Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/s390/macro-assembler-s390.h b/src/s390/macro-assembler-s390.h
new file mode 100644
index 0000000..d8d543e
--- /dev/null
+++ b/src/s390/macro-assembler-s390.h
@@ -0,0 +1,1890 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
+#define V8_S390_MACRO_ASSEMBLER_S390_H_
+
+#include "src/assembler.h"
+#include "src/bailout-reason.h"
+#include "src/frames.h"
+#include "src/globals.h"
+
+namespace v8 {
+namespace internal {
+
+// Give alias names to registers for calling conventions.
+const Register kReturnRegister0 = {Register::kCode_r2};
+const Register kReturnRegister1 = {Register::kCode_r3};
+const Register kReturnRegister2 = {Register::kCode_r4};
+const Register kJSFunctionRegister = {Register::kCode_r3};
+const Register kContextRegister = {Register::kCode_r13};
+const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
+const Register kInterpreterRegisterFileRegister = {Register::kCode_r4};
+const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
+const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
+const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
+const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
+const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
+const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
+const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
+
+// ----------------------------------------------------------------------------
+// Static helper functions
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, int offset) {
+  return MemOperand(object, offset - kHeapObjectTag);
+}
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
+  return MemOperand(object, index, offset - kHeapObjectTag);
+}
+
+// Generate a MemOperand for loading a field from Root register
+inline MemOperand RootMemOperand(Heap::RootListIndex index) {
+  return MemOperand(kRootRegister, index << kPointerSizeLog2);
+}
+
+// Flags used for AllocateHeapNumber
+enum TaggingMode {
+  // Tag the result.
+  TAG_RESULT,
+  // Don't tag
+  DONT_TAG_RESULT
+};
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+  kPointersToHereMaybeInteresting,
+  kPointersToHereAreAlwaysInteresting
+};
+enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
+
+Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
+                                   Register reg3 = no_reg,
+                                   Register reg4 = no_reg,
+                                   Register reg5 = no_reg,
+                                   Register reg6 = no_reg);
+
+#ifdef DEBUG
+bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
+                Register reg4 = no_reg, Register reg5 = no_reg,
+                Register reg6 = no_reg, Register reg7 = no_reg,
+                Register reg8 = no_reg, Register reg9 = no_reg,
+                Register reg10 = no_reg);
+#endif
+
+// These exist to provide portability between 32 and 64bit
+#if V8_TARGET_ARCH_S390X
+#define Div divd
+
+// The length of the arithmetic operation is the length
+// of the register.
+
+// Length:
+// H = halfword
+// W = word
+
+// arithmetics and bitwise
+#define AddMI agsi
+#define AddRR agr
+#define SubRR sgr
+#define AndRR ngr
+#define OrRR ogr
+#define XorRR xgr
+#define LoadComplementRR lcgr
+#define LoadNegativeRR lngr
+
+// Distinct Operands
+#define AddP_RRR agrk
+#define AddPImm_RRI aghik
+#define AddLogicalP_RRR algrk
+#define SubP_RRR sgrk
+#define SubLogicalP_RRR slgrk
+#define AndP_RRR ngrk
+#define OrP_RRR ogrk
+#define XorP_RRR xgrk
+
+// Load / Store
+#define LoadRR lgr
+#define LoadAndTestRR ltgr
+#define LoadImmP lghi
+#define LoadLogicalHalfWordP llgh
+
+// Compare
+#define CmpPH cghi
+#define CmpLogicalPW clgfi
+
+// Shifts
+#define ShiftLeftP sllg
+#define ShiftRightP srlg
+#define ShiftLeftArithP slag
+#define ShiftRightArithP srag
+#else
+
+// arithmetics and bitwise
+// Reg2Reg
+#define AddMI asi
+#define AddRR ar
+#define SubRR sr
+#define AndRR nr
+#define OrRR or_z
+#define XorRR xr
+#define LoadComplementRR lcr
+#define LoadNegativeRR lnr
+
+// Distinct Operands
+#define AddP_RRR ark
+#define AddPImm_RRI ahik
+#define AddLogicalP_RRR alrk
+#define SubP_RRR srk
+#define SubLogicalP_RRR slrk
+#define AndP_RRR nrk
+#define OrP_RRR ork
+#define XorP_RRR xrk
+
+// Load / Store
+#define LoadRR lr
+#define LoadAndTestRR ltr
+#define LoadImmP lhi
+#define LoadLogicalHalfWordP llh
+
+// Compare
+#define CmpPH chi
+#define CmpLogicalPW clfi
+
+// Shifts
+#define ShiftLeftP ShiftLeft
+#define ShiftRightP ShiftRight
+#define ShiftLeftArithP ShiftLeftArith
+#define ShiftRightArithP ShiftRightArith
+
+#endif
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler : public Assembler {
+ public:
+  MacroAssembler(Isolate* isolate, void* buffer, int size,
+                 CodeObjectRequired create_code_object);
+
+  // Returns the size of a call in instructions.
+  static int CallSize(Register target);
+  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
+  static int CallSizeNotPredictableCodeSize(Address target,
+                                            RelocInfo::Mode rmode,
+                                            Condition cond = al);
+
+  // Jump, Call, and Ret pseudo instructions implementing inter-working.
+  void Jump(Register target);
+  void JumpToJSEntry(Register target);
+  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
+            CRegister cr = cr7);
+  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
+  void Call(Register target);
+  void CallJSEntry(Register target);
+  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
+  int CallSize(Handle<Code> code,
+               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+               TypeFeedbackId ast_id = TypeFeedbackId::None(),
+               Condition cond = al);
+  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+            TypeFeedbackId ast_id = TypeFeedbackId::None(),
+            Condition cond = al);
+  void Ret() { b(r14); }
+  void Ret(Condition cond) { b(cond, r14); }
+
+  // Emit code to discard a non-negative number of pointer-sized elements
+  // from the stack, clobbering only the sp register.
+  void Drop(int count);
+  void Drop(Register count, Register scratch = r0);
+
+  void Ret(int drop) {
+    Drop(drop);
+    Ret();
+  }
+
+  void Call(Label* target);
+
+  // Register move. May do nothing if the registers are identical.
+  void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
+  void Move(Register dst, Handle<Object> value);
+  void Move(Register dst, Register src, Condition cond = al);
+  void Move(DoubleRegister dst, DoubleRegister src);
+
+  void InsertDoubleLow(DoubleRegister dst, Register src);
+  void InsertDoubleHigh(DoubleRegister dst, Register src);
+
+  void MultiPush(RegList regs, Register location = sp);
+  void MultiPop(RegList regs, Register location = sp);
+
+  void MultiPushDoubles(RegList dregs, Register location = sp);
+  void MultiPopDoubles(RegList dregs, Register location = sp);
+
+  // Load an object from the root table.
+  void LoadRoot(Register destination, Heap::RootListIndex index,
+                Condition cond = al);
+  // Store an object to the root table.
