Update V8 to version 4.1.0.21
This is a cherry-pick of all commits up to and including the
4.1.0.21 cherry-pick in Chromium.
Original commit message:
Version 4.1.0.21 (cherry-pick)
Merged 206e9136bde0f2b5ae8cb77afbb1e7833e5bd412
Unlink pages from the space page list after evacuation.
BUG=430201
LOG=N
R=jkummerow@chromium.org
Review URL: https://codereview.chromium.org/953813002
Cr-Commit-Position: refs/branch-heads/4.1@{#22}
Cr-Branched-From: 2e08d2a7aa9d65d269d8c57aba82eb38a8cb0a18-refs/heads/candidates@{#25353}
---
FPIIM-449
Change-Id: I8c23c7bbb70772b4858fe8a47b64fa97ee0d1f8c
diff --git a/src/ppc/macro-assembler-ppc.h b/src/ppc/macro-assembler-ppc.h
new file mode 100644
index 0000000..8f1aeab
--- /dev/null
+++ b/src/ppc/macro-assembler-ppc.h
@@ -0,0 +1,1554 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
+#define V8_PPC_MACRO_ASSEMBLER_PPC_H_
+
+#include "src/assembler.h"
+#include "src/bailout-reason.h"
+#include "src/frames.h"
+#include "src/globals.h"
+
+namespace v8 {
+namespace internal {
+
+// ----------------------------------------------------------------------------
+// Static helper functions
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, int offset) {
+ return MemOperand(object, offset - kHeapObjectTag);
+}
+
+
+// Flags used for AllocateHeapNumber
+enum TaggingMode {
+ // Tag the result.
+ TAG_RESULT,
+ // Don't tag
+ DONT_TAG_RESULT
+};
+
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+ kPointersToHereMaybeInteresting,
+ kPointersToHereAreAlwaysInteresting
+};
+enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
+
+
+Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
+ Register reg3 = no_reg,
+ Register reg4 = no_reg,
+ Register reg5 = no_reg,
+ Register reg6 = no_reg);
+
+
+#ifdef DEBUG
+bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
+ Register reg4 = no_reg, Register reg5 = no_reg,
+ Register reg6 = no_reg, Register reg7 = no_reg,
+ Register reg8 = no_reg);
+#endif
+
+// These exist to provide portability between 32 and 64bit
+#if V8_TARGET_ARCH_PPC64
+#define LoadPU ldu
+#define LoadPX ldx
+#define LoadPUX ldux
+#define StorePU stdu
+#define StorePX stdx
+#define StorePUX stdux
+#define ShiftLeftImm sldi
+#define ShiftRightImm srdi
+#define ClearLeftImm clrldi
+#define ClearRightImm clrrdi
+#define ShiftRightArithImm sradi
+#define ShiftLeft_ sld
+#define ShiftRight_ srd
+#define ShiftRightArith srad
+#define Mul mulld
+#define Div divd
+#else
+#define LoadPU lwzu
+#define LoadPX lwzx
+#define LoadPUX lwzux
+#define StorePU stwu
+#define StorePX stwx
+#define StorePUX stwux
+#define ShiftLeftImm slwi
+#define ShiftRightImm srwi
+#define ClearLeftImm clrlwi
+#define ClearRightImm clrrwi
+#define ShiftRightArithImm srawi
+#define ShiftLeft_ slw
+#define ShiftRight_ srw
+#define ShiftRightArith sraw
+#define Mul mullw
+#define Div divw
+#endif
+
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler : public Assembler {
+ public:
+ // The isolate parameter can be NULL if the macro assembler should
+ // not use isolate-dependent functionality. In this case, it's the
+ // responsibility of the caller to never invoke such function on the
+ // macro assembler.
+ MacroAssembler(Isolate* isolate, void* buffer, int size);
+
+
+ // Returns the size of a call in instructions. Note, the value returned is
+ // only valid as long as no entries are added to the constant pool between
+ // checking the call size and emitting the actual call.
+ static int CallSize(Register target);
+ int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
+ static int CallSizeNotPredictableCodeSize(Address target,
+ RelocInfo::Mode rmode,
+ Condition cond = al);
+
+ // Jump, Call, and Ret pseudo instructions implementing inter-working.
+ void Jump(Register target);
+ void JumpToJSEntry(Register target);
+ void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
+ CRegister cr = cr7);
+ void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
+ void Call(Register target);
+ void CallJSEntry(Register target);
+ void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
+ int CallSize(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ Condition cond = al);
+ void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ Condition cond = al);
+ void Ret(Condition cond = al);
+
+ // Emit code to discard a non-negative number of pointer-sized elements
+ // from the stack, clobbering only the sp register.
+ void Drop(int count, Condition cond = al);
+
+ void Ret(int drop, Condition cond = al);
+
+ void Call(Label* target);
+
+ // Emit call to the code we are currently generating.
+ void CallSelf() {
+ Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
+ Call(self, RelocInfo::CODE_TARGET);
+ }
+
+ // Register move. May do nothing if the registers are identical.
+ void Move(Register dst, Handle<Object> value);
+ void Move(Register dst, Register src, Condition cond = al);
+ void Move(DoubleRegister dst, DoubleRegister src);
+
+ void MultiPush(RegList regs);
+ void MultiPop(RegList regs);
+
+ // Load an object from the root table.
+ void LoadRoot(Register destination, Heap::RootListIndex index,
+ Condition cond = al);
+ // Store an object to the root table.
+ void StoreRoot(Register source, Heap::RootListIndex index,
+ Condition cond = al);
+
+ // ---------------------------------------------------------------------------
+ // GC Support
+
+ void IncrementalMarkingRecordWriteHelper(Register object, Register value,
+ Register address);
+
+ enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register object, // Used for debug code.
+ Register addr, Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetFinalAction and_then);
+
+ void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
+ Label* condition_met);
+
+ void CheckMapDeprecated(Handle<Map> map, Register scratch,
+ Label* if_deprecated);
+
+ // Check if object is in new space. Jumps if the object is not in new space.
+ // The register scratch can be object itself, but scratch will be clobbered.
+ void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
+ InNewSpace(object, scratch, ne, branch);
+ }
+
+ // Check if object is in new space. Jumps if the object is in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
+ InNewSpace(object, scratch, eq, branch);
+ }
+
+ // Check if an object has a given incremental marking color.
