+
+  // (9) Sliced string.  Replace subject with parent.  Go to (4).
+  // Load offset into r11 and replace subject string with parent.
+  __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
+  __ SmiUntag(r11);
+  __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
+  __ b(&check_underlying);  // Go to (4).
+#endif  // V8_INTERPRETED_REGEXP
+}
+
+
+static void GenerateRecordCallTarget(MacroAssembler* masm) {
+  // Cache the called function in a feedback vector slot.  Cache states
+  // are uninitialized, monomorphic (indicated by a JSFunction), and
+  // megamorphic.
+  // r3 : number of arguments to the construct function
+  // r4 : the function to call
+  // r5 : Feedback vector
+  // r6 : slot in feedback vector (Smi)
+  Label initialize, done, miss, megamorphic, not_array_function;
+
+  DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
+            masm->isolate()->heap()->megamorphic_symbol());
+  DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
+            masm->isolate()->heap()->uninitialized_symbol());
+
+  // Load the cache state into r7.
+  __ SmiToPtrArrayOffset(r7, r6);
+  __ add(r7, r5, r7);
+  __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
+
+  // A monomorphic cache hit or an already megamorphic state: invoke the
+  // function without changing the state.
+  __ cmp(r7, r4);
+  __ b(eq, &done);
+
+  if (!FLAG_pretenuring_call_new) {
+    // If we came here, we need to see if we are the array function.
+    // If we didn't have a matching function, and we didn't find the megamorph
+    // sentinel, then we have in the slot either some other function or an
+    // AllocationSite. Do a map check on the object in ecx.
+    __ LoadP(r8, FieldMemOperand(r7, 0));
+    __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+    __ bne(&miss);
+
+    // Make sure the function is the Array() function
+    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+    __ cmp(r4, r7);
+    __ bne(&megamorphic);
+    __ b(&done);
+  }
+
+  __ bind(&miss);
+
+  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
+  // megamorphic.
+  __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
+  __ beq(&initialize);
+  // MegamorphicSentinel is an immortal immovable object (undefined) so no
+  // write-barrier is needed.
+  __ bind(&megamorphic);
+  __ SmiToPtrArrayOffset(r7, r6);
+  __ add(r7, r5, r7);
+  __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
+  __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
+  __ jmp(&done);
+
+  // An uninitialized cache is patched with the function
+  __ bind(&initialize);
+
+  if (!FLAG_pretenuring_call_new) {
+    // Make sure the function is the Array() function.
+    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+    __ cmp(r4, r7);
+    __ bne(&not_array_function);
+
+    // The target function is the Array constructor,
+    // Create an AllocationSite if we don't already have it, store it in the
+    // slot.
+    {
+      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
+
+      // Arguments register must be smi-tagged to call out.
+      __ SmiTag(r3);
+      __ Push(r6, r5, r4, r3);
+
+      CreateAllocationSiteStub create_stub(masm->isolate());
+      __ CallStub(&create_stub);
+
+      __ Pop(r6, r5, r4, r3);
+      __ SmiUntag(r3);
+    }
+    __ b(&done);
+
+    __ bind(&not_array_function);
+  }
+
+  __ SmiToPtrArrayOffset(r7, r6);
+  __ add(r7, r5, r7);
+  __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ StoreP(r4, MemOperand(r7, 0));
+
+  __ Push(r7, r5, r4);
+  __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs,
+                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+  __ Pop(r7, r5, r4);
+
+  __ bind(&done);
+}
+
+
+static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
+  // Do not transform the receiver for strict mode functions and natives.
+  __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
+  __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset));
+  __ TestBit(r7,
+#if V8_TARGET_ARCH_PPC64
+             SharedFunctionInfo::kStrictModeFunction,
+#else
+             SharedFunctionInfo::kStrictModeFunction + kSmiTagSize,
+#endif
+             r0);
+  __ bne(cont, cr0);
+
+  // Do not transform the receiver for native.
+  __ TestBit(r7,
+#if V8_TARGET_ARCH_PPC64
+             SharedFunctionInfo::kNative,
+#else
+             SharedFunctionInfo::kNative + kSmiTagSize,
+#endif
+             r0);
+  __ bne(cont, cr0);
+}
+
+
+static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) {
+  // Check for function proxy.
+  STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
+  __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
+  __ bne(non_function);
+  __ push(r4);  // put proxy as additional argument
+  __ li(r3, Operand(argc + 1));
+  __ li(r5, Operand::Zero());
+  __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY);
+  {
+    Handle<Code> adaptor =
+        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
+    __ Jump(adaptor, RelocInfo::CODE_TARGET);
+  }
+
+  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+  // of the original receiver from the call site).
+  __ bind(non_function);
+  __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0);
+  __ li(r3, Operand(argc));  // Set up the number of arguments.
+  __ li(r5, Operand::Zero());
+  __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION);
+  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+          RelocInfo::CODE_TARGET);
+}
+
+
+static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
+  // Wrap the receiver and patch it back onto the stack.
+  {
+    FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
+    __ Push(r4, r6);
+    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+    __ pop(r4);
+  }
+  __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0);
+  __ b(cont);
+}
+
+
+static void CallFunctionNoFeedback(MacroAssembler* masm, int argc,
+                                   bool needs_checks, bool call_as_method) {
+  // r4 : the function to call
+  Label slow, non_function, wrap, cont;
+
+  if (needs_checks) {
+    // Check that the function is really a JavaScript function.
+    // r4: pushed function (to be verified)
+    __ JumpIfSmi(r4, &non_function);
+
+    // Goto slow case if we do not have a function.
+    __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+    __ bne(&slow);
+  }
+
+  // Fast-case: Invoke the function now.
+  // r4: pushed function
+  ParameterCount actual(argc);
+
+  if (call_as_method) {
+    if (needs_checks) {
+      EmitContinueIfStrictOrNative(masm, &cont);
+    }
+
+    // Compute the receiver in sloppy mode.
+    __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
+
+    if (needs_checks) {
+      __ JumpIfSmi(r6, &wrap);
+      __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+      __ blt(&wrap);
+    } else {
+      __ b(&wrap);
+    }
+
+    __ bind(&cont);
+  }
+
+  __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
+
+  if (needs_checks) {
+    // Slow-case: Non-function called.
+    __ bind(&slow);
+    EmitSlowCase(masm, argc, &non_function);
+  }
+
+  if (call_as_method) {
+    __ bind(&wrap);
+    EmitWrapCase(masm, argc, &cont);
+  }
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+  CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
+}
+
+
+void CallConstructStub::Generate(MacroAssembler* masm) {
+  // r3 : number of arguments
+  // r4 : the function to call
+  // r5 : feedback vector
+  // r6 : (only if r5 is not the megamorphic symbol) slot in feedback
+  //      vector (Smi)
+  Label slow, non_function_call;
+
+  // Check that the function is not a smi.
+  __ JumpIfSmi(r4, &non_function_call);
+  // Check that the function is a JSFunction.
+  __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+  __ bne(&slow);
+
+  if (RecordCallTarget()) {
+    GenerateRecordCallTarget(masm);
+
+    __ SmiToPtrArrayOffset(r8, r6);
+    __ add(r8, r5, r8);
+    if (FLAG_pretenuring_call_new) {
+      // Put the AllocationSite from the feedback vector into r5.
+      // By adding kPointerSize we encode that we know the AllocationSite
+      // entry is at the feedback vector slot given by r6 + 1.
+      __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize));
+    } else {
+      Label feedback_register_initialized;
+      // Put the AllocationSite from the feedback vector into r5, or undefined.
+      __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
+      __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
+      __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+      __ beq(&feedback_register_initialized);
+      __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+      __ bind(&feedback_register_initialized);
+    }
+
+    __ AssertUndefinedOrAllocationSite(r5, r8);
+  }
+
+  // Jump to the function-specific construct stub.
+  Register jmp_reg = r7;
+  __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
+  __ LoadP(jmp_reg,
+           FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset));
+  __ addi(ip, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
+  __ JumpToJSEntry(ip);
+
+  // r3: number of arguments
+  // r4: called object
+  // r7: object type
+  Label do_call;
+  __ bind(&slow);
+  STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
+  __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
+  __ bne(&non_function_call);
+  __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
+  __ b(&do_call);
+
+  __ bind(&non_function_call);
+  __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
+  __ bind(&do_call);
+  // Set expected number of arguments to zero (not changing r3).
