Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/s390/simulator-s390.cc b/src/s390/simulator-s390.cc
new file mode 100644
index 0000000..06e52a7
--- /dev/null
+++ b/src/s390/simulator-s390.cc
@@ -0,0 +1,5128 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <cmath>
+
+#if V8_TARGET_ARCH_S390
+
+#include "src/assembler.h"
+#include "src/base/bits.h"
+#include "src/codegen.h"
+#include "src/disasm.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/s390/constants-s390.h"
+#include "src/s390/frames-s390.h"
+#include "src/s390/simulator-s390.h"
+#if defined(USE_SIMULATOR)
+
+// Only build the simulator if not compiling for real s390 hardware.
+namespace v8 {
+namespace internal {
+
+// This macro provides a platform independent use of sscanf. The reason for
+// SScanF not being implemented in a platform independent way through
+// ::v8::internal::OS in the same way as SNPrintF is that the
+// Windows C Run-Time Library does not provide vsscanf.
+#define SScanF sscanf  // NOLINT
+
+// The S390Debugger class is used by the simulator while debugging simulated
+// z/Architecture code.
+class S390Debugger {
+ public:
+  explicit S390Debugger(Simulator* sim) : sim_(sim) {}
+  ~S390Debugger();
+
+  void Stop(Instruction* instr);
+  void Debug();
+
+ private:
+#if V8_TARGET_LITTLE_ENDIAN
+  static const Instr kBreakpointInstr = (0x0000FFB2);  // TRAP4 0000
+  static const Instr kNopInstr = (0x00160016);         // OR r0, r0 x2
+#else
+  static const Instr kBreakpointInstr = (0xB2FF0000);  // TRAP4 0000
+  static const Instr kNopInstr = (0x16001600);         // OR r0, r0 x2
+#endif
+
+  Simulator* sim_;
+
+  intptr_t GetRegisterValue(int regnum);
+  double GetRegisterPairDoubleValue(int regnum);
+  double GetFPDoubleRegisterValue(int regnum);
+  float GetFPFloatRegisterValue(int regnum);
+  bool GetValue(const char* desc, intptr_t* value);
+  bool GetFPDoubleValue(const char* desc, double* value);
+
+  // Set or delete a breakpoint. Returns true if successful.
+  bool SetBreakpoint(Instruction* break_pc);
+  bool DeleteBreakpoint(Instruction* break_pc);
+
+  // Undo and redo all breakpoints. This is needed to bracket disassembly and
+  // execution to skip past breakpoints when run from the debugger.
+  void UndoBreakpoints();
+  void RedoBreakpoints();
+};
+
+S390Debugger::~S390Debugger() {}
+
+#ifdef GENERATED_CODE_COVERAGE
+static FILE* coverage_log = NULL;
+
+static void InitializeCoverage() {
+  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
+  if (file_name != NULL) {
+    coverage_log = fopen(file_name, "aw+");
+  }
+}
+
+void S390Debugger::Stop(Instruction* instr) {
+  // Get the stop code.
+  uint32_t code = instr->SvcValue() & kStopCodeMask;
+  // Retrieve the encoded address, which comes just after this stop.
+  char** msg_address =
+      reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
+  char* msg = *msg_address;
+  DCHECK(msg != NULL);
+
+  // Update this stop description.
+  if (isWatchedStop(code) && !watched_stops_[code].desc) {
+    watched_stops_[code].desc = msg;
+  }
+
+  if (strlen(msg) > 0) {
+    if (coverage_log != NULL) {
+      fprintf(coverage_log, "%s\n", msg);
+      fflush(coverage_log);
+    }
+    // Overwrite the instruction and address with nops.
+    instr->SetInstructionBits(kNopInstr);
+    reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
+  }
+  sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
+}
+
+#else  // ndef GENERATED_CODE_COVERAGE
+
+static void InitializeCoverage() {}
+
+void S390Debugger::Stop(Instruction* instr) {
+  // Get the stop code.
+  // use of kStopCodeMask not right on PowerPC
+  uint32_t code = instr->SvcValue() & kStopCodeMask;
+  // Retrieve the encoded address, which comes just after this stop.
+  char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
+  // Update this stop description.
+  if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
+    sim_->watched_stops_[code].desc = msg;
+  }
+  // Print the stop message and code if it is not the default code.
+  if (code != kMaxStopCode) {
+    PrintF("Simulator hit stop %u: %s\n", code, msg);
+  } else {
+    PrintF("Simulator hit %s\n", msg);
+  }
+  sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
+  Debug();
+}
+#endif
+
+intptr_t S390Debugger::GetRegisterValue(int regnum) {
+  return sim_->get_register(regnum);
+}
+
+double S390Debugger::GetRegisterPairDoubleValue(int regnum) {
+  return sim_->get_double_from_register_pair(regnum);
+}
+
+double S390Debugger::GetFPDoubleRegisterValue(int regnum) {
+  return sim_->get_double_from_d_register(regnum);
+}
+
+float S390Debugger::GetFPFloatRegisterValue(int regnum) {
+  return sim_->get_float32_from_d_register(regnum);
+}
+
+bool S390Debugger::GetValue(const char* desc, intptr_t* value) {
+  int regnum = Registers::Number(desc);
+  if (regnum != kNoRegister) {
+    *value = GetRegisterValue(regnum);
+    return true;
+  } else {
+    if (strncmp(desc, "0x", 2) == 0) {
+      return SScanF(desc + 2, "%" V8PRIxPTR,
+                    reinterpret_cast<uintptr_t*>(value)) == 1;
+    } else {
+      return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
+             1;
+    }
+  }
+  return false;
+}
+
+bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) {
+  int regnum = DoubleRegisters::Number(desc);
+  if (regnum != kNoRegister) {
+    *value = sim_->get_double_from_d_register(regnum);
+    return true;
+  }
+  return false;
+}
+
+bool S390Debugger::SetBreakpoint(Instruction* break_pc) {
+  // Check if a breakpoint can be set. If not return without any side-effects.
+  if (sim_->break_pc_ != NULL) {
+    return false;
+  }
+
+  // Set the breakpoint.
+  sim_->break_pc_ = break_pc;
+  sim_->break_instr_ = break_pc->InstructionBits();
+  // Not setting the breakpoint instruction in the code itself. It will be set
+  // when the debugger shell continues.
+  return true;
+}
+
+bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) {
+  if (sim_->break_pc_ != NULL) {
+    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+  }
+
+  sim_->break_pc_ = NULL;
+  sim_->break_instr_ = 0;
+  return true;
+}
+
+void S390Debugger::UndoBreakpoints() {
+  if (sim_->break_pc_ != NULL) {
+    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+  }
+}
+
+void S390Debugger::RedoBreakpoints() {
+  if (sim_->break_pc_ != NULL) {
+    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
+  }
+}
+
+void S390Debugger::Debug() {
+  intptr_t last_pc = -1;
+  bool done = false;
+
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+  char cmd[COMMAND_SIZE + 1];
+  char arg1[ARG_SIZE + 1];
+  char arg2[ARG_SIZE + 1];
+  char* argv[3] = {cmd, arg1, arg2};
+
+  // make sure to have a proper terminating character if reaching the limit
+  cmd[COMMAND_SIZE] = 0;
+  arg1[ARG_SIZE] = 0;
+  arg2[ARG_SIZE] = 0;
+
+  // Undo all set breakpoints while running in the debugger shell. This will
+  // make them invisible to all commands.
+  UndoBreakpoints();
+  // Disable tracing while simulating
+  bool trace = ::v8::internal::FLAG_trace_sim;
+  ::v8::internal::FLAG_trace_sim = false;
+
+  while (!done && !sim_->has_bad_pc()) {
+    if (last_pc != sim_->get_pc()) {
+      disasm::NameConverter converter;
+      disasm::Disassembler dasm(converter);
+      // use a reasonably large buffer
+      v8::internal::EmbeddedVector<char, 256> buffer;
+      dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
+      PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.start());
+      last_pc = sim_->get_pc();
+    }
+    char* line = ReadLine("sim> ");
+    if (line == NULL) {
+      break;
+    } else {
+      char* last_input = sim_->last_debugger_input();
+      if (strcmp(line, "\n") == 0 && last_input != NULL) {
+        line = last_input;
+      } else {
+        // Ownership is transferred to sim_;
+        sim_->set_last_debugger_input(line);
+      }
+      // Use sscanf to parse the individual parts of the command line. At the
+      // moment no command expects more than two parameters.
+      int argc = SScanF(line,
+                        "%" XSTR(COMMAND_SIZE) "s "
+                        "%" XSTR(ARG_SIZE) "s "
+                        "%" XSTR(ARG_SIZE) "s",
+                        cmd, arg1, arg2);
+      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+        intptr_t value;
+
+        // If at a breakpoint, proceed past it.
+        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+                ->InstructionBits() == 0x7d821008) {
+          sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
+        } else {
+          sim_->ExecuteInstruction(
+              reinterpret_cast<Instruction*>(sim_->get_pc()));
+        }
+
+        if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
+          for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) {
+            disasm::NameConverter converter;
+            disasm::Disassembler dasm(converter);
+            // use a reasonably large buffer
+            v8::internal::EmbeddedVector<char, 256> buffer;
+            dasm.InstructionDecode(buffer,
+                                   reinterpret_cast<byte*>(sim_->get_pc()));
+            PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
+                   buffer.start());
+            sim_->ExecuteInstruction(
+                reinterpret_cast<Instruction*>(sim_->get_pc()));
+          }
+        }
+      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
+        // If at a breakpoint, proceed past it.
+        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+                ->InstructionBits() == 0x7d821008) {
+          sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
+        } else {
+          // Execute the one instruction we broke at with breakpoints disabled.
+          sim_->ExecuteInstruction(
+              reinterpret_cast<Instruction*>(sim_->get_pc()));
+        }
+        // Leave the debugger shell.
+        done = true;
+      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
+        if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
+          intptr_t value;
+          double dvalue;
+          if (strcmp(arg1, "all") == 0) {
+            for (int i = 0; i < kNumRegisters; i++) {
+              value = GetRegisterValue(i);
+              PrintF("    %3s: %08" V8PRIxPTR,
+                     Register::from_code(i).ToString(), value);
+              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+                  (i % 2) == 0) {
+                dvalue = GetRegisterPairDoubleValue(i);
+                PrintF(" (%f)\n", dvalue);
+              } else if (i != 0 && !((i + 1) & 3)) {
+                PrintF("\n");
+              }
+            }
+            PrintF("  pc: %08" V8PRIxPTR "  cr: %08x\n", sim_->special_reg_pc_,
+                   sim_->condition_reg_);
+          } else if (strcmp(arg1, "alld") == 0) {
+            for (int i = 0; i < kNumRegisters; i++) {
+              value = GetRegisterValue(i);
+              PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
+                     Register::from_code(i).ToString(), value, value);
+              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+                  (i % 2) == 0) {
+                dvalue = GetRegisterPairDoubleValue(i);
+                PrintF(" (%f)\n", dvalue);
+              } else if (!((i + 1) % 2)) {
+                PrintF("\n");
+              }
+            }
+            PrintF("   pc: %08" V8PRIxPTR "  cr: %08x\n", sim_->special_reg_pc_,
+                   sim_->condition_reg_);
+          } else if (strcmp(arg1, "allf") == 0) {
+            for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
+              float fvalue = GetFPFloatRegisterValue(i);
+              uint32_t as_words = bit_cast<uint32_t>(fvalue);
+              PrintF("%3s: %f 0x%08x\n",
+                     DoubleRegister::from_code(i).ToString(), fvalue, as_words);
+            }
+          } else if (strcmp(arg1, "alld") == 0) {
+            for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
+              dvalue = GetFPDoubleRegisterValue(i);
+              uint64_t as_words = bit_cast<uint64_t>(dvalue);
+              PrintF("%3s: %f 0x%08x %08x\n",
+                     DoubleRegister::from_code(i).ToString(), dvalue,
+                     static_cast<uint32_t>(as_words >> 32),
+                     static_cast<uint32_t>(as_words & 0xffffffff));
+            }
+          } else if (arg1[0] == 'r' &&
+                     (arg1[1] >= '0' && arg1[1] <= '2' &&
+                      (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' &&
+                                           arg1[3] == '\0')))) {
+            int regnum = strtoul(&arg1[1], 0, 10);
+            if (regnum != kNoRegister) {
+              value = GetRegisterValue(regnum);
+              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+                     value);
+            } else {
+              PrintF("%s unrecognized\n", arg1);
+            }
+          } else {
+            if (GetValue(arg1, &value)) {
+              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+                     value);
+            } else if (GetFPDoubleValue(arg1, &dvalue)) {
+              uint64_t as_words = bit_cast<uint64_t>(dvalue);
+              PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
+                     static_cast<uint32_t>(as_words >> 32),
+                     static_cast<uint32_t>(as_words & 0xffffffff));
+            } else {
+              PrintF("%s unrecognized\n", arg1);
+            }
+          }
+        } else {
+          PrintF("print <register>\n");
+        }
+      } else if ((strcmp(cmd, "po") == 0) ||
+                 (strcmp(cmd, "printobject") == 0)) {
+        if (argc == 2) {
+          intptr_t value;
+          OFStream os(stdout);
+          if (GetValue(arg1, &value)) {
+            Object* obj = reinterpret_cast<Object*>(value);
+            os << arg1 << ": \n";
+#ifdef DEBUG
+            obj->Print(os);
+            os << "\n";
+#else
+            os << Brief(obj) << "\n";
+#endif
+          } else {
+            os << arg1 << " unrecognized\n";
+          }
+        } else {
+          PrintF("printobject <value>\n");
+        }
+      } else if (strcmp(cmd, "setpc") == 0) {
+        intptr_t value;
+
+        if (!GetValue(arg1, &value)) {
+          PrintF("%s unrecognized\n", arg1);
+          continue;
+        }
+        sim_->set_pc(value);
+      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+        intptr_t* cur = NULL;
+        intptr_t* end = NULL;
+        int next_arg = 1;
+
+        if (strcmp(cmd, "stack") == 0) {
+          cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
+        } else {  // "mem"
+          intptr_t value;
+          if (!GetValue(arg1, &value)) {
+            PrintF("%s unrecognized\n", arg1);
+            continue;
+          }
+          cur = reinterpret_cast<intptr_t*>(value);
+          next_arg++;
+        }
+
+        intptr_t words;  // likely inaccurate variable name for 64bit
+        if (argc == next_arg) {
+          words = 10;
+        } else {
+          if (!GetValue(argv[next_arg], &words)) {
+            words = 10;
+          }
+        }
+        end = cur + words;
+
+        while (cur < end) {
+          PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
+                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
+          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
+          intptr_t value = *cur;
+          Heap* current_heap = sim_->isolate_->heap();
+          if (((value & 1) == 0) ||
+              current_heap->ContainsSlow(obj->address())) {
+            PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj));
+          } else if (current_heap->Contains(obj)) {
+            PrintF(" (");
+            obj->ShortPrint();
+            PrintF(")");
+          }
+          PrintF("\n");
+          cur++;
+        }
+      } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
+        disasm::NameConverter converter;
+        disasm::Disassembler dasm(converter);
+        // use a reasonably large buffer
+        v8::internal::EmbeddedVector<char, 256> buffer;
+
+        byte* prev = NULL;
+        byte* cur = NULL;
+        // Default number of instructions to disassemble.
+        int32_t numInstructions = 10;
+
+        if (argc == 1) {
+          cur = reinterpret_cast<byte*>(sim_->get_pc());
+        } else if (argc == 2) {
+          int regnum = Registers::Number(arg1);
+          if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
+            // The argument is an address or a register name.
+            intptr_t value;
+            if (GetValue(arg1, &value)) {
+              cur = reinterpret_cast<byte*>(value);
+            }
+          } else {
+            // The argument is the number of instructions.
+            intptr_t value;
+            if (GetValue(arg1, &value)) {
+              cur = reinterpret_cast<byte*>(sim_->get_pc());
+              // Disassemble <arg1> instructions.
+              numInstructions = static_cast<int32_t>(value);
+            }
+          }
+        } else {
+          intptr_t value1;
+          intptr_t value2;
+          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
+            cur = reinterpret_cast<byte*>(value1);
+            // Disassemble <arg2> instructions.
+            numInstructions = static_cast<int32_t>(value2);
+          }
+        }
+
+        while (numInstructions > 0) {
+          prev = cur;
+          cur += dasm.InstructionDecode(buffer, cur);
+          PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
+                 buffer.start());
+          numInstructions--;
+        }
+      } else if (strcmp(cmd, "gdb") == 0) {
+        PrintF("relinquishing control to gdb\n");
+        v8::base::OS::DebugBreak();
+        PrintF("regaining control from gdb\n");
+      } else if (strcmp(cmd, "break") == 0) {
+        if (argc == 2) {
+          intptr_t value;
+          if (GetValue(arg1, &value)) {
+            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
+              PrintF("setting breakpoint failed\n");
+            }
+          } else {
+            PrintF("%s unrecognized\n", arg1);
+          }
+        } else {
+          PrintF("break <address>\n");
+        }
+      } else if (strcmp(cmd, "del") == 0) {
+        if (!DeleteBreakpoint(NULL)) {
+          PrintF("deleting breakpoint failed\n");
+        }
+      } else if (strcmp(cmd, "cr") == 0) {
+        PrintF("Condition reg: %08x\n", sim_->condition_reg_);
+      } else if (strcmp(cmd, "stop") == 0) {
+        intptr_t value;
+        intptr_t stop_pc =
+            sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize);
+        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
+        Instruction* msg_address =
+            reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr));
+        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
+          // Remove the current stop.
+          if (sim_->isStopInstruction(stop_instr)) {
+            stop_instr->SetInstructionBits(kNopInstr);
+            msg_address->SetInstructionBits(kNopInstr);
+          } else {
+            PrintF("Not at debugger stop.\n");
+          }
+        } else if (argc == 3) {
+          // Print information about all/the specified breakpoint(s).
+          if (strcmp(arg1, "info") == 0) {
+            if (strcmp(arg2, "all") == 0) {
+              PrintF("Stop information:\n");
+              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+                sim_->PrintStopInfo(i);
+              }
+            } else if (GetValue(arg2, &value)) {
+              sim_->PrintStopInfo(value);
+            } else {
+              PrintF("Unrecognized argument.\n");
+            }
+          } else if (strcmp(arg1, "enable") == 0) {
+            // Enable all/the specified breakpoint(s).
+            if (strcmp(arg2, "all") == 0) {
+              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+                sim_->EnableStop(i);
+              }
+            } else if (GetValue(arg2, &value)) {
+              sim_->EnableStop(value);
+            } else {
+              PrintF("Unrecognized argument.\n");
+            }
+          } else if (strcmp(arg1, "disable") == 0) {
+            // Disable all/the specified breakpoint(s).