+  void StoreRoot(Register source, Heap::RootListIndex index,
+                 Condition cond = al);
+
+  //--------------------------------------------------------------------------
+  // S390 Macro Assemblers for Instructions
+  //--------------------------------------------------------------------------
+
+  // Arithmetic Operations
+
+  // Add (Register - Immediate)
+  void Add32(Register dst, const Operand& imm);
+  void AddP(Register dst, const Operand& imm);
+  void Add32(Register dst, Register src, const Operand& imm);
+  void AddP(Register dst, Register src, const Operand& imm);
+
+  // Add (Register - Register)
+  void Add32(Register dst, Register src);
+  void AddP(Register dst, Register src);
+  void AddP_ExtendSrc(Register dst, Register src);
+  void Add32(Register dst, Register src1, Register src2);
+  void AddP(Register dst, Register src1, Register src2);
+  void AddP_ExtendSrc(Register dst, Register src1, Register src2);
+
+  // Add (Register - Mem)
+  void Add32(Register dst, const MemOperand& opnd);
+  void AddP(Register dst, const MemOperand& opnd);
+  void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
+
+  // Add (Mem - Immediate)
+  void Add32(const MemOperand& opnd, const Operand& imm);
+  void AddP(const MemOperand& opnd, const Operand& imm);
+
+  // Add Logical (Register - Register)
+  void AddLogical32(Register dst, Register src1, Register src2);
+
+  // Add Logical With Carry (Register - Register)
+  void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
+
+  // Add Logical (Register - Immediate)
+  void AddLogical(Register dst, const Operand& imm);
+  void AddLogicalP(Register dst, const Operand& imm);
+
+  // Add Logical (Register - Mem)
+  void AddLogical(Register dst, const MemOperand& opnd);
+  void AddLogicalP(Register dst, const MemOperand& opnd);
+
+  // Subtract (Register - Immediate)
+  void Sub32(Register dst, const Operand& imm);
+  void SubP(Register dst, const Operand& imm);
+  void Sub32(Register dst, Register src, const Operand& imm);
+  void SubP(Register dst, Register src, const Operand& imm);
+
+  // Subtract (Register - Register)
+  void Sub32(Register dst, Register src);
+  void SubP(Register dst, Register src);
+  void SubP_ExtendSrc(Register dst, Register src);
+  void Sub32(Register dst, Register src1, Register src2);
+  void SubP(Register dst, Register src1, Register src2);
+  void SubP_ExtendSrc(Register dst, Register src1, Register src2);
+
+  // Subtract (Register - Mem)
+  void Sub32(Register dst, const MemOperand& opnd);
+  void SubP(Register dst, const MemOperand& opnd);
+  void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
+
+  // Subtract Logical (Register - Mem)
+  void SubLogical(Register dst, const MemOperand& opnd);
+  void SubLogicalP(Register dst, const MemOperand& opnd);
+  void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
+  // Subtract Logical 32-bit
+  void SubLogical32(Register dst, Register src1, Register src2);
+  // Subtract Logical With Borrow 32-bit
+  void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
+
+  // Multiply
+  void MulP(Register dst, const Operand& opnd);
+  void MulP(Register dst, Register src);
+  void MulP(Register dst, const MemOperand& opnd);
+  void Mul(Register dst, Register src1, Register src2);
+
+  // Divide
+  void DivP(Register dividend, Register divider);
+
+  // Compare
+  void Cmp32(Register src1, Register src2);
+  void CmpP(Register src1, Register src2);
+  void Cmp32(Register dst, const Operand& opnd);
+  void CmpP(Register dst, const Operand& opnd);
+  void Cmp32(Register dst, const MemOperand& opnd);
+  void CmpP(Register dst, const MemOperand& opnd);
+
+  // Compare Logical
+  void CmpLogical32(Register src1, Register src2);
+  void CmpLogicalP(Register src1, Register src2);
+  void CmpLogical32(Register src1, const Operand& opnd);
+  void CmpLogicalP(Register src1, const Operand& opnd);
+  void CmpLogical32(Register dst, const MemOperand& opnd);
+  void CmpLogicalP(Register dst, const MemOperand& opnd);
+
+  // Compare Logical Byte (CLI/CLIY)
+  void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
+
+  // Load 32bit
+  void Load(Register dst, const MemOperand& opnd);
+  void Load(Register dst, const Operand& opnd);
+  void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
+  void LoadW(Register dst, Register src);
+  void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
+  void LoadlW(Register dst, Register src);
+  void LoadB(Register dst, const MemOperand& opnd);
+  void LoadlB(Register dst, const MemOperand& opnd);
+
+  // Load And Test
+  void LoadAndTest32(Register dst, Register src);
+  void LoadAndTestP_ExtendSrc(Register dst, Register src);
+  void LoadAndTestP(Register dst, Register src);
+
+  void LoadAndTest32(Register dst, const MemOperand& opnd);
+  void LoadAndTestP(Register dst, const MemOperand& opnd);
+
+  // Load Floating Point
+  void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
+  void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
+  void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
+
+  // Store Floating Point
+  void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
+  void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
+  void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
+                            DoubleRegister scratch);
+
+  void Branch(Condition c, const Operand& opnd);
+  void BranchOnCount(Register r1, Label* l);
+
+  // Shifts
+  void ShiftLeft(Register dst, Register src, Register val);
+  void ShiftLeft(Register dst, Register src, const Operand& val);
+  void ShiftRight(Register dst, Register src, Register val);
+  void ShiftRight(Register dst, Register src, const Operand& val);
+  void ShiftLeftArith(Register dst, Register src, Register shift);
+  void ShiftLeftArith(Register dst, Register src, const Operand& val);
+  void ShiftRightArith(Register dst, Register src, Register shift);
+  void ShiftRightArith(Register dst, Register src, const Operand& val);
+
+  void ClearRightImm(Register dst, Register src, const Operand& val);
+
+  // Bitwise operations
+  void And(Register dst, Register src);
+  void AndP(Register dst, Register src);
+  void And(Register dst, Register src1, Register src2);
+  void AndP(Register dst, Register src1, Register src2);
+  void And(Register dst, const MemOperand& opnd);
+  void AndP(Register dst, const MemOperand& opnd);
+  void And(Register dst, const Operand& opnd);
+  void AndP(Register dst, const Operand& opnd);
+  void And(Register dst, Register src, const Operand& opnd);
+  void AndP(Register dst, Register src, const Operand& opnd);
+  void Or(Register dst, Register src);
+  void OrP(Register dst, Register src);
+  void Or(Register dst, Register src1, Register src2);
+  void OrP(Register dst, Register src1, Register src2);
+  void Or(Register dst, const MemOperand& opnd);
+  void OrP(Register dst, const MemOperand& opnd);
+  void Or(Register dst, const Operand& opnd);
+  void OrP(Register dst, const Operand& opnd);
+  void Or(Register dst, Register src, const Operand& opnd);
+  void OrP(Register dst, Register src, const Operand& opnd);
+  void Xor(Register dst, Register src);
+  void XorP(Register dst, Register src);
+  void Xor(Register dst, Register src1, Register src2);
+  void XorP(Register dst, Register src1, Register src2);
+  void Xor(Register dst, const MemOperand& opnd);
+  void XorP(Register dst, const MemOperand& opnd);
+  void Xor(Register dst, const Operand& opnd);
+  void XorP(Register dst, const Operand& opnd);
+  void Xor(Register dst, Register src, const Operand& opnd);
+  void XorP(Register dst, Register src, const Operand& opnd);
+  void Popcnt32(Register dst, Register src);
+
+#ifdef V8_TARGET_ARCH_S390X
+  void Popcnt64(Register dst, Register src);
+#endif
+
+  void NotP(Register dst);
+
+  void mov(Register dst, const Operand& src);
+
+  // ---------------------------------------------------------------------------
+  // GC Support
+
+  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
+                                           Register address);
+
+  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
+
+  // Record in the remembered set the fact that we have a pointer to new space
+  // at the address pointed to by the addr register.  Only works if addr is not
+  // in new space.
+  void RememberedSetHelper(Register object,  // Used for debug code.
+                           Register addr, Register scratch,
+                           SaveFPRegsMode save_fp,
+                           RememberedSetFinalAction and_then);
+
+  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
+                     Label* condition_met);
+
+  // Check if object is in new space.  Jumps if the object is not in new space.
+  // The register scratch can be object itself, but scratch will be clobbered.
+  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
+    InNewSpace(object, scratch, eq, branch);
+  }
+
+  // Check if object is in new space.  Jumps if the object is in new space.
+  // The register scratch can be object itself, but it will be clobbered.
+  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
+    InNewSpace(object, scratch, ne, branch);
+  }
+
+  // Check if an object has a given incremental marking color.
+  void HasColor(Register object, Register scratch0, Register scratch1,
+                Label* has_color, int first_bit, int second_bit);
+
+  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
+                   Label* on_black);
+
+  // Checks the color of an object.  If the object is white we jump to the
+  // incremental marker.
+  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
+                   Register scratch3, Label* value_is_white);
+
+  // Notify the garbage collector that we wrote a pointer into an object.