+  __ li(r5, Operand::Zero());
+  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+          RelocInfo::CODE_TARGET);
+}
+
+
+static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
+  __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ LoadP(vector,
+           FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
+  __ LoadP(vector,
+           FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
+}
+
+
+void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
+  // r4 - function
+  // r6 - slot id
+  Label miss;
+  int argc = arg_count();
+  ParameterCount actual(argc);
+
+  EmitLoadTypeFeedbackVector(masm, r5);
+
+  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+  __ cmp(r4, r7);
+  __ bne(&miss);
+
+  __ mov(r3, Operand(arg_count()));
+  __ SmiToPtrArrayOffset(r7, r6);
+  __ add(r7, r5, r7);
+  __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
+
+  // Verify that r7 contains an AllocationSite
+  __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
+  __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+  __ bne(&miss);
+
+  __ mr(r5, r7);
+  ArrayConstructorStub stub(masm->isolate(), arg_count());
+  __ TailCallStub(&stub);
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+
+  // The slow case, we need this no matter what to complete a call after a miss.
+  CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod());
+
+  // Unreachable.
+  __ stop("Unexpected code address");
+}
+
+
+void CallICStub::Generate(MacroAssembler* masm) {
+  // r4 - function
+  // r6 - slot id (Smi)
+  Label extra_checks_or_miss, slow_start;
+  Label slow, non_function, wrap, cont;
+  Label have_js_function;
+  int argc = arg_count();
+  ParameterCount actual(argc);
+
+  EmitLoadTypeFeedbackVector(masm, r5);
+
+  // The checks. First, does r4 match the recorded monomorphic target?
+  __ SmiToPtrArrayOffset(r7, r6);
+  __ add(r7, r5, r7);
+  __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
+  __ cmp(r4, r7);
+  __ bne(&extra_checks_or_miss);
+
+  __ bind(&have_js_function);
+  if (CallAsMethod()) {
+    EmitContinueIfStrictOrNative(masm, &cont);
+    // Compute the receiver in sloppy mode.
+    __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
+
+    __ JumpIfSmi(r6, &wrap);
+    __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+    __ blt(&wrap);
+
+    __ bind(&cont);
+  }
+
+  __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
+
+  __ bind(&slow);
+  EmitSlowCase(masm, argc, &non_function);
+
+  if (CallAsMethod()) {
+    __ bind(&wrap);
+    EmitWrapCase(masm, argc, &cont);
+  }
+
+  __ bind(&extra_checks_or_miss);
+  Label miss;
+
+  __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
+  __ beq(&slow_start);
+  __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
+  __ beq(&miss);
+
+  if (!FLAG_trace_ic) {
+    // We are going megamorphic. If the feedback is a JSFunction, it is fine
+    // to handle it here. More complex cases are dealt with in the runtime.
+    __ AssertNotSmi(r7);
+    __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
+    __ bne(&miss);
+    __ SmiToPtrArrayOffset(r7, r6);
+    __ add(r7, r5, r7);
+    __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
+    __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
+    // We have to update statistics for runtime profiling.
+    const int with_types_offset =
+        FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
+    __ LoadP(r7, FieldMemOperand(r5, with_types_offset));
+    __ SubSmiLiteral(r7, r7, Smi::FromInt(1), r0);
+    __ StoreP(r7, FieldMemOperand(r5, with_types_offset), r0);
+    const int generic_offset =
+        FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
+    __ LoadP(r7, FieldMemOperand(r5, generic_offset));
+    __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0);
+    __ StoreP(r7, FieldMemOperand(r5, generic_offset), r0);
+    __ jmp(&slow_start);
+  }
+
+  // We are here because tracing is on or we are going monomorphic.
+  __ bind(&miss);
+  GenerateMiss(masm);
+
+  // the slow case
+  __ bind(&slow_start);
+  // Check that the function is really a JavaScript function.
+  // r4: pushed function (to be verified)
+  __ JumpIfSmi(r4, &non_function);
+
+  // Goto slow case if we do not have a function.
+  __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+  __ bne(&slow);
+  __ b(&have_js_function);
+}
+
+
+void CallICStub::GenerateMiss(MacroAssembler* masm) {
+  // Get the receiver of the function from the stack; 1 ~ return address.
+  __ LoadP(r7, MemOperand(sp, (arg_count() + 1) * kPointerSize), r0);
+
+  {
+    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
+
+    // Push the receiver and the function and feedback info.
+    __ Push(r7, r4, r5, r6);
+
+    // Call the entry.
+    IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
+                                               : IC::kCallIC_Customization_Miss;
+
+    ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
+    __ CallExternalReference(miss, 4);
+
+    // Move result to r4 and exit the internal frame.
+    __ mr(r4, r3);
+  }
+}
+
+
+// StringCharCodeAtGenerator
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+  // If the receiver is a smi trigger the non-string case.
+  if (check_mode_ == RECEIVER_IS_UNKNOWN) {
+    __ JumpIfSmi(object_, receiver_not_string_);
+
+    // Fetch the instance type of the receiver into result register.
+    __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+    __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+    // If the receiver is not a string trigger the non-string case.
+    __ andi(r0, result_, Operand(kIsNotStringMask));
+    __ bne(receiver_not_string_, cr0);
+  }
+
+  // If the index is non-smi trigger the non-smi case.
+  __ JumpIfNotSmi(index_, &index_not_smi_);
+  __ bind(&got_smi_index_);
+
+  // Check for index out of range.
+  __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
+  __ cmpl(ip, index_);
+  __ ble(index_out_of_range_);
+
+  __ SmiUntag(index_);
+
+  StringCharLoadGenerator::Generate(masm, object_, index_, result_,
+                                    &call_runtime_);
+
+  __ SmiTag(result_);
+  __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
+
+  // Index is not a smi.
+  __ bind(&index_not_smi_);
+  // If index is a heap number, try converting it to an integer.
+  __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
+              DONT_DO_SMI_CHECK);
+  call_helper.BeforeCall(masm);
+  __ push(object_);
+  __ push(index_);  // Consumed by runtime conversion function.
+  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+  } else {
+    DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+    // NumberToSmi discards numbers that are not exact integers.
+    __ CallRuntime(Runtime::kNumberToSmi, 1);
+  }
+  // Save the conversion result before the pop instructions below
+  // have a chance to overwrite it.
+  __ Move(index_, r3);
+  __ pop(object_);
+  // Reload the instance type.
+  __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+  __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+  call_helper.AfterCall(masm);
+  // If index is still not a smi, it must be out of range.
+  __ JumpIfNotSmi(index_, index_out_of_range_);
+  // Otherwise, return to the fast path.
+  __ b(&got_smi_index_);
+
+  // Call runtime. We get here when the receiver is a string and the
+  // index is a number, but the code of getting the actual character
+  // is too complex (e.g., when the string needs to be flattened).
+  __ bind(&call_runtime_);
+  call_helper.BeforeCall(masm);
+  __ SmiTag(index_);
+  __ Push(object_, index_);
+  __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
+  __ Move(result_, r3);
+  call_helper.AfterCall(masm);
+  __ b(&exit_);
+
+  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+  // Fast case of Heap::LookupSingleCharacterStringFromCode.
+  DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
+  __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode));
+  __ ori(r0, r0, Operand(kSmiTagMask));
+  __ and_(r0, code_, r0);
+  __ cmpi(r0, Operand::Zero());
+  __ bne(&slow_case_);
+
+  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
+  // At this point code register contains smi tagged one-byte char code.
+  __ mr(r0, code_);
+  __ SmiToPtrArrayOffset(code_, code_);
+  __ add(result_, result_, code_);
+  __ mr(code_, r0);
+  __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
+  __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
+  __ beq(&slow_case_);
+  __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+  __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
+
+  __ bind(&slow_case_);
+  call_helper.BeforeCall(masm);
+  __ push(code_);
+  __ CallRuntime(Runtime::kCharFromCode, 1);
+  __ Move(result_, r3);
+  call_helper.AfterCall(masm);
+  __ b(&exit_);
+
+  __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
+}
+
+
+enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
+                                          Register src, Register count,
+                                          Register scratch,
+                                          String::Encoding encoding) {
+  if (FLAG_debug_code) {
+    // Check that destination is word aligned.
+    __ andi(r0, dest, Operand(kPointerAlignmentMask));
+    __ Check(eq, kDestinationOfCopyNotAligned, cr0);
+  }
+
+  // Nothing to do for zero characters.
+  Label done;
+  if (encoding == String::TWO_BYTE_ENCODING) {
+    // double the length
+    __ add(count, count, count, LeaveOE, SetRC);
+    __ beq(&done, cr0);
+  } else {
+    __ cmpi(count, Operand::Zero());
+    __ beq(&done);
+  }
+
+  // Copy count bytes from src to dst.
+  Label byte_loop;
+  __ mtctr(count);
+  __ bind(&byte_loop);
+  __ lbz(scratch, MemOperand(src));
+  __ addi(src, src, Operand(1));
+  __ stb(scratch, MemOperand(dest));
+  __ addi(dest, dest, Operand(1));
+  __ bdnz(&byte_loop);
+
+  __ bind(&done);
+}
+
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  // Stack frame on entry.
