Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/s390/assembler-s390-inl.h b/src/s390/assembler-s390-inl.h
new file mode 100644
index 0000000..400d543
--- /dev/null
+++ b/src/s390/assembler-s390-inl.h
@@ -0,0 +1,593 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been modified
+// significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#ifndef V8_S390_ASSEMBLER_S390_INL_H_
+#define V8_S390_ASSEMBLER_S390_INL_H_
+
+#include "src/s390/assembler-s390.h"
+
+#include "src/assembler.h"
+#include "src/debug/debug.h"
+
+namespace v8 {
+namespace internal {
+
+bool CpuFeatures::SupportsCrankshaft() { return true; }
+
+void RelocInfo::apply(intptr_t delta) {
+  // Absolute code pointer inside code object moves with the code object.
+  if (IsInternalReference(rmode_)) {
+    // Jump table entry
+    Address target = Memory::Address_at(pc_);
+    Memory::Address_at(pc_) = target + delta;
+  } else if (IsCodeTarget(rmode_)) {
+    SixByteInstr instr =
+        Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
+    int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
+                  - static_cast<int32_t>(delta);
+    instr >>= 32;  // Clear the 4-byte displacement field.
+    instr <<= 32;
+    instr |= static_cast<uint32_t>(dis / 2);
+    Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
+                                                  instr);
+  } else {
+    // mov sequence
+    DCHECK(IsInternalReferenceEncoded(rmode_));
+    Address target = Assembler::target_address_at(pc_, host_);
+    Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
+                                     SKIP_ICACHE_FLUSH);
+  }
+}
+
+Address RelocInfo::target_internal_reference() {
+  if (IsInternalReference(rmode_)) {
+    // Jump table entry
+    return Memory::Address_at(pc_);
+  } else {
+    // mov sequence
+    DCHECK(IsInternalReferenceEncoded(rmode_));
+    return Assembler::target_address_at(pc_, host_);
+  }
+}
+
+Address RelocInfo::target_internal_reference_address() {
+  DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
+  return reinterpret_cast<Address>(pc_);
+}
+
+Address RelocInfo::target_address() {
+  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
+  return Assembler::target_address_at(pc_, host_);
+}
+
+Address RelocInfo::wasm_memory_reference() {
+  DCHECK(IsWasmMemoryReference(rmode_));
+  return Assembler::target_address_at(pc_, host_);
+}
+
+Address RelocInfo::target_address_address() {
+  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
+         rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
+
+  // Read the address of the word containing the target_address in an
+  // instruction stream.
+  // The only architecture-independent user of this function is the serializer.
+  // The serializer uses it to find out how many raw bytes of instruction to
+  // output before the next target.
+  // For an instruction like LIS/ORI where the target bits are mixed into the
+  // instruction bits, the size of the target will be zero, indicating that the
+  // serializer should not step forward in memory after a target is resolved
+  // and written.
+  return reinterpret_cast<Address>(pc_);
+}
+
+Address RelocInfo::constant_pool_entry_address() {
+  UNREACHABLE();
+  return NULL;
+}
+
+int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
+
+void RelocInfo::set_target_address(Address target,
+                                   WriteBarrierMode write_barrier_mode,
+                                   ICacheFlushMode icache_flush_mode) {
+  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
+  Assembler::set_target_address_at(isolate_, pc_, host_, target,
+                                   icache_flush_mode);
+  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
+      IsCodeTarget(rmode_)) {
+    Object* target_code = Code::GetCodeFromTargetAddress(target);
+    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+        host(), this, HeapObject::cast(target_code));
+  }
+}
+
+Address Assembler::target_address_from_return_address(Address pc) {
+  // Returns the address of the call target from the return address that will
+  // be returned to after a call.