+  // |object| is the object being stored into, |value| is the object being
+  // stored.  value and scratch registers are clobbered by the operation.
+  // The offset is the offset from the start of the object, not the offset from
+  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
+  void RecordWriteField(
+      Register object, int offset, Register value, Register scratch,
+      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting);
+
+  // As above, but the offset has the tag presubtracted.  For use with
+  // MemOperand(reg, off).
+  inline void RecordWriteContextSlot(
+      Register context, int offset, Register value, Register scratch,
+      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting) {
+    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
+                     lr_status, save_fp, remembered_set_action, smi_check,
+                     pointers_to_here_check_for_value);
+  }
+
+  // Notify the garbage collector that we wrote a code entry into a
+  // JSFunction. Only scratch is clobbered by the operation.
+  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
+                                 Register scratch);
+
+  void RecordWriteForMap(Register object, Register map, Register dst,
+                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
+
+  // For a given |object| notify the garbage collector that the slot |address|
+  // has been written.  |value| is the object being stored. The value and
+  // address registers are clobbered by the operation.
+  void RecordWrite(
+      Register object, Register address, Register value,
+      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+      SmiCheck smi_check = INLINE_SMI_CHECK,
+      PointersToHereCheck pointers_to_here_check_for_value =
+          kPointersToHereMaybeInteresting);
+
+  void push(Register src) {
+    lay(sp, MemOperand(sp, -kPointerSize));
+    StoreP(src, MemOperand(sp));
+  }
+
+  void pop(Register dst) {
+    LoadP(dst, MemOperand(sp));
+    la(sp, MemOperand(sp, kPointerSize));
+  }
+
+  void pop() { la(sp, MemOperand(sp, kPointerSize)); }
+
+  void Push(Register src) { push(src); }
+
+  // Push a handle.
+  void Push(Handle<Object> handle);
+  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+  // Push two registers.  Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2) {
+    lay(sp, MemOperand(sp, -kPointerSize * 2));
+    StoreP(src1, MemOperand(sp, kPointerSize));
+    StoreP(src2, MemOperand(sp, 0));
+  }
+
+  // Push three registers.  Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2, Register src3) {
+    lay(sp, MemOperand(sp, -kPointerSize * 3));
+    StoreP(src1, MemOperand(sp, kPointerSize * 2));
+    StoreP(src2, MemOperand(sp, kPointerSize));
+    StoreP(src3, MemOperand(sp, 0));
+  }
+
+  // Push four registers.  Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2, Register src3, Register src4) {
+    lay(sp, MemOperand(sp, -kPointerSize * 4));
+    StoreP(src1, MemOperand(sp, kPointerSize * 3));
+    StoreP(src2, MemOperand(sp, kPointerSize * 2));
+    StoreP(src3, MemOperand(sp, kPointerSize));
+    StoreP(src4, MemOperand(sp, 0));
+  }
+
+  // Push five registers.  Pushes leftmost register first (to highest address).
+  void Push(Register src1, Register src2, Register src3, Register src4,
+            Register src5) {
+    DCHECK(!src1.is(src2));
+    DCHECK(!src1.is(src3));
+    DCHECK(!src2.is(src3));
+    DCHECK(!src1.is(src4));
+    DCHECK(!src2.is(src4));
+    DCHECK(!src3.is(src4));
+    DCHECK(!src1.is(src5));
+    DCHECK(!src2.is(src5));
+    DCHECK(!src3.is(src5));
+    DCHECK(!src4.is(src5));
+
+    lay(sp, MemOperand(sp, -kPointerSize * 5));
+    StoreP(src1, MemOperand(sp, kPointerSize * 4));
+    StoreP(src2, MemOperand(sp, kPointerSize * 3));
+    StoreP(src3, MemOperand(sp, kPointerSize * 2));
+    StoreP(src4, MemOperand(sp, kPointerSize));
+    StoreP(src5, MemOperand(sp, 0));
+  }
+
+  void Pop(Register dst) { pop(dst); }
+
+  // Pop two registers. Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2) {
+    LoadP(src2, MemOperand(sp, 0));
+    LoadP(src1, MemOperand(sp, kPointerSize));
+    la(sp, MemOperand(sp, 2 * kPointerSize));
+  }
+
+  // Pop three registers.  Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2, Register src3) {
+    LoadP(src3, MemOperand(sp, 0));
+    LoadP(src2, MemOperand(sp, kPointerSize));
+    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
+    la(sp, MemOperand(sp, 3 * kPointerSize));
+  }
+
+  // Pop four registers.  Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2, Register src3, Register src4) {
+    LoadP(src4, MemOperand(sp, 0));
+    LoadP(src3, MemOperand(sp, kPointerSize));
+    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
+    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
+    la(sp, MemOperand(sp, 4 * kPointerSize));
+  }
+
+  // Pop five registers.  Pops rightmost register first (from lower address).
+  void Pop(Register src1, Register src2, Register src3, Register src4,
+           Register src5) {
+    LoadP(src5, MemOperand(sp, 0));
+    LoadP(src4, MemOperand(sp, kPointerSize));
+    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
+    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
+    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
+    la(sp, MemOperand(sp, 5 * kPointerSize));
+  }
+
+  // Push a fixed frame, consisting of lr, fp, constant pool.
+  void PushCommonFrame(Register marker_reg = no_reg);
+
+  // Push a standard frame, consisting of lr, fp, constant pool,
+  // context and JS function
+  void PushStandardFrame(Register function_reg);
+
+  void PopCommonFrame(Register marker_reg = no_reg);
+
+  // Restore caller's frame pointer and return address prior to being
+  // overwritten by tail call stack preparation.
+  void RestoreFrameStateForTailCall();
+
+  // Push and pop the registers that can hold pointers, as defined by the
+  // RegList constant kSafepointSavedRegisters.
+  void PushSafepointRegisters();
+  void PopSafepointRegisters();
+  // Store value in register src in the safepoint stack slot for
+  // register dst.
+  void StoreToSafepointRegisterSlot(Register src, Register dst);
+  // Load the value of the src register from its safepoint stack slot
+  // into register dst.
+  void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
+  // from C.
+  // Does not handle errors.
+  void FlushICache(Register address, size_t size, Register scratch);
+
+  // If the value is a NaN, canonicalize the value else, do nothing.
+  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
+  void CanonicalizeNaN(const DoubleRegister value) {
+    CanonicalizeNaN(value, value);
+  }
+
+  // Converts the integer (untagged smi) in |src| to a double, storing
+  // the result to |dst|
+  void ConvertIntToDouble(Register src, DoubleRegister dst);
+
+  // Converts the unsigned integer (untagged smi) in |src| to
+  // a double, storing the result to |dst|
+  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
+
+  // Converts the integer (untagged smi) in |src| to
+  // a float, storing the result in |dst|
+  void ConvertIntToFloat(Register src, DoubleRegister dst);
+
+  // Converts the unsigned integer (untagged smi) in |src| to
+  // a float, storing the result in |dst|
+  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
+
+#if V8_TARGET_ARCH_S390X
+  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
+  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
+  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
+  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
+#endif
+
+  void MovIntToFloat(DoubleRegister dst, Register src);
+  void MovFloatToInt(Register dst, DoubleRegister src);
+  void MovDoubleToInt64(Register dst, DoubleRegister src);
+  void MovInt64ToDouble(DoubleRegister dst, Register src);
+  // Converts the double_input to an integer.  Note that, upon return,
+  // the contents of double_dst will also hold the fixed point representation.
+  void ConvertFloat32ToInt64(const DoubleRegister double_input,
+#if !V8_TARGET_ARCH_S390X
+                             const Register dst_hi,
+#endif
+                             const Register dst,
+                             const DoubleRegister double_dst,
+                             FPRoundingMode rounding_mode = kRoundToZero);
+
+  // Converts the double_input to an integer.  Note that, upon return,
+  // the contents of double_dst will also hold the fixed point representation.