+            if (strcmp(arg2, "all") == 0) {
+              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+                sim_->DisableStop(i);
+              }
+            } else if (GetValue(arg2, &value)) {
+              sim_->DisableStop(value);
+            } else {
+              PrintF("Unrecognized argument.\n");
+            }
+          }
+        } else {
+          PrintF("Wrong usage. Use help command for more information.\n");
+        }
+      } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
+        ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
+        PrintF("Trace of executed instructions is %s\n",
+               ::v8::internal::FLAG_trace_sim ? "on" : "off");
+      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
+        PrintF("cont\n");
+        PrintF("  continue execution (alias 'c')\n");
+        PrintF("stepi [num instructions]\n");
+        PrintF("  step one/num instruction(s) (alias 'si')\n");
+        PrintF("print <register>\n");
+        PrintF("  print register content (alias 'p')\n");
+        PrintF("  use register name 'all' to display all integer registers\n");
+        PrintF(
+            "  use register name 'alld' to display integer registers "
+            "with decimal values\n");
+        PrintF("  use register name 'rN' to display register number 'N'\n");
+        PrintF("  add argument 'fp' to print register pair double values\n");
+        PrintF(
+            "  use register name 'allf' to display floating-point "
+            "registers\n");
+        PrintF("printobject <register>\n");
+        PrintF("  print an object from a register (alias 'po')\n");
+        PrintF("cr\n");
+        PrintF("  print condition register\n");
+        PrintF("stack [<num words>]\n");
+        PrintF("  dump stack content, default dump 10 words)\n");
+        PrintF("mem <address> [<num words>]\n");
+        PrintF("  dump memory content, default dump 10 words)\n");
+        PrintF("disasm [<instructions>]\n");
+        PrintF("disasm [<address/register>]\n");
+        PrintF("disasm [[<address/register>] <instructions>]\n");
+        PrintF("  disassemble code, default is 10 instructions\n");
+        PrintF("  from pc (alias 'di')\n");
+        PrintF("gdb\n");
+        PrintF("  enter gdb\n");
+        PrintF("break <address>\n");
+        PrintF("  set a break point on the address\n");
+        PrintF("del\n");
+        PrintF("  delete the breakpoint\n");
+        PrintF("trace (alias 't')\n");
+        PrintF("  toogle the tracing of all executed statements\n");
+        PrintF("stop feature:\n");
+        PrintF("  Description:\n");
+        PrintF("    Stops are debug instructions inserted by\n");
+        PrintF("    the Assembler::stop() function.\n");
+        PrintF("    When hitting a stop, the Simulator will\n");
+        PrintF("    stop and and give control to the S390Debugger.\n");
+        PrintF("    The first %d stop codes are watched:\n",
+               Simulator::kNumOfWatchedStops);
+        PrintF("    - They can be enabled / disabled: the Simulator\n");
+        PrintF("      will / won't stop when hitting them.\n");
+        PrintF("    - The Simulator keeps track of how many times they \n");
+        PrintF("      are met. (See the info command.) Going over a\n");
+        PrintF("      disabled stop still increases its counter. \n");
+        PrintF("  Commands:\n");
+        PrintF("    stop info all/<code> : print infos about number <code>\n");
+        PrintF("      or all stop(s).\n");
+        PrintF("    stop enable/disable all/<code> : enables / disables\n");
+        PrintF("      all or number <code> stop(s)\n");
+        PrintF("    stop unstop\n");
+        PrintF("      ignore the stop instruction at the current location\n");
+        PrintF("      from now on\n");
+      } else {
+        PrintF("Unknown command: %s\n", cmd);
+      }
+    }
+  }
+
+  // Add all the breakpoints back to stop execution and enter the debugger
+  // shell when hit.
+  RedoBreakpoints();
+  // Restore tracing
+  ::v8::internal::FLAG_trace_sim = trace;
+
+#undef COMMAND_SIZE
+#undef ARG_SIZE
+
+#undef STR
+#undef XSTR
+}
+
+static bool ICacheMatch(void* one, void* two) {
+  DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
+  DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
+  return one == two;
+}
+
+static uint32_t ICacheHash(void* key) {
+  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
+}
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+  intptr_t start_page = (start & ~CachePage::kPageMask);
+  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+  return start_page == end_page;
+}
+
+void Simulator::set_last_debugger_input(char* input) {
+  DeleteArray(last_debugger_input_);
+  last_debugger_input_ = input;
+}
+
+void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
+                            size_t size) {
+  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+  int intra_line = (start & CachePage::kLineMask);
+  start -= intra_line;
+  size += intra_line;
+  size = ((size - 1) | CachePage::kLineMask) + 1;
+  int offset = (start & CachePage::kPageMask);
+  while (!AllOnOnePage(start, size - 1)) {
+    int bytes_to_flush = CachePage::kPageSize - offset;
+    FlushOnePage(i_cache, start, bytes_to_flush);
+    start += bytes_to_flush;
+    size -= bytes_to_flush;
+    DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
+    offset = 0;
+  }
+  if (size != 0) {
+    FlushOnePage(i_cache, start, size);
+  }
+}
+
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
+  v8::internal::HashMap::Entry* entry =
+      i_cache->LookupOrInsert(page, ICacheHash(page));
+  if (entry->value == NULL) {
+    CachePage* new_page = new CachePage();
+    entry->value = new_page;
+  }
+  return reinterpret_cast<CachePage*>(entry->value);
+}
+
+// Flush from start up to and not including start + size.
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
+                             int size) {
+  DCHECK(size <= CachePage::kPageSize);
+  DCHECK(AllOnOnePage(start, size - 1));
+  DCHECK((start & CachePage::kLineMask) == 0);
+  DCHECK((size & CachePage::kLineMask) == 0);
+  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+  int offset = (start & CachePage::kPageMask);
+  CachePage* cache_page = GetCachePage(i_cache, page);
+  char* valid_bytemap = cache_page->ValidityByte(offset);
+  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+void Simulator::CheckICache(v8::internal::HashMap* i_cache,
+                            Instruction* instr) {
+  intptr_t address = reinterpret_cast<intptr_t>(instr);
+  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+  int offset = (address & CachePage::kPageMask);
+  CachePage* cache_page = GetCachePage(i_cache, page);
+  char* cache_valid_byte = cache_page->ValidityByte(offset);
+  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
+  if (cache_hit) {
+    // Check that the data in memory matches the contents of the I-cache.
+    CHECK_EQ(memcmp(reinterpret_cast<void*>(instr),
+                    cache_page->CachedData(offset), sizeof(FourByteInstr)),
+             0);
+  } else {
+    // Cache miss.  Load memory into the cache.
+    memcpy(cached_line, line, CachePage::kLineLength);
+    *cache_valid_byte = CachePage::LINE_VALID;
+  }
+}
+
+void Simulator::Initialize(Isolate* isolate) {
+  if (isolate->simulator_initialized()) return;
+  isolate->set_simulator_initialized(true);
+  ::v8::internal::ExternalReference::set_redirector(isolate,
+                                                    &RedirectExternalReference);
+}
+
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
+  i_cache_ = isolate_->simulator_i_cache();
+  if (i_cache_ == NULL) {
+    i_cache_ = new v8::internal::HashMap(&ICacheMatch);
+    isolate_->set_simulator_i_cache(i_cache_);
+  }
+  Initialize(isolate);
+// Set up simulator support first. Some of this information is needed to
+// setup the architecture state.
+#if V8_TARGET_ARCH_S390X
+  size_t stack_size = FLAG_sim_stack_size * KB;
+#else
+  size_t stack_size = MB;  // allocate 1MB for stack
+#endif
+  stack_size += 2 * stack_protection_size_;
+  stack_ = reinterpret_cast<char*>(malloc(stack_size));
+  pc_modified_ = false;
+  icount_ = 0;
+  break_pc_ = NULL;
+  break_instr_ = 0;
+
+// make sure our register type can hold exactly 4/8 bytes
+#ifdef V8_TARGET_ARCH_S390X
+  DCHECK(sizeof(intptr_t) == 8);
+#else
+  DCHECK(sizeof(intptr_t) == 4);
+#endif
+  // Set up architecture state.
+  // All registers are initialized to zero to start with.
+  for (int i = 0; i < kNumGPRs; i++) {
+    registers_[i] = 0;
+  }
+  condition_reg_ = 0;
+  special_reg_pc_ = 0;
+
+  // Initializing FP registers.
+  for (int i = 0; i < kNumFPRs; i++) {
+    fp_registers_[i] = 0.0;
+  }
+
+  // The sp is initialized to point to the bottom (high address) of the
+  // allocated stack area. To be safe in potential stack underflows we leave
+  // some buffer below.
+  registers_[sp] =
+      reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
+  InitializeCoverage();
+
+  last_debugger_input_ = NULL;
+}
+
+Simulator::~Simulator() { free(stack_); }
+
+// When the generated code calls an external reference we need to catch that in
+// the simulator.  The external reference will be a function compiled for the
+// host architecture.  We need to call that function instead of trying to
+// execute it with the simulator.  We do that by redirecting the external
+// reference to a svc (Supervisor Call) instruction that is handled by
+// the simulator.  We write the original destination of the jump just at a known
+// offset from the svc instruction so the simulator knows what to call.
+class Redirection {
+ public:
+  Redirection(Isolate* isolate, void* external_function,
+              ExternalReference::Type type)
+      : external_function_(external_function),
+// we use TRAP4 here (0xBF22)
+#if V8_TARGET_LITTLE_ENDIAN
+        swi_instruction_(0x1000FFB2),
+#else
+        swi_instruction_(0xB2FF0000 | kCallRtRedirected),
+#endif
+        type_(type),
+        next_(NULL) {
+    next_ = isolate->simulator_redirection();
+    Simulator::current(isolate)->FlushICache(
+        isolate->simulator_i_cache(),
+        reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr));
+    isolate->set_simulator_redirection(this);
+    if (ABI_USES_FUNCTION_DESCRIPTORS) {
+      function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
+      function_descriptor_[1] = 0;
+      function_descriptor_[2] = 0;
+    }
+  }
+
+  void* address() {
+    if (ABI_USES_FUNCTION_DESCRIPTORS) {
+      return reinterpret_cast<void*>(function_descriptor_);
+    } else {
+      return reinterpret_cast<void*>(&swi_instruction_);
+    }
+  }
+
+  void* external_function() { return external_function_; }
+  ExternalReference::Type type() { return type_; }
+
+  static Redirection* Get(Isolate* isolate, void* external_function,
+                          ExternalReference::Type type) {
+    Redirection* current = isolate->simulator_redirection();
+    for (; current != NULL; current = current->next_) {
+      if (current->external_function_ == external_function) {
+        DCHECK_EQ(current->type(), type);
+        return current;
+      }
+    }
+    return new Redirection(isolate, external_function, type);
+  }
+
+  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
+    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
+    char* addr_of_redirection =
+        addr_of_swi - offsetof(Redirection, swi_instruction_);
+    return reinterpret_cast<Redirection*>(addr_of_redirection);
+  }
+
+  static Redirection* FromAddress(void* address) {
+    int delta = ABI_USES_FUNCTION_DESCRIPTORS
+                    ? offsetof(Redirection, function_descriptor_)
+                    : offsetof(Redirection, swi_instruction_);
+    char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
+    return reinterpret_cast<Redirection*>(addr_of_redirection);
+  }
+
+  static void* ReverseRedirection(intptr_t reg) {
+    Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
+    return redirection->external_function();
+  }
+
+  static void DeleteChain(Redirection* redirection) {
+    while (redirection != nullptr) {
+      Redirection* next = redirection->next_;
+      delete redirection;
+      redirection = next;
+    }
+  }
+
+ private:
+  void* external_function_;
+  uint32_t swi_instruction_;
+  ExternalReference::Type type_;
+  Redirection* next_;
+  intptr_t function_descriptor_[3];
+};
+
+// static
+void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
+  Redirection::DeleteChain(first);
+  if (i_cache != nullptr) {
+    for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
+         entry = i_cache->Next(entry)) {
+      delete static_cast<CachePage*>(entry->value);
+    }
+    delete i_cache;
+  }
+}
+
+void* Simulator::RedirectExternalReference(Isolate* isolate,
+                                           void* external_function,
+                                           ExternalReference::Type type) {
+  Redirection* redirection = Redirection::Get(isolate, external_function, type);
+  return redirection->address();
+}
+
+// Get the active Simulator for the current thread.
+Simulator* Simulator::current(Isolate* isolate) {
+  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
+      isolate->FindOrAllocatePerThreadDataForThisThread();
+  DCHECK(isolate_data != NULL);
+
+  Simulator* sim = isolate_data->simulator();
+  if (sim == NULL) {
+    // TODO(146): delete the simulator object when a thread/isolate goes away.
+    sim = new Simulator(isolate);
+    isolate_data->set_simulator(sim);
+  }
+  return sim;
+}
+
+// Sets the register in the architecture state.
+void Simulator::set_register(int reg, uint64_t value) {
+  DCHECK((reg >= 0) && (reg < kNumGPRs));
+  registers_[reg] = value;
+}
+
+// Get the register from the architecture state.
+uint64_t Simulator::get_register(int reg) const {
+  DCHECK((reg >= 0) && (reg < kNumGPRs));
+  // Stupid code added to avoid bug in GCC.
+  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+  if (reg >= kNumGPRs) return 0;
+  // End stupid code.
+  return registers_[reg];
+}
+
+template <typename T>
+T Simulator::get_low_register(int reg) const {
+  DCHECK((reg >= 0) && (reg < kNumGPRs));
+  // Stupid code added to avoid bug in GCC.
+  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+  if (reg >= kNumGPRs) return 0;
+  // End stupid code.
+  return static_cast<T>(registers_[reg] & 0xFFFFFFFF);
+}
+
+template <typename T>
+T Simulator::get_high_register(int reg) const {
+  DCHECK((reg >= 0) && (reg < kNumGPRs));
+  // Stupid code added to avoid bug in GCC.
+  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+  if (reg >= kNumGPRs) return 0;
+  // End stupid code.
+  return static_cast<T>(registers_[reg] >> 32);
+}
+
+void Simulator::set_low_register(int reg, uint32_t value) {
+  uint64_t shifted_val = static_cast<uint64_t>(value);
+  uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
+  uint64_t result = (orig_val >> 32 << 32) | shifted_val;
+  registers_[reg] = result;
+}
+
+void Simulator::set_high_register(int reg, uint32_t value) {
+  uint64_t shifted_val = static_cast<uint64_t>(value) << 32;
+  uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
+  uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val;
+  registers_[reg] = result;
+}
+
+double Simulator::get_double_from_register_pair(int reg) {
+  DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
+
+  double dm_val = 0.0;
+#if 0 && !V8_TARGET_ARCH_S390X  // doesn't make sense in 64bit mode
+  // Read the bits from the unsigned integer register_[] array
+  // into the double precision floating point value and return it.
+  char buffer[sizeof(fp_registers_[0])];
+  memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
+  memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
+#endif
+  return (dm_val);
+}
+
+// Raw access to the PC register.
+void Simulator::set_pc(intptr_t value) {
+  pc_modified_ = true;
+  special_reg_pc_ = value;
+}
+
+bool Simulator::has_bad_pc() const {
+  return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
+}
+
+// Raw access to the PC register without the special adjustment when reading.
+intptr_t Simulator::get_pc() const { return special_reg_pc_; }
+
+// Runtime FP routines take:
+// - two double arguments
+// - one double argument and zero or one integer arguments.
+// All are consructed here from d1, d2 and r2.
+void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
+  *x = get_double_from_d_register(0);
+  *y = get_double_from_d_register(2);
+  *z = get_register(2);
+}
+
+// The return value is in d0.
+void Simulator::SetFpResult(const double& result) {
+  set_d_register_from_double(0, result);
+}
+
+void Simulator::TrashCallerSaveRegisters() {
+// We don't trash the registers with the return value.
+#if 0  // A good idea to trash volatile registers, needs to be done
+  registers_[2] = 0x50Bad4U;
+  registers_[3] = 0x50Bad4U;
+  registers_[12] = 0x50Bad4U;
+#endif
+}
+
+uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
+  uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+  return *ptr;
+}
+
+int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
+  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+  return *ptr;
+}
+
+void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
+  uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+  *ptr = value;
+  return;
+}
+
+void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
+  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+  *ptr = value;
+  return;
+}
+
+uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
+  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+  return *ptr;
+}
+
+int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
+  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+  return *ptr;
+}
+
+void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
+  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+  *ptr = value;
+  return;
+}
+
+void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
+  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+  *ptr = value;
+  return;
+}
+
+uint8_t Simulator::ReadBU(intptr_t addr) {
+  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+  return *ptr;
+}
+
+int8_t Simulator::ReadB(intptr_t addr) {
+  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+  return *ptr;
+}
+
+void Simulator::WriteB(intptr_t addr, uint8_t value) {
+  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+  *ptr = value;
+}
+
+void Simulator::WriteB(intptr_t addr, int8_t value) {
+  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+  *ptr = value;
+}
+
+int64_t Simulator::ReadDW(intptr_t addr) {
+  int64_t* ptr = reinterpret_cast<int64_t*>(addr);
+  return *ptr;
+}
+
+void Simulator::WriteDW(intptr_t addr, int64_t value) {
+  int64_t* ptr = reinterpret_cast<int64_t*>(addr);
+  *ptr = value;
+  return;
+}
+
+/**
+ * Reads a double value from memory at given address.
+ */
+double Simulator::ReadDouble(intptr_t addr) {
+  double* ptr = reinterpret_cast<double*>(addr);
+  return *ptr;
+}
+
+// Returns the limit of the stack area to enable checking for stack overflows.
+uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
+  // The simulator uses a separate JS stack. If we have exhausted the C stack,
+  // we also drop down the JS limit to reflect the exhaustion on the JS stack.
+  if (GetCurrentStackPosition() < c_limit) {
+    return reinterpret_cast<uintptr_t>(get_sp());
+  }
+
+  // Otherwise the limit is the JS stack. Leave a safety margin to prevent
+  // overrunning the stack when pushing values.
+  return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
+}
+
+// Unsupported instructions use Format to print an error and stop execution.
+void Simulator::Format(Instruction* instr, const char* format) {
+  PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
+         reinterpret_cast<intptr_t>(instr), format);
+  UNIMPLEMENTED();
+}
+
+// Calculate C flag value for additions.
+bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
+  uint32_t uleft = static_cast<uint32_t>(left);
+  uint32_t uright = static_cast<uint32_t>(right);
+  uint32_t urest = 0xffffffffU - uleft;
+
+  return (uright > urest) ||
+         (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
+}
+
+// Calculate C flag value for subtractions.
+bool Simulator::BorrowFrom(int32_t left, int32_t right) {
+  uint32_t uleft = static_cast<uint32_t>(left);
+  uint32_t uright = static_cast<uint32_t>(right);
+
+  return (uright > uleft);
+}
+
+// Calculate V flag value for additions and subtractions.
+template <typename T1>
+bool Simulator::OverflowFromSigned(T1 alu_out, T1 left, T1 right,
+                                   bool addition) {
+  bool overflow;
+  if (addition) {
+    // operands have the same sign
+    overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
+               // and operands and result have different sign
+               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+  } else {
+    // operands have different signs
+    overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
+               // and first operand and result have different signs
+               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+  }
+  return overflow;
+}
+
+#if V8_TARGET_ARCH_S390X
+static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
+  *x = reinterpret_cast<intptr_t>(pair->x);
+  *y = reinterpret_cast<intptr_t>(pair->y);
+}
+#else
+static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
+#if V8_TARGET_BIG_ENDIAN
+  *x = static_cast<int32_t>(*pair >> 32);
+  *y = static_cast<int32_t>(*pair);
+#else
+  *x = static_cast<int32_t>(*pair);
+  *y = static_cast<int32_t>(*pair >> 32);
+#endif
+}
+#endif
+
+// Calls into the V8 runtime.
+typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
+                                         intptr_t arg2, intptr_t arg3,
+                                         intptr_t arg4, intptr_t arg5);
+typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
+                                               intptr_t arg2, intptr_t arg3,
+                                               intptr_t arg4, intptr_t arg5);
+typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
+                                                   intptr_t arg2, intptr_t arg3,
+                                                   intptr_t arg4,
+                                                   intptr_t arg5);
+
+// These prototypes handle the four types of FP calls.
+typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPCall)(double darg0);
+typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
+
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
+typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
+
+// This signature supports direct call to accessor getter callback.
+typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
+typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
+                                                    intptr_t arg1, void* arg2);
+
+// Software interrupt instructions are used by the simulator to call into the
+// C-based V8 runtime.
+void Simulator::SoftwareInterrupt(Instruction* instr) {
+  int svc = instr->SvcValue();
+  switch (svc) {
+    case kCallRtRedirected: {
+      // Check if stack is aligned. Error if not aligned is reported below to
+      // include information on the function called.
+      bool stack_aligned =
+          (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
+          0;
+      Redirection* redirection = Redirection::FromSwiInstruction(instr);
+      const int kArgCount = 6;
+      int arg0_regnum = 2;
+      intptr_t result_buffer = 0;
+      bool uses_result_buffer =
+          redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
+          (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
+           !ABI_RETURNS_OBJECTPAIR_IN_REGS);
+      if (uses_result_buffer) {
+        result_buffer = get_register(r2);
+        arg0_regnum++;
+      }
+      intptr_t arg[kArgCount];
+      for (int i = 0; i < kArgCount - 1; i++) {
+        arg[i] = get_register(arg0_regnum + i);
+      }
+      intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
+      arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize];
+      bool fp_call =
+          (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
+          (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
+          (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
+          (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
+
+      // Place the return address on the stack, making the call GC safe.
+      *reinterpret_cast<intptr_t*>(get_register(sp) +
+                                   kStackFrameRASlot * kPointerSize) =
+          get_register(r14);
+
+      intptr_t external =
+          reinterpret_cast<intptr_t>(redirection->external_function());
+      if (fp_call) {
+        double dval0, dval1;  // one or two double parameters
+        intptr_t ival;        // zero or one integer parameters
+        int iresult = 0;      // integer return value
+        double dresult = 0;   // double return value
+        GetFpArgs(&dval0, &dval1, &ival);
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          SimulatorRuntimeCall generic_target =
+              reinterpret_cast<SimulatorRuntimeCall>(external);
+          switch (redirection->type()) {
+            case ExternalReference::BUILTIN_FP_FP_CALL:
+            case ExternalReference::BUILTIN_COMPARE_CALL:
+              PrintF("Call to host function at %p with args %f, %f",
+                     FUNCTION_ADDR(generic_target), dval0, dval1);
+              break;
+            case ExternalReference::BUILTIN_FP_CALL:
+              PrintF("Call to host function at %p with arg %f",
+                     FUNCTION_ADDR(generic_target), dval0);
+              break;
+            case ExternalReference::BUILTIN_FP_INT_CALL:
+              PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
+                     FUNCTION_ADDR(generic_target), dval0, ival);
+              break;
+            default:
+              UNREACHABLE();
+              break;
+          }
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        switch (redirection->type()) {
+          case ExternalReference::BUILTIN_COMPARE_CALL: {
+            SimulatorRuntimeCompareCall target =
+                reinterpret_cast<SimulatorRuntimeCompareCall>(external);
+            iresult = target(dval0, dval1);
+            set_register(r2, iresult);
+            break;
+          }
+          case ExternalReference::BUILTIN_FP_FP_CALL: {
+            SimulatorRuntimeFPFPCall target =
+                reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
+            dresult = target(dval0, dval1);
+            SetFpResult(dresult);
+            break;
+          }
+          case ExternalReference::BUILTIN_FP_CALL: {
+            SimulatorRuntimeFPCall target =
+                reinterpret_cast<SimulatorRuntimeFPCall>(external);
+            dresult = target(dval0);
+            SetFpResult(dresult);
+            break;
+          }
+          case ExternalReference::BUILTIN_FP_INT_CALL: {
+            SimulatorRuntimeFPIntCall target =
+                reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
+            dresult = target(dval0, ival);
+            SetFpResult(dresult);
+            break;
+          }
+          default:
+            UNREACHABLE();
+            break;
+        }
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          switch (redirection->type()) {
+            case ExternalReference::BUILTIN_COMPARE_CALL:
+              PrintF("Returned %08x\n", iresult);
+              break;
+            case ExternalReference::BUILTIN_FP_FP_CALL:
+            case ExternalReference::BUILTIN_FP_CALL:
+            case ExternalReference::BUILTIN_FP_INT_CALL:
+              PrintF("Returned %f\n", dresult);
+              break;
+            default:
+              UNREACHABLE();
+              break;
+          }
+        }
+      } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
+        // See callers of MacroAssembler::CallApiFunctionAndReturn for
+        // explanation of register usage.
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          PrintF("Call to host function at %p args %08" V8PRIxPTR,
+                 reinterpret_cast<void*>(external), arg[0]);
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        SimulatorRuntimeDirectApiCall target =
+            reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+        target(arg[0]);
+      } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
+        // See callers of MacroAssembler::CallApiFunctionAndReturn for
+        // explanation of register usage.
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          PrintF("Call to host function at %p args %08" V8PRIxPTR
+                 " %08" V8PRIxPTR,
+                 reinterpret_cast<void*>(external), arg[0], arg[1]);
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        SimulatorRuntimeProfilingApiCall target =
+            reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
+        target(arg[0], Redirection::ReverseRedirection(arg[1]));
+      } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
+        // See callers of MacroAssembler::CallApiFunctionAndReturn for
+        // explanation of register usage.
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          PrintF("Call to host function at %p args %08" V8PRIxPTR
+                 " %08" V8PRIxPTR,
+                 reinterpret_cast<void*>(external), arg[0], arg[1]);
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        SimulatorRuntimeDirectGetterCall target =
+            reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+        if (!ABI_PASSES_HANDLES_IN_REGS) {
+          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+        }
+        target(arg[0], arg[1]);
+      } else if (redirection->type() ==
+                 ExternalReference::PROFILING_GETTER_CALL) {
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          PrintF("Call to host function at %p args %08" V8PRIxPTR
+                 " %08" V8PRIxPTR " %08" V8PRIxPTR,
+                 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        SimulatorRuntimeProfilingGetterCall target =
+            reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
+        if (!ABI_PASSES_HANDLES_IN_REGS) {
+          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+        }
+        target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
+      } else {
+        // builtin call.
+        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+          SimulatorRuntimeCall target =
+              reinterpret_cast<SimulatorRuntimeCall>(external);
+          PrintF(
+              "Call to host function at %p,\n"
+              "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+              ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
+              FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
+              arg[5]);
+          if (!stack_aligned) {
+            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+                   static_cast<intptr_t>(get_register(sp)));
+          }
+          PrintF("\n");
+        }
+        CHECK(stack_aligned);
+        if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
+          SimulatorRuntimeTripleCall target =
+              reinterpret_cast<SimulatorRuntimeTripleCall>(external);
+          ObjectTriple result =
+              target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+          if (::v8::internal::FLAG_trace_sim) {
+            PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+                   "}\n",
+                   reinterpret_cast<intptr_t>(result.x),
+                   reinterpret_cast<intptr_t>(result.y),
+                   reinterpret_cast<intptr_t>(result.z));
+          }
+          memcpy(reinterpret_cast<void*>(result_buffer), &result,
+                 sizeof(ObjectTriple));
+          set_register(r2, result_buffer);
+        } else {
+          if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
+            SimulatorRuntimePairCall target =
+                reinterpret_cast<SimulatorRuntimePairCall>(external);
+            ObjectPair result =
+                target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+            intptr_t x;
+            intptr_t y;
+            decodeObjectPair(&result, &x, &y);
+            if (::v8::internal::FLAG_trace_sim) {
+              PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
+            }
+            if (ABI_RETURNS_OBJECTPAIR_IN_REGS) {
+              set_register(r2, x);
+              set_register(r3, y);
+            } else {
+              memcpy(reinterpret_cast<void*>(result_buffer), &result,
+                     sizeof(ObjectPair));
+              set_register(r2, result_buffer);
+            }
+          } else {
+            DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
+            SimulatorRuntimeCall target =
+                reinterpret_cast<SimulatorRuntimeCall>(external);
+            intptr_t result =
+                target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+            if (::v8::internal::FLAG_trace_sim) {
+              PrintF("Returned %08" V8PRIxPTR "\n", result);
+            }
+            set_register(r2, result);
+          }
+        }
+        // #if !V8_TARGET_ARCH_S390X
+        //         DCHECK(redirection->type() ==
+        //         ExternalReference::BUILTIN_CALL);
+        //         SimulatorRuntimeCall target =
+        //             reinterpret_cast<SimulatorRuntimeCall>(external);
+        //         int64_t result = target(arg[0], arg[1], arg[2], arg[3],
+        //         arg[4],
+        //                                 arg[5]);
+        //         int32_t lo_res = static_cast<int32_t>(result);
+        //         int32_t hi_res = static_cast<int32_t>(result >> 32);
+        // #if !V8_TARGET_LITTLE_ENDIAN
+        //         if (::v8::internal::FLAG_trace_sim) {
+        //           PrintF("Returned %08x\n", hi_res);
+        //         }
+        //         set_register(r2, hi_res);
+        //         set_register(r3, lo_res);
+        // #else
+        //         if (::v8::internal::FLAG_trace_sim) {
+        //           PrintF("Returned %08x\n", lo_res);
+        //         }
+        //         set_register(r2, lo_res);
+        //         set_register(r3, hi_res);
+        // #endif
+        // #else
+        //         if (redirection->type() == ExternalReference::BUILTIN_CALL) {
+        //           SimulatorRuntimeCall target =
+        //             reinterpret_cast<SimulatorRuntimeCall>(external);
+        //           intptr_t result = target(arg[0], arg[1], arg[2], arg[3],
+        //           arg[4],
+        //               arg[5]);
+        //           if (::v8::internal::FLAG_trace_sim) {
+        //             PrintF("Returned %08" V8PRIxPTR "\n", result);
+        //           }
+        //           set_register(r2, result);
+        //         } else {
+        //           DCHECK(redirection->type() ==
+        //               ExternalReference::BUILTIN_CALL_PAIR);
+        //           SimulatorRuntimePairCall target =
+        //             reinterpret_cast<SimulatorRuntimePairCall>(external);
+        //           ObjectPair result = target(arg[0], arg[1], arg[2], arg[3],
+        //               arg[4], arg[5]);
+        //           if (::v8::internal::FLAG_trace_sim) {
+        //             PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n",
+        //                 result.x, result.y);
+        //           }
+        // #if ABI_RETURNS_OBJECTPAIR_IN_REGS
+        //           set_register(r2, result.x);
+        //           set_register(r3, result.y);
+        // #else
+        //            memcpy(reinterpret_cast<void *>(result_buffer), &result,
+        //                sizeof(ObjectPair));
+        // #endif
+        //         }
+        // #endif
+      }
+      int64_t saved_lr = *reinterpret_cast<intptr_t*>(
+          get_register(sp) + kStackFrameRASlot * kPointerSize);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+      // On zLinux-31, the saved_lr might be tagged with a high bit of 1.
+      // Cleanse it before proceeding with simulation.
+      saved_lr &= 0x7FFFFFFF;
+#endif
+      set_pc(saved_lr);
+      break;
+    }
+    case kBreakpoint: {
+      S390Debugger dbg(this);
+      dbg.Debug();
+      break;
+    }
+    // stop uses all codes greater than 1 << 23.
+    default: {
+      if (svc >= (1 << 23)) {
+        uint32_t code = svc & kStopCodeMask;
+        if (isWatchedStop(code)) {
+          IncreaseStopCounter(code);
+        }
+        // Stop if it is enabled, otherwise go on jumping over the stop
+        // and the message address.
+        if (isEnabledStop(code)) {
+          S390Debugger dbg(this);
+          dbg.Stop(instr);
+        } else {
+          set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize);
+        }
+      } else {
+        // This is not a valid svc code.
+        UNREACHABLE();
+        break;
+      }
+    }
+  }
+}
+
+// Stop helper functions.
+bool Simulator::isStopInstruction(Instruction* instr) {
+  return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
+}
+
+bool Simulator::isWatchedStop(uint32_t code) {
+  DCHECK(code <= kMaxStopCode);
+  return code < kNumOfWatchedStops;
+}
+
+bool Simulator::isEnabledStop(uint32_t code) {
+  DCHECK(code <= kMaxStopCode);
+  // Unwatched stops are always enabled.
+  return !isWatchedStop(code) ||
+         !(watched_stops_[code].count & kStopDisabledBit);
+}
+
+void Simulator::EnableStop(uint32_t code) {
+  DCHECK(isWatchedStop(code));
+  if (!isEnabledStop(code)) {
+    watched_stops_[code].count &= ~kStopDisabledBit;
+  }
+}
+
+void Simulator::DisableStop(uint32_t code) {
+  DCHECK(isWatchedStop(code));
+  if (isEnabledStop(code)) {
+    watched_stops_[code].count |= kStopDisabledBit;
+  }
+}
+
+void Simulator::IncreaseStopCounter(uint32_t code) {
+  DCHECK(code <= kMaxStopCode);
+  DCHECK(isWatchedStop(code));
+  if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
+    PrintF(
+        "Stop counter for code %i has overflowed.\n"
+        "Enabling this code and reseting the counter to 0.\n",
+        code);
+    watched_stops_[code].count = 0;
+    EnableStop(code);
+  } else {
+    watched_stops_[code].count++;
+  }
+}
+
+// Print a stop status.
+void Simulator::PrintStopInfo(uint32_t code) {
+  DCHECK(code <= kMaxStopCode);
+  if (!isWatchedStop(code)) {
+    PrintF("Stop not watched.");
+  } else {
+    const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
+    int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
+    // Don't print the state of unused breakpoints.
+    if (count != 0) {
+      if (watched_stops_[code].desc) {
+        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
+               state, count, watched_stops_[code].desc);
+      } else {
+        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
+               count);
+      }
+    }
+  }
+}
+
+// Method for checking overflow on signed addition:
+//   Test src1 and src2 have opposite sign,
+//   (1) No overflow if they have opposite sign
+//   (2) Test the result and one of the operands have opposite sign
+//      (a) No overflow if they don't have opposite sign
+//      (b) Overflow if opposite
+#define CheckOverflowForIntAdd(src1, src2, type) \
+  OverflowFromSigned<type>(src1 + src2, src1, src2, true);
+
+#define CheckOverflowForIntSub(src1, src2, type) \
+  OverflowFromSigned<type>(src1 - src2, src1, src2, false);
+
+// Method for checking overflow on unsigned addtion
+#define CheckOverflowForUIntAdd(src1, src2) \
+  ((src1) + (src2) < (src1) || (src1) + (src2) < (src2))
+
+// Method for checking overflow on unsigned subtraction
+#define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1))
+
+// Method for checking overflow on multiplication
+#define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1))
+
+// Method for checking overflow on shift right
+#define CheckOverflowForShiftRight(src1, src2) \
+  (((src1) >> (src2)) << (src2) != (src1))
+
+// Method for checking overflow on shift left
+#define CheckOverflowForShiftLeft(src1, src2) \
+  (((src1) << (src2)) >> (src2) != (src1))
+
+// S390 Decode and simulate helpers
+bool Simulator::DecodeTwoByte(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  switch (op) {
+    // RR format instructions
+    case AR:
+    case SR:
+    case MR:
+    case DR:
+    case OR:
+    case NR:
+    case XR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      bool isOF = false;
+      switch (op) {
+        case AR:
+          isOF = CheckOverflowForIntAdd(r1_val, r2_val, int32_t);
+          r1_val += r2_val;
+          SetS390ConditionCode<int32_t>(r1_val, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case SR:
+          isOF = CheckOverflowForIntSub(r1_val, r2_val, int32_t);
+          r1_val -= r2_val;
+          SetS390ConditionCode<int32_t>(r1_val, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case OR:
+          r1_val |= r2_val;
+          SetS390BitWiseConditionCode<uint32_t>(r1_val);
+          break;
+        case NR:
+          r1_val &= r2_val;
+          SetS390BitWiseConditionCode<uint32_t>(r1_val);
+          break;
+        case XR:
+          r1_val ^= r2_val;
+          SetS390BitWiseConditionCode<uint32_t>(r1_val);
+          break;
+        case MR: {
+          DCHECK(r1 % 2 == 0);
+          r1_val = get_low_register<int32_t>(r1 + 1);
+          int64_t product =
+              static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
+          int32_t high_bits = product >> 32;
+          r1_val = high_bits;
+          int32_t low_bits = product & 0x00000000FFFFFFFF;
+          set_low_register(r1, high_bits);
+          set_low_register(r1 + 1, low_bits);
+          break;
+        }
+        case DR: {
+          // reg-reg pair should be even-odd pair, assert r1 is an even register
+          DCHECK(r1 % 2 == 0);
+          // leftmost 32 bits of the dividend are in r1
+          // rightmost 32 bits of the dividend are in r1+1
+          // get the signed value from r1
+          int64_t dividend = static_cast<int64_t>(r1_val) << 32;
+          // get unsigned value from r1+1
+          // avoid addition with sign-extended r1+1 value
+          dividend += get_low_register<uint32_t>(r1 + 1);
+          int32_t remainder = dividend % r2_val;
+          int32_t quotient = dividend / r2_val;
+          r1_val = remainder;
+          set_low_register(r1, remainder);
+          set_low_register(r1 + 1, quotient);
+          break;  // reg pair
+        }
+        default:
+          UNREACHABLE();
+          break;
+      }
+      set_low_register(r1, r1_val);
+      break;
+    }
+    case LR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      set_low_register(r1, get_low_register<int32_t>(r2));
+      break;
+    }
+    case LDR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int64_t r2_val = get_d_register(r2);
+      set_d_register(r1, r2_val);
+      break;
+    }
+    case CR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      SetS390ConditionCode<int32_t>(r1_val, r2_val);
+      break;
+    }
+    case CLR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      SetS390ConditionCode<uint32_t>(r1_val, r2_val);
+      break;
+    }
+    case BCR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      if (TestConditionCode(Condition(r1))) {
+        intptr_t r2_val = get_register(r2);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+        // On 31-bit, the top most bit may be 0 or 1, but is ignored by the
+        // hardware.  Cleanse the top bit before jumping to it, unless it's one
+        // of the special PCs
+        if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
+#endif
+        set_pc(r2_val);
+      }
+      break;
+    }
+    case LTR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      SetS390ConditionCode<int32_t>(r2_val, 0);
+      set_low_register(r1, r2_val);
+      break;
+    }
+    case ALR:
+    case SLR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      uint32_t alu_out = 0;
+      bool isOF = false;
+      if (ALR == op) {
+        alu_out = r1_val + r2_val;
+        isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
+      } else if (SLR == op) {
+        alu_out = r1_val - r2_val;
+        isOF = CheckOverflowForUIntSub(r1_val, r2_val);
+      } else {
+        UNREACHABLE();
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
+      break;
+    }
+    case LNR: {
+      // Load Negative (32)
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      r2_val = (r2_val >= 0) ? -r2_val : r2_val;  // If pos, then negate it.
