Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/s390/assembler-s390.cc b/src/s390/assembler-s390.cc
new file mode 100644
index 0000000..35ba431
--- /dev/null
+++ b/src/s390/assembler-s390.cc
@@ -0,0 +1,3061 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+#include "src/s390/assembler-s390.h"
+
+#if V8_TARGET_ARCH_S390
+
+#if V8_HOST_ARCH_S390
+#include <elf.h>  // Required for auxv checks for STFLE support
+#endif
+
+#include "src/base/bits.h"
+#include "src/base/cpu.h"
+#include "src/s390/assembler-s390-inl.h"
+
+#include "src/macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+// Get the CPU features enabled by the build.
+static unsigned CpuFeaturesImpliedByCompiler() {
+  unsigned answer = 0;
+  return answer;
+}
+
+// Check whether Store Facility STFLE instruction is available on the platform.
+// Instruction returns a bit vector of the enabled hardware facilities.
+static bool supportsSTFLE() {
+#if V8_HOST_ARCH_S390
+  static bool read_tried = false;
+  static uint32_t auxv_hwcap = 0;
+
+  if (!read_tried) {
+    // Open the AUXV (auxilliary vector) psuedo-file
+    int fd = open("/proc/self/auxv", O_RDONLY);
+
+    read_tried = true;
+    if (fd != -1) {
+#if V8_TARGET_ARCH_S390X
+      static Elf64_auxv_t buffer[16];
+      Elf64_auxv_t* auxv_element;
+#else
+      static Elf32_auxv_t buffer[16];
+      Elf32_auxv_t* auxv_element;
+#endif
+      int bytes_read = 0;
+      while (bytes_read >= 0) {
+        // Read a chunk of the AUXV
+        bytes_read = read(fd, buffer, sizeof(buffer));
+        // Locate and read the platform field of AUXV if it is in the chunk
+        for (auxv_element = buffer;
+             auxv_element + sizeof(auxv_element) <= buffer + bytes_read &&
+             auxv_element->a_type != AT_NULL;
+             auxv_element++) {
+          // We are looking for HWCAP entry in AUXV to search for STFLE support
+          if (auxv_element->a_type == AT_HWCAP) {
+            /* Note: Both auxv_hwcap and buffer are static */
+            auxv_hwcap = auxv_element->a_un.a_val;
+            goto done_reading;
+          }
+        }
+      }
+    done_reading:
+      close(fd);
+    }
+  }
+
+  // Did not find result
+  if (0 == auxv_hwcap) {
+    return false;
+  }
+
+  // HWCAP_S390_STFLE is defined to be 4 in include/asm/elf.h.  Currently
+  // hardcoded in case that include file does not exist.
+  const uint32_t HWCAP_S390_STFLE = 4;
+  return (auxv_hwcap & HWCAP_S390_STFLE);
+#else
+  // STFLE is not available on non-s390 hosts
+  return false;
+#endif
+}
+
+void CpuFeatures::ProbeImpl(bool cross_compile) {
+  supported_ |= CpuFeaturesImpliedByCompiler();
+  icache_line_size_ = 256;
+
+  // Only use statically determined features for cross compile (snapshot).
+  if (cross_compile) return;
+
+#ifdef DEBUG
+  initialized_ = true;
+#endif
+
+  static bool performSTFLE = supportsSTFLE();
+
+// Need to define host, as we are generating inlined S390 assembly to test
+// for facilities.
+#if V8_HOST_ARCH_S390
+  if (performSTFLE) {
+    // STFLE D(B) requires:
+    //    GPR0 to specify # of double words to update minus 1.
+    //      i.e. GPR0 = 0 for 1 doubleword
+    //    D(B) to specify to memory location to store the facilities bits
+    // The facilities we are checking for are:
+    //   Bit 45 - Distinct Operands for instructions like ARK, SRK, etc.
+    // As such, we require only 1 double word
+    int64_t facilities[1];
+    facilities[0] = 0;
+    // LHI sets up GPR0
+    // STFLE is specified as .insn, as opcode is not recognized.
+    // We register the instructions kill r0 (LHI) and the CC (STFLE).
+    asm volatile(
+        "lhi   0,0\n"
+        ".insn s,0xb2b00000,%0\n"
+        : "=Q"(facilities)
+        :
+        : "cc", "r0");
+
+    // Test for Distinct Operands Facility - Bit 45
+    if (facilities[0] & (1lu << (63 - 45))) {
+      supported_ |= (1u << DISTINCT_OPS);
+    }
+    // Test for General Instruction Extension Facility - Bit 34
+    if (facilities[0] & (1lu << (63 - 34))) {
+      supported_ |= (1u << GENERAL_INSTR_EXT);
+    }
+    // Test for Floating Point Extension Facility - Bit 37
+    if (facilities[0] & (1lu << (63 - 37))) {
+      supported_ |= (1u << FLOATING_POINT_EXT);
+    }
+  }
+#else
+  // All distinct ops instructions can be simulated
+  supported_ |= (1u << DISTINCT_OPS);
+  // RISBG can be simulated
+  supported_ |= (1u << GENERAL_INSTR_EXT);
+
+  supported_ |= (1u << FLOATING_POINT_EXT);
+  USE(performSTFLE);  // To avoid assert
+#endif
+  supported_ |= (1u << FPU);
+}
+
+void CpuFeatures::PrintTarget() {
+  const char* s390_arch = NULL;
+
+#if V8_TARGET_ARCH_S390X
+  s390_arch = "s390x";
+#else
+  s390_arch = "s390";
+#endif
+
+  printf("target %s\n", s390_arch);
+}
+
+void CpuFeatures::PrintFeatures() {
+  printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
+  printf("FPU_EXT=%d\n", CpuFeatures::IsSupported(FLOATING_POINT_EXT));
+  printf("GENERAL_INSTR=%d\n", CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
+  printf("DISTINCT_OPS=%d\n", CpuFeatures::IsSupported(DISTINCT_OPS));
+}
+
+Register ToRegister(int num) {
+  DCHECK(num >= 0 && num < kNumRegisters);
+  const Register kRegisters[] = {r0, r1, r2,  r3, r4, r5,  r6,  r7,
+                                 r8, r9, r10, fp, ip, r13, r14, sp};
+  return kRegisters[num];
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+const int RelocInfo::kApplyMask =
+    RelocInfo::kCodeTargetMask | 1 << RelocInfo::INTERNAL_REFERENCE;
+
+bool RelocInfo::IsCodedSpecially() {
+  // The deserializer needs to know whether a pointer is specially
+  // coded.  Being specially coded on S390 means that it is an iihf/iilf
+  // instruction sequence, and that is always the case inside code
+  // objects.
+  return true;
+}
+
+bool RelocInfo::IsInConstantPool() { return false; }
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand and MemOperand
+// See assembler-s390-inl.h for inlined constructors
+
+Operand::Operand(Handle<Object> handle) {
+  AllowDeferredHandleDereference using_raw_address;
+  rm_ = no_reg;
+  // Verify all Objects referred by code are NOT in new space.
+  Object* obj = *handle;
+  if (obj->IsHeapObject()) {
+    DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
+    imm_ = reinterpret_cast<intptr_t>(handle.location());
+    rmode_ = RelocInfo::EMBEDDED_OBJECT;
+  } else {
+    // no relocation needed
+    imm_ = reinterpret_cast<intptr_t>(obj);
+    rmode_ = kRelocInfo_NONEPTR;
+  }
+}
+
+MemOperand::MemOperand(Register rn, int32_t offset) {
+  baseRegister = rn;
+  indexRegister = r0;
+  offset_ = offset;
+}
+
+MemOperand::MemOperand(Register rx, Register rb, int32_t offset) {
+  baseRegister = rb;
+  indexRegister = rx;
+  offset_ = offset;
+}
+
+// -----------------------------------------------------------------------------
+// Specific instructions, constants, and masks.
+
+Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
+    : AssemblerBase(isolate, buffer, buffer_size),
+      recorded_ast_id_(TypeFeedbackId::None()),
+      code_targets_(100),
+      positions_recorder_(this) {
+  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
+
+  last_bound_pos_ = 0;
+  ClearRecordedAstId();
+  relocations_.reserve(128);
+}
+
+void Assembler::GetCode(CodeDesc* desc) {
+  EmitRelocations();
+
+  // Set up code descriptor.
+  desc->buffer = buffer_;
+  desc->buffer_size = buffer_size_;
+  desc->instr_size = pc_offset();
+  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+  desc->origin = this;
+}
+
+void Assembler::Align(int m) {
+  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
+  while ((pc_offset() & (m - 1)) != 0) {
+    nop(0);
+  }
+}
+
+void Assembler::CodeTargetAlign() { Align(8); }
+
+Condition Assembler::GetCondition(Instr instr) {
+  switch (instr & kCondMask) {
+    case BT:
+      return eq;
+    case BF:
+      return ne;
+    default:
+      UNIMPLEMENTED();
+  }
+  return al;
+}
+
+#if V8_TARGET_ARCH_S390X
+// This code assumes a FIXED_SEQUENCE for 64bit loads (iihf/iilf)
+bool Assembler::Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2) {
+  // Check the instructions are the iihf/iilf load into ip
+  return (((instr1 >> 32) == 0xC0C8) && ((instr2 >> 32) == 0xC0C9));
+}
+#else
+// This code assumes a FIXED_SEQUENCE for 32bit loads (iilf)
+bool Assembler::Is32BitLoadIntoIP(SixByteInstr instr) {
+  // Check the instruction is an iilf load into ip/r12.
+  return ((instr >> 32) == 0xC0C9);
+}
+#endif
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the last
+// instruction using the label.
+
+// The link chain is terminated by a negative code position (must be aligned)
+const int kEndOfChain = -4;
+
+// Returns the target address of the relative instructions, typically
+// of the form: pos + imm (where immediate is in # of halfwords for
+// BR* and LARL).
+int Assembler::target_at(int pos) {
+  SixByteInstr instr = instr_at(pos);
+  // check which type of branch this is 16 or 26 bit offset
+  Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
+
+  if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
+    int16_t imm16 = SIGN_EXT_IMM16((instr & kImm16Mask));
+    imm16 <<= 1;  // BRC immediate is in # of halfwords
+    if (imm16 == 0) return kEndOfChain;
+    return pos + imm16;
+  } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
+             BRASL == opcode) {
+    int32_t imm32 =
+        static_cast<int32_t>(instr & (static_cast<uint64_t>(0xffffffff)));
+    if (LLILF != opcode)
+      imm32 <<= 1;  // BR* + LARL treat immediate in # of halfwords
+    if (imm32 == 0) return kEndOfChain;
+    return pos + imm32;
+  }
+
+  // Unknown condition
+  DCHECK(false);
+  return -1;
+}
+
+// Update the target address of the current relative instruction.
+void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
+  SixByteInstr instr = instr_at(pos);
+  Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
+
+  if (is_branch != nullptr) {
+    *is_branch = (opcode == BRC || opcode == BRCT || opcode == BRCTG ||
+                  opcode == BRCL || opcode == BRASL);
+  }
+
+  if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
+    int16_t imm16 = target_pos - pos;
+    instr &= (~0xffff);
+    DCHECK(is_int16(imm16));
+    instr_at_put<FourByteInstr>(pos, instr | (imm16 >> 1));
+    return;
+  } else if (BRCL == opcode || LARL == opcode || BRASL == opcode) {
+    // Immediate is in # of halfwords
+    int32_t imm32 = target_pos - pos;
+    instr &= (~static_cast<uint64_t>(0xffffffff));
+    instr_at_put<SixByteInstr>(pos, instr | (imm32 >> 1));
+    return;
+  } else if (LLILF == opcode) {
+    DCHECK(target_pos == kEndOfChain || target_pos >= 0);
+    // Emitted label constant, not part of a branch.
+    // Make label relative to Code* of generated Code object.
+    int32_t imm32 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
+    instr &= (~static_cast<uint64_t>(0xffffffff));
+    instr_at_put<SixByteInstr>(pos, instr | imm32);
+    return;
+  }
+  DCHECK(false);
+}
+
+// Returns the maximum number of bits given instruction can address.
+int Assembler::max_reach_from(int pos) {
+  Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
+
+  // Check which type of instr.  In theory, we can return
+  // the values below + 1, given offset is # of halfwords
+  if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
+    return 16;
+  } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
+             BRASL == opcode) {
+    return 31;  // Using 31 as workaround instead of 32 as
+                // is_intn(x,32) doesn't work on 32-bit platforms.
+                // llilf: Emitted label constant, not part of
+                //        a branch (regexp PushBacktrack).
+  }
+  DCHECK(false);
+  return 16;
+}
+
+void Assembler::bind_to(Label* L, int pos) {
+  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
+  bool is_branch = false;
+  while (L->is_linked()) {
+    int fixup_pos = L->pos();
+#ifdef DEBUG
+    int32_t offset = pos - fixup_pos;
+    int maxReach = max_reach_from(fixup_pos);
+#endif
+    next(L);  // call next before overwriting link with target at fixup_pos
+    DCHECK(is_intn(offset, maxReach));
+    target_at_put(fixup_pos, pos, &is_branch);
+  }
+  L->bind_to(pos);
+
+  // Keep track of the last bound label so we don't eliminate any instructions
+  // before a bound label.