+ void HasColor(Register object, Register scratch0, Register scratch1,
+ Label* has_color, int first_bit, int second_bit);
+
+ void JumpIfBlack(Register object, Register scratch0, Register scratch1,
+ Label* on_black);
+
+ // Checks the color of an object. If the object is already grey or black
+ // then we just fall through, since it is already live. If it is white and
+ // we can determine that it doesn't need to be scanned, then we just mark it
+ // black and fall through. For the rest we jump to the label so the
+ // incremental marker can fix its assumptions.
+ void EnsureNotWhite(Register object, Register scratch1, Register scratch2,
+ Register scratch3, Label* object_is_white_and_not_data);
+
+ // Detects conservatively whether an object is data-only, i.e. it does need to
+ // be scanned by the garbage collector.
+ void JumpIfDataObject(Register value, Register scratch,
+ Label* not_data_object);
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object, int offset, Register value, Register scratch,
+ LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // MemOperand(reg, off).
+ inline void RecordWriteContextSlot(
+ Register context, int offset, Register value, Register scratch,
+ LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting) {
+ RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
+ lr_status, save_fp, remembered_set_action, smi_check,
+ pointers_to_here_check_for_value);
+ }
+
+ void RecordWriteForMap(Register object, Register map, Register dst,
+ LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
+
+ // For a given |object| notify the garbage collector that the slot |address|
+ // has been written. |value| is the object being stored. The value and
+ // address registers are clobbered by the operation.
+ void RecordWrite(
+ Register object, Register address, Register value,
+ LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ void Push(Register src) { push(src); }
+
+ // Push a handle.
+ void Push(Handle<Object> handle);
+ void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+ // Push two registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2) {
+ StorePU(src2, MemOperand(sp, -2 * kPointerSize));
+ StoreP(src1, MemOperand(sp, kPointerSize));
+ }
+
+ // Push three registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3) {
+ StorePU(src3, MemOperand(sp, -3 * kPointerSize));
+ StoreP(src2, MemOperand(sp, kPointerSize));
+ StoreP(src1, MemOperand(sp, 2 * kPointerSize));
+ }
+
+ // Push four registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3, Register src4) {
+ StorePU(src4, MemOperand(sp, -4 * kPointerSize));
+ StoreP(src3, MemOperand(sp, kPointerSize));
+ StoreP(src2, MemOperand(sp, 2 * kPointerSize));
+ StoreP(src1, MemOperand(sp, 3 * kPointerSize));
+ }
+
+ // Push five registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3, Register src4,
+ Register src5) {
+ StorePU(src5, MemOperand(sp, -5 * kPointerSize));
+ StoreP(src4, MemOperand(sp, kPointerSize));
+ StoreP(src3, MemOperand(sp, 2 * kPointerSize));
+ StoreP(src2, MemOperand(sp, 3 * kPointerSize));
+ StoreP(src1, MemOperand(sp, 4 * kPointerSize));
+ }
+
+ void Pop(Register dst) { pop(dst); }
+
+ // Pop two registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2) {
+ LoadP(src2, MemOperand(sp, 0));
+ LoadP(src1, MemOperand(sp, kPointerSize));
+ addi(sp, sp, Operand(2 * kPointerSize));
+ }
+
+ // Pop three registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2, Register src3) {
+ LoadP(src3, MemOperand(sp, 0));
+ LoadP(src2, MemOperand(sp, kPointerSize));
+ LoadP(src1, MemOperand(sp, 2 * kPointerSize));
+ addi(sp, sp, Operand(3 * kPointerSize));
+ }
+
+ // Pop four registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2, Register src3, Register src4) {
+ LoadP(src4, MemOperand(sp, 0));
+ LoadP(src3, MemOperand(sp, kPointerSize));
+ LoadP(src2, MemOperand(sp, 2 * kPointerSize));
+ LoadP(src1, MemOperand(sp, 3 * kPointerSize));
+ addi(sp, sp, Operand(4 * kPointerSize));
+ }
+
+ // Pop five registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2, Register src3, Register src4,
+ Register src5) {
+ LoadP(src5, MemOperand(sp, 0));
+ LoadP(src4, MemOperand(sp, kPointerSize));
+ LoadP(src3, MemOperand(sp, 2 * kPointerSize));
+ LoadP(src2, MemOperand(sp, 3 * kPointerSize));
+ LoadP(src1, MemOperand(sp, 4 * kPointerSize));
+ addi(sp, sp, Operand(5 * kPointerSize));
+ }
+
+ // Push a fixed frame, consisting of lr, fp, context and
+ // JS function / marker id if marker_reg is a valid register.
+ void PushFixedFrame(Register marker_reg = no_reg);
+ void PopFixedFrame(Register marker_reg = no_reg);
+
+ // Push and pop the registers that can hold pointers, as defined by the
+ // RegList constant kSafepointSavedRegisters.
+ void PushSafepointRegisters();
+ void PopSafepointRegisters();
+ // Store value in register src in the safepoint stack slot for
+ // register dst.
+ void StoreToSafepointRegisterSlot(Register src, Register dst);
+ // Load the value of the src register from its safepoint stack slot
+ // into register dst.
+ void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+ // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
+ // from C.
+ // Does not handle errors.
+ void FlushICache(Register address, size_t size, Register scratch);
+
+ // If the value is a NaN, canonicalize the value else, do nothing.
+ void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
+ void CanonicalizeNaN(const DoubleRegister value) {
+ CanonicalizeNaN(value, value);
+ }
+
+ // Converts the integer (untagged smi) in |src| to a double, storing
+ // the result to |double_dst|
+ void ConvertIntToDouble(Register src, DoubleRegister double_dst);
+
+ // Converts the unsigned integer (untagged smi) in |src| to
+ // a double, storing the result to |double_dst|
+ void ConvertUnsignedIntToDouble(Register src, DoubleRegister double_dst);
+
+ // Converts the integer (untagged smi) in |src| to
+ // a float, storing the result in |dst|
+ // Warning: The value in |int_scrach| will be changed in the process!
+ void ConvertIntToFloat(const DoubleRegister dst, const Register src,
+ const Register int_scratch);
+
+ // Converts the double_input to an integer. Note that, upon return,
+ // the contents of double_dst will also hold the fixed point representation.
