Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/crankshaft/s390/lithium-codegen-s390.cc b/src/crankshaft/s390/lithium-codegen-s390.cc
new file mode 100644
index 0000000..689f4bc
--- /dev/null
+++ b/src/crankshaft/s390/lithium-codegen-s390.cc
@@ -0,0 +1,5668 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/crankshaft/s390/lithium-codegen-s390.h"
+
+#include "src/base/bits.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/crankshaft/s390/lithium-gap-resolver-s390.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+
+namespace v8 {
+namespace internal {
+
+class SafepointGenerator final : public CallWrapper {
+ public:
+  SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
+                     Safepoint::DeoptMode mode)
+      : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
+  virtual ~SafepointGenerator() {}
+
+  void BeforeCall(int call_size) const override {}
+
+  void AfterCall() const override {
+    codegen_->RecordSafepoint(pointers_, deopt_mode_);
+  }
+
+ private:
+  LCodeGen* codegen_;
+  LPointerMap* pointers_;
+  Safepoint::DeoptMode deopt_mode_;
+};
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+  LPhase phase("Z_Code generation", chunk());
+  DCHECK(is_unused());
+  status_ = GENERATING;
+
+  // Open a frame scope to indicate that there is a frame on the stack.  The
+  // NONE indicates that the scope shouldn't actually generate code to set up
+  // the frame (that is done in GeneratePrologue).
+  FrameScope frame_scope(masm_, StackFrame::NONE);
+
+  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
+         GenerateJumpTable() && GenerateSafepointTable();
+}
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+  DCHECK(is_done());
+  code->set_stack_slots(GetTotalFrameSlotCount());
+  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+  PopulateDeoptimizationData(code);
+}
+
+void LCodeGen::SaveCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Save clobbered callee double registers");
+  int count = 0;
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  while (!save_iterator.Done()) {
+    __ std(DoubleRegister::from_code(save_iterator.Current()),
+           MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+void LCodeGen::RestoreCallerDoubles() {
+  DCHECK(info()->saves_caller_doubles());
+  DCHECK(NeedsEagerFrame());
+  Comment(";;; Restore clobbered callee double registers");
+  BitVector* doubles = chunk()->allocated_double_registers();
+  BitVector::Iterator save_iterator(doubles);
+  int count = 0;
+  while (!save_iterator.Done()) {
+    __ ld(DoubleRegister::from_code(save_iterator.Current()),
+          MemOperand(sp, count * kDoubleSize));
+    save_iterator.Advance();
+    count++;
+  }
+}
+
+bool LCodeGen::GeneratePrologue() {
+  DCHECK(is_generating());
+
+  if (info()->IsOptimizing()) {
+    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+    // r3: Callee's JS function.
+    // cp: Callee's context.
+    // fp: Caller's frame pointer.
+    // lr: Caller's pc.
+    // ip: Our own function entry (required by the prologue)
+  }
+
+  int prologue_offset = masm_->pc_offset();
+
+  if (prologue_offset) {
+    // Prologue logic requires its starting address in ip and the
+    // corresponding offset from the function entry.  Need to add
+    // 4 bytes for the size of AHI/AGHI that AddP expands into.
+    prologue_offset += sizeof(FourByteInstr);
+    __ AddP(ip, ip, Operand(prologue_offset));
+  }
+  info()->set_prologue_offset(prologue_offset);
+  if (NeedsEagerFrame()) {
+    if (info()->IsStub()) {
+      __ StubPrologue(StackFrame::STUB, ip, prologue_offset);
+    } else {
+      __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
+    }
+    frame_is_built_ = true;
+  }
+
+  // Reserve space for the stack slots needed by the code.
+  int slots = GetStackSlotCount();
+  if (slots > 0) {
+    __ lay(sp, MemOperand(sp, -(slots * kPointerSize)));
+    if (FLAG_debug_code) {
+      __ Push(r2, r3);
+      __ mov(r2, Operand(slots * kPointerSize));
+      __ mov(r3, Operand(kSlotsZapValue));
+      Label loop;
+      __ bind(&loop);
+      __ StoreP(r3, MemOperand(sp, r2, kPointerSize));
+      __ lay(r2, MemOperand(r2, -kPointerSize));
+      __ CmpP(r2, Operand::Zero());
+      __ bne(&loop);
+      __ Pop(r2, r3);
+    }
+  }
+
+  if (info()->saves_caller_doubles()) {
+    SaveCallerDoubles();
+  }
+  return !is_aborted();
+}
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+  Comment(";;; Prologue begin");
+
+  // Possibly allocate a local context.
+  if (info()->scope()->num_heap_slots() > 0) {
+    Comment(";;; Allocate local context");
+    bool need_write_barrier = true;
+    // Argument to NewContext is the function, which is in r3.
+    int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+    if (info()->scope()->is_script_scope()) {
+      __ push(r3);
+      __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
+      __ CallRuntime(Runtime::kNewScriptContext);
+      deopt_mode = Safepoint::kLazyDeopt;
+    } else if (slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(isolate(), slots);
+      __ CallStub(&stub);
+      // Result of FastNewContextStub is always in new space.
+      need_write_barrier = false;
+    } else {
+      __ push(r3);
+      __ CallRuntime(Runtime::kNewFunctionContext);
+    }
+    RecordSafepoint(deopt_mode);
+
+    // Context is returned in both r2 and cp.  It replaces the context
+    // passed to us.  It's saved in the stack and kept live in cp.
+    __ LoadRR(cp, r2);
+    __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+    for (int i = first_parameter; i < num_parameters; i++) {
+      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+      if (var->IsContextSlot()) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+                               (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ LoadP(r2, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        MemOperand target = ContextMemOperand(cp, var->index());
+        __ StoreP(r2, target);
+        // Update the write barrier. This clobbers r5 and r2.
+        if (need_write_barrier) {
+          __ RecordWriteContextSlot(cp, target.offset(), r2, r5,
+                                    GetLinkRegisterState(), kSaveFPRegs);
+        } else if (FLAG_debug_code) {
+          Label done;
+          __ JumpIfInNewSpace(cp, r2, &done);
+          __ Abort(kExpectedNewSpaceObject);
+          __ bind(&done);
+        }
+      }
+    }
+    Comment(";;; End allocate local context");
+  }
+
+  Comment(";;; Prologue end");
+}
+
+void LCodeGen::GenerateOsrPrologue() {
+  // Generate the OSR entry prologue at the first unknown OSR value, or if there
+  // are none, at the OSR entrypoint instruction.
+  if (osr_pc_offset_ >= 0) return;
+
+  osr_pc_offset_ = masm()->pc_offset();
+
+  // Adjust the frame size, subsuming the unoptimized frame into the
+  // optimized frame.
+  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+  DCHECK(slots >= 0);
+  __ lay(sp, MemOperand(sp, -slots * kPointerSize));
+}
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+  if (instr->IsCall()) {
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+  }
+  if (!instr->IsLazyBailout() && !instr->IsGap()) {
+    safepoints_.BumpLastLazySafepointIndex();
+  }
+}
+
+bool LCodeGen::GenerateDeferredCode() {
+  DCHECK(is_generating());
+  if (deferred_.length() > 0) {
+    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+      LDeferredCode* code = deferred_[i];
+
+      HValue* value =
+          instructions_->at(code->instruction_index())->hydrogen_value();
+      RecordAndWritePosition(
+          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+      Comment(
+          ";;; <@%d,#%d> "
+          "-------------------- Deferred %s --------------------",
+          code->instruction_index(), code->instr()->hydrogen_value()->id(),
+          code->instr()->Mnemonic());
+      __ bind(code->entry());
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Build frame");
+        DCHECK(!frame_is_built_);
+        DCHECK(info()->IsStub());
+        frame_is_built_ = true;
+        __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
+        __ PushCommonFrame(scratch0());
+        Comment(";;; Deferred code");
+      }
+      code->Generate();
+      if (NeedsDeferredFrame()) {
+        Comment(";;; Destroy frame");
+        DCHECK(frame_is_built_);
+        __ PopCommonFrame(scratch0());
+        frame_is_built_ = false;
+      }
+      __ b(code->exit());
+    }
+  }
+
+  return !is_aborted();
+}
+
+bool LCodeGen::GenerateJumpTable() {
+  // Check that the jump table is accessible from everywhere in the function
+  // code, i.e. that offsets in halfworld to the table can be encoded in the
+  // 32-bit signed immediate of a branch instruction.
+  // To simplify we consider the code size from the first instruction to the
+  // end of the jump table. We also don't consider the pc load delta.
+  // Each entry in the jump table generates one instruction and inlines one
+  // 32bit data after it.
+  // TODO(joransiu): The Int24 condition can likely be relaxed for S390
+  if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) {
+    Abort(kGeneratedCodeIsTooLarge);
+  }
+
+  if (jump_table_.length() > 0) {
+    Label needs_frame, call_deopt_entry;
+
+    Comment(";;; -------------------- Jump table --------------------");
+    Address base = jump_table_[0].address;
+
+    Register entry_offset = scratch0();
+
+    int length = jump_table_.length();
+    for (int i = 0; i < length; i++) {
+      Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
+      __ bind(&table_entry->label);
+
+      DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
+      Address entry = table_entry->address;
+      DeoptComment(table_entry->deopt_info);
+
+      // Second-level deopt table entries are contiguous and small, so instead
+      // of loading the full, absolute address of each one, load an immediate
+      // offset which will be added to the base address later.
+      __ mov(entry_offset, Operand(entry - base));
+
+      if (table_entry->needs_frame) {
+        DCHECK(!info()->saves_caller_doubles());
+        Comment(";;; call deopt with frame");
+        __ PushCommonFrame();
+        __ b(r14, &needs_frame);
+      } else {
+        __ b(r14, &call_deopt_entry);
+      }
+      info()->LogDeoptCallPosition(masm()->pc_offset(),
+                                   table_entry->deopt_info.inlining_id);
+    }
+
+    if (needs_frame.is_linked()) {
+      __ bind(&needs_frame);
+      // This variant of deopt can only be used with stubs. Since we don't
+      // have a function pointer to install in the stack frame that we're
+      // building, install a special marker there instead.
+      DCHECK(info()->IsStub());
+      __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
+      __ push(ip);
+      DCHECK(info()->IsStub());
+    }
+
+    Comment(";;; call deopt");
+    __ bind(&call_deopt_entry);
+
+    if (info()->saves_caller_doubles()) {
+      DCHECK(info()->IsStub());
+      RestoreCallerDoubles();
+    }
+
+    // Add the base address to the offset previously loaded in entry_offset.
+    __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
+    __ AddP(ip, entry_offset, ip);
+    __ Jump(ip);
+  }
+
+  // The deoptimization jump table is the last part of the instruction
+  // sequence. Mark the generated code as done unless we bailed out.
+  if (!is_aborted()) status_ = DONE;
+  return !is_aborted();
+}
+
+bool LCodeGen::GenerateSafepointTable() {
+  DCHECK(is_done());
+  safepoints_.Emit(masm(), GetTotalFrameSlotCount());
+  return !is_aborted();
+}
+
+Register LCodeGen::ToRegister(int code) const {
+  return Register::from_code(code);
+}
+
+DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
+  return DoubleRegister::from_code(code);
+}
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+  DCHECK(op->IsRegister());
+  return ToRegister(op->index());
+}
+
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
+  if (op->IsRegister()) {
+    return ToRegister(op->index());
+  } else if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk_->LookupConstant(const_op);
+    Handle<Object> literal = constant->handle(isolate());
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsInteger32()) {
+      AllowDeferredHandleDereference get_number;
+      DCHECK(literal->IsNumber());
+      __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
+    } else if (r.IsDouble()) {
+      Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
+    } else {
+      DCHECK(r.IsSmiOrTagged());
+      __ Move(scratch, literal);
+    }
+    return scratch;
+  } else if (op->IsStackSlot()) {
+    __ LoadP(scratch, ToMemOperand(op));
+    return scratch;
+  }
+  UNREACHABLE();
+  return scratch;
+}
+
+void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
+                                       Register dst) {
+  DCHECK(IsInteger32(const_op));
+  HConstant* constant = chunk_->LookupConstant(const_op);
+  int32_t value = constant->Integer32Value();
+  if (IsSmi(const_op)) {
+    __ LoadSmiLiteral(dst, Smi::FromInt(value));
+  } else {
+    __ LoadIntLiteral(dst, value);
+  }
+}
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+  DCHECK(op->IsDoubleRegister());
+  return ToDoubleRegister(op->index());
+}
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+  return constant->handle(isolate());
+}
+
+bool LCodeGen::IsInteger32(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+  return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+  return ToRepresentation(op, Representation::Integer32());
+}
+
+intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
+                                    const Representation& r) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  int32_t value = constant->Integer32Value();
+  if (r.IsInteger32()) return value;
+  DCHECK(r.IsSmiOrTagged());
+  return reinterpret_cast<intptr_t>(Smi::FromInt(value));
+}
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  return Smi::FromInt(constant->Integer32Value());
+}
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+  HConstant* constant = chunk_->LookupConstant(op);
+  DCHECK(constant->HasDoubleValue());
+  return constant->DoubleValue();
+}
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+  if (op->IsConstantOperand()) {
+    LConstantOperand* const_op = LConstantOperand::cast(op);
+    HConstant* constant = chunk()->LookupConstant(const_op);
+    Representation r = chunk_->LookupLiteralRepresentation(const_op);
+    if (r.IsSmi()) {
+      DCHECK(constant->HasSmiValue());
+      return Operand(Smi::FromInt(constant->Integer32Value()));
+    } else if (r.IsInteger32()) {
+      DCHECK(constant->HasInteger32Value());
+      return Operand(constant->Integer32Value());
+    } else if (r.IsDouble()) {
+      Abort(kToOperandUnsupportedDoubleImmediate);
+    }
+    DCHECK(r.IsTagged());
+    return Operand(constant->handle(isolate()));
+  } else if (op->IsRegister()) {
+    return Operand(ToRegister(op));
+  } else if (op->IsDoubleRegister()) {
+    Abort(kToOperandIsDoubleRegisterUnimplemented);
+    return Operand::Zero();
+  }
+  // Stack slots not implemented, use ToMemOperand instead.
+  UNREACHABLE();
+  return Operand::Zero();
+}
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+  DCHECK(index < 0);
+  return -(index + 1) * kPointerSize;
+}
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+  DCHECK(!op->IsRegister());
+  DCHECK(!op->IsDoubleRegister());
+  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return MemOperand(fp, FrameSlotToFPOffset(op->index()));
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
+  }
+}
+
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
+  DCHECK(op->IsDoubleStackSlot());
+  if (NeedsEagerFrame()) {
+    return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
+  } else {
+    // Retrieve parameter without eager stack-frame relative to the
+    // stack-pointer.
+    return MemOperand(sp,
+                      ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
+  }
+}
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+                                Translation* translation) {
+  if (environment == NULL) return;
+
+  // The translation includes one command per value in the environment.
+  int translation_size = environment->translation_size();
+
+  WriteTranslation(environment->outer(), translation);
+  WriteTranslationFrame(environment, translation);
+
+  int object_index = 0;
+  int dematerialized_index = 0;
+  for (int i = 0; i < translation_size; ++i) {
+    LOperand* value = environment->values()->at(i);
+    AddToTranslation(
+        environment, translation, value, environment->HasTaggedValueAt(i),
+        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
+  }
+}
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+                                Translation* translation, LOperand* op,
+                                bool is_tagged, bool is_uint32,
+                                int* object_index_pointer,
+                                int* dematerialized_index_pointer) {
+  if (op == LEnvironment::materialization_marker()) {
+    int object_index = (*object_index_pointer)++;
+    if (environment->ObjectIsDuplicateAt(object_index)) {
+      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+      translation->DuplicateObject(dupe_of);
+      return;
+    }
+    int object_length = environment->ObjectLengthAt(object_index);
+    if (environment->ObjectIsArgumentsAt(object_index)) {
+      translation->BeginArgumentsObject(object_length);
+    } else {
+      translation->BeginCapturedObject(object_length);
+    }
+    int dematerialized_index = *dematerialized_index_pointer;
+    int env_offset = environment->translation_size() + dematerialized_index;
+    *dematerialized_index_pointer += object_length;
+    for (int i = 0; i < object_length; ++i) {
+      LOperand* value = environment->values()->at(env_offset + i);
+      AddToTranslation(environment, translation, value,
+                       environment->HasTaggedValueAt(env_offset + i),
+                       environment->HasUint32ValueAt(env_offset + i),
+                       object_index_pointer, dematerialized_index_pointer);
+    }
+    return;
+  }
+
+  if (op->IsStackSlot()) {
+    int index = op->index();
+    if (is_tagged) {
+      translation->StoreStackSlot(index);
+    } else if (is_uint32) {
+      translation->StoreUint32StackSlot(index);
+    } else {
+      translation->StoreInt32StackSlot(index);
+    }
+  } else if (op->IsDoubleStackSlot()) {
+    int index = op->index();
+    translation->StoreDoubleStackSlot(index);
+  } else if (op->IsRegister()) {
+    Register reg = ToRegister(op);
+    if (is_tagged) {
+      translation->StoreRegister(reg);
+    } else if (is_uint32) {
+      translation->StoreUint32Register(reg);
+    } else {
+      translation->StoreInt32Register(reg);
+    }
+  } else if (op->IsDoubleRegister()) {
+    DoubleRegister reg = ToDoubleRegister(op);
+    translation->StoreDoubleRegister(reg);
+  } else if (op->IsConstantOperand()) {
+    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+    translation->StoreLiteral(src_index);
+  } else {
+    UNREACHABLE();
+  }
+}
+
+void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
+                        LInstruction* instr) {
+  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
+                               LInstruction* instr,
+                               SafepointMode safepoint_mode) {
+  DCHECK(instr != NULL);
+  __ Call(code, mode);
+  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+
+  // Signal that we don't inline smi code before these stubs in the
+  // optimizing code generator.