+  if (pos > last_bound_pos_) last_bound_pos_ = pos;
+}
+
+void Assembler::bind(Label* L) {
+  DCHECK(!L->is_bound());  // label can only be bound once
+  bind_to(L, pc_offset());
+}
+
+void Assembler::next(Label* L) {
+  DCHECK(L->is_linked());
+  int link = target_at(L->pos());
+  if (link == kEndOfChain) {
+    L->Unuse();
+  } else {
+    DCHECK(link >= 0);
+    L->link_to(link);
+  }
+}
+
+bool Assembler::is_near(Label* L, Condition cond) {
+  DCHECK(L->is_bound());
+  if (L->is_bound() == false) return false;
+
+  int maxReach = ((cond == al) ? 26 : 16);
+  int offset = L->pos() - pc_offset();
+
+  return is_intn(offset, maxReach);
+}
+
+int Assembler::link(Label* L) {
+  int position;
+  if (L->is_bound()) {
+    position = L->pos();
+  } else {
+    if (L->is_linked()) {
+      position = L->pos();  // L's link
+    } else {
+      // was: target_pos = kEndOfChain;
+      // However, using self to mark the first reference
+      // should avoid most instances of branch offset overflow.  See
+      // target_at() for where this is converted back to kEndOfChain.
+      position = pc_offset();
+    }
+    L->link_to(pc_offset());
+  }
+
+  return position;
+}
+
+void Assembler::load_label_offset(Register r1, Label* L) {
+  int target_pos;
+  int constant;
+  if (L->is_bound()) {
+    target_pos = L->pos();
+    constant = target_pos + (Code::kHeaderSize - kHeapObjectTag);
+  } else {
+    if (L->is_linked()) {
+      target_pos = L->pos();  // L's link
+    } else {
+      // was: target_pos = kEndOfChain;
+      // However, using branch to self to mark the first reference
+      // should avoid most instances of branch offset overflow.  See
+      // target_at() for where this is converted back to kEndOfChain.
+      target_pos = pc_offset();
+    }
+    L->link_to(pc_offset());
+
+    constant = target_pos - pc_offset();
+  }
+  llilf(r1, Operand(constant));
+}
+
+// Pseudo op - branch on condition
+void Assembler::branchOnCond(Condition c, int branch_offset, bool is_bound) {
+  int offset = branch_offset;
+  if (is_bound && is_int16(offset)) {
+    brc(c, Operand(offset & 0xFFFF));  // short jump
+  } else {
+    brcl(c, Operand(offset));  // long jump
+  }
+}
+
+// 32-bit Store Multiple - short displacement (12-bits unsigned)
+void Assembler::stm(Register r1, Register r2, const MemOperand& src) {
+  rs_form(STM, r1, r2, src.rb(), src.offset());
+}
+
+// 32-bit Store Multiple - long displacement (20-bits signed)
+void Assembler::stmy(Register r1, Register r2, const MemOperand& src) {
+  rsy_form(STMY, r1, r2, src.rb(), src.offset());
+}
+
+// 64-bit Store Multiple - long displacement (20-bits signed)
+void Assembler::stmg(Register r1, Register r2, const MemOperand& src) {
+  rsy_form(STMG, r1, r2, src.rb(), src.offset());
+}
+
+// Exception-generating instructions and debugging support.
+// Stops with a non-negative code less than kNumOfWatchedStops support
+// enabling/disabling and a counter feature. See simulator-s390.h .
+void Assembler::stop(const char* msg, Condition cond, int32_t code,
+                     CRegister cr) {
+  if (cond != al) {
+    Label skip;
+    b(NegateCondition(cond), &skip, Label::kNear);
+    bkpt(0);
+    bind(&skip);
+  } else {
+    bkpt(0);
+  }
+}
+
+void Assembler::bkpt(uint32_t imm16) {
+  // GDB software breakpoint instruction
+  emit2bytes(0x0001);
+}
+
+// Pseudo instructions.
+void Assembler::nop(int type) {
+  switch (type) {
+    case 0:
+      lr(r0, r0);
+      break;
+    case DEBUG_BREAK_NOP:
+      // TODO(john.yan): Use a better NOP break
+      oill(r3, Operand::Zero());
+      break;
+    default:
+      UNIMPLEMENTED();
+  }
+}
+
+// RR format: <insn> R1,R2
+//    +--------+----+----+
+//    | OpCode | R1 | R2 |
+//    +--------+----+----+
+//    0        8    12  15
+#define RR_FORM_EMIT(name, op) \
+  void Assembler::name(Register r1, Register r2) { rr_form(op, r1, r2); }
+
+void Assembler::rr_form(Opcode op, Register r1, Register r2) {
+  DCHECK(is_uint8(op));
+  emit2bytes(op * B8 | r1.code() * B4 | r2.code());
+}
+
+void Assembler::rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2) {
+  DCHECK(is_uint8(op));
+  emit2bytes(op * B8 | r1.code() * B4 | r2.code());
+}
+
+// RR2 format: <insn> M1,R2
+//    +--------+----+----+
+//    | OpCode | M1 | R2 |
+//    +--------+----+----+
+//    0        8    12  15
+#define RR2_FORM_EMIT(name, op) \
+  void Assembler::name(Condition m1, Register r2) { rr_form(op, m1, r2); }
+
+void Assembler::rr_form(Opcode op, Condition m1, Register r2) {
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint4(m1));
+  emit2bytes(op * B8 | m1 * B4 | r2.code());
+}
+
+// RX format: <insn> R1,D2(X2,B2)
+//    +--------+----+----+----+-------------+
+//    | OpCode | R1 | X2 | B2 |     D2      |
+//    +--------+----+----+----+-------------+
+//    0        8    12   16   20           31
+#define RX_FORM_EMIT(name, op)                                           \
+  void Assembler::name(Register r, const MemOperand& opnd) {             \
+    name(r, opnd.getIndexRegister(), opnd.getBaseRegister(),             \
+         opnd.getDisplacement());                                        \
+  }                                                                      \
+  void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
+    rx_form(op, r1, x2, b2, d2);                                         \
+  }
+void Assembler::rx_form(Opcode op, Register r1, Register x2, Register b2,
+                        Disp d2) {
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint12(d2));
+  emit4bytes(op * B24 | r1.code() * B20 | x2.code() * B16 | b2.code() * B12 |
+             d2);
+}
+
+void Assembler::rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
+                        Disp d2) {
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint12(d2));
+  emit4bytes(op * B24 | r1.code() * B20 | x2.code() * B16 | b2.code() * B12 |
+             d2);
+}
+
+// RI1 format: <insn> R1,I2
+//    +--------+----+----+------------------+
+//    | OpCode | R1 |OpCd|        I2        |
+//    +--------+----+----+------------------+
+//    0        8    12   16                31
+#define RI1_FORM_EMIT(name, op) \
+  void Assembler::name(Register r, const Operand& i2) { ri_form(op, r, i2); }
+
+void Assembler::ri_form(Opcode op, Register r1, const Operand& i2) {
+  DCHECK(is_uint12(op));
+  DCHECK(is_uint16(i2.imm_) || is_int16(i2.imm_));
+  emit4bytes((op & 0xFF0) * B20 | r1.code() * B20 | (op & 0xF) * B16 |
+             (i2.imm_ & 0xFFFF));
+}
+
+// RI2 format: <insn> M1,I2
+//    +--------+----+----+------------------+
+//    | OpCode | M1 |OpCd|        I2        |
+//    +--------+----+----+------------------+
+//    0        8    12   16                31
+#define RI2_FORM_EMIT(name, op) \
+  void Assembler::name(Condition m, const Operand& i2) { ri_form(op, m, i2); }
+
+void Assembler::ri_form(Opcode op, Condition m1, const Operand& i2) {
+  DCHECK(is_uint12(op));
+  DCHECK(is_uint4(m1));
+  DCHECK(is_uint16(i2.imm_));
+  emit4bytes((op & 0xFF0) * B20 | m1 * B20 | (op & 0xF) * B16 |
+             (i2.imm_ & 0xFFFF));
+}
+
+// RIE-f format: <insn> R1,R2,I3,I4,I5
+//    +--------+----+----+------------------+--------+--------+
+//    | OpCode | R1 | R2 |   I3   |    I4   |   I5   | OpCode |
+//    +--------+----+----+------------------+--------+--------+
+//    0        8    12   16      24         32       40      47
+void Assembler::rie_f_form(Opcode op, Register r1, Register r2,
+                           const Operand& i3, const Operand& i4,
+                           const Operand& i5) {
+  DCHECK(is_uint16(op));
+  DCHECK(is_uint8(i3.imm_));
+  DCHECK(is_uint8(i4.imm_));
+  DCHECK(is_uint8(i5.imm_));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(r2.code())) * B32 |
+                  (static_cast<uint64_t>(i3.imm_)) * B24 |
+                  (static_cast<uint64_t>(i4.imm_)) * B16 |
+                  (static_cast<uint64_t>(i5.imm_)) * B8 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RIE format: <insn> R1,R3,I2
+//    +--------+----+----+------------------+--------+--------+
+//    | OpCode | R1 | R3 |        I2        |////////| OpCode |
+//    +--------+----+----+------------------+--------+--------+
+//    0        8    12   16                 32       40      47
+#define RIE_FORM_EMIT(name, op)                                       \
+  void Assembler::name(Register r1, Register r3, const Operand& i2) { \
+    rie_form(op, r1, r3, i2);                                         \
+  }
+
+void Assembler::rie_form(Opcode op, Register r1, Register r3,
+                         const Operand& i2) {
+  DCHECK(is_uint16(op));
+  DCHECK(is_int16(i2.imm_));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(r3.code())) * B32 |
+                  (static_cast<uint64_t>(i2.imm_ & 0xFFFF)) * B16 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RIL1 format: <insn> R1,I2
+//   +--------+----+----+------------------------------------+
+//   | OpCode | R1 |OpCd|                  I2                |
+//   +--------+----+----+------------------------------------+
+//   0        8    12   16                                  47
+#define RIL1_FORM_EMIT(name, op) \
+  void Assembler::name(Register r, const Operand& i2) { ril_form(op, r, i2); }
+
+void Assembler::ril_form(Opcode op, Register r1, const Operand& i2) {
+  DCHECK(is_uint12(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(op & 0x00F)) * B32 |
+                  (static_cast<uint64_t>(i2.imm_) & 0xFFFFFFFF);
+  emit6bytes(code);
+}
+
+// RIL2 format: <insn> M1,I2
+//   +--------+----+----+------------------------------------+
+//   | OpCode | M1 |OpCd|                  I2                |
+//   +--------+----+----+------------------------------------+
+//   0        8    12   16                                  47
+#define RIL2_FORM_EMIT(name, op)                          \
+  void Assembler::name(Condition m1, const Operand& i2) { \
+    ril_form(op, m1, i2);                                 \
+  }
+
+void Assembler::ril_form(Opcode op, Condition m1, const Operand& i2) {
+  DCHECK(is_uint12(op));
+  DCHECK(is_uint4(m1));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
+                  (static_cast<uint64_t>(m1)) * B36 |
+                  (static_cast<uint64_t>(op & 0x00F)) * B32 |
+                  (static_cast<uint64_t>(i2.imm_ & 0xFFFFFFFF));
+  emit6bytes(code);
+}
+
+// RRE format: <insn> R1,R2
+//    +------------------+--------+----+----+
+//    |      OpCode      |////////| R1 | R2 |
+//    +------------------+--------+----+----+
+//    0                  16       24   28  31
+#define RRE_FORM_EMIT(name, op) \
+  void Assembler::name(Register r1, Register r2) { rre_form(op, r1, r2); }
+
+void Assembler::rre_form(Opcode op, Register r1, Register r2) {
+  DCHECK(is_uint16(op));
+  emit4bytes(op << 16 | r1.code() * B4 | r2.code());
+}
+
+void Assembler::rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2) {
+  DCHECK(is_uint16(op));
+  emit4bytes(op << 16 | r1.code() * B4 | r2.code());
+}
+
+// RRD format: <insn> R1,R3, R2
+//    +------------------+----+----+----+----+
+//    |      OpCode      | R1 |////| R3 | R2 |
+//    +------------------+----+----+----+----+
+//    0                  16  20   24   28   31
+#define RRD_FORM_EMIT(name, op)                                 \
+  void Assembler::name(Register r1, Register r3, Register r2) { \
+    rrd_form(op, r1, r3, r2);                                   \
+  }
+
+void Assembler::rrd_form(Opcode op, Register r1, Register r3, Register r2) {
+  emit4bytes(op << 16 | r1.code() * B12 | r3.code() * B4 | r2.code());
+}
+
+// RS1 format: <insn> R1,R3,D2(B2)
+//    +--------+----+----+----+-------------+
+//    | OpCode | R1 | R3 | B2 |     D2      |
+//    +--------+----+----+----+-------------+
+//    0        8    12   16   20           31
+#define RS1_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register r1, Register r3, Register b2, Disp d2) {   \
+    rs_form(op, r1, r3, b2, d2);                                           \
+  }                                                                        \
+  void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
+    name(r1, r3, opnd.getBaseRegister(), opnd.getDisplacement());          \
+  }
+
+void Assembler::rs_form(Opcode op, Register r1, Register r3, Register b2,
+                        const Disp d2) {
+  DCHECK(is_uint12(d2));
+  emit4bytes(op * B24 | r1.code() * B20 | r3.code() * B16 | b2.code() * B12 |
+             d2);
+}
+
+// RS2 format: <insn> R1,M3,D2(B2)
+//    +--------+----+----+----+-------------+
+//    | OpCode | R1 | M3 | B2 |     D2      |
+//    +--------+----+----+----+-------------+
+//    0        8    12   16   20           31
+#define RS2_FORM_EMIT(name, op)                                             \
+  void Assembler::name(Register r1, Condition m3, Register b2, Disp d2) {   \
+    rs_form(op, r1, m3, b2, d2);                                            \
+  }                                                                         \
+  void Assembler::name(Register r1, Condition m3, const MemOperand& opnd) { \
+    name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement());           \
+  }
+
+void Assembler::rs_form(Opcode op, Register r1, Condition m3, Register b2,
+                        const Disp d2) {
+  DCHECK(is_uint12(d2));
+  emit4bytes(op * B24 | r1.code() * B20 | m3 * B16 | b2.code() * B12 | d2);
+}
+
+// RSI format: <insn> R1,R3,I2
+//    +--------+----+----+------------------+
+//    | OpCode | R1 | R3 |        RI2       |
+//    +--------+----+----+------------------+
+//    0        8    12   16                 31
+#define RSI_FORM_EMIT(name, op)                                       \
+  void Assembler::name(Register r1, Register r3, const Operand& i2) { \
+    rsi_form(op, r1, r3, i2);                                         \
+  }
+
+void Assembler::rsi_form(Opcode op, Register r1, Register r3,
+                         const Operand& i2) {
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint16(i2.imm_));
+  emit4bytes(op * B24 | r1.code() * B20 | r3.code() * B16 | (i2.imm_ & 0xFFFF));
+}
+
+// RSL format: <insn> R1,R3,D2(B2)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | L1 |    | B2 |    D2       |        | OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32       40      47
+#define RSL_FORM_EMIT(name, op)                           \