+  //  lr: return address
+  //  sp[0]: to
+  //  sp[4]: from
+  //  sp[8]: string
+
+  // This stub is called from the native-call %_SubString(...), so
+  // nothing can be assumed about the arguments. It is tested that:
+  //  "string" is a sequential string,
+  //  both "from" and "to" are smis, and
+  //  0 <= from <= to <= string.length.
+  // If any of these assumptions fail, we call the runtime system.
+
+  const int kToOffset = 0 * kPointerSize;
+  const int kFromOffset = 1 * kPointerSize;
+  const int kStringOffset = 2 * kPointerSize;
+
+  __ LoadP(r5, MemOperand(sp, kToOffset));
+  __ LoadP(r6, MemOperand(sp, kFromOffset));
+
+  // If either to or from had the smi tag bit set, then fail to generic runtime
+  __ JumpIfNotSmi(r5, &runtime);
+  __ JumpIfNotSmi(r6, &runtime);
+  __ SmiUntag(r5);
+  __ SmiUntag(r6, SetRC);
+  // Both r5 and r6 are untagged integers.
+
+  // We want to bailout to runtime here if From is negative.
+  __ blt(&runtime, cr0);  // From < 0.
+
+  __ cmpl(r6, r5);
+  __ bgt(&runtime);  // Fail if from > to.
+  __ sub(r5, r5, r6);
+
+  // Make sure first argument is a string.
+  __ LoadP(r3, MemOperand(sp, kStringOffset));
+  __ JumpIfSmi(r3, &runtime);
+  Condition is_string = masm->IsObjectStringType(r3, r4);
+  __ b(NegateCondition(is_string), &runtime, cr0);
+
+  Label single_char;
+  __ cmpi(r5, Operand(1));
+  __ b(eq, &single_char);
+
+  // Short-cut for the case of trivial substring.
+  Label return_r3;
+  // r3: original string
+  // r5: result string length
+  __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
+  __ SmiUntag(r0, r7);
+  __ cmpl(r5, r0);
+  // Return original string.
+  __ beq(&return_r3);
+  // Longer than original string's length or negative: unsafe arguments.
+  __ bgt(&runtime);
+  // Shorter than original string's length: an actual substring.
+
+  // Deal with different string types: update the index if necessary
+  // and put the underlying string into r8.
+  // r3: original string
+  // r4: instance type
+  // r5: length
+  // r6: from index (untagged)
+  Label underlying_unpacked, sliced_string, seq_or_external_string;
+  // If the string is not indirect, it can only be sequential or external.
+  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
+  STATIC_ASSERT(kIsIndirectStringMask != 0);
+  __ andi(r0, r4, Operand(kIsIndirectStringMask));
+  __ beq(&seq_or_external_string, cr0);
+
+  __ andi(r0, r4, Operand(kSlicedNotConsMask));
+  __ bne(&sliced_string, cr0);
+  // Cons string.  Check whether it is flat, then fetch first part.
+  __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
+  __ CompareRoot(r8, Heap::kempty_stringRootIndex);
+  __ bne(&runtime);
+  __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
+  // Update instance type.
+  __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
+  __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+  __ b(&underlying_unpacked);
+
+  __ bind(&sliced_string);
+  // Sliced string.  Fetch parent and correct start index by offset.
+  __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
+  __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
+  __ SmiUntag(r4, r7);
+  __ add(r6, r6, r4);  // Add offset to index.
+  // Update instance type.
+  __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
+  __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+  __ b(&underlying_unpacked);
+
+  __ bind(&seq_or_external_string);
+  // Sequential or external string.  Just move string to the expected register.
+  __ mr(r8, r3);
+
+  __ bind(&underlying_unpacked);
+
+  if (FLAG_string_slices) {
+    Label copy_routine;
+    // r8: underlying subject string
+    // r4: instance type of underlying subject string
+    // r5: length
+    // r6: adjusted start index (untagged)
+    __ cmpi(r5, Operand(SlicedString::kMinLength));
+    // Short slice.  Copy instead of slicing.
+    __ blt(&copy_routine);
+    // Allocate new sliced string.  At this point we do not reload the instance
+    // type including the string encoding because we simply rely on the info
+    // provided by the original string.  It does not matter if the original
+    // string's encoding is wrong because we always have to recheck encoding of
+    // the newly created string's parent anyways due to externalized strings.
+    Label two_byte_slice, set_slice_header;
+    STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
+    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
+    __ andi(r0, r4, Operand(kStringEncodingMask));
+    __ beq(&two_byte_slice, cr0);
+    __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime);
+    __ b(&set_slice_header);
+    __ bind(&two_byte_slice);
+    __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
+    __ bind(&set_slice_header);
+    __ SmiTag(r6);
+    __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
+    __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
+    __ b(&return_r3);
+
+    __ bind(&copy_routine);
+  }
+
+  // r8: underlying subject string
+  // r4: instance type of underlying subject string
+  // r5: length
+  // r6: adjusted start index (untagged)
+  Label two_byte_sequential, sequential_string, allocate_result;
+  STATIC_ASSERT(kExternalStringTag != 0);
+  STATIC_ASSERT(kSeqStringTag == 0);
+  __ andi(r0, r4, Operand(kExternalStringTag));
+  __ beq(&sequential_string, cr0);
+
+  // Handle external string.
+  // Rule out short external strings.
+  STATIC_ASSERT(kShortExternalStringTag != 0);
+  __ andi(r0, r4, Operand(kShortExternalStringTag));
+  __ bne(&runtime, cr0);
+  __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
+  // r8 already points to the first character of underlying string.
+  __ b(&allocate_result);
+
+  __ bind(&sequential_string);
+  // Locate first character of underlying subject string.
+  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+  __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+  __ bind(&allocate_result);
+  // Sequential acii string.  Allocate the result.
+  STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
+  __ andi(r0, r4, Operand(kStringEncodingMask));
+  __ beq(&two_byte_sequential, cr0);
+
+  // Allocate and copy the resulting one-byte string.
+  __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime);
+
+  // Locate first character of substring to copy.
+  __ add(r8, r8, r6);
+  // Locate first character of result.
+  __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+  // r3: result string
+  // r4: first character of result string
+  // r5: result string length
+  // r8: first character of substring to copy
+  STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
+                                       String::ONE_BYTE_ENCODING);
+  __ b(&return_r3);
+
+  // Allocate and copy the resulting two-byte string.
+  __ bind(&two_byte_sequential);
+  __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
+
+  // Locate first character of substring to copy.
+  __ ShiftLeftImm(r4, r6, Operand(1));
+  __ add(r8, r8, r4);
+  // Locate first character of result.
+  __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+  // r3: result string.
+  // r4: first character of result.
+  // r5: result length.
+  // r8: first character of substring to copy.
+  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+  StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
+                                       String::TWO_BYTE_ENCODING);
+
+  __ bind(&return_r3);
+  Counters* counters = isolate()->counters();
+  __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
+  __ Drop(3);
+  __ Ret();
+
+  // Just jump to runtime to create the sub string.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kSubString, 3, 1);
+
+  __ bind(&single_char);
+  // r3: original string
+  // r4: instance type
+  // r5: length
+  // r6: from index (untagged)
+  __ SmiTag(r6, r6);
+  StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
+                                  STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
+  generator.GenerateFast(masm);
+  __ Drop(3);
+  __ Ret();
+  generator.SkipSlow(masm, &runtime);
+}
+
+
+void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
+                                                   Register left,
+                                                   Register right,
+                                                   Register scratch1,
+                                                   Register scratch2) {
+  Register length = scratch1;
+
+  // Compare lengths.
+  Label strings_not_equal, check_zero_length;
+  __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
+  __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
+  __ cmp(length, scratch2);
+  __ beq(&check_zero_length);
+  __ bind(&strings_not_equal);
+  __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
+  __ Ret();
+
+  // Check if the length is zero.
+  Label compare_chars;
+  __ bind(&check_zero_length);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ cmpi(length, Operand::Zero());
+  __ bne(&compare_chars);
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ Ret();
+
+  // Compare characters.
+  __ bind(&compare_chars);
+  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
+                                  &strings_not_equal);
+
+  // Characters are equal.
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ Ret();
+}
+
+
+void StringHelper::GenerateCompareFlatOneByteStrings(
+    MacroAssembler* masm, Register left, Register right, Register scratch1,
+    Register scratch2, Register scratch3) {
+  Label skip, result_not_equal, compare_lengths;
+  // Find minimum length and length difference.
+  __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
+  __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
+  __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
+  Register length_delta = scratch3;
+  __ ble(&skip, cr0);
+  __ mr(scratch1, scratch2);
+  __ bind(&skip);
+  Register min_length = scratch1;
+  STATIC_ASSERT(kSmiTag == 0);
+  __ cmpi(min_length, Operand::Zero());
+  __ beq(&compare_lengths);
+
+  // Compare loop.