+  void ConvertDoubleToInt64(const DoubleRegister double_input,
+#if !V8_TARGET_ARCH_S390X
+                            const Register dst_hi,
+#endif
+                            const Register dst, const DoubleRegister double_dst,
+                            FPRoundingMode rounding_mode = kRoundToZero);
+
+  void ConvertFloat32ToInt32(const DoubleRegister double_input,
+                             const Register dst,
+                             const DoubleRegister double_dst,
+                             FPRoundingMode rounding_mode = kRoundToZero);
+  void ConvertFloat32ToUnsignedInt32(
+      const DoubleRegister double_input, const Register dst,
+      const DoubleRegister double_dst,
+      FPRoundingMode rounding_mode = kRoundToZero);
+#if V8_TARGET_ARCH_S390X
+  // Converts the double_input to an unsigned integer.  Note that, upon return,
+  // the contents of double_dst will also hold the fixed point representation.
+  void ConvertDoubleToUnsignedInt64(
+      const DoubleRegister double_input, const Register dst,
+      const DoubleRegister double_dst,
+      FPRoundingMode rounding_mode = kRoundToZero);
+  void ConvertFloat32ToUnsignedInt64(
+      const DoubleRegister double_input, const Register dst,
+      const DoubleRegister double_dst,
+      FPRoundingMode rounding_mode = kRoundToZero);
+#endif
+
+#if !V8_TARGET_ARCH_S390X
+  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
+                     Register src_high, Register scratch, Register shift);
+  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
+                     Register src_high, uint32_t shift);
+  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
+                      Register src_high, Register scratch, Register shift);
+  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
+                      Register src_high, uint32_t shift);
+  void ShiftRightArithPair(Register dst_low, Register dst_high,
+                           Register src_low, Register src_high,
+                           Register scratch, Register shift);
+  void ShiftRightArithPair(Register dst_low, Register dst_high,
+                           Register src_low, Register src_high, uint32_t shift);
+#endif
+
+  // Generates function and stub prologue code.
+  void StubPrologue(StackFrame::Type type, Register base = no_reg,
+                    int prologue_offset = 0);
+  void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
+
+  // Enter exit frame.
+  // stack_space - extra stack space, used for parameters before call to C.
+  // At least one slot (for the return address) should be provided.
+  void EnterExitFrame(bool save_doubles, int stack_space = 1);
+
+  // Leave the current exit frame. Expects the return value in r0.
+  // Expect the number of values, pushed prior to the exit frame, to
+  // remove in a register (or no_reg, if there is nothing to remove).
+  void LeaveExitFrame(bool save_doubles, Register argument_count,
+                      bool restore_context,
+                      bool argument_count_is_length = false);
+
+  // Get the actual activation frame alignment for target environment.
+  static int ActivationFrameAlignment();
+
+  void LoadContext(Register dst, int context_chain_length);
+
+  // Load the global object from the current context.
+  void LoadGlobalObject(Register dst) {
+    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
+  }
+
+  // Load the global proxy from the current context.
+  void LoadGlobalProxy(Register dst) {
+    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
+  }
+
+  // Conditionally load the cached Array transitioned map of type
+  // transitioned_kind from the native context if the map in register
+  // map_in_out is the cached Array map in the native context of
+  // expected_kind.
+  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
+                                           ElementsKind transitioned_kind,
+                                           Register map_in_out,
+                                           Register scratch,
+                                           Label* no_map_match);
+
+  void LoadNativeContextSlot(int index, Register dst);
+
+  // Load the initial map from the global function. The registers
+  // function and map can be the same, function is then overwritten.
+  void LoadGlobalFunctionInitialMap(Register function, Register map,
+                                    Register scratch);
+
+  void InitializeRootRegister() {
+    ExternalReference roots_array_start =
+        ExternalReference::roots_array_start(isolate());
+    mov(kRootRegister, Operand(roots_array_start));
+  }
+
+  // ----------------------------------------------------------------
+  // new S390 macro-assembler interfaces that are slightly higher level
+  // than assembler-s390 and may generate variable length sequences
+
+  // load a literal signed int value <value> to GPR <dst>
+  void LoadIntLiteral(Register dst, int value);
+
+  // load an SMI value <value> to GPR <dst>
+  void LoadSmiLiteral(Register dst, Smi* smi);
+
+  // load a literal double value <value> to FPR <result>
+  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
+  void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
+                         Register scratch);
+
+  void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
+
+  void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
+
+  void LoadHalfWordP(Register dst, const MemOperand& mem,
+                     Register scratch = no_reg);
+
+  void StoreHalfWord(Register src, const MemOperand& mem,
+                     Register scratch = r0);
+  void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
+
+  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
+                          Register scratch = no_reg);
+  void StoreRepresentation(Register src, const MemOperand& mem,
+                           Representation r, Register scratch = no_reg);
+
+  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
+  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
+  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
+  void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
+  void AndSmiLiteral(Register dst, Register src, Smi* smi);
+
+  // Set new rounding mode RN to FPSCR
+  void SetRoundingMode(FPRoundingMode RN);
+
+  // reset rounding mode to default (kRoundToNearest)
+  void ResetRoundingMode();
+
+  // These exist to provide portability between 32 and 64bit
+  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
+  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
+  void StoreP(const MemOperand& mem, const Operand& opnd,
+              Register scratch = no_reg);
+  void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
+  void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
+  void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
+  void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
+
+  // Cleanse pointer address on 31bit by zero out top  bit.
+  // This is a NOP on 64-bit.
+  void CleanseP(Register src) {
+#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
+    nilh(src, Operand(0x7FFF));
+#endif
+  }
+
+  // ---------------------------------------------------------------------------
+  // JavaScript invokes
+
+  // Set up call kind marking in ecx. The method takes ecx as an
+  // explicit first parameter to make the code more readable at the
+  // call sites.
+  // void SetCallKind(Register dst, CallKind kind);
+
+  // Removes current frame and its arguments from the stack preserving
+  // the arguments and a return address pushed to the stack for the next call.
+  // Both |callee_args_count| and |caller_args_count_reg| do not include
+  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
+  // is trashed.
+  void PrepareForTailCall(const ParameterCount& callee_args_count,
+                          Register caller_args_count_reg, Register scratch0,
+                          Register scratch1);
+
+  // Invoke the JavaScript function code by either calling or jumping.
+  void InvokeFunctionCode(Register function, Register new_target,
+                          const ParameterCount& expected,
+                          const ParameterCount& actual, InvokeFlag flag,
+                          const CallWrapper& call_wrapper);
+
+  void FloodFunctionIfStepping(Register fun, Register new_target,
+                               const ParameterCount& expected,
+                               const ParameterCount& actual);
+
+  // Invoke the JavaScript function in the given register. Changes the
+  // current context to the context in the function before invoking.
+  void InvokeFunction(Register function, Register new_target,
+                      const ParameterCount& actual, InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void InvokeFunction(Register function, const ParameterCount& expected,
+                      const ParameterCount& actual, InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void InvokeFunction(Handle<JSFunction> function,
+                      const ParameterCount& expected,
+                      const ParameterCount& actual, InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void IsObjectJSStringType(Register object, Register scratch, Label* fail);
+
+  void IsObjectNameType(Register object, Register scratch, Label* fail);
+
+  // ---------------------------------------------------------------------------
+  // Debugger Support
+
+  void DebugBreak();
+
+  // ---------------------------------------------------------------------------
+  // Exception handling
+
+  // Push a new stack handler and link into stack handler chain.
+  void PushStackHandler();
+
+  // Unlink the stack handler on top of the stack from the stack handler chain.
+  // Must preserve the result register.
+  void PopStackHandler();
+
+  // ---------------------------------------------------------------------------
+  // Inline caching support
+
+  // Generate code for checking access rights - used for security checks
+  // on access to global objects across environments. The holder register
+  // is left untouched, whereas both scratch registers are clobbered.
+  void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
+                              Label* miss);
+
+  void GetNumberHash(Register t0, Register scratch);
+
+  void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
+                                Register result, Register t0, Register t1,
+                                Register t2);
+
+  inline void MarkCode(NopMarkerTypes type) { nop(type); }
+
+  // Check if the given instruction is a 'type' marker.