+  if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
+    __ nop();
+  }
+}
+
+void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
+                           LInstruction* instr, SaveFPRegsMode save_doubles) {
+  DCHECK(instr != NULL);
+
+  __ CallRuntime(function, num_arguments, save_doubles);
+
+  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+  if (context->IsRegister()) {
+    __ Move(cp, ToRegister(context));
+  } else if (context->IsStackSlot()) {
+    __ LoadP(cp, ToMemOperand(context));
+  } else if (context->IsConstantOperand()) {
+    HConstant* constant =
+        chunk_->LookupConstant(LConstantOperand::cast(context));
+    __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
+  } else {
+    UNREACHABLE();
+  }
+}
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
+                                       LInstruction* instr, LOperand* context) {
+  LoadContextFromDeferred(context);
+  __ CallRuntimeSaveDoubles(id);
+  RecordSafepointWithRegisters(instr->pointer_map(), argc,
+                               Safepoint::kNoLazyDeopt);
+}
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+                                                    Safepoint::DeoptMode mode) {
+  environment->set_has_been_used();
+  if (!environment->HasBeenRegistered()) {
+    // Physical stack frame layout:
+    // -x ............. -4  0 ..................................... y
+    // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+    // Layout of the environment:
+    // 0 ..................................................... size-1
+    // [parameters] [locals] [expression stack including arguments]
+
+    // Layout of the translation:
+    // 0 ........................................................ size - 1 + 4
+    // [expression stack including arguments] [locals] [4 words] [parameters]
+    // |>------------  translation_size ------------<|
+
+    int frame_count = 0;
+    int jsframe_count = 0;
+    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+      ++frame_count;
+      if (e->frame_type() == JS_FUNCTION) {
+        ++jsframe_count;
+      }
+    }
+    Translation translation(&translations_, frame_count, jsframe_count, zone());
+    WriteTranslation(environment, &translation);
+    int deoptimization_index = deoptimizations_.length();
+    int pc_offset = masm()->pc_offset();
+    environment->Register(deoptimization_index, translation.index(),
+                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+    deoptimizations_.Add(environment, zone());
+  }
+}
+
+void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            Deoptimizer::BailoutType bailout_type,
+                            CRegister cr) {
+  LEnvironment* environment = instr->environment();
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+  DCHECK(environment->HasBeenRegistered());
+  int id = environment->deoptimization_index();
+  Address entry =
+      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+  if (entry == NULL) {
+    Abort(kBailoutWasNotPrepared);
+    return;
+  }
+
+  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+    Register scratch = scratch0();
+    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+    Label no_deopt;
+
+    // Store the condition on the stack if necessary
+    if (cond != al) {
+      Label done;
+      __ LoadImmP(scratch, Operand::Zero());
+      __ b(NegateCondition(cond), &done, Label::kNear);
+      __ LoadImmP(scratch, Operand(1));
+      __ bind(&done);
+      __ push(scratch);
+    }
+
+    Label done;
+    __ Push(r3);
+    __ mov(scratch, Operand(count));
+    __ LoadW(r3, MemOperand(scratch));
+    __ Sub32(r3, r3, Operand(1));
+    __ Cmp32(r3, Operand::Zero());
+    __ bne(&no_deopt, Label::kNear);
+
+    __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times));
+    __ StoreW(r3, MemOperand(scratch));
+    __ Pop(r3);
+
+    if (cond != al) {
+      // Clean up the stack before the deoptimizer call
+      __ pop(scratch);
+    }
+
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+
+    __ b(&done);
+
+    __ bind(&no_deopt);
+    __ StoreW(r3, MemOperand(scratch));
+    __ Pop(r3);
+
+    if (cond != al) {
+      // Clean up the stack before the deoptimizer call
+      __ pop(scratch);
+    }
+
+    __ bind(&done);
+
+    if (cond != al) {
+      cond = ne;
+      __ CmpP(scratch, Operand::Zero());
+    }
+  }
+
+  if (info()->ShouldTrapOnDeopt()) {
+    __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
+  }
+
+  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+  DCHECK(info()->IsStub() || frame_is_built_);
+  // Go through jump table if we need to handle condition, build frame, or
+  // restore caller doubles.
+  if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
+    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+  } else {
+    Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
+                                            !frame_is_built_);
+    // We often have several deopts to the same entry, reuse the last
+    // jump entry if this is the case.
+    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+        jump_table_.is_empty() ||
+        !table_entry.IsEquivalentTo(jump_table_.last())) {
+      jump_table_.Add(table_entry, zone());
+    }
+    __ b(cond, &jump_table_.last().label /*, cr*/);
+  }
+}
+
+void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
+                            Deoptimizer::DeoptReason deopt_reason,
+                            CRegister cr) {
+  Deoptimizer::BailoutType bailout_type =
+      info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
+  DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr);
+}
+
+void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
+                                            SafepointMode safepoint_mode) {
+  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+  } else {
+    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    RecordSafepointWithRegisters(instr->pointer_map(), 0,
+                                 Safepoint::kLazyDeopt);
+  }
+}
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
+                               int arguments, Safepoint::DeoptMode deopt_mode) {
+  DCHECK(expected_safepoint_kind_ == kind);
+
+  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+  Safepoint safepoint =
+      safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
+  for (int i = 0; i < operands->length(); i++) {
+    LOperand* pointer = operands->at(i);
+    if (pointer->IsStackSlot()) {
+      safepoint.DefinePointerSlot(pointer->index(), zone());
+    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+    }
+  }
+}
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+                               Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+  LPointerMap empty_pointers(zone());
+  RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+                                            int arguments,
+                                            Safepoint::DeoptMode deopt_mode) {
+  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+void LCodeGen::RecordAndWritePosition(int position) {
+  if (position == RelocInfo::kNoPosition) return;
+  masm()->positions_recorder()->RecordPosition(position);
+  masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+static const char* LabelType(LLabel* label) {
+  if (label->is_loop_header()) return " (loop header)";
+  if (label->is_osr_entry()) return " (OSR entry)";
+  return "";
+}
+
+void LCodeGen::DoLabel(LLabel* label) {
+  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+          current_instruction_, label->hydrogen_value()->id(),
+          label->block_id(), LabelType(label));
+  __ bind(label->label());
+  current_block_ = label->block_id();
+  DoGap(label);
+}
+
+void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
+
+void LCodeGen::DoGap(LGap* gap) {
+  for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
+       i++) {
+    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+    LParallelMove* move = gap->GetParallelMove(inner_pos);
+    if (move != NULL) DoParallelMove(move);
+  }
+}
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
+
+void LCodeGen::DoParameter(LParameter* instr) {
+  // Nothing to do.
+}
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+  GenerateOsrPrologue();
+}
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  DCHECK(dividend.is(ToRegister(instr->result())));
+
+  // Theoretically, a variation of the branch-free code for integer division by
+  // a power of 2 (calculating the remainder via an additional multiplication
+  // (which gets simplified to an 'and') and subtraction) should be faster, and
+  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+  // indicate that positive dividends are heavily favored, so the branching
+  // version performs better.
+  HMod* hmod = instr->hydrogen();
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  Label dividend_is_not_negative, done;
+  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+    __ CmpP(dividend, Operand::Zero());
+    __ bge(&dividend_is_not_negative, Label::kNear);
+    if (shift) {
+      // Note that this is correct even for kMinInt operands.
+      __ LoadComplementRR(dividend, dividend);
+      __ ExtractBitRange(dividend, dividend, shift - 1, 0);
+      __ LoadComplementRR(dividend, dividend);
+      if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+        DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+      }
+    } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ mov(dividend, Operand::Zero());
+    } else {
+      DeoptimizeIf(al, instr, Deoptimizer::kMinusZero);
+    }
+    __ b(&done, Label::kNear);
+  }
+
+  __ bind(&dividend_is_not_negative);
+  if (shift) {
+    __ ExtractBitRange(dividend, dividend, shift - 1, 0);
+  } else {
+    __ mov(dividend, Operand::Zero());
+  }
+  __ bind(&done);
+}
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  __ mov(ip, Operand(Abs(divisor)));
+  __ Mul(result, result, ip);
+  __ SubP(result, dividend, result /*, LeaveOE, SetRC*/);
+
+  // Check for negative zero.
+  HMod* hmod = instr->hydrogen();
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label remainder_not_zero;
+    __ bne(&remainder_not_zero, Label::kNear /*, cr0*/);
+    __ Cmp32(dividend, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    __ bind(&remainder_not_zero);
+  }
+}
+
+void LCodeGen::DoModI(LModI* instr) {
+  HMod* hmod = instr->hydrogen();
+  Register left_reg = ToRegister(instr->left());
+  Register right_reg = ToRegister(instr->right());
+  Register result_reg = ToRegister(instr->result());
+  Label done;
+
+  // Check for x % 0.
+  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ Cmp32(right_reg, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for kMinInt % -1, dr will return undefined, which is not what we
+  // want. We have to deopt if we care about -0, because we can't return that.
+  if (hmod->CheckFlag(HValue::kCanOverflow)) {
+    Label no_overflow_possible;
+    __ Cmp32(left_reg, Operand(kMinInt));
+    __ bne(&no_overflow_possible, Label::kNear);
+    __ Cmp32(right_reg, Operand(-1));
+    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    } else {
+      __ b(ne, &no_overflow_possible, Label::kNear);
+      __ mov(result_reg, Operand::Zero());
+      __ b(&done, Label::kNear);
+    }
+    __ bind(&no_overflow_possible);
+  }
+
+  // Divide instruction dr will implicity use register pair
+  // r0 & r1 below.
+  DCHECK(!left_reg.is(r1));
+  DCHECK(!right_reg.is(r1));
+  DCHECK(!result_reg.is(r1));
+  __ LoadRR(r0, left_reg);
+  __ srda(r0, Operand(32));
+  __ dr(r0, right_reg);  // R0:R1 = R1 / divisor - R0 remainder
+
+  __ LoadAndTestP_ExtendSrc(result_reg, r0);  // Copy remainder to resultreg
+
+  // If we care about -0, test if the dividend is <0 and the result is 0.
+  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    __ bne(&done, Label::kNear);
+    __ Cmp32(left_reg, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ bind(&done);
+}
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+  DCHECK(!result.is(dividend));
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ Cmp32(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+    __ Cmp32(dividend, Operand(0x80000000));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+
+  int32_t shift = WhichPowerOf2Abs(divisor);
+
+  // Deoptimize if remainder will not be 0.
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
+    __ TestBitRange(dividend, shift - 1, 0, r0);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, cr0);
+  }
+
+  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
+    __ LoadComplementRR(result, dividend);
+    return;
+  }
+  if (shift == 0) {
+    __ LoadRR(result, dividend);
+  } else {
+    if (shift == 1) {
+      __ ShiftRight(result, dividend, Operand(31));
+    } else {
+      __ ShiftRightArith(result, dividend, Operand(31));
+      __ ShiftRight(result, result, Operand(32 - shift));
+    }
+    __ AddP(result, dividend, result);
+    __ ShiftRightArith(result, result, Operand(shift));
+#if V8_TARGET_ARCH_S390X
+    __ lgfr(result, result);
+#endif
+  }
+  if (divisor < 0) __ LoadComplementRR(result, result);
+}
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ Cmp32(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ LoadComplementRR(result, result);
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    Register scratch = scratch0();
+    __ mov(ip, Operand(divisor));
+    __ Mul(scratch, result, ip);
+    __ Cmp32(scratch, dividend);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  const Register dividend = ToRegister(instr->dividend());
+  const Register divisor = ToRegister(instr->divisor());
+  Register result = ToRegister(instr->result());
+
+  DCHECK(!dividend.is(result));
+  DCHECK(!divisor.is(result));
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ Cmp32(divisor, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label dividend_not_zero;
+    __ Cmp32(dividend, Operand::Zero());
+    __ bne(&dividend_not_zero, Label::kNear);
+    __ Cmp32(divisor, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    __ bind(&dividend_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+    Label dividend_not_min_int;
+    __ Cmp32(dividend, Operand(kMinInt));
+    __ bne(&dividend_not_min_int, Label::kNear);
+    __ Cmp32(divisor, Operand(-1));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+    __ bind(&dividend_not_min_int);
+  }
+
+  __ LoadRR(r0, dividend);
+  __ srda(r0, Operand(32));
+  __ dr(r0, divisor);  // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
+
+  __ LoadAndTestP_ExtendSrc(result, r1);  // Move quotient to result register
+
+  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+    // Deoptimize if remainder is not 0.
+    __ Cmp32(r0, Operand::Zero());
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
+  }
+}
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  Register dividend = ToRegister(instr->dividend());
+  Register result = ToRegister(instr->result());
+  int32_t divisor = instr->divisor();
+  bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);
+
+  // If the divisor is positive, things are easy: There can be no deopts and we
+  // can simply do an arithmetic right shift.
+  int32_t shift = WhichPowerOf2Abs(divisor);
+  if (divisor > 0) {
+    if (shift || !result.is(dividend)) {
+      __ ShiftRightArith(result, dividend, Operand(shift));
+#if V8_TARGET_ARCH_S390X
+      __ lgfr(result, result);
+#endif
+    }
+    return;
+  }
+
+// If the divisor is negative, we have to negate and handle edge cases.
+#if V8_TARGET_ARCH_S390X
+  if (divisor == -1 && can_overflow) {
+    __ Cmp32(dividend, Operand(0x80000000));
+    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+  }
+#endif
+
+  __ LoadComplementRR(result, dividend);
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, cr0);
+  }
+
+// If the negation could not overflow, simply shifting is OK.
+#if !V8_TARGET_ARCH_S390X
+  if (!can_overflow) {
+#endif
+    if (shift) {
+      __ ShiftRightArithP(result, result, Operand(shift));
+    }
+    return;
+#if !V8_TARGET_ARCH_S390X
+  }
+
+  // Dividing by -1 is basically negation, unless we overflow.
+  if (divisor == -1) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
+    return;
+  }
+
+  Label overflow_label, done;
+  __ b(overflow, &overflow_label, Label::kNear);
+  __ ShiftRightArith(result, result, Operand(shift));
+#if V8_TARGET_ARCH_S390X
+  __ lgfr(result, result);
+#endif
+  __ b(&done, Label::kNear);
+  __ bind(&overflow_label);
+  __ mov(result, Operand(kMinInt / divisor));
+  __ bind(&done);
+#endif
+}
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+  Register dividend = ToRegister(instr->dividend());
+  int32_t divisor = instr->divisor();
+  Register result = ToRegister(instr->result());
+  DCHECK(!dividend.is(result));
+
+  if (divisor == 0) {
+    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
+    return;
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  HMathFloorOfDiv* hdiv = instr->hydrogen();
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+    __ Cmp32(dividend, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+  }
+
+  // Easy case: We need no dynamic check for the dividend and the flooring
+  // division is the same as the truncating division.
+  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+    __ TruncatingDiv(result, dividend, Abs(divisor));
+    if (divisor < 0) __ LoadComplementRR(result, result);
+    return;
+  }
+
+  // In the general case we may need to adjust before and after the truncating
+  // division to get a flooring division.
+  Register temp = ToRegister(instr->temp());
+  DCHECK(!temp.is(dividend) && !temp.is(result));
+  Label needs_adjustment, done;
+  __ Cmp32(dividend, Operand::Zero());
+  __ b(divisor > 0 ? lt : gt, &needs_adjustment);
+  __ TruncatingDiv(result, dividend, Abs(divisor));
+  if (divisor < 0) __ LoadComplementRR(result, result);
+  __ b(&done, Label::kNear);
+  __ bind(&needs_adjustment);
+  __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1));
+  __ TruncatingDiv(result, temp, Abs(divisor));
+  if (divisor < 0) __ LoadComplementRR(result, result);
+  __ SubP(result, result, Operand(1));
+  __ bind(&done);
+}
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+  HBinaryOperation* hdiv = instr->hydrogen();
+  const Register dividend = ToRegister(instr->dividend());
+  const Register divisor = ToRegister(instr->divisor());
+  Register result = ToRegister(instr->result());
+
+  DCHECK(!dividend.is(result));
+  DCHECK(!divisor.is(result));
+
+  // Check for x / 0.
+  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+    __ Cmp32(divisor, Operand::Zero());
+    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
+  }
+
+  // Check for (0 / -x) that will produce negative zero.
+  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    Label dividend_not_zero;
+    __ Cmp32(dividend, Operand::Zero());
+    __ bne(&dividend_not_zero, Label::kNear);
+    __ Cmp32(divisor, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    __ bind(&dividend_not_zero);
+  }
+
+  // Check for (kMinInt / -1).
+  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+    Label no_overflow_possible;
+    __ Cmp32(dividend, Operand(kMinInt));
+    __ bne(&no_overflow_possible, Label::kNear);
+    __ Cmp32(divisor, Operand(-1));
+    if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+    } else {
+      __ bne(&no_overflow_possible, Label::kNear);
+      __ LoadRR(result, dividend);
+    }
+    __ bind(&no_overflow_possible);
+  }
+
+  __ LoadRR(r0, dividend);
+  __ srda(r0, Operand(32));
+  __ dr(r0, divisor);  // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
+
+  __ lr(result, r1);  // Move quotient to result register
+
+  Label done;
+  Register scratch = scratch0();
+  // If both operands have the same sign then we are done.
+  __ Xor(scratch, dividend, divisor);
+  __ ltr(scratch, scratch);  // use 32 bit version LoadAndTestRR even in 64 bit
+  __ bge(&done, Label::kNear);
+
+  // If there is no remainder then we are done.
+  __ lr(scratch, result);
+  __ msr(scratch, divisor);
+  __ Cmp32(dividend, scratch);
+  __ beq(&done, Label::kNear);
+
+  // We performed a truncating division. Correct the result.
+  __ Sub32(result, result, Operand(1));
+  __ bind(&done);
+}
+
+void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
+  DoubleRegister addend = ToDoubleRegister(instr->addend());
+  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
+  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+
+  // Unable to use madbr as the intermediate value is not rounded
+  // to proper precision
+  __ ldr(result, multiplier);
+  __ mdbr(result, multiplicand);
+  __ adbr(result, addend);
+}
+
+void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
+  DoubleRegister minuend = ToDoubleRegister(instr->minuend());
+  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
+  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+
+  // Unable to use msdbr as the intermediate value is not rounded
+  // to proper precision
+  __ ldr(result, multiplier);
+  __ mdbr(result, multiplicand);
+  __ sdbr(result, minuend);
+}
+
+void LCodeGen::DoMulI(LMulI* instr) {
+  Register scratch = scratch0();
+  Register result = ToRegister(instr->result());
+  // Note that result may alias left.
+  Register left = ToRegister(instr->left());
+  LOperand* right_op = instr->right();
+
+  bool bailout_on_minus_zero =
+      instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+  if (right_op->IsConstantOperand()) {
+    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+    if (bailout_on_minus_zero && (constant < 0)) {
+      // The case of a null constant will be handled separately.
+      // If constant is negative and left is null, the result should be -0.
+      __ CmpP(left, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+
+    switch (constant) {
+      case -1:
+        if (can_overflow) {
+#if V8_TARGET_ARCH_S390X
+          if (instr->hydrogen()->representation().IsSmi()) {
+#endif
+            __ LoadComplementRR(result, left);
+            DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+#if V8_TARGET_ARCH_S390X
+          } else {
+            __ LoadComplementRR(result, left);
+            __ TestIfInt32(result, r0);
+            DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+          }
+#endif
+        } else {
+          __ LoadComplementRR(result, left);
+        }
+        break;
+      case 0:
+        if (bailout_on_minus_zero) {
+// If left is strictly negative and the constant is null, the
+// result is -0. Deoptimize if required, otherwise return 0.
+#if V8_TARGET_ARCH_S390X
+          if (instr->hydrogen()->representation().IsSmi()) {
+#endif
+            __ Cmp32(left, Operand::Zero());
+#if V8_TARGET_ARCH_S390X
+          } else {
+            __ Cmp32(left, Operand::Zero());
+          }
+#endif
+          DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+        }
+        __ LoadImmP(result, Operand::Zero());
+        break;
+      case 1:
+        __ Move(result, left);
+        break;
+      default:
+        // Multiplying by powers of two and powers of two plus or minus
+        // one can be done faster with shifted operands.
+        // For other constants we emit standard code.