+  void Assembler::name(Length l1, Register b2, Disp d2) { \
+    rsl_form(op, l1, b2, d2);                             \
+  }
+
+void Assembler::rsl_form(Opcode op, Length l1, Register b2, Disp d2) {
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(l1)) * B36 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2)) * B16 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RSY1 format: <insn> R1,R3,D2(B2)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | R1 | R3 | B2 |    DL2      |  DH2   | OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32       40      47
+#define RSY1_FORM_EMIT(name, op)                                           \
+  void Assembler::name(Register r1, Register r3, Register b2, Disp d2) {   \
+    rsy_form(op, r1, r3, b2, d2);                                          \
+  }                                                                        \
+  void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
+    name(r1, r3, opnd.getBaseRegister(), opnd.getDisplacement());          \
+  }
+
+void Assembler::rsy_form(Opcode op, Register r1, Register r3, Register b2,
+                         const Disp d2) {
+  DCHECK(is_int20(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(r3.code())) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RSY2 format: <insn> R1,M3,D2(B2)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | R1 | M3 | B2 |    DL2      |  DH2   | OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32       40      47
+#define RSY2_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register r1, Condition m3, Register b2, Disp d2) {   \
+    rsy_form(op, r1, m3, b2, d2);                                           \
+  }                                                                         \
+  void Assembler::name(Register r1, Condition m3, const MemOperand& opnd) { \
+    name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement());           \
+  }
+
+void Assembler::rsy_form(Opcode op, Register r1, Condition m3, Register b2,
+                         const Disp d2) {
+  DCHECK(is_int20(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(m3)) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RXE format: <insn> R1,D2(X2,B2)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | R1 | X2 | B2 |     D2      |////////| OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32       40      47
+#define RXE_FORM_EMIT(name, op)                                          \
+  void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
+    rxe_form(op, r1, x2, b2, d2);                                        \
+  }                                                                      \
+  void Assembler::name(Register r1, const MemOperand& opnd) {            \
+    name(r1, opnd.getIndexRegister(), opnd.getBaseRegister(),            \
+         opnd.getDisplacement());                                        \
+  }
+
+void Assembler::rxe_form(Opcode op, Register r1, Register x2, Register b2,
+                         Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(x2.code())) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RXY format: <insn> R1,D2(X2,B2)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | R1 | X2 | B2 |     DL2     |   DH2  | OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32   36   40      47
+#define RXY_FORM_EMIT(name, op)                                          \
+  void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
+    rxy_form(op, r1, x2, b2, d2);                                        \
+  }                                                                      \
+  void Assembler::name(Register r1, const MemOperand& opnd) {            \
+    name(r1, opnd.getIndexRegister(), opnd.getBaseRegister(),            \
+         opnd.getDisplacement());                                        \
+  }
+
+void Assembler::rxy_form(Opcode op, Register r1, Register x2, Register b2,
+                         Disp d2) {
+  DCHECK(is_int20(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(x2.code())) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+void Assembler::rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
+                         Disp d2) {
+  DCHECK(is_int20(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(x2.code())) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RRS format: <insn> R1,R2,M3,D4(B4)
+//    +--------+----+----+----+-------------+----+---+--------+
+//    | OpCode | R1 | R2 | B4 |     D4      | M3 |///| OpCode |
+//    +--------+----+----+----+-------------+----+---+--------+
+//    0        8    12   16   20            32   36   40      47
+#define RRS_FORM_EMIT(name, op)                                        \
+  void Assembler::name(Register r1, Register r2, Register b4, Disp d4, \
+                       Condition m3) {                                 \
+    rrs_form(op, r1, r2, b4, d4, m3);                                  \
+  }                                                                    \
+  void Assembler::name(Register r1, Register r2, Condition m3,         \
+                       const MemOperand& opnd) {                       \
+    name(r1, r2, opnd.getBaseRegister(), opnd.getDisplacement(), m3);  \
+  }
+
+void Assembler::rrs_form(Opcode op, Register r1, Register r2, Register b4,
+                         Disp d4, Condition m3) {
+  DCHECK(is_uint12(d4));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(r2.code())) * B32 |
+                  (static_cast<uint64_t>(b4.code())) * B28 |
+                  (static_cast<uint64_t>(d4)) * B16 |
+                  (static_cast<uint64_t>(m3)) << 12 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// RIS format: <insn> R1,I2,M3,D4(B4)
+//    +--------+----+----+----+-------------+--------+--------+
+//    | OpCode | R1 | M3 | B4 |     D4      |   I2   | OpCode |
+//    +--------+----+----+----+-------------+--------+--------+
+//    0        8    12   16   20            32        40      47
+#define RIS_FORM_EMIT(name, op)                                         \
+  void Assembler::name(Register r1, Condition m3, Register b4, Disp d4, \
+                       const Operand& i2) {                             \
+    ris_form(op, r1, m3, b4, d4, i2);                                   \
+  }                                                                     \
+  void Assembler::name(Register r1, const Operand& i2, Condition m3,    \
+                       const MemOperand& opnd) {                        \
+    name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement(), i2);   \
+  }
+
+void Assembler::ris_form(Opcode op, Register r1, Condition m3, Register b4,
+                         Disp d4, const Operand& i2) {
+  DCHECK(is_uint12(d4));
+  DCHECK(is_uint16(op));
+  DCHECK(is_uint8(i2.imm_));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(m3)) * B32 |
+                  (static_cast<uint64_t>(b4.code())) * B28 |
+                  (static_cast<uint64_t>(d4)) * B16 |
+                  (static_cast<uint64_t>(i2.imm_)) << 8 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// S format: <insn> D2(B2)
+//    +------------------+----+-------------+
+//    |      OpCode      | B2 |     D2      |
+//    +------------------+----+-------------+
+//    0                  16   20           31
+#define S_FORM_EMIT(name, op)                                        \
+  void Assembler::name(Register b1, Disp d2) { s_form(op, b1, d2); } \
+  void Assembler::name(const MemOperand& opnd) {                     \
+    name(opnd.getBaseRegister(), opnd.getDisplacement());            \
+  }
+
+void Assembler::s_form(Opcode op, Register b1, Disp d2) {
+  DCHECK(is_uint12(d2));
+  emit4bytes(op << 16 | b1.code() * B12 | d2);
+}
+
+// SI format: <insn> D1(B1),I2
+//    +--------+---------+----+-------------+
+//    | OpCode |   I2    | B1 |     D1      |
+//    +--------+---------+----+-------------+
+//    0        8         16   20           31
+#define SI_FORM_EMIT(name, op)                                      \
+  void Assembler::name(const Operand& i2, Register b1, Disp d1) {   \
+    si_form(op, i2, b1, d1);                                        \
+  }                                                                 \
+  void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
+    name(i2, opnd.getBaseRegister(), opnd.getDisplacement());       \
+  }
+
+void Assembler::si_form(Opcode op, const Operand& i2, Register b1, Disp d1) {
+  emit4bytes((op & 0x00FF) << 24 | i2.imm_ * B16 | b1.code() * B12 | d1);
+}
+
+// SIY format: <insn> D1(B1),I2
+//    +--------+---------+----+-------------+--------+--------+
+//    | OpCode |   I2    | B1 |     DL1     |  DH1   | OpCode |
+//    +--------+---------+----+-------------+--------+--------+
+//    0        8         16   20            32   36   40      47
+#define SIY_FORM_EMIT(name, op)                                     \
+  void Assembler::name(const Operand& i2, Register b1, Disp d1) {   \
+    siy_form(op, i2, b1, d1);                                       \
+  }                                                                 \
+  void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
+    name(i2, opnd.getBaseRegister(), opnd.getDisplacement());       \
+  }
+
+void Assembler::siy_form(Opcode op, const Operand& i2, Register b1, Disp d1) {
+  DCHECK(is_uint20(d1));
+  DCHECK(is_uint16(op));
+  DCHECK(is_uint8(i2.imm_));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(i2.imm_)) * B32 |
+                  (static_cast<uint64_t>(b1.code())) * B28 |
+                  (static_cast<uint64_t>(d1 & 0x0FFF)) * B16 |
+                  (static_cast<uint64_t>(d1 & 0x0FF000)) >> 4 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// SIL format: <insn> D1(B1),I2
+//    +------------------+----+-------------+-----------------+
+//    |     OpCode       | B1 |      D1     |        I2       |
+//    +------------------+----+-------------+-----------------+
+//    0                 16   20            32                47
+#define SIL_FORM_EMIT(name, op)                                     \
+  void Assembler::name(Register b1, Disp d1, const Operand& i2) {   \
+    sil_form(op, b1, d1, i2);                                       \
+  }                                                                 \
+  void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
+    name(opnd.getBaseRegister(), opnd.getDisplacement(), i2);       \
+  }
+
+void Assembler::sil_form(Opcode op, Register b1, Disp d1, const Operand& i2) {
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint16(op));
+  DCHECK(is_uint16(i2.imm_));
+  uint64_t code = (static_cast<uint64_t>(op)) * B32 |
+                  (static_cast<uint64_t>(b1.code())) * B28 |
+                  (static_cast<uint64_t>(d1)) * B16 |
+                  (static_cast<uint64_t>(i2.imm_));
+  emit6bytes(code);
+}
+
+// RXF format: <insn> R1,R3,D2(X2,B2)
+//    +--------+----+----+----+-------------+----+---+--------+
+//    | OpCode | R3 | X2 | B2 |     D2      | R1 |///| OpCode |
+//    +--------+----+----+----+-------------+----+---+--------+
+//    0        8    12   16   20            32   36  40      47
+#define RXF_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register r1, Register r3, Register b2, Register x2, \
+                       Disp d2) {                                          \
+    rxf_form(op, r1, r3, b2, x2, d2);                                      \
+  }                                                                        \
+  void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
+    name(r1, r3, opnd.getBaseRegister(), opnd.getIndexRegister(),          \
+         opnd.getDisplacement());                                          \
+  }
+
+void Assembler::rxf_form(Opcode op, Register r1, Register r3, Register b2,
+                         Register x2, Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
+                  (static_cast<uint64_t>(r3.code())) * B36 |
+                  (static_cast<uint64_t>(x2.code())) * B32 |
+                  (static_cast<uint64_t>(b2.code())) * B28 |
+                  (static_cast<uint64_t>(d2)) * B16 |
+                  (static_cast<uint64_t>(r1.code())) * B12 |
+                  (static_cast<uint64_t>(op & 0x00FF));
+  emit6bytes(code);
+}
+
+// SS1 format: <insn> D1(L,B1),D2(B3)
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode |    L    | B1 |     D1      | B2 |     D2     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36          47
+#define SS1_FORM_EMIT(name, op)                                                \
+  void Assembler::name(Register b1, Disp d1, Register b2, Disp d2, Length l) { \
+    ss_form(op, l, b1, d1, b2, d2);                                            \
+  }                                                                            \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2,       \
+                       Length length) {                                        \
+    name(opnd1.getBaseRegister(), opnd1.getDisplacement(),                     \
+         opnd2.getBaseRegister(), opnd2.getDisplacement(), length);            \
+  }
+
+void Assembler::ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2,
+                        Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint8(l));
+  uint64_t code =
+      (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l)) * B32 |
+      (static_cast<uint64_t>(b1.code())) * B28 |
+      (static_cast<uint64_t>(d1)) * B16 |
+      (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+// SS2 format: <insn> D1(L1,B1), D2(L3,B3)
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode | L1 | L2 | B1 |     D1      | B2 |     D2     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36          47
+#define SS2_FORM_EMIT(name, op)                                               \
+  void Assembler::name(Register b1, Disp d1, Register b2, Disp d2, Length l1, \
+                       Length l2) {                                           \
+    ss_form(op, l1, l2, b1, d1, b2, d2);                                      \
+  }                                                                           \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2,      \
+                       Length length1, Length length2) {                      \
+    name(opnd1.getBaseRegister(), opnd1.getDisplacement(),                    \