+  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
+  // These instructions are generated to mark special location in the code,
+  // like some special IC code.
+  static inline bool IsMarkedCode(Instr instr, int type) {
+    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
+    return IsNop(instr, type);
+  }
+
+  static inline int GetCodeMarker(Instr instr) {
+    int dst_reg_offset = 12;
+    int dst_mask = 0xf << dst_reg_offset;
+    int src_mask = 0xf;
+    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
+    int src_reg = instr & src_mask;
+    uint32_t non_register_mask = ~(dst_mask | src_mask);
+    uint32_t mov_mask = al | 13 << 21;
+
+    // Return <n> if we have a mov rn rn, else return -1.
+    int type = ((instr & non_register_mask) == mov_mask) &&
+                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
+                       (dst_reg < LAST_CODE_MARKER)
+                   ? src_reg
+                   : -1;
+    DCHECK((type == -1) ||
+           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
+    return type;
+  }
+
+  // ---------------------------------------------------------------------------
+  // Allocation support
+
+  // Allocate an object in new space or old pointer space. The object_size is
+  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
+  // is passed. If the space is exhausted control continues at the gc_required
+  // label. The allocated object is returned in result. If the flag
+  // tag_allocated_object is true the result is tagged as as a heap object.
+  // All registers are clobbered also when control continues at the gc_required
+  // label.
+  void Allocate(int object_size, Register result, Register scratch1,
+                Register scratch2, Label* gc_required, AllocationFlags flags);
+
+  void Allocate(Register object_size, Register result, Register result_end,
+                Register scratch, Label* gc_required, AllocationFlags flags);
+
+  void AllocateTwoByteString(Register result, Register length,
+                             Register scratch1, Register scratch2,
+                             Register scratch3, Label* gc_required);
+  void AllocateOneByteString(Register result, Register length,
+                             Register scratch1, Register scratch2,
+                             Register scratch3, Label* gc_required);
+  void AllocateTwoByteConsString(Register result, Register length,
+                                 Register scratch1, Register scratch2,
+                                 Label* gc_required);
+  void AllocateOneByteConsString(Register result, Register length,
+                                 Register scratch1, Register scratch2,
+                                 Label* gc_required);
+  void AllocateTwoByteSlicedString(Register result, Register length,
+                                   Register scratch1, Register scratch2,
+                                   Label* gc_required);
+  void AllocateOneByteSlicedString(Register result, Register length,
+                                   Register scratch1, Register scratch2,
+                                   Label* gc_required);
+
+  // Allocates a heap number or jumps to the gc_required label if the young
+  // space is full and a scavenge is needed. All registers are clobbered also
+  // when control continues at the gc_required label.
+  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
+                          Register heap_number_map, Label* gc_required,
+                          TaggingMode tagging_mode = TAG_RESULT,
+                          MutableMode mode = IMMUTABLE);
+  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
+                                   Register scratch1, Register scratch2,
+                                   Register heap_number_map,
+                                   Label* gc_required);
+
+  // Allocate and initialize a JSValue wrapper with the specified {constructor}
+  // and {value}.
+  void AllocateJSValue(Register result, Register constructor, Register value,
+                       Register scratch1, Register scratch2,
+                       Label* gc_required);
+
+  // Copies a number of bytes from src to dst. All registers are clobbered. On
+  // exit src and dst will point to the place just after where the last byte was
+  // read or written and length will be zero.
+  void CopyBytes(Register src, Register dst, Register length, Register scratch);
+
+  // Initialize fields with filler values.  |count| fields starting at
+  // |current_address| are overwritten with the value in |filler|.  At the end
+  // the loop, |current_address| points at the next uninitialized field.
+  // |count| is assumed to be non-zero.
+  void InitializeNFieldsWithFiller(Register current_address, Register count,
+                                   Register filler);
+
+  // Initialize fields with filler values.  Fields starting at |current_address|
+  // not including |end_address| are overwritten with the value in |filler|.  At
+  // the end the loop, |current_address| takes the value of |end_address|.
+  void InitializeFieldsWithFiller(Register current_address,
+                                  Register end_address, Register filler);
+
+  // ---------------------------------------------------------------------------
+  // Support functions.
+
+  // Machine code version of Map::GetConstructor().
+  // |temp| holds |result|'s map when done, and |temp2| its instance type.
+  void GetMapConstructor(Register result, Register map, Register temp,
+                         Register temp2);
+
+  // Try to get function prototype of a function and puts the value in
+  // the result register. Checks that the function really is a
+  // function and jumps to the miss label if the fast checks fail. The
+  // function register will be untouched; the other registers may be
+  // clobbered.
+  void TryGetFunctionPrototype(Register function, Register result,
+                               Register scratch, Label* miss);
+
+  // Compare object type for heap object.  heap_object contains a non-Smi
+  // whose object type should be compared with the given type.  This both
+  // sets the flags and leaves the object type in the type_reg register.
+  // It leaves the map in the map register (unless the type_reg and map register
+  // are the same register).  It leaves the heap object in the heap_object
+  // register unless the heap_object register is the same register as one of the
+  // other registers.
+  // Type_reg can be no_reg. In that case ip is used.
+  void CompareObjectType(Register heap_object, Register map, Register type_reg,
+                         InstanceType type);
+
+  // Compare instance type in a map.  map contains a valid map object whose
+  // object type should be compared with the given type.  This both
+  // sets the flags and leaves the object type in the type_reg register.
+  void CompareInstanceType(Register map, Register type_reg, InstanceType type);
+
+  // Check if a map for a JSObject indicates that the object has fast elements.
+  // Jump to the specified label if it does not.
+  void CheckFastElements(Register map, Register scratch, Label* fail);
+
+  // Check if a map for a JSObject indicates that the object can have both smi
+  // and HeapObject elements.  Jump to the specified label if it does not.
+  void CheckFastObjectElements(Register map, Register scratch, Label* fail);
+
+  // Check if a map for a JSObject indicates that the object has fast smi only
+  // elements.  Jump to the specified label if it does not.
+  void CheckFastSmiElements(Register map, Register scratch, Label* fail);
+
+  // Check to see if maybe_number can be stored as a double in
+  // FastDoubleElements. If it can, store it at the index specified by key in
+  // the FastDoubleElements array elements. Otherwise jump to fail.
+  void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
+                                   Register elements_reg, Register scratch1,
+                                   DoubleRegister double_scratch, Label* fail,
+                                   int elements_offset = 0);
+
+  // Compare an object's map with the specified map and its transitioned
+  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
+  // set with result of map compare. If multiple map compares are required, the
+  // compare sequences branches to early_success.
+  void CompareMap(Register obj, Register scratch, Handle<Map> map,
+                  Label* early_success);
+
+  // As above, but the map of the object is already loaded into the register
+  // which is preserved by the code generated.
+  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
+
+  // Check if the map of an object is equal to a specified map and branch to
+  // label if not. Skip the smi check if not required (object is known to be a
+  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+  // against maps that are ElementsKind transition maps of the specified map.
+  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
+                SmiCheckType smi_check_type);
+
+  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
+                Label* fail, SmiCheckType smi_check_type);
+
+  // Check if the map of an object is equal to a specified weak map and branch
+  // to a specified target if equal. Skip the smi check if not required
+  // (object is known to be a heap object)
+  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
+                       Handle<WeakCell> cell, Handle<Code> success,
+                       SmiCheckType smi_check_type);
+
+  // Compare the given value and the value of weak cell.
+  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
+                    CRegister cr = cr7);
+
+  void GetWeakValue(Register value, Handle<WeakCell> cell);
+
+  // Load the value of the weak cell in the value register. Branch to the given
+  // miss label if the weak cell was cleared.
+  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
+
+  // Compare the object in a register to a value from the root list.
+  // Uses the ip register as scratch.