+        int32_t mask = constant >> 31;
+        uint32_t constant_abs = (constant + mask) ^ mask;
+
+        if (base::bits::IsPowerOfTwo32(constant_abs)) {
+          int32_t shift = WhichPowerOf2(constant_abs);
+          __ ShiftLeftP(result, left, Operand(shift));
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ LoadComplementRR(result, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs - 1);
+          __ ShiftLeftP(scratch, left, Operand(shift));
+          __ AddP(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ LoadComplementRR(result, result);
+        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
+          int32_t shift = WhichPowerOf2(constant_abs + 1);
+          __ ShiftLeftP(scratch, left, Operand(shift));
+          __ SubP(result, scratch, left);
+          // Correct the sign of the result if the constant is negative.
+          if (constant < 0) __ LoadComplementRR(result, result);
+        } else {
+          // Generate standard code.
+          __ Move(result, left);
+          __ MulP(result, Operand(constant));
+        }
+    }
+
+  } else {
+    DCHECK(right_op->IsRegister());
+    Register right = ToRegister(right_op);
+
+    if (can_overflow) {
+#if V8_TARGET_ARCH_S390X
+      // result = left * right.
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiUntag(result, left);
+        __ SmiUntag(scratch, right);
+        __ msgr(result, scratch);
+      } else {
+        __ LoadRR(result, left);
+        __ msgr(result, right);
+      }
+      __ TestIfInt32(result, r0);
+      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiTag(result);
+      }
+#else
+      // r0:scratch = scratch * right
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiUntag(scratch, left);
+        __ mr_z(r0, right);
+        __ LoadRR(result, scratch);
+      } else {
+        // r0:scratch = scratch * right
+        __ LoadRR(scratch, left);
+        __ mr_z(r0, right);
+        __ LoadRR(result, scratch);
+      }
+      __ TestIfInt32(r0, result, scratch);
+      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
+#endif
+    } else {
+      if (instr->hydrogen()->representation().IsSmi()) {
+        __ SmiUntag(result, left);
+        __ Mul(result, result, right);
+      } else {
+        __ Mul(result, left, right);
+      }
+    }
+
+    if (bailout_on_minus_zero) {
+      Label done;
+#if V8_TARGET_ARCH_S390X
+      if (instr->hydrogen()->representation().IsSmi()) {
+#endif
+        __ XorP(r0, left, right);
+        __ LoadAndTestRR(r0, r0);
+        __ bge(&done, Label::kNear);
+#if V8_TARGET_ARCH_S390X
+      } else {
+        __ XorP(r0, left, right);
+        __ Cmp32(r0, Operand::Zero());
+        __ bge(&done, Label::kNear);
+      }
+#endif
+      // Bail out if the result is minus zero.
+      __ CmpP(result, Operand::Zero());
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+}
+
+void LCodeGen::DoBitI(LBitI* instr) {
+  LOperand* left_op = instr->left();
+  LOperand* right_op = instr->right();
+  DCHECK(left_op->IsRegister());
+  Register left = ToRegister(left_op);
+  Register result = ToRegister(instr->result());
+
+  if (right_op->IsConstantOperand()) {
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        __ AndP(result, left, Operand(ToOperand(right_op)));
+        break;
+      case Token::BIT_OR:
+        __ OrP(result, left, Operand(ToOperand(right_op)));
+        break;
+      case Token::BIT_XOR:
+        __ XorP(result, left, Operand(ToOperand(right_op)));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else if (right_op->IsStackSlot()) {
+    // Reg-Mem instruction clobbers, so copy src to dst first.
+    if (!left.is(result)) __ LoadRR(result, left);
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        __ AndP(result, ToMemOperand(right_op));
+        break;
+      case Token::BIT_OR:
+        __ OrP(result, ToMemOperand(right_op));
+        break;
+      case Token::BIT_XOR:
+        __ XorP(result, ToMemOperand(right_op));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    DCHECK(right_op->IsRegister());
+
+    switch (instr->op()) {
+      case Token::BIT_AND:
+        __ AndP(result, left, ToRegister(right_op));
+        break;
+      case Token::BIT_OR:
+        __ OrP(result, left, ToRegister(right_op));
+        break;
+      case Token::BIT_XOR:
+        __ XorP(result, left, ToRegister(right_op));
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
+  // result may alias either of them.
+  LOperand* right_op = instr->right();
+  Register left = ToRegister(instr->left());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  if (right_op->IsRegister()) {
+    // Mask the right_op operand.
+    __ AndP(scratch, ToRegister(right_op), Operand(0x1F));
+    switch (instr->op()) {
+      case Token::ROR:
+        // rotate_right(a, b) == rotate_left(a, 32 - b)
+        __ LoadComplementRR(scratch, scratch);
+        __ rll(result, left, scratch, Operand(32));
+#if V8_TARGET_ARCH_S390X
+        __ lgfr(result, result);
+#endif
+        break;
+      case Token::SAR:
+        __ ShiftRightArith(result, left, scratch);
+#if V8_TARGET_ARCH_S390X
+        __ lgfr(result, result);
+#endif
+        break;
+      case Token::SHR:
+        __ ShiftRight(result, left, scratch);
+#if V8_TARGET_ARCH_S390X
+        __ lgfr(result, result);
+#endif
+        if (instr->can_deopt()) {
+#if V8_TARGET_ARCH_S390X
+          __ ltgfr(result, result /*, SetRC*/);
+#else
+          __ ltr(result, result);  // Set the <,==,> condition
+#endif
+          DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, cr0);
+        }
+        break;
+      case Token::SHL:
+        __ ShiftLeft(result, left, scratch);
+#if V8_TARGET_ARCH_S390X
+        __ lgfr(result, result);
+#endif
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  } else {
+    // Mask the right_op operand.
+    int value = ToInteger32(LConstantOperand::cast(right_op));
+    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+    switch (instr->op()) {
+      case Token::ROR:
+        if (shift_count != 0) {
+          __ rll(result, left, Operand(32 - shift_count));
+#if V8_TARGET_ARCH_S390X
+          __ lgfr(result, result);
+#endif
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SAR:
+        if (shift_count != 0) {
+          __ ShiftRightArith(result, left, Operand(shift_count));
+#if V8_TARGET_ARCH_S390X
+          __ lgfr(result, result);
+#endif
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHR:
+        if (shift_count != 0) {
+          __ ShiftRight(result, left, Operand(shift_count));
+#if V8_TARGET_ARCH_S390X
+          __ lgfr(result, result);
+#endif
+        } else {
+          if (instr->can_deopt()) {
+            __ Cmp32(left, Operand::Zero());
+            DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue);
+          }
+          __ Move(result, left);
+        }
+        break;
+      case Token::SHL:
+        if (shift_count != 0) {
+#if V8_TARGET_ARCH_S390X
+          if (instr->hydrogen_value()->representation().IsSmi()) {
+            __ ShiftLeftP(result, left, Operand(shift_count));
+#else
+          if (instr->hydrogen_value()->representation().IsSmi() &&
+              instr->can_deopt()) {
+            if (shift_count != 1) {
+              __ ShiftLeft(result, left, Operand(shift_count - 1));
+#if V8_TARGET_ARCH_S390X
+              __ lgfr(result, result);
+#endif
+              __ SmiTagCheckOverflow(result, result, scratch);
+            } else {
+              __ SmiTagCheckOverflow(result, left, scratch);
+            }
+            DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
+#endif
+          } else {
+            __ ShiftLeft(result, left, Operand(shift_count));
+#if V8_TARGET_ARCH_S390X
+            __ lgfr(result, result);
+#endif
+          }
+        } else {
+          __ Move(result, left);
+        }
+        break;
+      default:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+void LCodeGen::DoSubI(LSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+
+  bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
+                     instr->hydrogen()->representation().IsExternal());
+
+#if V8_TARGET_ARCH_S390X
+  // The overflow detection needs to be tested on the lower 32-bits.
+  // As a result, on 64-bit, we need to force 32-bit arithmetic operations
+  // to set the CC overflow bit properly.  The result is then sign-extended.
+  bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+#else
+  bool checkOverflow = true;
+#endif
+
+  if (right->IsConstantOperand()) {
+    if (!isInteger || !checkOverflow)
+      __ SubP(ToRegister(result), ToRegister(left), ToOperand(right));
+    else
+      __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else if (right->IsRegister()) {
+    if (!isInteger)
+      __ SubP(ToRegister(result), ToRegister(left), ToRegister(right));
+    else if (!checkOverflow)
+      __ SubP_ExtendSrc(ToRegister(result), ToRegister(left),
+                        ToRegister(right));
+    else
+      __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right));
+  } else {
+    if (!left->Equals(instr->result()))
+      __ LoadRR(ToRegister(result), ToRegister(left));
+
+    MemOperand mem = ToMemOperand(right);
+    if (!isInteger) {
+      __ SubP(ToRegister(result), mem);
+    } else {
+#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
+      // We want to read the 32-bits directly from memory
+      MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
+#else
+      MemOperand Upper32Mem = ToMemOperand(right);
+#endif
+      if (checkOverflow) {
+        __ Sub32(ToRegister(result), Upper32Mem);
+      } else {
+        __ SubP_ExtendSrc(ToRegister(result), Upper32Mem);
+      }
+    }
+  }
+
+#if V8_TARGET_ARCH_S390X
+  if (isInteger && checkOverflow)
+    __ lgfr(ToRegister(result), ToRegister(result));
+#endif
+  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  }
+}
+
+void LCodeGen::DoRSubI(LRSubI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+
+  DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
+         right->IsConstantOperand());
+
+#if V8_TARGET_ARCH_S390X
+  // The overflow detection needs to be tested on the lower 32-bits.
+  // As a result, on 64-bit, we need to force 32-bit arithmetic operations
+  // to set the CC overflow bit properly.  The result is then sign-extended.
+  bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+#else
+  bool checkOverflow = true;
+#endif
+
+  Operand right_operand = ToOperand(right);
+  __ mov(r0, right_operand);
+
+  if (!checkOverflow) {
+    __ SubP_ExtendSrc(ToRegister(result), r0, ToRegister(left));
+  } else {
+    __ Sub32(ToRegister(result), r0, ToRegister(left));
+  }
+}
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+  __ mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+  __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
+}
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+  DCHECK(instr->result()->IsDoubleRegister());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  uint64_t bits = instr->bits();
+  __ LoadDoubleLiteral(result, bits, scratch0());
+}
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+  __ mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+  Handle<Object> object = instr->value(isolate());
+  AllowDeferredHandleDereference smi_check;
+  __ Move(ToRegister(instr->result()), object);
+}
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
+                                           String::Encoding encoding) {
+  if (index->IsConstantOperand()) {
+    int offset = ToInteger32(LConstantOperand::cast(index));
+    if (encoding == String::TWO_BYTE_ENCODING) {
+      offset *= kUC16Size;
+    }
+    STATIC_ASSERT(kCharSize == 1);
+    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+  }
+  Register scratch = scratch0();
+  DCHECK(!scratch.is(string));
+  DCHECK(!scratch.is(ToRegister(index)));
+  // TODO(joransiu) : Fold Add into FieldMemOperand
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ AddP(scratch, string, ToRegister(index));
+  } else {
+    STATIC_ASSERT(kUC16Size == 2);
+    __ ShiftLeftP(scratch, ToRegister(index), Operand(1));
+    __ AddP(scratch, string, scratch);
+  }
+  return FieldMemOperand(scratch, SeqString::kHeaderSize);
+}
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+
+  if (FLAG_debug_code) {
+    Register scratch = scratch0();
+    __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
+    __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+    __ AndP(scratch, scratch,
+            Operand(kStringRepresentationMask | kStringEncodingMask));
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    __ CmpP(scratch,
+            Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
+                                                          : two_byte_seq_type));
+    __ Check(eq, kUnexpectedStringType);
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ llc(result, operand);
+  } else {
+    __ llh(result, operand);
+  }
+}
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+  String::Encoding encoding = instr->hydrogen()->encoding();
+  Register string = ToRegister(instr->string());
+  Register value = ToRegister(instr->value());
+
+  if (FLAG_debug_code) {
+    Register index = ToRegister(instr->index());
+    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+    int encoding_mask =
+        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+            ? one_byte_seq_type
+            : two_byte_seq_type;
+    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
+  }
+
+  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+  if (encoding == String::ONE_BYTE_ENCODING) {
+    __ stc(value, operand);
+  } else {
+    __ sth(value, operand);
+  }
+}
+
+void LCodeGen::DoAddI(LAddI* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  LOperand* result = instr->result();
+  bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
+                     instr->hydrogen()->representation().IsExternal());
+#if V8_TARGET_ARCH_S390X
+  // The overflow detection needs to be tested on the lower 32-bits.
+  // As a result, on 64-bit, we need to force 32-bit arithmetic operations
+  // to set the CC overflow bit properly.  The result is then sign-extended.
+  bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+#else
+  bool checkOverflow = true;
+#endif
+
+  if (right->IsConstantOperand()) {
+    if (!isInteger || !checkOverflow)
+      __ AddP(ToRegister(result), ToRegister(left), ToOperand(right));
+    else
+      __ Add32(ToRegister(result), ToRegister(left), ToOperand(right));
+  } else if (right->IsRegister()) {
+    if (!isInteger)
+      __ AddP(ToRegister(result), ToRegister(left), ToRegister(right));
+    else if (!checkOverflow)
+      __ AddP_ExtendSrc(ToRegister(result), ToRegister(left),
+                        ToRegister(right));
+    else
+      __ Add32(ToRegister(result), ToRegister(left), ToRegister(right));
+  } else {
+    if (!left->Equals(instr->result()))
+      __ LoadRR(ToRegister(result), ToRegister(left));
+
+    MemOperand mem = ToMemOperand(right);
+    if (!isInteger) {
+      __ AddP(ToRegister(result), mem);
+    } else {
+#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
+      // We want to read the 32-bits directly from memory
+      MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
+#else
+      MemOperand Upper32Mem = ToMemOperand(right);
+#endif
+      if (checkOverflow) {
+        __ Add32(ToRegister(result), Upper32Mem);
+      } else {
+        __ AddP_ExtendSrc(ToRegister(result), Upper32Mem);
+      }
+    }
+  }
+
+#if V8_TARGET_ARCH_S390X
+  if (isInteger && checkOverflow)
+    __ lgfr(ToRegister(result), ToRegister(result));
+#endif
+  // Doptimize on overflow
+  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+    DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+  }
+}
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  HMathMinMax::Operation operation = instr->hydrogen()->operation();
+  Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
+  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+    Register left_reg = ToRegister(left);
+    Register right_reg = EmitLoadRegister(right, ip);
+    Register result_reg = ToRegister(instr->result());
+    Label return_left, done;
+#if V8_TARGET_ARCH_S390X
+    if (instr->hydrogen_value()->representation().IsSmi()) {
+#endif
+      __ CmpP(left_reg, right_reg);
+#if V8_TARGET_ARCH_S390X
+    } else {
+      __ Cmp32(left_reg, right_reg);
+    }
+#endif
+    __ b(cond, &return_left, Label::kNear);
+    __ Move(result_reg, right_reg);
+    __ b(&done, Label::kNear);
+    __ bind(&return_left);
+    __ Move(result_reg, left_reg);
+    __ bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->representation().IsDouble());
+    DoubleRegister left_reg = ToDoubleRegister(left);
+    DoubleRegister right_reg = ToDoubleRegister(right);
+    DoubleRegister result_reg = ToDoubleRegister(instr->result());
+    Label check_nan_left, check_zero, return_left, return_right, done;
+    __ cdbr(left_reg, right_reg);
+    __ bunordered(&check_nan_left, Label::kNear);
+    __ beq(&check_zero);
+    __ b(cond, &return_left, Label::kNear);
+    __ b(&return_right, Label::kNear);
+
+    __ bind(&check_zero);
+    __ lzdr(kDoubleRegZero);
+    __ cdbr(left_reg, kDoubleRegZero);
+    __ bne(&return_left, Label::kNear);  // left == right != 0.
+
+    // At this point, both left and right are either 0 or -0.
+    // N.B. The following works because +0 + -0 == +0
+    if (operation == HMathMinMax::kMathMin) {
+      // For min we want logical-or of sign bit: -(-L + -R)
+      __ lcdbr(left_reg, left_reg);
+      __ ldr(result_reg, left_reg);
+      if (left_reg.is(right_reg)) {
+        __ adbr(result_reg, right_reg);
+      } else {
+        __ sdbr(result_reg, right_reg);
+      }
+      __ lcdbr(result_reg, result_reg);
+    } else {
+      // For max we want logical-and of sign bit: (L + R)
+      __ ldr(result_reg, left_reg);
+      __ adbr(result_reg, right_reg);
+    }
+    __ b(&done, Label::kNear);
+
+    __ bind(&check_nan_left);
+    __ cdbr(left_reg, left_reg);
+    __ bunordered(&return_left, Label::kNear);  // left == NaN.
+
+    __ bind(&return_right);
+    if (!right_reg.is(result_reg)) {
+      __ ldr(result_reg, right_reg);
+    }
+    __ b(&done, Label::kNear);
+
+    __ bind(&return_left);
+    if (!left_reg.is(result_reg)) {
+      __ ldr(result_reg, left_reg);
+    }
+    __ bind(&done);
+  }
+}
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+  DoubleRegister left = ToDoubleRegister(instr->left());
+  DoubleRegister right = ToDoubleRegister(instr->right());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  // All operations except MOD are computed in-place.
+  DCHECK(instr->op() == Token::MOD || left.is(result));
+  switch (instr->op()) {
+    case Token::ADD:
+      __ adbr(result, right);
+      break;
+    case Token::SUB:
+      __ sdbr(result, right);
+      break;
+    case Token::MUL:
+      __ mdbr(result, right);
+      break;
+    case Token::DIV:
+      __ ddbr(result, right);
+      break;
+    case Token::MOD: {
+      __ PrepareCallCFunction(0, 2, scratch0());
+      __ MovToFloatParameters(left, right);
+      __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
+                       0, 2);
+      // Move the result in the double result register.
+      __ MovFromFloatResult(result);
+      break;
+    }
+    default:
+      UNREACHABLE();
+      break;
+  }
+}
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r3));
+  DCHECK(ToRegister(instr->right()).is(r2));
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+}
+
+template <class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition cond) {
+  int left_block = instr->TrueDestination(chunk_);
+  int right_block = instr->FalseDestination(chunk_);
+
+  int next_block = GetNextEmittedBlock();
+
+  if (right_block == left_block || cond == al) {
+    EmitGoto(left_block);
+  } else if (left_block == next_block) {
+    __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block));
+  } else if (right_block == next_block) {
+    __ b(cond, chunk_->GetAssemblyLabel(left_block));
+  } else {
+    __ b(cond, chunk_->GetAssemblyLabel(left_block));
+    __ b(chunk_->GetAssemblyLabel(right_block));
+  }
+}
+
+template <class InstrType>
+void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) {
+  int true_block = instr->TrueDestination(chunk_);
+  __ b(cond, chunk_->GetAssemblyLabel(true_block));
+}
+
+template <class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) {
+  int false_block = instr->FalseDestination(chunk_);
+  __ b(cond, chunk_->GetAssemblyLabel(false_block));
+}
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
+
+void LCodeGen::DoBranch(LBranch* instr) {
+  Representation r = instr->hydrogen()->value()->representation();
+  DoubleRegister dbl_scratch = double_scratch0();
+
+  if (r.IsInteger32()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    __ Cmp32(reg, Operand::Zero());
+    EmitBranch(instr, ne);
+  } else if (r.IsSmi()) {
+    DCHECK(!info()->IsStub());
+    Register reg = ToRegister(instr->value());
+    __ CmpP(reg, Operand::Zero());
+    EmitBranch(instr, ne);
+  } else if (r.IsDouble()) {
+    DCHECK(!info()->IsStub());
+    DoubleRegister reg = ToDoubleRegister(instr->value());
+    __ lzdr(kDoubleRegZero);
+    __ cdbr(reg, kDoubleRegZero);
+    // Test the double value. Zero and NaN are false.