+ void ConvertDoubleToInt64(const DoubleRegister double_input,
+#if !V8_TARGET_ARCH_PPC64
+ const Register dst_hi,
+#endif
+ const Register dst, const DoubleRegister double_dst,
+ FPRoundingMode rounding_mode = kRoundToZero);
+
+ // Generates function and stub prologue code.
+ void StubPrologue(int prologue_offset = 0);
+ void Prologue(bool code_pre_aging, int prologue_offset = 0);
+
+ // Enter exit frame.
+ // stack_space - extra stack space, used for alignment before call to C.
+ void EnterExitFrame(bool save_doubles, int stack_space = 0);
+
+ // Leave the current exit frame. Expects the return value in r0.
+ // Expect the number of values, pushed prior to the exit frame, to
+ // remove in a register (or no_reg, if there is nothing to remove).
+ void LeaveExitFrame(bool save_doubles, Register argument_count,
+ bool restore_context);
+
+ // Get the actual activation frame alignment for target environment.
+ static int ActivationFrameAlignment();
+
+ void LoadContext(Register dst, int context_chain_length);
+
+ // Conditionally load the cached Array transitioned map of type
+ // transitioned_kind from the native context if the map in register
+ // map_in_out is the cached Array map in the native context of
+ // expected_kind.
+ void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match);
+
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers
+ // function and map can be the same, function is then overwritten.
+ void LoadGlobalFunctionInitialMap(Register function, Register map,
+ Register scratch);
+
+ void InitializeRootRegister() {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(kRootRegister, Operand(roots_array_start));
+ }
+
+ // ----------------------------------------------------------------
+ // new PPC macro-assembler interfaces that are slightly higher level
+ // than assembler-ppc and may generate variable length sequences
+
+ // load a literal signed int value <value> to GPR <dst>
+ void LoadIntLiteral(Register dst, int value);
+
+ // load an SMI value <value> to GPR <dst>
+ void LoadSmiLiteral(Register dst, Smi* smi);
+
+ // load a literal double value <value> to FPR <result>
+ void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
+
+ void LoadWord(Register dst, const MemOperand& mem, Register scratch);
+
+ void LoadWordArith(Register dst, const MemOperand& mem,
+ Register scratch = no_reg);
+
+ void StoreWord(Register src, const MemOperand& mem, Register scratch);
+
+ void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
+
+ void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
+
+ void LoadByte(Register dst, const MemOperand& mem, Register scratch);
+
+ void StoreByte(Register src, const MemOperand& mem, Register scratch);
+
+ void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
+ Register scratch = no_reg);
+
+ void StoreRepresentation(Register src, const MemOperand& mem,
+ Representation r, Register scratch = no_reg);
+
+ // Move values between integer and floating point registers.
+ void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
+ void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
+ Register scratch);
+ void MovInt64ToDouble(DoubleRegister dst,
+#if !V8_TARGET_ARCH_PPC64
+ Register src_hi,
+#endif
+ Register src);
+#if V8_TARGET_ARCH_PPC64
+ void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
+ Register src_lo, Register scratch);
+#endif
+ void MovDoubleLowToInt(Register dst, DoubleRegister src);
+ void MovDoubleHighToInt(Register dst, DoubleRegister src);
+ void MovDoubleToInt64(
+#if !V8_TARGET_ARCH_PPC64
+ Register dst_hi,
+#endif
+ Register dst, DoubleRegister src);
+
+ void Add(Register dst, Register src, intptr_t value, Register scratch);
+ void Cmpi(Register src1, const Operand& src2, Register scratch,
+ CRegister cr = cr7);
+ void Cmpli(Register src1, const Operand& src2, Register scratch,
+ CRegister cr = cr7);
+ void Cmpwi(Register src1, const Operand& src2, Register scratch,
+ CRegister cr = cr7);
+ void Cmplwi(Register src1, const Operand& src2, Register scratch,
+ CRegister cr = cr7);
+ void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
+ void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
+ void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
+
+ void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
+ void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
+ void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
+ CRegister cr = cr7);
+ void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
+ CRegister cr = cr7);
+ void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
+ RCBit rc = LeaveRC);
+
+ // Set new rounding mode RN to FPSCR
+ void SetRoundingMode(FPRoundingMode RN);
+
+ // reset rounding mode to default (kRoundToNearest)
+ void ResetRoundingMode();
+
+ // These exist to provide portability between 32 and 64bit
+ void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
+ void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
+
+ // ---------------------------------------------------------------------------
+ // JavaScript invokes
+
+ // Invoke the JavaScript function code by either calling or jumping.
+ void InvokeCode(Register code, const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Invoke the JavaScript function in the given register. Changes the
+ // current context to the context in the function before invoking.
+ void InvokeFunction(Register function, const ParameterCount& actual,
+ InvokeFlag flag, const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Register function, const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void IsObjectJSObjectType(Register heap_object, Register map,
+ Register scratch, Label* fail);
+
+ void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
+
+ void IsObjectJSStringType(Register object, Register scratch, Label* fail);
+
+ void IsObjectNameType(Register object, Register scratch, Label* fail);
+
+ // ---------------------------------------------------------------------------
+ // Debugger Support
+
+ void DebugBreak();
+
+ // ---------------------------------------------------------------------------
+ // Exception handling
+
+ // Push a new try handler and link into try handler chain.
+ void PushTryHandler(StackHandler::Kind kind, int handler_index);
+
+ // Unlink the stack handler on top of the stack from the try handler chain.
+ // Must preserve the result register.
+ void PopTryHandler();
+
+ // Passes thrown value to the handler of top of the try handler chain.
+ void Throw(Register value);
+
+ // Propagates an uncatchable exception to the top of the current JS stack's
+ // handler chain.
+ void ThrowUncatchable(Register value);
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support
+
+ // Generate code for checking access rights - used for security checks
+ // on access to global objects across environments. The holder register
+ // is left untouched, whereas both scratch registers are clobbered.
+ void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
+ Label* miss);
+
+ void GetNumberHash(Register t0, Register scratch);
+
+ void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
+ Register result, Register t0, Register t1,
+ Register t2);
+
+
+ inline void MarkCode(NopMarkerTypes type) { nop(type); }
+
+ // Check if the given instruction is a 'type' marker.
+ // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
+ // These instructions are generated to mark special location in the code,
+ // like some special IC code.
+ static inline bool IsMarkedCode(Instr instr, int type) {
+ DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
+ return IsNop(instr, type);
+ }
+
+
+ static inline int GetCodeMarker(Instr instr) {
+ int dst_reg_offset = 12;
+ int dst_mask = 0xf << dst_reg_offset;
+ int src_mask = 0xf;
+ int dst_reg = (instr & dst_mask) >> dst_reg_offset;
+ int src_reg = instr & src_mask;
+ uint32_t non_register_mask = ~(dst_mask | src_mask);
+ uint32_t mov_mask = al | 13 << 21;
+
+ // Return <n> if we have a mov rn rn, else return -1.
+ int type = ((instr & non_register_mask) == mov_mask) &&
+ (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
+ (dst_reg < LAST_CODE_MARKER)
+ ? src_reg
+ : -1;
+ DCHECK((type == -1) ||
+ ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
+ return type;
+ }
+
+
+ // ---------------------------------------------------------------------------
+ // Allocation support
+
+ // Allocate an object in new space or old pointer space. The object_size is
+ // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
+ // is passed. If the space is exhausted control continues at the gc_required
+ // label. The allocated object is returned in result. If the flag
+ // tag_allocated_object is true the result is tagged as as a heap object.
+ // All registers are clobbered also when control continues at the gc_required
+ // label.
+ void Allocate(int object_size, Register result, Register scratch1,
+ Register scratch2, Label* gc_required, AllocationFlags flags);
+
+ void Allocate(Register object_size, Register result, Register scratch1,
+ Register scratch2, Label* gc_required, AllocationFlags flags);
+
+ // Undo allocation in new space. The object passed and objects allocated after
+ // it will no longer be allocated. The caller must make sure that no pointers
+ // are left to the object(s) no longer allocated as they would be invalid when
+ // allocation is undone.
+ void UndoAllocationInNewSpace(Register object, Register scratch);
+
+
+ void AllocateTwoByteString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Register scratch3, Label* gc_required);
+ void AllocateOneByteString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Register scratch3, Label* gc_required);
+ void AllocateTwoByteConsString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Label* gc_required);
+ void AllocateOneByteConsString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Label* gc_required);
+ void AllocateTwoByteSlicedString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Label* gc_required);
+ void AllocateOneByteSlicedString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Label* gc_required);
+
+ // Allocates a heap number or jumps to the gc_required label if the young
+ // space is full and a scavenge is needed. All registers are clobbered also
+ // when control continues at the gc_required label.
+ void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
+ Register heap_number_map, Label* gc_required,
+ TaggingMode tagging_mode = TAG_RESULT,
+ MutableMode mode = IMMUTABLE);
+ void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
+ Register scratch1, Register scratch2,
+ Register heap_number_map,
+ Label* gc_required);
+
+ // Copies a fixed number of fields of heap objects from src to dst.
+ void CopyFields(Register dst, Register src, RegList temps, int field_count);
+
+ // Copies a number of bytes from src to dst. All registers are clobbered. On
+ // exit src and dst will point to the place just after where the last byte was
+ // read or written and length will be zero.
+ void CopyBytes(Register src, Register dst, Register length, Register scratch);
+
+ // Initialize fields with filler values. |count| fields starting at
+ // |start_offset| are overwritten with the value in |filler|. At the end the
+ // loop, |start_offset| points at the next uninitialized field. |count| is
+ // assumed to be non-zero.
+ void InitializeNFieldsWithFiller(Register start_offset, Register count,
+ Register filler);
+
+ // Initialize fields with filler values. Fields starting at |start_offset|
+ // not including end_offset are overwritten with the value in |filler|. At
+ // the end the loop, |start_offset| takes the value of |end_offset|.
+ void InitializeFieldsWithFiller(Register start_offset, Register end_offset,
+ Register filler);
+
+ // ---------------------------------------------------------------------------
+ // Support functions.
+
+ // Try to get function prototype of a function and puts the value in
+ // the result register. Checks that the function really is a
+ // function and jumps to the miss label if the fast checks fail. The
+ // function register will be untouched; the other registers may be
+ // clobbered.
+ void TryGetFunctionPrototype(Register function, Register result,
+ Register scratch, Label* miss,
+ bool miss_on_bound_function = false);
+
+ // Compare object type for heap object. heap_object contains a non-Smi
+ // whose object type should be compared with the given type. This both
+ // sets the flags and leaves the object type in the type_reg register.
+ // It leaves the map in the map register (unless the type_reg and map register
+ // are the same register). It leaves the heap object in the heap_object
+ // register unless the heap_object register is the same register as one of the
+ // other registers.
+ // Type_reg can be no_reg. In that case ip is used.
+ void CompareObjectType(Register heap_object, Register map, Register type_reg,
+ InstanceType type);
+
+ // Compare object type for heap object. Branch to false_label if type
+ // is lower than min_type or greater than max_type.
+ // Load map into the register map.
+ void CheckObjectTypeRange(Register heap_object, Register map,
+ InstanceType min_type, InstanceType max_type,
+ Label* false_label);
+
+ // Compare instance type in a map. map contains a valid map object whose
+ // object type should be compared with the given type. This both
+ // sets the flags and leaves the object type in the type_reg register.
+ void CompareInstanceType(Register map, Register type_reg, InstanceType type);
+
+
+ // Check if a map for a JSObject indicates that the object has fast elements.
+ // Jump to the specified label if it does not.
+ void CheckFastElements(Register map, Register scratch, Label* fail);
+
+ // Check if a map for a JSObject indicates that the object can have both smi
+ // and HeapObject elements. Jump to the specified label if it does not.
+ void CheckFastObjectElements(Register map, Register scratch, Label* fail);
+
+ // Check if a map for a JSObject indicates that the object has fast smi only
+ // elements. Jump to the specified label if it does not.
+ void CheckFastSmiElements(Register map, Register scratch, Label* fail);
+
+ // Check to see if maybe_number can be stored as a double in
+ // FastDoubleElements. If it can, store it at the index specified by key in
+ // the FastDoubleElements array elements. Otherwise jump to fail.