+  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
+                                  &result_not_equal);
+
+  // Compare lengths - strings up to min-length are equal.
+  __ bind(&compare_lengths);
+  DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
+  // Use length_delta as result if it's zero.
+  __ mr(r3, length_delta);
+  __ cmpi(r3, Operand::Zero());
+  __ bind(&result_not_equal);
+  // Conditionally update the result based either on length_delta or
+  // the last comparion performed in the loop above.
+  Label less_equal, equal;
+  __ ble(&less_equal);
+  __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
+  __ Ret();
+  __ bind(&less_equal);
+  __ beq(&equal);
+  __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
+  __ bind(&equal);
+  __ Ret();
+}
+
+
+void StringHelper::GenerateOneByteCharsCompareLoop(
+    MacroAssembler* masm, Register left, Register right, Register length,
+    Register scratch1, Label* chars_not_equal) {
+  // Change index to run from -length to -1 by adding length to string
+  // start. This means that loop ends when index reaches zero, which
+  // doesn't need an additional compare.
+  __ SmiUntag(length);
+  __ addi(scratch1, length,
+          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+  __ add(left, left, scratch1);
+  __ add(right, right, scratch1);
+  __ subfic(length, length, Operand::Zero());
+  Register index = length;  // index = -length;
+
+  // Compare loop.
+  Label loop;
+  __ bind(&loop);
+  __ lbzx(scratch1, MemOperand(left, index));
+  __ lbzx(r0, MemOperand(right, index));
+  __ cmp(scratch1, r0);
+  __ bne(chars_not_equal);
+  __ addi(index, index, Operand(1));
+  __ cmpi(index, Operand::Zero());
+  __ bne(&loop);
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+  Label runtime;
+
+  Counters* counters = isolate()->counters();
+
+  // Stack frame on entry.
+  //  sp[0]: right string
+  //  sp[4]: left string
+  __ LoadP(r3, MemOperand(sp));  // Load right in r3, left in r4.
+  __ LoadP(r4, MemOperand(sp, kPointerSize));
+
+  Label not_same;
+  __ cmp(r3, r4);
+  __ bne(&not_same);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ IncrementCounter(counters->string_compare_native(), 1, r4, r5);
+  __ addi(sp, sp, Operand(2 * kPointerSize));
+  __ Ret();
+
+  __ bind(&not_same);
+
+  // Check that both objects are sequential one-byte strings.
+  __ JumpIfNotBothSequentialOneByteStrings(r4, r3, r5, r6, &runtime);
+
+  // Compare flat one-byte strings natively. Remove arguments from stack first.
+  __ IncrementCounter(counters->string_compare_native(), 1, r5, r6);
+  __ addi(sp, sp, Operand(2 * kPointerSize));
+  StringHelper::GenerateCompareFlatOneByteStrings(masm, r4, r3, r5, r6, r7);
+
+  // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ bind(&runtime);
+  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+
+void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- r4    : left
+  //  -- r3    : right
+  //  -- lr    : return address
+  // -----------------------------------
+
+  // Load r5 with the allocation site.  We stick an undefined dummy value here
+  // and replace it with the real allocation site later when we instantiate this
+  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
+  __ Move(r5, handle(isolate()->heap()->undefined_value()));
+
+  // Make sure that we actually patched the allocation site.
+  if (FLAG_debug_code) {
+    __ TestIfSmi(r5, r0);
+    __ Assert(ne, kExpectedAllocationSite, cr0);
+    __ push(r5);
+    __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
+    __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
+    __ cmp(r5, ip);
+    __ pop(r5);
+    __ Assert(eq, kExpectedAllocationSite);
+  }
+
+  // Tail call into the stub that handles binary operations with allocation
+  // sites.
+  BinaryOpWithAllocationSiteStub stub(isolate(), state());
+  __ TailCallStub(&stub);
+}
+
+
+void CompareICStub::GenerateSmis(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::SMI);
+  Label miss;
+  __ orx(r5, r4, r3);
+  __ JumpIfNotSmi(r5, &miss);
+
+  if (GetCondition() == eq) {
+    // For equality we do not care about the sign of the result.
+    // __ sub(r3, r3, r4, SetCC);
+    __ sub(r3, r3, r4);
+  } else {
+    // Untag before subtracting to avoid handling overflow.
+    __ SmiUntag(r4);
+    __ SmiUntag(r3);
+    __ sub(r3, r4, r3);
+  }
+  __ Ret();
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::NUMBER);
+
+  Label generic_stub;
+  Label unordered, maybe_undefined1, maybe_undefined2;
+  Label miss;
+  Label equal, less_than;
+
+  if (left() == CompareICState::SMI) {
+    __ JumpIfNotSmi(r4, &miss);
+  }
+  if (right() == CompareICState::SMI) {
+    __ JumpIfNotSmi(r3, &miss);
+  }
+
+  // Inlining the double comparison and falling back to the general compare
+  // stub if NaN is involved.
+  // Load left and right operand.
+  Label done, left, left_smi, right_smi;
+  __ JumpIfSmi(r3, &right_smi);
+  __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
+              DONT_DO_SMI_CHECK);
+  __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
+  __ b(&left);
+  __ bind(&right_smi);
+  __ SmiToDouble(d1, r3);
+
+  __ bind(&left);
+  __ JumpIfSmi(r4, &left_smi);
+  __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
+              DONT_DO_SMI_CHECK);
+  __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
+  __ b(&done);
+  __ bind(&left_smi);
+  __ SmiToDouble(d0, r4);
+
+  __ bind(&done);
+
+  // Compare operands
+  __ fcmpu(d0, d1);
+
+  // Don't base result on status bits when a NaN is involved.
+  __ bunordered(&unordered);
+
+  // Return a result of -1, 0, or 1, based on status bits.
+  __ beq(&equal);
+  __ blt(&less_than);
+  //  assume greater than
+  __ li(r3, Operand(GREATER));
+  __ Ret();
+  __ bind(&equal);
+  __ li(r3, Operand(EQUAL));
+  __ Ret();
+  __ bind(&less_than);
+  __ li(r3, Operand(LESS));
+  __ Ret();
+
+  __ bind(&unordered);
+  __ bind(&generic_stub);
+  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
+                     CompareICState::GENERIC, CompareICState::GENERIC);
+  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+  __ bind(&maybe_undefined1);
+  if (Token::IsOrderedRelationalCompareOp(op())) {
+    __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
+    __ bne(&miss);
+    __ JumpIfSmi(r4, &unordered);
+    __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
+    __ bne(&maybe_undefined2);
+    __ b(&unordered);
+  }
+
+  __ bind(&maybe_undefined2);
+  if (Token::IsOrderedRelationalCompareOp(op())) {
+    __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
+    __ beq(&unordered);
+  }
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
+  Label miss, not_equal;
+
+  // Registers containing left and right operands respectively.
+  Register left = r4;
+  Register right = r3;
+  Register tmp1 = r5;
+  Register tmp2 = r6;
+
+  // Check that both operands are heap objects.
+  __ JumpIfEitherSmi(left, right, &miss);
+
+  // Check that both operands are symbols.
+  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+  __ orx(tmp1, tmp1, tmp2);
+  __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+  __ bne(&miss, cr0);
+
+  // Internalized strings are compared by identity.
+  __ cmp(left, right);
+  __ bne(&not_equal);
+  // Make sure r3 is non-zero. At this point input operands are
+  // guaranteed to be non-zero.
+  DCHECK(right.is(r3));
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ bind(&not_equal);
+  __ Ret();
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::UNIQUE_NAME);
+  DCHECK(GetCondition() == eq);
+  Label miss;
+
+  // Registers containing left and right operands respectively.
+  Register left = r4;
+  Register right = r3;
+  Register tmp1 = r5;
+  Register tmp2 = r6;
+
+  // Check that both operands are heap objects.
+  __ JumpIfEitherSmi(left, right, &miss);
+
+  // Check that both operands are unique names. This leaves the instance
+  // types loaded in tmp1 and tmp2.
+  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+
+  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
+  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
+
+  // Unique names are compared by identity.
+  __ cmp(left, right);
+  __ bne(&miss);
+  // Make sure r3 is non-zero. At this point input operands are
+  // guaranteed to be non-zero.
+  DCHECK(right.is(r3));
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ Ret();
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateStrings(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::STRING);
+  Label miss, not_identical, is_symbol;
+
+  bool equality = Token::IsEqualityOp(op());
+
+  // Registers containing left and right operands respectively.
+  Register left = r4;
+  Register right = r3;
+  Register tmp1 = r5;
+  Register tmp2 = r6;
+  Register tmp3 = r7;
+  Register tmp4 = r8;
+
+  // Check that both operands are heap objects.
+  __ JumpIfEitherSmi(left, right, &miss);
+
+  // Check that both operands are strings. This leaves the instance
+  // types loaded in tmp1 and tmp2.