+         opnd2.getBaseRegister(), opnd2.getDisplacement(), length1, length2); \
+  }
+
+void Assembler::ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1,
+                        Register b2, Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint4(l2));
+  DCHECK(is_uint4(l1));
+  uint64_t code =
+      (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l1)) * B36 |
+      (static_cast<uint64_t>(l2)) * B32 |
+      (static_cast<uint64_t>(b1.code())) * B28 |
+      (static_cast<uint64_t>(d1)) * B16 |
+      (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+// SS3 format: <insn> D1(L1,B1), D2(I3,B2)
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode | L1 | I3 | B1 |     D1      | B2 |     D2     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36          47
+#define SS3_FORM_EMIT(name, op)                                              \
+  void Assembler::name(const Operand& i3, Register b1, Disp d1, Register b2, \
+                       Disp d2, Length l1) {                                 \
+    ss_form(op, l1, i3, b1, d1, b2, d2);                                     \
+  }                                                                          \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2,     \
+                       Length length) {                                      \
+    DCHECK(false);                                                           \
+  }
+void Assembler::ss_form(Opcode op, Length l1, const Operand& i3, Register b1,
+                        Disp d1, Register b2, Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint8(op));
+  DCHECK(is_uint4(l1));
+  DCHECK(is_uint4(i3.imm_));
+  uint64_t code =
+      (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l1)) * B36 |
+      (static_cast<uint64_t>(i3.imm_)) * B32 |
+      (static_cast<uint64_t>(b1.code())) * B28 |
+      (static_cast<uint64_t>(d1)) * B16 |
+      (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+// SS4 format: <insn> D1(R1,B1), D2(R3,B2)
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode | R1 | R3 | B1 |     D1      | B2 |     D2     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36          47
+#define SS4_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register r1, Register r3, Register b1, Disp d1,     \
+                       Register b2, Disp d2) {                             \
+    ss_form(op, r1, r3, b1, d1, b2, d2);                                   \
+  }                                                                        \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
+    DCHECK(false);                                                         \
+  }
+void Assembler::ss_form(Opcode op, Register r1, Register r3, Register b1,
+                        Disp d1, Register b2, Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint8(op));
+  uint64_t code = (static_cast<uint64_t>(op)) * B40 |
+                  (static_cast<uint64_t>(r1.code())) * B36 |
+                  (static_cast<uint64_t>(r3.code())) * B32 |
+                  (static_cast<uint64_t>(b1.code())) * B28 |
+                  (static_cast<uint64_t>(d1)) * B16 |
+                  (static_cast<uint64_t>(b2.code())) * B12 |
+                  (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+// SS5 format: <insn> D1(R1,B1), D2(R3,B2)
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode | R1 | R3 | B2 |     D2      | B4 |     D4     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36          47
+#define SS5_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register r1, Register r3, Register b2, Disp d2,     \
+                       Register b4, Disp d4) {                             \
+    ss_form(op, r1, r3, b2, d2, b4, d4); /*SS5 use the same form as SS4*/  \
+  }                                                                        \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
+    DCHECK(false);                                                         \
+  }
+
+#define SS6_FORM_EMIT(name, op) SS1_FORM_EMIT(name, op)
+
+// SSE format: <insn> D1(B1),D2(B2)
+//    +------------------+----+-------------+----+------------+
+//    |      OpCode      | B1 |     D1      | B2 |     D2     |
+//    +------------------+----+-------------+----+------------+
+//    0        8    12   16   20            32   36           47
+#define SSE_FORM_EMIT(name, op)                                            \
+  void Assembler::name(Register b1, Disp d1, Register b2, Disp d2) {       \
+    sse_form(op, b1, d1, b2, d2);                                          \
+  }                                                                        \
+  void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
+    name(opnd1.getBaseRegister(), opnd1.getDisplacement(),                 \
+         opnd2.getBaseRegister(), opnd2.getDisplacement());                \
+  }
+void Assembler::sse_form(Opcode op, Register b1, Disp d1, Register b2,
+                         Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint16(op));
+  uint64_t code = (static_cast<uint64_t>(op)) * B32 |
+                  (static_cast<uint64_t>(b1.code())) * B28 |
+                  (static_cast<uint64_t>(d1)) * B16 |
+                  (static_cast<uint64_t>(b2.code())) * B12 |
+                  (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+// SSF format: <insn> R3, D1(B1),D2(B2),R3
+//    +--------+----+----+----+-------------+----+------------+
+//    | OpCode | R3 |OpCd| B1 |     D1      | B2 |     D2     |
+//    +--------+----+----+----+-------------+----+------------+
+//    0        8    12   16   20            32   36           47
+#define SSF_FORM_EMIT(name, op)                                        \
+  void Assembler::name(Register r3, Register b1, Disp d1, Register b2, \
+                       Disp d2) {                                      \
+    ssf_form(op, r3, b1, d1, b2, d2);                                  \
+  }                                                                    \
+  void Assembler::name(Register r3, const MemOperand& opnd1,           \
+                       const MemOperand& opnd2) {                      \
+    name(r3, opnd1.getBaseRegister(), opnd1.getDisplacement(),         \
+         opnd2.getBaseRegister(), opnd2.getDisplacement());            \
+  }
+
+void Assembler::ssf_form(Opcode op, Register r3, Register b1, Disp d1,
+                         Register b2, Disp d2) {
+  DCHECK(is_uint12(d2));
+  DCHECK(is_uint12(d1));
+  DCHECK(is_uint12(op));
+  uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
+                  (static_cast<uint64_t>(r3.code())) * B36 |
+                  (static_cast<uint64_t>(op & 0x00F)) * B32 |
+                  (static_cast<uint64_t>(b1.code())) * B28 |
+                  (static_cast<uint64_t>(d1)) * B16 |
+                  (static_cast<uint64_t>(b2.code())) * B12 |
+                  (static_cast<uint64_t>(d2));
+  emit6bytes(code);
+}
+
+//  RRF1 format: <insn> R1,R2,R3
+//    +------------------+----+----+----+----+
+//    |      OpCode      | R3 |    | R1 | R2 |
+//    +------------------+----+----+----+----+
+//    0                  16   20   24   28  31
+#define RRF1_FORM_EMIT(name, op)                                        \
+  void Assembler::name(Register r1, Register r2, Register r3) {         \
+    rrf1_form(op << 16 | r3.code() * B12 | r1.code() * B4 | r2.code()); \
+  }
+
+void Assembler::rrf1_form(Opcode op, Register r1, Register r2, Register r3) {
+  uint32_t code = op << 16 | r3.code() * B12 | r1.code() * B4 | r2.code();
+  emit4bytes(code);
+}
+
+void Assembler::rrf1_form(uint32_t code) { emit4bytes(code); }
+
+//  RRF2 format: <insn> R1,R2,M3
+//    +------------------+----+----+----+----+
+//    |      OpCode      | M3 |    | R1 | R2 |
+//    +------------------+----+----+----+----+
+//    0                  16   20   24   28  31
+#define RRF2_FORM_EMIT(name, op)                                 \
+  void Assembler::name(Condition m3, Register r1, Register r2) { \
+    rrf2_form(op << 16 | m3 * B12 | r1.code() * B4 | r2.code()); \
+  }
+
+void Assembler::rrf2_form(uint32_t code) { emit4bytes(code); }
+
+//  RRF3 format: <insn> R1,R2,R3,M4
+//    +------------------+----+----+----+----+
+//    |      OpCode      | R3 | M4 | R1 | R2 |
+//    +------------------+----+----+----+----+
+//    0                  16   20   24   28  31
+#define RRF3_FORM_EMIT(name, op)                                             \
+  void Assembler::name(Register r3, Conition m4, Register r1, Register r2) { \
+    rrf3_form(op << 16 | r3.code() * B12 | m4 * B8 | r1.code() * B4 |        \
+              r2.code());                                                    \
+  }
+
+void Assembler::rrf3_form(uint32_t code) { emit4bytes(code); }
+
+//  RRF-e format: <insn> R1,M3,R2,M4
+//    +------------------+----+----+----+----+
+//    |      OpCode      | M3 | M4 | R1 | R2 |
+//    +------------------+----+----+----+----+
+//    0                  16   20   24   28  31
+void Assembler::rrfe_form(Opcode op, Condition m3, Condition m4, Register r1,
+                          Register r2) {
+  uint32_t code = op << 16 | m3 * B12 | m4 * B8 | r1.code() * B4 | r2.code();
+  emit4bytes(code);
+}
+
+// end of S390 Instruction generation
+
+// start of S390 instruction
+RX_FORM_EMIT(bc, BC)
+RR_FORM_EMIT(bctr, BCTR)
+RXE_FORM_EMIT(ceb, CEB)
+RRE_FORM_EMIT(cefbr, CEFBR)
+SS1_FORM_EMIT(ed, ED)
+RX_FORM_EMIT(ex, EX)
+RRE_FORM_EMIT(flogr, FLOGR)
+RRE_FORM_EMIT(lcgr, LCGR)
+RR_FORM_EMIT(lcr, LCR)
+RX_FORM_EMIT(le_z, LE)
+RXY_FORM_EMIT(ley, LEY)
+RIL1_FORM_EMIT(llihf, LLIHF)
+RIL1_FORM_EMIT(llilf, LLILF)
+RRE_FORM_EMIT(lngr, LNGR)
+RR_FORM_EMIT(lnr, LNR)
+RSY1_FORM_EMIT(loc, LOC)
+RXY_FORM_EMIT(lrv, LRV)
+RXY_FORM_EMIT(lrvh, LRVH)
+SS1_FORM_EMIT(mvn, MVN)
+SS1_FORM_EMIT(nc, NC)
+SI_FORM_EMIT(ni, NI)
+RIL1_FORM_EMIT(nihf, NIHF)
+RIL1_FORM_EMIT(nilf, NILF)
+RI1_FORM_EMIT(nilh, NILH)
+RI1_FORM_EMIT(nill, NILL)
+RIL1_FORM_EMIT(oihf, OIHF)
+RIL1_FORM_EMIT(oilf, OILF)
+RI1_FORM_EMIT(oill, OILL)
+RRE_FORM_EMIT(popcnt, POPCNT_Z)
+RIL1_FORM_EMIT(slfi, SLFI)
+RXY_FORM_EMIT(slgf, SLGF)
+RIL1_FORM_EMIT(slgfi, SLGFI)
+RXY_FORM_EMIT(strv, STRV)
+RI1_FORM_EMIT(tmll, TMLL)
+SS1_FORM_EMIT(tr, TR)
+S_FORM_EMIT(ts, TS)
+RIL1_FORM_EMIT(xihf, XIHF)
+RIL1_FORM_EMIT(xilf, XILF)
+
+// -------------------------
+// Load Address Instructions
+// -------------------------
+// Load Address Register-Storage
+void Assembler::la(Register r1, const MemOperand& opnd) {
+  rx_form(LA, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Address Register-Storage
+void Assembler::lay(Register r1, const MemOperand& opnd) {
+  rxy_form(LAY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Address Relative Long
+void Assembler::larl(Register r1, const Operand& opnd) {
+  ril_form(LARL, r1, opnd);
+}
+
+// Load Address Relative Long
+void Assembler::larl(Register r1, Label* l) {
+  larl(r1, Operand(branch_offset(l)));
+}
+
+// -----------------
+// Load Instructions
+// -----------------
+// Load Byte Register-Storage (32<-8)
+void Assembler::lb(Register r, const MemOperand& src) {
+  rxy_form(LB, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Byte Register-Register (32<-8)
+void Assembler::lbr(Register r1, Register r2) { rre_form(LBR, r1, r2); }
+
+// Load Byte Register-Storage (64<-8)
+void Assembler::lgb(Register r, const MemOperand& src) {
+  rxy_form(LGB, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Byte Register-Register (64<-8)
+void Assembler::lgbr(Register r1, Register r2) { rre_form(LGBR, r1, r2); }
+
+// Load Halfword Register-Storage (32<-16)
+void Assembler::lh(Register r, const MemOperand& src) {
+  rx_form(LH, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Halfword Register-Storage (32<-16)
+void Assembler::lhy(Register r, const MemOperand& src) {
+  rxy_form(LHY, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Halfword Register-Register (32<-16)
+void Assembler::lhr(Register r1, Register r2) { rre_form(LHR, r1, r2); }
+
+// Load Halfword Register-Storage (64<-16)
+void Assembler::lgh(Register r, const MemOperand& src) {
+  rxy_form(LGH, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Halfword Register-Register (64<-16)
+void Assembler::lghr(Register r1, Register r2) { rre_form(LGHR, r1, r2); }
+
+// Load Register-Storage (32)
+void Assembler::l(Register r, const MemOperand& src) {
+  rx_form(L, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Register-Storage (32)
+void Assembler::ly(Register r, const MemOperand& src) {
+  rxy_form(LY, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Register-Register (32)
+void Assembler::lr(Register r1, Register r2) { rr_form(LR, r1, r2); }
+
+// Load Register-Storage (64)
+void Assembler::lg(Register r, const MemOperand& src) {
+  rxy_form(LG, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Register-Register (64)
+void Assembler::lgr(Register r1, Register r2) { rre_form(LGR, r1, r2); }
+
+// Load Register-Storage (64<-32)
+void Assembler::lgf(Register r, const MemOperand& src) {
+  rxy_form(LGF, r, src.rx(), src.rb(), src.offset());
+}
+
+// Load Sign Extended Register-Register (64<-32)
+void Assembler::lgfr(Register r1, Register r2) { rre_form(LGFR, r1, r2); }
+
+// Load Halfword Immediate (32)
+void Assembler::lhi(Register r, const Operand& imm) { ri_form(LHI, r, imm); }
+
+// Load Halfword Immediate (64)
+void Assembler::lghi(Register r, const Operand& imm) { ri_form(LGHI, r, imm); }
+
+// --------------------------
+// Load And Test Instructions
+// --------------------------
+// Load and Test Register-Storage (32)
+void Assembler::lt_z(Register r1, const MemOperand& opnd) {
+  rxy_form(LT, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load and Test Register-Storage (64)
+void Assembler::ltg(Register r1, const MemOperand& opnd) {
+  rxy_form(LTG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load and Test Register-Register (32)
+void Assembler::ltr(Register r1, Register r2) { rr_form(LTR, r1, r2); }
+
+// Load and Test Register-Register (64)
+void Assembler::ltgr(Register r1, Register r2) { rre_form(LTGR, r1, r2); }
+
+// Load and Test Register-Register (64<-32)
+void Assembler::ltgfr(Register r1, Register r2) { rre_form(LTGFR, r1, r2); }
+
+// -------------------------
+// Load Logical Instructions
+// -------------------------
+// Load Logical Character (32) - loads a byte and zero ext.