+      set_low_register(r1, r2_val);
+      condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT;  // CC0 - result is zero
+      // CC1 - result is negative
+      break;
+    }
+    case BASR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      intptr_t link_addr = get_pc() + 2;
+      // If R2 is zero, the BASR does not branch.
+      int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+      // On 31-bit, the top most bit may be 0 or 1, which can cause issues
+      // for stackwalker.  The top bit should either be cleanse before being
+      // pushed onto the stack, or during stack walking when dereferenced.
+      // For simulator, we'll take the worst case scenario and always tag
+      // the high bit, to flush out more problems.
+      link_addr |= 0x80000000;
+#endif
+      set_register(r1, link_addr);
+      set_pc(r2_val);
+      break;
+    }
+    case LCR: {
+      RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      int32_t original_r2_val = r2_val;
+      r2_val = ~r2_val;
+      r2_val = r2_val + 1;
+      set_low_register(r1, r2_val);
+      SetS390ConditionCode<int32_t>(r2_val, 0);
+      // Checks for overflow where r2_val = -2147483648.
+      // Cannot do int comparison due to GCC 4.8 bug on x86.
+      // Detect INT_MIN alternatively, as it is the only value where both
+      // original and result are negative due to overflow.
+      if (r2_val < 0 && original_r2_val < 0) {
+        SetS390OverflowCode(true);
+      }
+      break;
+    }
+    case BKPT: {
+      set_pc(get_pc() + 2);
+      S390Debugger dbg(this);
+      dbg.Debug();
+      break;
+    }
+    default:
+      UNREACHABLE();
+      return false;
+      break;
+  }
+  return true;
+}
+
+// Decode routine for four-byte instructions
+bool Simulator::DecodeFourByte(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  // Pre-cast instruction to various types
+  RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+  SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr);
+
+  switch (op) {
+    case POPCNT_Z: {
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r2_val = get_register(r2);
+      int64_t r1_val = 0;
+
+      uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
+      uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
+      for (int i = 0; i < 8; i++) {
+        uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
+#if defined(__GNUC__)
+        r1_val_ptr[i] = __builtin_popcount(x);
+#else
+#error unsupport __builtin_popcount
+#endif
+      }
+
+      set_register(r1, static_cast<uint64_t>(r1_val));
+      break;
+    }
+    case LLGFR: {
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      uint64_t r2_finalval =
+          (static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
+      set_register(r1, r2_finalval);
+      break;
+    }
+    case EX: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int r1 = rxinst->R1Value();
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+
+      SixByteInstr the_instr = Instruction::InstructionBits(
+          reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
+      int length = Instruction::InstructionLength(
+          reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
+
+      char new_instr_buf[8];
+      char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
+      the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
+                   << (8 * length - 16);
+      Instruction::SetInstructionBits<SixByteInstr>(
+          reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
+      ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
+      break;
+    }
+    case LGR: {
+      // Load Register (64)
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      set_register(r1, get_register(r2));
+      break;
+    }
+    case LDGR: {
+      // Load FPR from GPR (L <- 64)
+      uint64_t int_val = get_register(rreInst->R2Value());
+      // double double_val = bit_cast<double, uint64_t>(int_val);
+      // set_d_register_from_double(rreInst->R1Value(), double_val);
+      set_d_register(rreInst->R1Value(), int_val);
+      break;
+    }
+    case LGDR: {
+      // Load GPR from FPR (64 <- L)
+      int64_t double_val = get_d_register(rreInst->R2Value());
+      set_register(rreInst->R1Value(), double_val);
+      break;
+    }
+    case LTGR: {
+      // Load Register (64)
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r2_val = get_register(r2);
+      SetS390ConditionCode<int64_t>(r2_val, 0);
+      set_register(r1, get_register(r2));
+      break;
+    }
+    case LZDR: {
+      int r1 = rreInst->R1Value();
+      set_d_register_from_double(r1, 0.0);
+      break;
+    }
+    case LTEBR: {
+      RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreinst->R1Value();
+      int r2 = rreinst->R2Value();
+      int64_t r2_val = get_d_register(r2);
+      float fr2_val = get_float32_from_d_register(r2);
+      SetS390ConditionCode<float>(fr2_val, 0.0);
+      set_d_register(r1, r2_val);
+      break;
+    }
+    case LTDBR: {
+      RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreinst->R1Value();
+      int r2 = rreinst->R2Value();
+      int64_t r2_val = get_d_register(r2);
+      SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
+      set_d_register(r1, r2_val);
+      break;
+    }
+    case CGR: {
+      // Compare (64)
+      int64_t r1_val = get_register(rreInst->R1Value());
+      int64_t r2_val = get_register(rreInst->R2Value());
+      SetS390ConditionCode<int64_t>(r1_val, r2_val);
+      break;
+    }
+    case CLGR: {
+      // Compare Logical (64)
+      uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value()));
+      uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value()));
+      SetS390ConditionCode<uint64_t>(r1_val, r2_val);
+      break;
+    }
+    case LH: {
+      // Load Halfword
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int r1 = rxinst->R1Value();
+      int x2 = rxinst->X2Value();
+      int b2 = rxinst->B2Value();
+
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t mem_addr = x2_val + b2_val + d2_val;
+
+      int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
+      set_low_register(r1, result);
+      break;
+    }
+    case LHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int i = riinst->I2Value();
+      set_low_register(r1, i);
+      break;
+    }
+    case LGHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int64_t i = riinst->I2Value();
+      set_register(r1, i);
+      break;
+    }
+    case CHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int16_t i = riinst->I2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      SetS390ConditionCode<int32_t>(r1_val, i);
+      break;
+    }
+    case CGHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int64_t i = static_cast<int64_t>(riinst->I2Value());
+      int64_t r1_val = get_register(r1);
+      SetS390ConditionCode<int64_t>(r1_val, i);
+      break;
+    }
+    case BRAS: {
+      // Branch Relative and Save
+      RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+      int r1 = rilInstr->R1Value();
+      intptr_t d2 = rilInstr->I2Value();
+      intptr_t pc = get_pc();
+      // Set PC of next instruction to register
+      set_register(r1, pc + sizeof(FourByteInstr));
+      // Update PC to branch target
+      set_pc(pc + d2 * 2);
+      break;
+    }
+    case BRC: {
+      // Branch Relative on Condition
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int m1 = riinst->M1Value();
+      if (TestConditionCode((Condition)m1)) {
+        intptr_t offset = riinst->I2Value() * 2;
+        set_pc(get_pc() + offset);
+      }
+      break;
+    }
+    case BRCT:
+    case BRCTG: {
+      // Branch On Count (32/64).
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int64_t value =
+          (op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1);
+      if (BRCT == op)
+        set_low_register(r1, --value);
+      else
+        set_register(r1, --value);
+      // Branch if value != 0
+      if (value != 0) {
+        intptr_t offset = riinst->I2Value() * 2;
+        set_pc(get_pc() + offset);
+      }
+      break;
+    }
+    case BXH: {
+      RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsinst->R1Value();
+      int r3 = rsinst->R3Value();
+      int b2 = rsinst->B2Value();
+      int d2 = rsinst->D2Value();
+
+      // r1_val is the first operand, r3_val is the increment
+      int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
+      int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
+      intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      intptr_t branch_address = b2_val + d2;
+      // increment r1_val
+      r1_val += r3_val;
+
+      // if the increment is even, then it designates a pair of registers
+      // and the contents of the even and odd registers of the pair are used as
+      // the increment and compare value respectively. If the increment is odd,
+      // the increment itself is used as both the increment and compare value
+      int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
+      if (r1_val > compare_val) {
+        // branch to address if r1_val is greater than compare value
+        set_pc(branch_address);
+      }
+
+      // update contents of register in r1 with the new incremented value
+      set_register(r1, r1_val);
+      break;
+    }
+    case IIHH:
+    case IIHL:
+    case IILH:
+    case IILL: {
+      UNIMPLEMENTED();
+      break;
+    }
+    case STM:
+    case LM: {
+      // Store Multiple 32-bits.
+      RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsinstr->R1Value();
+      int r3 = rsinstr->R3Value();
+      int rb = rsinstr->B2Value();
+      int offset = rsinstr->D2Value();
+
+      // Regs roll around if r3 is less than r1.
+      // Artifically increase r3 by 16 so we can calculate
+      // the number of regs stored properly.
+      if (r3 < r1) r3 += 16;
+
+      int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
+
+      // Store each register in ascending order.
+      for (int i = 0; i <= r3 - r1; i++) {
+        if (op == STM) {
+          int32_t value = get_low_register<int32_t>((r1 + i) % 16);
+          WriteW(rb_val + offset + 4 * i, value, instr);
+        } else if (op == LM) {
+          int32_t value = ReadW(rb_val + offset + 4 * i, instr);
+          set_low_register((r1 + i) % 16, value);
+        }
+      }
+      break;
+    }
+    case SLL:
+    case SRL: {
+      RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsInstr->R1Value();
+      int b2 = rsInstr->B2Value();
+      intptr_t d2 = rsInstr->D2Value();
+      // only takes rightmost 6bits
+      int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t alu_out = 0;
+      if (SLL == op) {
+        alu_out = r1_val << shiftBits;
+      } else if (SRL == op) {
+        alu_out = r1_val >> shiftBits;
+      } else {
+        UNREACHABLE();
+      }
+      set_low_register(r1, alu_out);
+      break;
+    }
+    case SLDL: {
+      RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsInstr->R1Value();
+      int b2 = rsInstr->B2Value();
+      intptr_t d2 = rsInstr->D2Value();
+      // only takes rightmost 6bits
+      int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+
+      DCHECK(r1 % 2 == 0);
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r1_next_val = get_low_register<uint32_t>(r1 + 1);
+      uint64_t alu_out = (static_cast<uint64_t>(r1_val) << 32) |
+                         (static_cast<uint64_t>(r1_next_val));
+      alu_out <<= shiftBits;
+      set_low_register(r1 + 1, static_cast<uint32_t>(alu_out));
+      set_low_register(r1, static_cast<uint32_t>(alu_out >> 32));
+      break;
+    }
+    case SLA:
+    case SRA: {
+      RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsInstr->R1Value();
+      int b2 = rsInstr->B2Value();
+      intptr_t d2 = rsInstr->D2Value();
+      // only takes rightmost 6bits
+      int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      int32_t alu_out = 0;
+      bool isOF = false;
+      if (op == SLA) {
+        isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
+        alu_out = r1_val << shiftBits;
+      } else if (op == SRA) {
+        alu_out = r1_val >> shiftBits;
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case LLHR: {
+      UNIMPLEMENTED();
+      break;
+    }
+    case LLGHR: {
+      UNIMPLEMENTED();
+      break;
+    }
+    case L:
+    case LA:
+    case LD:
+    case LE: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int32_t r1 = rxinst->R1Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t addr = b2_val + x2_val + d2_val;
+      if (op == L) {
+        int32_t mem_val = ReadW(addr, instr);
+        set_low_register(r1, mem_val);
+      } else if (op == LA) {
+        set_register(r1, addr);
+      } else if (op == LD) {
+        int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
+        set_d_register(r1, dbl_val);
+      } else if (op == LE) {
+        float float_val = *reinterpret_cast<float*>(addr);
+        set_d_register_from_float32(r1, float_val);
+      }
+      break;
+    }
+    case C:
+    case CL: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t addr = b2_val + x2_val + d2_val;
+      int32_t mem_val = ReadW(addr, instr);
+      if (C == op)
+        SetS390ConditionCode<int32_t>(r1_val, mem_val);
+      else if (CL == op)
+        SetS390ConditionCode<uint32_t>(r1_val, mem_val);
+      break;
+    }
+    case CLI: {
+      // Compare Immediate (Mem - Imm) (8)
+      int b1 = siInstr->B1Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t d1_val = siInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+      uint8_t mem_val = ReadB(addr);
+      uint8_t imm_val = siInstr->I2Value();
+      SetS390ConditionCode<uint8_t>(mem_val, imm_val);
+      break;
+    }
+    case TM: {
+      // Test Under Mask (Mem - Imm) (8)
+      int b1 = siInstr->B1Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t d1_val = siInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+      uint8_t mem_val = ReadB(addr);
+      uint8_t imm_val = siInstr->I2Value();
+      uint8_t selected_bits = mem_val & imm_val;
+      // CC0: Selected bits are zero
+      // CC1: Selected bits mixed zeros and ones
+      // CC3: Selected bits all ones
+      if (0 == selected_bits) {
+        condition_reg_ = CC_EQ;  // CC0
+      } else if (selected_bits == imm_val) {
+        condition_reg_ = 0x1;  // CC3
+      } else {
+        condition_reg_ = 0x4;  // CC1
+      }
+      break;
+    }
+    case ST:
+    case STE:
+    case STD: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t addr = b2_val + x2_val + d2_val;
+      if (op == ST) {
+        WriteW(addr, r1_val, instr);
+      } else if (op == STD) {
+        int64_t frs_val = get_d_register(rxinst->R1Value());
+        WriteDW(addr, frs_val);
+      } else if (op == STE) {
+        int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32;
+        WriteW(addr, static_cast<int32_t>(frs_val), instr);
+      }
+      break;
+    }
+    case LTGFR:
+    case LGFR: {
+      // Load and Test Register (64 <- 32)  (Sign Extends 32-bit val)
+      // Load Register (64 <- 32)  (Sign Extends 32-bit val)
+      RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInstr->R1Value();
+      int r2 = rreInstr->R2Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      int64_t result = static_cast<int64_t>(r2_val);
+      set_register(r1, result);
+
+      if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0);
+      break;
+    }
+    case LNGR: {
+      // Load Negative (64)
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r2_val = get_register(r2);
+      r2_val = (r2_val >= 0) ? -r2_val : r2_val;  // If pos, then negate it.
+      set_register(r1, r2_val);
+      condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT;  // CC0 - result is zero
+      // CC1 - result is negative
+      break;
+    }
+    case TRAP4: {
+      // whack the space of the caller allocated stack
+      int64_t sp_addr = get_register(sp);
+      for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
+        // we dont want to whack the RA (r14)
+        if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
+      }
+      SoftwareInterrupt(instr);
+      break;
+    }
+    case STC: {
+      // Store Character/Byte
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t mem_addr = b2_val + x2_val + d2_val;
+      WriteB(mem_addr, r1_val);
+      break;
+    }
+    case STH: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t mem_addr = b2_val + x2_val + d2_val;
+      WriteH(mem_addr, r1_val, instr);
+      break;
+    }
+#if V8_TARGET_ARCH_S390X
+    case LCGR: {
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r2_val = get_register(r2);
+      r2_val = ~r2_val;
+      r2_val = r2_val + 1;
+      set_register(r1, r2_val);
+      SetS390ConditionCode<int64_t>(r2_val, 0);
+      // if the input is INT_MIN, loading its compliment would be overflowing
+      if (r2_val < 0 && (r2_val + 1) > 0) {
+        SetS390OverflowCode(true);
+      }
+      break;
+    }
+#endif
+    case SRDA: {
+      RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsInstr->R1Value();
+      DCHECK(r1 % 2 == 0);  // must be a reg pair
+      int b2 = rsInstr->B2Value();
+      intptr_t d2 = rsInstr->D2Value();
+      // only takes rightmost 6bits
+      int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
+      int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
+      int64_t r1_val = opnd1 + opnd2;
+      int64_t alu_out = r1_val >> shiftBits;
+      set_low_register(r1, alu_out >> 32);
+      set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      break;
+    }
+    case SRDL: {
+      RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+      int r1 = rsInstr->R1Value();
+      DCHECK(r1 % 2 == 0);  // must be a reg pair
+      int b2 = rsInstr->B2Value();
+      intptr_t d2 = rsInstr->D2Value();
+      // only takes rightmost 6bits
+      int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1))
+                       << 32;
+      uint64_t opnd2 =
+          static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
+      uint64_t r1_val = opnd1 | opnd2;
+      uint64_t alu_out = r1_val >> shiftBits;
+      set_low_register(r1, alu_out >> 32);
+      set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      break;
+    }
+    default: { return DecodeFourByteArithmetic(instr); }
+  }
+  return true;
+}
+
+bool Simulator::DecodeFourByteArithmetic64Bit(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+  RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+
+  switch (op) {
+    case AGR:
+    case SGR:
+    case OGR:
+    case NGR:
+    case XGR: {
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r1_val = get_register(r1);
+      int64_t r2_val = get_register(r2);
+      bool isOF = false;
+      switch (op) {
+        case AGR:
+          isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
+          r1_val += r2_val;
+          SetS390ConditionCode<int64_t>(r1_val, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case SGR:
+          isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
+          r1_val -= r2_val;
+          SetS390ConditionCode<int64_t>(r1_val, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case OGR:
+          r1_val |= r2_val;
+          SetS390BitWiseConditionCode<uint64_t>(r1_val);
+          break;
+        case NGR:
+          r1_val &= r2_val;
+          SetS390BitWiseConditionCode<uint64_t>(r1_val);
+          break;
+        case XGR:
+          r1_val ^= r2_val;
+          SetS390BitWiseConditionCode<uint64_t>(r1_val);
+          break;
+        default:
+          UNREACHABLE();
+          break;
+      }
+      set_register(r1, r1_val);
+      break;
+    }
+    case AGFR: {
+      // Add Register (64 <- 32)  (Sign Extends 32-bit val)
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r1_val = get_register(r1);
+      int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
+      bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
+      r1_val += r2_val;
+      SetS390ConditionCode<int64_t>(r1_val, 0);
+      SetS390OverflowCode(isOF);
+      set_register(r1, r1_val);
+      break;
+    }
+    case SGFR: {
+      // Sub Reg (64 <- 32)
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      int64_t r1_val = get_register(r1);
+      int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
+      bool isOF = false;
+      isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
+      r1_val -= r2_val;
+      SetS390ConditionCode<int64_t>(r1_val, 0);
+      SetS390OverflowCode(isOF);
+      set_register(r1, r1_val);
+      break;
+    }
+    case AGRK:
+    case SGRK:
+    case NGRK:
+    case OGRK:
+    case XGRK: {
+      // 64-bit Non-clobbering arithmetics / bitwise ops.