+ void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
+ Register elements_reg, Register scratch1,
+ DoubleRegister double_scratch, Label* fail,
+ int elements_offset = 0);
+
+ // Compare an object's map with the specified map and its transitioned
+ // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
+ // set with result of map compare. If multiple map compares are required, the
+ // compare sequences branches to early_success.
+ void CompareMap(Register obj, Register scratch, Handle<Map> map,
+ Label* early_success);
+
+ // As above, but the map of the object is already loaded into the register
+ // which is preserved by the code generated.
+ void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
+
+ // Check if the map of an object is equal to a specified map and branch to
+ // label if not. Skip the smi check if not required (object is known to be a
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+ // against maps that are ElementsKind transition maps of the specified map.
+ void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
+ SmiCheckType smi_check_type);
+
+
+ void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
+ Label* fail, SmiCheckType smi_check_type);
+
+
+ // Check if the map of an object is equal to a specified map and branch to a
+ // specified target if equal. Skip the smi check if not required (object is
+ // known to be a heap object)
+ void DispatchMap(Register obj, Register scratch, Handle<Map> map,
+ Handle<Code> success, SmiCheckType smi_check_type);
+
+
+ // Compare the object in a register to a value from the root list.
+ // Uses the ip register as scratch.
+ void CompareRoot(Register obj, Heap::RootListIndex index);
+
+
+ // Load and check the instance type of an object for being a string.
+ // Loads the type into the second argument register.
+ // Returns a condition that will be enabled if the object was a string.
+ Condition IsObjectStringType(Register obj, Register type) {
+ LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
+ lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
+ andi(r0, type, Operand(kIsNotStringMask));
+ DCHECK_EQ(0, kStringTag);
+ return eq;
+ }
+
+
+ // Picks out an array index from the hash field.
+ // Register use:
+ // hash - holds the index's hash. Clobbered.
+ // index - holds the overwritten index on exit.
+ void IndexFromHash(Register hash, Register index);
+
+ // Get the number of least significant bits from a register
+ void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
+ void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
+
+ // Load the value of a smi object into a double register.
+ void SmiToDouble(DoubleRegister value, Register smi);
+
+ // Check if a double can be exactly represented as a signed 32-bit integer.
+ // CR_EQ in cr7 is set if true.
+ void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
+ Register scratch2, DoubleRegister double_scratch);
+
+ // Try to convert a double to a signed 32-bit integer.
+ // CR_EQ in cr7 is set and result assigned if the conversion is exact.
+ void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
+ Register scratch, DoubleRegister double_scratch);
+
+ // Floor a double and writes the value to the result register.
+ // Go to exact if the conversion is exact (to be able to test -0),
+ // fall through calling code if an overflow occurred, else go to done.
+ // In return, input_high is loaded with high bits of input.
+ void TryInt32Floor(Register result, DoubleRegister double_input,
+ Register input_high, Register scratch,
+ DoubleRegister double_scratch, Label* done, Label* exact);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
+ // succeeds, otherwise falls through if result is saturated. On return
+ // 'result' either holds answer, or is clobbered on fall through.
+ //
+ // Only public for the test code in test-code-stubs-arm.cc.
+ void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
+ Label* done);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+ // Exits with 'result' holding the answer.
+ void TruncateDoubleToI(Register result, DoubleRegister double_input);
+
+ // Performs a truncating conversion of a heap number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
+ // must be different registers. Exits with 'result' holding the answer.
+ void TruncateHeapNumberToI(Register result, Register object);
+
+ // Converts the smi or heap number in object to an int32 using the rules
+ // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+ // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
+ // different registers.
+ void TruncateNumberToI(Register object, Register result,
+ Register heap_number_map, Register scratch1,
+ Label* not_int32);
+
+ // Overflow handling functions.
+ // Usage: call the appropriate arithmetic function and then call one of the
+ // flow control functions with the corresponding label.
+
+ // Compute dst = left + right, setting condition codes. dst may be same as
+ // either left or right (or a unique register). left and right must not be
+ // the same register.
+ void AddAndCheckForOverflow(Register dst, Register left, Register right,
+ Register overflow_dst, Register scratch = r0);
+ void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
+ Register overflow_dst, Register scratch = r0);
+
+ // Compute dst = left - right, setting condition codes. dst may be same as
+ // either left or right (or a unique register). left and right must not be
+ // the same register.
+ void SubAndCheckForOverflow(Register dst, Register left, Register right,
+ Register overflow_dst, Register scratch = r0);
+
+ void BranchOnOverflow(Label* label) { blt(label, cr0); }
+
+ void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
+
+ void RetOnOverflow(void) {
+ Label label;
+
+ blt(&label, cr0);
+ Ret();
+ bind(&label);
+ }
+
+ void RetOnNoOverflow(void) {
+ Label label;
+
+ bge(&label, cr0);
+ Ret();
+ bind(&label);
+ }
+
+ // Pushes <count> double values to <location>, starting from d<first>.
+ void SaveFPRegs(Register location, int first, int count);
+
+ // Pops <count> double values from <location>, starting from d<first>.
+ void RestoreFPRegs(Register location, int first, int count);
+
+ // ---------------------------------------------------------------------------
+ // Runtime calls
+
+ // Call a code stub.
+ void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ Condition cond = al);
+
+ // Call a code stub.
+ void TailCallStub(CodeStub* stub, Condition cond = al);
+
+ // Call a runtime routine.
+ void CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+ void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
+ const Runtime::Function* function = Runtime::FunctionForId(id);
+ CallRuntime(function, function->nargs, kSaveFPRegs);
+ }
+
+ // Convenience function: Same as above, but takes the fid instead.
+ void CallRuntime(Runtime::FunctionId id, int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+ CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
+ }
+
+ // Convenience function: call an external reference.
+ void CallExternalReference(const ExternalReference& ext, int num_arguments);
+
+ // Tail call of a runtime routine (jump).
+ // Like JumpToExternalReference, but also takes care of passing the number
+ // of parameters.
+ void TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments, int result_size);
+
+ // Convenience function: tail call a runtime routine (jump).
+ void TailCallRuntime(Runtime::FunctionId fid, int num_arguments,
+ int result_size);
+
+ int CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments);
+
+ // Before calling a C-function from generated code, align arguments on stack.