+    Condition lt_gt = static_cast<Condition>(lt | gt);
+
+    EmitBranch(instr, lt_gt);
+  } else {
+    DCHECK(r.IsTagged());
+    Register reg = ToRegister(instr->value());
+    HType type = instr->hydrogen()->value()->type();
+    if (type.IsBoolean()) {
+      DCHECK(!info()->IsStub());
+      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+      EmitBranch(instr, eq);
+    } else if (type.IsSmi()) {
+      DCHECK(!info()->IsStub());
+      __ CmpP(reg, Operand::Zero());
+      EmitBranch(instr, ne);
+    } else if (type.IsJSArray()) {
+      DCHECK(!info()->IsStub());
+      EmitBranch(instr, al);
+    } else if (type.IsHeapNumber()) {
+      DCHECK(!info()->IsStub());
+      __ ld(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+      // Test the double value. Zero and NaN are false.
+      __ lzdr(kDoubleRegZero);
+      __ cdbr(dbl_scratch, kDoubleRegZero);
+      Condition lt_gt = static_cast<Condition>(lt | gt);
+      EmitBranch(instr, lt_gt);
+    } else if (type.IsString()) {
+      DCHECK(!info()->IsStub());
+      __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
+      __ CmpP(ip, Operand::Zero());
+      EmitBranch(instr, ne);
+    } else {
+      ToBooleanICStub::Types expected =
+          instr->hydrogen()->expected_input_types();
+      // Avoid deopts in the case where we've never executed this path before.
+      if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
+
+      if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
+        // undefined -> false.
+        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
+        __ beq(instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
+        // Boolean -> its value.
+        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
+        __ beq(instr->TrueLabel(chunk_));
+        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
+        __ beq(instr->FalseLabel(chunk_));
+      }
+      if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
+        // 'null' -> false.
+        __ CompareRoot(reg, Heap::kNullValueRootIndex);
+        __ beq(instr->FalseLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanICStub::SMI)) {
+        // Smis: 0 -> false, all other -> true.
+        __ CmpP(reg, Operand::Zero());
+        __ beq(instr->FalseLabel(chunk_));
+        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+      } else if (expected.NeedsMap()) {
+        // If we need a map later and have a Smi -> deopt.
+        __ TestIfSmi(reg);
+        DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
+      }
+
+      const Register map = scratch0();
+      if (expected.NeedsMap()) {
+        __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
+
+        if (expected.CanBeUndetectable()) {
+          // Undetectable -> false.
+          __ tm(FieldMemOperand(map, Map::kBitFieldOffset),
+                Operand(1 << Map::kIsUndetectable));
+          __ bne(instr->FalseLabel(chunk_));
+        }
+      }
+
+      if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
+        // spec object -> true.
+        __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
+        __ bge(instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanICStub::STRING)) {
+        // String value -> false iff empty.
+        Label not_string;
+        __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
+        __ bge(&not_string, Label::kNear);
+        __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
+        __ CmpP(ip, Operand::Zero());
+        __ bne(instr->TrueLabel(chunk_));
+        __ b(instr->FalseLabel(chunk_));
+        __ bind(&not_string);
+      }
+
+      if (expected.Contains(ToBooleanICStub::SYMBOL)) {
+        // Symbol value -> true.
+        __ CompareInstanceType(map, ip, SYMBOL_TYPE);
+        __ beq(instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
+        // SIMD value -> true.
+        Label not_simd;
+        __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
+        __ beq(instr->TrueLabel(chunk_));
+      }
+
+      if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
+        // heap number -> false iff +0, -0, or NaN.
+        Label not_heap_number;
+        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
+        __ bne(&not_heap_number, Label::kNear);
+        __ LoadDouble(dbl_scratch,
+                      FieldMemOperand(reg, HeapNumber::kValueOffset));
+        __ lzdr(kDoubleRegZero);
+        __ cdbr(dbl_scratch, kDoubleRegZero);
+        __ bunordered(instr->FalseLabel(chunk_));  // NaN -> false.
+        __ beq(instr->FalseLabel(chunk_));         // +0, -0 -> false.
+        __ b(instr->TrueLabel(chunk_));
+        __ bind(&not_heap_number);
+      }
+
+      if (!expected.IsGeneric()) {
+        // We've seen something for the first time -> deopt.
+        // This can only happen if we are not generic already.
+        DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
+      }
+    }
+  }
+}
+
+void LCodeGen::EmitGoto(int block) {
+  if (!IsNextEmittedBlock(block)) {
+    __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
+  }
+}
+
+void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
+
+Condition LCodeGen::TokenToCondition(Token::Value op) {
+  Condition cond = kNoCondition;
+  switch (op) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      cond = eq;
+      break;
+    case Token::NE:
+    case Token::NE_STRICT:
+      cond = ne;
+      break;
+    case Token::LT:
+      cond = lt;
+      break;
+    case Token::GT:
+      cond = gt;
+      break;
+    case Token::LTE:
+      cond = le;
+      break;
+    case Token::GTE:
+      cond = ge;
+      break;
+    case Token::IN:
+    case Token::INSTANCEOF:
+    default:
+      UNREACHABLE();
+  }
+  return cond;
+}
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+  LOperand* left = instr->left();
+  LOperand* right = instr->right();
+  bool is_unsigned =
+      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+  Condition cond = TokenToCondition(instr->op());
+
+  if (left->IsConstantOperand() && right->IsConstantOperand()) {
+    // We can statically evaluate the comparison.
+    double left_val = ToDouble(LConstantOperand::cast(left));
+    double right_val = ToDouble(LConstantOperand::cast(right));
+    int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
+                         ? instr->TrueDestination(chunk_)
+                         : instr->FalseDestination(chunk_);
+    EmitGoto(next_block);
+  } else {
+    if (instr->is_double()) {
+      // Compare left and right operands as doubles and load the
+      // resulting flags into the normal status register.
+      __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right));
+      // If a NaN is involved, i.e. the result is unordered,
+      // jump to false block label.
+      __ bunordered(instr->FalseLabel(chunk_));
+    } else {
+      if (right->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(right));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          if (is_unsigned) {
+            __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
+          } else {
+            __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
+          }
+        } else {
+          if (is_unsigned) {
+            __ CmpLogical32(ToRegister(left), ToOperand(right));
+          } else {
+            __ Cmp32(ToRegister(left), ToOperand(right));
+          }
+        }
+      } else if (left->IsConstantOperand()) {
+        int32_t value = ToInteger32(LConstantOperand::cast(left));
+        if (instr->hydrogen_value()->representation().IsSmi()) {
+          if (is_unsigned) {
+            __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
+          } else {
+            __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
+          }
+        } else {
+          if (is_unsigned) {
+            __ CmpLogical32(ToRegister(right), ToOperand(left));
+          } else {
+            __ Cmp32(ToRegister(right), ToOperand(left));
+          }
+        }
+        // We commuted the operands, so commute the condition.
+        cond = CommuteCondition(cond);
+      } else if (instr->hydrogen_value()->representation().IsSmi()) {
+        if (is_unsigned) {
+          __ CmpLogicalP(ToRegister(left), ToRegister(right));
+        } else {
+          __ CmpP(ToRegister(left), ToRegister(right));
+        }
+      } else {
+        if (is_unsigned) {
+          __ CmpLogical32(ToRegister(left), ToRegister(right));
+        } else {
+          __ Cmp32(ToRegister(left), ToRegister(right));
+        }
+      }
+    }
+    EmitBranch(instr, cond);
+  }
+}
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+  Register left = ToRegister(instr->left());
+  Register right = ToRegister(instr->right());
+
+  __ CmpP(left, right);
+  EmitBranch(instr, eq);
+}
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+  if (instr->hydrogen()->representation().IsTagged()) {
+    Register input_reg = ToRegister(instr->object());
+    __ CmpP(input_reg, Operand(factory()->the_hole_value()));
+    EmitBranch(instr, eq);
+    return;
+  }
+
+  DoubleRegister input_reg = ToDoubleRegister(instr->object());
+  __ cdbr(input_reg, input_reg);
+  EmitFalseBranch(instr, ordered);
+
+  Register scratch = scratch0();
+  // Convert to GPR and examine the upper 32 bits
+  __ lgdr(scratch, input_reg);
+  __ srlg(scratch, scratch, Operand(32));
+  __ Cmp32(scratch, Operand(kHoleNanUpper32));
+  EmitBranch(instr, eq);
+}
+
+Condition LCodeGen::EmitIsString(Register input, Register temp1,
+                                 Label* is_not_string,
+                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
+  if (check_needed == INLINE_SMI_CHECK) {
+    __ JumpIfSmi(input, is_not_string);
+  }
+  __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
+
+  return lt;
+}
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp1 = ToRegister(instr->temp());
+
+  SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
+                              ? OMIT_SMI_CHECK
+                              : INLINE_SMI_CHECK;
+  Condition true_cond =
+      EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
+
+  EmitBranch(instr, true_cond);
+}
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+  Register input_reg = EmitLoadRegister(instr->value(), ip);
+  __ TestIfSmi(input_reg);
+  EmitBranch(instr, eq);
+}
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+  __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ tm(FieldMemOperand(temp, Map::kBitFieldOffset),
+        Operand(1 << Map::kIsUndetectable));
+  EmitBranch(instr, ne);
+}
+
+static Condition ComputeCompareCondition(Token::Value op) {
+  switch (op) {
+    case Token::EQ_STRICT:
+    case Token::EQ:
+      return eq;
+    case Token::LT:
+      return lt;
+    case Token::GT:
+      return gt;
+    case Token::LTE:
+      return le;
+    case Token::GTE:
+      return ge;
+    default:
+      UNREACHABLE();
+      return kNoCondition;
+  }
+}
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r3));
+  DCHECK(ToRegister(instr->right()).is(r2));
+
+  Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
+  CallCode(code, RelocInfo::CODE_TARGET, instr);
+  __ CompareRoot(r2, Heap::kTrueValueRootIndex);
+  EmitBranch(instr, eq);
+}
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == FIRST_TYPE) return to;
+  DCHECK(from == to || to == LAST_TYPE);
+  return from;
+}
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+  InstanceType from = instr->from();
+  InstanceType to = instr->to();
+  if (from == to) return eq;
+  if (to == LAST_TYPE) return ge;
+  if (from == FIRST_TYPE) return le;
+  UNREACHABLE();
+  return eq;
+}
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+  Register scratch = scratch0();
+  Register input = ToRegister(instr->value());
+
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+  }
+
+  __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
+  EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  __ AssertString(input);
+
+  __ LoadlW(result, FieldMemOperand(input, String::kHashFieldOffset));
+  __ IndexFromHash(result, result);
+}
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+    LHasCachedArrayIndexAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ LoadlW(scratch, FieldMemOperand(input, String::kHashFieldOffset));
+  __ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
+  __ AndP(r0, scratch);
+  EmitBranch(instr, eq);
+}
+
+// Branches to a label or falls through with the answer in flags.  Trashes
+// the temp registers, but not the input.
+void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
+                               Handle<String> class_name, Register input,
+                               Register temp, Register temp2) {
+  DCHECK(!input.is(temp));
+  DCHECK(!input.is(temp2));
+  DCHECK(!temp.is(temp2));
+
+  __ JumpIfSmi(input, is_false);
+
+  __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
+  STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
+  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+    __ bge(is_true);
+  } else {
+    __ bge(is_false);
+  }
+
+  // Check if the constructor in the map is a function.
+  Register instance_type = ip;
+  __ GetMapConstructor(temp, temp, temp2, instance_type);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
+  if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
+    __ bne(is_true);
+  } else {
+    __ bne(is_false);
+  }
+
+  // temp now contains the constructor function. Grab the
+  // instance class name from there.
+  __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+  __ LoadP(temp,
+           FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
+  // The class name we are testing against is internalized since it's a literal.
+  // The name in the constructor is internalized because of the way the context
+  // is booted.  This routine isn't expected to work for random API-created
+  // classes and it doesn't have to because you can't access it with natives
+  // syntax.  Since both sides are internalized it is sufficient to use an
+  // identity comparison.
+  __ CmpP(temp, Operand(class_name));
+  // End with the answer in flags.
+}
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+  Register temp = scratch0();
+  Register temp2 = ToRegister(instr->temp());
+  Handle<String> class_name = instr->hydrogen()->class_name();
+
+  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+                  class_name, input, temp, temp2);
+
+  EmitBranch(instr, eq);
+}
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+  Register reg = ToRegister(instr->value());
+  Register temp = ToRegister(instr->temp());
+
+  __ mov(temp, Operand(instr->map()));
+  __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
+  EmitBranch(instr, eq);
+}
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+  DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+  DCHECK(ToRegister(instr->result()).is(r2));
+  InstanceOfStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+    LHasInPrototypeChainAndBranch* instr) {
+  Register const object = ToRegister(instr->object());
+  Register const object_map = scratch0();
+  Register const object_instance_type = ip;
+  Register const object_prototype = object_map;
+  Register const prototype = ToRegister(instr->prototype());
+
+  // The {object} must be a spec object.  It's sufficient to know that {object}
+  // is not a smi, since all other non-spec objects have {null} prototypes and
+  // will be ruled out below.
+  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+    __ TestIfSmi(object);
+    EmitFalseBranch(instr, eq);
+  }
+  // Loop through the {object}s prototype chain looking for the {prototype}.
+  __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
+  Label loop;
+  __ bind(&loop);
+
+  // Deoptimize if the object needs to be access checked.
+  __ LoadlB(object_instance_type,
+            FieldMemOperand(object_map, Map::kBitFieldOffset));
+  __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
+  DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, cr0);
+  // Deoptimize for proxies.
+  __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
+  DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
+  __ LoadP(object_prototype,
+           FieldMemOperand(object_map, Map::kPrototypeOffset));
+  __ CmpP(object_prototype, prototype);
+  EmitTrueBranch(instr, eq);
+  __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
+  EmitFalseBranch(instr, eq);
+  __ LoadP(object_map,
+           FieldMemOperand(object_prototype, HeapObject::kMapOffset));
+  __ b(&loop);
+}
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Token::Value op = instr->op();
+
+  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+  // This instruction also signals no smi code inlined
+  __ CmpP(r2, Operand::Zero());
+
+  Condition condition = ComputeCompareCondition(op);
+  Label true_value, done;
+
+  __ b(condition, &true_value, Label::kNear);
+
+  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
+  __ b(&done, Label::kNear);
+
+  __ bind(&true_value);
+  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
+
+  __ bind(&done);
+}
+
+void LCodeGen::DoReturn(LReturn* instr) {
+  if (FLAG_trace && info()->IsOptimizing()) {
+    // Push the return value on the stack as the parameter.
+    // Runtime::TraceExit returns its parameter in r2.  We're leaving the code
+    // managed by the register allocator and tearing down the frame, it's
+    // safe to write to the context register.
+    __ push(r2);
+    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntime(Runtime::kTraceExit);
+  }
+  if (info()->saves_caller_doubles()) {
+    RestoreCallerDoubles();
+  }
+  if (instr->has_constant_parameter_count()) {
+    int parameter_count = ToInteger32(instr->constant_parameter_count());
+    int32_t sp_delta = (parameter_count + 1) * kPointerSize;
+    if (NeedsEagerFrame()) {
+      masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
+    } else if (sp_delta != 0) {
+      // TODO(joransiu): Clean this up into Macro Assembler
+      if (sp_delta >= 0 && sp_delta < 4096)
+        __ la(sp, MemOperand(sp, sp_delta));
+      else
+        __ lay(sp, MemOperand(sp, sp_delta));
+    }
+  } else {
+    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
+    Register reg = ToRegister(instr->parameter_count());
+    // The argument count parameter is a smi
+    if (NeedsEagerFrame()) {
+      masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
+    }
+    __ SmiToPtrArrayOffset(r0, reg);
+    __ AddP(sp, sp, r0);
+  }
+
+  __ Ret();
+}
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = LoadDescriptor::SlotRegister();
+  DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+  DCHECK(slot_register.is(r2));
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  // No need to allocate this register.
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
+}
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+  Register vector_register = ToRegister(instr->temp_vector());
+  Register slot_register = ToRegister(instr->temp_slot());
+
+  AllowDeferredHandleDereference vector_structure_check;
+  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+  __ Move(vector_register, vector);
+  FeedbackVectorSlot slot = instr->hydrogen()->slot();
+  int index = vector->GetIndex(slot);
+  __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
+}
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->global_object())
+             .is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+  Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
+                        isolate(), instr->typeof_mode(), PREMONOMORPHIC)
+                        .code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register result = ToRegister(instr->result());
+  __ LoadP(result, ContextMemOperand(context, instr->slot_index()));
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    } else {
+      Label skip;
+      __ bne(&skip, Label::kNear);
+      __ mov(result, Operand(factory()->undefined_value()));
+      __ bind(&skip);
+    }
+  }
+}
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+  Register context = ToRegister(instr->context());
+  Register value = ToRegister(instr->value());
+  Register scratch = scratch0();
+  MemOperand target = ContextMemOperand(context, instr->slot_index());
+
+  Label skip_assignment;
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    __ LoadP(scratch, target);
+    __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
+    if (instr->hydrogen()->DeoptimizesOnHole()) {
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    } else {
+      __ bne(&skip_assignment);
+    }
+  }
+
+  __ StoreP(value, target);
+  if (instr->hydrogen()->NeedsWriteBarrier()) {
+    SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
+                                ? OMIT_SMI_CHECK
+                                : INLINE_SMI_CHECK;
+    __ RecordWriteContextSlot(context, target.offset(), value, scratch,
+                              GetLinkRegisterState(), kSaveFPRegs,
+                              EMIT_REMEMBERED_SET, check_needed);
+  }
+
+  __ bind(&skip_assignment);
+}
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+  HObjectAccess access = instr->hydrogen()->access();
+  int offset = access.offset();
+  Register object = ToRegister(instr->object());
+
+  if (access.IsExternalMemory()) {
+    Register result = ToRegister(instr->result());
+    MemOperand operand = MemOperand(object, offset);
+    __ LoadRepresentation(result, operand, access.representation(), r0);
+    return;
+  }
+
+  if (instr->hydrogen()->representation().IsDouble()) {
+    DCHECK(access.IsInobject());
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ ld(result, FieldMemOperand(object, offset));
+    return;
+  }
+
+  Register result = ToRegister(instr->result());
+  if (!access.IsInobject()) {
+    __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+    object = result;
+  }
+
+  Representation representation = access.representation();
+
+#if V8_TARGET_ARCH_S390X
+  // 64-bit Smi optimization
+  if (representation.IsSmi() &&
+      instr->hydrogen()->representation().IsInteger32()) {
+    // Read int value directly from upper half of the smi.