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int r3 = rrfInst->R3Value();
+      int64_t r2_val = get_register(r2);
+      int64_t r3_val = get_register(r3);
+      if (AGRK == op) {
+        bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int64_t);
+        SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_register(r1, r2_val + r3_val);
+      } else if (SGRK == op) {
+        bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int64_t);
+        SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_register(r1, r2_val - r3_val);
+      } else {
+        // Assume bitwise operation here
+        uint64_t bitwise_result = 0;
+        if (NGRK == op) {
+          bitwise_result = r2_val & r3_val;
+        } else if (OGRK == op) {
+          bitwise_result = r2_val | r3_val;
+        } else if (XGRK == op) {
+          bitwise_result = r2_val ^ r3_val;
+        }
+        SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
+        set_register(r1, bitwise_result);
+      }
+      break;
+    }
+    case ALGRK:
+    case SLGRK: {
+      // 64-bit Non-clobbering unsigned arithmetics
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int r3 = rrfInst->R3Value();
+      uint64_t r2_val = get_register(r2);
+      uint64_t r3_val = get_register(r3);
+      if (ALGRK == op) {
+        bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
+        SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_register(r1, r2_val + r3_val);
+      } else if (SLGRK == op) {
+        bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
+        SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_register(r1, r2_val - r3_val);
+      }
+    }
+    case AGHI:
+    case MGHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int32_t r1 = riinst->R1Value();
+      int64_t i = static_cast<int64_t>(riinst->I2Value());
+      int64_t r1_val = get_register(r1);
+      bool isOF = false;
+      switch (op) {
+        case AGHI:
+          isOF = CheckOverflowForIntAdd(r1_val, i, int64_t);
+          r1_val += i;
+          break;
+        case MGHI:
+          isOF = CheckOverflowForMul(r1_val, i);
+          r1_val *= i;
+          break;  // no overflow indication is given
+        default:
+          break;
+      }
+      set_register(r1, r1_val);
+      SetS390ConditionCode<int32_t>(r1_val, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+  return true;
+}
+
+/**
+ * Decodes and simulates four byte arithmetic instructions
+ */
+bool Simulator::DecodeFourByteArithmetic(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  // Pre-cast instruction to various types
+  RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+
+  switch (op) {
+    case AGR:
+    case SGR:
+    case OGR:
+    case NGR:
+    case XGR:
+    case AGFR:
+    case SGFR: {
+      DecodeFourByteArithmetic64Bit(instr);
+      break;
+    }
+    case ARK:
+    case SRK:
+    case NRK:
+    case ORK:
+    case XRK: {
+      // 32-bit Non-clobbering arithmetics / bitwise ops
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int r3 = rrfInst->R3Value();
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      int32_t r3_val = get_low_register<int32_t>(r3);
+      if (ARK == op) {
+        bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int32_t);
+        SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_low_register(r1, r2_val + r3_val);
+      } else if (SRK == op) {
+        bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int32_t);
+        SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_low_register(r1, r2_val - r3_val);
+      } else {
+        // Assume bitwise operation here
+        uint32_t bitwise_result = 0;
+        if (NRK == op) {
+          bitwise_result = r2_val & r3_val;
+        } else if (ORK == op) {
+          bitwise_result = r2_val | r3_val;
+        } else if (XRK == op) {
+          bitwise_result = r2_val ^ r3_val;
+        }
+        SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
+        set_low_register(r1, bitwise_result);
+      }
+      break;
+    }
+    case ALRK:
+    case SLRK: {
+      // 32-bit Non-clobbering unsigned arithmetics
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int r3 = rrfInst->R3Value();
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      uint32_t r3_val = get_low_register<uint32_t>(r3);
+      if (ALRK == op) {
+        bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
+        SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_low_register(r1, r2_val + r3_val);
+      } else if (SLRK == op) {
+        bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
+        SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
+        SetS390OverflowCode(isOF);
+        set_low_register(r1, r2_val - r3_val);
+      }
+      break;
+    }
+    case AGRK:
+    case SGRK:
+    case NGRK:
+    case OGRK:
+    case XGRK: {
+      DecodeFourByteArithmetic64Bit(instr);
+      break;
+    }
+    case ALGRK:
+    case SLGRK: {
+      DecodeFourByteArithmetic64Bit(instr);
+      break;
+    }
+    case AHI:
+    case MHI: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int32_t r1 = riinst->R1Value();
+      int32_t i = riinst->I2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      bool isOF = false;
+      switch (op) {
+        case AHI:
+          isOF = CheckOverflowForIntAdd(r1_val, i, int32_t);
+          r1_val += i;
+          break;
+        case MHI:
+          isOF = CheckOverflowForMul(r1_val, i);
+          r1_val *= i;
+          break;  // no overflow indication is given
+        default:
+          break;
+      }
+      set_low_register(r1, r1_val);
+      SetS390ConditionCode<int32_t>(r1_val, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case AGHI:
+    case MGHI: {
+      DecodeFourByteArithmetic64Bit(instr);
+      break;
+    }
+    case MLR: {
+      RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreinst->R1Value();
+      int r2 = rreinst->R2Value();
+      DCHECK(r1 % 2 == 0);
+
+      uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      uint64_t product =
+          static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
+      int32_t high_bits = product >> 32;
+      int32_t low_bits = product & 0x00000000FFFFFFFF;
+      set_low_register(r1, high_bits);
+      set_low_register(r1 + 1, low_bits);
+      break;
+    }
+    case DLGR: {
+#ifdef V8_TARGET_ARCH_S390X
+      RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreinst->R1Value();
+      int r2 = rreinst->R2Value();
+      uint64_t r1_val = get_register(r1);
+      uint64_t r2_val = get_register(r2);
+      DCHECK(r1 % 2 == 0);
+      unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
+      dividend += get_register(r1 + 1);
+      uint64_t remainder = dividend % r2_val;
+      uint64_t quotient = dividend / r2_val;
+      r1_val = remainder;
+      set_register(r1, remainder);
+      set_register(r1 + 1, quotient);
+#else
+      UNREACHABLE();
+#endif
+      break;
+    }
+    case DLR: {
+      RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreinst->R1Value();
+      int r2 = rreinst->R2Value();
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      DCHECK(r1 % 2 == 0);
+      uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
+      dividend += get_low_register<uint32_t>(r1 + 1);
+      uint32_t remainder = dividend % r2_val;
+      uint32_t quotient = dividend / r2_val;
+      r1_val = remainder;
+      set_low_register(r1, remainder);
+      set_low_register(r1 + 1, quotient);
+      break;
+    }
+    case A:
+    case S:
+    case M:
+    case D:
+    case O:
+    case N:
+    case X: {
+      // 32-bit Reg-Mem instructions
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
+      int32_t alu_out = 0;
+      bool isOF = false;
+      switch (op) {
+        case A:
+          isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
+          alu_out = r1_val + mem_val;
+          SetS390ConditionCode<int32_t>(alu_out, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case S:
+          isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
+          alu_out = r1_val - mem_val;
+          SetS390ConditionCode<int32_t>(alu_out, 0);
+          SetS390OverflowCode(isOF);
+          break;
+        case M:
+        case D:
+          UNIMPLEMENTED();
+          break;
+        case O:
+          alu_out = r1_val | mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        case N:
+          alu_out = r1_val & mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        case X:
+          alu_out = r1_val ^ mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        default:
+          UNREACHABLE();
+          break;
+      }
+      set_low_register(r1, alu_out);
+      break;
+    }
+    case OILL:
+    case OIHL: {
+      RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riInst->R1Value();
+      int i = riInst->I2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      if (OILL == op) {
+        // CC is set based on the 16 bits that are AND'd
+        SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
+      } else if (OILH == op) {
+        // CC is set based on the 16 bits that are AND'd
+        SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
+        i = i << 16;
+      } else {
+        UNIMPLEMENTED();
+      }
+      set_low_register(r1, r1_val | i);
+      break;
+    }
+    case NILL:
+    case NILH: {
+      RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riInst->R1Value();
+      int i = riInst->I2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      if (NILL == op) {
+        // CC is set based on the 16 bits that are AND'd
+        SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
+        i |= 0xFFFF0000;
+      } else if (NILH == op) {
+        // CC is set based on the 16 bits that are AND'd
+        SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
+        i = (i << 16) | 0x0000FFFF;
+      } else {
+        UNIMPLEMENTED();
+      }
+      set_low_register(r1, r1_val & i);
+      break;
+    }
+    case AH:
+    case SH:
+    case MH: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxinst->D2Value();
+      intptr_t addr = b2_val + x2_val + d2_val;
+      int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
+      int32_t alu_out = 0;
+      bool isOF = false;
+      if (AH == op) {
+        isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
+        alu_out = r1_val + mem_val;
+      } else if (SH == op) {
+        isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
+        alu_out = r1_val - mem_val;
+      } else if (MH == op) {
+        alu_out = r1_val * mem_val;
+      } else {
+        UNREACHABLE();
+      }
+      set_low_register(r1, alu_out);
+      if (MH != op) {  // MH does not change condition code
+        SetS390ConditionCode<int32_t>(alu_out, 0);
+        SetS390OverflowCode(isOF);
+      }
+      break;
+    }
+    case DSGR: {
+      RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+
+      DCHECK(r1 % 2 == 0);
+
+      int64_t dividend = get_register(r1 + 1);
+      int64_t divisor = get_register(r2);
+      set_register(r1, dividend % divisor);
+      set_register(r1 + 1, dividend / divisor);
+
+      break;
+    }
+    case FLOGR: {
+      RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+
+      DCHECK(r1 % 2 == 0);
+
+      int64_t r2_val = get_register(r2);
+
+      int i = 0;
+      for (; i < 64; i++) {
+        if (r2_val < 0) break;
+        r2_val <<= 1;
+      }
+
+      r2_val = get_register(r2);
+
+      int64_t mask = ~(1 << (63 - i));
+      set_register(r1, i);
+      set_register(r1 + 1, r2_val & mask);
+
+      break;
+    }
+    case MSR:
+    case MSGR: {  // they do not set overflow code
+      RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      if (op == MSR) {
+        int32_t r1_val = get_low_register<int32_t>(r1);
+        int32_t r2_val = get_low_register<int32_t>(r2);
+        set_low_register(r1, r1_val * r2_val);
+      } else if (op == MSGR) {
+        int64_t r1_val = get_register(r1);
+        int64_t r2_val = get_register(r2);
+        set_register(r1, r1_val * r2_val);
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    case MS: {
+      RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+      int r1 = rxinst->R1Value();
+      int b2 = rxinst->B2Value();
+      int x2 = rxinst->X2Value();
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t d2_val = rxinst->D2Value();
+      int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      set_low_register(r1, r1_val * mem_val);
+      break;
+    }
+    case LGBR:
+    case LBR: {
+      RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+#ifdef V8_TARGET_ARCH_S390X
+      int64_t r2_val = get_low_register<int64_t>(r2);
+      r2_val <<= 56;
+      r2_val >>= 56;
+      set_register(r1, r2_val);
+#else
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      r2_val <<= 24;
+      r2_val >>= 24;
+      set_low_register(r1, r2_val);
+#endif
+      break;
+    }
+    case LGHR:
+    case LHR: {
+      RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+#ifdef V8_TARGET_ARCH_S390X
+      int64_t r2_val = get_low_register<int64_t>(r2);
+      r2_val <<= 48;
+      r2_val >>= 48;
+      set_register(r1, r2_val);
+#else
+      int32_t r2_val = get_low_register<int32_t>(r2);
+      r2_val <<= 16;
+      r2_val >>= 16;
+      set_low_register(r1, r2_val);
+#endif
+      break;
+    }
+    case ALCR: {
+      RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      uint32_t alu_out = 0;
+      bool isOF = false;
+
+      alu_out = r1_val + r2_val;
+      bool isOF_original = CheckOverflowForUIntAdd(r1_val, r2_val);
+      if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
+        alu_out = alu_out + 1;
+        isOF = isOF_original || CheckOverflowForUIntAdd(alu_out, 1);
+      } else {
+        isOF = isOF_original;
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
+      break;
+    }
+    case SLBR: {
+      RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rrinst->R1Value();
+      int r2 = rrinst->R2Value();
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      uint32_t r2_val = get_low_register<uint32_t>(r2);
+      uint32_t alu_out = 0;
+      bool isOF = false;
+
+      alu_out = r1_val - r2_val;
+      bool isOF_original = CheckOverflowForUIntSub(r1_val, r2_val);
+      if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
+        alu_out = alu_out - 1;
+        isOF = isOF_original || CheckOverflowForUIntSub(alu_out, 1);
+      } else {
+        isOF = isOF_original;
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
+      break;
+    }
+    default: { return DecodeFourByteFloatingPoint(instr); }
+  }
+  return true;
+}
+
+void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+  switch (op) {
+    case CDLFBR:
+    case CDLGBR:
+    case CELGBR:
+    case CLFDBR:
+    case CLGDBR:
+    case CELFBR:
+    case CLGEBR:
+    case CLFEBR: {
+      RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInstr->R1Value();
+      int r2 = rreInstr->R2Value();
+      if (op == CDLFBR) {
+        uint32_t r2_val = get_low_register<uint32_t>(r2);
+        double r1_val = static_cast<double>(r2_val);
+        set_d_register_from_double(r1, r1_val);
+      } else if (op == CELFBR) {
+        uint32_t r2_val = get_low_register<uint32_t>(r2);
+        float r1_val = static_cast<float>(r2_val);
+        set_d_register_from_float32(r1, r1_val);
+      } else if (op == CDLGBR) {
+        uint64_t r2_val = get_register(r2);
+        double r1_val = static_cast<double>(r2_val);
+        set_d_register_from_double(r1, r1_val);
+      } else if (op == CELGBR) {
+        uint64_t r2_val = get_register(r2);
+        float r1_val = static_cast<float>(r2_val);
+        set_d_register_from_float32(r1, r1_val);
+      } else if (op == CLFDBR) {
+        double r2_val = get_double_from_d_register(r2);
+        uint32_t r1_val = static_cast<uint32_t>(r2_val);
+        set_low_register(r1, r1_val);
+        SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
+      } else if (op == CLFEBR) {
+        float r2_val = get_float32_from_d_register(r2);
+        uint32_t r1_val = static_cast<uint32_t>(r2_val);
+        set_low_register(r1, r1_val);
+        SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
+      } else if (op == CLGDBR) {
+        double r2_val = get_double_from_d_register(r2);
+        uint64_t r1_val = static_cast<uint64_t>(r2_val);
+        set_register(r1, r1_val);
+        SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
+      } else if (op == CLGEBR) {
+        float r2_val = get_float32_from_d_register(r2);
+        uint64_t r1_val = static_cast<uint64_t>(r2_val);
+        set_register(r1, r1_val);
+        SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+  RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+  int r1 = rreInstr->R1Value();
+  int r2 = rreInstr->R2Value();
+  double r2_val = get_double_from_d_register(r2);
+  float r2_fval = get_float32_from_d_register(r2);
+
+  switch (op) {
+    case CFDBR: {
+      int mask_val = rreInstr->M3Value();
+      int32_t r1_val = 0;
+
+      SetS390RoundConditionCode(r2_val, INT32_MAX, INT32_MIN);
+
+      switch (mask_val) {
+        case CURRENT_ROUNDING_MODE:
+        case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+          r1_val = static_cast<int32_t>(r2_val);
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
+          double ceil_val = std::ceil(r2_val);
+          double floor_val = std::floor(r2_val);
+          double sub_val1 = std::fabs(r2_val - floor_val);
+          double sub_val2 = std::fabs(r2_val - ceil_val);
+          if (sub_val1 > sub_val2) {
+            r1_val = static_cast<int32_t>(ceil_val);
+          } else if (sub_val1 < sub_val2) {
+            r1_val = static_cast<int32_t>(floor_val);
+          } else {  // round away from zero:
+            if (r2_val > 0.0) {
+              r1_val = static_cast<int32_t>(ceil_val);
+            } else {
+              r1_val = static_cast<int32_t>(floor_val);
+            }
+          }
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+          double ceil_val = std::ceil(r2_val);
+          double floor_val = std::floor(r2_val);
+          double sub_val1 = std::fabs(r2_val - floor_val);
+          double sub_val2 = std::fabs(r2_val - ceil_val);
+          if (sub_val1 > sub_val2) {
+            r1_val = static_cast<int32_t>(ceil_val);
+          } else if (sub_val1 < sub_val2) {
+            r1_val = static_cast<int32_t>(floor_val);
+          } else {  // check which one is even:
+            int32_t c_v = static_cast<int32_t>(ceil_val);
+            int32_t f_v = static_cast<int32_t>(floor_val);
+            if (f_v % 2 == 0)
+              r1_val = f_v;
+            else
+              r1_val = c_v;
+          }
+          break;
+        }
+        case ROUND_TOWARD_0: {
+          // check for overflow, cast r2_val to 64bit integer
+          // then check value within the range of INT_MIN and INT_MAX
+          // and set condition code accordingly
+          int64_t temp = static_cast<int64_t>(r2_val);
+          if (temp < INT_MIN || temp > INT_MAX) {
+            condition_reg_ = CC_OF;
+          }
+          r1_val = static_cast<int32_t>(r2_val);
+          break;
+        }
+        case ROUND_TOWARD_PLUS_INFINITE: {
+          r1_val = static_cast<int32_t>(std::ceil(r2_val));
+          break;
+        }
+        case ROUND_TOWARD_MINUS_INFINITE: {
+          // check for overflow, cast r2_val to 64bit integer
+          // then check value within the range of INT_MIN and INT_MAX
+          // and set condition code accordingly
+          int64_t temp = static_cast<int64_t>(std::floor(r2_val));
+          if (temp < INT_MIN || temp > INT_MAX) {
+            condition_reg_ = CC_OF;
+          }
+          r1_val = static_cast<int32_t>(std::floor(r2_val));
+          break;
+        }
+        default:
+          UNREACHABLE();
+      }
+      set_low_register(r1, r1_val);
+      break;
+    }
+    case CGDBR: {
+      int mask_val = rreInstr->M3Value();
+      int64_t r1_val = 0;
+
+      SetS390RoundConditionCode(r2_val, INT64_MAX, INT64_MIN);
+
+      switch (mask_val) {
+        case CURRENT_ROUNDING_MODE:
+        case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
+        case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+          UNIMPLEMENTED();
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+          double ceil_val = std::ceil(r2_val);
+          double floor_val = std::floor(r2_val);
+          if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
+            r1_val = static_cast<int64_t>(ceil_val);
+          } else if (std::abs(r2_val - floor_val) <
+                     std::abs(r2_val - ceil_val)) {
+            r1_val = static_cast<int64_t>(floor_val);
+          } else {  // check which one is even:
+            int64_t c_v = static_cast<int64_t>(ceil_val);
+            int64_t f_v = static_cast<int64_t>(floor_val);
+            if (f_v % 2 == 0)
+              r1_val = f_v;
+            else