+  void CompareRoot(Register obj, Heap::RootListIndex index);
+  void PushRoot(Heap::RootListIndex index) {
+    LoadRoot(r0, index);
+    Push(r0);
+  }
+
+  // Compare the object in a register to a value and jump if they are equal.
+  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
+    CompareRoot(with, index);
+    beq(if_equal);
+  }
+
+  // Compare the object in a register to a value and jump if they are not equal.
+  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
+                     Label* if_not_equal) {
+    CompareRoot(with, index);
+    bne(if_not_equal);
+  }
+
+  // Load and check the instance type of an object for being a string.
+  // Loads the type into the second argument register.
+  // Returns a condition that will be enabled if the object was a string.
+  Condition IsObjectStringType(Register obj, Register type) {
+    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
+    LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
+    mov(r0, Operand(kIsNotStringMask));
+    AndP(r0, type);
+    DCHECK_EQ(0u, kStringTag);
+    return eq;
+  }
+
+  // Picks out an array index from the hash field.
+  // Register use:
+  //   hash - holds the index's hash. Clobbered.
+  //   index - holds the overwritten index on exit.
+  void IndexFromHash(Register hash, Register index);
+
+  // Get the number of least significant bits from a register
+  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
+  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
+
+  // Load the value of a smi object into a FP double register. The register
+  // scratch1 can be the same register as smi in which case smi will hold the
+  // untagged value afterwards.
+  void SmiToDouble(DoubleRegister value, Register smi);
+
+  // Check if a double can be exactly represented as a signed 32-bit integer.
+  // CR_EQ in cr7 is set if true.
+  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
+                         Register scratch2, DoubleRegister double_scratch);
+
+  // Check if a double is equal to -0.0.
+  // CR_EQ in cr7 holds the result.
+  void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
+                             Register scratch2);
+
+  // Check the sign of a double.
+  // CR_LT in cr7 holds the result.
+  void TestDoubleSign(DoubleRegister input, Register scratch);
+  void TestHeapNumberSign(Register input, Register scratch);
+
+  // Try to convert a double to a signed 32-bit integer.
+  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
+  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
+                             Register scratch, DoubleRegister double_scratch);
+
+  // Floor a double and writes the value to the result register.
+  // Go to exact if the conversion is exact (to be able to test -0),
+  // fall through calling code if an overflow occurred, else go to done.
+  // In return, input_high is loaded with high bits of input.
+  void TryInt32Floor(Register result, DoubleRegister double_input,
+                     Register input_high, Register scratch,
+                     DoubleRegister double_scratch, Label* done, Label* exact);
+
+  // Performs a truncating conversion of a floating point number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
+  // succeeds, otherwise falls through if result is saturated. On return
+  // 'result' either holds answer, or is clobbered on fall through.
+  //
+  // Only public for the test code in test-code-stubs-arm.cc.
+  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
+                                  Label* done);
+
+  // Performs a truncating conversion of a floating point number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+  // Exits with 'result' holding the answer.
+  void TruncateDoubleToI(Register result, DoubleRegister double_input);
+
+  // Performs a truncating conversion of a heap number as used by
+  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
+  // must be different registers.  Exits with 'result' holding the answer.
+  void TruncateHeapNumberToI(Register result, Register object);
+
+  // Converts the smi or heap number in object to an int32 using the rules
+  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
+  // different registers.
+  void TruncateNumberToI(Register object, Register result,
+                         Register heap_number_map, Register scratch1,
+                         Label* not_int32);
+
+  // Overflow handling functions.
+  // Usage: call the appropriate arithmetic function and then call one of the
+  // flow control functions with the corresponding label.
+
+  // Compute dst = left + right, setting condition codes. dst may be same as
+  // either left or right (or a unique register). left and right must not be
+  // the same register.
+  void AddAndCheckForOverflow(Register dst, Register left, Register right,
+                              Register overflow_dst, Register scratch = r0);
+  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
+                              Register overflow_dst, Register scratch = r0);
+
+  // Compute dst = left - right, setting condition codes. dst may be same as
+  // either left or right (or a unique register). left and right must not be
+  // the same register.
+  void SubAndCheckForOverflow(Register dst, Register left, Register right,
+                              Register overflow_dst, Register scratch = r0);
+
+  void BranchOnOverflow(Label* label) { blt(label /*, cr0*/); }
+
+  void BranchOnNoOverflow(Label* label) { bge(label /*, cr0*/); }
+
+  void RetOnOverflow(void) {
+    Label label;
+
+    blt(&label /*, cr0*/);
+    Ret();
+    bind(&label);
+  }
+
+  void RetOnNoOverflow(void) {
+    Label label;
+
+    bge(&label /*, cr0*/);
+    Ret();
+    bind(&label);
+  }
+
+  // ---------------------------------------------------------------------------
+  // Runtime calls
+
+  // Call a code stub.
+  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
+                Condition cond = al);
+
+  // Call a code stub.
+  void TailCallStub(CodeStub* stub, Condition cond = al);
+
+  // Call a runtime routine.
+  void CallRuntime(const Runtime::Function* f, int num_arguments,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
+    const Runtime::Function* function = Runtime::FunctionForId(fid);
+    CallRuntime(function, function->nargs, kSaveFPRegs);
+  }
+
+  // Convenience function: Same as above, but takes the fid instead.
+  void CallRuntime(Runtime::FunctionId fid,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+    const Runtime::Function* function = Runtime::FunctionForId(fid);
+    CallRuntime(function, function->nargs, save_doubles);
+  }
+
+  // Convenience function: Same as above, but takes the fid instead.
+  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
+                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
+  }
+
+  // Convenience function: call an external reference.
+  void CallExternalReference(const ExternalReference& ext, int num_arguments);
+
+  // Convenience function: tail call a runtime routine (jump).
+  void TailCallRuntime(Runtime::FunctionId fid);
+
+  int CalculateStackPassedWords(int num_reg_arguments,
+                                int num_double_arguments);
+
+  // Before calling a C-function from generated code, align arguments on stack.
+  // After aligning the frame, non-register arguments must be stored in
+  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
+  // are word sized. If double arguments are used, this function assumes that
+  // all double arguments are stored before core registers; otherwise the
+  // correct alignment of the double values is not guaranteed.
+  // Some compilers/platforms require the stack to be aligned when calling
+  // C++ code.
+  // Needs a scratch register to do some arithmetic. This register will be
+  // trashed.
+  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
+                            Register scratch);
+  void PrepareCallCFunction(int num_reg_arguments, Register scratch);
+
+  // There are two ways of passing double arguments on ARM, depending on
+  // whether soft or hard floating point ABI is used. These functions
+  // abstract parameter passing for the three different ways we call
+  // C functions from generated code.
+  void MovToFloatParameter(DoubleRegister src);
+  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
+  void MovToFloatResult(DoubleRegister src);
+
+  // Calls a C function and cleans up the space for arguments allocated
+  // by PrepareCallCFunction. The called function is not allowed to trigger a
+  // garbage collection, since that might move the code and invalidate the
+  // return address (unless this is somehow accounted for by the called
+  // function).
+  void CallCFunction(ExternalReference function, int num_arguments);
+  void CallCFunction(Register function, int num_arguments);
+  void CallCFunction(ExternalReference function, int num_reg_arguments,
+                     int num_double_arguments);
+  void CallCFunction(Register function, int num_reg_arguments,
+                     int num_double_arguments);
+
+  void MovFromFloatParameter(DoubleRegister dst);
+  void MovFromFloatResult(DoubleRegister dst);
+
+  // Jump to a runtime routine.
+  void JumpToExternalReference(const ExternalReference& builtin);
+
+  Handle<Object> CodeObject() {
+    DCHECK(!code_object_.is_null());
+    return code_object_;
+  }
+
+  // Emit code for a truncating division by a constant. The dividend register is
+  // unchanged and ip gets clobbered. Dividend and result must be different.
+  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
+
+  // ---------------------------------------------------------------------------
+  // StatsCounter support
+
+  void SetCounter(StatsCounter* counter, int value, Register scratch1,
+                  Register scratch2);
+  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
+                        Register scratch2);
+  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
+                        Register scratch2);
+
+  // ---------------------------------------------------------------------------
+  // Debugging
+
+  // Calls Abort(msg) if the condition cond is not satisfied.