+void Assembler::llc(Register r1, const MemOperand& opnd) {
+  rxy_form(LLC, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Logical Character (64) - loads a byte and zero ext.
+void Assembler::llgc(Register r1, const MemOperand& opnd) {
+  rxy_form(LLGC, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Logical halfword Register-Storage (64<-32)
+void Assembler::llgf(Register r1, const MemOperand& opnd) {
+  rxy_form(LLGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Logical Register-Register (64<-32)
+void Assembler::llgfr(Register r1, Register r2) { rre_form(LLGFR, r1, r2); }
+
+// Load Logical halfword Register-Storage (32)
+void Assembler::llh(Register r1, const MemOperand& opnd) {
+  rxy_form(LLH, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Logical halfword Register-Storage (64)
+void Assembler::llgh(Register r1, const MemOperand& opnd) {
+  rxy_form(LLGH, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Logical halfword Register-Register (32)
+void Assembler::llhr(Register r1, Register r2) { rre_form(LLHR, r1, r2); }
+
+// Load Logical halfword Register-Register (64)
+void Assembler::llghr(Register r1, Register r2) { rre_form(LLGHR, r1, r2); }
+
+// -------------------
+// Branch Instructions
+// -------------------
+// Branch and Save
+void Assembler::basr(Register r1, Register r2) { rr_form(BASR, r1, r2); }
+
+// Indirect Conditional Branch via register
+void Assembler::bcr(Condition m, Register target) { rr_form(BCR, m, target); }
+
+// Branch on Count (32)
+void Assembler::bct(Register r, const MemOperand& opnd) {
+  rx_form(BCT, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Branch on Count (64)
+void Assembler::bctg(Register r, const MemOperand& opnd) {
+  rxy_form(BCTG, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Branch Relative and Save (32)
+void Assembler::bras(Register r, const Operand& opnd) {
+  ri_form(BRAS, r, opnd);
+}
+
+// Branch Relative and Save (64)
+void Assembler::brasl(Register r, const Operand& opnd) {
+  ril_form(BRASL, r, opnd);
+}
+
+// Branch relative on Condition (32)
+void Assembler::brc(Condition c, const Operand& opnd) {
+  // BRC actually encodes # of halfwords, so divide by 2.
+  int16_t numHalfwords = static_cast<int16_t>(opnd.immediate()) / 2;
+  Operand halfwordOp = Operand(numHalfwords);
+  halfwordOp.setBits(16);
+  ri_form(BRC, c, halfwordOp);
+}
+
+// Branch Relative on Condition (64)
+void Assembler::brcl(Condition c, const Operand& opnd, bool isCodeTarget) {
+  Operand halfwordOp = opnd;
+  // Operand for code targets will be index to code_targets_
+  if (!isCodeTarget) {
+    // BRCL actually encodes # of halfwords, so divide by 2.
+    int32_t numHalfwords = static_cast<int32_t>(opnd.immediate()) / 2;
+    halfwordOp = Operand(numHalfwords);
+  }
+  ril_form(BRCL, c, halfwordOp);
+}
+
+// Branch On Count (32)
+void Assembler::brct(Register r1, const Operand& imm) {
+  // BRCT encodes # of halfwords, so divide by 2.
+  int16_t numHalfwords = static_cast<int16_t>(imm.immediate()) / 2;
+  Operand halfwordOp = Operand(numHalfwords);
+  halfwordOp.setBits(16);
+  ri_form(BRCT, r1, halfwordOp);
+}
+
+// Branch On Count (32)
+void Assembler::brctg(Register r1, const Operand& imm) {
+  // BRCTG encodes # of halfwords, so divide by 2.
+  int16_t numHalfwords = static_cast<int16_t>(imm.immediate()) / 2;
+  Operand halfwordOp = Operand(numHalfwords);
+  halfwordOp.setBits(16);
+  ri_form(BRCTG, r1, halfwordOp);
+}
+
+// --------------------
+// Compare Instructions
+// --------------------
+// Compare Register-Storage (32)
+void Assembler::c(Register r, const MemOperand& opnd) {
+  rx_form(C, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Register-Storage (32)
+void Assembler::cy(Register r, const MemOperand& opnd) {
+  rxy_form(CY, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Register-Register (32)
+void Assembler::cr_z(Register r1, Register r2) { rr_form(CR, r1, r2); }
+
+// Compare Register-Storage (64)
+void Assembler::cg(Register r, const MemOperand& opnd) {
+  rxy_form(CG, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Register-Register (64)
+void Assembler::cgr(Register r1, Register r2) { rre_form(CGR, r1, r2); }
+
+// Compare Halfword Register-Storage (32)
+void Assembler::ch(Register r, const MemOperand& opnd) {
+  rx_form(CH, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Halfword Register-Storage (32)
+void Assembler::chy(Register r, const MemOperand& opnd) {
+  rxy_form(CHY, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Halfword Immediate (32)
+void Assembler::chi(Register r, const Operand& opnd) { ri_form(CHI, r, opnd); }
+
+// Compare Halfword Immediate (64)
+void Assembler::cghi(Register r, const Operand& opnd) {
+  ri_form(CGHI, r, opnd);
+}
+
+// Compare Immediate (32)
+void Assembler::cfi(Register r, const Operand& opnd) { ril_form(CFI, r, opnd); }
+
+// Compare Immediate (64)
+void Assembler::cgfi(Register r, const Operand& opnd) {
+  ril_form(CGFI, r, opnd);
+}
+
+// ----------------------------
+// Compare Logical Instructions
+// ----------------------------
+// Compare Logical Register-Storage (32)
+void Assembler::cl(Register r, const MemOperand& opnd) {
+  rx_form(CL, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Logical Register-Storage (32)
+void Assembler::cly(Register r, const MemOperand& opnd) {
+  rxy_form(CLY, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Logical Register-Register (32)
+void Assembler::clr(Register r1, Register r2) { rr_form(CLR, r1, r2); }
+
+// Compare Logical Register-Storage (64)
+void Assembler::clg(Register r, const MemOperand& opnd) {
+  rxy_form(CLG, r, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Compare Logical Register-Register (64)
+void Assembler::clgr(Register r1, Register r2) { rre_form(CLGR, r1, r2); }
+
+// Compare Logical Immediate (32)
+void Assembler::clfi(Register r1, const Operand& i2) { ril_form(CLFI, r1, i2); }
+
+// Compare Logical Immediate (64<32)
+void Assembler::clgfi(Register r1, const Operand& i2) {
+  ril_form(CLGFI, r1, i2);
+}
+
+// Compare Immediate (Mem - Imm) (8)
+void Assembler::cli(const MemOperand& opnd, const Operand& imm) {
+  si_form(CLI, imm, opnd.rb(), opnd.offset());
+}
+
+// Compare Immediate (Mem - Imm) (8)
+void Assembler::cliy(const MemOperand& opnd, const Operand& imm) {
+  siy_form(CLIY, imm, opnd.rb(), opnd.offset());
+}
+
+// Compare logical - mem to mem operation
+void Assembler::clc(const MemOperand& opnd1, const MemOperand& opnd2,
+                    Length length) {
+  ss_form(CLC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
+          opnd2.getBaseRegister(), opnd2.getDisplacement());
+}
+
+// ----------------------------
+// Test Under Mask Instructions
+// ----------------------------
+// Test Under Mask (Mem - Imm) (8)
+void Assembler::tm(const MemOperand& opnd, const Operand& imm) {
+  si_form(TM, imm, opnd.rb(), opnd.offset());
+}
+
+// Test Under Mask (Mem - Imm) (8)
+void Assembler::tmy(const MemOperand& opnd, const Operand& imm) {
+  siy_form(TMY, imm, opnd.rb(), opnd.offset());
+}
+
+// -------------------------------
+// Rotate and Insert Selected Bits
+// -------------------------------
+// Rotate-And-Insert-Selected-Bits
+void Assembler::risbg(Register dst, Register src, const Operand& startBit,
+                      const Operand& endBit, const Operand& shiftAmt,
+                      bool zeroBits) {
+  // High tag the top bit of I4/EndBit to zero out any unselected bits
+  if (zeroBits)
+    rie_f_form(RISBG, dst, src, startBit, Operand(endBit.imm_ | 0x80),
+               shiftAmt);
+  else
+    rie_f_form(RISBG, dst, src, startBit, endBit, shiftAmt);
+}
+
+// Rotate-And-Insert-Selected-Bits
+void Assembler::risbgn(Register dst, Register src, const Operand& startBit,
+                       const Operand& endBit, const Operand& shiftAmt,
+                       bool zeroBits) {
+  // High tag the top bit of I4/EndBit to zero out any unselected bits
+  if (zeroBits)
+    rie_f_form(RISBGN, dst, src, startBit, Operand(endBit.imm_ | 0x80),
+               shiftAmt);
+  else
+    rie_f_form(RISBGN, dst, src, startBit, endBit, shiftAmt);
+}
+
+// ---------------------------
+// Move Character Instructions
+// ---------------------------
+// Move charactor - mem to mem operation
+void Assembler::mvc(const MemOperand& opnd1, const MemOperand& opnd2,
+                    uint32_t length) {
+  ss_form(MVC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
+          opnd2.getBaseRegister(), opnd2.getDisplacement());
+}
+
+// -----------------------
+// 32-bit Add Instructions
+// -----------------------
+// Add Register-Storage (32)
+void Assembler::a(Register r1, const MemOperand& opnd) {
+  rx_form(A, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Register-Storage (32)
+void Assembler::ay(Register r1, const MemOperand& opnd) {
+  rxy_form(AY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Immediate (32)
+void Assembler::afi(Register r1, const Operand& opnd) {
+  ril_form(AFI, r1, opnd);
+}
+
+// Add Halfword Register-Storage (32)
+void Assembler::ah(Register r1, const MemOperand& opnd) {
+  rx_form(AH, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Halfword Register-Storage (32)
+void Assembler::ahy(Register r1, const MemOperand& opnd) {
+  rxy_form(AHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Halfword Immediate (32)
+void Assembler::ahi(Register r1, const Operand& i2) { ri_form(AHI, r1, i2); }
+
+// Add Halfword Immediate (32)
+void Assembler::ahik(Register r1, Register r3, const Operand& i2) {
+  rie_form(AHIK, r1, r3, i2);
+}
+
+// Add Register (32)
+void Assembler::ar(Register r1, Register r2) { rr_form(AR, r1, r2); }
+
+// Add Register-Register-Register (32)
+void Assembler::ark(Register r1, Register r2, Register r3) {
+  rrf1_form(ARK, r1, r2, r3);
+}
+
+// Add Storage-Imm (32)
+void Assembler::asi(const MemOperand& opnd, const Operand& imm) {
+  DCHECK(is_int8(imm.imm_));
+  DCHECK(is_int20(opnd.offset()));
+  siy_form(ASI, Operand(0xff & imm.imm_), opnd.rb(), 0xfffff & opnd.offset());
+}
+
+// -----------------------
+// 64-bit Add Instructions
+// -----------------------
+// Add Register-Storage (64)
+void Assembler::ag(Register r1, const MemOperand& opnd) {
+  rxy_form(AG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Register-Storage (64<-32)
+void Assembler::agf(Register r1, const MemOperand& opnd) {
+  rxy_form(AGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Immediate (64)
+void Assembler::agfi(Register r1, const Operand& opnd) {
+  ril_form(ALFI, r1, opnd);
+}
+
+// Add Register-Register (64<-32)
+void Assembler::agfr(Register r1, Register r2) { rre_form(AGFR, r1, r2); }
+
+// Add Halfword Immediate (64)
+void Assembler::aghi(Register r1, const Operand& i2) { ri_form(AGHI, r1, i2); }
+
+// Add Halfword Immediate (64)
+void Assembler::aghik(Register r1, Register r3, const Operand& i2) {
+  rie_form(AGHIK, r1, r3, i2);
+}
+
+// Add Register (64)
+void Assembler::agr(Register r1, Register r2) { rre_form(AGR, r1, r2); }
+
+// Add Register-Register-Register (64)
+void Assembler::agrk(Register r1, Register r2, Register r3) {
+  rrf1_form(AGRK, r1, r2, r3);
+}
+
+// Add Storage-Imm (64)
+void Assembler::agsi(const MemOperand& opnd, const Operand& imm) {
+  DCHECK(is_int8(imm.imm_));
+  DCHECK(is_int20(opnd.offset()));
+  siy_form(AGSI, Operand(0xff & imm.imm_), opnd.rb(), 0xfffff & opnd.offset());
+}
+
+// -------------------------------
+// 32-bit Add Logical Instructions
+// -------------------------------
+// Add Logical Register-Storage (32)
+void Assembler::al_z(Register r1, const MemOperand& opnd) {
+  rx_form(AL, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Logical Register-Storage (32)
+void Assembler::aly(Register r1, const MemOperand& opnd) {
+  rxy_form(ALY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Logical Immediate (32)