+              r1_val = c_v;
+          }
+          break;
+        }
+        case ROUND_TOWARD_0: {
+          r1_val = static_cast<int64_t>(r2_val);
+          break;
+        }
+        case ROUND_TOWARD_PLUS_INFINITE: {
+          r1_val = static_cast<int64_t>(std::ceil(r2_val));
+          break;
+        }
+        case ROUND_TOWARD_MINUS_INFINITE: {
+          r1_val = static_cast<int64_t>(std::floor(r2_val));
+          break;
+        }
+        default:
+          UNREACHABLE();
+      }
+      set_register(r1, r1_val);
+      break;
+    }
+    case CGEBR: {
+      int mask_val = rreInstr->M3Value();
+      int64_t r1_val = 0;
+
+      SetS390RoundConditionCode(r2_fval, INT64_MAX, INT64_MIN);
+
+      switch (mask_val) {
+        case CURRENT_ROUNDING_MODE:
+        case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
+        case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+          UNIMPLEMENTED();
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+          float ceil_val = std::ceil(r2_fval);
+          float floor_val = std::floor(r2_fval);
+          if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
+            r1_val = static_cast<int64_t>(ceil_val);
+          } else if (std::abs(r2_fval - floor_val) <
+                     std::abs(r2_fval - ceil_val)) {
+            r1_val = static_cast<int64_t>(floor_val);
+          } else {  // check which one is even:
+            int64_t c_v = static_cast<int64_t>(ceil_val);
+            int64_t f_v = static_cast<int64_t>(floor_val);
+            if (f_v % 2 == 0)
+              r1_val = f_v;
+            else
+              r1_val = c_v;
+          }
+          break;
+        }
+        case ROUND_TOWARD_0: {
+          r1_val = static_cast<int64_t>(r2_fval);
+          break;
+        }
+        case ROUND_TOWARD_PLUS_INFINITE: {
+          r1_val = static_cast<int64_t>(std::ceil(r2_fval));
+          break;
+        }
+        case ROUND_TOWARD_MINUS_INFINITE: {
+          r1_val = static_cast<int64_t>(std::floor(r2_fval));
+          break;
+        }
+        default:
+          UNREACHABLE();
+      }
+      set_register(r1, r1_val);
+      break;
+    }
+    case CFEBR: {
+      int mask_val = rreInstr->M3Value();
+      int32_t r1_val = 0;
+
+      SetS390RoundConditionCode(r2_fval, INT32_MAX, INT32_MIN);
+
+      switch (mask_val) {
+        case CURRENT_ROUNDING_MODE:
+        case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+          r1_val = static_cast<int32_t>(r2_fval);
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
+          float ceil_val = std::ceil(r2_fval);
+          float floor_val = std::floor(r2_fval);
+          float sub_val1 = std::fabs(r2_fval - floor_val);
+          float sub_val2 = std::fabs(r2_fval - ceil_val);
+          if (sub_val1 > sub_val2) {
+            r1_val = static_cast<int32_t>(ceil_val);
+          } else if (sub_val1 < sub_val2) {
+            r1_val = static_cast<int32_t>(floor_val);
+          } else {  // round away from zero:
+            if (r2_fval > 0.0) {
+              r1_val = static_cast<int32_t>(ceil_val);
+            } else {
+              r1_val = static_cast<int32_t>(floor_val);
+            }
+          }
+          break;
+        }
+        case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+          float ceil_val = std::ceil(r2_fval);
+          float floor_val = std::floor(r2_fval);
+          float sub_val1 = std::fabs(r2_fval - floor_val);
+          float sub_val2 = std::fabs(r2_fval - ceil_val);
+          if (sub_val1 > sub_val2) {
+            r1_val = static_cast<int32_t>(ceil_val);
+          } else if (sub_val1 < sub_val2) {
+            r1_val = static_cast<int32_t>(floor_val);
+          } else {  // check which one is even:
+            int32_t c_v = static_cast<int32_t>(ceil_val);
+            int32_t f_v = static_cast<int32_t>(floor_val);
+            if (f_v % 2 == 0)
+              r1_val = f_v;
+            else
+              r1_val = c_v;
+          }
+          break;
+        }
+        case ROUND_TOWARD_0: {
+          // check for overflow, cast r2_fval to 64bit integer
+          // then check value within the range of INT_MIN and INT_MAX
+          // and set condition code accordingly
+          int64_t temp = static_cast<int64_t>(r2_fval);
+          if (temp < INT_MIN || temp > INT_MAX) {
+            condition_reg_ = CC_OF;
+          }
+          r1_val = static_cast<int32_t>(r2_fval);
+          break;
+        }
+        case ROUND_TOWARD_PLUS_INFINITE: {
+          r1_val = static_cast<int32_t>(std::ceil(r2_fval));
+          break;
+        }
+        case ROUND_TOWARD_MINUS_INFINITE: {
+          // check for overflow, cast r2_fval to 64bit integer
+          // then check value within the range of INT_MIN and INT_MAX
+          // and set condition code accordingly
+          int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
+          if (temp < INT_MIN || temp > INT_MAX) {
+            condition_reg_ = CC_OF;
+          }
+          r1_val = static_cast<int32_t>(std::floor(r2_fval));
+          break;
+        }
+        default:
+          UNREACHABLE();
+      }
+      set_low_register(r1, r1_val);
+
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+/**
+ * Decodes and simulates four byte floating point instructions
+ */
+bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  switch (op) {
+    case ADBR:
+    case AEBR:
+    case SDBR:
+    case SEBR:
+    case MDBR:
+    case MEEBR:
+    case MADBR:
+    case DDBR:
+    case DEBR:
+    case CDBR:
+    case CEBR:
+    case CDFBR:
+    case CDGBR:
+    case CEGBR:
+    case CGEBR:
+    case CFDBR:
+    case CGDBR:
+    case SQDBR:
+    case SQEBR:
+    case CFEBR:
+    case CEFBR:
+    case LCDBR:
+    case LPDBR:
+    case LPEBR: {
+      RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInstr->R1Value();
+      int r2 = rreInstr->R2Value();
+      double r1_val = get_double_from_d_register(r1);
+      double r2_val = get_double_from_d_register(r2);
+      float fr1_val = get_float32_from_d_register(r1);
+      float fr2_val = get_float32_from_d_register(r2);
+      if (op == ADBR) {
+        r1_val += r2_val;
+        set_d_register_from_double(r1, r1_val);
+        SetS390ConditionCode<double>(r1_val, 0);
+      } else if (op == AEBR) {
+        fr1_val += fr2_val;
+        set_d_register_from_float32(r1, fr1_val);
+        SetS390ConditionCode<float>(fr1_val, 0);
+      } else if (op == SDBR) {
+        r1_val -= r2_val;
+        set_d_register_from_double(r1, r1_val);
+        SetS390ConditionCode<double>(r1_val, 0);
+      } else if (op == SEBR) {
+        fr1_val -= fr2_val;
+        set_d_register_from_float32(r1, fr1_val);
+        SetS390ConditionCode<float>(fr1_val, 0);
+      } else if (op == MDBR) {
+        r1_val *= r2_val;
+        set_d_register_from_double(r1, r1_val);
+        SetS390ConditionCode<double>(r1_val, 0);
+      } else if (op == MEEBR) {
+        fr1_val *= fr2_val;
+        set_d_register_from_float32(r1, fr1_val);
+        SetS390ConditionCode<float>(fr1_val, 0);
+      } else if (op == MADBR) {
+        RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr);
+        int r1 = rrdInstr->R1Value();
+        int r2 = rrdInstr->R2Value();
+        int r3 = rrdInstr->R3Value();
+        double r1_val = get_double_from_d_register(r1);
+        double r2_val = get_double_from_d_register(r2);
+        double r3_val = get_double_from_d_register(r3);
+        r1_val += r2_val * r3_val;
+        set_d_register_from_double(r1, r1_val);
+        SetS390ConditionCode<double>(r1_val, 0);
+      } else if (op == DDBR) {
+        r1_val /= r2_val;
+        set_d_register_from_double(r1, r1_val);
+        SetS390ConditionCode<double>(r1_val, 0);
+      } else if (op == DEBR) {
+        fr1_val /= fr2_val;
+        set_d_register_from_float32(r1, fr1_val);
+        SetS390ConditionCode<float>(fr1_val, 0);
+      } else if (op == CDBR) {
+        if (isNaN(r1_val) || isNaN(r2_val)) {
+          condition_reg_ = CC_OF;
+        } else {
+          SetS390ConditionCode<double>(r1_val, r2_val);
+        }
+      } else if (op == CEBR) {
+        if (isNaN(fr1_val) || isNaN(fr2_val)) {
+          condition_reg_ = CC_OF;
+        } else {
+          SetS390ConditionCode<float>(fr1_val, fr2_val);
+        }
+      } else if (op == CDGBR) {
+        int64_t r2_val = get_register(r2);
+        double r1_val = static_cast<double>(r2_val);
+        set_d_register_from_double(r1, r1_val);
+      } else if (op == CEGBR) {
+        int64_t fr2_val = get_register(r2);
+        float fr1_val = static_cast<float>(fr2_val);
+        set_d_register_from_float32(r1, fr1_val);
+      } else if (op == CDFBR) {
+        int32_t r2_val = get_low_register<int32_t>(r2);
+        double r1_val = static_cast<double>(r2_val);
+        set_d_register_from_double(r1, r1_val);
+      } else if (op == CEFBR) {
+        int32_t fr2_val = get_low_register<int32_t>(r2);
+        float fr1_val = static_cast<float>(fr2_val);
+        set_d_register_from_float32(r1, fr1_val);
+      } else if (op == CFDBR) {
+        DecodeFourByteFloatingPointRound(instr);
+      } else if (op == CGDBR) {
+        DecodeFourByteFloatingPointRound(instr);
+      } else if (op == CGEBR) {
+        DecodeFourByteFloatingPointRound(instr);
+      } else if (op == SQDBR) {
+        r1_val = std::sqrt(r2_val);
+        set_d_register_from_double(r1, r1_val);
+      } else if (op == SQEBR) {
+        fr1_val = std::sqrt(fr2_val);
+        set_d_register_from_float32(r1, fr1_val);
+      } else if (op == CFEBR) {
+        DecodeFourByteFloatingPointRound(instr);
+      } else if (op == LCDBR) {
+        r1_val = -r2_val;
+        set_d_register_from_double(r1, r1_val);
+        if (r2_val != r2_val) {  // input is NaN
+          condition_reg_ = CC_OF;
+        } else if (r2_val == 0) {
+          condition_reg_ = CC_EQ;
+        } else if (r2_val < 0) {
+          condition_reg_ = CC_LT;
+        } else if (r2_val > 0) {
+          condition_reg_ = CC_GT;
+        }
+      } else if (op == LPDBR) {
+        r1_val = std::fabs(r2_val);
+        set_d_register_from_double(r1, r1_val);
+        if (r2_val != r2_val) {  // input is NaN
+          condition_reg_ = CC_OF;
+        } else if (r2_val == 0) {
+          condition_reg_ = CC_EQ;
+        } else {
+          condition_reg_ = CC_GT;
+        }
+      } else if (op == LPEBR) {
+        fr1_val = std::fabs(fr2_val);
+        set_d_register_from_float32(r1, fr1_val);
+        if (fr2_val != fr2_val) {  // input is NaN
+          condition_reg_ = CC_OF;
+        } else if (fr2_val == 0) {
+          condition_reg_ = CC_EQ;
+        } else {
+          condition_reg_ = CC_GT;
+        }
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    case CDLFBR:
+    case CDLGBR:
+    case CELGBR:
+    case CLFDBR:
+    case CELFBR:
+    case CLGDBR:
+    case CLGEBR:
+    case CLFEBR: {
+      DecodeFourByteFloatingPointIntConversion(instr);
+      break;
+    }
+    case TMLL: {
+      RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+      int r1 = riinst->R1Value();
+      int mask = riinst->I2Value() & 0x0000FFFF;
+      if (mask == 0) {
+        condition_reg_ = 0x0;
+        break;
+      }
+      uint32_t r1_val = get_low_register<uint32_t>(r1);
+      r1_val = r1_val & 0x0000FFFF;  // uses only the last 16bits
+
+      // Test if all selected bits are Zero
+      bool allSelectedBitsAreZeros = true;
+      for (int i = 0; i < 15; i++) {
+        if (mask & (1 << i)) {
+          if (r1_val & (1 << i)) {
+            allSelectedBitsAreZeros = false;
+            break;
+          }
+        }
+      }
+      if (allSelectedBitsAreZeros) {
+        condition_reg_ = 0x8;
+        break;  // Done!
+      }
+
+      // Test if all selected bits are one
+      bool allSelectedBitsAreOnes = true;
+      for (int i = 0; i < 15; i++) {
+        if (mask & (1 << i)) {
+          if (!(r1_val & (1 << i))) {
+            allSelectedBitsAreOnes = false;
+            break;
+          }
+        }
+      }
+      if (allSelectedBitsAreOnes) {
+        condition_reg_ = 0x1;
+        break;  // Done!
+      }
+
+      // Now we know selected bits mixed zeros and ones
+      // Test if the leftmost bit is zero or one
+      for (int i = 14; i >= 0; i--) {
+        if (mask & (1 << i)) {
+          if (r1_val & (1 << i)) {
+            // leftmost bit is one
+            condition_reg_ = 0x2;
+          } else {
+            // leftmost bit is zero
+            condition_reg_ = 0x4;
+          }
+          break;  // Done!
+        }
+      }
+      break;
+    }
+    case LEDBR: {
+      RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInst->R1Value();
+      int r2 = rreInst->R2Value();
+      double r2_val = get_double_from_d_register(r2);
+      set_d_register_from_float32(r1, static_cast<float>(r2_val));
+      break;
+    }
+    case FIDBRA: {
+      RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int m3 = rrfInst->M3Value();
+      double r2_val = get_double_from_d_register(r2);
+      DCHECK(rrfInst->M4Value() == 0);
+      switch (m3) {
+        case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
+          set_d_register_from_double(r1, round(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_0:
+          set_d_register_from_double(r1, trunc(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
+          set_d_register_from_double(r1, std::ceil(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
+          set_d_register_from_double(r1, std::floor(r2_val));
+          break;
+        default:
+          UNIMPLEMENTED();
+          break;
+      }
+      break;
+    }
+    case FIEBRA: {
+      RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+      int r1 = rrfInst->R1Value();
+      int r2 = rrfInst->R2Value();
+      int m3 = rrfInst->M3Value();
+      float r2_val = get_float32_from_d_register(r2);
+      DCHECK(rrfInst->M4Value() == 0);
+      switch (m3) {
+        case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
+          set_d_register_from_float32(r1, round(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_0:
+          set_d_register_from_float32(r1, trunc(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
+          set_d_register_from_float32(r1, std::ceil(r2_val));
+          break;
+        case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
+          set_d_register_from_float32(r1, std::floor(r2_val));
+          break;
+        default:
+          UNIMPLEMENTED();
+          break;
+      }
+      break;
+    }
+    case MSDBR: {
+      UNIMPLEMENTED();
+      break;
+    }
+    case LDEBR: {
+      RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+      int r1 = rreInstr->R1Value();
+      int r2 = rreInstr->R2Value();
+      float fp_val = get_float32_from_d_register(r2);
+      double db_val = static_cast<double>(fp_val);
+      set_d_register_from_double(r1, db_val);
+      break;
+    }
+    default: {
+      UNREACHABLE();
+      return false;
+    }
+  }
+  return true;
+}
+
+// Decode routine for six-byte instructions
+bool Simulator::DecodeSixByte(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  // Pre-cast instruction to various types
+  RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr);
+  RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+  RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
+  RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
+  RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+  SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
+  SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr);
+  SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
+
+  switch (op) {
+    case CLIY: {
+      // Compare Immediate (Mem - Imm) (8)
+      int b1 = siyInstr->B1Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t d1_val = siyInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+      uint8_t mem_val = ReadB(addr);
+      uint8_t imm_val = siyInstr->I2Value();
+      SetS390ConditionCode<uint8_t>(mem_val, imm_val);
+      break;
+    }
+    case TMY: {
+      // Test Under Mask (Mem - Imm) (8)
+      int b1 = siyInstr->B1Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t d1_val = siyInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+      uint8_t mem_val = ReadB(addr);
+      uint8_t imm_val = siyInstr->I2Value();
+      uint8_t selected_bits = mem_val & imm_val;
+      // CC0: Selected bits are zero
+      // CC1: Selected bits mixed zeros and ones
+      // CC3: Selected bits all ones
+      if (0 == selected_bits) {
+        condition_reg_ = CC_EQ;  // CC0
+      } else if (selected_bits == imm_val) {
+        condition_reg_ = 0x1;  // CC3
+      } else {
+        condition_reg_ = 0x4;  // CC1
+      }
+      break;
+    }
+    case LDEB: {
+      // Load Float
+      int r1 = rxeInstr->R1Value();
+      int rb = rxeInstr->B2Value();
+      int rx = rxeInstr->X2Value();
+      int offset = rxeInstr->D2Value();
+      int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+      int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
+      double ret = static_cast<double>(
+          *reinterpret_cast<float*>(rx_val + rb_val + offset));
+      set_d_register_from_double(r1, ret);
+      break;
+    }
+    case LAY: {
+      // Load Address
+      int r1 = rxyInstr->R1Value();
+      int rb = rxyInstr->B2Value();
+      int rx = rxyInstr->X2Value();
+      int offset = rxyInstr->D2Value();
+      int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+      int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
+      set_register(r1, rx_val + rb_val + offset);
+      break;
+    }
+    case LARL: {
+      // Load Addresss Relative Long
+      int r1 = rilInstr->R1Value();
+      intptr_t offset = rilInstr->I2Value() * 2;
+      set_register(r1, get_pc() + offset);
+      break;
+    }
+    case LLILF: {
+      // Load Logical into lower 32-bits (zero extend upper 32-bits)
+      int r1 = rilInstr->R1Value();
+      uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+      set_register(r1, imm);
+      break;
+    }
+    case LLIHF: {
+      // Load Logical Immediate into high word
+      int r1 = rilInstr->R1Value();
+      uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+      set_register(r1, imm << 32);
+      break;
+    }
+    case OILF:
+    case NILF:
+    case IILF: {
+      // Bitwise Op on lower 32-bits
+      int r1 = rilInstr->R1Value();
+      uint32_t imm = rilInstr->I2UnsignedValue();
+      uint32_t alu_out = get_low_register<uint32_t>(r1);
+      if (NILF == op) {
+        alu_out &= imm;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (OILF == op) {
+        alu_out |= imm;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == IILF) {
+        alu_out = imm;
+      } else {
+        DCHECK(false);
+      }
+      set_low_register(r1, alu_out);
+      break;
+    }
+    case OIHF:
+    case NIHF:
+    case IIHF: {
+      // Bitwise Op on upper 32-bits
+      int r1 = rilInstr->R1Value();
+      uint32_t imm = rilInstr->I2Value();
+      uint32_t alu_out = get_high_register<uint32_t>(r1);
+      if (op == NIHF) {
+        alu_out &= imm;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == OIHF) {
+        alu_out |= imm;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == IIHF) {
+        alu_out = imm;
+      } else {
+        DCHECK(false);
+      }
+      set_high_register(r1, alu_out);
+      break;
+    }
+    case CLFI: {
+      // Compare Logical with Immediate (32)
+      int r1 = rilInstr->R1Value();
+      uint32_t imm = rilInstr->I2UnsignedValue();
+      SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
+      break;
+    }
+    case CFI: {
+      // Compare with Immediate (32)
+      int r1 = rilInstr->R1Value();
+      int32_t imm = rilInstr->I2Value();
+      SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
+      break;
+    }
+    case CLGFI: {
+      // Compare Logical with Immediate (64)
+      int r1 = rilInstr->R1Value();
+      uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+      SetS390ConditionCode<uint64_t>(get_register(r1), imm);
+      break;
+    }
+    case CGFI: {
+      // Compare with Immediate (64)
+      int r1 = rilInstr->R1Value();
+      int64_t imm = static_cast<int64_t>(rilInstr->I2Value());
+      SetS390ConditionCode<int64_t>(get_register(r1), imm);
+      break;
+    }
+    case BRASL: {
+      // Branch and Save Relative Long
+      int r1 = rilInstr->R1Value();
+      intptr_t d2 = rilInstr->I2Value();
+      intptr_t pc = get_pc();
+      set_register(r1, pc + 6);  // save next instruction to register
+      set_pc(pc + d2 * 2);       // update register
+      break;
+    }
+    case BRCL: {
+      // Branch on Condition Relative Long
+      Condition m1 = (Condition)rilInstr->R1Value();
+      if (TestConditionCode((Condition)m1)) {
+        intptr_t offset = rilInstr->I2Value() * 2;
+        set_pc(get_pc() + offset);
+      }
+      break;
+    }
+    case LMG:
+    case STMG: {
+      // Store Multiple 64-bits.