+  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+  STATIC_ASSERT(kNotStringTag != 0);
+  __ orx(tmp3, tmp1, tmp2);
+  __ andi(r0, tmp3, Operand(kIsNotStringMask));
+  __ bne(&miss, cr0);
+
+  // Fast check for identical strings.
+  __ cmp(left, right);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(kSmiTag == 0);
+  __ bne(&not_identical);
+  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+  __ Ret();
+  __ bind(&not_identical);
+
+  // Handle not identical strings.
+
+  // Check that both strings are internalized strings. If they are, we're done
+  // because we already know they are not identical. We know they are both
+  // strings.
+  if (equality) {
+    DCHECK(GetCondition() == eq);
+    STATIC_ASSERT(kInternalizedTag == 0);
+    __ orx(tmp3, tmp1, tmp2);
+    __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
+    __ bne(&is_symbol, cr0);
+    // Make sure r3 is non-zero. At this point input operands are
+    // guaranteed to be non-zero.
+    DCHECK(right.is(r3));
+    __ Ret();
+    __ bind(&is_symbol);
+  }
+
+  // Check that both strings are sequential one-byte.
+  Label runtime;
+  __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
+                                                    &runtime);
+
+  // Compare flat one-byte strings. Returns when done.
+  if (equality) {
+    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
+                                                  tmp2);
+  } else {
+    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
+                                                    tmp2, tmp3);
+  }
+
+  // Handle more complex cases in runtime.
+  __ bind(&runtime);
+  __ Push(left, right);
+  if (equality) {
+    __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
+  } else {
+    __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+  }
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateObjects(MacroAssembler* masm) {
+  DCHECK(state() == CompareICState::OBJECT);
+  Label miss;
+  __ and_(r5, r4, r3);
+  __ JumpIfSmi(r5, &miss);
+
+  __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE);
+  __ bne(&miss);
+  __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE);
+  __ bne(&miss);
+
+  DCHECK(GetCondition() == eq);
+  __ sub(r3, r3, r4);
+  __ Ret();
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
+  Label miss;
+  __ and_(r5, r4, r3);
+  __ JumpIfSmi(r5, &miss);
+  __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
+  __ Cmpi(r5, Operand(known_map_), r0);
+  __ bne(&miss);
+  __ Cmpi(r6, Operand(known_map_), r0);
+  __ bne(&miss);
+
+  __ sub(r3, r3, r4);
+  __ Ret();
+
+  __ bind(&miss);
+  GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateMiss(MacroAssembler* masm) {
+  {
+    // Call the runtime system in a fresh internal frame.
+    ExternalReference miss =
+        ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
+
+    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
+    __ Push(r4, r3);
+    __ Push(r4, r3);
+    __ LoadSmiLiteral(r0, Smi::FromInt(op()));
+    __ push(r0);
+    __ CallExternalReference(miss, 3);
+    // Compute the entry point of the rewritten stub.
+    __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
+    // Restore registers.
+    __ Pop(r4, r3);
+  }
+
+  __ JumpToJSEntry(r5);
+}
+
+
+// This stub is paired with DirectCEntryStub::GenerateCall
+void DirectCEntryStub::Generate(MacroAssembler* masm) {
+  // Place the return address on the stack, making the call
+  // GC safe. The RegExp backend also relies on this.
+  __ mflr(r0);
+  __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+  __ Call(ip);  // Call the C++ function.
+  __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+  __ mtlr(r0);
+  __ blr();
+}
+
+
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
+#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
+  // Native AIX/PPC64 Linux use a function descriptor.
+  __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
+  __ LoadP(ip, MemOperand(target, 0));  // Instruction address
+#else
+  // ip needs to be set for DirectCEentryStub::Generate, and also
+  // for ABI_TOC_ADDRESSABILITY_VIA_IP.
+  __ Move(ip, target);
+#endif
+
+  intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
+  __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
+  __ Call(r0);  // Call the stub.
+}
+
+
+void NameDictionaryLookupStub::GenerateNegativeLookup(
+    MacroAssembler* masm, Label* miss, Label* done, Register receiver,
+    Register properties, Handle<Name> name, Register scratch0) {
+  DCHECK(name->IsUniqueName());
+  // If names of slots in range from 1 to kProbes - 1 for the hash value are
+  // not equal to the name and kProbes-th slot is not used (its name is the
+  // undefined value), it guarantees the hash table doesn't contain the
+  // property. It's true even if some slots represent deleted properties
+  // (their names are the hole value).
+  for (int i = 0; i < kInlinedProbes; i++) {
+    // scratch0 points to properties hash.
+    // Compute the masked index: (hash + i + i * i) & mask.
+    Register index = scratch0;
+    // Capacity is smi 2^n.
+    __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
+    __ subi(index, index, Operand(1));
+    __ LoadSmiLiteral(
+        ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
+    __ and_(index, index, ip);
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    __ ShiftLeftImm(ip, index, Operand(1));
+    __ add(index, index, ip);  // index *= 3.
+
+    Register entity_name = scratch0;
+    // Having undefined at this place means the name is not contained.
+    Register tmp = properties;
+    __ SmiToPtrArrayOffset(ip, index);
+    __ add(tmp, properties, ip);
+    __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
+
+    DCHECK(!tmp.is(entity_name));
+    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
+    __ cmp(entity_name, tmp);
+    __ beq(done);
+
+    // Load the hole ready for use below:
+    __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
+
+    // Stop if found the property.
+    __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
+    __ beq(miss);
+
+    Label good;
+    __ cmp(entity_name, tmp);
+    __ beq(&good);
+
+    // Check if the entry name is not a unique name.
+    __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
+    __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
+    __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
+    __ bind(&good);
+
+    // Restore the properties.
+    __ LoadP(properties,
+             FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+  }
+
+  const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
+                          r5.bit() | r4.bit() | r3.bit());
+
+  __ mflr(r0);
+  __ MultiPush(spill_mask);
+
+  __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+  __ mov(r4, Operand(Handle<Name>(name)));
+  NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
+  __ CallStub(&stub);
+  __ cmpi(r3, Operand::Zero());
+
+  __ MultiPop(spill_mask);  // MultiPop does not touch condition flags
+  __ mtlr(r0);
+
+  __ beq(done);
+  __ bne(miss);
+}
+
+
+// Probe the name dictionary in the |elements| register. Jump to the
+// |done| label if a property with the given name is found. Jump to
+// the |miss| label otherwise.
+// If lookup was successful |scratch2| will be equal to elements + 4 * index.
+void NameDictionaryLookupStub::GeneratePositiveLookup(
+    MacroAssembler* masm, Label* miss, Label* done, Register elements,
+    Register name, Register scratch1, Register scratch2) {
+  DCHECK(!elements.is(scratch1));
+  DCHECK(!elements.is(scratch2));
+  DCHECK(!name.is(scratch1));
+  DCHECK(!name.is(scratch2));
+
+  __ AssertName(name);
+
+  // Compute the capacity mask.
+  __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
+  __ SmiUntag(scratch1);  // convert smi to int
+  __ subi(scratch1, scratch1, Operand(1));
+
+  // Generate an unrolled loop that performs a few probes before
+  // giving up. Measurements done on Gmail indicate that 2 probes
+  // cover ~93% of loads from dictionaries.
+  for (int i = 0; i < kInlinedProbes; i++) {
+    // Compute the masked index: (hash + i + i * i) & mask.
+    __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
+    if (i > 0) {
+      // Add the probe offset (i + i * i) left shifted to avoid right shifting
+      // the hash in a separate instruction. The value hash + i + i * i is right
+      // shifted in the following and instruction.
+      DCHECK(NameDictionary::GetProbeOffset(i) <
+             1 << (32 - Name::kHashFieldOffset));
+      __ addi(scratch2, scratch2,
+              Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+    }
+    __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
+    __ and_(scratch2, scratch1, scratch2);
+
+    // Scale the index by multiplying by the element size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    // scratch2 = scratch2 * 3.
+    __ ShiftLeftImm(ip, scratch2, Operand(1));
+    __ add(scratch2, scratch2, ip);
+
+    // Check if the key is identical to the name.
+    __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
+    __ add(scratch2, elements, ip);
+    __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
+    __ cmp(name, ip);
+    __ beq(done);
+  }
+
+  const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
+                          r5.bit() | r4.bit() | r3.bit()) &
+                         ~(scratch1.bit() | scratch2.bit());
+
+  __ mflr(r0);
+  __ MultiPush(spill_mask);
+  if (name.is(r3)) {
+    DCHECK(!elements.is(r4));
+    __ mr(r4, name);
+    __ mr(r3, elements);
+  } else {
+    __ mr(r3, elements);
+    __ mr(r4, name);
+  }
+  NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
+  __ CallStub(&stub);
+  __ cmpi(r3, Operand::Zero());
+  __ mr(scratch2, r5);
+  __ MultiPop(spill_mask);
+  __ mtlr(r0);
+
+  __ bne(done);
+  __ beq(miss);
+}
+
+
+void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
+  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
+  // we cannot call anything that could cause a GC from this stub.