+    offset = SmiWordOffset(offset);
+    representation = Representation::Integer32();
+  }
+#endif
+
+  __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
+                        r0);
+}
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  // Name is always in r4.
+  __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
+  EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+  Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
+                        isolate(), NOT_INSIDE_TYPEOF,
+                        instr->hydrogen()->initialization_state())
+                        .code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+  Register scratch = scratch0();
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+
+  // Get the prototype or initial map from the function.
+  __ LoadP(result,
+           FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+  // Check that the function has a prototype or an initial map.
+  __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+  DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+
+  // If the function does not have an initial map, we're done.
+  Label done;
+  __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
+  __ bne(&done, Label::kNear);
+
+  // Get the prototype from the initial map.
+  __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+  // All done.
+  __ bind(&done);
+}
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadRoot(result, instr->index());
+}
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+  Register arguments = ToRegister(instr->arguments());
+  Register result = ToRegister(instr->result());
+  // There are two words between the frame pointer and the last argument.
+  // Subtracting from length accounts for one of them add one more.
+  if (instr->length()->IsConstantOperand()) {
+    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+    if (instr->index()->IsConstantOperand()) {
+      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+      int index = (const_length - const_index) + 1;
+      __ LoadP(result, MemOperand(arguments, index * kPointerSize));
+    } else {
+      Register index = ToRegister(instr->index());
+      __ SubP(result, index, Operand(const_length + 1));
+      __ LoadComplementRR(result, result);
+      __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
+      __ LoadP(result, MemOperand(arguments, result));
+    }
+  } else if (instr->index()->IsConstantOperand()) {
+    Register length = ToRegister(instr->length());
+    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    int loc = const_index - 1;
+    if (loc != 0) {
+      __ SubP(result, length, Operand(loc));
+      __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
+      __ LoadP(result, MemOperand(arguments, result));
+    } else {
+      __ ShiftLeftP(result, length, Operand(kPointerSizeLog2));
+      __ LoadP(result, MemOperand(arguments, result));
+    }
+  } else {
+    Register length = ToRegister(instr->length());
+    Register index = ToRegister(instr->index());
+    __ SubP(result, length, index);
+    __ AddP(result, result, Operand(1));
+    __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
+    __ LoadP(result, MemOperand(arguments, result));
+  }
+}
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  int base_offset = instr->base_offset();
+  bool use_scratch = false;
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    if (key_is_constant) {
+      base_offset += constant_key << element_size_shift;
+      if (!is_int20(base_offset)) {
+        __ mov(scratch0(), Operand(base_offset));
+        base_offset = 0;
+        use_scratch = true;
+      }
+    } else {
+      __ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi);
+      use_scratch = true;
+    }
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      if (!use_scratch) {
+        __ ldeb(result, MemOperand(external_pointer, base_offset));
+      } else {
+        __ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset));
+      }
+    } else {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+      if (!use_scratch) {
+        __ ld(result, MemOperand(external_pointer, base_offset));
+      } else {
+        __ ld(result, MemOperand(scratch0(), external_pointer, base_offset));
+      }
+    }
+  } else {
+    Register result = ToRegister(instr->result());
+    MemOperand mem_operand =
+        PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
+                            constant_key, element_size_shift, base_offset);
+    switch (elements_kind) {
+      case INT8_ELEMENTS:
+        __ LoadB(result, mem_operand);
+        break;
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+        __ LoadlB(result, mem_operand);
+        break;
+      case INT16_ELEMENTS:
+        __ LoadHalfWordP(result, mem_operand);
+        break;
+      case UINT16_ELEMENTS:
+        __ LoadLogicalHalfWordP(result, mem_operand);
+        break;
+      case INT32_ELEMENTS:
+        __ LoadW(result, mem_operand, r0);
+        break;
+      case UINT32_ELEMENTS:
+        __ LoadlW(result, mem_operand, r0);
+        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+          __ CmpLogical32(result, Operand(0x80000000));
+          DeoptimizeIf(ge, instr, Deoptimizer::kNegativeValue);
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+      case FAST_STRING_WRAPPER_ELEMENTS:
+      case SLOW_STRING_WRAPPER_ELEMENTS:
+      case NO_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+  Register elements = ToRegister(instr->elements());
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  Register key = no_reg;
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  Register scratch = scratch0();
+
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+
+  bool use_scratch = false;
+  intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize;
+  if (!key_is_constant) {
+    use_scratch = true;
+    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
+  }
+
+  // Memory references support up to 20-bits signed displacement in RXY form
+  // Include Register::kExponentOffset in check, so we are guaranteed not to
+  // overflow displacement later.
+  if (!is_int20(base_offset + Register::kExponentOffset)) {
+    use_scratch = true;
+    if (key_is_constant) {
+      __ mov(scratch, Operand(base_offset));
+    } else {
+      __ AddP(scratch, Operand(base_offset));
+    }
+    base_offset = 0;
+  }
+
+  if (!use_scratch) {
+    __ ld(result, MemOperand(elements, base_offset));
+  } else {
+    __ ld(result, MemOperand(scratch, elements, base_offset));
+  }
+
+  if (instr->hydrogen()->RequiresHoleCheck()) {
+    if (!use_scratch) {
+      __ LoadlW(r0,
+                MemOperand(elements, base_offset + Register::kExponentOffset));
+    } else {
+      __ LoadlW(r0, MemOperand(scratch, elements,
+                               base_offset + Register::kExponentOffset));
+    }
+    __ Cmp32(r0, Operand(kHoleNanUpper32));
+    DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+  }
+}
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+  HLoadKeyed* hinstr = instr->hydrogen();
+  Register elements = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+  int offset = instr->base_offset();
+
+  if (instr->key()->IsConstantOperand()) {
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+  } else {
+    Register key = ToRegister(instr->key());
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (hinstr->key()->representation().IsSmi()) {
+      __ SmiToPtrArrayOffset(scratch, key);
+    } else {
+      __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
+    }
+  }
+
+  bool requires_hole_check = hinstr->RequiresHoleCheck();
+  Representation representation = hinstr->representation();
+
+#if V8_TARGET_ARCH_S390X
+  // 64-bit Smi optimization
+  if (representation.IsInteger32() &&
+      hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
+    DCHECK(!requires_hole_check);
+    // Read int value directly from upper half of the smi.
+    offset = SmiWordOffset(offset);
+  }
+#endif
+
+  if (instr->key()->IsConstantOperand()) {
+    __ LoadRepresentation(result, MemOperand(elements, offset), representation,
+                          r1);
+  } else {
+    __ LoadRepresentation(result, MemOperand(scratch, elements, offset),
+                          representation, r1);
+  }
+
+  // Check for the hole value.
+  if (requires_hole_check) {
+    if (IsFastSmiElementsKind(hinstr->elements_kind())) {
+      __ TestIfSmi(result);
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
+    } else {
+      __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
+      DeoptimizeIf(eq, instr, Deoptimizer::kHole);
+    }
+  } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+    DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
+    Label done;
+    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+    __ CmpP(result, scratch);
+    __ bne(&done);
+    if (info()->IsStub()) {
+      // A stub can safely convert the hole to undefined only if the array
+      // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+      // it needs to bail out.
+      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
+      __ LoadP(result, FieldMemOperand(result, Cell::kValueOffset));
+      __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kArrayProtectorValid), r0);
+      DeoptimizeIf(ne, instr, Deoptimizer::kHole);
+    }
+    __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+    __ bind(&done);
+  }
+}
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+  if (instr->is_fixed_typed_array()) {
+    DoLoadKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->representation().IsDouble()) {
+    DoLoadKeyedFixedDoubleArray(instr);
+  } else {
+    DoLoadKeyedFixedArray(instr);
+  }
+}
+
+MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
+                                         bool key_is_constant, bool key_is_smi,
+                                         int constant_key,
+                                         int element_size_shift,
+                                         int base_offset) {
+  Register scratch = scratch0();
+
+  if (key_is_constant) {
+    int offset = (base_offset + (constant_key << element_size_shift));
+    if (!is_int20(offset)) {
+      __ mov(scratch, Operand(offset));
+      return MemOperand(base, scratch);
+    } else {
+      return MemOperand(base,
+                        (constant_key << element_size_shift) + base_offset);
+    }
+  }
+
+  bool needs_shift =
+      (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
+
+  if (needs_shift) {
+    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
+  } else {
+    scratch = key;
+  }
+
+  if (!is_int20(base_offset)) {
+    __ AddP(scratch, Operand(base_offset));
+    base_offset = 0;
+  }
+  return MemOperand(scratch, base, base_offset);
+}
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+                        isolate(), instr->hydrogen()->initialization_state())
+                        .code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+  Register scratch = scratch0();
+  Register result = ToRegister(instr->result());
+
+  if (instr->hydrogen()->from_inlined()) {
+    __ lay(result, MemOperand(sp, -2 * kPointerSize));
+  } else if (instr->hydrogen()->arguments_adaptor()) {
+    // Check if the calling frame is an arguments adaptor frame.
+    Label done, adapted;
+    __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+    __ LoadP(
+        result,
+        MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
+    __ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+
+    // Result is the frame pointer for the frame if not adapted and for the real
+    // frame below the adaptor frame if adapted.
+    __ beq(&adapted, Label::kNear);
+    __ LoadRR(result, fp);
+    __ b(&done, Label::kNear);
+
+    __ bind(&adapted);
+    __ LoadRR(result, scratch);
+    __ bind(&done);
+  } else {
+    __ LoadRR(result, fp);
+  }
+}
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+  Register elem = ToRegister(instr->elements());
+  Register result = ToRegister(instr->result());
+
+  Label done;
+
+  // If no arguments adaptor frame the number of arguments is fixed.
+  __ CmpP(fp, elem);
+  __ mov(result, Operand(scope()->num_parameters()));
+  __ beq(&done, Label::kNear);
+
+  // Arguments adaptor frame present. Get argument length from there.
+  __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(result,
+           MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ SmiUntag(result);
+
+  // Argument length is in result register.
+  __ bind(&done);
+}
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // If the receiver is null or undefined, we have to pass the global
+  // object as a receiver to normal functions. Values have to be
+  // passed unchanged to builtins and strict-mode functions.
+  Label global_object, result_in_receiver;
+
+  if (!instr->hydrogen()->known_function()) {
+    // Do not transform the receiver to object for strict mode
+    // functions or builtins.
+    __ LoadP(scratch,
+             FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+    __ LoadlW(scratch, FieldMemOperand(
+                           scratch, SharedFunctionInfo::kCompilerHintsOffset));
+    __ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
+                                 (1 << SharedFunctionInfo::kNativeBit)));
+    __ bne(&result_in_receiver, Label::kNear);
+  }
+
+  // Normal function. Replace undefined or null with global receiver.
+  __ CompareRoot(receiver, Heap::kNullValueRootIndex);
+  __ beq(&global_object, Label::kNear);
+  __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
+  __ beq(&global_object, Label::kNear);
+
+  // Deoptimize if the receiver is not a JS object.
+  __ TestIfSmi(receiver);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
+  __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
+  DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
+
+  __ b(&result_in_receiver, Label::kNear);
+  __ bind(&global_object);
+  __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
+  __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
+  __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
+
+  if (result.is(receiver)) {
+    __ bind(&result_in_receiver);
+  } else {
+    Label result_ok;
+    __ b(&result_ok, Label::kNear);
+    __ bind(&result_in_receiver);
+    __ LoadRR(result, receiver);
+    __ bind(&result_ok);
+  }
+}
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+  Register receiver = ToRegister(instr->receiver());
+  Register function = ToRegister(instr->function());
+  Register length = ToRegister(instr->length());
+  Register elements = ToRegister(instr->elements());
+  Register scratch = scratch0();
+  DCHECK(receiver.is(r2));  // Used for parameter count.
+  DCHECK(function.is(r3));  // Required by InvokeFunction.
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  // Copy the arguments to this function possibly from the
+  // adaptor frame below it.
+  const uint32_t kArgumentsLimit = 1 * KB;
+  __ CmpLogicalP(length, Operand(kArgumentsLimit));
+  DeoptimizeIf(gt, instr, Deoptimizer::kTooManyArguments);
+
+  // Push the receiver and use the register to keep the original
+  // number of arguments.
+  __ push(receiver);
+  __ LoadRR(receiver, length);
+  // The arguments are at a one pointer size offset from elements.
+  __ AddP(elements, Operand(1 * kPointerSize));
+
+  // Loop through the arguments pushing them onto the execution
+  // stack.
+  Label invoke, loop;
+  // length is a small non-negative integer, due to the test above.
+  __ CmpP(length, Operand::Zero());
+  __ beq(&invoke, Label::kNear);
+  __ bind(&loop);
+  __ ShiftLeftP(r1, length, Operand(kPointerSizeLog2));
+  __ LoadP(scratch, MemOperand(elements, r1));
+  __ push(scratch);
+  __ BranchOnCount(length, &loop);
+
+  __ bind(&invoke);
+
+  InvokeFlag flag = CALL_FUNCTION;
+  if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
+    DCHECK(!info()->saves_caller_doubles());
+    // TODO(ishell): drop current frame before pushing arguments to the stack.
+    flag = JUMP_FUNCTION;
+    ParameterCount actual(r2);
+    // It is safe to use r5, r6 and r7 as scratch registers here given that
+    // 1) we are not going to return to caller function anyway,
+    // 2) r5 (new.target) will be initialized below.
+    PrepareForTailCall(actual, r5, r6, r7);
+  }
+
+  DCHECK(instr->HasPointerMap());
+  LPointerMap* pointers = instr->pointer_map();
+  SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
+  // The number of arguments is stored in receiver which is r2, as expected
+  // by InvokeFunction.
+  ParameterCount actual(receiver);
+  __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
+}
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+  LOperand* argument = instr->value();
+  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+    Abort(kDoPushArgumentNotImplementedForDoubleType);
+  } else {
+    Register argument_reg = EmitLoadRegister(argument, ip);
+    __ push(argument_reg);
+  }
+}
+
+void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+  Register result = ToRegister(instr->result());
+  __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+void LCodeGen::DoContext(LContext* instr) {
+  // If there is a non-return use, the context must be moved to a register.
+  Register result = ToRegister(instr->result());
+  if (info()->IsOptimizing()) {
+    __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  } else {
+    // If there is no frame, the context must be in cp.
+    DCHECK(result.is(cp));
+  }
+}
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  __ Move(scratch0(), instr->hydrogen()->pairs());
+  __ push(scratch0());
+  __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
+  __ push(scratch0());
+  CallRuntime(Runtime::kDeclareGlobals, instr);
+}
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+                                 int formal_parameter_count, int arity,
+                                 bool is_tail_call, LInstruction* instr) {
+  bool dont_adapt_arguments =
+      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+  bool can_invoke_directly =
+      dont_adapt_arguments || formal_parameter_count == arity;
+
+  Register function_reg = r3;
+
+  LPointerMap* pointers = instr->pointer_map();
+
+  if (can_invoke_directly) {
+    // Change context.
+    __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
+
+    // Always initialize new target and number of actual arguments.
+    __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+    __ mov(r2, Operand(arity));
+
+    bool is_self_call = function.is_identical_to(info()->closure());
+
+    // Invoke function.
+    if (is_self_call) {
+      Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
+      if (is_tail_call) {
+        __ Jump(self, RelocInfo::CODE_TARGET);
+      } else {
+        __ Call(self, RelocInfo::CODE_TARGET);
+      }
+    } else {
+      __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
+      if (is_tail_call) {
+        __ JumpToJSEntry(ip);
+      } else {
+        __ CallJSEntry(ip);
+      }
+    }
+
+    if (!is_tail_call) {
+      // Set up deoptimization.
+      RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+    }
+  } else {
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount actual(arity);
+    ParameterCount expected(formal_parameter_count);
+    InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
+    __ InvokeFunction(function_reg, expected, actual, flag, generator);
+  }
+}
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+  DCHECK(instr->context() != NULL);
+  DCHECK(ToRegister(instr->context()).is(cp));
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // Deoptimize if not a heap number.
+  __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+  __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+
+  Label done;
+  Register exponent = scratch0();
+  scratch = no_reg;
+  __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+  // Check the sign of the argument. If the argument is positive, just
+  // return it.
+  __ Cmp32(exponent, Operand::Zero());
+  // Move the input to the result if necessary.
+  __ Move(result, input);
+  __ bge(&done);
+
+  // Input is negative. Reverse its sign.
+  // Preserve the value of all registers.
+  {
+    PushSafepointRegistersScope scope(this);
+
+    // Registers were saved at the safepoint, so we can use
+    // many scratch registers.
+    Register tmp1 = input.is(r3) ? r2 : r3;
+    Register tmp2 = input.is(r4) ? r2 : r4;
+    Register tmp3 = input.is(r5) ? r2 : r5;
+    Register tmp4 = input.is(r6) ? r2 : r6;
+
+    // exponent: floating point exponent value.
+
+    Label allocated, slow;
+    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
+    __ b(&allocated);
+
+    // Slow case: Call the runtime system to do the number allocation.
+    __ bind(&slow);
+
+    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+                            instr->context());
+    // Set the pointer to the new heap number in tmp.
+    if (!tmp1.is(r2)) __ LoadRR(tmp1, r2);
+    // Restore input_reg after call to runtime.
+    __ LoadFromSafepointRegisterSlot(input, input);
+    __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+
+    __ bind(&allocated);
+    // exponent: floating point exponent value.
+    // tmp1: allocated heap number.
+
+    // Clear the sign bit.
+    __ nilf(exponent, Operand(~HeapNumber::kSignMask));
+    __ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
+    __ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
+    __ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
+
+    __ StoreToSafepointRegisterSlot(tmp1, result);
+  }
+
+  __ bind(&done);
+}
+
+void LCodeGen::EmitMathAbs(LMathAbs* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Label done;
+  __ CmpP(input, Operand::Zero());
+  __ Move(result, input);
+  __ bge(&done, Label::kNear);
+  __ LoadComplementRR(result, result);
+  // Deoptimize on overflow.
+  DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
+  __ bind(&done);
+}
+
+#if V8_TARGET_ARCH_S390X
+void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Label done;
+  __ Cmp32(input, Operand::Zero());
+  __ Move(result, input);
+  __ bge(&done, Label::kNear);
+
+  // Deoptimize on overflow.
+  __ Cmp32(input, Operand(0x80000000));
+  DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
+
+  __ LoadComplementRR(result, result);
+  __ bind(&done);
+}
+#endif
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+  // Class for deferred case.