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int rb = rsyInstr->B2Value();
+      int offset = rsyInstr->D2Value();
+
+      // Regs roll around if r3 is less than r1.
+      // Artifically increase r3 by 16 so we can calculate
+      // the number of regs stored properly.
+      if (r3 < r1) r3 += 16;
+
+      int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+
+      // Store each register in ascending order.
+      for (int i = 0; i <= r3 - r1; i++) {
+        if (op == LMG) {
+          int64_t value = ReadDW(rb_val + offset + 8 * i);
+          set_register((r1 + i) % 16, value);
+        } else if (op == STMG) {
+          int64_t value = get_register((r1 + i) % 16);
+          WriteDW(rb_val + offset + 8 * i, value);
+        } else {
+          DCHECK(false);
+        }
+      }
+      break;
+    }
+    case SLLK:
+    case RLL:
+    case SRLK:
+    case SLLG:
+    case RLLG:
+    case SRLG: {
+      DecodeSixByteBitShift(instr);
+      break;
+    }
+    case SLAK:
+    case SRAK: {
+      // 32-bit non-clobbering shift-left/right arithmetic
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int b2 = rsyInstr->B2Value();
+      intptr_t d2 = rsyInstr->D2Value();
+      // only takes rightmost 6 bits
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      int32_t r3_val = get_low_register<int32_t>(r3);
+      int32_t alu_out = 0;
+      bool isOF = false;
+      if (op == SLAK) {
+        isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
+        alu_out = r3_val << shiftBits;
+      } else if (op == SRAK) {
+        alu_out = r3_val >> shiftBits;
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case SLAG:
+    case SRAG: {
+      // 64-bit non-clobbering shift-left/right arithmetic
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int b2 = rsyInstr->B2Value();
+      intptr_t d2 = rsyInstr->D2Value();
+      // only takes rightmost 6 bits
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      int64_t r3_val = get_register(r3);
+      intptr_t alu_out = 0;
+      bool isOF = false;
+      if (op == SLAG) {
+        isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
+        alu_out = r3_val << shiftBits;
+      } else if (op == SRAG) {
+        alu_out = r3_val >> shiftBits;
+      }
+      set_register(r1, alu_out);
+      SetS390ConditionCode<intptr_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case LMY:
+    case STMY: {
+      RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
+      // Load/Store Multiple (32)
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int b2 = rsyInstr->B2Value();
+      int offset = rsyInstr->D2Value();
+
+      // Regs roll around if r3 is less than r1.
+      // Artifically increase r3 by 16 so we can calculate
+      // the number of regs stored properly.
+      if (r3 < r1) r3 += 16;
+
+      int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
+
+      // Store each register in ascending order.
+      for (int i = 0; i <= r3 - r1; i++) {
+        if (op == LMY) {
+          int32_t value = ReadW(b2_val + offset + 4 * i, instr);
+          set_low_register((r1 + i) % 16, value);
+        } else {
+          int32_t value = get_low_register<int32_t>((r1 + i) % 16);
+          WriteW(b2_val + offset + 4 * i, value, instr);
+        }
+      }
+      break;
+    }
+    case LT:
+    case LTG: {
+      // Load and Test (32/64)
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t addr = x2_val + b2_val + d2;
+
+      if (op == LT) {
+        int32_t value = ReadW(addr, instr);
+        set_low_register(r1, value);
+        SetS390ConditionCode<int32_t>(value, 0);
+      } else if (op == LTG) {
+        int64_t value = ReadDW(addr);
+        set_register(r1, value);
+        SetS390ConditionCode<int64_t>(value, 0);
+      }
+      break;
+    }
+    case LY:
+    case LB:
+    case LGB:
+    case LG:
+    case LGF:
+    case LGH:
+    case LLGF:
+    case STG:
+    case STY:
+    case STCY:
+    case STHY:
+    case STEY:
+    case LDY:
+    case LHY:
+    case STDY:
+    case LEY: {
+      // Miscellaneous Loads and Stores
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t addr = x2_val + b2_val + d2;
+      if (op == LY) {
+        uint32_t mem_val = ReadWU(addr, instr);
+        set_low_register(r1, mem_val);
+      } else if (op == LB) {
+        int32_t mem_val = ReadB(addr);
+        set_low_register(r1, mem_val);
+      } else if (op == LGB) {
+        int64_t mem_val = ReadB(addr);
+        set_register(r1, mem_val);
+      } else if (op == LG) {
+        int64_t mem_val = ReadDW(addr);
+        set_register(r1, mem_val);
+      } else if (op == LGF) {
+        int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
+        set_register(r1, mem_val);
+      } else if (op == LGH) {
+        int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
+        set_register(r1, mem_val);
+      } else if (op == LLGF) {
+        //      int r1 = rreInst->R1Value();
+        //      int r2 = rreInst->R2Value();
+        //      int32_t r2_val = get_low_register<int32_t>(r2);
+        //      uint64_t r2_finalval = (static_cast<uint64_t>(r2_val)
+        //        & 0x00000000ffffffff);
+        //      set_register(r1, r2_finalval);
+        //      break;
+        uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
+        set_register(r1, mem_val);
+      } else if (op == LDY) {
+        uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
+        set_d_register(r1, dbl_val);
+      } else if (op == STEY) {
+        int64_t frs_val = get_d_register(r1) >> 32;
+        WriteW(addr, static_cast<int32_t>(frs_val), instr);
+      } else if (op == LEY) {
+        float float_val = *reinterpret_cast<float*>(addr);
+        set_d_register_from_float32(r1, float_val);
+      } else if (op == STY) {
+        uint32_t value = get_low_register<uint32_t>(r1);
+        WriteW(addr, value, instr);
+      } else if (op == STG) {
+        uint64_t value = get_register(r1);
+        WriteDW(addr, value);
+      } else if (op == STDY) {
+        int64_t frs_val = get_d_register(r1);
+        WriteDW(addr, frs_val);
+      } else if (op == STCY) {
+        uint8_t value = get_low_register<uint32_t>(r1);
+        WriteB(addr, value);
+      } else if (op == STHY) {
+        uint16_t value = get_low_register<uint32_t>(r1);
+        WriteH(addr, value, instr);
+      } else if (op == LHY) {
+        int32_t result = static_cast<int32_t>(ReadH(addr, instr));
+        set_low_register(r1, result);
+      }
+      break;
+    }
+    case MVC: {
+      // Move Character
+      int b1 = ssInstr->B1Value();
+      intptr_t d1 = ssInstr->D1Value();
+      int b2 = ssInstr->B2Value();
+      intptr_t d2 = ssInstr->D2Value();
+      int length = ssInstr->Length();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t src_addr = b2_val + d2;
+      intptr_t dst_addr = b1_val + d1;
+      // remember that the length is the actual length - 1
+      for (int i = 0; i < length + 1; ++i) {
+        WriteB(dst_addr++, ReadB(src_addr++));
+      }
+      break;
+    }
+    case MVHI: {
+      // Move Integer (32)
+      int b1 = silInstr->B1Value();
+      intptr_t d1 = silInstr->D1Value();
+      int16_t i2 = silInstr->I2Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t src_addr = b1_val + d1;
+      WriteW(src_addr, i2, instr);
+      break;
+    }
+    case MVGHI: {
+      // Move Integer (64)
+      int b1 = silInstr->B1Value();
+      intptr_t d1 = silInstr->D1Value();
+      int16_t i2 = silInstr->I2Value();
+      int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+      intptr_t src_addr = b1_val + d1;
+      WriteDW(src_addr, i2);
+      break;
+    }
+    case LLH:
+    case LLGH: {
+      // Load Logical Halfworld
+      int r1 = rxyInstr->R1Value();
+      int b2 = rxyInstr->B2Value();
+      int x2 = rxyInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxyInstr->D2Value();
+      uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
+      if (op == LLH) {
+        set_low_register(r1, mem_val);
+      } else if (op == LLGH) {
+        set_register(r1, mem_val);
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    case LLC:
+    case LLGC: {
+      // Load Logical Character - loads a byte and zero extends.
+      int r1 = rxyInstr->R1Value();
+      int b2 = rxyInstr->B2Value();
+      int x2 = rxyInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxyInstr->D2Value();
+      uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val);
+      if (op == LLC) {
+        set_low_register(r1, static_cast<uint32_t>(mem_val));
+      } else if (op == LLGC) {
+        set_register(r1, static_cast<uint64_t>(mem_val));
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    case XIHF:
+    case XILF: {
+      int r1 = rilInstr->R1Value();
+      uint32_t imm = rilInstr->I2UnsignedValue();
+      uint32_t alu_out = 0;
+      if (op == XILF) {
+        alu_out = get_low_register<uint32_t>(r1);
+        alu_out = alu_out ^ imm;
+        set_low_register(r1, alu_out);
+      } else if (op == XIHF) {
+        alu_out = get_high_register<uint32_t>(r1);
+        alu_out = alu_out ^ imm;
+        set_high_register(r1, alu_out);
+      } else {
+        UNREACHABLE();
+      }
+      SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      break;
+    }
+    case RISBG: {
+      // Rotate then insert selected bits
+      int r1 = rieInstr->R1Value();
+      int r2 = rieInstr->R2Value();
+      // Starting Bit Position is Bits 2-7 of I3 field
+      uint32_t start_bit = rieInstr->I3Value() & 0x3F;
+      // Ending Bit Position is Bits 2-7 of I4 field
+      uint32_t end_bit = rieInstr->I4Value() & 0x3F;
+      // Shift Amount is Bits 2-7 of I5 field
+      uint32_t shift_amount = rieInstr->I5Value() & 0x3F;
+      // Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
+      bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80));
+
+      uint64_t src_val = get_register(r2);
+
+      // Rotate Left by Shift Amount first
+      uint64_t rotated_val =
+          (src_val << shift_amount) | (src_val >> (64 - shift_amount));
+      int32_t width = end_bit - start_bit + 1;
+
+      uint64_t selection_mask = 0;
+      if (width < 64) {
+        selection_mask = (static_cast<uint64_t>(1) << width) - 1;
+      } else {
+        selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
+      }
+      selection_mask = selection_mask << (63 - end_bit);
+
+      uint64_t selected_val = rotated_val & selection_mask;
+
+      if (!zero_remaining) {
+        // Merged the unselected bits from the original value
+        selected_val = (src_val & ~selection_mask) | selected_val;
+      }
+
+      // Condition code is set by treating result as 64-bit signed int
+      SetS390ConditionCode<int64_t>(selected_val, 0);
+      set_register(r1, selected_val);
+      break;
+    }
+    default:
+      return DecodeSixByteArithmetic(instr);
+  }
+  return true;
+}
+
+void Simulator::DecodeSixByteBitShift(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  // Pre-cast instruction to various types
+
+  RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
+
+  switch (op) {
+    case SLLK:
+    case RLL:
+    case SRLK: {
+      // For SLLK/SRLL, the 32-bit third operand is shifted the number
+      // of bits specified by the second-operand address, and the result is
+      // placed at the first-operand location. Except for when the R1 and R3
+      // fields designate the same register, the third operand remains
+      // unchanged in general register R3.
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int b2 = rsyInstr->B2Value();
+      intptr_t d2 = rsyInstr->D2Value();
+      // only takes rightmost 6 bits
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      // unsigned
+      uint32_t r3_val = get_low_register<uint32_t>(r3);
+      uint32_t alu_out = 0;
+      if (SLLK == op) {
+        alu_out = r3_val << shiftBits;
+      } else if (SRLK == op) {
+        alu_out = r3_val >> shiftBits;
+      } else if (RLL == op) {
+        uint32_t rotateBits = r3_val >> (32 - shiftBits);
+        alu_out = (r3_val << shiftBits) | (rotateBits);
+      } else {
+        UNREACHABLE();
+      }
+      set_low_register(r1, alu_out);
+      break;
+    }
+    case SLLG:
+    case RLLG:
+    case SRLG: {
+      // For SLLG/SRLG, the 64-bit third operand is shifted the number
+      // of bits specified by the second-operand address, and the result is
+      // placed at the first-operand location. Except for when the R1 and R3
+      // fields designate the same register, the third operand remains
+      // unchanged in general register R3.
+      int r1 = rsyInstr->R1Value();
+      int r3 = rsyInstr->R3Value();
+      int b2 = rsyInstr->B2Value();
+      intptr_t d2 = rsyInstr->D2Value();
+      // only takes rightmost 6 bits
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int shiftBits = (b2_val + d2) & 0x3F;
+      // unsigned
+      uint64_t r3_val = get_register(r3);
+      uint64_t alu_out = 0;
+      if (op == SLLG) {
+        alu_out = r3_val << shiftBits;
+      } else if (op == SRLG) {
+        alu_out = r3_val >> shiftBits;
+      } else if (op == RLLG) {
+        uint64_t rotateBits = r3_val >> (64 - shiftBits);
+        alu_out = (r3_val << shiftBits) | (rotateBits);
+      } else {
+        UNREACHABLE();
+      }
+      set_register(r1, alu_out);
+      break;
+    }
+    default:
+      UNREACHABLE();
+  }
+}
+
+/**
+ * Decodes and simulates six byte arithmetic instructions
+ */
+bool Simulator::DecodeSixByteArithmetic(Instruction* instr) {
+  Opcode op = instr->S390OpcodeValue();
+
+  // Pre-cast instruction to various types
+  SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
+
+  switch (op) {
+    case CDB:
+    case ADB:
+    case SDB:
+    case MDB:
+    case DDB:
+    case SQDB: {
+      RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
+      int b2 = rxeInstr->B2Value();
+      int x2 = rxeInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxeInstr->D2Value();
+      double r1_val = get_double_from_d_register(rxeInstr->R1Value());
+      double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
+
+      switch (op) {
+        case CDB:
+          SetS390ConditionCode<double>(r1_val, dbl_val);
+          break;
+        case ADB:
+          r1_val += dbl_val;
+          set_d_register_from_double(r1, r1_val);
+          SetS390ConditionCode<double>(r1_val, 0);
+          break;
+        case SDB:
+          r1_val -= dbl_val;
+          set_d_register_from_double(r1, r1_val);
+          SetS390ConditionCode<double>(r1_val, 0);
+          break;
+        case MDB:
+          r1_val *= dbl_val;
+          set_d_register_from_double(r1, r1_val);
+          SetS390ConditionCode<double>(r1_val, 0);
+          break;
+        case DDB:
+          r1_val /= dbl_val;
+          set_d_register_from_double(r1, r1_val);
+          SetS390ConditionCode<double>(r1_val, 0);
+          break;
+        case SQDB:
+          r1_val = std::sqrt(dbl_val);
+          set_d_register_from_double(r1, r1_val);
+        default:
+          UNREACHABLE();
+          break;
+      }
+      break;
+    }
+    case LRV:
+    case LRVH:
+    case STRV:
+    case STRVH: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+      int32_t r1_val = get_low_register<int32_t>(r1);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      intptr_t mem_addr = b2_val + x2_val + d2;
+
+      if (op == LRVH) {
+        int16_t mem_val = ReadH(mem_addr, instr);
+        int32_t result = ByteReverse(mem_val) & 0x0000ffff;
+        result |= r1_val & 0xffff0000;
+        set_low_register(r1, result);
+      } else if (op == LRV) {
+        int32_t mem_val = ReadW(mem_addr, instr);
+        set_low_register(r1, ByteReverse(mem_val));
+      } else if (op == STRVH) {
+        int16_t result = static_cast<int16_t>(r1_val >> 16);
+        WriteH(mem_addr, ByteReverse(result), instr);
+      } else if (op == STRV) {
+        WriteW(mem_addr, ByteReverse(r1_val), instr);
+      }
+
+      break;
+    }
+    case AHIK:
+    case AGHIK: {
+      // Non-clobbering Add Halfword Immediate
+      RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr);
+      int r1 = rieInst->R1Value();
+      int r2 = rieInst->R2Value();
+      bool isOF = false;
+      if (AHIK == op) {
+        // 32-bit Add
+        int32_t r2_val = get_low_register<int32_t>(r2);
+        int32_t imm = rieInst->I6Value();
+        isOF = CheckOverflowForIntAdd(r2_val, imm, int32_t);
+        set_low_register(r1, r2_val + imm);
+        SetS390ConditionCode<int32_t>(r2_val + imm, 0);
+      } else if (AGHIK == op) {
+        // 64-bit Add
+        int64_t r2_val = get_register(r2);
+        int64_t imm = static_cast<int64_t>(rieInst->I6Value());
+        isOF = CheckOverflowForIntAdd(r2_val, imm, int64_t);
+        set_register(r1, r2_val + imm);
+        SetS390ConditionCode<int64_t>(r2_val + imm, 0);
+      }
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case ALFI:
+    case SLFI: {
+      RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+      int r1 = rilInstr->R1Value();
+      uint32_t imm = rilInstr->I2UnsignedValue();
+      uint32_t alu_out = get_low_register<uint32_t>(r1);
+      if (op == ALFI) {
+        alu_out += imm;
+      } else if (op == SLFI) {
+        alu_out -= imm;
+      }
+      SetS390ConditionCode<uint32_t>(alu_out, 0);
+      set_low_register(r1, alu_out);
+      break;
+    }
+    case ML: {
+      UNIMPLEMENTED();
+      break;
+    }
+    case AY:
+    case SY:
+    case NY:
+    case OY:
+    case XY:
+    case CY: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int32_t alu_out = get_low_register<int32_t>(r1);
+      int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
+      bool isOF = false;
+      if (op == AY) {
+        isOF = CheckOverflowForIntAdd(alu_out, mem_val, int32_t);
+        alu_out += mem_val;
+        SetS390ConditionCode<int32_t>(alu_out, 0);
+        SetS390OverflowCode(isOF);
+      } else if (op == SY) {
+        isOF = CheckOverflowForIntSub(alu_out, mem_val, int32_t);
+        alu_out -= mem_val;
+        SetS390ConditionCode<int32_t>(alu_out, 0);
+        SetS390OverflowCode(isOF);
+      } else if (op == NY) {
+        alu_out &= mem_val;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == OY) {
+        alu_out |= mem_val;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == XY) {
+        alu_out ^= mem_val;
+        SetS390BitWiseConditionCode<uint32_t>(alu_out);
+      } else if (op == CY) {
+        SetS390ConditionCode<int32_t>(alu_out, mem_val);
+      }
+      if (op != CY) {
+        set_low_register(r1, alu_out);
+      }
+      break;
+    }
+    case AHY:
+    case SHY: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value());
+      int b2 = rxyInstr->B2Value();
+      int x2 = rxyInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxyInstr->D2Value();
+      int32_t mem_val =
+          static_cast<int32_t>(ReadH(b2_val + d2_val + x2_val, instr));
+      int32_t alu_out = 0;
+      bool isOF = false;
+      switch (op) {
+        case AHY:
+          alu_out = r1_val + mem_val;
+          isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
+          break;
+        case SHY:
+          alu_out = r1_val - mem_val;
+          isOF = CheckOverflowForIntSub(r1_val, mem_val, int64_t);
+          break;
+        default:
+          UNREACHABLE();
+          break;
+      }
+      set_low_register(r1, alu_out);
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case AG:
+    case SG:
+    case NG:
+    case OG:
+    case XG:
+    case CG:
+    case CLG: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t alu_out = get_register(r1);
+      int64_t mem_val = ReadDW(b2_val + x2_val + d2);
+
+      switch (op) {
+        case AG: {
+          alu_out += mem_val;
+          SetS390ConditionCode<int32_t>(alu_out, 0);
+          break;
+        }
+        case SG: {
+          alu_out -= mem_val;
+          SetS390ConditionCode<int32_t>(alu_out, 0);
+          break;
+        }
+        case NG: {
+          alu_out &= mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        }
+        case OG: {
+          alu_out |= mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        }
+        case XG: {
+          alu_out ^= mem_val;
+          SetS390BitWiseConditionCode<uint32_t>(alu_out);
+          break;
+        }
+        case CG: {
+          SetS390ConditionCode<int64_t>(alu_out, mem_val);
+          break;
+        }
+        case CLG: {
+          SetS390ConditionCode<uint64_t>(alu_out, mem_val);
+          break;
+        }
+        default: {
+          DCHECK(false);
+          break;
+        }
+      }
+
+      if (op != CG) {
+        set_register(r1, alu_out);
+      }
+      break;
+    }
+    case ALY:
+    case SLY:
+    case CLY: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      int x2 = rxyInstr->X2Value();
+      int b2 = rxyInstr->B2Value();
+      int d2 = rxyInstr->D2Value();
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      uint32_t alu_out = get_low_register<uint32_t>(r1);
+      uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
+
+      if (op == ALY) {
+        alu_out += mem_val;
+        set_low_register(r1, alu_out);
+        SetS390ConditionCode<uint32_t>(alu_out, 0);
+      } else if (op == SLY) {
+        alu_out -= mem_val;
+        set_low_register(r1, alu_out);
+        SetS390ConditionCode<uint32_t>(alu_out, 0);
+      } else if (op == CLY) {
+        SetS390ConditionCode<uint32_t>(alu_out, mem_val);
+      }
+      break;
+    }
+    case AGFI:
+    case AFI: {
+      // Clobbering Add Word Immediate
+      RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+      int32_t r1 = rilInstr->R1Value();
+      bool isOF = false;
+      if (AFI == op) {
+        // 32-bit Add (Register + 32-bit Immediate)
+        int32_t r1_val = get_low_register<int32_t>(r1);
+        int32_t i2 = rilInstr->I2Value();
+        isOF = CheckOverflowForIntAdd(r1_val, i2, int32_t);
+        int32_t alu_out = r1_val + i2;
+        set_low_register(r1, alu_out);
+        SetS390ConditionCode<int32_t>(alu_out, 0);
+      } else if (AGFI == op) {
+        // 64-bit Add (Register + 32-bit Imm)
+        int64_t r1_val = get_register(r1);
+        int64_t i2 = static_cast<int64_t>(rilInstr->I2Value());
+        isOF = CheckOverflowForIntAdd(r1_val, i2, int64_t);
+        int64_t alu_out = r1_val + i2;
+        set_register(r1, alu_out);
+        SetS390ConditionCode<int64_t>(alu_out, 0);
+      }
+      SetS390OverflowCode(isOF);
+      break;
+    }
+    case ASI: {
+      // TODO(bcleung): Change all fooInstr->I2Value() to template functions.