+  // Registers:
+  //  result: NameDictionary to probe
+  //  r4: key
+  //  dictionary: NameDictionary to probe.
+  //  index: will hold an index of entry if lookup is successful.
+  //         might alias with result_.
+  // Returns:
+  //  result_ is zero if lookup failed, non zero otherwise.
+
+  Register result = r3;
+  Register dictionary = r3;
+  Register key = r4;
+  Register index = r5;
+  Register mask = r6;
+  Register hash = r7;
+  Register undefined = r8;
+  Register entry_key = r9;
+  Register scratch = r9;
+
+  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
+
+  __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
+  __ SmiUntag(mask);
+  __ subi(mask, mask, Operand(1));
+
+  __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
+
+  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
+    // Compute the masked index: (hash + i + i * i) & mask.
+    // Capacity is smi 2^n.
+    if (i > 0) {
+      // Add the probe offset (i + i * i) left shifted to avoid right shifting
+      // the hash in a separate instruction. The value hash + i + i * i is right
+      // shifted in the following and instruction.
+      DCHECK(NameDictionary::GetProbeOffset(i) <
+             1 << (32 - Name::kHashFieldOffset));
+      __ addi(index, hash,
+              Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+    } else {
+      __ mr(index, hash);
+    }
+    __ srwi(r0, index, Operand(Name::kHashShift));
+    __ and_(index, mask, r0);
+
+    // Scale the index by multiplying by the entry size.
+    DCHECK(NameDictionary::kEntrySize == 3);
+    __ ShiftLeftImm(scratch, index, Operand(1));
+    __ add(index, index, scratch);  // index *= 3.
+
+    DCHECK_EQ(kSmiTagSize, 1);
+    __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
+    __ add(index, dictionary, scratch);
+    __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
+
+    // Having undefined at this place means the name is not contained.
+    __ cmp(entry_key, undefined);
+    __ beq(&not_in_dictionary);
+
+    // Stop if found the property.
+    __ cmp(entry_key, key);
+    __ beq(&in_dictionary);
+
+    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
+      // Check if the entry name is not a unique name.
+      __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
+      __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
+      __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
+    }
+  }
+
+  __ bind(&maybe_in_dictionary);
+  // If we are doing negative lookup then probing failure should be
+  // treated as a lookup success. For positive lookup probing failure
+  // should be treated as lookup failure.
+  if (mode() == POSITIVE_LOOKUP) {
+    __ li(result, Operand::Zero());
+    __ Ret();
+  }
+
+  __ bind(&in_dictionary);
+  __ li(result, Operand(1));
+  __ Ret();
+
+  __ bind(&not_in_dictionary);
+  __ li(result, Operand::Zero());
+  __ Ret();
+}
+
+
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
+    Isolate* isolate) {
+  StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
+  stub1.GetCode();
+  // Hydrogen code stubs need stub2 at snapshot time.
+  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
+  stub2.GetCode();
+}
+
+
+// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
+// the value has just been written into the object, now this stub makes sure
+// we keep the GC informed.  The word in the object where the value has been
+// written is in the address register.
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+  Label skip_to_incremental_noncompacting;
+  Label skip_to_incremental_compacting;
+
+  // The first two branch instructions are generated with labels so as to
+  // get the offset fixed up correctly by the bind(Label*) call.  We patch
+  // it back and forth between branch condition True and False
+  // when we start and stop incremental heap marking.
+  // See RecordWriteStub::Patch for details.
+
+  // Clear the bit, branch on True for NOP action initially
+  __ crclr(Assembler::encode_crbit(cr2, CR_LT));
+  __ blt(&skip_to_incremental_noncompacting, cr2);
+  __ blt(&skip_to_incremental_compacting, cr2);
+
+  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  }
+  __ Ret();
+
+  __ bind(&skip_to_incremental_noncompacting);
+  GenerateIncremental(masm, INCREMENTAL);
+
+  __ bind(&skip_to_incremental_compacting);
+  GenerateIncremental(masm, INCREMENTAL_COMPACTION);
+
+  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
+  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
+  // patching not required on PPC as the initial path is effectively NOP
+}
+
+
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
+  regs_.Save(masm);
+
+  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+    Label dont_need_remembered_set;
+
+    __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
+    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
+                           regs_.scratch0(), &dont_need_remembered_set);
+
+    __ CheckPageFlag(regs_.object(), regs_.scratch0(),
+                     1 << MemoryChunk::SCAN_ON_SCAVENGE, ne,
+                     &dont_need_remembered_set);
+
+    // First notify the incremental marker if necessary, then update the
+    // remembered set.
+    CheckNeedsToInformIncrementalMarker(
+        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
+    InformIncrementalMarker(masm);
+    regs_.Restore(masm);
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+
+    __ bind(&dont_need_remembered_set);
+  }
+
+  CheckNeedsToInformIncrementalMarker(
+      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
+  InformIncrementalMarker(masm);
+  regs_.Restore(masm);
+  __ Ret();
+}
+
+
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
+  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
+  int argument_count = 3;
+  __ PrepareCallCFunction(argument_count, regs_.scratch0());
+  Register address =
+      r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
+  DCHECK(!address.is(regs_.object()));
+  DCHECK(!address.is(r3));
+  __ mr(address, regs_.address());
+  __ mr(r3, regs_.object());
+  __ mr(r4, address);
+  __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
+
+  AllowExternalCallThatCantCauseGC scope(masm);
+  __ CallCFunction(
+      ExternalReference::incremental_marking_record_write_function(isolate()),
+      argument_count);
+  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
+}
+
+
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
+    MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
+    Mode mode) {
+  Label on_black;
+  Label need_incremental;
+  Label need_incremental_pop_scratch;
+
+  DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
+  __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
+  __ and_(regs_.scratch0(), regs_.object(), r0);
+  __ LoadP(
+      regs_.scratch1(),
+      MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
+  __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
+  __ StoreP(
+      regs_.scratch1(),
+      MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
+  __ cmpi(regs_.scratch1(), Operand::Zero());  // PPC, we could do better here
+  __ blt(&need_incremental);
+
+  // Let's look at the color of the object:  If it is not black we don't have
+  // to inform the incremental marker.
+  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
+
+  regs_.Restore(masm);
+  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  } else {
+    __ Ret();
+  }
+
+  __ bind(&on_black);
+
+  // Get the value from the slot.
+  __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
+
+  if (mode == INCREMENTAL_COMPACTION) {
+    Label ensure_not_white;
+
+    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
+                     regs_.scratch1(),  // Scratch.
+                     MemoryChunk::kEvacuationCandidateMask, eq,
+                     &ensure_not_white);
+
+    __ CheckPageFlag(regs_.object(),
+                     regs_.scratch1(),  // Scratch.
+                     MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
+                     &need_incremental);
+
+    __ bind(&ensure_not_white);
+  }
+
+  // We need extra registers for this, so we push the object and the address
+  // register temporarily.
+  __ Push(regs_.object(), regs_.address());
+  __ EnsureNotWhite(regs_.scratch0(),  // The value.
+                    regs_.scratch1(),  // Scratch.
+                    regs_.object(),    // Scratch.
+                    regs_.address(),   // Scratch.
+                    &need_incremental_pop_scratch);
+  __ Pop(regs_.object(), regs_.address());
+
+  regs_.Restore(masm);
+  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+                           MacroAssembler::kReturnAtEnd);
+  } else {
+    __ Ret();
+  }
+
+  __ bind(&need_incremental_pop_scratch);
+  __ Pop(regs_.object(), regs_.address());
+
+  __ bind(&need_incremental);
+
+  // Fall through when we need to inform the incremental marker.
+}
+
+
+void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- r3    : element value to store
+  //  -- r6    : element index as smi
+  //  -- sp[0] : array literal index in function as smi
+  //  -- sp[4] : array literal
+  // clobbers r3, r5, r7
+  // -----------------------------------
+
+  Label element_done;
+  Label double_elements;
+  Label smi_element;
+  Label slow_elements;
+  Label fast_elements;
+
+  // Get array literal index, array literal and its map.
+  __ LoadP(r7, MemOperand(sp, 0 * kPointerSize));
+  __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
+  __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset));
+
+  __ CheckFastElements(r5, r8, &double_elements);
+  // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
+  __ JumpIfSmi(r3, &smi_element);
+  __ CheckFastSmiElements(r5, r8, &fast_elements);
+
+  // Store into the array literal requires a elements transition. Call into
+  // the runtime.
+  __ bind(&slow_elements);
+  // call.