+ // After aligning the frame, non-register arguments must be stored in
+ // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
+ // are word sized. If double arguments are used, this function assumes that
+ // all double arguments are stored before core registers; otherwise the
+ // correct alignment of the double values is not guaranteed.
+ // Some compilers/platforms require the stack to be aligned when calling
+ // C++ code.
+ // Needs a scratch register to do some arithmetic. This register will be
+ // trashed.
+ void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
+ Register scratch);
+ void PrepareCallCFunction(int num_reg_arguments, Register scratch);
+
+ // There are two ways of passing double arguments on ARM, depending on
+ // whether soft or hard floating point ABI is used. These functions
+ // abstract parameter passing for the three different ways we call
+ // C functions from generated code.
+ void MovToFloatParameter(DoubleRegister src);
+ void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
+ void MovToFloatResult(DoubleRegister src);
+
+ // Calls a C function and cleans up the space for arguments allocated
+ // by PrepareCallCFunction. The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function, int num_arguments);
+ void CallCFunction(Register function, int num_arguments);
+ void CallCFunction(ExternalReference function, int num_reg_arguments,
+ int num_double_arguments);
+ void CallCFunction(Register function, int num_reg_arguments,
+ int num_double_arguments);
+
+ void MovFromFloatParameter(DoubleRegister dst);
+ void MovFromFloatResult(DoubleRegister dst);
+
+ // Calls an API function. Allocates HandleScope, extracts returned value
+ // from handle and propagates exceptions. Restores context. stack_space
+ // - space to be unwound on exit (includes the call JS arguments space and
+ // the additional space allocated for the fast call).
+ void CallApiFunctionAndReturn(Register function_address,
+ ExternalReference thunk_ref, int stack_space,
+ MemOperand return_value_operand,
+ MemOperand* context_restore_operand);
+
+ // Jump to a runtime routine.
+ void JumpToExternalReference(const ExternalReference& builtin);
+
+ // Invoke specified builtin JavaScript function. Adds an entry to
+ // the unresolved list if the name does not resolve.
+ void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag,
+ const CallWrapper& call_wrapper = NullCallWrapper());
+
+ // Store the code object for the given builtin in the target register and
+ // setup the function in r1.
+ void GetBuiltinEntry(Register target, Builtins::JavaScript id);
+
+ // Store the function for the given builtin in the target register.
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
+ Handle<Object> CodeObject() {
+ DCHECK(!code_object_.is_null());
+ return code_object_;
+ }
+
+
+ // Emit code for a truncating division by a constant. The dividend register is
+ // unchanged and ip gets clobbered. Dividend and result must be different.
+ void TruncatingDiv(Register result, Register dividend, int32_t divisor);
+
+ // ---------------------------------------------------------------------------
+ // StatsCounter support
+
+ void SetCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+ void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+ void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+
+
+ // ---------------------------------------------------------------------------
+ // Debugging
+
+ // Calls Abort(msg) if the condition cond is not satisfied.
+ // Use --debug_code to enable.
+ void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
+ void AssertFastElements(Register elements);
+
+ // Like Assert(), but always enabled.
+ void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
+
+ // Print a message to stdout and abort execution.
+ void Abort(BailoutReason reason);
+
+ // Verify restrictions about code generated in stubs.
+ void set_generating_stub(bool value) { generating_stub_ = value; }
+ bool generating_stub() { return generating_stub_; }
+ void set_has_frame(bool value) { has_frame_ = value; }
+ bool has_frame() { return has_frame_; }
+ inline bool AllowThisStubCall(CodeStub* stub);
+
+ // ---------------------------------------------------------------------------
+ // Number utilities
+
+ // Check whether the value of reg is a power of two and not zero. If not
+ // control continues at the label not_power_of_two. If reg is a power of two
+ // the register scratch contains the value of (reg - 1) when control falls
+ // through.
+ void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
+ Label* not_power_of_two_or_zero);
+ // Check whether the value of reg is a power of two and not zero.
+ // Control falls through if it is, with scratch containing the mask
+ // value (reg - 1).
+ // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
+ // zero or negative, or jumps to the 'not_power_of_two' label if the value is
+ // strictly positive but not a power of two.
+ void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
+ Label* zero_and_neg,
+ Label* not_power_of_two);
+
+ // ---------------------------------------------------------------------------
+ // Bit testing/extraction
+ //
+ // Bit numbering is such that the least significant bit is bit 0
+ // (for consistency between 32/64-bit).
+
+ // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
+ // and place them into the least significant bits of dst.
+ inline void ExtractBitRange(Register dst, Register src, int rangeStart,
+ int rangeEnd, RCBit rc = LeaveRC) {
+ DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
+ int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
+ int width = rangeStart - rangeEnd + 1;
+#if V8_TARGET_ARCH_PPC64
+ rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
+#else
+ rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1, rc);
+#endif
+ }
+
+ inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
+ RCBit rc = LeaveRC) {
+ ExtractBitRange(dst, src, bitNumber, bitNumber, rc);
+ }
+
+ // Extract consecutive bits (defined by mask) from src and place them
+ // into the least significant bits of dst.
+ inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
+ RCBit rc = LeaveRC) {
+ int start = kBitsPerPointer - 1;
+ int end;
+ uintptr_t bit = (1L << start);
+
+ while (bit && (mask & bit) == 0) {
+ start--;
+ bit >>= 1;
+ }
+ end = start;
+ bit >>= 1;
+
+ while (bit && (mask & bit)) {
+ end--;
+ bit >>= 1;
+ }
+
+ // 1-bits in mask must be contiguous
+ DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
+
+ ExtractBitRange(dst, src, start, end, rc);
+ }
+
+ // Test single bit in value.
+ inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
+ ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC);
+ }
+
+ // Test consecutive bit range in value. Range is defined by
+ // rangeStart - rangeEnd.
+ inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
+ Register scratch = r0) {
+ ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC);
+ }
+
+ // Test consecutive bit range in value. Range is defined by mask.