+  // Sequence is:
+  //    BRASL r14, RI
+  return pc - kCallTargetAddressOffset;
+}
+
+Address Assembler::return_address_from_call_start(Address pc) {
+  // Sequence is:
+  //    BRASL r14, RI
+  return pc + kCallTargetAddressOffset;
+}
+
+Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
+  SixByteInstr instr =
+      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
+  int index = instr & 0xFFFFFFFF;
+  return code_targets_[index];
+}
+
+void RelocInfo::update_wasm_memory_reference(
+    Address old_base, Address new_base, size_t old_size, size_t new_size,
+    ICacheFlushMode icache_flush_mode) {
+  DCHECK(IsWasmMemoryReference(rmode_));
+  DCHECK(old_base <= wasm_memory_reference() &&
+         wasm_memory_reference() < old_base + old_size);
+  Address updated_reference = new_base + (wasm_memory_reference() - old_base);
+  DCHECK(new_base <= updated_reference &&
+         updated_reference < new_base + new_size);
+  Assembler::set_target_address_at(isolate_, pc_, host_, updated_reference,
+                                   icache_flush_mode);
+}
+
+Object* RelocInfo::target_object() {
+  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
+}
+
+Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
+  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  if (rmode_ == EMBEDDED_OBJECT) {
+    return Handle<Object>(
+        reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
+  } else {
+    return origin->code_target_object_handle_at(pc_);
+  }
+}
+
+void RelocInfo::set_target_object(Object* target,
+                                  WriteBarrierMode write_barrier_mode,
+                                  ICacheFlushMode icache_flush_mode) {
+  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+  Assembler::set_target_address_at(isolate_, pc_, host_,
+                                   reinterpret_cast<Address>(target),
+                                   icache_flush_mode);
+  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
+      target->IsHeapObject()) {
+    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+        host(), this, HeapObject::cast(target));
+  }
+}
+
+Address RelocInfo::target_external_reference() {
+  DCHECK(rmode_ == EXTERNAL_REFERENCE);
+  return Assembler::target_address_at(pc_, host_);
+}
+
+Address RelocInfo::target_runtime_entry(Assembler* origin) {
+  DCHECK(IsRuntimeEntry(rmode_));
+  return target_address();
+}
+
+void RelocInfo::set_target_runtime_entry(Address target,
+                                         WriteBarrierMode write_barrier_mode,
+                                         ICacheFlushMode icache_flush_mode) {
+  DCHECK(IsRuntimeEntry(rmode_));
+  if (target_address() != target)
+    set_target_address(target, write_barrier_mode, icache_flush_mode);
+}
+
+Handle<Cell> RelocInfo::target_cell_handle() {
+  DCHECK(rmode_ == RelocInfo::CELL);
+  Address address = Memory::Address_at(pc_);
+  return Handle<Cell>(reinterpret_cast<Cell**>(address));
+}
+
+Cell* RelocInfo::target_cell() {
+  DCHECK(rmode_ == RelocInfo::CELL);
+  return Cell::FromValueAddress(Memory::Address_at(pc_));
+}
+
+void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
+                                ICacheFlushMode icache_flush_mode) {
+  DCHECK(rmode_ == RelocInfo::CELL);
+  Address address = cell->address() + Cell::kValueOffset;
+  Memory::Address_at(pc_) = address;
+  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
+    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
+                                                                  cell);
+  }
+}
+
+#if V8_TARGET_ARCH_S390X
+// NOP(2byte) + PUSH + MOV + BASR =
+// NOP + LAY + STG + IIHF + IILF + BASR
+static const int kCodeAgingSequenceLength = 28;
+static const int kCodeAgingTargetDelta = 14;  // Jump past NOP + PUSH to IIHF
+                                              // LAY + 4 * STG + LA
+static const int kNoCodeAgeSequenceLength = 34;
+#else
+#if (V8_HOST_ARCH_S390)
+// NOP + NILH + LAY + ST + IILF + BASR
+static const int kCodeAgingSequenceLength = 24;
+static const int kCodeAgingTargetDelta = 16;  // Jump past NOP to IILF
+// NILH + LAY + 4 * ST + LA
+static const int kNoCodeAgeSequenceLength = 30;
+#else
+// NOP + LAY + ST + IILF + BASR
+static const int kCodeAgingSequenceLength = 20;
+static const int kCodeAgingTargetDelta = 12;  // Jump past NOP to IILF
+// LAY + 4 * ST + LA
+static const int kNoCodeAgeSequenceLength = 26;
+#endif
+#endif
+
+Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
+  UNREACHABLE();  // This should never be reached on S390.
+  return Handle<Object>();
+}
+
+Code* RelocInfo::code_age_stub() {
+  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+  return Code::GetCodeFromTargetAddress(
+      Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
+}
+
+void RelocInfo::set_code_age_stub(Code* stub,
+                                  ICacheFlushMode icache_flush_mode) {
+  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+  Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
+                                   stub->instruction_start(),
+                                   icache_flush_mode);
+}
+
+Address RelocInfo::debug_call_address() {
+  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
+  return Assembler::target_address_at(pc_, host_);
+}
+
+void RelocInfo::set_debug_call_address(Address target) {
+  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
+  Assembler::set_target_address_at(isolate_, pc_, host_, target);
+  if (host() != NULL) {
+    Object* target_code = Code::GetCodeFromTargetAddress(target);
+    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+        host(), this, HeapObject::cast(target_code));
+  }
+}
+
+void RelocInfo::WipeOut() {
+  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
+         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
+         IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
+  if (IsInternalReference(rmode_)) {
+    // Jump table entry
+    Memory::Address_at(pc_) = NULL;
+  } else if (IsInternalReferenceEncoded(rmode_)) {
+    // mov sequence
+    // Currently used only by deserializer, no need to flush.