+  __ Push(r4, r6, r3);
+  __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset));
+  __ Push(r8, r7);
+  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
+
+  // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
+  __ bind(&fast_elements);
+  __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+  __ SmiToPtrArrayOffset(r9, r6);
+  __ add(r9, r8, r9);
+#if V8_TARGET_ARCH_PPC64
+  // add due to offset alignment requirements of StorePU
+  __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ StoreP(r3, MemOperand(r9));
+#else
+  __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag));
+#endif
+  // Update the write barrier for the array store.
+  __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs,
+                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+  __ Ret();
+
+  // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
+  // and value is Smi.
+  __ bind(&smi_element);
+  __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+  __ SmiToPtrArrayOffset(r9, r6);
+  __ add(r9, r8, r9);
+  __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
+  __ Ret();
+
+  // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
+  __ bind(&double_elements);
+  __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+  __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements);
+  __ Ret();
+}
+
+
+void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
+  CEntryStub ces(isolate(), 1, kSaveFPRegs);
+  __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
+  int parameter_count_offset =
+      StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
+  __ LoadP(r4, MemOperand(fp, parameter_count_offset));
+  if (function_mode() == JS_FUNCTION_STUB_MODE) {
+    __ addi(r4, r4, Operand(1));
+  }
+  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
+  __ slwi(r4, r4, Operand(kPointerSizeLog2));
+  __ add(sp, sp, r4);
+  __ Ret();
+}
+
+
+void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
+  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
+  VectorLoadStub stub(isolate(), state());
+  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
+  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
+  VectorKeyedLoadStub stub(isolate());
+  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
+  if (masm->isolate()->function_entry_hook() != NULL) {
+    PredictableCodeSizeScope predictable(masm,
+#if V8_TARGET_ARCH_PPC64
+                                         14 * Assembler::kInstrSize);
+#else
+                                         11 * Assembler::kInstrSize);
+#endif
+    ProfileEntryHookStub stub(masm->isolate());
+    __ mflr(r0);
+    __ Push(r0, ip);
+    __ CallStub(&stub);
+    __ Pop(r0, ip);
+    __ mtlr(r0);
+  }
+}
+
+
+void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
+  // The entry hook is a "push lr, ip" instruction, followed by a call.
+  const int32_t kReturnAddressDistanceFromFunctionStart =
+      Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;
+
+  // This should contain all kJSCallerSaved registers.
+  const RegList kSavedRegs = kJSCallerSaved |  // Caller saved registers.
+                             r15.bit();        // Saved stack pointer.
+
+  // We also save lr, so the count here is one higher than the mask indicates.
+  const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
+
+  // Save all caller-save registers as this may be called from anywhere.
+  __ mflr(ip);
+  __ MultiPush(kSavedRegs | ip.bit());
+
+  // Compute the function's address for the first argument.
+  __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));
+
+  // The caller's return address is two slots above the saved temporaries.
+  // Grab that for the second argument to the hook.
+  __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));
+
+  // Align the stack if necessary.
+  int frame_alignment = masm->ActivationFrameAlignment();
+  if (frame_alignment > kPointerSize) {
+    __ mr(r15, sp);
+    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+    __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
+  }
+
+#if !defined(USE_SIMULATOR)
+  uintptr_t entry_hook =
+      reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
+  __ mov(ip, Operand(entry_hook));
+
+#if ABI_USES_FUNCTION_DESCRIPTORS
+  // Function descriptor
+  __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
+  __ LoadP(ip, MemOperand(ip, 0));
+#elif ABI_TOC_ADDRESSABILITY_VIA_IP
+// ip set above, so nothing to do.
+#endif
+
+  // PPC LINUX ABI:
+  __ li(r0, Operand::Zero());
+  __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
+#else
+  // Under the simulator we need to indirect the entry hook through a
+  // trampoline function at a known address.
+  // It additionally takes an isolate as a third parameter
+  __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
+
+  ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
+  __ mov(ip, Operand(ExternalReference(
+                 &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
+#endif
+  __ Call(ip);
+
+#if !defined(USE_SIMULATOR)
+  __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
+#endif
+
+  // Restore the stack pointer if needed.
+  if (frame_alignment > kPointerSize) {
+    __ mr(sp, r15);
+  }
+
+  // Also pop lr to get Ret(0).
+  __ MultiPop(kSavedRegs | ip.bit());
+  __ mtlr(ip);
+  __ Ret();
+}
+
+
+template <class T>
+static void CreateArrayDispatch(MacroAssembler* masm,
+                                AllocationSiteOverrideMode mode) {
+  if (mode == DISABLE_ALLOCATION_SITES) {
+    T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
+    __ TailCallStub(&stub);
+  } else if (mode == DONT_OVERRIDE) {
+    int last_index =
+        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+    for (int i = 0; i <= last_index; ++i) {
+      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+      __ Cmpi(r6, Operand(kind), r0);
+      T stub(masm->isolate(), kind);
+      __ TailCallStub(&stub, eq);
+    }
+
+    // If we reached this point there is a problem.
+    __ Abort(kUnexpectedElementsKindInArrayConstructor);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
+                                           AllocationSiteOverrideMode mode) {
+  // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
+  // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
+  // r3 - number of arguments
+  // r4 - constructor?
+  // sp[0] - last argument
+  Label normal_sequence;
+  if (mode == DONT_OVERRIDE) {
+    DCHECK(FAST_SMI_ELEMENTS == 0);
+    DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
+    DCHECK(FAST_ELEMENTS == 2);
+    DCHECK(FAST_HOLEY_ELEMENTS == 3);
+    DCHECK(FAST_DOUBLE_ELEMENTS == 4);
+    DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
+
+    // is the low bit set? If so, we are holey and that is good.
+    __ andi(r0, r6, Operand(1));
+    __ bne(&normal_sequence, cr0);
+  }
+
+  // look at the first argument
+  __ LoadP(r8, MemOperand(sp, 0));
+  __ cmpi(r8, Operand::Zero());
+  __ beq(&normal_sequence);
+
+  if (mode == DISABLE_ALLOCATION_SITES) {
+    ElementsKind initial = GetInitialFastElementsKind();
+    ElementsKind holey_initial = GetHoleyElementsKind(initial);
+
+    ArraySingleArgumentConstructorStub stub_holey(
+        masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
+    __ TailCallStub(&stub_holey);
+
+    __ bind(&normal_sequence);
+    ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
+                                            DISABLE_ALLOCATION_SITES);
+    __ TailCallStub(&stub);
+  } else if (mode == DONT_OVERRIDE) {
+    // We are going to create a holey array, but our kind is non-holey.
+    // Fix kind and retry (only if we have an allocation site in the slot).
+    __ addi(r6, r6, Operand(1));
+
+    if (FLAG_debug_code) {
+      __ LoadP(r8, FieldMemOperand(r5, 0));
+      __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+      __ Assert(eq, kExpectedAllocationSite);
+    }
+
+    // Save the resulting elements kind in type info. We can't just store r6
+    // in the AllocationSite::transition_info field because elements kind is
+    // restricted to a portion of the field...upper bits need to be left alone.
+    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+    __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
+    __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
+    __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
+              r0);
+
+    __ bind(&normal_sequence);
+    int last_index =
+        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+    for (int i = 0; i <= last_index; ++i) {
+      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+      __ mov(r0, Operand(kind));
+      __ cmp(r6, r0);
+      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
+      __ TailCallStub(&stub, eq);
+    }
+
+    // If we reached this point there is a problem.
+    __ Abort(kUnexpectedElementsKindInArrayConstructor);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+template <class T>
+static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
+  int to_index =
+      GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+  for (int i = 0; i <= to_index; ++i) {
+    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+    T stub(isolate, kind);
+    stub.GetCode();
+    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
+      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
+      stub1.GetCode();
+    }
+  }
+}
+
+
+void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
+  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
+      isolate);
+  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
+      isolate);
+  ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
+      isolate);
+}
+
+
+void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
+    Isolate* isolate) {
+  ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
+  for (int i = 0; i < 2; i++) {
+    // For internal arrays we only need a few things
+    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
+    stubh1.GetCode();
+    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
+    stubh2.GetCode();
+    InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
+    stubh3.GetCode();
+  }
+}
+
+
+void ArrayConstructorStub::GenerateDispatchToArrayStub(
+    MacroAssembler* masm, AllocationSiteOverrideMode mode) {
+  if (argument_count() == ANY) {
+    Label not_zero_case, not_one_case;
+    __ cmpi(r3, Operand::Zero());
+    __ bne(&not_zero_case);
+    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+
+    __ bind(&not_zero_case);
+    __ cmpi(r3, Operand(1));
+    __ bgt(&not_one_case);
+    CreateArrayDispatchOneArgument(masm, mode);
+
+    __ bind(&not_one_case);
+    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+  } else if (argument_count() == NONE) {
+    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+  } else if (argument_count() == ONE) {
+    CreateArrayDispatchOneArgument(masm, mode);
+  } else if (argument_count() == MORE_THAN_ONE) {
+    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+
+void ArrayConstructorStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- r3 : argc (only if argument_count() == ANY)
+  //  -- r4 : constructor
+  //  -- r5 : AllocationSite or undefined
+  //  -- sp[0] : return address
+  //  -- sp[4] : last argument
+  // -----------------------------------
+
+  if (FLAG_debug_code) {
+    // The array construct code is only set for the global and natives
+    // builtin Array functions which always have maps.