+ inline void TestBitMask(Register value, uintptr_t mask,
+ Register scratch = r0) {
+ ExtractBitMask(scratch, value, mask, SetRC);
+ }
+
+
+ // ---------------------------------------------------------------------------
+ // Smi utilities
+
+ // Shift left by 1
+ void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
+ void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
+ ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
+ }
+
+#if !V8_TARGET_ARCH_PPC64
+ // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
+ void SmiTagCheckOverflow(Register reg, Register overflow);
+ void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
+
+ inline void JumpIfNotSmiCandidate(Register value, Register scratch,
+ Label* not_smi_label) {
+ // High bits must be identical to fit into an Smi
+ addis(scratch, value, Operand(0x40000000u >> 16));
+ cmpi(scratch, Operand::Zero());
+ blt(not_smi_label);
+ }
+#endif
+ inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
+ // The test is different for unsigned int values. Since we need
+ // the value to be in the range of a positive smi, we can't
+ // handle any of the high bits being set in the value.
+ TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
+ scratch);
+ }
+ inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
+ Label* not_smi_label) {
+ TestUnsignedSmiCandidate(value, scratch);
+ bne(not_smi_label, cr0);
+ }
+
+ void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
+
+ void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
+ ShiftRightArithImm(dst, src, kSmiShift, rc);
+ }
+
+ void SmiToPtrArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
+ ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
+#else
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
+ ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
+#endif
+ }
+
+ void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
+
+ void SmiToShortArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
+ ShiftRightArithImm(dst, src, kSmiShift - 1);
+#else
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
+ if (!dst.is(src)) {
+ mr(dst, src);
+ }
+#endif
+ }
+
+ void SmiToIntArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
+ ShiftRightArithImm(dst, src, kSmiShift - 2);
+#else
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
+ ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
+#endif
+ }
+
+#define SmiToFloatArrayOffset SmiToIntArrayOffset
+
+ void SmiToDoubleArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
+ ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
+#else
+ STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
+ ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
+#endif
+ }
+
+ void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
+ if (kSmiShift < elementSizeLog2) {
+ ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
+ } else if (kSmiShift > elementSizeLog2) {
+ ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
+ } else if (!dst.is(src)) {
+ mr(dst, src);
+ }
+ }
+
+ void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
+ bool isSmi) {
+ if (isSmi) {
+ SmiToArrayOffset(dst, src, elementSizeLog2);
+ } else {
+ ShiftLeftImm(dst, src, Operand(elementSizeLog2));
+ }
+ }
+
+ // Untag the source value into destination and jump if source is a smi.
+ // Souce and destination can be the same register.
+ void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
+
+ // Untag the source value into destination and jump if source is not a smi.
+ // Souce and destination can be the same register.
+ void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
+
+ inline void TestIfSmi(Register value, Register scratch) {
+ TestBit(value, 0, scratch); // tst(value, Operand(kSmiTagMask));
+ }
+
+ inline void TestIfPositiveSmi(Register value, Register scratch) {
+ STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
+ (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
+#if V8_TARGET_ARCH_PPC64
+ rldicl(scratch, value, 1, kBitsPerPointer - 2, SetRC);
+#else
+ rlwinm(scratch, value, 1, kBitsPerPointer - 2, kBitsPerPointer - 1, SetRC);
+#endif
+ }
+
+ // Jump the register contains a smi.
+ inline void JumpIfSmi(Register value, Label* smi_label) {
+ TestIfSmi(value, r0);
+ beq(smi_label, cr0); // branch if SMI
+ }
+ // Jump if either of the registers contain a non-smi.
+ inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
+ TestIfSmi(value, r0);
+ bne(not_smi_label, cr0);
+ }
+ // Jump if either of the registers contain a non-smi.
+ void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
+ // Jump if either of the registers contain a smi.
+ void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
+
+ // Abort execution if argument is a smi, enabled via --debug-code.
+ void AssertNotSmi(Register object);
+ void AssertSmi(Register object);
+
+
+#if V8_TARGET_ARCH_PPC64
+ inline void TestIfInt32(Register value, Register scratch1, Register scratch2,
+ CRegister cr = cr7) {
+ // High bits must be identical to fit into an 32-bit integer
+ srawi(scratch1, value, 31);
+ sradi(scratch2, value, 32);
+ cmp(scratch1, scratch2, cr);
+ }
+#else
+ inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
+ CRegister cr = cr7) {
+ // High bits must be identical to fit into an 32-bit integer
+ srawi(scratch, lo_word, 31);
+ cmp(scratch, hi_word, cr);
+ }
+#endif
+
+ // Abort execution if argument is not a string, enabled via --debug-code.
+ void AssertString(Register object);
+
+ // Abort execution if argument is not a name, enabled via --debug-code.
+ void AssertName(Register object);
+
+ // Abort execution if argument is not undefined or an AllocationSite, enabled
+ // via --debug-code.
+ void AssertUndefinedOrAllocationSite(Register object, Register scratch);
+
+ // Abort execution if reg is not the root value with the given index,
+ // enabled via --debug-code.
+ void AssertIsRoot(Register reg, Heap::RootListIndex index);
+
+ // ---------------------------------------------------------------------------
+ // HeapNumber utilities
+
+ void JumpIfNotHeapNumber(Register object, Register heap_number_map,
+ Register scratch, Label* on_not_heap_number);
+
+ // ---------------------------------------------------------------------------
+ // String utilities
+
+ // Generate code to do a lookup in the number string cache. If the number in
+ // the register object is found in the cache the generated code falls through
+ // with the result in the result register. The object and the result register
+ // can be the same. If the number is not found in the cache the code jumps to
+ // the label not_found with only the content of register object unchanged.
+ void LookupNumberStringCache(Register object, Register result,
+ Register scratch1, Register scratch2,
+ Register scratch3, Label* not_found);
+
+ // Checks if both objects are sequential one-byte strings and jumps to label
+ // if either is not. Assumes that neither object is a smi.
+ void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
+ Register object2,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Checks if both objects are sequential one-byte strings and jumps to label
+ // if either is not.
+ void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* not_flat_one_byte_strings);
+
+ // Checks if both instance types are sequential one-byte strings and jumps to
+ // label if either is not.
+ void JumpIfBothInstanceTypesAreNotSequentialOneByte(
+ Register first_object_instance_type, Register second_object_instance_type,
+ Register scratch1, Register scratch2, Label* failure);
+
+ // Check if instance type is sequential one-byte string and jump to label if
+ // it is not.