+void Assembler::alfi(Register r1, const Operand& opnd) {
+  ril_form(ALFI, r1, opnd);
+}
+
+// Add Logical Register-Register (32)
+void Assembler::alr(Register r1, Register r2) { rr_form(ALR, r1, r2); }
+
+// Add Logical With Carry Register-Register (32)
+void Assembler::alcr(Register r1, Register r2) { rre_form(ALCR, r1, r2); }
+
+// Add Logical Register-Register-Register (32)
+void Assembler::alrk(Register r1, Register r2, Register r3) {
+  rrf1_form(ALRK, r1, r2, r3);
+}
+
+// -------------------------------
+// 64-bit Add Logical Instructions
+// -------------------------------
+// Add Logical Register-Storage (64)
+void Assembler::alg(Register r1, const MemOperand& opnd) {
+  rxy_form(ALG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Add Logical Immediate (64)
+void Assembler::algfi(Register r1, const Operand& opnd) {
+  ril_form(ALGFI, r1, opnd);
+}
+
+// Add Logical Register-Register (64)
+void Assembler::algr(Register r1, Register r2) { rre_form(ALGR, r1, r2); }
+
+// Add Logical Register-Register-Register (64)
+void Assembler::algrk(Register r1, Register r2, Register r3) {
+  rrf1_form(ALGRK, r1, r2, r3);
+}
+
+// ----------------------------
+// 32-bit Subtract Instructions
+// ----------------------------
+// Subtract Register-Storage (32)
+void Assembler::s(Register r1, const MemOperand& opnd) {
+  rx_form(S, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Register-Storage (32)
+void Assembler::sy(Register r1, const MemOperand& opnd) {
+  rxy_form(SY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Halfword Register-Storage (32)
+void Assembler::sh(Register r1, const MemOperand& opnd) {
+  rx_form(SH, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Halfword Register-Storage (32)
+void Assembler::shy(Register r1, const MemOperand& opnd) {
+  rxy_form(SHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Register (32)
+void Assembler::sr(Register r1, Register r2) { rr_form(SR, r1, r2); }
+
+// Subtract Register-Register-Register (32)
+void Assembler::srk(Register r1, Register r2, Register r3) {
+  rrf1_form(SRK, r1, r2, r3);
+}
+
+// ----------------------------
+// 64-bit Subtract Instructions
+// ----------------------------
+// Subtract Register-Storage (64)
+void Assembler::sg(Register r1, const MemOperand& opnd) {
+  rxy_form(SG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Register-Storage (64<-32)
+void Assembler::sgf(Register r1, const MemOperand& opnd) {
+  rxy_form(SGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Register (64)
+void Assembler::sgr(Register r1, Register r2) { rre_form(SGR, r1, r2); }
+
+// Subtract Register (64<-32)
+void Assembler::sgfr(Register r1, Register r2) { rre_form(SGFR, r1, r2); }
+
+// Subtract Register-Register-Register (64)
+void Assembler::sgrk(Register r1, Register r2, Register r3) {
+  rrf1_form(SGRK, r1, r2, r3);
+}
+
+// ------------------------------------
+// 32-bit Subtract Logical Instructions
+// ------------------------------------
+// Subtract Logical Register-Storage (32)
+void Assembler::sl(Register r1, const MemOperand& opnd) {
+  rx_form(SL, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Logical Register-Storage (32)
+void Assembler::sly(Register r1, const MemOperand& opnd) {
+  rxy_form(SLY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Logical Register-Register (32)
+void Assembler::slr(Register r1, Register r2) { rr_form(SLR, r1, r2); }
+
+// Subtract Logical With Borrow Register-Register (32)
+void Assembler::slbr(Register r1, Register r2) { rre_form(SLBR, r1, r2); }
+
+// Subtract Logical Register-Register-Register (32)
+void Assembler::slrk(Register r1, Register r2, Register r3) {
+  rrf1_form(SLRK, r1, r2, r3);
+}
+
+// ------------------------------------
+// 64-bit Subtract Logical Instructions
+// ------------------------------------
+// Subtract Logical Register-Storage (64)
+void Assembler::slg(Register r1, const MemOperand& opnd) {
+  rxy_form(SLG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Subtract Logical Register-Register (64)
+void Assembler::slgr(Register r1, Register r2) { rre_form(SLGR, r1, r2); }
+
+// Subtract Logical Register-Register-Register (64)
+void Assembler::slgrk(Register r1, Register r2, Register r3) {
+  rrf1_form(SLGRK, r1, r2, r3);
+}
+
+// ----------------------------
+// 32-bit Multiply Instructions
+// ----------------------------
+// Multiply Register-Storage (64<32)
+void Assembler::m(Register r1, const MemOperand& opnd) {
+  rx_form(M, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Register (64<32)
+void Assembler::mr_z(Register r1, Register r2) {
+  DCHECK(r1.code() % 2 == 0);
+  rr_form(MR, r1, r2);
+}
+
+// Multiply Logical Register-Storage (64<32)
+void Assembler::ml(Register r1, const MemOperand& opnd) {
+  rxy_form(ML, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Logical Register (64<32)
+void Assembler::mlr(Register r1, Register r2) {
+  DCHECK(r1.code() % 2 == 0);
+  rre_form(MLR, r1, r2);
+}
+
+// Multiply Single Register-Storage (32)
+void Assembler::ms(Register r1, const MemOperand& opnd) {
+  rx_form(MS, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Single Register-Storage (32)
+void Assembler::msy(Register r1, const MemOperand& opnd) {
+  rxy_form(MSY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Single Immediate (32)
+void Assembler::msfi(Register r1, const Operand& opnd) {
+  ril_form(MSFI, r1, opnd);
+}
+
+// Multiply Single Register (64<32)
+void Assembler::msr(Register r1, Register r2) { rre_form(MSR, r1, r2); }
+
+// Multiply Halfword Register-Storage (32)
+void Assembler::mh(Register r1, const MemOperand& opnd) {
+  rx_form(MH, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Halfword Register-Storage (32)
+void Assembler::mhy(Register r1, const MemOperand& opnd) {
+  rxy_form(MHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Halfword Immediate (32)
+void Assembler::mhi(Register r1, const Operand& opnd) {
+  ri_form(MHI, r1, opnd);
+}
+
+// ----------------------------
+// 64-bit Multiply Instructions
+// ----------------------------
+// Multiply Logical Register-Storage (128<64)
+void Assembler::mlg(Register r1, const MemOperand& opnd) {
+  rxy_form(MLG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Register (128<64)
+void Assembler::mlgr(Register r1, Register r2) { rre_form(MLGR, r1, r2); }
+
+// Multiply Halfword Immediate (64)
+void Assembler::mghi(Register r1, const Operand& opnd) {
+  ri_form(MGHI, r1, opnd);
+}
+
+// Multiply Single Immediate (64)
+void Assembler::msgfi(Register r1, const Operand& opnd) {
+  ril_form(MSGFI, r1, opnd);
+}
+
+// Multiply Single Register-Storage (64)
+void Assembler::msg(Register r1, const MemOperand& opnd) {
+  rxy_form(MSG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Multiply Single Register-Register (64)
+void Assembler::msgr(Register r1, Register r2) { rre_form(MSGR, r1, r2); }
+
+// --------------------------
+// 32-bit Divide Instructions
+// --------------------------
+// Divide Register-Storage (32<-64)
+void Assembler::d(Register r1, const MemOperand& opnd) {
+  rx_form(D, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Divide Register (32<-64)
+void Assembler::dr(Register r1, Register r2) {
+  DCHECK(r1.code() % 2 == 0);
+  rr_form(DR, r1, r2);
+}
+
+// Divide Logical Register-Storage (32<-64)
+void Assembler::dl(Register r1, const MemOperand& opnd) {
+  rx_form(DL, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Divide Logical Register (32<-64)
+void Assembler::dlr(Register r1, Register r2) { rre_form(DLR, r1, r2); }
+
+// --------------------------
+// 64-bit Divide Instructions
+// --------------------------
+// Divide Logical Register (64<-128)
+void Assembler::dlgr(Register r1, Register r2) { rre_form(DLGR, r1, r2); }
+
+// Divide Single Register (64<-32)
+void Assembler::dsgr(Register r1, Register r2) { rre_form(DSGR, r1, r2); }
+
+// --------------------
+// Bitwise Instructions
+// --------------------
+// AND Register-Storage (32)
+void Assembler::n(Register r1, const MemOperand& opnd) {
+  rx_form(N, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// AND Register-Storage (32)
+void Assembler::ny(Register r1, const MemOperand& opnd) {
+  rxy_form(NY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// AND Register (32)
+void Assembler::nr(Register r1, Register r2) { rr_form(NR, r1, r2); }
+
+// AND Register-Register-Register (32)
+void Assembler::nrk(Register r1, Register r2, Register r3) {
+  rrf1_form(NRK, r1, r2, r3);
+}
+
+// AND Register-Storage (64)
+void Assembler::ng(Register r1, const MemOperand& opnd) {
+  rxy_form(NG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// AND Register (64)
+void Assembler::ngr(Register r1, Register r2) { rre_form(NGR, r1, r2); }
+
+// AND Register-Register-Register (64)
+void Assembler::ngrk(Register r1, Register r2, Register r3) {
+  rrf1_form(NGRK, r1, r2, r3);
+}
+
+// OR Register-Storage (32)
+void Assembler::o(Register r1, const MemOperand& opnd) {
+  rx_form(O, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// OR Register-Storage (32)
+void Assembler::oy(Register r1, const MemOperand& opnd) {
+  rxy_form(OY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// OR Register (32)
+void Assembler::or_z(Register r1, Register r2) { rr_form(OR, r1, r2); }
+
+// OR Register-Register-Register (32)
+void Assembler::ork(Register r1, Register r2, Register r3) {
+  rrf1_form(ORK, r1, r2, r3);
+}
+
+// OR Register-Storage (64)
+void Assembler::og(Register r1, const MemOperand& opnd) {
+  rxy_form(OG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// OR Register (64)
+void Assembler::ogr(Register r1, Register r2) { rre_form(OGR, r1, r2); }
+
+// OR Register-Register-Register (64)
+void Assembler::ogrk(Register r1, Register r2, Register r3) {
+  rrf1_form(OGRK, r1, r2, r3);
+}
+
+// XOR Register-Storage (32)
+void Assembler::x(Register r1, const MemOperand& opnd) {
+  rx_form(X, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// XOR Register-Storage (32)
+void Assembler::xy(Register r1, const MemOperand& opnd) {
+  rxy_form(XY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// XOR Register (32)
+void Assembler::xr(Register r1, Register r2) { rr_form(XR, r1, r2); }
+
+// XOR Register-Register-Register (32)
+void Assembler::xrk(Register r1, Register r2, Register r3) {
+  rrf1_form(XRK, r1, r2, r3);
+}
+
+// XOR Register-Storage (64)
+void Assembler::xg(Register r1, const MemOperand& opnd) {
+  rxy_form(XG, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// XOR Register (64)
+void Assembler::xgr(Register r1, Register r2) { rre_form(XGR, r1, r2); }
+
+// XOR Register-Register-Register (64)
+void Assembler::xgrk(Register r1, Register r2, Register r3) {
+  rrf1_form(XGRK, r1, r2, r3);
+}
+
+// XOR Storage-Storage
+void Assembler::xc(const MemOperand& opnd1, const MemOperand& opnd2,
+                   Length length) {
+  ss_form(XC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
+          opnd2.getBaseRegister(), opnd2.getDisplacement());
+}
+
+// -------------------------------------------
+// Bitwise GPR <-> FPR Conversion Instructions
+// -------------------------------------------
+// Load GR from FPR (64 <- L)
+void Assembler::lgdr(Register r1, DoubleRegister f2) {
+  rre_form(LGDR, r1, Register::from_code(f2.code()));
+}
+
+// Load FPR from FR (L <- 64)
+void Assembler::ldgr(DoubleRegister f1, Register r2) {
+  rre_form(LDGR, Register::from_code(f1.code()), r2);
+}
+
+void Assembler::EnsureSpaceFor(int space_needed) {
+  if (buffer_space() <= (kGap + space_needed)) {
+    GrowBuffer(space_needed);
+  }
+}
+
+// Rotate Left Single Logical (32)
+void Assembler::rll(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(RLL, r1, r3, opnd, 0);
+}
+
+// Rotate Left Single Logical (32)
+void Assembler::rll(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(RLL, r1, r3, r0, opnd.immediate());
+}