+  class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
+   public:
+    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override {
+      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMathAbs* instr_;
+  };
+
+  Representation r = instr->hydrogen()->value()->representation();
+  if (r.IsDouble()) {
+    DoubleRegister input = ToDoubleRegister(instr->value());
+    DoubleRegister result = ToDoubleRegister(instr->result());
+    __ lpdbr(result, input);
+#if V8_TARGET_ARCH_S390X
+  } else if (r.IsInteger32()) {
+    EmitInteger32MathAbs(instr);
+  } else if (r.IsSmi()) {
+#else
+  } else if (r.IsSmiOrInteger32()) {
+#endif
+    EmitMathAbs(instr);
+  } else {
+    // Representation is tagged.
+    DeferredMathAbsTaggedHeapNumber* deferred =
+        new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
+    Register input = ToRegister(instr->value());
+    // Smi check.
+    __ JumpIfNotSmi(input, deferred->entry());
+    // If smi, handle it directly.
+    EmitMathAbs(instr);
+    __ bind(deferred->exit());
+  }
+}
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Register input_high = scratch0();
+  Register scratch = ip;
+  Label done, exact;
+
+  __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
+                   &exact);
+  DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+  __ bind(&exact);
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // Test for -0.
+    __ CmpP(result, Operand::Zero());
+    __ bne(&done, Label::kNear);
+    __ Cmp32(input_high, Operand::Zero());
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+  }
+  __ bind(&done);
+}
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
+  DoubleRegister input_plus_dot_five = double_scratch1;
+  Register scratch1 = scratch0();
+  Register scratch2 = ip;
+  DoubleRegister dot_five = double_scratch0();
+  Label convert, done;
+
+  __ LoadDoubleLiteral(dot_five, 0.5, r0);
+  __ lpdbr(double_scratch1, input);
+  __ cdbr(double_scratch1, dot_five);
+  DeoptimizeIf(unordered, instr, Deoptimizer::kLostPrecisionOrNaN);
+  // If input is in [-0.5, -0], the result is -0.
+  // If input is in [+0, +0.5[, the result is +0.
+  // If the input is +0.5, the result is 1.
+  __ bgt(&convert, Label::kNear);  // Out of [-0.5, +0.5].
+  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+    // [-0.5, -0] (negative) yields minus zero.
+    __ TestDoubleSign(input, scratch1);
+    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+  }
+  Label return_zero;
+  __ cdbr(input, dot_five);
+  __ bne(&return_zero, Label::kNear);
+  __ LoadImmP(result, Operand(1));  // +0.5.
+  __ b(&done, Label::kNear);
+  // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
+  // flag kBailoutOnMinusZero.
+  __ bind(&return_zero);
+  __ LoadImmP(result, Operand::Zero());
+  __ b(&done, Label::kNear);
+
+  __ bind(&convert);
+  __ ldr(input_plus_dot_five, input);
+  __ adbr(input_plus_dot_five, dot_five);
+  // Reuse dot_five (double_scratch0) as we no longer need this value.
+  __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
+                   double_scratch0(), &done, &done);
+  DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
+  __ bind(&done);
+}
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+  DoubleRegister input_reg = ToDoubleRegister(instr->value());
+  DoubleRegister output_reg = ToDoubleRegister(instr->result());
+
+  // Round double to float
+  __ ledbr(output_reg, input_reg);
+  // Extend from float to double
+  __ ldebr(output_reg, output_reg);
+}
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  __ sqdbr(result, input);
+}
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister temp = double_scratch0();
+
+  // Note that according to ECMA-262 15.8.2.13:
+  // Math.pow(-Infinity, 0.5) == Infinity
+  // Math.sqrt(-Infinity) == NaN
+  Label skip, done;
+
+  __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
+  __ cdbr(input, temp);
+  __ bne(&skip, Label::kNear);
+  __ lcdbr(result, temp);
+  __ b(&done, Label::kNear);
+
+  // Add +0 to convert -0 to +0.
+  __ bind(&skip);
+  __ ldr(result, input);
+  __ lzdr(kDoubleRegZero);
+  __ adbr(result, kDoubleRegZero);
+  __ sqdbr(result, result);
+  __ bind(&done);
+}
+
+void LCodeGen::DoPower(LPower* instr) {
+  Representation exponent_type = instr->hydrogen()->right()->representation();
+  // Having marked this as a call, we can use any registers.
+  // Just make sure that the input/output registers are the expected ones.
+  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
+  DCHECK(!instr->right()->IsDoubleRegister() ||
+         ToDoubleRegister(instr->right()).is(d2));
+  DCHECK(!instr->right()->IsRegister() ||
+         ToRegister(instr->right()).is(tagged_exponent));
+  DCHECK(ToDoubleRegister(instr->left()).is(d1));
+  DCHECK(ToDoubleRegister(instr->result()).is(d3));
+
+  if (exponent_type.IsSmi()) {
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsTagged()) {
+    Label no_deopt;
+    __ JumpIfSmi(tagged_exponent, &no_deopt);
+    __ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
+    __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+    __ bind(&no_deopt);
+    MathPowStub stub(isolate(), MathPowStub::TAGGED);
+    __ CallStub(&stub);
+  } else if (exponent_type.IsInteger32()) {
+    MathPowStub stub(isolate(), MathPowStub::INTEGER);
+    __ CallStub(&stub);
+  } else {
+    DCHECK(exponent_type.IsDouble());
+    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+    __ CallStub(&stub);
+  }
+}
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+  DoubleRegister input = ToDoubleRegister(instr->value());
+  DoubleRegister result = ToDoubleRegister(instr->result());
+  DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
+  DoubleRegister double_scratch2 = double_scratch0();
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+
+  MathExpGenerator::EmitMathExp(masm(), input, result, double_scratch1,
+                                double_scratch2, temp1, temp2, scratch0());
+}
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+  __ PrepareCallCFunction(0, 1, scratch0());
+  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
+  __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 0,
+                   1);
+  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
+}
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  Label done;
+  __ llgfr(result, input);
+  __ flogr(r0, result);
+  __ LoadRR(result, r0);
+  __ CmpP(r0, Operand::Zero());
+  __ beq(&done, Label::kNear);
+  __ SubP(result, Operand(32));
+  __ bind(&done);
+}
+
+void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
+                                  Register scratch1, Register scratch2,
+                                  Register scratch3) {
+#if DEBUG
+  if (actual.is_reg()) {
+    DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
+  } else {
+    DCHECK(!AreAliased(scratch1, scratch2, scratch3));
+  }
+#endif
+  if (FLAG_code_comments) {
+    if (actual.is_reg()) {
+      Comment(";;; PrepareForTailCall, actual: %s {", actual.reg().ToString());
+    } else {
+      Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
+    }
+  }
+
+  // Check if next frame is an arguments adaptor frame.
+  Register caller_args_count_reg = scratch1;
+  Label no_arguments_adaptor, formal_parameter_count_loaded;
+  __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ LoadP(scratch3,
+           MemOperand(scratch2, StandardFrameConstants::kContextOffset));
+  __ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+  __ bne(&no_arguments_adaptor);
+
+  // Drop current frame and load arguments count from arguments adaptor frame.
+  __ LoadRR(fp, scratch2);
+  __ LoadP(caller_args_count_reg,
+           MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
+  __ SmiUntag(caller_args_count_reg);
+  __ b(&formal_parameter_count_loaded);
+
+  __ bind(&no_arguments_adaptor);
+  // Load caller's formal parameter count
+  __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
+
+  __ bind(&formal_parameter_count_loaded);
+  __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
+
+  Comment(";;; }");
+}
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+  HInvokeFunction* hinstr = instr->hydrogen();
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->function()).is(r3));
+  DCHECK(instr->HasPointerMap());
+
+  bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
+
+  if (is_tail_call) {
+    DCHECK(!info()->saves_caller_doubles());
+    ParameterCount actual(instr->arity());
+    // It is safe to use r5, r6 and r7 as scratch registers here given that
+    // 1) we are not going to return to caller function anyway,
+    // 2) r5 (new.target) will be initialized below.
+    PrepareForTailCall(actual, r5, r6, r7);
+  }
+
+  Handle<JSFunction> known_function = hinstr->known_function();
+  if (known_function.is_null()) {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+    ParameterCount actual(instr->arity());
+    InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
+    __ InvokeFunction(r3, no_reg, actual, flag, generator);
+  } else {
+    CallKnownFunction(known_function, hinstr->formal_parameter_count(),
+                      instr->arity(), is_tail_call, instr);
+  }
+}
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  if (instr->hydrogen()->IsTailCall()) {
+    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      __ Jump(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      __ JumpToJSEntry(ip);
+    }
+  } else {
+    LPointerMap* pointers = instr->pointer_map();
+    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+    if (instr->target()->IsConstantOperand()) {
+      LConstantOperand* target = LConstantOperand::cast(instr->target());
+      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+      __ Call(code, RelocInfo::CODE_TARGET);
+    } else {
+      DCHECK(instr->target()->IsRegister());
+      Register target = ToRegister(instr->target());
+      generator.BeforeCall(__ CallSize(target));
+      __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+      __ CallJSEntry(ip);
+    }
+    generator.AfterCall();
+  }
+}
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->constructor()).is(r3));
+  DCHECK(ToRegister(instr->result()).is(r2));
+
+  __ mov(r2, Operand(instr->arity()));
+  if (instr->arity() == 1) {
+    // We only need the allocation site for the case we have a length argument.
+    // The case may bail out to the runtime, which will determine the correct
+    // elements kind with the site.
+    __ Move(r4, instr->hydrogen()->site());
+  } else {
+    __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
+  }
+  ElementsKind kind = instr->hydrogen()->elements_kind();
+  AllocationSiteOverrideMode override_mode =
+      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+          ? DISABLE_ALLOCATION_SITES
+          : DONT_OVERRIDE;
+
+  if (instr->arity() == 0) {
+    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  } else if (instr->arity() == 1) {
+    Label done;
+    if (IsFastPackedElementsKind(kind)) {
+      Label packed_case;
+      // We might need a change here
+      // look at the first argument
+      __ LoadP(r7, MemOperand(sp, 0));
+      __ CmpP(r7, Operand::Zero());
+      __ beq(&packed_case, Label::kNear);
+
+      ElementsKind holey_kind = GetHoleyElementsKind(kind);
+      ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
+                                              override_mode);
+      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+      __ b(&done, Label::kNear);
+      __ bind(&packed_case);
+    }
+
+    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+    __ bind(&done);
+  } else {
+    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  }
+}
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+  CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+  Register function = ToRegister(instr->function());
+  Register code_object = ToRegister(instr->code_object());
+  __ lay(code_object,
+         MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag));
+  __ StoreP(code_object,
+            FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
+}
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+  Register result = ToRegister(instr->result());
+  Register base = ToRegister(instr->base_object());
+  if (instr->offset()->IsConstantOperand()) {
+    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+    __ lay(result, MemOperand(base, ToInteger32(offset)));
+  } else {
+    Register offset = ToRegister(instr->offset());
+    __ lay(result, MemOperand(base, offset));
+  }
+}
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+  HStoreNamedField* hinstr = instr->hydrogen();
+  Representation representation = instr->representation();
+
+  Register object = ToRegister(instr->object());
+  Register scratch = scratch0();
+  HObjectAccess access = hinstr->access();
+  int offset = access.offset();
+
+  if (access.IsExternalMemory()) {
+    Register value = ToRegister(instr->value());
+    MemOperand operand = MemOperand(object, offset);
+    __ StoreRepresentation(value, operand, representation, r0);
+    return;
+  }
+
+  __ AssertNotSmi(object);
+
+#if V8_TARGET_ARCH_S390X
+  DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
+         IsInteger32(LConstantOperand::cast(instr->value())));
+#else
+  DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
+         IsSmi(LConstantOperand::cast(instr->value())));
+#endif
+  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DCHECK(!hinstr->has_transition());
+    DCHECK(!hinstr->NeedsWriteBarrier());
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    DCHECK(offset >= 0);
+    __ std(value, FieldMemOperand(object, offset));
+    return;
+  }
+
+  if (hinstr->has_transition()) {
+    Handle<Map> transition = hinstr->transition_map();
+    AddDeprecationDependency(transition);
+    __ mov(scratch, Operand(transition));
+    __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
+    if (hinstr->NeedsWriteBarrierForMap()) {
+      Register temp = ToRegister(instr->temp());
+      // Update the write barrier for the map field.
+      __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
+                           kSaveFPRegs);
+    }
+  }
+
+  // Do the store.
+  Register record_dest = object;
+  Register record_value = no_reg;
+  Register record_scratch = scratch;
+#if V8_TARGET_ARCH_S390X
+  if (FLAG_unbox_double_fields && representation.IsDouble()) {
+    DCHECK(access.IsInobject());
+    DoubleRegister value = ToDoubleRegister(instr->value());
+    __ std(value, FieldMemOperand(object, offset));
+    if (hinstr->NeedsWriteBarrier()) {
+      record_value = ToRegister(instr->value());
+    }
+  } else {
+    if (representation.IsSmi() &&
+        hinstr->value()->representation().IsInteger32()) {
+      DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+      // 64-bit Smi optimization
+      // Store int value directly to upper half of the smi.
+      offset = SmiWordOffset(offset);
+      representation = Representation::Integer32();
+    }
+#endif
+    if (access.IsInobject()) {
+      Register value = ToRegister(instr->value());
+      MemOperand operand = FieldMemOperand(object, offset);
+      __ StoreRepresentation(value, operand, representation, r0);
+      record_value = value;
+    } else {
+      Register value = ToRegister(instr->value());
+      __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
+      MemOperand operand = FieldMemOperand(scratch, offset);
+      __ StoreRepresentation(value, operand, representation, r0);
+      record_dest = scratch;
+      record_value = value;
+      record_scratch = object;
+    }
+#if V8_TARGET_ARCH_S390X
+  }
+#endif
+
+  if (hinstr->NeedsWriteBarrier()) {
+    __ RecordWriteField(record_dest, offset, record_value, record_scratch,
+                        GetLinkRegisterState(), kSaveFPRegs,
+                        EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
+                        hinstr->PointersToHereCheckForValue());
+  }
+}
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+  }
+
+  __ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
+  Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state())
+                        .code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+  Representation representation = instr->hydrogen()->length()->representation();
+  DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
+  DCHECK(representation.IsSmiOrInteger32());
+
+  Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
+  if (instr->length()->IsConstantOperand()) {
+    int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
+    Register index = ToRegister(instr->index());
+    if (representation.IsSmi()) {
+      __ CmpLogicalP(index, Operand(Smi::FromInt(length)));
+    } else {
+      __ CmpLogical32(index, Operand(length));
+    }
+    cc = CommuteCondition(cc);
+  } else if (instr->index()->IsConstantOperand()) {
+    int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
+    Register length = ToRegister(instr->length());
+    if (representation.IsSmi()) {
+      __ CmpLogicalP(length, Operand(Smi::FromInt(index)));
+    } else {
+      __ CmpLogical32(length, Operand(index));
+    }
+  } else {
+    Register index = ToRegister(instr->index());
+    Register length = ToRegister(instr->length());
+    if (representation.IsSmi()) {
+      __ CmpLogicalP(length, index);
+    } else {
+      __ CmpLogical32(length, index);
+    }
+  }
+  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+    Label done;
+    __ b(NegateCondition(cc), &done, Label::kNear);
+    __ stop("eliminated bounds check failed");
+    __ bind(&done);
+  } else {
+    DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
+  }
+}
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+  Register external_pointer = ToRegister(instr->elements());
+  Register key = no_reg;
+  ElementsKind elements_kind = instr->elements_kind();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(elements_kind);
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  int base_offset = instr->base_offset();
+
+  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
+    Register address = scratch0();
+    DoubleRegister value(ToDoubleRegister(instr->value()));
+    if (key_is_constant) {
+      if (constant_key != 0) {
+        base_offset += constant_key << element_size_shift;
+        if (!is_int20(base_offset)) {
+          __ mov(address, Operand(base_offset));
+          __ AddP(address, external_pointer);
+        } else {
+          __ AddP(address, external_pointer, Operand(base_offset));
+        }
+        base_offset = 0;
+      } else {
+        address = external_pointer;
+      }
+    } else {
+      __ IndexToArrayOffset(address, key, element_size_shift, key_is_smi);
+      __ AddP(address, external_pointer);
+    }
+    if (elements_kind == FLOAT32_ELEMENTS) {
+      __ ledbr(double_scratch0(), value);
+      __ StoreFloat32(double_scratch0(), MemOperand(address, base_offset));
+    } else {  // Storing doubles, not floats.
+      __ StoreDouble(value, MemOperand(address, base_offset));
+    }
+  } else {
+    Register value(ToRegister(instr->value()));
+    MemOperand mem_operand =
+        PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
+                            constant_key, element_size_shift, base_offset);
+    switch (elements_kind) {
+      case UINT8_ELEMENTS:
+      case UINT8_CLAMPED_ELEMENTS:
+      case INT8_ELEMENTS:
+        if (key_is_constant) {
+          __ StoreByte(value, mem_operand, r0);
+        } else {
+          __ StoreByte(value, mem_operand);
+        }
+        break;
+      case INT16_ELEMENTS:
+      case UINT16_ELEMENTS:
+        if (key_is_constant) {
+          __ StoreHalfWord(value, mem_operand, r0);
+        } else {
+          __ StoreHalfWord(value, mem_operand);
+        }
+        break;
+      case INT32_ELEMENTS:
+      case UINT32_ELEMENTS:
+        if (key_is_constant) {
+          __ StoreW(value, mem_operand, r0);
+        } else {
+          __ StoreW(value, mem_operand);
+        }
+        break;
+      case FLOAT32_ELEMENTS:
+      case FLOAT64_ELEMENTS:
+      case FAST_DOUBLE_ELEMENTS:
+      case FAST_ELEMENTS:
+      case FAST_SMI_ELEMENTS:
+      case FAST_HOLEY_DOUBLE_ELEMENTS:
+      case FAST_HOLEY_ELEMENTS:
+      case FAST_HOLEY_SMI_ELEMENTS:
+      case DICTIONARY_ELEMENTS:
+      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+      case FAST_STRING_WRAPPER_ELEMENTS:
+      case SLOW_STRING_WRAPPER_ELEMENTS:
+      case NO_ELEMENTS:
+        UNREACHABLE();
+        break;
+    }
+  }
+}
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+  DoubleRegister value = ToDoubleRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register key = no_reg;
+  Register scratch = scratch0();
+  DoubleRegister double_scratch = double_scratch0();
+  bool key_is_constant = instr->key()->IsConstantOperand();
+  int constant_key = 0;
+
+  // Calculate the effective address of the slot in the array to store the
+  // double value.
+  if (key_is_constant) {
+    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+    if (constant_key & 0xF0000000) {
+      Abort(kArrayIndexConstantValueTooBig);
+    }
+  } else {
+    key = ToRegister(instr->key());
+  }
+  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+  int base_offset = instr->base_offset() + constant_key * kDoubleSize;
+  bool use_scratch = false;
+  intptr_t address_offset = base_offset;
+
+  if (key_is_constant) {
+    // Memory references support up to 20-bits signed displacement in RXY form
+    if (!is_int20((address_offset))) {
+      __ mov(scratch, Operand(address_offset));
+      address_offset = 0;
+      use_scratch = true;
+    }
+  } else {
+    use_scratch = true;
+    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
+    // Memory references support up to 20-bits signed displacement in RXY form
+    if (!is_int20((address_offset))) {
+      __ AddP(scratch, Operand(address_offset));
+      address_offset = 0;
+    }
+  }
+
+  if (instr->NeedsCanonicalization()) {
+    // Turn potential sNaN value into qNaN.