+ void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
+ Label* failure);
+
+ void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
+
+ void EmitSeqStringSetCharCheck(Register string, Register index,
+ Register value, uint32_t encoding_mask);
+
+ // ---------------------------------------------------------------------------
+ // Patching helpers.
+
+ // Retrieve/patch the relocated value (lis/ori pair or constant pool load).
+ void GetRelocatedValue(Register location, Register result, Register scratch);
+ void SetRelocatedValue(Register location, Register scratch,
+ Register new_value);
+
+ void ClampUint8(Register output_reg, Register input_reg);
+
+ // Saturate a value into 8-bit unsigned integer
+ // if input_value < 0, output_value is 0
+ // if input_value > 255, output_value is 255
+ // otherwise output_value is the (int)input_value (round to nearest)
+ void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
+ DoubleRegister temp_double_reg);
+
+
+ void LoadInstanceDescriptors(Register map, Register descriptors);
+ void EnumLength(Register dst, Register map);
+ void NumberOfOwnDescriptors(Register dst, Register map);
+
+ template <typename Field>
+ void DecodeField(Register dst, Register src) {
+ ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
+ }
+
+ template <typename Field>
+ void DecodeField(Register reg) {
+ DecodeField<Field>(reg, reg);
+ }
+
+ template <typename Field>
+ void DecodeFieldToSmi(Register dst, Register src) {
+#if V8_TARGET_ARCH_PPC64
+ DecodeField<Field>(dst, src);
+ SmiTag(dst);
+#else
+ // 32-bit can do this in one instruction:
+ int start = Field::kSize + kSmiShift - 1;
+ int end = kSmiShift;
+ int rotate = kSmiShift - Field::kShift;
+ if (rotate < 0) {
+ rotate += kBitsPerPointer;
+ }
+ rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
+ kBitsPerPointer - end - 1);
+#endif
+ }
+
+ template <typename Field>
+ void DecodeFieldToSmi(Register reg) {
+ DecodeFieldToSmi<Field>(reg, reg);
+ }
+
+ // Activation support.
+ void EnterFrame(StackFrame::Type type,
+ bool load_constant_pool_pointer_reg = false);
+ // Returns the pc offset at which the frame ends.
+ int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
+
+ // Expects object in r0 and returns map with validated enum cache
+ // in r0. Assumes that any other register can be used as a scratch.
+ void CheckEnumCache(Register null_value, Label* call_runtime);
+
+ // AllocationMemento support. Arrays may have an associated
+ // AllocationMemento object that can be checked for in order to pretransition
+ // to another type.
+ // On entry, receiver_reg should point to the array object.
+ // scratch_reg gets clobbered.
+ // If allocation info is present, condition flags are set to eq.
+ void TestJSArrayForAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found);
+
+ void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* memento_found) {
+ Label no_memento_found;
+ TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
+ &no_memento_found);
+ beq(memento_found);
+ bind(&no_memento_found);
+ }
+
+ // Jumps to found label if a prototype map has dictionary elements.
+ void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+ Register scratch1, Label* found);
+
+ private:
+ static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
+
+ void CallCFunctionHelper(Register function, int num_reg_arguments,
+ int num_double_arguments);
+
+ void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
+ CRegister cr = cr7);
+
+ // Helper functions for generating invokes.
+ void InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual, Handle<Code> code_constant,
+ Register code_reg, Label* done,
+ bool* definitely_mismatches, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InitializeNewString(Register string, Register length,
+ Heap::RootListIndex map_index, Register scratch1,
+ Register scratch2);
+
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object, Register scratch,
+ Condition cond, // eq for new space, ne otherwise.
+ Label* branch);
+
+ // Helper for finding the mark bits for an address. Afterwards, the
+ // bitmap register points at the word with the mark bits and the mask
+ // the position of the first bit. Leaves addr_reg unchanged.
+ inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
+ Register mask_reg);
+
+ // Helper for throwing exceptions. Compute a handler address and jump to
+ // it. See the implementation for register usage.
+ void JumpToHandlerEntry();
+
+ // Compute memory operands for safepoint stack slots.
+ static int SafepointRegisterStackIndex(int reg_code);
+ MemOperand SafepointRegisterSlot(Register reg);
+ MemOperand SafepointRegistersAndDoublesSlot(Register reg);
+
+#if V8_OOL_CONSTANT_POOL
+ // Loads the constant pool pointer (kConstantPoolRegister).
+ enum CodeObjectAccessMethod { CAN_USE_IP, CONSTRUCT_INTERNAL_REFERENCE };
+ void LoadConstantPoolPointerRegister(CodeObjectAccessMethod access_method,
+ int ip_code_entry_delta = 0);
+#endif
+
+ bool generating_stub_;
+ bool has_frame_;
+ // This handle will be patched with the code object on installation.
+ Handle<Object> code_object_;
+
+ // Needs access to SafepointRegisterStackIndex for compiled frame
+ // traversal.
+ friend class StandardFrame;
+};
+
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. It is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion to fail.
+class CodePatcher {
+ public:
+ enum FlushICache { FLUSH, DONT_FLUSH };
+
+ CodePatcher(byte* address, int instructions, FlushICache flush_cache = FLUSH);
+ virtual ~CodePatcher();
+
+ // Macro assembler to emit code.
+ MacroAssembler* masm() { return &masm_; }
+
+ // Emit an instruction directly.
+ void Emit(Instr instr);
+
+ // Emit the condition part of an instruction leaving the rest of the current
+ // instruction unchanged.
+ void EmitCondition(Condition cond);
+
+ private:
+ byte* address_; // The address of the code being patched.
+ int size_; // Number of bytes of the expected patch size.
+ MacroAssembler masm_; // Macro assembler used to generate the code.
+ FlushICache flush_cache_; // Whether to flush the I cache after patching.
+};
+
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+inline MemOperand ContextOperand(Register context, int index) {
+ return MemOperand(context, Context::SlotOffset(index));
+}
+
+
+inline MemOperand GlobalObjectOperand() {
+ return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
+}
+
+
+#ifdef GENERATED_CODE_COVERAGE
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm) \
+ masm->stop(__FILE_LINE__); \
+ masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+}
+} // namespace v8::internal
+
+#endif // V8_PPC_MACRO_ASSEMBLER_PPC_H_