+    Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
+                                     SKIP_ICACHE_FLUSH);
+  } else {
+    Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
+  }
+}
+
+void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
+  RelocInfo::Mode mode = rmode();
+  if (mode == RelocInfo::EMBEDDED_OBJECT) {
+    visitor->VisitEmbeddedPointer(this);
+  } else if (RelocInfo::IsCodeTarget(mode)) {
+    visitor->VisitCodeTarget(this);
+  } else if (mode == RelocInfo::CELL) {
+    visitor->VisitCell(this);
+  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+    visitor->VisitExternalReference(this);
+  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
+    visitor->VisitInternalReference(this);
+  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
+    visitor->VisitCodeAgeSequence(this);
+  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
+             IsPatchedDebugBreakSlotSequence()) {
+    visitor->VisitDebugTarget(this);
+  } else if (IsRuntimeEntry(mode)) {
+    visitor->VisitRuntimeEntry(this);
+  }
+}
+
+template <typename StaticVisitor>
+void RelocInfo::Visit(Heap* heap) {
+  RelocInfo::Mode mode = rmode();
+  if (mode == RelocInfo::EMBEDDED_OBJECT) {
+    StaticVisitor::VisitEmbeddedPointer(heap, this);
+  } else if (RelocInfo::IsCodeTarget(mode)) {
+    StaticVisitor::VisitCodeTarget(heap, this);
+  } else if (mode == RelocInfo::CELL) {
+    StaticVisitor::VisitCell(heap, this);
+  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+    StaticVisitor::VisitExternalReference(this);
+  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
+    StaticVisitor::VisitInternalReference(this);
+  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
+    StaticVisitor::VisitCodeAgeSequence(heap, this);
+  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
+             IsPatchedDebugBreakSlotSequence()) {
+    StaticVisitor::VisitDebugTarget(heap, this);
+  } else if (IsRuntimeEntry(mode)) {
+    StaticVisitor::VisitRuntimeEntry(this);
+  }
+}
+
+// Operand constructors
+Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
+  rm_ = no_reg;
+  imm_ = immediate;
+  rmode_ = rmode;
+}
+
+Operand::Operand(const ExternalReference& f) {
+  rm_ = no_reg;
+  imm_ = reinterpret_cast<intptr_t>(f.address());
+  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
+}
+
+Operand::Operand(Smi* value) {
+  rm_ = no_reg;
+  imm_ = reinterpret_cast<intptr_t>(value);
+  rmode_ = kRelocInfo_NONEPTR;
+}
+
+Operand::Operand(Register rm) {
+  rm_ = rm;
+  rmode_ = kRelocInfo_NONEPTR;  // S390 -why doesn't ARM do this?
+}
+
+void Assembler::CheckBuffer() {
+  if (buffer_space() <= kGap) {
+    GrowBuffer();
+  }
+}
+
+int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
+                                    TypeFeedbackId ast_id) {
+  DCHECK(RelocInfo::IsCodeTarget(rmode));
+  if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
+    SetRecordedAstId(ast_id);
+    RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
+  } else {
+    RecordRelocInfo(rmode);
+  }
+
+  int current = code_targets_.length();
+  if (current > 0 && code_targets_.last().is_identical_to(target)) {
+    // Optimization if we keep jumping to the same code target.
+    current--;
+  } else {
+    code_targets_.Add(target);
+  }
+  return current;
+}
+
+// Helper to emit the binary encoding of a 2 byte instruction
+void Assembler::emit2bytes(uint16_t x) {
+  CheckBuffer();
+#if V8_TARGET_LITTLE_ENDIAN
+  // We need to emit instructions in big endian format as disassembler /
+  // simulator require the first byte of the instruction in order to decode
+  // the instruction length.  Swap the bytes.
+  x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
+#endif
+  *reinterpret_cast<uint16_t*>(pc_) = x;
+  pc_ += 2;
+}
+
+// Helper to emit the binary encoding of a 4 byte instruction
+void Assembler::emit4bytes(uint32_t x) {
+  CheckBuffer();
+#if V8_TARGET_LITTLE_ENDIAN
+  // We need to emit instructions in big endian format as disassembler /
+  // simulator require the first byte of the instruction in order to decode
+  // the instruction length.  Swap the bytes.
+  x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
+      ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
+#endif
+  *reinterpret_cast<uint32_t*>(pc_) = x;
+  pc_ += 4;
+}
+
+// Helper to emit the binary encoding of a 6 byte instruction
+void Assembler::emit6bytes(uint64_t x) {
+  CheckBuffer();
+#if V8_TARGET_LITTLE_ENDIAN
+  // We need to emit instructions in big endian format as disassembler /
+  // simulator require the first byte of the instruction in order to decode
+  // the instruction length.  Swap the bytes.