+
+    // Initial map for the builtin Array function should be a map.
+    __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
+    // Will both indicate a NULL and a Smi.
+    __ TestIfSmi(r7, r0);
+    __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
+    __ CompareObjectType(r7, r7, r8, MAP_TYPE);
+    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
+
+    // We should either have undefined in r5 or a valid AllocationSite
+    __ AssertUndefinedOrAllocationSite(r5, r7);
+  }
+
+  Label no_info;
+  // Get the elements kind and case on that.
+  __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
+  __ beq(&no_info);
+
+  __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
+  __ SmiUntag(r6);
+  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+  __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
+  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
+
+  __ bind(&no_info);
+  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
+}
+
+
+void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
+                                                ElementsKind kind) {
+  __ cmpli(r3, Operand(1));
+
+  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
+  __ TailCallStub(&stub0, lt);
+
+  InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
+  __ TailCallStub(&stubN, gt);
+
+  if (IsFastPackedElementsKind(kind)) {
+    // We might need to create a holey array
+    // look at the first argument
+    __ LoadP(r6, MemOperand(sp, 0));
+    __ cmpi(r6, Operand::Zero());
+
+    InternalArraySingleArgumentConstructorStub stub1_holey(
+        isolate(), GetHoleyElementsKind(kind));
+    __ TailCallStub(&stub1_holey, ne);
+  }
+
+  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
+  __ TailCallStub(&stub1);
+}
+
+
+void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- r3 : argc
+  //  -- r4 : constructor
+  //  -- sp[0] : return address
+  //  -- sp[4] : last argument
+  // -----------------------------------
+
+  if (FLAG_debug_code) {
+    // The array construct code is only set for the global and natives
+    // builtin Array functions which always have maps.
+
+    // Initial map for the builtin Array function should be a map.
+    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
+    // Will both indicate a NULL and a Smi.
+    __ TestIfSmi(r6, r0);
+    __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
+    __ CompareObjectType(r6, r6, r7, MAP_TYPE);
+    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
+  }
+
+  // Figure out the right elements kind
+  __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
+  // Load the map's "bit field 2" into |result|.
+  __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
+  // Retrieve elements_kind from bit field 2.
+  __ DecodeField<Map::ElementsKindBits>(r6);
+
+  if (FLAG_debug_code) {
+    Label done;
+    __ cmpi(r6, Operand(FAST_ELEMENTS));
+    __ beq(&done);
+    __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
+    __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
+    __ bind(&done);
+  }
+
+  Label fast_elements_case;
+  __ cmpi(r6, Operand(FAST_ELEMENTS));
+  __ beq(&fast_elements_case);
+  GenerateCase(masm, FAST_HOLEY_ELEMENTS);
+
+  __ bind(&fast_elements_case);
+  GenerateCase(masm, FAST_ELEMENTS);
+}
+
+
+void CallApiFunctionStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- r3                  : callee
+  //  -- r7                  : call_data
+  //  -- r5                  : holder
+  //  -- r4                  : api_function_address
+  //  -- cp                  : context
+  //  --
+  //  -- sp[0]               : last argument
+  //  -- ...
+  //  -- sp[(argc - 1)* 4]   : first argument
+  //  -- sp[argc * 4]        : receiver
+  // -----------------------------------
+
+  Register callee = r3;
+  Register call_data = r7;
+  Register holder = r5;
+  Register api_function_address = r4;
+  Register context = cp;
+
+  int argc = this->argc();
+  bool is_store = this->is_store();
+  bool call_data_undefined = this->call_data_undefined();
+
+  typedef FunctionCallbackArguments FCA;
+
+  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
+  STATIC_ASSERT(FCA::kCalleeIndex == 5);
+  STATIC_ASSERT(FCA::kDataIndex == 4);
+  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
+  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
+  STATIC_ASSERT(FCA::kIsolateIndex == 1);
+  STATIC_ASSERT(FCA::kHolderIndex == 0);
+  STATIC_ASSERT(FCA::kArgsLength == 7);
+
+  // context save
+  __ push(context);
+  // load context from callee
+  __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
+
+  // callee
+  __ push(callee);
+
+  // call data
+  __ push(call_data);
+
+  Register scratch = call_data;
+  if (!call_data_undefined) {
+    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+  }
+  // return value
+  __ push(scratch);
+  // return value default
+  __ push(scratch);
+  // isolate
+  __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
+  __ push(scratch);
+  // holder
+  __ push(holder);
+
+  // Prepare arguments.
+  __ mr(scratch, sp);
+
+  // Allocate the v8::Arguments structure in the arguments' space since
+  // it's not controlled by GC.
+  // PPC LINUX ABI:
+  //
+  // Create 5 extra slots on stack:
+  //    [0] space for DirectCEntryStub's LR save
+  //    [1-4] FunctionCallbackInfo
+  const int kApiStackSpace = 5;
+
+  FrameScope frame_scope(masm, StackFrame::MANUAL);
+  __ EnterExitFrame(false, kApiStackSpace);
+
+  DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
+  // r3 = FunctionCallbackInfo&
+  // Arguments is after the return address.
+  __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
+  // FunctionCallbackInfo::implicit_args_
+  __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
+  // FunctionCallbackInfo::values_
+  __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
+  __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
+  // FunctionCallbackInfo::length_ = argc
+  __ li(ip, Operand(argc));
+  __ stw(ip, MemOperand(r3, 2 * kPointerSize));
+  // FunctionCallbackInfo::is_construct_call = 0
+  __ li(ip, Operand::Zero());
+  __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize));
+
+  const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
+  ExternalReference thunk_ref =
+      ExternalReference::invoke_function_callback(isolate());
+
+  AllowExternalCallThatCantCauseGC scope(masm);
+  MemOperand context_restore_operand(
+      fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
+  // Stores return the first js argument
+  int return_value_offset = 0;
+  if (is_store) {
+    return_value_offset = 2 + FCA::kArgsLength;
+  } else {
+    return_value_offset = 2 + FCA::kReturnValueOffset;
+  }
+  MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
+
+  __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
+                              kStackUnwindSpace, return_value_operand,
+                              &context_restore_operand);
+}
+
+
+void CallApiGetterStub::Generate(MacroAssembler* masm) {
+  // ----------- S t a t e -------------
+  //  -- sp[0]                  : name
+  //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
+  //  -- ...
+  //  -- r5                     : api_function_address
+  // -----------------------------------
+
+  Register api_function_address = ApiGetterDescriptor::function_address();
+  DCHECK(api_function_address.is(r5));
+
+  __ mr(r3, sp);                               // r0 = Handle<Name>
+  __ addi(r4, r3, Operand(1 * kPointerSize));  // r4 = PCA
+
+// If ABI passes Handles (pointer-sized struct) in a register:
+//
+// Create 2 extra slots on stack:
+//    [0] space for DirectCEntryStub's LR save
+//    [1] AccessorInfo&
+//
+// Otherwise:
+//
+// Create 3 extra slots on stack:
+//    [0] space for DirectCEntryStub's LR save
+//    [1] copy of Handle (first arg)
+//    [2] AccessorInfo&
+#if ABI_PASSES_HANDLES_IN_REGS
+  const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1;
+  const int kApiStackSpace = 2;
+#else
+  const int kArg0Slot = kStackFrameExtraParamSlot + 1;
+  const int kAccessorInfoSlot = kArg0Slot + 1;
+  const int kApiStackSpace = 3;
+#endif
+
+  FrameScope frame_scope(masm, StackFrame::MANUAL);
+  __ EnterExitFrame(false, kApiStackSpace);
+
+#if !ABI_PASSES_HANDLES_IN_REGS
+  // pass 1st arg by reference
+  __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize));
+  __ addi(r3, sp, Operand(kArg0Slot * kPointerSize));
+#endif
+
+  // Create PropertyAccessorInfo instance on the stack above the exit frame with
+  // r4 (internal::Object** args_) as the data.
+  __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize));
+  // r4 = AccessorInfo&
+  __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize));
+
+  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
+
+  ExternalReference thunk_ref =
+      ExternalReference::invoke_accessor_getter_callback(isolate());
+  __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
+                              kStackUnwindSpace,
+                              MemOperand(fp, 6 * kPointerSize), NULL);
+}
+
+
+#undef __
+}
+}  // namespace v8::internal
+
+#endif  // V8_TARGET_ARCH_PPC