+  // Use --debug_code to enable.
+  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
+  void AssertFastElements(Register elements);
+
+  // Like Assert(), but always enabled.
+  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
+
+  // Print a message to stdout and abort execution.
+  void Abort(BailoutReason reason);
+
+  // Verify restrictions about code generated in stubs.
+  void set_generating_stub(bool value) { generating_stub_ = value; }
+  bool generating_stub() { return generating_stub_; }
+  void set_has_frame(bool value) { has_frame_ = value; }
+  bool has_frame() { return has_frame_; }
+  inline bool AllowThisStubCall(CodeStub* stub);
+
+  // ---------------------------------------------------------------------------
+  // Number utilities
+
+  // Check whether the value of reg is a power of two and not zero. If not
+  // control continues at the label not_power_of_two. If reg is a power of two
+  // the register scratch contains the value of (reg - 1) when control falls
+  // through.
+  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
+                                 Label* not_power_of_two_or_zero);
+  // Check whether the value of reg is a power of two and not zero.
+  // Control falls through if it is, with scratch containing the mask
+  // value (reg - 1).
+  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
+  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
+  // strictly positive but not a power of two.
+  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
+                                       Label* zero_and_neg,
+                                       Label* not_power_of_two);
+
+  // ---------------------------------------------------------------------------
+  // Bit testing/extraction
+  //
+  // Bit numbering is such that the least significant bit is bit 0
+  // (for consistency between 32/64-bit).
+
+  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
+  // and place them into the least significant bits of dst.
+  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
+                              int rangeEnd) {
+    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
+
+    // Try to use RISBG if possible.
+    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
+      int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
+      int endBit = 63;  // End is always LSB after shifting.
+      int startBit = 63 - rangeStart + rangeEnd;
+      risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
+            true);
+    } else {
+      if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
+        ShiftRightP(dst, src, Operand(rangeEnd));
+      else if (!dst.is(src))  // If we didn't shift, we might need to copy
+        LoadRR(dst, src);
+      int width = rangeStart - rangeEnd + 1;
+#if V8_TARGET_ARCH_S390X
+      uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
+      nihf(dst, Operand(mask >> 32));
+      nilf(dst, Operand(mask & 0xFFFFFFFF));
+      ltgr(dst, dst);
+#else
+      uint32_t mask = (1 << width) - 1;
+      AndP(dst, Operand(mask));
+#endif
+    }
+  }
+
+  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
+    ExtractBitRange(dst, src, bitNumber, bitNumber);
+  }
+
+  // Extract consecutive bits (defined by mask) from src and place them
+  // into the least significant bits of dst.
+  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
+                             RCBit rc = LeaveRC) {
+    int start = kBitsPerPointer - 1;
+    int end;
+    uintptr_t bit = (1L << start);
+
+    while (bit && (mask & bit) == 0) {
+      start--;
+      bit >>= 1;
+    }
+    end = start;
+    bit >>= 1;
+
+    while (bit && (mask & bit)) {
+      end--;
+      bit >>= 1;
+    }
+
+    // 1-bits in mask must be contiguous
+    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
+
+    ExtractBitRange(dst, src, start, end);
+  }
+
+  // Test single bit in value.
+  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
+    ExtractBitRange(scratch, value, bitNumber, bitNumber);
+  }
+
+  // Test consecutive bit range in value.  Range is defined by
+  // rangeStart - rangeEnd.
+  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
+                           Register scratch = r0) {
+    ExtractBitRange(scratch, value, rangeStart, rangeEnd);
+  }
+
+  // Test consecutive bit range in value.  Range is defined by mask.
+  inline void TestBitMask(Register value, uintptr_t mask,
+                          Register scratch = r0) {
+    ExtractBitMask(scratch, value, mask, SetRC);
+  }
+
+  // ---------------------------------------------------------------------------
+  // Smi utilities
+
+  // Shift left by kSmiShift
+  void SmiTag(Register reg) { SmiTag(reg, reg); }
+  void SmiTag(Register dst, Register src) {
+    ShiftLeftP(dst, src, Operand(kSmiShift));
+  }
+
+#if !V8_TARGET_ARCH_S390X
+  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
+  void SmiTagCheckOverflow(Register reg, Register overflow);
+  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
+
+  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
+                                    Label* not_smi_label) {
+    // High bits must be identical to fit into an Smi
+    STATIC_ASSERT(kSmiShift == 1);
+    AddP(scratch, value, Operand(0x40000000u));
+    CmpP(scratch, Operand::Zero());
+    blt(not_smi_label);
+  }
+#endif
+  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
+    // The test is different for unsigned int values. Since we need
+    // the value to be in the range of a positive smi, we can't
+    // handle any of the high bits being set in the value.
+    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
+                 scratch);
+  }
+  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
+                                            Label* not_smi_label) {
+    TestUnsignedSmiCandidate(value, scratch);
+    bne(not_smi_label /*, cr0*/);
+  }
+
+  void SmiUntag(Register reg) { SmiUntag(reg, reg); }
+
+  void SmiUntag(Register dst, Register src) {
+    ShiftRightArithP(dst, src, Operand(kSmiShift));
+  }
+
+  void SmiToPtrArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_S390X
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
+    ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
+#else
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
+    ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
+#endif
+  }
+
+  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
+
+  void SmiToShortArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_S390X
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
+    ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
+#else
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
+    if (!dst.is(src)) {
+      LoadRR(dst, src);
+    }
+#endif
+  }
+
+  void SmiToIntArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_S390X
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
+    ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
+#else
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
+    ShiftLeftP(dst, src, Operand(2 - kSmiShift));
+#endif
+  }
+
+#define SmiToFloatArrayOffset SmiToIntArrayOffset
+
+  void SmiToDoubleArrayOffset(Register dst, Register src) {
+#if V8_TARGET_ARCH_S390X
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
+    ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
+#else
+    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
+    ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
+#endif
+  }
+
+  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
+    if (kSmiShift < elementSizeLog2) {
+      ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
+    } else if (kSmiShift > elementSizeLog2) {
+      ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
+    } else if (!dst.is(src)) {
+      LoadRR(dst, src);
+    }
+  }
+
+  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
+                          bool isSmi) {
+    if (isSmi) {
+      SmiToArrayOffset(dst, src, elementSizeLog2);
+    } else {
+#if V8_TARGET_ARCH_S390X
+      // src (key) is a 32-bit integer.  Sign extension ensures
+      // upper 32-bit does not contain garbage before being used to
+      // reference memory.
+      lgfr(src, src);
+#endif
+      ShiftLeftP(dst, src, Operand(elementSizeLog2));
+    }
+  }
+
+  // Untag the source value into destination and jump if source is a smi.
+  // Souce and destination can be the same register.
+  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
+
+  // Untag the source value into destination and jump if source is not a smi.
+  // Souce and destination can be the same register.
+  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
+
+  inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
+
+  inline void TestIfPositiveSmi(Register value, Register scratch) {
+    STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
+                  (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
+    mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
+    AndP(scratch, value);
+  }
+
+  // Jump the register contains a smi.
+  inline void JumpIfSmi(Register value, Label* smi_label) {
+    TestIfSmi(value);
+    beq(smi_label /*, cr0*/);  // branch if SMI
+  }
+  // Jump if either of the registers contain a non-smi.
+  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
+    TestIfSmi(value);
+    bne(not_smi_label /*, cr0*/);
+  }
+  // Jump if either of the registers contain a non-smi.
+  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
+  // Jump if either of the registers contain a smi.
+  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
+
+  // Abort execution if argument is a number, enabled via --debug-code.
+  void AssertNotNumber(Register object);
+
+  // Abort execution if argument is a smi, enabled via --debug-code.