+  x = (static_cast<uint64_t>(x & 0xFF) << 40) |
+      (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
+      (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
+      (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
+      (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
+      (static_cast<uint64_t>((x >> 40) & 0xFF));
+  x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
+#else
+  // We need to pad two bytes of zeros in order to get the 6-bytes
+  // stored from low address.
+  x = x << 16;
+  x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
+#endif
+  // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
+  // space left over.
+  *reinterpret_cast<uint64_t*>(pc_) = x;
+  pc_ += 6;
+}
+
+bool Operand::is_reg() const { return rm_.is_valid(); }
+
+// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
+Address Assembler::target_address_at(Address pc, Address constant_pool) {
+  // S390 Instruction!
+  // We want to check for instructions generated by Asm::mov()
+  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
+  SixByteInstr instr_1 =
+      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
+
+  if (BRASL == op1 || BRCL == op1) {
+    int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
+    return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
+  }
+
+#if V8_TARGET_ARCH_S390X
+  int instr1_length =
+      Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
+  Opcode op2 = Instruction::S390OpcodeValue(
+      reinterpret_cast<const byte*>(pc + instr1_length));
+  SixByteInstr instr_2 = Instruction::InstructionBits(
+      reinterpret_cast<const byte*>(pc + instr1_length));
+  // IIHF for hi_32, IILF for lo_32
+  if (IIHF == op1 && IILF == op2) {
+    return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
+                                     ((instr_2 & 0xFFFFFFFF)));
+  }
+#else
+  // IILF loads 32-bits
+  if (IILF == op1 || CFI == op1) {
+    return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
+  }
+#endif
+
+  UNIMPLEMENTED();
+  return (Address)0;
+}
+
+// This sets the branch destination (which gets loaded at the call address).
+// This is for calls and branches within generated code.  The serializer
+// has already deserialized the mov instructions etc.
+// There is a FIXED_SEQUENCE assumption here
+void Assembler::deserialization_set_special_target_at(
+    Isolate* isolate, Address instruction_payload, Code* code, Address target) {
+  set_target_address_at(isolate, instruction_payload, code, target);
+}
+
+void Assembler::deserialization_set_target_internal_reference_at(
+    Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
+  if (RelocInfo::IsInternalReferenceEncoded(mode)) {
+    Code* code = NULL;
+    set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
+  } else {
+    Memory::Address_at(pc) = target;
+  }
+}
+
+// This code assumes the FIXED_SEQUENCE of IIHF/IILF
+void Assembler::set_target_address_at(Isolate* isolate, Address pc,
+                                      Address constant_pool, Address target,
+                                      ICacheFlushMode icache_flush_mode) {
+  // Check for instructions generated by Asm::mov()
+  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
+  SixByteInstr instr_1 =
+      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
+  bool patched = false;
+
+  if (BRASL == op1 || BRCL == op1) {
+    instr_1 >>= 32;  // Zero out the lower 32-bits
+    instr_1 <<= 32;
+    int32_t halfwords = (target - pc) / 2;  // number of halfwords
+    instr_1 |= static_cast<uint32_t>(halfwords);
+    Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
+                                                  instr_1);
+    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+      Assembler::FlushICache(isolate, pc, 6);
+    }
+    patched = true;
+  } else {
+#if V8_TARGET_ARCH_S390X
+    int instr1_length =
+        Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
+    Opcode op2 = Instruction::S390OpcodeValue(
+        reinterpret_cast<const byte*>(pc + instr1_length));
+    SixByteInstr instr_2 = Instruction::InstructionBits(
+        reinterpret_cast<const byte*>(pc + instr1_length));
+    // IIHF for hi_32, IILF for lo_32
+    if (IIHF == op1 && IILF == op2) {
+      // IIHF
+      instr_1 >>= 32;  // Zero out the lower 32-bits
+      instr_1 <<= 32;
+      instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
+
+      Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
+                                                    instr_1);
+
+      // IILF
+      instr_2 >>= 32;
+      instr_2 <<= 32;
+      instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
+
+      Instruction::SetInstructionBits<SixByteInstr>(
+          reinterpret_cast<byte*>(pc + instr1_length), instr_2);
+      if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+        Assembler::FlushICache(isolate, pc, 12);
+      }
+      patched = true;
+    }
+#else
+    // IILF loads 32-bits
+    if (IILF == op1 || CFI == op1) {
+      instr_1 >>= 32;  // Zero out the lower 32-bits
+      instr_1 <<= 32;
+      instr_1 |= reinterpret_cast<uint32_t>(target);
+
+      Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
+                                                    instr_1);
+      if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+        Assembler::FlushICache(isolate, pc, 6);
+      }
+      patched = true;
+    }
+#endif
+  }
+  if (!patched) UNREACHABLE();
+}
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_S390_ASSEMBLER_S390_INL_H_