+
+// Rotate Left Single Logical (32)
+void Assembler::rll(Register r1, Register r3, Register r2,
+                    const Operand& opnd) {
+  rsy_form(RLL, r1, r3, r2, opnd.immediate());
+}
+
+// Rotate Left Single Logical (64)
+void Assembler::rllg(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(RLLG, r1, r3, opnd, 0);
+}
+
+// Rotate Left Single Logical (64)
+void Assembler::rllg(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(RLLG, r1, r3, r0, opnd.immediate());
+}
+
+// Rotate Left Single Logical (64)
+void Assembler::rllg(Register r1, Register r3, Register r2,
+                     const Operand& opnd) {
+  rsy_form(RLLG, r1, r3, r2, opnd.immediate());
+}
+
+// Shift Left Single Logical (32)
+void Assembler::sll(Register r1, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rs_form(SLL, r1, r0, opnd, 0);
+}
+
+// Shift Left Single Logical (32)
+void Assembler::sll(Register r1, const Operand& opnd) {
+  rs_form(SLL, r1, r0, r0, opnd.immediate());
+}
+
+// Shift Left Single Logical (32)
+void Assembler::sllk(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SLLK, r1, r3, opnd, 0);
+}
+
+// Shift Left Single Logical (32)
+void Assembler::sllk(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SLLK, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Left Single Logical (64)
+void Assembler::sllg(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SLLG, r1, r3, opnd, 0);
+}
+
+// Shift Left Single Logical (64)
+void Assembler::sllg(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SLLG, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Left Double Logical (64)
+void Assembler::sldl(Register r1, Register b2, const Operand& opnd) {
+  DCHECK(r1.code() % 2 == 0);
+  rs_form(SLDL, r1, r0, b2, opnd.immediate());
+}
+
+// Shift Right Single Logical (32)
+void Assembler::srl(Register r1, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rs_form(SRL, r1, r0, opnd, 0);
+}
+
+// Shift Right Double Arith (64)
+void Assembler::srda(Register r1, Register b2, const Operand& opnd) {
+  DCHECK(r1.code() % 2 == 0);
+  rs_form(SRDA, r1, r0, b2, opnd.immediate());
+}
+
+// Shift Right Double Logical (64)
+void Assembler::srdl(Register r1, Register b2, const Operand& opnd) {
+  DCHECK(r1.code() % 2 == 0);
+  rs_form(SRDL, r1, r0, b2, opnd.immediate());
+}
+
+// Shift Right Single Logical (32)
+void Assembler::srl(Register r1, const Operand& opnd) {
+  rs_form(SRL, r1, r0, r0, opnd.immediate());
+}
+
+// Shift Right Single Logical (32)
+void Assembler::srlk(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SRLK, r1, r3, opnd, 0);
+}
+
+// Shift Right Single Logical (32)
+void Assembler::srlk(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SRLK, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Right Single Logical (64)
+void Assembler::srlg(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SRLG, r1, r3, opnd, 0);
+}
+
+// Shift Right Single Logical (64)
+void Assembler::srlg(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SRLG, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Left Single (32)
+void Assembler::sla(Register r1, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rs_form(SLA, r1, r0, opnd, 0);
+}
+
+// Shift Left Single (32)
+void Assembler::sla(Register r1, const Operand& opnd) {
+  rs_form(SLA, r1, r0, r0, opnd.immediate());
+}
+
+// Shift Left Single (32)
+void Assembler::slak(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SLAK, r1, r3, opnd, 0);
+}
+
+// Shift Left Single (32)
+void Assembler::slak(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SLAK, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Left Single (64)
+void Assembler::slag(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SLAG, r1, r3, opnd, 0);
+}
+
+// Shift Left Single (64)
+void Assembler::slag(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SLAG, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Right Single (32)
+void Assembler::sra(Register r1, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rs_form(SRA, r1, r0, opnd, 0);
+}
+
+// Shift Right Single (32)
+void Assembler::sra(Register r1, const Operand& opnd) {
+  rs_form(SRA, r1, r0, r0, opnd.immediate());
+}
+
+// Shift Right Single (32)
+void Assembler::srak(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SRAK, r1, r3, opnd, 0);
+}
+
+// Shift Right Single (32)
+void Assembler::srak(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SRAK, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Right Single (64)
+void Assembler::srag(Register r1, Register r3, Register opnd) {
+  DCHECK(!opnd.is(r0));
+  rsy_form(SRAG, r1, r3, opnd, 0);
+}
+
+void Assembler::srag(Register r1, Register r3, const Operand& opnd) {
+  rsy_form(SRAG, r1, r3, r0, opnd.immediate());
+}
+
+// Shift Right Double
+void Assembler::srda(Register r1, const Operand& opnd) {
+  DCHECK(r1.code() % 2 == 0);
+  rs_form(SRDA, r1, r0, r0, opnd.immediate());
+}
+
+// Shift Right Double Logical
+void Assembler::srdl(Register r1, const Operand& opnd) {
+  DCHECK(r1.code() % 2 == 0);
+  rs_form(SRDL, r1, r0, r0, opnd.immediate());
+}
+
+void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode,
+                     TypeFeedbackId ast_id) {
+  positions_recorder()->WriteRecordedPositions();
+  EnsureSpace ensure_space(this);
+
+  int32_t target_index = emit_code_target(target, rmode, ast_id);
+  brasl(r14, Operand(target_index));
+}
+
+void Assembler::jump(Handle<Code> target, RelocInfo::Mode rmode,
+                     Condition cond) {
+  EnsureSpace ensure_space(this);
+
+  int32_t target_index = emit_code_target(target, rmode);
+  brcl(cond, Operand(target_index), true);
+}
+
+// Store (32)
+void Assembler::st(Register src, const MemOperand& dst) {
+  rx_form(ST, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Store (32)
+void Assembler::sty(Register src, const MemOperand& dst) {
+  rxy_form(STY, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Store Halfword
+void Assembler::sth(Register src, const MemOperand& dst) {
+  rx_form(STH, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Store Halfword
+void Assembler::sthy(Register src, const MemOperand& dst) {
+  rxy_form(STHY, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Store Character
+void Assembler::stc(Register src, const MemOperand& dst) {
+  rx_form(STC, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Store Character
+void Assembler::stcy(Register src, const MemOperand& dst) {
+  rxy_form(STCY, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// 32-bit Load Multiple - short displacement (12-bits unsigned)
+void Assembler::lm(Register r1, Register r2, const MemOperand& src) {
+  rs_form(LM, r1, r2, src.rb(), src.offset());
+}
+
+// 32-bit Load Multiple - long displacement (20-bits signed)
+void Assembler::lmy(Register r1, Register r2, const MemOperand& src) {
+  rsy_form(LMY, r1, r2, src.rb(), src.offset());
+}
+
+// 64-bit Load Multiple - long displacement (20-bits signed)
+void Assembler::lmg(Register r1, Register r2, const MemOperand& src) {
+  rsy_form(LMG, r1, r2, src.rb(), src.offset());
+}
+
+// Move integer (32)
+void Assembler::mvhi(const MemOperand& opnd1, const Operand& i2) {
+  sil_form(MVHI, opnd1.getBaseRegister(), opnd1.getDisplacement(), i2);
+}
+
+// Move integer (64)
+void Assembler::mvghi(const MemOperand& opnd1, const Operand& i2) {
+  sil_form(MVGHI, opnd1.getBaseRegister(), opnd1.getDisplacement(), i2);
+}
+
+// Store Register (64)
+void Assembler::stg(Register src, const MemOperand& dst) {
+  DCHECK(!(dst.rb().code() == 15 && dst.offset() < 0));
+  rxy_form(STG, src, dst.rx(), dst.rb(), dst.offset());
+}
+
+// Insert Character
+void Assembler::ic_z(Register r1, const MemOperand& opnd) {
+  rx_form(IC_z, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Insert Character
+void Assembler::icy(Register r1, const MemOperand& opnd) {
+  rxy_form(ICY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Insert Immediate (High)
+void Assembler::iihf(Register r1, const Operand& opnd) {
+  ril_form(IIHF, r1, opnd);
+}
+
+// Insert Immediate (low)
+void Assembler::iilf(Register r1, const Operand& opnd) {
+  ril_form(IILF, r1, opnd);
+}
+
+// Insert Immediate (high high)
+void Assembler::iihh(Register r1, const Operand& opnd) {
+  ri_form(IIHH, r1, opnd);
+}
+
+// Insert Immediate (high low)
+void Assembler::iihl(Register r1, const Operand& opnd) {
+  ri_form(IIHL, r1, opnd);
+}
+
+// Insert Immediate (low high)
+void Assembler::iilh(Register r1, const Operand& opnd) {
+  ri_form(IILH, r1, opnd);
+}
+
+// Insert Immediate (low low)
+void Assembler::iill(Register r1, const Operand& opnd) {
+  ri_form(IILL, r1, opnd);
+}
+
+// GPR <-> FPR Instructions
+
+// Floating point instructions
+//
+// Load zero Register (64)
+void Assembler::lzdr(DoubleRegister r1) {
+  rre_form(LZDR, Register::from_code(r1.code()), Register::from_code(0));
+}
+
+// Add Register-Register (LB)
+void Assembler::aebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(AEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Add Register-Storage (LB)
+void Assembler::adb(DoubleRegister r1, const MemOperand& opnd) {
+  rxe_form(ADB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
+           opnd.offset());
+}
+
+// Add Register-Register (LB)
+void Assembler::adbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(ADBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Compare Register-Register (LB)
+void Assembler::cebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(CEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Compare Register-Storage (LB)
+void Assembler::cdb(DoubleRegister r1, const MemOperand& opnd) {
+  rx_form(CD, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
+          opnd.offset());
+}
+
+// Compare Register-Register (LB)
+void Assembler::cdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(CDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Divide Register-Register (LB)
+void Assembler::debr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(DEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Divide Register-Storage (LB)
+void Assembler::ddb(DoubleRegister r1, const MemOperand& opnd) {
+  rxe_form(DDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
+           opnd.offset());
+}
+
+// Divide Register-Register (LB)
+void Assembler::ddbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(DDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Multiply Register-Register (LB)
+void Assembler::meebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(MEEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Multiply Register-Storage (LB)
+void Assembler::mdb(DoubleRegister r1, const MemOperand& opnd) {
+  rxe_form(MDB, Register::from_code(r1.code()), opnd.rb(), opnd.rx(),
+           opnd.offset());
+}
+
+// Multiply Register-Register (LB)
+void Assembler::mdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(MDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Subtract Register-Register (LB)
+void Assembler::sebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(SEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Subtract Register-Storage (LB)
+void Assembler::sdb(DoubleRegister r1, const MemOperand& opnd) {
+  rxe_form(SDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
+           opnd.offset());
+}
+
+// Subtract Register-Register (LB)
+void Assembler::sdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(SDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Square Root (LB)
+void Assembler::sqdb(DoubleRegister r1, const MemOperand& opnd) {
+  rxe_form(SQDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
+           opnd.offset());
+}
+
+// Square Root Register-Register (LB)
+void Assembler::sqebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(SQEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Square Root Register-Register (LB)