+    __ CanonicalizeNaN(double_scratch, value);
+    DCHECK(address_offset >= 0);
+    if (use_scratch)
+      __ std(double_scratch, MemOperand(scratch, elements, address_offset));
+    else
+      __ std(double_scratch, MemOperand(elements, address_offset));
+  } else {
+    if (use_scratch)
+      __ std(value, MemOperand(scratch, elements, address_offset));
+    else
+      __ std(value, MemOperand(elements, address_offset));
+  }
+}
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+  HStoreKeyed* hinstr = instr->hydrogen();
+  Register value = ToRegister(instr->value());
+  Register elements = ToRegister(instr->elements());
+  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
+  Register scratch = scratch0();
+  int offset = instr->base_offset();
+
+  // Do the store.
+  if (instr->key()->IsConstantOperand()) {
+    DCHECK(!hinstr->NeedsWriteBarrier());
+    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+    offset += ToInteger32(const_operand) * kPointerSize;
+  } else {
+    // Even though the HLoadKeyed instruction forces the input
+    // representation for the key to be an integer, the input gets replaced
+    // during bound check elimination with the index argument to the bounds
+    // check, which can be tagged, so that case must be handled here, too.
+    if (hinstr->key()->representation().IsSmi()) {
+      __ SmiToPtrArrayOffset(scratch, key);
+    } else {
+      if (instr->hydrogen()->IsDehoisted() ||
+          !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
+#if V8_TARGET_ARCH_S390X
+        // If array access is dehoisted, the key, being an int32, can contain
+        // a negative value, as needs to be sign-extended to 64-bit for
+        // memory access.
+        __ lgfr(key, key);
+#endif
+        __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
+      } else {
+        // Small optimization to reduce pathlength.  After Bounds Check,
+        // the key is guaranteed to be non-negative.  Leverage RISBG,
+        // which also performs zero-extension.
+        __ risbg(scratch, key, Operand(32 - kPointerSizeLog2),
+                 Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2),
+                 true);
+      }
+    }
+  }
+
+  Representation representation = hinstr->value()->representation();
+
+#if V8_TARGET_ARCH_S390X
+  // 64-bit Smi optimization
+  if (representation.IsInteger32()) {
+    DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+    DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
+    // Store int value directly to upper half of the smi.
+    offset = SmiWordOffset(offset);
+  }
+#endif
+
+  if (instr->key()->IsConstantOperand()) {
+    __ StoreRepresentation(value, MemOperand(elements, offset), representation,
+                           scratch);
+  } else {
+    __ StoreRepresentation(value, MemOperand(scratch, elements, offset),
+                           representation, r0);
+  }
+
+  if (hinstr->NeedsWriteBarrier()) {
+    SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
+                                ? OMIT_SMI_CHECK
+                                : INLINE_SMI_CHECK;
+    // Compute address of modified element and store it into key register.
+    if (instr->key()->IsConstantOperand()) {
+      __ lay(key, MemOperand(elements, offset));
+    } else {
+      __ lay(key, MemOperand(scratch, elements, offset));
+    }
+    __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
+                   EMIT_REMEMBERED_SET, check_needed,
+                   hinstr->PointersToHereCheckForValue());
+  }
+}
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+  // By cases: external, fast double
+  if (instr->is_fixed_typed_array()) {
+    DoStoreKeyedExternalArray(instr);
+  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+    DoStoreKeyedFixedDoubleArray(instr);
+  } else {
+    DoStoreKeyedFixedArray(instr);
+  }
+}
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+  if (instr->hydrogen()->HasVectorAndSlot()) {
+    EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+  }
+
+  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+                        isolate(), instr->language_mode(),
+                        instr->hydrogen()->initialization_state())
+                        .code();
+  CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+  class DeferredMaybeGrowElements final : public LDeferredCode {
+   public:
+    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LMaybeGrowElements* instr_;
+  };
+
+  Register result = r2;
+  DeferredMaybeGrowElements* deferred =
+      new (zone()) DeferredMaybeGrowElements(this, instr);
+  LOperand* key = instr->key();
+  LOperand* current_capacity = instr->current_capacity();
+
+  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+  DCHECK(key->IsConstantOperand() || key->IsRegister());
+  DCHECK(current_capacity->IsConstantOperand() ||
+         current_capacity->IsRegister());
+
+  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    if (constant_key >= constant_capacity) {
+      // Deferred case.
+      __ b(deferred->entry());
+    }
+  } else if (key->IsConstantOperand()) {
+    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+    __ Cmp32(ToRegister(current_capacity), Operand(constant_key));
+    __ ble(deferred->entry());
+  } else if (current_capacity->IsConstantOperand()) {
+    int32_t constant_capacity =
+        ToInteger32(LConstantOperand::cast(current_capacity));
+    __ Cmp32(ToRegister(key), Operand(constant_capacity));
+    __ bge(deferred->entry());
+  } else {
+    __ Cmp32(ToRegister(key), ToRegister(current_capacity));
+    __ bge(deferred->entry());
+  }
+
+  if (instr->elements()->IsRegister()) {
+    __ Move(result, ToRegister(instr->elements()));
+  } else {
+    __ LoadP(result, ToMemOperand(instr->elements()));
+  }
+
+  __ bind(deferred->exit());
+}
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register result = r2;
+  __ LoadImmP(result, Operand::Zero());
+
+  // We have to call a stub.
+  {
+    PushSafepointRegistersScope scope(this);
+    if (instr->object()->IsRegister()) {
+      __ Move(result, ToRegister(instr->object()));
+    } else {
+      __ LoadP(result, ToMemOperand(instr->object()));
+    }
+
+    LOperand* key = instr->key();
+    if (key->IsConstantOperand()) {
+      __ LoadSmiLiteral(r5, ToSmi(LConstantOperand::cast(key)));
+    } else {
+      __ SmiTag(r5, ToRegister(key));
+    }
+
+    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+                               instr->hydrogen()->kind());
+    __ CallStub(&stub);
+    RecordSafepointWithLazyDeopt(
+        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+    __ StoreToSafepointRegisterSlot(result, result);
+  }
+
+  // Deopt on smi, which means the elements array changed to dictionary mode.
+  __ TestIfSmi(result);
+  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
+}
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+  Register object_reg = ToRegister(instr->object());
+  Register scratch = scratch0();
+
+  Handle<Map> from_map = instr->original_map();
+  Handle<Map> to_map = instr->transitioned_map();
+  ElementsKind from_kind = instr->from_kind();
+  ElementsKind to_kind = instr->to_kind();
+
+  Label not_applicable;
+  __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+  __ CmpP(scratch, Operand(from_map));
+  __ bne(&not_applicable);
+
+  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+    Register new_map_reg = ToRegister(instr->new_map_temp());
+    __ mov(new_map_reg, Operand(to_map));
+    __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+    // Write barrier.
+    __ RecordWriteForMap(object_reg, new_map_reg, scratch,
+                         GetLinkRegisterState(), kDontSaveFPRegs);
+  } else {
+    DCHECK(ToRegister(instr->context()).is(cp));
+    DCHECK(object_reg.is(r2));
+    PushSafepointRegistersScope scope(this);
+    __ Move(r3, to_map);
+    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+    __ CallStub(&stub);
+    RecordSafepointWithRegisters(instr->pointer_map(), 0,
+                                 Safepoint::kLazyDeopt);
+  }
+  __ bind(&not_applicable);
+}
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+  Register object = ToRegister(instr->object());
+  Register temp1 = ToRegister(instr->temp1());
+  Register temp2 = ToRegister(instr->temp2());
+  Label no_memento_found;
+  __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
+  DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
+  __ bind(&no_memento_found);
+}
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+  DCHECK(ToRegister(instr->context()).is(cp));
+  DCHECK(ToRegister(instr->left()).is(r3));
+  DCHECK(ToRegister(instr->right()).is(r2));
+  StringAddStub stub(isolate(), instr->hydrogen()->flags(),
+                     instr->hydrogen()->pretenure_flag());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+  class DeferredStringCharCodeAt final : public LDeferredCode {
+   public:
+    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharCodeAt* instr_;
+  };
+
+  DeferredStringCharCodeAt* deferred =
+      new (zone()) DeferredStringCharCodeAt(this, instr);
+
+  StringCharLoadGenerator::Generate(
+      masm(), ToRegister(instr->string()), ToRegister(instr->index()),
+      ToRegister(instr->result()), deferred->entry());
+  __ bind(deferred->exit());
+}
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+  Register string = ToRegister(instr->string());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ LoadImmP(result, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  __ push(string);
+  // Push the index as a smi. This is safe because of the checks in
+  // DoStringCharCodeAt above.
+  if (instr->index()->IsConstantOperand()) {
+    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+    __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
+    __ push(scratch);
+  } else {
+    Register index = ToRegister(instr->index());
+    __ SmiTag(index);
+    __ push(index);
+  }
+  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
+                          instr->context());
+  __ AssertSmi(r2);
+  __ SmiUntag(r2);
+  __ StoreToSafepointRegisterSlot(r2, result);
+}
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+  class DeferredStringCharFromCode final : public LDeferredCode {
+   public:
+    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override {
+      codegen()->DoDeferredStringCharFromCode(instr_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStringCharFromCode* instr_;
+  };
+
+  DeferredStringCharFromCode* deferred =
+      new (zone()) DeferredStringCharFromCode(this, instr);
+
+  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+  DCHECK(!char_code.is(result));
+
+  __ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode));
+  __ bgt(deferred->entry());
+  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+  __ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2));
+  __ AddP(result, r0);
+  __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+  __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
+  __ beq(deferred->entry());
+  __ bind(deferred->exit());
+}
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+  Register char_code = ToRegister(instr->char_code());
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ LoadImmP(result, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  __ SmiTag(char_code);
+  __ push(char_code);
+  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(r2, result);
+}
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister() || input->IsStackSlot());
+  LOperand* output = instr->result();
+  DCHECK(output->IsDoubleRegister());
+  if (input->IsStackSlot()) {
+    Register scratch = scratch0();
+    __ LoadP(scratch, ToMemOperand(input));
+    __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
+  } else {
+    __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
+  }
+}
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+  LOperand* input = instr->value();
+  LOperand* output = instr->result();
+  __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
+}
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+  class DeferredNumberTagI final : public LDeferredCode {
+   public:
+    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
+                                       instr_->temp2(), SIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagI* instr_;
+  };
+
+  Register src = ToRegister(instr->value());
+  Register dst = ToRegister(instr->result());
+
+  DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
+#if V8_TARGET_ARCH_S390X
+  __ SmiTag(dst, src);
+#else
+  // Add src to itself to defect SMI overflow.
+  __ Add32(dst, src, src);
+  __ b(overflow, deferred->entry());
+#endif
+  __ bind(deferred->exit());
+}
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+  class DeferredNumberTagU final : public LDeferredCode {
+   public:
+    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override {
+      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
+                                       instr_->temp2(), UNSIGNED_INT32);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagU* instr_;
+  };
+
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+
+  DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
+  __ CmpLogicalP(input, Operand(Smi::kMaxValue));
+  __ bgt(deferred->entry());
+  __ SmiTag(result, input);
+  __ bind(deferred->exit());
+}
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
+                                     LOperand* temp1, LOperand* temp2,
+                                     IntegerSignedness signedness) {
+  Label done, slow;
+  Register src = ToRegister(value);
+  Register dst = ToRegister(instr->result());
+  Register tmp1 = scratch0();
+  Register tmp2 = ToRegister(temp1);
+  Register tmp3 = ToRegister(temp2);
+  DoubleRegister dbl_scratch = double_scratch0();
+
+  if (signedness == SIGNED_INT32) {
+    // There was overflow, so bits 30 and 31 of the original integer
+    // disagree. Try to allocate a heap number in new space and store
+    // the value in there. If that fails, call the runtime system.
+    if (dst.is(src)) {
+      __ SmiUntag(src, dst);
+      __ xilf(src, Operand(HeapNumber::kSignMask));
+    }
+    __ ConvertIntToDouble(src, dbl_scratch);
+  } else {
+    __ ConvertUnsignedIntToDouble(src, dbl_scratch);
+  }
+
+  if (FLAG_inline_new) {
+    __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
+    __ b(&done);
+  }
+
+  // Slow case: Call the runtime system to do the number allocation.
+  __ bind(&slow);
+  {
+    // TODO(3095996): Put a valid pointer value in the stack slot where the
+    // result register is stored, as this register is in the pointer map, but
+    // contains an integer value.
+    __ LoadImmP(dst, Operand::Zero());
+
+    // Preserve the value of all registers.
+    PushSafepointRegistersScope scope(this);
+
+    // NumberTagI and NumberTagD use the context from the frame, rather than
+    // the environment's HContext or HInlinedContext value.
+    // They only call Runtime::kAllocateHeapNumber.
+    // The corresponding HChange instructions are added in a phase that does
+    // not have easy access to the local context.
+    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+    RecordSafepointWithRegisters(instr->pointer_map(), 0,
+                                 Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(r2, dst);
+  }
+
+  // Done. Put the value in dbl_scratch into the value of the allocated heap
+  // number.
+  __ bind(&done);
+  __ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
+}
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+  class DeferredNumberTagD final : public LDeferredCode {
+   public:
+    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LNumberTagD* instr_;
+  };
+
+  DoubleRegister input_reg = ToDoubleRegister(instr->value());
+  Register scratch = scratch0();
+  Register reg = ToRegister(instr->result());
+  Register temp1 = ToRegister(instr->temp());
+  Register temp2 = ToRegister(instr->temp2());
+
+  DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
+  if (FLAG_inline_new) {
+    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
+    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
+  } else {
+    __ b(deferred->entry());
+  }
+  __ bind(deferred->exit());
+  __ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
+}
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  Register reg = ToRegister(instr->result());
+  __ LoadImmP(reg, Operand::Zero());
+
+  PushSafepointRegistersScope scope(this);
+  // NumberTagI and NumberTagD use the context from the frame, rather than
+  // the environment's HContext or HInlinedContext value.
+  // They only call Runtime::kAllocateHeapNumber.
+  // The corresponding HChange instructions are added in a phase that does
+  // not have easy access to the local context.
+  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+  RecordSafepointWithRegisters(instr->pointer_map(), 0,
+                               Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(r2, reg);
+}
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+  HChange* hchange = instr->hydrogen();
+  Register input = ToRegister(instr->value());
+  Register output = ToRegister(instr->result());
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ TestUnsignedSmiCandidate(input, r0);
+    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, cr0);
+  }
+#if !V8_TARGET_ARCH_S390X
+  if (hchange->CheckFlag(HValue::kCanOverflow) &&
+      !hchange->value()->CheckFlag(HValue::kUint32)) {
+    __ SmiTagCheckOverflow(output, input, r0);
+    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
+  } else {
+#endif
+    __ SmiTag(output, input);
+#if !V8_TARGET_ARCH_S390X
+  }
+#endif
+}
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+  Register input = ToRegister(instr->value());
+  Register result = ToRegister(instr->result());
+  if (instr->needs_check()) {
+    __ tmll(input, Operand(kHeapObjectTag));
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
+    __ SmiUntag(result, input);
+  } else {
+    __ SmiUntag(result, input);
+  }
+}
+
+void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
+                                DoubleRegister result_reg,
+                                NumberUntagDMode mode) {
+  bool can_convert_undefined_to_nan =
+      instr->hydrogen()->can_convert_undefined_to_nan();
+  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
+
+  Register scratch = scratch0();
+  DCHECK(!result_reg.is(double_scratch0()));
+
+  Label convert, load_smi, done;
+
+  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+    // Smi check.
+    __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
+
+    // Heap number map check.
+    __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+    __ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex));
+
+    if (can_convert_undefined_to_nan) {
+      __ bne(&convert, Label::kNear);
+    } else {
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+    }
+    // load heap number
+    __ ld(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+    if (deoptimize_on_minus_zero) {
+      __ TestDoubleIsMinusZero(result_reg, scratch, ip);
+      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
+    }
+    __ b(&done, Label::kNear);
+    if (can_convert_undefined_to_nan) {
+      __ bind(&convert);
+      // Convert undefined (and hole) to NaN.
+      __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
+      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
+      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+      __ ld(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
+      __ b(&done, Label::kNear);
+    }
+  } else {
+    __ SmiUntag(scratch, input_reg);
+    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+  }
+  // Smi to double register conversion
+  __ bind(&load_smi);
+  // scratch: untagged value of input_reg
+  __ ConvertIntToDouble(scratch, result_reg);
+  __ bind(&done);
+}
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+  Register input_reg = ToRegister(instr->value());
+  Register scratch1 = scratch0();
+  Register scratch2 = ToRegister(instr->temp());
+  DoubleRegister double_scratch = double_scratch0();
+  DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
+
+  DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
+  DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
+
+  Label done;
+
+  // Heap number map check.
+  __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+  __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex);
+
+  if (instr->truncating()) {
+    // Performs a truncating conversion of a floating point number as used by
+    // the JS bitwise operations.
+    Label no_heap_number, check_bools, check_false;
+    __ bne(&no_heap_number, Label::kNear);
+    __ LoadRR(scratch2, input_reg);
+    __ TruncateHeapNumberToI(input_reg, scratch2);
+    __ b(&done, Label::kNear);
+
+    // Check for Oddballs. Undefined/False is converted to zero and True to one
+    // for truncating conversions.
+    __ bind(&no_heap_number);
+    __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
+    __ bne(&check_bools);
+    __ LoadImmP(input_reg, Operand::Zero());
+    __ b(&done, Label::kNear);
+
+    __ bind(&check_bools);
+    __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
+    __ bne(&check_false, Label::kNear);
+    __ LoadImmP(input_reg, Operand(1));
+    __ b(&done, Label::kNear);
+
+    __ bind(&check_false);
+    __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
+    __ LoadImmP(input_reg, Operand::Zero());
+  } else {
+    // Deoptimize if we don't have a heap number.
+    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
+
+    __ ld(double_scratch2,
+          FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      // preserve heap number pointer in scratch2 for minus zero check below
+      __ LoadRR(scratch2, input_reg);
+    }
+    __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
+                             double_scratch);
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      __ CmpP(input_reg, Operand::Zero());
+      __ bne(&done, Label::kNear);
+      __ TestHeapNumberSign(scratch2, scratch1);
+      DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+    }
+  }
+  __ bind(&done);
+}
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+  class DeferredTaggedToI final : public LDeferredCode {
+   public:
+    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LTaggedToI* instr_;
+  };
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  DCHECK(input->Equals(instr->result()));
+
+  Register input_reg = ToRegister(input);
+
+  if (instr->hydrogen()->value()->representation().IsSmi()) {
+    __ SmiUntag(input_reg);
+  } else {
+    DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
+
+    // Branch to deferred code if the input is a HeapObject.