+      // The below static cast to 8 bit and then to 32 bit is necessary
+      // because siyInstr->I2Value() returns a uint8_t, which a direct
+      // cast to int32_t could incorrectly interpret.
+      int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
+      int32_t i2 = static_cast<int32_t>(i2_8bit);
+      int b1 = siyInstr->B1Value();
+      intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+
+      int d1_val = siyInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+
+      int32_t mem_val = ReadW(addr, instr);
+      bool isOF = CheckOverflowForIntAdd(mem_val, i2, int32_t);
+      int32_t alu_out = mem_val + i2;
+      SetS390ConditionCode<int32_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      WriteW(addr, alu_out, instr);
+      break;
+    }
+    case AGSI: {
+      // TODO(bcleung): Change all fooInstr->I2Value() to template functions.
+      // The below static cast to 8 bit and then to 32 bit is necessary
+      // because siyInstr->I2Value() returns a uint8_t, which a direct
+      // cast to int32_t could incorrectly interpret.
+      int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
+      int64_t i2 = static_cast<int64_t>(i2_8bit);
+      int b1 = siyInstr->B1Value();
+      intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+
+      int d1_val = siyInstr->D1Value();
+      intptr_t addr = b1_val + d1_val;
+
+      int64_t mem_val = ReadDW(addr);
+      int isOF = CheckOverflowForIntAdd(mem_val, i2, int64_t);
+      int64_t alu_out = mem_val + i2;
+      SetS390ConditionCode<uint64_t>(alu_out, 0);
+      SetS390OverflowCode(isOF);
+      WriteDW(addr, alu_out);
+      break;
+    }
+    case AGF:
+    case SGF:
+    case ALG:
+    case SLG: {
+#ifndef V8_TARGET_ARCH_S390X
+      DCHECK(false);
+#endif
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      uint64_t r1_val = get_register(rxyInstr->R1Value());
+      int b2 = rxyInstr->B2Value();
+      int x2 = rxyInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxyInstr->D2Value();
+      uint64_t alu_out = r1_val;
+      if (op == ALG) {
+        uint64_t mem_val =
+            static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
+        alu_out += mem_val;
+        SetS390ConditionCode<uint64_t>(alu_out, 0);
+      } else if (op == SLG) {
+        uint64_t mem_val =
+            static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
+        alu_out -= mem_val;
+        SetS390ConditionCode<uint64_t>(alu_out, 0);
+      } else if (op == AGF) {
+        uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+        alu_out += mem_val;
+        SetS390ConditionCode<int64_t>(alu_out, 0);
+      } else if (op == SGF) {
+        uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+        alu_out -= mem_val;
+        SetS390ConditionCode<int64_t>(alu_out, 0);
+      } else {
+        DCHECK(false);
+      }
+      set_register(r1, alu_out);
+      break;
+    }
+    case ALGFI:
+    case SLGFI: {
+#ifndef V8_TARGET_ARCH_S390X
+      // should only be called on 64bit
+      DCHECK(false);
+#endif
+      RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+      int r1 = rilInstr->R1Value();
+      uint32_t i2 = rilInstr->I2UnsignedValue();
+      uint64_t r1_val = (uint64_t)(get_register(r1));
+      uint64_t alu_out;
+      if (op == ALGFI)
+        alu_out = r1_val + i2;
+      else
+        alu_out = r1_val - i2;
+      set_register(r1, (intptr_t)alu_out);
+      SetS390ConditionCode<uint64_t>(alu_out, 0);
+      break;
+    }
+    case MSY:
+    case MSG: {
+      RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+      int r1 = rxyInstr->R1Value();
+      int b2 = rxyInstr->B2Value();
+      int x2 = rxyInstr->X2Value();
+      int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+      int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+      intptr_t d2_val = rxyInstr->D2Value();
+      if (op == MSY) {
+        int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+        int32_t r1_val = get_low_register<int32_t>(r1);
+        set_low_register(r1, mem_val * r1_val);
+      } else if (op == MSG) {
+        int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
+        int64_t r1_val = get_register(r1);
+        set_register(r1, mem_val * r1_val);
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    case MSFI:
+    case MSGFI: {
+      RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr);
+      int r1 = rilinst->R1Value();
+      int32_t i2 = rilinst->I2Value();
+      if (op == MSFI) {
+        int32_t alu_out = get_low_register<int32_t>(r1);
+        alu_out = alu_out * i2;
+        set_low_register(r1, alu_out);
+      } else if (op == MSGFI) {
+        int64_t alu_out = get_register(r1);
+        alu_out = alu_out * i2;
+        set_register(r1, alu_out);
+      } else {
+        UNREACHABLE();
+      }
+      break;
+    }
+    default:
+      UNREACHABLE();
+      return false;
+  }
+  return true;
+}
+
+int16_t Simulator::ByteReverse(int16_t hword) {
+  return (hword << 8) | ((hword >> 8) & 0x00ff);
+}
+
+int32_t Simulator::ByteReverse(int32_t word) {
+  int32_t result = word << 24;
+  result |= (word << 8) & 0x00ff0000;
+  result |= (word >> 8) & 0x0000ff00;
+  result |= (word >> 24) & 0x00000ff;
+  return result;
+}
+
+// Executes the current instruction.
+void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) {
+  if (v8::internal::FLAG_check_icache) {
+    CheckICache(isolate_->simulator_i_cache(), instr);
+  }
+  pc_modified_ = false;
+  if (::v8::internal::FLAG_trace_sim) {
+    disasm::NameConverter converter;
+    disasm::Disassembler dasm(converter);
+    // use a reasonably large buffer
+    v8::internal::EmbeddedVector<char, 256> buffer;
+    dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
+#ifdef V8_TARGET_ARCH_S390X
+    PrintF("%05ld  %08" V8PRIxPTR "  %s\n", icount_,
+           reinterpret_cast<intptr_t>(instr), buffer.start());
+#else
+    PrintF("%05lld  %08" V8PRIxPTR "  %s\n", icount_,
+           reinterpret_cast<intptr_t>(instr), buffer.start());
+#endif
+    // Flush stdout to prevent incomplete file output during abnormal exits
+    // This is caused by the output being buffered before being written to file
+    fflush(stdout);
+  }
+
+  // Try to simulate as S390 Instruction first.
+  bool processed = true;
+
+  int instrLength = instr->InstructionLength();
+  if (instrLength == 2)
+    processed = DecodeTwoByte(instr);
+  else if (instrLength == 4)
+    processed = DecodeFourByte(instr);
+  else if (instrLength == 6)
+    processed = DecodeSixByte(instr);
+
+  if (processed) {
+    if (!pc_modified_ && auto_incr_pc) {
+      set_pc(reinterpret_cast<intptr_t>(instr) + instrLength);
+    }
+    return;
+  }
+}
+
+void Simulator::DebugStart() {
+  S390Debugger dbg(this);
+  dbg.Debug();
+}
+
+void Simulator::Execute() {
+  // Get the PC to simulate. Cannot use the accessor here as we need the
+  // raw PC value and not the one used as input to arithmetic instructions.
+  intptr_t program_counter = get_pc();
+
+  if (::v8::internal::FLAG_stop_sim_at == 0) {
+    // Fast version of the dispatch loop without checking whether the simulator
+    // should be stopping at a particular executed instruction.
+    while (program_counter != end_sim_pc) {
+      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+      icount_++;
+      ExecuteInstruction(instr);
+      program_counter = get_pc();
+    }
+  } else {
+    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
+    // we reach the particular instuction count.
+    while (program_counter != end_sim_pc) {
+      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+      icount_++;
+      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
+        S390Debugger dbg(this);
+        dbg.Debug();
+      } else {
+        ExecuteInstruction(instr);
+      }
+      program_counter = get_pc();
+    }
+  }
+}
+
+void Simulator::CallInternal(byte* entry, int reg_arg_count) {
+  // Prepare to execute the code at entry
+  if (ABI_USES_FUNCTION_DESCRIPTORS) {
+    // entry is the function descriptor
+    set_pc(*(reinterpret_cast<intptr_t*>(entry)));
+  } else {
+    // entry is the instruction address
+    set_pc(reinterpret_cast<intptr_t>(entry));
+  }
+  // Remember the values of non-volatile registers.
+  int64_t r6_val = get_register(r6);
+  int64_t r7_val = get_register(r7);
+  int64_t r8_val = get_register(r8);
+  int64_t r9_val = get_register(r9);
+  int64_t r10_val = get_register(r10);
+  int64_t r11_val = get_register(r11);
+  int64_t r12_val = get_register(r12);
+  int64_t r13_val = get_register(r13);
+
+  if (ABI_CALL_VIA_IP) {
+    // Put target address in ip (for JS prologue).
+    set_register(ip, get_pc());
+  }
+
+  // Put down marker for end of simulation. The simulator will stop simulation
+  // when the PC reaches this value. By saving the "end simulation" value into
+  // the LR the simulation stops when returning to this call point.
+  registers_[14] = end_sim_pc;
+
+  // Set up the non-volatile registers with a known value. To be able to check
+  // that they are preserved properly across JS execution.
+  intptr_t callee_saved_value = icount_;
+  if (reg_arg_count < 5) {
+    set_register(r6, callee_saved_value + 6);
+  }
+  set_register(r7, callee_saved_value + 7);
+  set_register(r8, callee_saved_value + 8);
+  set_register(r9, callee_saved_value + 9);
+  set_register(r10, callee_saved_value + 10);
+  set_register(r11, callee_saved_value + 11);
+  set_register(r12, callee_saved_value + 12);
+  set_register(r13, callee_saved_value + 13);
+
+  // Start the simulation
+  Execute();
+
+// Check that the non-volatile registers have been preserved.
+#ifndef V8_TARGET_ARCH_S390X
+  if (reg_arg_count < 5) {
+    DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
+  }
+  DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
+  DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
+  DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
+  DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
+  DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
+  DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
+  DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
+#else
+  if (reg_arg_count < 5) {
+    DCHECK_EQ(callee_saved_value + 6, get_register(r6));
+  }
+  DCHECK_EQ(callee_saved_value + 7, get_register(r7));
+  DCHECK_EQ(callee_saved_value + 8, get_register(r8));
+  DCHECK_EQ(callee_saved_value + 9, get_register(r9));
+  DCHECK_EQ(callee_saved_value + 10, get_register(r10));
+  DCHECK_EQ(callee_saved_value + 11, get_register(r11));
+  DCHECK_EQ(callee_saved_value + 12, get_register(r12));
+  DCHECK_EQ(callee_saved_value + 13, get_register(r13));
+#endif
+
+  // Restore non-volatile registers with the original value.
+  set_register(r6, r6_val);
+  set_register(r7, r7_val);
+  set_register(r8, r8_val);
+  set_register(r9, r9_val);
+  set_register(r10, r10_val);
+  set_register(r11, r11_val);
+  set_register(r12, r12_val);
+  set_register(r13, r13_val);
+}
+
+intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
+  // Remember the values of non-volatile registers.
+  int64_t r6_val = get_register(r6);
+  int64_t r7_val = get_register(r7);
+  int64_t r8_val = get_register(r8);
+  int64_t r9_val = get_register(r9);
+  int64_t r10_val = get_register(r10);
+  int64_t r11_val = get_register(r11);
+  int64_t r12_val = get_register(r12);
+  int64_t r13_val = get_register(r13);
+
+  va_list parameters;
+  va_start(parameters, argument_count);
+  // Set up arguments
+
+  // First 5 arguments passed in registers r2-r6.
+  int reg_arg_count = (argument_count > 5) ? 5 : argument_count;
+  int stack_arg_count = argument_count - reg_arg_count;
+  for (int i = 0; i < reg_arg_count; i++) {
+    intptr_t value = va_arg(parameters, intptr_t);
+    set_register(i + 2, value);
+  }
+
+  // Remaining arguments passed on stack.
+  int64_t original_stack = get_register(sp);
+  // Compute position of stack on entry to generated code.
+  intptr_t entry_stack =
+      (original_stack -
+       (kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t)));
+  if (base::OS::ActivationFrameAlignment() != 0) {
+    entry_stack &= -base::OS::ActivationFrameAlignment();
+  }
+
+  // Store remaining arguments on stack, from low to high memory.
+  intptr_t* stack_argument =
+      reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize);
+  for (int i = 0; i < stack_arg_count; i++) {
+    intptr_t value = va_arg(parameters, intptr_t);
+    stack_argument[i] = value;
+  }
+  va_end(parameters);
+  set_register(sp, entry_stack);
+
+// Prepare to execute the code at entry
+#if ABI_USES_FUNCTION_DESCRIPTORS
+  // entry is the function descriptor
+  set_pc(*(reinterpret_cast<intptr_t*>(entry)));
+#else
+  // entry is the instruction address
+  set_pc(reinterpret_cast<intptr_t>(entry));
+#endif
+
+  // Put target address in ip (for JS prologue).
+  set_register(r12, get_pc());
+
+  // Put down marker for end of simulation. The simulator will stop simulation
+  // when the PC reaches this value. By saving the "end simulation" value into
+  // the LR the simulation stops when returning to this call point.
+  registers_[14] = end_sim_pc;
+
+  // Set up the non-volatile registers with a known value. To be able to check
+  // that they are preserved properly across JS execution.
+  intptr_t callee_saved_value = icount_;
+  if (reg_arg_count < 5) {
+    set_register(r6, callee_saved_value + 6);
+  }
+  set_register(r7, callee_saved_value + 7);
+  set_register(r8, callee_saved_value + 8);
+  set_register(r9, callee_saved_value + 9);
+  set_register(r10, callee_saved_value + 10);
+  set_register(r11, callee_saved_value + 11);
+  set_register(r12, callee_saved_value + 12);
+  set_register(r13, callee_saved_value + 13);
+
+  // Start the simulation
+  Execute();
+
+// Check that the non-volatile registers have been preserved.
+#ifndef V8_TARGET_ARCH_S390X
+  if (reg_arg_count < 5) {
+    DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
+  }
+  DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
+  DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
+  DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
+  DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
+  DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
+  DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
+  DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
+#else
+  if (reg_arg_count < 5) {
+    DCHECK_EQ(callee_saved_value + 6, get_register(r6));
+  }
+  DCHECK_EQ(callee_saved_value + 7, get_register(r7));
+  DCHECK_EQ(callee_saved_value + 8, get_register(r8));
+  DCHECK_EQ(callee_saved_value + 9, get_register(r9));
+  DCHECK_EQ(callee_saved_value + 10, get_register(r10));
+  DCHECK_EQ(callee_saved_value + 11, get_register(r11));
+  DCHECK_EQ(callee_saved_value + 12, get_register(r12));
+  DCHECK_EQ(callee_saved_value + 13, get_register(r13));
+#endif
+
+  // Restore non-volatile registers with the original value.
+  set_register(r6, r6_val);
+  set_register(r7, r7_val);
+  set_register(r8, r8_val);
+  set_register(r9, r9_val);
+  set_register(r10, r10_val);
+  set_register(r11, r11_val);
+  set_register(r12, r12_val);
+  set_register(r13, r13_val);
+// Pop stack passed arguments.
+
+#ifndef V8_TARGET_ARCH_S390X
+  DCHECK_EQ(entry_stack, get_low_register<int32_t>(sp));
+#else
+  DCHECK_EQ(entry_stack, get_register(sp));
+#endif
+  set_register(sp, original_stack);
+
+  // Return value register
+  intptr_t result = get_register(r2);
+  return result;
+}
+
+void Simulator::CallFP(byte* entry, double d0, double d1) {
+  set_d_register_from_double(0, d0);
+  set_d_register_from_double(1, d1);
+  CallInternal(entry);
+}
+
+int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
+  CallFP(entry, d0, d1);
+  int32_t result = get_register(r2);
+  return result;
+}
+
+double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
+  CallFP(entry, d0, d1);
+  return get_double_from_d_register(0);
+}
+
+uintptr_t Simulator::PushAddress(uintptr_t address) {
+  uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
+  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
+  *stack_slot = address;
+  set_register(sp, new_sp);
+  return new_sp;
+}
+
+uintptr_t Simulator::PopAddress() {
+  uintptr_t current_sp = get_register(sp);
+  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
+  uintptr_t address = *stack_slot;
+  set_register(sp, current_sp + sizeof(uintptr_t));
+  return address;
+}
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // USE_SIMULATOR
+#endif  // V8_TARGET_ARCH_S390