+void Assembler::sqdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(SQDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Load Rounded (double -> float)
+void Assembler::ledbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LEDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Load Lengthen (float -> double)
+void Assembler::ldebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LDEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Load Complement Register-Register (LB)
+void Assembler::lcdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LCDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Load Positive Register-Register (LB)
+void Assembler::lpebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LPEBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Load Positive Register-Register (LB)
+void Assembler::lpdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LPDBR, Register::from_code(r1.code()),
+           Register::from_code(r2.code()));
+}
+
+// Store Double (64)
+void Assembler::std(DoubleRegister r1, const MemOperand& opnd) {
+  rx_form(STD, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Store Double (64)
+void Assembler::stdy(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(!(opnd.rb().code() == 15 && opnd.offset() < 0));
+  rxy_form(STDY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Store Float (32)
+void Assembler::ste(DoubleRegister r1, const MemOperand& opnd) {
+  rx_form(STE, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Store Float (32)
+void Assembler::stey(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(!(opnd.rb().code() == 15 && opnd.offset() < 0));
+  rxy_form(STEY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Double (64)
+void Assembler::ld(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(is_uint12(opnd.offset()));
+  rx_form(LD, r1, opnd.rx(), opnd.rb(), opnd.offset() & 0xfff);
+}
+
+// Load Double (64)
+void Assembler::ldy(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(is_int20(opnd.offset()));
+  rxy_form(LDY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Float (32)
+void Assembler::le_z(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(is_uint12(opnd.offset()));
+  rx_form(LE, r1, opnd.rx(), opnd.rb(), opnd.offset() & 0xfff);
+}
+
+// Load Float (32)
+void Assembler::ley(DoubleRegister r1, const MemOperand& opnd) {
+  DCHECK(is_int20(opnd.offset()));
+  rxy_form(LEY, r1, opnd.rx(), opnd.rb(), opnd.offset());
+}
+
+// Load Double Register-Register (64)
+void Assembler::ldr(DoubleRegister r1, DoubleRegister r2) {
+  rr_form(LDR, r1, r2);
+}
+
+// Load And Test Register-Register (L)
+void Assembler::ltebr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LTEBR, r1, r2);
+}
+
+// Load And Test Register-Register (L)
+void Assembler::ltdbr(DoubleRegister r1, DoubleRegister r2) {
+  rre_form(LTDBR, r1, r2);
+}
+
+// Convert to Fixed point (64<-S)
+void Assembler::cgebr(Condition m, Register r1, DoubleRegister r2) {
+  rrfe_form(CGEBR, m, Condition(0), r1, Register::from_code(r2.code()));
+}
+
+// Convert to Fixed point (64<-L)
+void Assembler::cgdbr(Condition m, Register r1, DoubleRegister r2) {
+  rrfe_form(CGDBR, m, Condition(0), r1, Register::from_code(r2.code()));
+}
+
+// Convert to Fixed point (32<-L)
+void Assembler::cfdbr(Condition m, Register r1, DoubleRegister r2) {
+  rrfe_form(CFDBR, m, Condition(0), r1, Register::from_code(r2.code()));
+}
+
+// Convert from Fixed point (L<-64)
+void Assembler::cegbr(DoubleRegister r1, Register r2) {
+  rre_form(CEGBR, Register::from_code(r1.code()), r2);
+}
+
+// Convert from Fixed point (L<-64)
+void Assembler::cdgbr(DoubleRegister r1, Register r2) {
+  rre_form(CDGBR, Register::from_code(r1.code()), r2);
+}
+
+// Convert from Fixed point (L<-32)
+void Assembler::cdfbr(DoubleRegister r1, Register r2) {
+  rre_form(CDFBR, Register::from_code(r1.code()), r2);
+}
+
+// Convert to Fixed Logical (64<-L)
+void Assembler::clgdbr(Condition m3, Condition m4, Register r1,
+                       DoubleRegister r2) {
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CLGDBR, m3, m4, r1, Register::from_code(r2.code()));
+}
+
+// Convert to Fixed Logical (64<-F32)
+void Assembler::clgebr(Condition m3, Condition m4, Register r1,
+                       DoubleRegister r2) {
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CLGEBR, m3, m4, r1, Register::from_code(r2.code()));
+}
+
+// Convert to Fixed Logical (32<-F64)
+void Assembler::clfdbr(Condition m3, Condition m4, Register r1,
+                       DoubleRegister r2) {
+  DCHECK_EQ(m3, Condition(0));
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CLFDBR, Condition(0), Condition(0), r1,
+            Register::from_code(r2.code()));
+}
+
+// Convert to Fixed Logical (32<-F32)
+void Assembler::clfebr(Condition m3, Condition m4, Register r1,
+                       DoubleRegister r2) {
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CLFEBR, m3, Condition(0), r1, Register::from_code(r2.code()));
+}
+
+// Convert from Fixed Logical (L<-64)
+void Assembler::celgbr(Condition m3, Condition m4, DoubleRegister r1,
+                       Register r2) {
+  DCHECK_EQ(m3, Condition(0));
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CELGBR, Condition(0), Condition(0), Register::from_code(r1.code()),
+            r2);
+}
+
+// Convert from Fixed Logical (F32<-32)
+void Assembler::celfbr(Condition m3, Condition m4, DoubleRegister r1,
+                       Register r2) {
+  DCHECK_EQ(m3, Condition(0));
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CELFBR, Condition(0), Condition(0), Register::from_code(r1.code()),
+            r2);
+}
+
+// Convert from Fixed Logical (L<-64)
+void Assembler::cdlgbr(Condition m3, Condition m4, DoubleRegister r1,
+                       Register r2) {
+  DCHECK_EQ(m3, Condition(0));
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CDLGBR, Condition(0), Condition(0), Register::from_code(r1.code()),
+            r2);
+}
+
+// Convert from Fixed Logical (L<-32)
+void Assembler::cdlfbr(Condition m3, Condition m4, DoubleRegister r1,
+                       Register r2) {
+  DCHECK_EQ(m4, Condition(0));
+  rrfe_form(CDLFBR, m3, Condition(0), Register::from_code(r1.code()), r2);
+}
+
+// Convert from Fixed point (S<-32)
+void Assembler::cefbr(DoubleRegister r1, Register r2) {
+  rre_form(CEFBR, Register::from_code(r1.code()), r2);
+}
+
+// Convert to Fixed point (32<-S)
+void Assembler::cfebr(Condition m3, Register r1, DoubleRegister r2) {
+  rrfe_form(CFEBR, m3, Condition(0), r1, Register::from_code(r2.code()));
+}
+
+// Load (L <- S)
+void Assembler::ldeb(DoubleRegister d1, const MemOperand& opnd) {
+  rxe_form(LDEB, Register::from_code(d1.code()), opnd.rx(), opnd.rb(),
+           opnd.offset());
+}
+
+// Load FP Integer
+void Assembler::fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3) {
+  rrf2_form(FIEBRA << 16 | m3 * B12 | d1.code() * B4 | d2.code());
+}
+
+// Load FP Integer
+void Assembler::fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3) {
+  rrf2_form(FIDBRA << 16 | m3 * B12 | d1.code() * B4 | d2.code());
+}
+
+// Multiply and Add - MADBR R1, R3, R2
+// R1 = R3 * R2 + R1
+void Assembler::madbr(DoubleRegister d1, DoubleRegister d3, DoubleRegister d2) {
+  rrd_form(MADBR, Register::from_code(d1.code()),
+           Register::from_code(d3.code()), Register::from_code(d2.code()));
+}
+
+// Multiply and Subtract - MSDBR R1, R3, R2
+// R1 = R3 * R2 - R1
+void Assembler::msdbr(DoubleRegister d1, DoubleRegister d3, DoubleRegister d2) {
+  rrd_form(MSDBR, Register::from_code(d1.code()),
+           Register::from_code(d3.code()), Register::from_code(d2.code()));
+}
+
+// end of S390instructions
+
+bool Assembler::IsNop(SixByteInstr instr, int type) {
+  DCHECK((0 == type) || (DEBUG_BREAK_NOP == type));
+  if (DEBUG_BREAK_NOP == type) {
+    return ((instr & 0xffffffff) == 0xa53b0000);  // oill r3, 0
+  }
+  return ((instr & 0xffff) == 0x1800);  // lr r0,r0
+}
+
+void Assembler::GrowBuffer(int needed) {
+  if (!own_buffer_) FATAL("external code buffer is too small");
+
+  // Compute new buffer size.
+  CodeDesc desc;  // the new buffer
+  if (buffer_size_ < 4 * KB) {
+    desc.buffer_size = 4 * KB;
+  } else if (buffer_size_ < 1 * MB) {
+    desc.buffer_size = 2 * buffer_size_;
+  } else {
+    desc.buffer_size = buffer_size_ + 1 * MB;
+  }
+  int space = buffer_space() + (desc.buffer_size - buffer_size_);
+  if (space < needed) {
+    desc.buffer_size += needed - space;
+  }
+  CHECK_GT(desc.buffer_size, 0);  // no overflow
+
+  // Set up new buffer.
+  desc.buffer = NewArray<byte>(desc.buffer_size);
+  desc.origin = this;
+
+  desc.instr_size = pc_offset();
+  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+
+  // Copy the data.
+  intptr_t pc_delta = desc.buffer - buffer_;
+  intptr_t rc_delta =
+      (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+  memmove(desc.buffer, buffer_, desc.instr_size);
+  memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
+          desc.reloc_size);
+
+  // Switch buffers.
+  DeleteArray(buffer_);
+  buffer_ = desc.buffer;
+  buffer_size_ = desc.buffer_size;
+  pc_ += pc_delta;
+  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+                               reloc_info_writer.last_pc() + pc_delta);
+
+  // None of our relocation types are pc relative pointing outside the code
+  // buffer nor pc absolute pointing inside the code buffer, so there is no need
+  // to relocate any emitted relocation entries.
+}
+
+void Assembler::db(uint8_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uint8_t*>(pc_) = data;
+  pc_ += sizeof(uint8_t);
+}
+
+void Assembler::dd(uint32_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uint32_t*>(pc_) = data;
+  pc_ += sizeof(uint32_t);
+}
+
+void Assembler::dq(uint64_t value) {
+  CheckBuffer();
+  *reinterpret_cast<uint64_t*>(pc_) = value;
+  pc_ += sizeof(uint64_t);
+}
+
+void Assembler::dp(uintptr_t data) {
+  CheckBuffer();
+  *reinterpret_cast<uintptr_t*>(pc_) = data;
+  pc_ += sizeof(uintptr_t);
+}
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+  if (RelocInfo::IsNone(rmode) ||
+      // Don't record external references unless the heap will be serialized.
+      (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
+       !emit_debug_code())) {
+    return;
+  }
+  if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
+    data = RecordedAstId().ToInt();
+    ClearRecordedAstId();
+  }
+  DeferredRelocInfo rinfo(pc_offset(), rmode, data);
+  relocations_.push_back(rinfo);
+}
+
+void Assembler::emit_label_addr(Label* label) {
+  CheckBuffer();
+  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+  int position = link(label);
+  DCHECK(label->is_bound());
+  // Keep internal references relative until EmitRelocations.
+  dp(position);
+}
+
+void Assembler::EmitRelocations() {
+  EnsureSpaceFor(relocations_.size() * kMaxRelocSize);
+
+  for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
+       it != relocations_.end(); it++) {
+    RelocInfo::Mode rmode = it->rmode();
+    Address pc = buffer_ + it->position();
+    Code* code = NULL;
+    RelocInfo rinfo(isolate(), pc, rmode, it->data(), code);
+
+    // Fix up internal references now that they are guaranteed to be bound.
+    if (RelocInfo::IsInternalReference(rmode)) {
+      // Jump table entry
+      intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
+      Memory::Address_at(pc) = buffer_ + pos;
+    } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
+      // mov sequence
+      intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, code));
+      set_target_address_at(isolate(), pc, code, buffer_ + pos,
+                            SKIP_ICACHE_FLUSH);
+    }
+
+    reloc_info_writer.Write(&rinfo);
+  }
+
+  reloc_info_writer.Finish();
+}
+
+}  // namespace internal
+}  // namespace v8
+#endif  // V8_TARGET_ARCH_S390