+    __ JumpIfNotSmi(input_reg, deferred->entry());
+
+    __ SmiUntag(input_reg);
+    __ bind(deferred->exit());
+  }
+}
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  LOperand* result = instr->result();
+  DCHECK(result->IsDoubleRegister());
+
+  Register input_reg = ToRegister(input);
+  DoubleRegister result_reg = ToDoubleRegister(result);
+
+  HValue* value = instr->hydrogen()->value();
+  NumberUntagDMode mode = value->representation().IsSmi()
+                              ? NUMBER_CANDIDATE_IS_SMI
+                              : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+  EmitNumberUntagD(instr, input_reg, result_reg, mode);
+}
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  DoubleRegister double_input = ToDoubleRegister(instr->value());
+  DoubleRegister double_scratch = double_scratch0();
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
+                             double_scratch);
+    // Deoptimize if the input wasn't a int32 (inside a double).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ CmpP(result_reg, Operand::Zero());
+      __ bne(&done, Label::kNear);
+      __ TestDoubleSign(double_input, scratch1);
+      DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+}
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+  Register result_reg = ToRegister(instr->result());
+  Register scratch1 = scratch0();
+  DoubleRegister double_input = ToDoubleRegister(instr->value());
+  DoubleRegister double_scratch = double_scratch0();
+
+  if (instr->truncating()) {
+    __ TruncateDoubleToI(result_reg, double_input);
+  } else {
+    __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
+                             double_scratch);
+    // Deoptimize if the input wasn't a int32 (inside a double).
+    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
+    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+      Label done;
+      __ CmpP(result_reg, Operand::Zero());
+      __ bne(&done, Label::kNear);
+      __ TestDoubleSign(double_input, scratch1);
+      DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
+      __ bind(&done);
+    }
+  }
+#if V8_TARGET_ARCH_S390X
+  __ SmiTag(result_reg);
+#else
+  __ SmiTagCheckOverflow(result_reg, r0);
+  DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
+#endif
+}
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+  LOperand* input = instr->value();
+  __ TestIfSmi(ToRegister(input));
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
+}
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+    LOperand* input = instr->value();
+    __ TestIfSmi(ToRegister(input));
+    DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
+  }
+}
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+    LCheckArrayBufferNotNeutered* instr) {
+  Register view = ToRegister(instr->view());
+  Register scratch = scratch0();
+
+  __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
+  __ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
+  __ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
+  DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, cr0);
+}
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+  Register input = ToRegister(instr->value());
+  Register scratch = scratch0();
+
+  __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+
+  if (instr->hydrogen()->is_interval_check()) {
+    InstanceType first;
+    InstanceType last;
+    instr->hydrogen()->GetCheckInterval(&first, &last);
+
+    __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
+                      Operand(first));
+
+    // If there is only one type in the interval check for equality.
+    if (first == last) {
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      DeoptimizeIf(lt, instr, Deoptimizer::kWrongInstanceType);
+      // Omit check for the last type.
+      if (last != LAST_TYPE) {
+        __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
+                          Operand(last));
+        DeoptimizeIf(gt, instr, Deoptimizer::kWrongInstanceType);
+      }
+    }
+  } else {
+    uint8_t mask;
+    uint8_t tag;
+    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+    if (base::bits::IsPowerOfTwo32(mask)) {
+      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
+      __ AndP(scratch, Operand(mask));
+      DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType);
+    } else {
+      __ AndP(scratch, Operand(mask));
+      __ CmpP(scratch, Operand(tag));
+      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
+    }
+  }
+}
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+  Register reg = ToRegister(instr->value());
+  Handle<HeapObject> object = instr->hydrogen()->object().handle();
+  AllowDeferredHandleDereference smi_check;
+  if (isolate()->heap()->InNewSpace(*object)) {
+    Register reg = ToRegister(instr->value());
+    Handle<Cell> cell = isolate()->factory()->NewCell(object);
+    __ mov(ip, Operand(cell));
+    __ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset));
+  } else {
+    __ CmpP(reg, Operand(object));
+  }
+  DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
+}
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+  Register temp = ToRegister(instr->temp());
+  {
+    PushSafepointRegistersScope scope(this);
+    __ push(object);
+    __ LoadImmP(cp, Operand::Zero());
+    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+    RecordSafepointWithRegisters(instr->pointer_map(), 1,
+                                 Safepoint::kNoLazyDeopt);
+    __ StoreToSafepointRegisterSlot(r2, temp);
+  }
+  __ TestIfSmi(temp);
+  DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, cr0);
+}
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+  class DeferredCheckMaps final : public LDeferredCode {
+   public:
+    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+        : LDeferredCode(codegen), instr_(instr), object_(object) {
+      SetExit(check_maps());
+    }
+    void Generate() override {
+      codegen()->DoDeferredInstanceMigration(instr_, object_);
+    }
+    Label* check_maps() { return &check_maps_; }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LCheckMaps* instr_;
+    Label check_maps_;
+    Register object_;
+  };
+
+  if (instr->hydrogen()->IsStabilityCheck()) {
+    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+    for (int i = 0; i < maps->size(); ++i) {
+      AddStabilityDependency(maps->at(i).handle());
+    }
+    return;
+  }
+
+  LOperand* input = instr->value();
+  DCHECK(input->IsRegister());
+  Register reg = ToRegister(input);
+
+  DeferredCheckMaps* deferred = NULL;
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
+    __ bind(deferred->check_maps());
+  }
+
+  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+  Label success;
+  for (int i = 0; i < maps->size() - 1; i++) {
+    Handle<Map> map = maps->at(i).handle();
+    __ CompareMap(reg, map, &success);
+    __ beq(&success);
+  }
+
+  Handle<Map> map = maps->at(maps->size() - 1).handle();
+  __ CompareMap(reg, map, &success);
+  if (instr->hydrogen()->HasMigrationTarget()) {
+    __ bne(deferred->entry());
+  } else {
+    DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+  }
+
+  __ bind(&success);
+}
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+  DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
+}
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+  Register unclamped_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  __ ClampUint8(result_reg, unclamped_reg);
+}
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+  Register scratch = scratch0();
+  Register input_reg = ToRegister(instr->unclamped());
+  Register result_reg = ToRegister(instr->result());
+  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
+  Label is_smi, done, heap_number;
+
+  // Both smi and heap number cases are handled.
+  __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
+
+  // Check for heap number
+  __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+  __ CmpP(scratch, Operand(factory()->heap_number_map()));
+  __ beq(&heap_number, Label::kNear);
+
+  // Check for undefined. Undefined is converted to zero for clamping
+  // conversions.
+  __ CmpP(input_reg, Operand(factory()->undefined_value()));
+  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
+  __ LoadImmP(result_reg, Operand::Zero());
+  __ b(&done, Label::kNear);
+
+  // Heap number
+  __ bind(&heap_number);
+  __ ld(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+  __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
+  __ b(&done, Label::kNear);
+
+  // smi
+  __ bind(&is_smi);
+  __ ClampUint8(result_reg, result_reg);
+
+  __ bind(&done);
+}
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+  DoubleRegister value_reg = ToDoubleRegister(instr->value());
+  Register result_reg = ToRegister(instr->result());
+  __ lgdr(result_reg, value_reg);
+  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+    __ srlg(result_reg, result_reg, Operand(32));
+  } else {
+    __ llgfr(result_reg, result_reg);
+  }
+}
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+  Register hi_reg = ToRegister(instr->hi());
+  Register lo_reg = ToRegister(instr->lo());
+  DoubleRegister result_reg = ToDoubleRegister(instr->result());
+  Register scratch = scratch0();
+
+  // Combine hi_reg:lo_reg into a single 64-bit register.
+  __ sllg(scratch, hi_reg, Operand(32));
+  __ lr(scratch, lo_reg);
+
+  // Bitwise convert from GPR to FPR
+  __ ldgr(result_reg, scratch);
+}
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+  class DeferredAllocate final : public LDeferredCode {
+   public:
+    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredAllocate(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LAllocate* instr_;
+  };
+
+  DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
+
+  Register result = ToRegister(instr->result());
+  Register scratch = ToRegister(instr->temp1());
+  Register scratch2 = ToRegister(instr->temp2());
+
+  // Allocate memory for the object.
+  AllocationFlags flags = TAG_OBJECT;
+  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+  }
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = static_cast<AllocationFlags>(flags | PRETENURE);
+  }
+
+  if (instr->size()->IsConstantOperand()) {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+    CHECK(size <= Page::kMaxRegularHeapObjectSize);
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  } else {
+    Register size = ToRegister(instr->size());
+    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+  }
+
+  __ bind(deferred->exit());
+
+  if (instr->hydrogen()->MustPrefillWithFiller()) {
+    if (instr->size()->IsConstantOperand()) {
+      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+      __ LoadIntLiteral(scratch, size);
+    } else {
+      scratch = ToRegister(instr->size());
+    }
+    __ lay(scratch, MemOperand(scratch, -kPointerSize));
+    Label loop;
+    __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+    __ bind(&loop);
+    __ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag));
+#if V8_TARGET_ARCH_S390X
+    __ lay(scratch, MemOperand(scratch, -kPointerSize));
+#else
+    // TODO(joransiu): Improve the following sequence.
+    // Need to use AHI instead of LAY as top nibble is not set with LAY, causing
+    // incorrect result with the signed compare
+    __ AddP(scratch, Operand(-kPointerSize));
+#endif
+    __ CmpP(scratch, Operand::Zero());
+    __ bge(&loop);
+  }
+}
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+  Register result = ToRegister(instr->result());
+
+  // TODO(3095996): Get rid of this. For now, we need to make the
+  // result register contain a valid pointer because it is already
+  // contained in the register pointer map.
+  __ LoadSmiLiteral(result, Smi::FromInt(0));
+
+  PushSafepointRegistersScope scope(this);
+  if (instr->size()->IsRegister()) {
+    Register size = ToRegister(instr->size());
+    DCHECK(!size.is(result));
+    __ SmiTag(size);
+    __ push(size);
+  } else {
+    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+#if !V8_TARGET_ARCH_S390X
+    if (size >= 0 && size <= Smi::kMaxValue) {
+#endif
+      __ Push(Smi::FromInt(size));
+#if !V8_TARGET_ARCH_S390X
+    } else {
+      // We should never get here at runtime => abort
+      __ stop("invalid allocation size");
+      return;
+    }
+#endif
+  }
+
+  int flags = AllocateDoubleAlignFlag::encode(
+      instr->hydrogen()->MustAllocateDoubleAligned());
+  if (instr->hydrogen()->IsOldSpaceAllocation()) {
+    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+  } else {
+    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+  }
+  __ Push(Smi::FromInt(flags));
+
+  CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
+                          instr->context());
+  __ StoreToSafepointRegisterSlot(r2, result);
+}
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+  DCHECK(ToRegister(instr->value()).is(r5));
+  DCHECK(ToRegister(instr->result()).is(r2));
+  Label end, do_call;
+  Register value_register = ToRegister(instr->value());
+  __ JumpIfNotSmi(value_register, &do_call);
+  __ mov(r2, Operand(isolate()->factory()->number_string()));
+  __ b(&end);
+  __ bind(&do_call);
+  TypeofStub stub(isolate());
+  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+  __ bind(&end);
+}
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+  Register input = ToRegister(instr->value());
+
+  Condition final_branch_condition =
+      EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
+                   instr->type_literal());
+  if (final_branch_condition != kNoCondition) {
+    EmitBranch(instr, final_branch_condition);
+  }
+}
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
+                                 Register input, Handle<String> type_name) {
+  Condition final_branch_condition = kNoCondition;
+  Register scratch = scratch0();
+  Factory* factory = isolate()->factory();
+  if (String::Equals(type_name, factory->number_string())) {
+    __ JumpIfSmi(input, true_label);
+    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->string_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
+    final_branch_condition = lt;
+
+  } else if (String::Equals(type_name, factory->symbol_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->boolean_string())) {
+    __ CompareRoot(input, Heap::kTrueValueRootIndex);
+    __ beq(true_label);
+    __ CompareRoot(input, Heap::kFalseValueRootIndex);
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->undefined_string())) {
+    __ CompareRoot(input, Heap::kNullValueRootIndex);
+    __ beq(false_label);
+    __ JumpIfSmi(input, false_label);
+    // Check for undetectable objects => true.
+    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ ExtractBit(r0, scratch, Map::kIsUndetectable);
+    __ CmpP(r0, Operand::Zero());
+    final_branch_condition = ne;
+
+  } else if (String::Equals(type_name, factory->function_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ AndP(scratch, scratch,
+            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    __ CmpP(scratch, Operand(1 << Map::kIsCallable));
+    final_branch_condition = eq;
+
+  } else if (String::Equals(type_name, factory->object_string())) {
+    __ JumpIfSmi(input, false_label);
+    __ CompareRoot(input, Heap::kNullValueRootIndex);
+    __ beq(true_label);
+    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+    __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
+    __ blt(false_label);
+    // Check for callable or undetectable objects => false.
+    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+    __ AndP(r0, scratch,
+            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+    __ CmpP(r0, Operand::Zero());
+    final_branch_condition = eq;
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
+  } else if (String::Equals(type_name, factory->type##_string())) {  \
+    __ JumpIfSmi(input, false_label);                                \
+    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
+    __ CompareRoot(scratch, Heap::k##Type##MapRootIndex);            \
+    final_branch_condition = eq;
+  SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+    // clang-format on
+
+  } else {
+    __ b(false_label);
+  }
+
+  return final_branch_condition;
+}
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+    // Ensure that we have enough space after the previous lazy-bailout
+    // instruction for patching the code here.
+    int current_pc = masm()->pc_offset();
+    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+      DCHECK_EQ(0, padding_size % 2);
+      while (padding_size > 0) {
+        __ nop();
+        padding_size -= 2;
+      }
+    }
+  }
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+  last_lazy_deopt_pc_ = masm()->pc_offset();
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+  Deoptimizer::BailoutType type = instr->hydrogen()->type();
+  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+  // needed return address), even though the implementation of LAZY and EAGER is
+  // now identical. When LAZY is eventually completely folded into EAGER, remove
+  // the special case below.
+  if (info()->IsStub() && type == Deoptimizer::EAGER) {
+    type = Deoptimizer::LAZY;
+  }
+
+  DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
+}
+
+void LCodeGen::DoDummy(LDummy* instr) {
+  // Nothing to see here, move on!
+}
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+  // Nothing to see here, move on!
+}
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+  PushSafepointRegistersScope scope(this);
+  LoadContextFromDeferred(instr->context());
+  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+  RecordSafepointWithLazyDeopt(
+      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+  class DeferredStackCheck final : public LDeferredCode {
+   public:
+    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+        : LDeferredCode(codegen), instr_(instr) {}
+    void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LStackCheck* instr_;
+  };
+
+  DCHECK(instr->HasEnvironment());
+  LEnvironment* env = instr->environment();
+  // There is no LLazyBailout instruction for stack-checks. We have to
+  // prepare for lazy deoptimization explicitly here.
+  if (instr->hydrogen()->is_function_entry()) {
+    // Perform stack overflow check.
+    Label done;
+    __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
+    __ bge(&done, Label::kNear);
+    DCHECK(instr->context()->IsRegister());
+    DCHECK(ToRegister(instr->context()).is(cp));
+    CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
+             instr);
+    __ bind(&done);
+  } else {
+    DCHECK(instr->hydrogen()->is_backwards_branch());
+    // Perform stack overflow check if this goto needs it before jumping.
+    DeferredStackCheck* deferred_stack_check =
+        new (zone()) DeferredStackCheck(this, instr);
+    __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
+    __ blt(deferred_stack_check->entry());
+    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+    __ bind(instr->done_label());
+    deferred_stack_check->SetExit(instr->done_label());
+    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+    // Don't record a deoptimization index for the safepoint here.
+    // This will be done explicitly when emitting call and the safepoint in
+    // the deferred code.
+  }
+}
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+  // This is a pseudo-instruction that ensures that the environment here is
+  // properly registered for deoptimization and records the assembler's PC
+  // offset.
+  LEnvironment* environment = instr->environment();
+
+  // If the environment were already registered, we would have no way of
+  // backpatching it with the spill slot operands.
+  DCHECK(!environment->HasBeenRegistered());
+  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+  GenerateOsrPrologue();
+}
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+  Label use_cache, call_runtime;
+  __ CheckEnumCache(&call_runtime);
+
+  __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
+  __ b(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(r2);
+  CallRuntime(Runtime::kForInEnumerate, instr);
+  __ bind(&use_cache);
+}
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+  Register map = ToRegister(instr->map());
+  Register result = ToRegister(instr->result());
+  Label load_cache, done;
+  __ EnumLength(result, map);
+  __ CmpSmiLiteral(result, Smi::FromInt(0), r0);
+  __ bne(&load_cache, Label::kNear);
+  __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
+  __ b(&done, Label::kNear);
+
+  __ bind(&load_cache);
+  __ LoadInstanceDescriptors(map, result);
+  __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+  __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+  __ CmpP(result, Operand::Zero());
+  DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
+
+  __ bind(&done);
+}
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+  Register object = ToRegister(instr->value());
+  Register map = ToRegister(instr->map());
+  __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
+  __ CmpP(map, scratch0());
+  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
+}
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+                                           Register result, Register object,
+                                           Register index) {
+  PushSafepointRegistersScope scope(this);
+  __ Push(object, index);
+  __ LoadImmP(cp, Operand::Zero());
+  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+  RecordSafepointWithRegisters(instr->pointer_map(), 2,
+                               Safepoint::kNoLazyDeopt);
+  __ StoreToSafepointRegisterSlot(r2, result);
+}
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+  class DeferredLoadMutableDouble final : public LDeferredCode {
+   public:
+    DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
+                              Register result, Register object, Register index)
+        : LDeferredCode(codegen),
+          instr_(instr),
+          result_(result),
+          object_(object),
+          index_(index) {}
+    void Generate() override {
+      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
+    }
+    LInstruction* instr() override { return instr_; }
+
+   private:
+    LLoadFieldByIndex* instr_;
+    Register result_;
+    Register object_;
+    Register index_;
+  };
+
+  Register object = ToRegister(instr->object());
+  Register index = ToRegister(instr->index());
+  Register result = ToRegister(instr->result());
+  Register scratch = scratch0();
+
+  DeferredLoadMutableDouble* deferred;
+  deferred = new (zone())
+      DeferredLoadMutableDouble(this, instr, result, object, index);
+
+  Label out_of_object, done;
+
+  __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
+  __ bne(deferred->entry());
+  __ ShiftRightArithP(index, index, Operand(1));
+
+  __ CmpP(index, Operand::Zero());
+  __ blt(&out_of_object, Label::kNear);
+
+  __ SmiToPtrArrayOffset(r0, index);
+  __ AddP(scratch, object, r0);
+  __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
+
+  __ b(&done, Label::kNear);
+
+  __ bind(&out_of_object);
+  __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+  // Index is equal to negated out of object property index plus 1.
+  __ SmiToPtrArrayOffset(r0, index);
+  __ SubP(scratch, result, r0);
+  __ LoadP(result,
+           FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
+  __ bind(deferred->exit());
+  __ bind(&done);
+}
+
+#undef __
+
+}  // namespace internal
+}  // namespace v8