+  void AssertNotSmi(Register object);
+  void AssertSmi(Register object);
+
+#if V8_TARGET_ARCH_S390X
+  inline void TestIfInt32(Register value, Register scratch) {
+    // High bits must be identical to fit into an 32-bit integer
+    lgfr(scratch, value);
+    CmpP(scratch, value);
+  }
+#else
+  inline void TestIfInt32(Register hi_word, Register lo_word,
+                          Register scratch) {
+    // High bits must be identical to fit into an 32-bit integer
+    ShiftRightArith(scratch, lo_word, Operand(31));
+    CmpP(scratch, hi_word);
+  }
+#endif
+
+#if V8_TARGET_ARCH_S390X
+  // Ensure it is permissable to read/write int value directly from
+  // upper half of the smi.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+#endif
+#if V8_TARGET_LITTLE_ENDIAN
+#define SmiWordOffset(offset) (offset + kPointerSize / 2)
+#else
+#define SmiWordOffset(offset) offset
+#endif
+
+  // Abort execution if argument is not a string, enabled via --debug-code.
+  void AssertString(Register object);
+
+  // Abort execution if argument is not a name, enabled via --debug-code.
+  void AssertName(Register object);
+
+  void AssertFunction(Register object);
+
+  // Abort execution if argument is not a JSBoundFunction,
+  // enabled via --debug-code.
+  void AssertBoundFunction(Register object);
+
+  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
+  void AssertReceiver(Register object);
+
+  // Abort execution if argument is not undefined or an AllocationSite, enabled
+  // via --debug-code.
+  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
+
+  // Abort execution if reg is not the root value with the given index,
+  // enabled via --debug-code.
+  void AssertIsRoot(Register reg, Heap::RootListIndex index);
+
+  // ---------------------------------------------------------------------------
+  // HeapNumber utilities
+
+  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
+                           Register scratch, Label* on_not_heap_number);
+
+  // ---------------------------------------------------------------------------
+  // String utilities
+
+  // Checks if both objects are sequential one-byte strings and jumps to label
+  // if either is not. Assumes that neither object is a smi.
+  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
+                                                    Register object2,
+                                                    Register scratch1,
+                                                    Register scratch2,
+                                                    Label* failure);
+
+  // Checks if both objects are sequential one-byte strings and jumps to label
+  // if either is not.
+  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
+                                             Register scratch1,
+                                             Register scratch2,
+                                             Label* not_flat_one_byte_strings);
+
+  // Checks if both instance types are sequential one-byte strings and jumps to
+  // label if either is not.
+  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
+      Register first_object_instance_type, Register second_object_instance_type,
+      Register scratch1, Register scratch2, Label* failure);
+
+  // Check if instance type is sequential one-byte string and jump to label if
+  // it is not.
+  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
+                                                Label* failure);
+
+  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
+
+  void EmitSeqStringSetCharCheck(Register string, Register index,
+                                 Register value, uint32_t encoding_mask);
+
+  // ---------------------------------------------------------------------------
+  // Patching helpers.
+
+  void ClampUint8(Register output_reg, Register input_reg);
+
+  // Saturate a value into 8-bit unsigned integer
+  //   if input_value < 0, output_value is 0
+  //   if input_value > 255, output_value is 255
+  //   otherwise output_value is the (int)input_value (round to nearest)
+  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
+                          DoubleRegister temp_double_reg);
+
+  void LoadInstanceDescriptors(Register map, Register descriptors);
+  void EnumLength(Register dst, Register map);
+  void NumberOfOwnDescriptors(Register dst, Register map);
+  void LoadAccessor(Register dst, Register holder, int accessor_index,
+                    AccessorComponent accessor);
+
+  template <typename Field>
+  void DecodeField(Register dst, Register src) {
+    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
+  }
+
+  template <typename Field>
+  void DecodeField(Register reg) {
+    DecodeField<Field>(reg, reg);
+  }
+
+  template <typename Field>
+  void DecodeFieldToSmi(Register dst, Register src) {
+    // TODO(joransiu): Optimize into single instruction
+    DecodeField<Field>(dst, src);
+    SmiTag(dst);
+  }
+
+  template <typename Field>
+  void DecodeFieldToSmi(Register reg) {
+    DecodeFieldToSmi<Field>(reg, reg);
+  }
+
+  // Load the type feedback vector from a JavaScript frame.
+  void EmitLoadTypeFeedbackVector(Register vector);
+
+  // Activation support.
+  void EnterFrame(StackFrame::Type type,
+                  bool load_constant_pool_pointer_reg = false);
+  // Returns the pc offset at which the frame ends.
+  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
+
+  // Expects object in r2 and returns map with validated enum cache
+  // in r2.  Assumes that any other register can be used as a scratch.
+  void CheckEnumCache(Label* call_runtime);
+
+  // AllocationMemento support. Arrays may have an associated
+  // AllocationMemento object that can be checked for in order to pretransition
+  // to another type.
+  // On entry, receiver_reg should point to the array object.
+  // scratch_reg gets clobbered.
+  // If allocation info is present, condition flags are set to eq.
+  void TestJSArrayForAllocationMemento(Register receiver_reg,
+                                       Register scratch_reg,
+                                       Register scratch2_reg,
+                                       Label* no_memento_found);
+
+  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
+                                         Register scratch_reg,
+                                         Register scratch2_reg,
+                                         Label* memento_found) {
+    Label no_memento_found;
+    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
+                                    &no_memento_found);
+    beq(memento_found);
+    bind(&no_memento_found);
+  }
+
+  // Jumps to found label if a prototype map has dictionary elements.
+  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+                                        Register scratch1, Label* found);
+
+ private:
+  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
+
+  void CallCFunctionHelper(Register function, int num_reg_arguments,
+                           int num_double_arguments);
+
+  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
+            CRegister cr = cr7);
+
+  // Helper functions for generating invokes.
+  void InvokePrologue(const ParameterCount& expected,
+                      const ParameterCount& actual, Label* done,
+                      bool* definitely_mismatches, InvokeFlag flag,
+                      const CallWrapper& call_wrapper);
+
+  void InitializeNewString(Register string, Register length,
+                           Heap::RootListIndex map_index, Register scratch1,
+                           Register scratch2);
+
+  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+  void InNewSpace(Register object, Register scratch,
+                  Condition cond,  // eq for new space, ne otherwise.
+                  Label* branch);
+
+  // Helper for finding the mark bits for an address.  Afterwards, the
+  // bitmap register points at the word with the mark bits and the mask
+  // the position of the first bit.  Leaves addr_reg unchanged.
+  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
+                          Register mask_reg);
+
+  static const RegList kSafepointSavedRegisters;
+  static const int kNumSafepointSavedRegisters;
+
+  // Compute memory operands for safepoint stack slots.
+  static int SafepointRegisterStackIndex(int reg_code);
+  MemOperand SafepointRegisterSlot(Register reg);
+  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
+
+  bool generating_stub_;
+  bool has_frame_;
+  // This handle will be patched with the code object on installation.
+  Handle<Object> code_object_;
+
+  // Needs access to SafepointRegisterStackIndex for compiled frame
+  // traversal.
+  friend class StandardFrame;
+};
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. It is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion to fail.
+class CodePatcher {
+ public:
+  enum FlushICache { FLUSH, DONT_FLUSH };
+
+  CodePatcher(Isolate* isolate, byte* address, int instructions,
+              FlushICache flush_cache = FLUSH);
+  ~CodePatcher();
+
+  // Macro assembler to emit code.
+  MacroAssembler* masm() { return &masm_; }
+
+ private:
+  byte* address_;            // The address of the code being patched.
+  int size_;                 // Number of bytes of the expected patch size.
+  MacroAssembler masm_;      // Macro assembler used to generate the code.
+  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
+};
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+inline MemOperand ContextMemOperand(Register context, int index = 0) {
+  return MemOperand(context, Context::SlotOffset(index));
+}
+
+inline MemOperand NativeContextMemOperand() {
+  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
+}
+
+#ifdef GENERATED_CODE_COVERAGE
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm)    \
+  masm->stop(__FILE_LINE__); \
+  masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_S390_MACRO_ASSEMBLER_S390_H_